1
|
Wu X, Du F, Zhang A, Zhang G, Xu R, Du X. KDELR2 is necessary for chronic obstructive pulmonary disease airway Mucin5AC hypersecretion via an IRE1α/XBP-1s-dependent mechanism. J Cell Mol Med 2024; 28:e70125. [PMID: 39365189 PMCID: PMC11451269 DOI: 10.1111/jcmm.70125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/14/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Airway mucus hypersecretion, a crucial pathological feature of chronic obstructive pulmonary disease (COPD), contributes to the initiation, progression, and exacerbation of this disease. As a macromolecular mucin, the secretory behaviour of Mucin5AC (MUC5AC) is highly dependent on a series of modifying and folding processes that occur in the endoplasmic reticulum (ER). In this study, we focused on the ER quality control protein KDEL receptor (KDELR) and demonstrated that KDELR2 and MUC5AC were colocalized in the airway epithelium of COPD patients and COPD model rats. In addition, knockdown of KDELR2 markedly reduced the expression of MUC5AC both in vivo and in vitro and knockdown of ATF6 further decreased the levels of KDELR2. Furthermore, pretreatment with 4μ8C, an IRE1α inhibitor, led to a partial reduction in the expression of KDELR2 and MUC5AC both in vivo and in vitro, which indicated the involvement of IRE1α/XBP-1s in the upstream signalling cascade. Our study revealed that KDELR2 plays a crucial role in airway MUC5AC hypersecretion in COPD, which might be dependent on ATF6 and IRE1α/XBP-1s upstream signalling.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of Respiratory and Critical Care MedicineSuining Central HospitalSuiningSichuanChina
| | - Fawang Du
- Department of Respiratory and Critical Care MedicineSuining Central HospitalSuiningSichuanChina
| | - Aijie Zhang
- Basic Laboratory, Key Laboratory of Metabolic DiseasesSuining Central HospitalSuiningChina
| | - Guoyue Zhang
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Rui Xu
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Xianzhi Du
- Department of Respiratory and Critical Care MedicineThe Second Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| |
Collapse
|
2
|
Anitei M, Bruno F, Valkova C, Dau T, Cirri E, Mestres I, Calegari F, Kaether C. IER3IP1-mutations cause microcephaly by selective inhibition of ER-Golgi transport. Cell Mol Life Sci 2024; 81:334. [PMID: 39115595 PMCID: PMC11335259 DOI: 10.1007/s00018-024-05386-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/22/2024]
Abstract
Mutations in the IER3IP1 (Immediate Early Response-3 Interacting Protein 1) gene can give rise to MEDS1 (Microcephaly with Simplified Gyral Pattern, Epilepsy, and Permanent Neonatal Diabetes Syndrome-1), a severe condition leading to early childhood mortality. The small endoplasmic reticulum (ER)-membrane protein IER3IP1 plays a non-essential role in ER-Golgi transport. Here, we employed secretome and cell-surface proteomics to demonstrate that the absence of IER3IP1 results in the mistrafficking of proteins crucial for neuronal development and survival, including FGFR3, UNC5B and SEMA4D. This phenomenon correlates with the distension of ER membranes and increased lysosomal activity. Notably, the trafficking of cargo receptor ERGIC53 and KDEL-receptor 2 are compromised, with the latter leading to the anomalous secretion of ER-localized chaperones. Our investigation extended to in-utero knock-down of Ier3ip1 in mouse embryo brains, revealing a morphological phenotype in newborn neurons. In summary, our findings provide insights into how the loss or mutation of a 10 kDa small ER-membrane protein can cause a fatal syndrome.
Collapse
Affiliation(s)
- Mihaela Anitei
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Francesca Bruno
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Christina Valkova
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Therese Dau
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Emilio Cirri
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Iván Mestres
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany
| | - Federico Calegari
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany
| | - Christoph Kaether
- Leibniz Institute on Aging, Fritz-Lipmann-Institute, Beutenbergstr 11, 07745, Jena, Germany.
- Center for Regenerative Therapies, TU-Dresden, Fetscherstraße 105, 01307, Dresden, Germany.
| |
Collapse
|
3
|
Koo J, Palli SR. StaufenC facilitates utilization of the ERAD pathway to transport dsRNA through the endoplasmic reticulum to the cytosol. Proc Natl Acad Sci U S A 2024; 121:e2322927121. [PMID: 38885386 PMCID: PMC11214074 DOI: 10.1073/pnas.2322927121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024] Open
Abstract
RNA interference (RNAi) is more efficient in coleopteran insects than other insects. StaufenC (StauC), a coleopteran-specific double-stranded RNA (dsRNA)-binding protein, is required for efficient RNAi in coleopterans. We investigated the function of StauC in the intracellular transport of dsRNA into the cytosol, where dsRNA is digested by Dicer enzymes and recruited by Argonauts to RNA-induced silencing complexes. Confocal microscopy and cellular organelle fractionation studies have shown that dsRNA is trafficked through the endoplasmic reticulum (ER) in coleopteran Colorado potato beetle (CPB) cells. StauC is localized to the ER in CPB cells, and StauC-knockdown caused the accumulation of dsRNA in the ER and a decrease in the cytosol, suggesting that StauC plays a key role in the intracellular transport of dsRNA through the ER. Using immunoprecipitation, we showed that StauC is required for dsRNA interaction with ER proteins in the ER-associated protein degradation (ERAD) pathway, and these interactions are required for RNAi in CPB cells. These results suggest that StauC works with the ERAD pathway to transport dsRNA through the ER to the cytosol. This information could be used to develop dsRNA delivery methods aimed at improving RNAi.
Collapse
Affiliation(s)
- Jinmo Koo
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY40546
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY40546
| |
Collapse
|
4
|
Kawanaka R, Jin H, Aoe T. Unraveling the Connection: Pain and Endoplasmic Reticulum Stress. Int J Mol Sci 2024; 25:4995. [PMID: 38732214 PMCID: PMC11084550 DOI: 10.3390/ijms25094995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Pain is a complex and multifaceted experience. Recent research has increasingly focused on the role of endoplasmic reticulum (ER) stress in the induction and modulation of pain. The ER is an essential organelle for cells and plays a key role in protein folding and calcium dynamics. Various pathological conditions, such as ischemia, hypoxia, toxic substances, and increased protein production, may disturb protein folding, causing an increase in misfolding proteins in the ER. Such an overload of the folding process leads to ER stress and causes the unfolded protein response (UPR), which increases folding capacity in the ER. Uncompensated ER stress impairs intracellular signaling and cell function, resulting in various diseases, such as diabetes and degenerative neurological diseases. ER stress may be a critical universal mechanism underlying human diseases. Pain sensations involve the central as well as peripheral nervous systems. Several preclinical studies indicate that ER stress in the nervous system is enhanced in various painful states, especially in neuropathic pain conditions. The purpose of this narrative review is to uncover the intricate relationship between ER stress and pain, exploring molecular pathways, implications for various pain conditions, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Ryoko Kawanaka
- Department of Anesthesiology, Chiba Medical Center, Teikyo University, Ichihara 299-0111, Japan
| | - Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomohiko Aoe
- Pain Center, Chiba Medical Center, Teikyo University, Ichihara 299-0111, Japan
| |
Collapse
|
5
|
Zhang H, Rui M, Ma Z, Gong S, Zhang S, Zhou Q, Gan C, Gong W, Wang S. Golgi-to-ER retrograde transport prevents premature differentiation of Drosophila type II neuroblasts via Notch-signal-sending daughter cells. iScience 2024; 27:108545. [PMID: 38213621 PMCID: PMC10783626 DOI: 10.1016/j.isci.2023.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 01/13/2024] Open
Abstract
Stem cells are heterogeneous to generate diverse differentiated cell types required for organogenesis; however, the underlying mechanisms that differently maintain these heterogeneous stem cells are not well understood. In this study, we identify that Golgi-to-endoplasmic reticulum (ER) retrograde transport specifically maintains type II neuroblasts (NBs) through the Notch signaling. We reveal that intermediate neural progenitors (INPs), immediate daughter cells of type II NBs, provide Delta and function as the NB niche. The Delta used by INPs is mainly produced by NBs and asymmetrically distributed to INPs. Blocking retrograde transport leads to a decrease in INP number, which reduces Notch activity and results in the premature differentiation of type II NBs. Furthermore, the reduction of Delta could suppress tumor formation caused by type II NBs. Our results highlight the crosstalk between Golgi-to-ER retrograde transport, Notch signaling, stem cell niche, and fusion as an essential step in maintaining the self-renewal of type II NB lineage.
Collapse
Affiliation(s)
- Huanhuan Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Menglong Rui
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Zhixin Ma
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Sifan Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Shuliu Zhang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Qingxia Zhou
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Congfeng Gan
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Wenting Gong
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
| | - Su Wang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing 210096, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226019, China
| |
Collapse
|
6
|
Zhang Y, Ji P, Zhang M, Tran NT, Li S. Large-scale lysine crotonylation analysis reveals the role of TRAF6-Ecsit complex in endoplasmic reticulum stress in mud crab (Scylla paramamosain). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 148:104898. [PMID: 37531975 DOI: 10.1016/j.dci.2023.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
Lysine crotonylation (Kcr) is a newly discovered type of post-translational modification. Although Kcr has been reported in several species, its role in crustaceans remains largely unknown. In this study, Kcr in hemocytes of mud crab (Scylla paramamosain) was characterized using pan anti-crotonyllysine antibody enrichment and high-resolution liquid chromatogram-mass spectrometry analysis after SpTRAF6 or SpEcsit silencing. Altogether, 1,800 Kcr sites with six conserved motifs were identified from 512 proteins. Subcellular localization analysis showed that the identified Kcr proteins were mainly localized to the cytoplasm, nucleus, and mitochondria. The cellular components analysis showed that the 'chromosomal region' was enriched in the hemocytes of SpTRAF6-or SpEcsit-silenced mud crabs. The KEGG and PPI analyses showed that the identified Kcr proteins in the hemocytes SpTRAF6-or SpEcsit-silenced mud crabs were related to the 'protein processing in endoplasmic reticulum'; of which the marker of endoplasmic reticulum stress (Bip) was identified to be crotonylated. These datasets present the first comprehensive analysis of the crotonylome in mud crab hemocytes, providing invaluable insights into the regulatory functions of SpTRAF6 and SpEcsit in Kcr. Additionally, our findings shed light on the potential role of these proteins in activating marker proteins during endoplasmic reticulum stress in invertebrates.
