1
|
Goob G, Adrian J, Cossu C, Hauck CR. Phagocytosis mediated by the human granulocyte receptor CEACAM3 is limited by the receptor-type protein tyrosine phosphatase PTPRJ. J Biol Chem 2022; 298:102269. [PMID: 35850306 PMCID: PMC9418913 DOI: 10.1016/j.jbc.2022.102269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/04/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
Carcinoembryonic Antigen-related Cell Adhesion Molecule 3 (CEACAM3) is a human granulocyte receptor mediating the efficient phagocytosis of a subset of human-restricted bacterial pathogens. Its function depends on phosphorylation of a tyrosine-based sequence motif, but the enzyme(s) responsible for reversing this modification are unclear. Here, we identify the receptor-type protein tyrosine phosphatase PTPRJ as a negative regulator of CEACAM3-mediated phagocytosis. We show depletion of PTPRJ results in a gain-of-function phenotype, while overexpression of a constitutively active PTPRJ phosphatase strongly reduces bacterial uptake via CEACAM3. We also determined that recombinant PTPRJ directly dephosphorylates the cytoplasmic tyrosine residues of purified full-length CEACAM3 and recognizes synthetic CEACAM3-derived phospho-peptides as substrates. Dephosphorylation of CEACAM3 by PTPRJ is also observed in intact cells, thereby limiting receptor-initiated cytoskeletal re-arrangements, lamellipodia formation, and bacterial uptake. Finally, we show that human phagocytes deficient for PTPRJ exhibit exaggerated lamellipodia formation and enhanced opsonin-independent phagocytosis of CEACAM3-binding bacteria. Taken together, our results highlight PTPRJ as a bona fide negative regulator of CEACAM3-initiated phagocyte functions, revealing a potential molecular target to limit CEACAM3-driven inflammatory responses.
Collapse
Affiliation(s)
- Griseldis Goob
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Jonas Adrian
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Chiara Cossu
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Germany; Konstanz Research School Chemical Biology, Universität Konstanz, Germany.
| |
Collapse
|
2
|
Role of Host Small GTPases in Apicomplexan Parasite Infection. Microorganisms 2022; 10:microorganisms10071370. [PMID: 35889089 PMCID: PMC9319929 DOI: 10.3390/microorganisms10071370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
The Apicomplexa are obligate intracellular parasites responsible for several important human diseases. These protozoan organisms have evolved several strategies to modify the host cell environment to create a favorable niche for their survival. The host cytoskeleton is widely manipulated during all phases of apicomplexan intracellular infection. Moreover, the localization and organization of host organelles are altered in order to scavenge nutrients from the host. Small GTPases are a class of proteins widely involved in intracellular pathways governing different processes, from cytoskeletal and organelle organization to gene transcription and intracellular trafficking. These proteins are already known to be involved in infection by several intracellular pathogens, including viruses, bacteria and protozoan parasites. In this review, we recapitulate the mechanisms by which apicomplexan parasites manipulate the host cell during infection, focusing on the role of host small GTPases. We also discuss the possibility of considering small GTPases as potential targets for the development of novel host-targeted therapies against apicomplexan infections.