Collapse
Affiliation(s)
- Yongsheng Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Peina Ji
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ming Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Ngoc Tuan Tran
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China
| | - Shengkang Li
- Guangdong Provincial Key Laboratory of Marine Biology, Shantou University, Shantou, 515063, China; Marine Biology Institute, Shantou University, Shantou, 515063, China; STU-UMT Joint Shellfish Research Laboratory, Shantou University, Shantou, 515063, China.
| |
Collapse
|
7
|
Targeted Protein Unfolding at the Golgi Apparatus. Methods Mol Biol 2022; 2557:645-659. [PMID: 36512243 DOI: 10.1007/978-1-0716-2639-9_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Maintaining protein homeostasis (proteostasis) is vital to cellular and organismal health. How the Golgi apparatus, the central protein maturation and sorting station in the cell, manages misfolded proteins to maintain proteostasis is still poorly understood. Here we present a strategy for targeted protein unfolding at the Golgi that enables studying Golgi-related protein quality control and stress-signaling pathways. Targeted protein unfolding is induced by small molecule-based chemical biology approaches-hydrophobic tagging and the use of a destabilization domain. Imaging studies allow visualizing quality control (QC) phenotypes, such as the formation of QC carriers and Golgi-to-endoplasmic reticulum trafficking, and correlating these phenotypes with other trafficking processes.
Collapse
|
8
|
KDEL Receptors: Pathophysiological Functions, Therapeutic Options, and Biotechnological Opportunities. Biomedicines 2022; 10:biomedicines10061234. [PMID: 35740256 PMCID: PMC9220330 DOI: 10.3390/biomedicines10061234] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/07/2023] Open
Abstract
KDEL receptors (KDELRs) are ubiquitous seven-transmembrane domain proteins encoded by three mammalian genes. They bind to and retro-transport endoplasmic reticulum (ER)-resident proteins with a C-terminal Lys-Asp-Glu-Leu (KDEL) sequence or variants thereof. In doing this, KDELR participates in the ER quality control of newly synthesized proteins and the unfolded protein response. The binding of KDEL proteins to KDELR initiates signaling cascades involving three alpha subunits of heterotrimeric G proteins, Src family kinases, protein kinases A (PKAs), and mitogen-activated protein kinases (MAPKs). These signaling pathways coordinate membrane trafficking flows between secretory compartments and control the degradation of the extracellular matrix (ECM), an important step in cancer progression. Considering the basic cellular functions performed by KDELRs, their association with various diseases is not surprising. KDELR mutants unable to bind the collagen-specific chaperon heat-shock protein 47 (HSP47) cause the osteogenesis imperfecta. Moreover, the overexpression of KDELRs appears to be linked to neurodegenerative diseases that share pathological ER-stress and activation of the unfolded protein response (UPR). Even immune function requires a functional KDELR1, as its mutants reduce the number of T lymphocytes and impair antiviral immunity. Several studies have also brought to light the exploitation of the shuttle activity of KDELR during the intoxication and maturation/exit of viral particles. Based on the above, KDELRs can be considered potential targets for the development of novel therapeutic strategies for a variety of diseases involving proteostasis disruption, cancer progression, and infectious disease. However, no drugs targeting KDELR functions are available to date; rather, KDELR has been leveraged to deliver drugs efficiently into cells or improve antigen presentation.
Collapse
|
9
|
Trafficking-defective mutant PROKR2 cycles between endoplasmic reticulum and Golgi to attenuate endoplasmic reticulum stress. Proc Natl Acad Sci U S A 2022; 119:2102248119. [PMID: 35173048 PMCID: PMC8872787 DOI: 10.1073/pnas.2102248119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2021] [Indexed: 11/18/2022] Open
Abstract
The endoplasmic reticulum (ER) possesses a quality control system that prevents misfolded proteins from leaving the ER for routing to the ER-associated degradation pathway. Some misfolded proteins can escape the ER to reach the Golgi, where they are then retrieved from the Golgi back to the ER for degradation, but why this occurs needs to be clarified. Studying a mutant prokineticin receptor 2 identified in patients with hypogonadotropic hypogonadism as a model, we find that the post-ER retrieval system provides another layer of quality control and also lowers the load of misfolded proteins in the ER to reduce ER stress. Our findings reveal the importance of a post-ER quality control mechanism in contributing to cellular homeostasis. G protein–coupled receptors (GPCRs) play crucial roles in numerous physiological and pathological processes. Mutations in GPCRs that result in loss of function or alterations in signaling can lead to inherited or acquired diseases. Herein, studying prokineticin receptor 2 (PROKR2), we initially identify distinct interactomes for wild-type (WT) versus a mutant (P290S) PROKR2 that causes hypogonadotropic hypogonadism. We then find that both the WT and mutant PROKR2 are targeted for endoplasmic reticulum (ER)-associated degradation, but the mutant is degraded to a greater extent. Further analysis revealed that both forms can also leave the ER to reach the Golgi. However, whereas most of the WT is further transported to the cell surface, most of the mutant is retrieved to the ER. Thus, the post-ER itinerary plays an important role in distinguishing the ultimate fate of the WT versus the mutant. We have further discovered that this post-ER itinerary reduces ER stress induced by the mutant PROKR2. Moreover, we extend the core findings to another model GPCR. Our findings advance the understanding of disease pathogenesis induced by a mutation at a key residue that is conserved across many GPCRs and thus contributes to a fundamental understanding of the diverse mechanisms used by cellular quality control to accommodate misfolded proteins.
Collapse
|
10
|
Bagchi AK, Malik A, Akolkar G, Jassal DS, Singal PK. Endoplasmic Reticulum Stress Promotes iNOS/NO and Influences Inflammation in the Development of Doxorubicin-Induced Cardiomyopathy. Antioxidants (Basel) 2021; 10:antiox10121897. [PMID: 34943000 PMCID: PMC8750247 DOI: 10.3390/antiox10121897] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/25/2022] Open
Abstract
Doxorubicin (Dox) is known to cause heart failure in some cancer patients. Despite extensive studies over the past half century, the subcellular basis of Dox-induced cardiomyopathy (DIC) is still elusive. Earlier, we suggested that Dox causes a delayed activation of unfolded protein response (UPR) which may promote mitochondrial Bax activity leading to cardiomyocyte death. As a follow up, using NO donor, S-Nitroso-N-acetyl-d,l-penicillamine (SNAP), and/or NOS inhibitor, N(ω)-nitro-L-arginine methyl ester (L-NAME), we now show that endoplasmic reticulum (ER) stress promotes inflammation through iNOS/NO-induced TLR2 activation. In vivo Dox treatment increased mitochondrial iNOS to promote ER stress as there was an increase in Bip (Grp78) response, proapoptotic CHOP (DDIT3) and ER-mediated Caspase 12 activation. Increased iNOS activity is associated with an increase in TLR2 and TNF-α receptor associated factor 2 (TRAF2). These two together with NF-κB p105/50 expression and a synergistic support through ER stress, promote inflammatory response in the myocardium leading to cell death and ultimately fostering DIC conditions. In the presence of NOS inhibitor, such detrimental effects of Dox were inhibited, suggesting iNOS/NO as key mediators of Dox-induced inflammatory as well as apoptotic responses.
Collapse
Affiliation(s)
- Ashim K. Bagchi
- St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.K.B.); (A.M.); (D.S.J.)
| | - Akshi Malik
- St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.K.B.); (A.M.); (D.S.J.)
| | - Gauri Akolkar
- Cardio-Renal Division, Therapeutic Products Directorate, Ottawa, ON K1A 0K9, Canada;
| | - Davinder S. Jassal
- St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.K.B.); (A.M.); (D.S.J.)
- Section of Cardiology, Department of Internal Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada
| | - Pawan K. Singal
- St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, Institute of Cardiovascular Sciences, University of Manitoba, Winnipeg, MB R2H 2A6, Canada; (A.K.B.); (A.M.); (D.S.J.)
- Correspondence: ; Tel.: +1-204-235-3416; Fax: +1-204-233-6723
| |
Collapse
|
11
|
Wu Q, Tian JH, He YX, Huang YY, Huang YQ, Zhang GP, Luo JD, Xue Q, Yu XY, Liu YH. Zonisamide alleviates cardiac hypertrophy in rats by increasing Hrd1 expression and inhibiting endoplasmic reticulum stress. Acta Pharmacol Sin 2021; 42:1587-1597. [PMID: 33495518 PMCID: PMC8463597 DOI: 10.1038/s41401-020-00585-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 11/17/2020] [Indexed: 02/02/2023] Open
Abstract
Antiepileptic drug zonisamide has been shown to be curative for Parkinson's disease (PD) through increasing HMG-CoA reductase degradation protein 1 (Hrd1) level and mitigating endoplasmic reticulum (ER) stress. Hrd1 is an ER-transmembrane E3 ubiquitin ligase, which is involved in cardiac dysfunction and cardiac hypertrophy in a mouse model of pressure overload. In this study, we investigated whether zonisamide alleviated cardiac hypertrophy in rats by increasing Hrd1 expression and inhibiting ER stress. The beneficial effects of zonisamide were assessed in two experimental models of cardiac hypertrophy: in rats subjected to abdominal aorta constriction (AAC) and treated with zonisamide (14, 28, 56 mg · kg-1 · d-1, i.g.) for 6 weeks as well as in neonatal rat cardiomyocytes (NRCMs) co-treated with Ang II (10 μM) and zonisamide (0.3 μM). Echocardiography analysis revealed that zonsiamide treatment significantly improved cardiac function in AAC rats. We found that zonsiamide treatment significantly attenuated cardiac hypertrophy and fibrosis, and suppressed apoptosis and ER stress in the hearts of AAC rats and in Ang II-treated NRCMs. Importantly, zonisamide markedly increased the expression of Hrd1 in the hearts of AAC rats and in Ang II-treated NRCMs. Furthermore, we demonstrated that zonisamide accelerated ER-associated protein degradation (ERAD) in Ang II-treated NRCMs; knockdown of Hrd1 abrogated the inhibitory effects of zonisamide on ER stress and cardiac hypertrophy. Taken together, our results demonstrate that zonisamide is effective in preserving heart structure and function in the experimental models of pathological cardiac hypertrophy. Zonisamide increases Hrd1 expression, thus preventing cardiac hypertrophy and improving the cardiac function of AAC rats.
Collapse
Affiliation(s)
- Qian Wu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jia-Hui Tian
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yong-Xiang He
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yong-Yin Huang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yu-Qing Huang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Gui-Ping Zhang
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Jian-Dong Luo
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin Xue
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Xi-Yong Yu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Ying-Hua Liu
- The Fifth Affiliated Hospital, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
12
|
Phakham T, Bulaon CJI, Khorattanakulchai N, Shanmugaraj B, Buranapraditkun S, Boonkrai C, Sooksai S, Hirankarn N, Abe Y, Strasser R, Rattanapisit K, Phoolcharoen W. Functional Characterization of Pembrolizumab Produced in Nicotiana benthamiana Using a Rapid Transient Expression System. FRONTIERS IN PLANT SCIENCE 2021; 12:736299. [PMID: 34567049 PMCID: PMC8459022 DOI: 10.3389/fpls.2021.736299] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 05/23/2023]
Abstract
The striking innovation and clinical success of immune checkpoint inhibitors (ICIs) have undoubtedly contributed to a breakthrough in cancer immunotherapy. Generally, ICIs produced in mammalian cells requires high investment, production costs, and involves time consuming procedures. Recently, the plants are considered as an emerging protein production platform due to its cost-effectiveness and rapidity for the production of recombinant biopharmaceuticals. This study explored the potential of plant-based system to produce an anti-human PD-1 monoclonal antibody (mAb), Pembrolizumab, in Nicotiana benthamiana. The transient expression of this mAb in wild-type N. benthamiana accumulated up to 344.12 ± 98.23 μg/g fresh leaf weight after 4 days of agroinfiltration. The physicochemical and functional characteristics of plant-produced Pembrolizumab were compared to mammalian cell-produced commercial Pembrolizumab (Keytruda®). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis results demonstrated that the plant-produced Pembrolizumab has the expected molecular weight and is comparable with the Keytruda®. Structural characterization also confirmed that both antibodies have no protein aggregation and similar secondary and tertiary structures. Furthermore, the plant-produced Pembrolizumab displayed no differences in its binding efficacy to PD-1 protein and inhibitory activity between programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) interaction with the Keytruda®. In vitro efficacy for T cell activation demonstrated that the plant-produced Pembrolizumab could induce IL-2 and IFN-γ production. Hence, this proof-of-concept study showed that the plant-production platform can be utilized for the rapid production of functional mAbs for immunotherapy.
Collapse
Affiliation(s)
- Tanapati Phakham
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Narach Khorattanakulchai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | | - Supranee Buranapraditkun
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Yoshito Abe
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
13
|
Yue X, Qian Y, Zhu L, Gim B, Bao M, Jia J, Jing S, Wang Y, Tan C, Bottanelli F, Ziltener P, Choi S, Hao P, Lee I. ACBD3 modulates KDEL receptor interaction with PKA for its trafficking via tubulovesicular carrier. BMC Biol 2021; 19:194. [PMID: 34493279 PMCID: PMC8424950 DOI: 10.1186/s12915-021-01137-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 08/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background KDEL receptor helps establish cellular equilibrium in the early secretory pathway by recycling leaked ER-chaperones to the ER during secretion of newly synthesized proteins. Studies have also shown that KDEL receptor may function as a signaling protein that orchestrates membrane flux through the secretory pathway. We have recently shown that KDEL receptor is also a cell surface receptor, which undergoes highly complex itinerary between trans-Golgi network and the plasma membranes via clathrin-mediated transport carriers. Ironically, however, it is still largely unknown how KDEL receptor is distributed to the Golgi at steady state, since its initial discovery in late 1980s. Results We used a proximity-based in vivo tagging strategy to further dissect mechanisms of KDEL receptor trafficking. Our new results reveal that ACBD3 may be a key protein that regulates KDEL receptor trafficking via modulation of Arf1-dependent tubule formation. We demonstrate that ACBD3 directly interact with KDEL receptor and form a functionally distinct protein complex in ArfGAPs-independent manner. Depletion of ACBD3 results in re-localization of KDEL receptor to the ER by inducing accelerated retrograde trafficking of KDEL receptor. Importantly, this is caused by specifically altering KDEL receptor interaction with Protein Kinase A and Arf1/ArfGAP1, eventually leading to increased Arf1-GTP-dependent tubular carrier formation at the Golgi. Conclusions These results suggest that ACBD3 may function as a negative regulator of PKA activity on KDEL receptor, thereby restricting its retrograde trafficking in the absence of KDEL ligand binding. Since ACBD3 was originally identified as PAP7, a PBR/PKA-interacting protein at the Golgi/mitochondria, we propose that Golgi-localization of KDEL receptor is likely to be controlled by its interaction with ACBD3/PKA complex at steady state, providing a novel insight for establishment of cellular homeostasis in the early secretory pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01137-7.
Collapse
Affiliation(s)
- Xihua Yue
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Yi Qian
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Lianhui Zhu
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Bopil Gim
- School of Physical Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Mengjing Bao
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Jie Jia
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Shuaiyang Jing
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yijing Wang
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chuanting Tan
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Francesca Bottanelli
- Institut für Biochemie, Freie Universität Berlin, Thielallee 63, 14195, Berlin, Germany
| | - Pascal Ziltener
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Sunkyu Choi
- Proteomics Core, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Piliang Hao
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China
| | - Intaek Lee
- School of Life Science and Technology, ShanghaiTech University, Pudong, Shanghai, China. .,Shanghai Institute for Advanced Immunochemical Studies, Shanghai, China.
| |
Collapse
|
14
|
Abstract
Pestiviruses are members of the family Flaviviridae, a group of enveloped viruses that bud at intracellular membranes. Pestivirus particles contain three glycosylated envelope proteins, Erns, E1, and E2. Among them, E1 is the least characterized concerning both biochemical features and function. E1 from bovine viral diarrhea virus (BVDV) strain CP7 was analyzed with regard to its intracellular localization and membrane topology. Here, it is shown that even in the absence of other viral proteins, E1 is not secreted or expressed at the cell surface but localizes predominantly in the endoplasmic reticulum (ER). Using engineered chimeric transmembrane domains with sequences from E1 and vesicular stomatitis virus G protein, the E1 ER-retention signal could be narrowed down to six fully conserved polar residues in the middle part of the transmembrane domain of E1. Retention was observed even when several of these polar residues were exchanged for alanine. Mutations with a strong impact on E1 retention prevented recovery of infectious viruses when tested in the viral context. Analysis of the membrane topology of E1 before and after the signal peptide cleavage via a selective permeabilization and an in vivo labeling approach revealed that mature E1 is a typical type I transmembrane protein with a single span transmembrane anchor at its C terminus, whereas it adopts a hairpin-like structure with the C terminus located in the ER lumen when the precleavage situation is mimicked by blocking the cleavage site between E1 and E2. IMPORTANCE The shortage of specific antibodies against E1, making detection and further analysis of E1 difficult, resulted in a lack of knowledge on E1 compared to Erns and E2 with regard to biosynthesis, structure, and function. It is known that pestiviruses bud intracellularly. Here, we show that E1 contains its own ER retention signal: six fully conserved polar residues in the middle part of the transmembrane domain are shown to be the determinants for ER retention of E1. Moreover, those six polar residues could serve as a functional group that intensely affect the generation of infectious viral particles. In addition, the membrane topology of E1 has been determined. In this context, we also identified dynamic changes in membrane topology of E1 with the carboxy terminus located on the luminal side of the ER in the precleavage state and relocation of this sequence upon signal peptidase cleavage. Our work provides the first systematic analysis of the pestiviral E1 protein with regard to its biochemical and functional characteristics.
Collapse
|
15
|
The E rns Carboxyterminus: Much More Than a Membrane Anchor. Viruses 2021; 13:v13071203. [PMID: 34201636 PMCID: PMC8310223 DOI: 10.3390/v13071203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022] Open
Abstract
Pestiviruses express the unique essential envelope protein Erns, which exhibits RNase activity, is attached to membranes by a long amphipathic helix, and is partially secreted from infected cells. The RNase activity of Erns is directly connected with pestivirus virulence. Formation of homodimers and secretion of the protein are hypothesized to be important for its role as a virulence factor, which impairs the host's innate immune response to pestivirus infection. The unusual membrane anchor of Erns raises questions with regard to proteolytic processing of the viral polyprotein at the Erns carboxy-terminus. Moreover, the membrane anchor is crucial for establishing the critical equilibrium between retention and secretion and ensures intracellular accumulation of the protein at the site of virus budding so that it is available to serve both as structural component of the virion and factor controlling host immune reactions. In the present manuscript, we summarize published as well as new data on the molecular features of Erns including aspects of its interplay with the other two envelope proteins with a special focus on the biochemistry of the Erns membrane anchor.
Collapse
|
16
|
Tempio T, Anelli T. The pivotal role of ERp44 in patrolling protein secretion. J Cell Sci 2020; 133:133/21/jcs240366. [PMID: 33173013 DOI: 10.1242/jcs.240366] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Interactions between protein ligands and receptors are the main language of intercellular communication; hence, how cells select proteins to be secreted or presented on the plasma membrane is a central concern in cell biology. A series of checkpoints are located along the secretory pathway, which ensure the fidelity of such protein signals (quality control). Proteins that pass the checkpoints operated in the endoplasmic reticulum (ER) by the binding immunoglobulin protein (BiP; also known as HSPA5 and GRP78) and the calnexin-calreticulin systems, must still overcome additional scrutiny in the ER-Golgi intermediate compartment (ERGIC) and the Golgi. One of the main players of this process in all metazoans is the ER-resident protein 44 (ERp44); by cycling between the ER and the Golgi, ERp44 controls the localization of key enzymes designed to act in the ER but that are devoid of suitable localization motifs. ERp44 also patrols the secretion of correctly assembled disulfide-linked oligomeric proteins. Here, we discuss the mechanisms driving ERp44 substrate recognition, with important consequences on the definition of 'thiol-mediated quality control'. We also describe how pH and zinc gradients regulate the functional cycle of ERp44, coupling quality control and membrane trafficking along the early secretory compartment.
Collapse
Affiliation(s)
- Tiziana Tempio
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan 20132, Italy.,IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| | - Tiziana Anelli
- Division of Genetics and Cell Biology, Vita-Salute San Raffaele University, Milan 20132, Italy .,IRCCS San Raffaele Scientific Institute, Milan 20132, Italy
| |
Collapse
|
17
|
Pharmacological Chaperones Attenuate the Development of Opioid Tolerance. Int J Mol Sci 2020; 21:ijms21207536. [PMID: 33066035 PMCID: PMC7593907 DOI: 10.3390/ijms21207536] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/08/2020] [Accepted: 10/11/2020] [Indexed: 01/14/2023] Open
Abstract
Opioids are potent analgesics widely used to control acute and chronic pain, but long-term use induces tolerance that reduces their effectiveness. Opioids such as morphine bind to mu opioid receptors (MORs), and several downstream signaling pathways are capable of inducing tolerance. We previously reported that signaling from the endoplasmic reticulum (ER) contributed to the development of morphine tolerance. Accumulation of misfolded proteins in the ER induced the unfolded protein response (UPR) that causes diverse pathological conditions. We examined the effects of pharmacological chaperones that alleviate ER stress on opioid tolerance development by assessing thermal nociception in mice. Pharmacological chaperones such as tauroursodeoxycholic acid and 4-phenylbutyrate suppressed the development of morphine tolerance and restored analgesia. Chaperones alone did not cause analgesia. Although morphine administration induced analgesia when glycogen synthase kinase 3β (GSK3β) was in an inactive state due to serine 9 phosphorylation, repeated morphine administration suppressed this phosphorylation event. Co-administration of chaperones maintained the inactive state of GSK3β. These results suggest that ER stress may facilitate morphine tolerance due to intracellular crosstalk between the UPR and MOR signaling. Pharmacological chaperones may be useful in the management of opioid misuse.