Collapse
|
3
|
Talà A, Guerra F, Calcagnile M, Romano R, Resta SC, Paiano A, Chiariello M, Pizzolante G, Bucci C, Alifano P. HrpA anchors meningococci to the dynein motor and affects the balance between apoptosis and pyroptosis. J Biomed Sci 2022; 29:45. [PMID: 35765029 PMCID: PMC9241232 DOI: 10.1186/s12929-022-00829-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/22/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Neisseria meningitidis the HrpA/HrpB two-partner secretion system (TPS) was implicated in diverse functions including meningococcal competition, biofilm formation, adherence to epithelial cells, intracellular survival and vacuolar escape. These diverse functions could be attributed to distinct domains of secreted HrpA. METHODS A yeast two-hybrid screening, in vitro pull-down assay and immunofluorescence microscopy experiments were used to investigate the interaction between HrpA and the dynein light-chain, Tctex-type 1 (DYNLT1). In silico modeling was used to analyze HrpA structure. Western blot analysis was used to investigate apoptotic and pyroptotic markers. RESULTS The HrpA carboxy-terminal region acts as a manganese-dependent cell lysin, while the results of a yeast two-hybrid screening demonstrated that the HrpA middle region has the ability to bind the dynein light-chain, Tctex-type 1 (DYNLT1). This interaction was confirmed by in vitro pull-down assay and immunofluorescence microscopy experiments showing co-localization of N. meningitidis with DYNLT1 in infected epithelial cells. In silico modeling revealed that the HrpA-M interface interacting with the DYNLT1 has similarity with capsid proteins of neurotropic viruses that interact with the DYNLT1. Indeed, we found that HrpA plays a key role in infection of and meningococcal trafficking within neuronal cells, and is implicated in the modulation of the balance between apoptosis and pyroptosis. CONCLUSIONS Our findings revealed that N. meningitidis is able to effectively infect and survive in neuronal cells, and that this ability is dependent on HrpA, which establishes a direct protein-protein interaction with DYNLTI in these cells, suggesting that the HrpA interaction with dynein could be fundamental for N. meningitidis spreading inside the neurons. Moreover, we found that the balance between apoptotic and pyroptotic pathways is heavily affected by HrpA.
Collapse
Affiliation(s)
- Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Matteo Calcagnile
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Roberta Romano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Aurora Paiano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Mario Chiariello
- Core Research Laboratory-Siena, Institute for Cancer Research and Prevention (ISPRO), 53100, Siena, Italy.,Institute of Clinical Physiology (IFC), National Research Council (CNR), 53100, Siena, Italy
| | - Graziano Pizzolante
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| | - Pietro Alifano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni n. 165, 73100, Lecce, Italy.
| |
Collapse
|
4
|
Parapini S, Paone S, Erba E, Cavicchini L, Pourshaban M, Celani F, Contini A, D’Alessandro S, Olivieri A. In Vitro Antimalarial Activity of Inhibitors of the Human GTPase Rac1. Antimicrob Agents Chemother 2022; 66:e0149821. [PMID: 34723630 PMCID: PMC8765435 DOI: 10.1128/aac.01498-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022] Open
Abstract
Malaria accounts for millions of cases and thousands of deaths every year. In the absence of an effective vaccine, drugs are still the most important tool in the fight against the disease. Plasmodium parasites developed resistance to all classes of known antimalarial drugs. Thus, the search for antimalarial drugs with novel mechanisms of action is compelling. The human GTPase Rac1 plays a role in parasite invasion of the host cell in many intracellular pathogens. Also, in Plasmodium falciparum, the involvement of Rac1 during both the invasion process and parasite intracellular development was suggested. The aim of this work is to test a panel of Rac1 inhibitors as potential antimalarial drugs. Fourteen commercially available or newly synthesized inhibitors of Rac1 were tested for antimalarial activity. Among these, EHop-016 was the most effective against P. falciparum in vitro, with nanomolar 50% inhibitory concentrations (IC50s) (138.8 ± 16.0 nM on the chloroquine-sensitive D10 strain and 321.5 ± 28.5 nM on the chloroquine-resistant W2 strain) and a selectivity index of 37.8. EHop-016 did not inhibit parasite invasion of red blood cells but affected parasite growth inside them. Among the tested Rac1 inhibitors, EHop-016 showed promising activity that raises attention to this class of molecules as potential antimalarials and deserves further investigation.