Collapse
|
18
|
Newstead S, Barr F. Molecular basis for KDEL-mediated retrieval of escaped ER-resident proteins - SWEET talking the COPs. J Cell Sci 2020; 133:133/19/jcs250100. [PMID: 33037041 PMCID: PMC7561476 DOI: 10.1242/jcs.250100] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 07/30/2020] [Indexed: 12/11/2022] Open
Abstract
Protein localisation in the cell is controlled through the function of trafficking receptors, which recognise specific signal sequences and direct cargo proteins to different locations. The KDEL receptor (KDELR) was one of the first intracellular trafficking receptors identified and plays an essential role in maintaining the integrity of the early secretory pathway. The receptor recognises variants of a canonical C-terminal Lys-Asp-Glu-Leu (KDEL) signal sequence on ER-resident proteins when these escape to the Golgi, and targets these proteins to COPI- coated vesicles for retrograde transport back to the ER. The empty receptor is then recycled from the ER back to the Golgi by COPII-coated vesicles. Crystal structures of the KDELR show that it is structurally related to the PQ-loop family of transporters that are found in both pro- and eukaryotes, and shuttle sugars, amino acids and vitamins across cellular membranes. Furthermore, analogous to PQ-loop transporters, the KDELR undergoes a pH-dependent and ligand-regulated conformational cycle. Here, we propose that the striking structural similarity between the KDELR and PQ-loop transporters reveals a connection between transport and trafficking in the cell, with important implications for understanding trafficking receptor evolution and function. Summary: The structure of the KDEL receptor gives new insights into the close connection between trafficking and transport in the cell.
Collapse
Affiliation(s)
- Simon Newstead
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| | - Francis Barr
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK
| |
Collapse
|
19
|
Brecker M, Khakhina S, Schubert TJ, Thompson Z, Rubenstein RC. The Probable, Possible, and Novel Functions of ERp29. Front Physiol 2020; 11:574339. [PMID: 33013490 PMCID: PMC7506106 DOI: 10.3389/fphys.2020.574339] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/14/2020] [Indexed: 12/16/2022] Open
Abstract
The luminal endoplasmic reticulum (ER) protein of 29 kDa (ERp29) is a ubiquitously expressed cellular agent with multiple critical roles. ERp29 regulates the biosynthesis and trafficking of several transmembrane and secretory proteins, including the cystic fibrosis transmembrane conductance regulator (CFTR), the epithelial sodium channel (ENaC), thyroglobulin, connexin 43 hemichannels, and proinsulin. ERp29 is hypothesized to promote ER to cis-Golgi cargo protein transport via COP II machinery through its interactions with the KDEL receptor; this interaction may facilitate the loading of ERp29 clients into COP II vesicles. ERp29 also plays a role in ER stress (ERS) and the unfolded protein response (UPR) and is implicated in oncogenesis. Here, we review the vast array of ERp29’s clients, its role as an ER to Golgi escort protein, and further suggest ERp29 as a potential target for therapies related to diseases of protein misfolding and mistrafficking.
Collapse
Affiliation(s)
- Margaret Brecker
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Svetlana Khakhina
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Tyler J. Schubert
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Zachary Thompson
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Ronald C. Rubenstein
- Cystic Fibrosis Center, The Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Division of Allergy and Pulmonary Medicine, Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO, United States
- *Correspondence: Ronald C. Rubenstein, ;
| |
Collapse
|
20
|
Aoe T. Pathological Aspects of COVID-19 as a Conformational Disease and the Use of Pharmacological Chaperones as a Potential Therapeutic Strategy. Front Pharmacol 2020; 11:1095. [PMID: 32754041 PMCID: PMC7366900 DOI: 10.3389/fphar.2020.01095] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 06/09/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the seventh human coronavirus infectious disease, was first reported in Wuhan, China, in December 2019, followed by its rapid spread globally (251,059 deaths, on May 5, 2020, by Johns Hopkins University). An early clinical report showed that fever, cough, fatigue, sputum production, and myalgia were initial symptoms, with the development of pneumonia as the disease progressed. Increases in the level of serum liver enzymes, D-dimer, cardiac troponin I, and creatinine have been observed in severely ill patients, indicating that multiple organ failure had occurred in these cases. Lymphopenia and an increase in interleukin-6 (IL-6) were also observed. Although COVID-19 patients are administered glucocorticoid therapy to treat the excessive immune response to severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection, the efficacy of this form of therapy is unclear. Viremia is observed in severe cases, suggesting that in addition to type II alveolar epithelial cells, many cell types, such as vascular endothelial cells, cardiomyocytes, renal tubular cells, neuronal cells, and lymphocytes, may be damaged. The improvement of survival rates requires elucidation of the mechanism by which cellular damage occurs during viral infection. Cellular therapy, along with organ support systems such as oxygen therapy, artificial ventilation, extra corporeal membrane oxygenation and dialysis, as well as antiviral therapy, are required. Viral replication in infected host cells may perturb protein folding in the endoplasmic reticulum (ER), causing ER stress. Although an adaptive cellular response, i.e. the unfolded protein response, can compensate for the misfolded protein burden to some extent, continued viral proliferation may induce inflammation and cell death. Therefore, we propose that proteostasis dysfunction may cause conformational disorders in COVID-19. The application of pharmacological chaperone therapy to treat COVID-19 patients is additionally discussed.
Collapse
Affiliation(s)
- Tomohiko Aoe
- Pain Center, Teikyo University Chiba Medical Center, Ichihara, Japan.,Department of Medicine, Teikyo University, Tokyo, Japan
| |
Collapse
|
21
|
Mao H, Nian J, Wang Z, Li X, Huang C. KDELR2 is an unfavorable prognostic biomarker and regulates CCND1 to promote tumor progression in glioma. Pathol Res Pract 2020; 216:152996. [PMID: 32534703 DOI: 10.1016/j.prp.2020.152996] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 04/07/2020] [Accepted: 04/22/2020] [Indexed: 01/09/2023]
Abstract
BACKGROUND The KDEL receptor is a seven-transmembrane-domain protein, which plays a key role in ER quality control and in the ER stress response, KDELR2 involved in regulation of cellular functions, including cell proliferation, survival, promotes glioblastoma tumorigenesis. The aim of this study was to investigate the clinicpathological value and biological role of KDELR2 in glioma. METHODS We studied the expression of KEDLR2 and its association with the prognosis through the TCGA, CGGA, and GSE16011 database. To explore the role of KDELR2 in glioma, KDELR2 siRNA was constructed and transfected into U87 glioma cells. CCK-8, colony formation and Transwell assays were used to investigate the roles of KDELR2 on GBM cell proliferation. We further studied the effect of KDELR2 on tumorigenesis in animal model. Additionally, flow cytometry was used to monitor the changes in the cell cycle and apoptosis following transfection with KDELR2 siRNA. We applied GeneChip primeview expression array to analysis the differential gene expression profiling. Ingenuity Pathway Analysis to show that KDELR2 has a significant impact in canonical pathway in cell cycle regulation and participate in multiple pathways. And we detected the cell cycle proteins CCND1 expression by Western blot analysis. RESULTS Our results showed that KDELR2 was up-regulated in glioma tissue and cell lines. Knockdown KDELR2 was able to reduce cell viability, promote cell cycle arrest at the G1 phase, and induce apoptotic cell death. Moreover, our results suggested that KDELR2 regulated the cellular functions of U87 cells by targeting CCND1. Therefore, we demonstrated that KDELR2 is a novel biomarker in glioma. CONCLUSIONS KDELR2 is highly expressed in human glioma tissues and cell lines, a higher expression of KDELR2 is associated with a poor prognosis of glioma patients. Moreover, KDELR2 regulated the cellular functions of U87 cells by targeting CCND1. The KDELR2/CCND1 axis may provide a new therapeutic target for the treatment of glioma and deepen our understanding of glioma mechanisms.
Collapse
Affiliation(s)
- Hui Mao
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou 416000, Hunan, China
| | - Jiang Nian
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhao Wang
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou 416000, Hunan, China
| | - XueJun Li
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - ChunHai Huang
- Department of Neurosurgery, First Affiliated Hospital of Jishou University, Jishou 416000, Hunan, China.
| |
Collapse
|
22
|
Conflicting Actions of Inhalational Anesthetics, Neurotoxicity and Neuroprotection, Mediated by the Unfolded Protein Response. Int J Mol Sci 2020; 21:ijms21020450. [PMID: 31936788 PMCID: PMC7013687 DOI: 10.3390/ijms21020450] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/02/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
Preclinical studies have shown that exposure of the developing brain to inhalational anesthetics can cause neurotoxicity. However, other studies have claimed that anesthetics can exert neuroprotective effects. We investigated the mechanisms associated with the neurotoxic and neuroprotective effects exerted by inhalational anesthetics. Neuroblastoma cells were exposed to sevoflurane and then cultured in 1% oxygen. We evaluated the expression of proteins related to the unfolded protein response (UPR). Next, we exposed adult mice in which binding immunoglobulin protein (BiP) had been mutated, and wild-type mice, to sevoflurane, and evaluated their cognitive function. We compared our results to those from our previous study in which mice were exposed to sevoflurane at the fetal stage. Pre-exposure to sevoflurane reduced the expression of CHOP in neuroblastoma cells exposed to hypoxia. Anesthetic pre-exposure also significantly improved the cognitive function of adult wild-type mice, but not the mutant mice. In contrast, mice exposed to anesthetics during the fetal stage showed cognitive impairment. Our data indicate that exposure to inhalational anesthetics causes endoplasmic reticulum (ER) stress, and subsequently leads to an adaptive response, the UPR. This response may enhance the capacity of cells to adapt to injuries and improve neuronal function in adult mice, but not in developing mice.
Collapse
|
23
|
Kokubun H, Jin H, Aoe T. Pathogenic Effects of Impaired Retrieval between the Endoplasmic Reticulum and Golgi Complex. Int J Mol Sci 2019; 20:ijms20225614. [PMID: 31717602 PMCID: PMC6888596 DOI: 10.3390/ijms20225614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 10/31/2019] [Accepted: 11/07/2019] [Indexed: 12/15/2022] Open
Abstract
Cellular activities, such as growth and secretion, are dependent on correct protein folding and intracellular protein transport. Injury, like ischemia, malnutrition, and invasion of toxic substances, affect the folding environment in the endoplasmic reticulum (ER). The ER senses this information, following which cells adapt their response to varied situations through the unfolded protein response. Activation of the KDEL receptor, resulting from the secretion from the ER of chaperones containing the KDEL sequence, plays an important role in this adaptation. The KDEL receptor was initially shown to be necessary for the retention of KDEL sequence-containing proteins in the ER. However, it has become clear that the activated KDEL receptor also regulates bidirectional transport between the ER and the Golgi complex, as well as from the Golgi to the secretory pathway. In addition, it has been suggested that the signal for KDEL receptor activation may also affect several other cellular activities. In this review, we discuss KDEL receptor-mediated bidirectional transport and signaling and describe disease models and human diseases related to KDEL receptor dysfunction.
Collapse
Affiliation(s)
- Hiroshi Kokubun
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba 260-8670, Japan
| | - Tomohiko Aoe
- Department of Medicine, Pain Center, Chiba Medical Center, Teikyo University, Ichihara 299-0111, Japan
- Correspondence: ; Tel.: +81-436-62-1211
| |
Collapse
|
24
|
Royal JM, Oh YJ, Grey MJ, Lencer WI, Ronquillo N, Galandiuk S, Matoba N. A modified cholera toxin B subunit containing an ER retention motif enhances colon epithelial repair via an unfolded protein response. FASEB J 2019; 33:13527-13545. [PMID: 31560862 DOI: 10.1096/fj.201901255r] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cholera toxin B subunit (CTB) exhibits broad-spectrum biologic activity upon mucosal administration. Here, we found that a recombinant CTB containing an endoplasmic reticulum (ER) retention motif (CTB-KDEL) induces colon epithelial wound healing in colitis via the activation of an unfolded protein response (UPR) in colon epithelial cells. In a Caco2 cell wound healing model, CTB-KDEL, but not CTB or CTB-KDE, facilitated cell migration via interaction with the KDEL receptor, localization in the ER, UPR activation, and subsequent TGF-β signaling. Inhibition of the inositol-requiring enzyme 1/X-box binding protein 1 arm of UPR abolished the cell migration effect of CTB-KDEL, indicating that the pathway is indispensable for the activity. CTB-KDEL's capacity to induce UPR and epithelial restitution or wound healing was corroborated in a dextran sodium sulfate-induced acute colitis mouse model. Furthermore, CTB-KDEL induced a UPR, up-regulated wound healing pathways, and maintained viable crypts in colon explants from patients with inflammatory bowel disease (IBD). In summary, CTB-KDEL exhibits unique wound healing effects in the colon that are mediated by its localization to the ER and subsequent activation of UPR in epithelial cells. The results provide implications for a novel therapeutic approach for mucosal healing, a significant unmet need in IBD treatment.-Royal, J. M., Oh, Y. J., Grey, M. J., Lencer, W. I., Ronquillo, N., Galandiuk, S., Matoba, N. A modified cholera toxin B subunit containing an ER retention motif enhances colon epithelial repair via an unfolded protein response.
Collapse
Affiliation(s)
- Joshua M Royal
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Young Jun Oh
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Michael J Grey
- Division of Gastroenterology, Nutrition, and Hepatology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Digestive Disease Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne I Lencer
- Division of Gastroenterology, Nutrition, and Hepatology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics, Harvard Digestive Disease Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nemencio Ronquillo
- Division of Anatomic Pathology, Department of Pathology and Laboratory Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Susan Galandiuk
- The Hiram C. Polk Jr., M.D. Department of Surgery, Price Institute of Surgical Research, University of Louisville, Louisville, Kentucky, USA
| | - Nobuyuki Matoba
- Department of Pharmacology and Toxicology, James Graham Brown Cancer Center, Center for Predictive Medicine, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
25
|
Sun Z, Brodsky JL. Protein quality control in the secretory pathway. J Cell Biol 2019; 218:3171-3187. [PMID: 31537714 PMCID: PMC6781448 DOI: 10.1083/jcb.201906047] [Citation(s) in RCA: 236] [Impact Index Per Article: 47.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/22/2019] [Accepted: 08/29/2019] [Indexed: 12/23/2022] Open
Abstract
Protein folding is inherently error prone, especially in the endoplasmic reticulum (ER). Even with an elaborate network of molecular chaperones and protein folding facilitators, misfolding can occur quite frequently. To maintain protein homeostasis, eukaryotes have evolved a series of protein quality-control checkpoints. When secretory pathway quality-control pathways fail, stress response pathways, such as the unfolded protein response (UPR), are induced. In addition, the ER, which is the initial hub of protein biogenesis in the secretory pathway, triages misfolded proteins by delivering substrates to the proteasome or to the lysosome/vacuole through ER-associated degradation (ERAD) or ER-phagy. Some misfolded proteins escape the ER and are instead selected for Golgi quality control. These substrates are targeted for degradation after retrieval to the ER or delivery to the lysosome/vacuole. Here, we discuss how these guardian pathways function, how their activities intersect upon induction of the UPR, and how decisions are made to dispose of misfolded proteins in the secretory pathway.
Collapse
Affiliation(s)
- Zhihao Sun
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
26
|
Hellerschmied D, Serebrenik YV, Shao L, Burslem GM, Crews CM. Protein folding state-dependent sorting at the Golgi apparatus. Mol Biol Cell 2019; 30:2296-2308. [PMID: 31166830 PMCID: PMC6743468 DOI: 10.1091/mbc.e19-01-0069] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/23/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
In eukaryotic cells, organelle-specific protein quality control (PQC) is critical for maintaining cellular homeostasis. Despite the Golgi apparatus being the major protein processing and sorting site within the secretory pathway, how it contributes to PQC has remained largely unknown. Using different chemical biology-based protein unfolding systems, we reveal the segregation of unfolded proteins from folded proteins in the Golgi. Quality control (QC) substrates are subsequently exported in distinct carriers, which likely contain unfolded proteins as well as highly oligomerized cargo that mimic protein aggregates. At an additional sorting step, oligomerized proteins are committed to lysosomal degradation, while unfolded proteins localize to the endoplasmic reticulum (ER) and associate with chaperones. These results highlight the existence of checkpoints at which QC substrates are selected for Golgi export and lysosomal degradation. Our data also suggest that the steady-state ER localization of misfolded proteins, observed for several disease-causing mutants, may have different origins.
Collapse
Affiliation(s)
| | | | - Lin Shao
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06520
| | | | - Craig M. Crews
- Department of Molecular, Cellular and Developmental Biology
- Department of Chemistry, Yale University, New Haven, CT 06511
- Department of Pharmacology, Yale University, New Haven, CT 06511
| |
Collapse
|
27
|
Marinko J, Huang H, Penn WD, Capra JA, Schlebach JP, Sanders CR. Folding and Misfolding of Human Membrane Proteins in Health and Disease: From Single Molecules to Cellular Proteostasis. Chem Rev 2019; 119:5537-5606. [PMID: 30608666 PMCID: PMC6506414 DOI: 10.1021/acs.chemrev.8b00532] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Indexed: 12/13/2022]
Abstract
Advances over the past 25 years have revealed much about how the structural properties of membranes and associated proteins are linked to the thermodynamics and kinetics of membrane protein (MP) folding. At the same time biochemical progress has outlined how cellular proteostasis networks mediate MP folding and manage misfolding in the cell. When combined with results from genomic sequencing, these studies have established paradigms for how MP folding and misfolding are linked to the molecular etiologies of a variety of diseases. This emerging framework has paved the way for the development of a new class of small molecule "pharmacological chaperones" that bind to and stabilize misfolded MP variants, some of which are now in clinical use. In this review, we comprehensively outline current perspectives on the folding and misfolding of integral MPs as well as the mechanisms of cellular MP quality control. Based on these perspectives, we highlight new opportunities for innovations that bridge our molecular understanding of the energetics of MP folding with the nuanced complexity of biological systems. Given the many linkages between MP misfolding and human disease, we also examine some of the exciting opportunities to leverage these advances to address emerging challenges in the development of therapeutics and precision medicine.
Collapse
Affiliation(s)
- Justin
T. Marinko
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Hui Huang
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
| | - Wesley D. Penn
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - John A. Capra
- Center
for Structural Biology, Vanderbilt University, Nashville, Tennessee 37240, United States
- Department
of Biological Sciences, Vanderbilt University, Nashville, Tennessee 37245, United States
| | - Jonathan P. Schlebach
- Department
of Chemistry, Indiana University, Bloomington, Indiana 47405, United States
| | - Charles R. Sanders
- Department
of Biochemistry, Vanderbilt University, Nashville, Tennessee 37240, United States
| |
Collapse
|
28
|
KDELR2 Competes with Measles Virus Envelope Proteins for Cellular Chaperones Reducing Their Chaperone-Mediated Cell Surface Transport. Viruses 2019; 11:v11010027. [PMID: 30621148 PMCID: PMC6356275 DOI: 10.3390/v11010027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/21/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022] Open
Abstract
Recently, we found that the cytidine deaminase APOBEC3G (A3G) inhibits measles (MV) replication. Using a microarray, we identified differential regulation of several host genes upon ectopic expression of A3G. One of the up-regulated genes, the endoplasmic reticulum (ER) protein retention receptor KDELR2, reduced MV replication ~5 fold when it was over-expressed individually in Vero and CEM-SS T cells. Silencing of KDELR2 in A3G-expressing Vero cells abrogated the antiviral activity induced by A3G, confirming its role as an A3G-regulated antiviral host factor. Recognition of the KDEL (Lys-Asp-Glu-Leu) motif by KDEL receptors initiates the retrograde transport of soluble proteins that have escaped the ER and play an important role in ER quality control. Although KDELR2 over-expression reduced MV titers in cell cultures, we observed no interaction between KDELR2 and the MV hemagglutinin (H) protein. Instead, KDELR2 retained chaperones in the ER, which are required for the correct folding and transport of the MV envelope glycoproteins H and fusion protein (F) to the cell surface. Our data indicate that KDELR2 competes with MV envelope proteins for binding to calnexin and GRP78/Bip, and that this interaction limits the availability of the chaperones for MV proteins, causing the reduction of virus spread and titers.
Collapse
|
29
|
Crane ED, Al-Hashimi AA, Chen J, Lynn EG, Won KD, Lhoták Š, Naeim M, Platko K, Lebeau P, Byun JH, Shayegan B, Krepinsky JC, Rayner KJ, Marchiò S, Pasqualini R, Arap W, Austin RC. Anti-GRP78 autoantibodies induce endothelial cell activation and accelerate the development of atherosclerotic lesions. JCI Insight 2018; 3:99363. [PMID: 30568038 DOI: 10.1172/jci.insight.99363] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 11/09/2018] [Indexed: 12/31/2022] Open
Abstract
The 78-kDa glucose-regulated protein (GRP78) is an ER molecular chaperone that aids in protein folding and secretion. However, pathological conditions that cause ER stress can promote the relocalization of GRP78 to the cell surface (csGRP78), where it acts as a signaling receptor to promote cancer progression. csGRP78 also possesses antigenic properties, leading to the production of anti-GRP78 autoantibodies, which contribute to tumor growth. In contrast, the presence and role of anti-GRP78 autoantibodies in atherosclerosis is unknown. Here, we show that atherosclerotic-prone ApoE-/- mice develop circulating anti-GRP78 autoantibodies that bind to csGRP78 on lesion-resident endothelial cells. Moreover, GRP78-immunized ApoE-/- mice exhibit a marked increase in circulating anti-GRP78 autoantibody titers that correlated with accelerated lesion growth. Mechanistically, engagement of anti-GRP78 autoantibodies with csGRP78 on human endothelial cells activated NF-κB, thereby inducing the expression of ICAM-1 and VCAM-1, a process blocked by NF-κB inhibitors. Disrupting the autoantibody/csGRP78 complex with enoxaparin, a low-molecular-weight heparin, reduced the expression of adhesion molecules and attenuated lesion growth. In conclusion, anti-GRP78 autoantibodies play a crucial role in atherosclerosis development, and disruption of the interaction between anti-GRP78 autoantibodies and csGRP78 represents a therapeutic strategy.