Collapse
Affiliation(s)
- Silvia Parapini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Milan, Italy
| | - Silvio Paone
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Rome, Italy
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Emanuela Erba
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Loredana Cavicchini
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, Università degli Studi di Milano, Milan, Italy
| | | | - Francesco Celani
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandro Contini
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | - Sarah D’Alessandro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Anna Olivieri
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
5
|
van Sorge NM, Bonsor DA, Deng L, Lindahl E, Schmitt V, Lyndin M, Schmidt A, Nilsson OR, Brizuela J, Boero E, Sundberg EJ, van Strijp JAG, Doran KS, Singer BB, Lindahl G, McCarthy AJ. Bacterial protein domains with a novel Ig-like fold target human CEACAM receptors. EMBO J 2021; 40:e106103. [PMID: 33522633 PMCID: PMC8013792 DOI: 10.15252/embj.2020106103] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 01/19/2023] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is the major cause of neonatal sepsis in humans. A critical step to infection is adhesion of bacteria to epithelial surfaces. GBS adhesins have been identified to bind extracellular matrix components and cellular receptors. However, several putative adhesins have no host binding partner characterised. We report here that surface-expressed β protein of GBS binds to human CEACAM1 and CEACAM5 receptors. A crystal structure of the complex showed that an IgSF domain in β represents a novel Ig-fold subtype called IgI3, in which unique features allow binding to CEACAM1. Bioinformatic assessment revealed that this newly identified IgI3 fold is not exclusively present in GBS but is predicted to be present in adhesins from other clinically important human pathogens. In agreement with this prediction, we found that CEACAM1 binds to an IgI3 domain found in an adhesin from a different streptococcal species. Overall, our results indicate that the IgI3 fold could provide a broadly applied mechanism for bacteria to target CEACAMs.
Collapse
Affiliation(s)
- Nina M van Sorge
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Present address:
Department of Medical Microbiology,Infection Prevention and Netherlands Reference Laboratory for Bacterial MeningitisAmsterdam University Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Daniel A Bonsor
- Institute of Human VirologyUniversity of Maryland School of MedicineUniversity of MarylandBaltimoreMDUSA
| | - Liwen Deng
- Department of Immunology & MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Erik Lindahl
- Department of Biochemistry and BiophysicsScience for Life LaboratoryStockholm UniversityStockholmSweden
| | - Verena Schmitt
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
| | - Mykola Lyndin
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
- Department of PathologySumy State UniversitySumyUkraine
| | - Alexej Schmidt
- Department of Medical BiosciencesUmeå UniversityPathology, UmeåSweden
| | - Olof R Nilsson
- Department of Laboratory MedicineDivision of Medical MicrobiologyLund UniversityLundSweden
| | - Jaime Brizuela
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| | - Elena Boero
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Eric J Sundberg
- Institute of Human VirologyUniversity of Maryland School of MedicineUniversity of MarylandBaltimoreMDUSA
- Department of BiochemistryEmory University School of MedicineAtlantaGAUSA
| | - Jos A G van Strijp
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
| | - Kelly S Doran
- Department of Immunology & MicrobiologyUniversity of Colorado Anschutz Medical CampusAuroraCOUSA
| | - Bernhard B Singer
- Institute of AnatomyMedical Faculty, University Duisburg‐EssenEssenGermany
| | - Gunnar Lindahl
- Department of Laboratory MedicineDivision of Medical MicrobiologyLund UniversityLundSweden
- Department of ChemistryDivision of Applied MicrobiologyLund UniversityLundSweden
| | - Alex J McCarthy
- Department of Medical MicrobiologyUniversity Medical Center UtrechtUtrecht UniversityUtrechtThe Netherlands
- Department of Infectious Disease, MRC Centre for Molecular Bacteriology & InfectionImperial College LondonLondonUK
| |
Collapse
|
6
|
Paone S, D'Alessandro S, Parapini S, Celani F, Tirelli V, Pourshaban M, Olivieri A. Characterization of the erythrocyte GTPase Rac1 in relation to Plasmodium falciparum invasion. Sci Rep 2020; 10:22054. [PMID: 33328606 PMCID: PMC7744522 DOI: 10.1038/s41598-020-79052-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/30/2020] [Indexed: 12/01/2022] Open
Abstract
Malaria is still a devastating disease with 228 million cases globally and 405,000 lethal outcomes in 2018, mainly in children under five years of age. The threat of emerging malaria strains resistant to currently available drugs has made the search for novel drug targets compelling. The process by which Plasmodium falciparum parasites invade the host cell has been widely studied, but only a few erythrocyte proteins involved in this process have been identified so far. The erythrocyte protein Rac1 is a GTPase that plays an important role in host cell invasion by many intracellular pathogens. Here we show that Rac1 is recruited in proximity to the site of parasite entry during P. falciparum invasion process and that subsequently localizes to the parasitophorous vacuole membrane. We also suggest that this GTPase may be involved in erythrocyte invasion by P. falciparum, by testing the effect of specific Rac1 inhibitory compounds. Finally, we suggest a secondary role of the erythrocyte GTPase also in parasite intracellular development. We here characterize a new erythrocyte protein potentially involved in P. falciparum invasion of the host cell and propose the human GTPase Rac1 as a novel and promising antimalarial drug target.