Collapse
Affiliation(s)
| | - Ali A Al-Hashimi
- Department of Medicine, Division of Nephrology, and.,Division of Urology, Department of Surgery, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | - Jack Chen
- Department of Medicine, Division of Nephrology, and
| | | | | | - Šárka Lhoták
- Department of Medicine, Division of Nephrology, and
| | - Magda Naeim
- Department of Medicine, Division of Nephrology, and
| | | | - Paul Lebeau
- Department of Medicine, Division of Nephrology, and
| | | | - Bobby Shayegan
- Division of Urology, Department of Surgery, McMaster University and The Research Institute of St. Joe's Hamilton, Hamilton, Ontario, Canada
| | | | - Katey J Rayner
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa and University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Serena Marchiò
- Department of Oncology, University of Turin, Candiolo, Italy.,Candiolo Cancer Institute - Fondazione del Piemonte per l'Oncologia, Istituto di Ricerca e Cura a Carattere Scientifico, Candiolo, Italy
| | - Renata Pasqualini
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA.,Division of Cancer Biology, Department of Radiation Oncology, and
| | - Wadih Arap
- Rutgers Cancer Institute of New Jersey, Newark, New Jersey, USA.,Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Richard C Austin
- Department of Biochemistry and Biomedical Sciences.,Department of Medicine, Division of Nephrology, and
| |
Collapse
|
30
|
Tao YX, Conn PM. Pharmacoperones as Novel Therapeutics for Diverse Protein Conformational Diseases. Physiol Rev 2018; 98:697-725. [PMID: 29442594 DOI: 10.1152/physrev.00029.2016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
After synthesis, proteins are folded into their native conformations aided by molecular chaperones. Dysfunction in folding caused by genetic mutations in numerous genes causes protein conformational diseases. Membrane proteins are more prone to misfolding due to their more intricate folding than soluble proteins. Misfolded proteins are detected by the cellular quality control systems, especially in the endoplasmic reticulum, and proteins may be retained there for eventual degradation by the ubiquitin-proteasome system or through autophagy. Some misfolded proteins aggregate, leading to pathologies in numerous neurological diseases. In vitro, modulating mutant protein folding by altering molecular chaperone expression can ameliorate some misfolding. Some small molecules known as chemical chaperones also correct mutant protein misfolding in vitro and in vivo. However, due to their lack of specificity, their potential as therapeutics is limited. Another class of compounds, known as pharmacological chaperones (pharmacoperones), binds with high specificity to misfolded proteins, either as enzyme substrates or receptor ligands, leading to decreased folding energy barriers and correction of the misfolding. Because many of the misfolded proteins are misrouted but do not have defects in function per se, pharmacoperones have promising potential in advancing to the clinic as therapeutics, since correcting routing may ameliorate the underlying mechanism of disease. This review will comprehensively summarize this exciting area of research, surveying the literature from in vitro studies in cell lines to transgenic animal models and clinical trials in several protein misfolding diseases.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| | - P Michael Conn
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University , Auburn, Alabama ; and Departments of Internal Medicine and Cell Biology, Texas Tech University Health Science Center , Lubbock, Texas
| |
Collapse
|
31
|
Jin H, Komita M, Aoe T. Decreased Protein Quality Control Promotes the Cognitive Dysfunction Associated With Aging and Environmental Insults. Front Neurosci 2018; 12:753. [PMID: 30443201 PMCID: PMC6221900 DOI: 10.3389/fnins.2018.00753] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 10/01/2018] [Indexed: 11/29/2022] Open
Abstract
Background: Most neurodegenerative diseases are sporadic and develop with age. Degenerative neural tissues often contain intra- and extracellular protein aggregates, suggesting that the proteostasis network that combats protein misfolding could be dysfunctional in the setting of neurodegenerative disease. Binding immunoglobulin protein (BiP) is an endoplasmic reticulum (ER) chaperone that is crucial for protein folding and modulating the adaptive response in early secretory pathways. The interaction between BiP and unfolded proteins is mediated by the substrate-binding domain and nucleotide-binding domain with ATPase activity. The interaction facilitates protein folding and maturation. BiP has a recovery motif at the carboxyl terminus. The aim of this study is to examine cognitive function in model mice with an impaired proteostasis network by expressing a mutant form of BiP lacking the recovery motif. We also investigated if impairments of cognitive function were exacerbated by exposure to environmental insults, such as inhaled anesthetics. Methods: We examined cognitive function by performing radial maze testing with mutant BiP mice and assessed the additional impact of general anesthesia in the context of proteostasis dysfunction. Testing over 8 days was performed 10 weeks, 6 months, and 1 year after birth. Results: Age-related cognitive decline occurred in both forms of mice. The mutant BiP and anesthetic exposure promoted cognitive dysfunction prior to the senile period. After senescence, when mice were tested at 6 months of age and at 1 year old, there were no significant differences between the two genotypes in terms of the radial maze testing; furthermore, there was no significant difference when tested with and without anesthetic exposure. Conclusion: Our data suggest that aging was the predominant factor underlying the impairment of cognitive function in this study. Impairment of the proteostasis network may promote age-related neurodegeneration, and this is exacerbated by external insults.
Collapse
Affiliation(s)
- Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Mari Komita
- Department of Anesthesiology, Chiba Rosai Hospital, Ichihara, Japan
| | - Tomohiko Aoe
- Department of Medicine, Pain Center, Chiba Medical Center, Teikyo University, Ichihara, Japan
| |
Collapse
|
32
|
Saraste J, Marie M. Intermediate compartment (IC): from pre-Golgi vacuoles to a semi-autonomous membrane system. Histochem Cell Biol 2018; 150:407-430. [PMID: 30173361 PMCID: PMC6182704 DOI: 10.1007/s00418-018-1717-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2018] [Indexed: 12/19/2022]
Abstract
Despite its discovery more than three decades ago and well-established role in protein sorting and trafficking in the early secretory pathway, the intermediate compartment (IC) has remained enigmatic. The prevailing view is that the IC evolved as a specialized organelle to mediate long-distance endoplasmic reticulum (ER)–Golgi communication in metazoan cells, but is lacking in other eukaryotes, such as plants and fungi. However, this distinction is difficult to reconcile with the high conservation of the core machineries that regulate early secretory trafficking from yeast to man. Also, it has remained unclear whether the pleiomorphic IC components—vacuoles, tubules and vesicles—represent transient transport carriers or building blocks of a permanent pre-Golgi organelle. Interestingly, recent studies have revealed that the IC maintains its compositional, structural and spatial properties throughout the cell cycle, supporting a model that combines the dynamic and stable aspects of the organelle. Moreover, the IC has been assigned novel functions, such as cell signaling, Golgi-independent trafficking and autophagy. The emerging permanent nature of the IC and its connections with the centrosome and the endocytic recycling system encourage reconsideration of its relationship with the Golgi ribbon, role in Golgi biogenesis and ubiquitous presence in eukaryotic cells.
Collapse
Affiliation(s)
- Jaakko Saraste
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway.
| | - Michaël Marie
- Department of Biomedicine and Molecular Imaging Center (MIC), University of Bergen, Jonas Lies vei 91, 5009, Bergen, Norway
| |
Collapse
|
33
|
Tuorto F, Legrand C, Cirzi C, Federico G, Liebers R, Müller M, Ehrenhofer-Murray AE, Dittmar G, Gröne HJ, Lyko F. Queuosine-modified tRNAs confer nutritional control of protein translation. EMBO J 2018; 37:embj.201899777. [PMID: 30093495 PMCID: PMC6138434 DOI: 10.15252/embj.201899777] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/04/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022] Open
Abstract
Global protein translation as well as translation at the codon level can be regulated by tRNA modifications. In eukaryotes, levels of tRNA queuosinylation reflect the bioavailability of the precursor queuine, which is salvaged from the diet and gut microbiota. We show here that nutritionally determined Q‐tRNA levels promote Dnmt2‐mediated methylation of tRNA Asp and control translational speed of Q‐decoded codons as well as at near‐cognate codons. Deregulation of translation upon queuine depletion results in unfolded proteins that trigger endoplasmic reticulum stress and activation of the unfolded protein response, both in cultured human cell lines and in germ‐free mice fed with a queuosine‐deficient diet. Taken together, our findings comprehensively resolve the role of this anticodon tRNA modification in the context of native protein translation and describe a novel mechanism that links nutritionally determined modification levels to effective polypeptide synthesis and cellular homeostasis.
Collapse
Affiliation(s)
- Francesca Tuorto
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Carine Legrand
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| | - Cansu Cirzi
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Giuseppina Federico
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Reinhard Liebers
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany.,Faculty of Biosciences, University of Heidelberg, Heidelberg, Germany
| | - Martin Müller
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Gunnar Dittmar
- Proteome and Genome Research Unit, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Hermann-Josef Gröne
- Department of Cellular and Molecular Pathology, German Cancer Research Center, Heidelberg, Germany
| | - Frank Lyko
- Division of Epigenetics, DKFZ-ZMBH Alliance, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
34
|
Pérez-Trujillo JJ, Robles-Rodríguez OA, Garza-Morales R, García-García A, Rodríguez-Rocha H, Villanueva-Olivo A, Segoviano-Ramírez JC, Esparza-González SC, Saucedo-Cárdenas O, Montes-de-Oca-Luna R, Loera-Arias MJ. Antitumor Response by Endoplasmic Reticulum-Targeting DNA Vaccine Is Improved by Adding a KDEL Retention Signal. Nucleic Acid Ther 2018; 28:252-261. [DOI: 10.1089/nat.2017.0717] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- José J. Pérez-Trujillo
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Olivia A. Robles-Rodríguez
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Rodolfo Garza-Morales
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Aracely García-García
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Humberto Rodríguez-Rocha
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Arnulfo Villanueva-Olivo
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - Juan C. Segoviano-Ramírez
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
- Unidad de Bioimagen, Centro de Investigación y Desarrollo en Ciencias de la Salud (CIDICS), Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | | | - Odila Saucedo-Cárdenas
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
- Division de Genetica, Centro de Investigacion Biomedica del Noreste, Instituto Mexicano del Seguro Social (IMSS), Monterrey, México
| | - Roberto Montes-de-Oca-Luna
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| | - María J. Loera-Arias
- Departamento de Histologia, Facultad de Medicina, Universidad Autonoma de Nuevo Leon (UANL), Monterrey, México
| |
Collapse
|
35
|
Puig B, Altmeppen HC, Glatzel M. Misfolding leads the way to unraveling signaling pathways in the pathophysiology of prion diseases. Prion 2017; 10:434-443. [PMID: 27870599 DOI: 10.1080/19336896.2016.1244593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A misfolded version of the prion protein represents an essential component in the pathophysiology of fatal neurodegenerative prion diseases, which affect humans and animals alike. They may be of sporadic origin, acquired through exogenous introduction of infectious misfolded prion protein, or caused by genetic alterations in the prion protein coding gene. We have recently described a novel pathway linking retention of mutant prion protein in the early secretory pathway to activation p38-MAPK and a neurodegenerative phenotype in transgenic mice. Here we review the consequences that mutations in prion protein have on intracellular transport and stress responses focusing on protein quality control. We also discuss the neurotoxic signaling elicited by the accumulation of mutant prion protein in the endoplasmic reticulum and the Golgi apparatus. Improved knowledge about these processes will help us to better understand complex pathogenesis of prion diseases, a prerequisite for therapeutic strategies.
Collapse
Affiliation(s)
- Berta Puig
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Hermann C Altmeppen
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| | - Markus Glatzel
- a Institute of Neuropathology, University Medical Center Hamburg-Eppendorf , Hamburg , Germany
| |
Collapse
|
36
|
Sirkis DW, Aparicio RE, Schekman R. Neurodegeneration-associated mutant TREM2 proteins abortively cycle between the ER and ER-Golgi intermediate compartment. Mol Biol Cell 2017; 28:2723-2733. [PMID: 28768830 PMCID: PMC5620379 DOI: 10.1091/mbc.e17-06-0423] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 07/28/2017] [Accepted: 07/28/2017] [Indexed: 11/21/2022] Open
Abstract
Mutations in the microglial cell surface receptor TREM2 are associated with multiple forms of neurodegeneration. Several of these mutant forms of TREM2 were thought to be retained in the endoplasmic reticulum (ER), but careful analysis reveals that they engage in an abortive cycling pathway between the ER and ER–Golgi intermediate compartment. Triggering receptor expressed on myeloid cells 2 (TREM2) is a transmembrane protein expressed on microglia within the brain. Several rare mutations in TREM2 cause an early-onset form of neurodegeneration when inherited homozygously. Here we investigate how these mutations affect the intracellular transport of TREM2. We find that most pathogenic TREM2 mutant proteins fail to undergo normal maturation in the Golgi complex and show markedly reduced cell-surface expression. Prior research has suggested that two such mutants are retained in the endoplasmic reticulum (ER), but we find, using a cell-free coat protein complex II (COPII) vesicle budding reaction, that mutant TREM2 is exported efficiently from the ER. In addition, mutant TREM2 becomes sensitive to cleavage by endoglycosidase D under conditions that inhibit recycling to the ER, indicating that it normally reaches a post-ER compartment. Maturation-defective TREM2 mutants are also efficiently bound by a lectin that recognizes O-glycans added in the ER–Golgi intermediate compartment (ERGIC) and cis-Golgi cisterna. Finally, mutant TREM2 accumulates in the ERGIC in cells depleted of COPI. These results indicate that efficient ER export is not sufficient to enable normal cell-surface expression of TREM2. Moreover, our findings suggest that the ERGIC may play an underappreciated role as a quality-control center for mutant and/or malformed membrane proteins.
Collapse
Affiliation(s)
- Daniel W Sirkis
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Renan E Aparicio
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
37
|
Jin H, Komita M, Aoe T. The Role of BiP Retrieval by the KDEL Receptor in the Early Secretory Pathway and its Effect on Protein Quality Control and Neurodegeneration. Front Mol Neurosci 2017; 10:222. [PMID: 28769758 PMCID: PMC5511815 DOI: 10.3389/fnmol.2017.00222] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 06/27/2017] [Indexed: 12/14/2022] Open
Abstract
Protein quality control in the early secretory pathway is a ubiquitous eukaryotic mechanism for adaptation to endoplasmic reticulum (ER) stress. An ER molecular chaperone, immunoglobulin heavy chain-binding protein (BiP), is one of the essential components in this process. BiP interacts with nascent proteins to facilitate their folding. BiP also plays an important role in preventing aggregation of misfolded proteins and regulating the ER stress response when cells suffer various injuries. BiP is a member of the 70-kDa heat shock protein (HSP70) family of molecular chaperones that resides in the ER. Interaction between BiP and unfolded proteins is mediated by a substrate-binding domain and a nucleotide-binding domain for ATPase activity, leading to protein folding and maturation. BiP also possesses a retrieval motif in its carboxyl terminal. When BiP is secreted from the ER, the Lys-Asp-Glu-Leu (KDEL) receptor in the post-ER compartments binds with the carboxyl terminal KDEL sequence of BiP and returns BiP to the ER via coat protein complex I (COPI) vesicular transport. Although yeast studies showed that BiP retrieval by the KDEL receptor is not essential in single cells, it is crucial for multicellular organisms, where some essential proteins require retrieval to facilitate folding and maturation. Experiments in knock-in mice expressing mutant BiP with the retrieval motif deleted revealed a unique role of BiP retrieval by the KDEL receptor in neuronal development and age-related neurodegeneration.
Collapse
Affiliation(s)
- Hisayo Jin
- Department of Anesthesiology, Graduate School of Medicine, Chiba UniversityChiba, Japan
| | - Mari Komita
- Department of Anesthesiology, Chiba Rosai HospitalIchihara, Japan
| | - Tomohiko Aoe
- Pain Center, Chiba Medical Center, Teikyo UniversityIchihara, Japan
| |
Collapse
|
38
|
Ma W, Goldberg E, Goldberg J. ER retention is imposed by COPII protein sorting and attenuated by 4-phenylbutyrate. eLife 2017; 6. [PMID: 28594326 PMCID: PMC5464768 DOI: 10.7554/elife.26624] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/18/2017] [Indexed: 01/07/2023] Open
Abstract
Native cargo proteins exit the endoplasmic reticulum (ER) in COPII-coated vesicles, whereas resident and misfolded proteins are substantially excluded from vesicles by a retention mechanism that remains unresolved. We probed the ER retention process using the proteostasis regulator 4-phenylbutyrate (4-PBA), which we show targets COPII protein to reduce the stringency of retention. 4-PBA competes with p24 proteins to bind COPII. When p24 protein uptake is blocked, COPII vesicles package resident proteins and an ER-trapped mutant LDL receptor. We further show that 4-PBA triggers the secretion of a KDEL-tagged luminal resident, implying that a compromised retention mechanism causes saturation of the KDEL retrieval system. The results indicate that stringent ER retention requires the COPII coat machinery to actively sort biosynthetic cargo from diffusible misfolded and resident ER proteins. DOI:http://dx.doi.org/10.7554/eLife.26624.001
Collapse
Affiliation(s)
- Wenfu Ma
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Elena Goldberg
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States
| | - Jonathan Goldberg
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, United States.,Howard Hughes Medical Institute, New York, United States
| |
Collapse
|
39
|
Jin H, Komita M, Koseki H, Aoe T. Sublethal endoplasmic reticulum stress caused by the mutation of immunoglobulin heavy chain-binding protein induces the synthesis of a mitochondrial protein, pyrroline-5-carboxylate reductase 1. Cell Stress Chaperones 2017; 22:77-85. [PMID: 27796797 PMCID: PMC5225059 DOI: 10.1007/s12192-016-0741-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 09/19/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022] Open
Abstract
Most human neurodegenerative diseases are sporadic and appear later in life. Aging and neurodegeneration are closely associated, and recent investigations reveal that endoplasmic reticulum (ER) stress is involved in the progression of these features. Immunoglobulin heavy chain-binding protein (BiP) is an ER chaperone that is central to ER functions. We produced knock-in mice expressing a mutant BiP that lacked the retrieval sequence to elucidate the effect of a functional defect in an ER chaperone in multicellular organisms. The homozygous mutant BiP mice died within several hours after birth because of respiratory failure with an impaired biosynthesis of pulmonary surfactant by alveolar type II cells. The heterozygous mutant BiP mice grew up to be apparently normal adults, although some of them revealed motor disabilities as they aged. Here, we report that the synthesis of a mitochondrial protein, pyrroline-5-carboxylate reductase 1 (PYCR1), is enhanced in the brains of homozygous mutant BiP mice. We performed a two-dimensional gel analysis followed by liquid chromatography-tandem mass spectrometry. PYCR1 was identified as one of the enhanced proteins. We also found that sublethal ER stress caused by tunicamycin treatment induced the synthesis of PYCR1 in murine fibroblasts. PYCR1 has been shown to be related to the aging process. Mutations in the PYCR1 gene cause cutis laxa with progeroid features and mental retardation. These findings suggest a pathophysiological interaction between ER stress and a mitochondrial function in aging.
Collapse
Affiliation(s)
- Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Mari Komita
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama City, Kanagawa, Japan
| | - Tomohiko Aoe
- Pain Center, Teikyo University Chiba Medical Center, 3426-3 Anesaki, Ichihara City, Chiba, 299-0111, Japan.
| |
Collapse
|
40
|
Abstract
Transport of newly synthesized proteins from the endoplasmic reticulum (ER) to the Golgi complex is highly selective. As a general rule, such transport is limited to soluble and membrane-associated secretory proteins that have reached properly folded and assembled conformations. To secure the efficiency, fidelity, and control of this crucial transport step, cells use a combination of mechanisms. The mechanisms are based on selective retention of proteins in the ER to prevent uptake into transport vesicles, on selective capture of proteins in COPII carrier vesicles, on inclusion of proteins in these vesicles by default as part of fluid and membrane bulk flow, and on selective retrieval of proteins from post-ER compartments by retrograde vesicle transport.
Collapse
Affiliation(s)
- Charles Barlowe
- Biochemistry Department, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755;
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, Zurich CH-8093, Switzerland
| |
Collapse
|
41
|
Puig B, Altmeppen HC, Ulbrich S, Linsenmeier L, Krasemann S, Chakroun K, Acevedo-Morantes CY, Wille H, Tatzelt J, Glatzel M. Secretory pathway retention of mutant prion protein induces p38-MAPK activation and lethal disease in mice. Sci Rep 2016; 6:24970. [PMID: 27117504 PMCID: PMC4847012 DOI: 10.1038/srep24970] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/08/2016] [Indexed: 02/06/2023] Open
Abstract
Misfolding of proteins in the biosynthetic pathway in neurons may cause disturbed protein homeostasis and neurodegeneration. The prion protein (PrPC) is a GPI-anchored protein that resides at the plasma membrane and may be misfolded to PrPSc leading to prion diseases. We show that a deletion in the C-terminal domain of PrPC (PrPΔ214–229) leads to partial retention in the secretory pathway causing a fatal neurodegenerative disease in mice that is partially rescued by co-expression of PrPC. Transgenic (Tg(PrPΔ214–229)) mice show extensive neuronal loss in hippocampus and cerebellum and activation of p38-MAPK. In cell culture under stress conditions, PrPΔ214–229 accumulates in the Golgi apparatus possibly representing transit to the Rapid ER Stress-induced ExporT (RESET) pathway together with p38-MAPK activation. Here we describe a novel pathway linking retention of a GPI-anchored protein in the early secretory pathway to p38-MAPK activation and a neurodegenerative phenotype in transgenic mice.
Collapse
Affiliation(s)
- Berta Puig
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Hermann C Altmeppen
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Sarah Ulbrich
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry und Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Luise Linsenmeier
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Susanne Krasemann
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Karima Chakroun
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| | - Claudia Y Acevedo-Morantes
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, T6G 2M8 Alberta, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases and Department of Biochemistry, University of Alberta, Edmonton, T6G 2M8 Alberta, Canada
| | - Jörg Tatzelt
- Department of Biochemistry of Neurodegenerative Diseases, Institute of Biochemistry und Pathobiochemistry, Ruhr University Bochum, Bochum 44801, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg 20246, Germany
| |
Collapse
|
42
|
Abstract
The components involved in cellular trafficking and protein recycling machinery that have been associated with increased Alzheimer's disease (AD) risk belong to the late secretory compartments for the most part. Here, we hypothesize that these late unavoidable events might be the consequence of earlier complications occurring while amyloid precursor protein (APP) is trafficking through the early secretory pathway. We investigated the relevance to AD of coat protein complex I (COPI)-dependent trafficking, an early step in Golgi-to-endoplasmic reticulum (ER) retrograde transport and one of the very first trafficking steps. Using a complex set of imaging technologies, including inverse fluorescence recovery after photobleaching (iFRAP) and photoactivatable probes, coupled to biochemical experiments, we show that COPI subunit δ (δ-COP) affects the biology of APP, including its subcellular localization and cell surface expression, its trafficking, and its metabolism. These findings demonstrate the crucial role of δ-COP in APP metabolism and, consequently, the generation of amyloid-β (Aβ) peptide, providing previously nondescribed mechanistic explanations of the underlying events.
Collapse
|
43
|
Killing Me Softly: Connotations to Unfolded Protein Response and Oxidative Stress in Alzheimer's Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:1805304. [PMID: 26881014 PMCID: PMC4736771 DOI: 10.1155/2016/1805304] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 11/28/2015] [Accepted: 12/07/2015] [Indexed: 11/18/2022]
Abstract
This review is focused on the possible causes of mitochondrial dysfunction in AD, underlying molecular mechanisms of this malfunction, possible causes and known consequences of APP, Aβ, and hyperphosphorylated tau presence in mitochondria, and the contribution of altered lipid metabolism (nonsterol isoprenoids) to pathological processes leading to increased formation and accumulation of the aforementioned hallmarks of AD. Abnormal protein folding and unfolded protein response seem to be the outcomes of impaired glycosylation due to metabolic disturbances in geranylgeraniol intermediary metabolism. The origin and consecutive fate of APP, Aβ, and tau are emphasized on intracellular trafficking apparently influenced by inaccurate posttranslational modifications. We hypothesize that incorrect intracellular processing of APP determines protein translocation to mitochondria in AD. Similarly, without obvious reasons, the passage of Aβ and tau to mitochondria is observed. APP targeted to mitochondria blocks the activity of protein translocase complex resulting in poor import of proteins central to oxidative phosphorylation. Besides, APP, Aβ, and neurofibrillary tangles of tau directly or indirectly impair mitochondrial biochemistry and bioenergetics, with concomitant generation of oxidative/nitrosative stress. Limited protective mechanisms are inadequate to prevent the free radical-mediated lesions. Finally, neuronal loss is observed in AD-affected brains typically by pathologic apoptosis.
Collapse
|
44
|
Saraste J, Marie M. Intermediate Compartment: A Sorting Station between the Endoplasmic Reticulum and the Golgi Apparatus. ENCYCLOPEDIA OF CELL BIOLOGY 2016. [PMCID: PMC7150006 DOI: 10.1016/b978-0-12-394447-4.20013-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Mutation of the ER retention receptor KDELR1 leads to cell-intrinsic lymphopenia and a failure to control chronic viral infection. Proc Natl Acad Sci U S A 2015; 112:E5706-14. [PMID: 26438836 DOI: 10.1073/pnas.1515619112] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endoplasmic reticulum (ER)-resident proteins are continually retrieved from the Golgi and returned to the ER by Lys-Asp-Glu-Leu (KDEL) receptors, which bind to an eponymous tetrapeptide motif at their substrate's C terminus. Mice and humans possess three paralogous KDEL receptors, but little is known about their functional redundancy, or if their mutation can be physiologically tolerated. Here, we present a recessive mouse missense allele of the prototypical mammalian KDEL receptor, KDEL ER protein retention receptor 1 (KDELR1). Kdelr1 homozygous mutants were mildly lymphopenic, as were mice with a CRISPR/Cas9-engineered frameshift allele. Lymphopenia was cell intrinsic and, in the case of T cells, was associated with reduced expression of the T-cell receptor (TCR) and increased expression of CD44, and could be partially corrected by an MHC class I-restricted TCR transgene. Antiviral immunity was also compromised, with Kdelr1 mutant mice unable to clear an otherwise self-limiting viral infection. These data reveal a nonredundant cellular function for KDELR1, upon which lymphocytes distinctly depend.
Collapse
|
46
|
Chen HY, Clayman ES, Ma WF. Phenotypic Knockout of CXCR4 Expression by a Novel Intrakine Mutant hSDF-1α/54/KDEL Inhibits Breast Cancer Metastasis. J Interferon Cytokine Res 2015; 35:771-8. [PMID: 25978539 DOI: 10.1089/jir.2014.0141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Many malignant tumors express high levels of the chemokine receptor CXCR4, and the interaction between CXCR4 and its ligand, SDF-1, promotes migration, invasion, and metastasis of breast cancer cells. Therefore, blocking the interaction between CXCR4 and SDF-1 could alter the tumor's metastatic phenotype and control the development and progression of cancers. We used a cellular phenotypic knockout strategy and developed a novel recombinant gene, AdSDF-1α/54/KDEL, which contains an adenovirus vector, a mutant form of SDF-1 that lacks a C-terminal α-helix, and a KDEL tetrapeptide sequence that promotes retention at the endoplasmic reticulum (ER). We hypothesized that SDF-1α/54/KDEL could efficiently block metastasis of breast cancer cells with less inflammatory side effects than SDF-1α/KDEL. Using the MCF-7 cell line, which expresses a stable, high level of CXCR4, we found that SDF-1α/54/KDEL efficiently becomes localized at the ER of tumor cells, where it specifically binds to newly synthesized CXCR4 and prevents it from reaching the cell surface. Chemotaxis and invasion assays revealed that the cells treated with SDF-1α/54/KDEL failed to migrate toward SDF-1. We also found that SDF-1α/54/KDEL impaired lung metastasis of metastatic breast cancer by decreasing CXCR4 on the cell surface. The novel recombinant gene, SDF-1α/54/KDEL, played an instrumental role in blocking SDF-1/CXCR4-mediated cell migration, and we found that this gene-based strategy for targeting the SDF-1/CXCR4 axis offers a very effective alternative method for preventing metastasis of breast cancer and other cancers expressing high levels of CXCR4.
Collapse
Affiliation(s)
- Hong-Yuan Chen
- 1 Department of Pathogen Biology and Immunology, School of Basic Courses, Guangdong Pharmaceutical University , Guangzhou, People's Republic of China
| | - Eric S Clayman
- 2 Transplantation Biology Research Center, Massachusetts General Hospital and Harvard Medical School , Boston, Massachusetts
| | - Wei-Feng Ma
- 3 Department of Microbiology, School of Public Health and Tropical Medicine, Southern Medical University , Guangzhou, People's Republic of China
| |
Collapse
|
47
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
48
|
Jin H, Mimura N, Kashio M, Koseki H, Aoe T. Late-onset of spinal neurodegeneration in knock-in mice expressing a mutant BiP. PLoS One 2014; 9:e112837. [PMID: 25405877 PMCID: PMC4236098 DOI: 10.1371/journal.pone.0112837] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 10/16/2014] [Indexed: 12/26/2022] Open
Abstract
Most human neurodegenerative diseases are sporadic, and appear later in life. While the underlying mechanisms of the progression of those diseases are still unclear, investigations into the familial forms of comparable diseases suggest that endoplasmic reticulum (ER) stress is involved in the pathogenesis. Binding immunoglobulin protein (BiP) is an ER chaperone that is central to ER function. We produced knock-in mice expressing a mutant BiP that lacked the retrieval sequence in order to evaluate the effect of a functional defect in an ER chaperone in multi-cellular organisms. Here we report that heterozygous mutant BiP mice revealed motor disabilities in aging. We found a degeneration of some motoneurons in the spinal cord accompanied by accumulations of ubiquitinated proteins. The defect in retrieval of BiP by the KDEL receptor leads to impaired activities in quality control and autophagy, suggesting that functional defects in the ER chaperones may contribute to the late onset of neurodegenerative diseases.
Collapse
Affiliation(s)
- Hisayo Jin
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan
| | - Naoya Mimura
- Department of Medicine and Clinical Oncology, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan
| | - Makiko Kashio
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Research Center for Allergy and Immunology, Yokohama, Japan
| | - Tomohiko Aoe
- Department of Anesthesiology, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan
- Department of Anesthesiology, Tokyo Women's Medical University, Yachiyo Medical, Center, Yachiyo, Chiba, Japan
- * E-mail:
| |
Collapse
|
49
|
Plácido A, Pereira C, Duarte A, Candeias E, Correia S, Santos R, Carvalho C, Cardoso S, Oliveira C, Moreira P. The role of endoplasmic reticulum in amyloid precursor protein processing and trafficking: Implications for Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842:1444-53. [DOI: 10.1016/j.bbadis.2014.05.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 04/29/2014] [Accepted: 05/06/2014] [Indexed: 12/21/2022]
|
50
|
Plácido AI, Oliveira CR, Moreira PI, Pereira CMF. Enhanced Amyloidogenic Processing of Amyloid Precursor Protein and Cell Death Under Prolonged Endoplasmic Reticulum Stress in Brain Endothelial Cells. Mol Neurobiol 2014; 51:571-90. [DOI: 10.1007/s12035-014-8819-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 07/15/2014] [Indexed: 01/22/2023]
|