Collapse
Affiliation(s)
- Silvio Paone
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy.,Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza University of Rome, Rome, Italy
| | - Sarah D'Alessandro
- Dipartimento di Scienze Biomediche, Chirurgiche e Odontoiatriche, University of Milan, Milan, Italy
| | - Silvia Parapini
- Dipartimento di Scienze Biomediche Per La Salute, University of Milan, Milan, Italy
| | - Francesco Celani
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | - Valentina Tirelli
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy
| | | | - Anna Olivieri
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
7
|
Bonsignore P, Kuiper JWP, Adrian J, Goob G, Hauck CR. CEACAM3-A Prim(at)e Invention for Opsonin-Independent Phagocytosis of Bacteria. Front Immunol 2020; 10:3160. [PMID: 32117212 PMCID: PMC7026191 DOI: 10.3389/fimmu.2019.03160] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/31/2019] [Indexed: 01/15/2023] Open
Abstract
Phagocytosis is one of the key innate defense mechanisms executed by specialized cells in multicellular animals. Recent evidence suggests that a particular phagocytic receptor expressed by human polymorphonuclear granulocytes, the carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3), is one of the fastest-evolving human proteins. In this focused review, we will try to resolve the conundrum why a conserved process such as phagocytosis is conducted by a rapidly changing receptor. Therefore, we will first summarize the biochemical and structural details of this immunoglobulin-related glycoprotein in the context of the human CEACAM family. The function of CEACAM3 for the efficient, opsonin-independent detection and phagocytosis of highly specialized, host-restricted bacteria will be further elaborated. Taking into account the decisive role of CEACAM3 in the interaction with pathogenic bacteria, we will discuss the evolutionary trajectory of the CEACAM3 gene within the primate lineage and highlight the consequences of CEACAM3 polymorphisms in human populations. From a synopsis of these studies, CEACAM3 emerges as an important component of human innate immunity and a prominent example of a dedicated receptor for professional phagocytosis.
Collapse
Affiliation(s)
- Patrizia Bonsignore
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Johannes W P Kuiper
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Jonas Adrian
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Griseldis Goob
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany
| | - Christof R Hauck
- Lehrstuhl Zellbiologie, Fachbereich Biologie, Universität Konstanz, Konstanz, Germany.,Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
8
|
Sintsova A, Guo CX, Sarantis H, Mak TW, Glogauer M, Gray-Owen SD. Bcl10 synergistically links CEACAM3 and TLR-dependent inflammatory signalling. Cell Microbiol 2018; 20:e12788. [PMID: 28886618 DOI: 10.1111/cmi.12788] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 01/27/2023]
Abstract
The neutrophil-specific innate immune receptor CEACAM3 functions as a decoy to capture Gram-negative pathogens, such as Neisseria gonorrhoeae, that exploit CEACAM family members to adhere to the epithelium. Bacterial binding to CEACAM3 results in their efficient engulfment and triggers activation of an nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)-dependent inflammatory response by human neutrophils. Herein, we report that CEACAM3 cross-linking is not sufficient for induction of cytokine production and show that the inflammatory response induced by Neisseria gonorrhoeae infection is elicited by an integration of signals from CEACAM3 and toll-like receptors. Using neutrophils from a human CEACAM-expressing mouse line (CEABAC), we use a genetic approach to reveal a molecular bifurcation of the CEACAM3-mediated antimicrobial and inflammatory responses. Ex vivo experiments with CEABAC-Rac2-/- , CEABAC-Bcl10-/- , and CEABAC-Malt1-/- neutrophils indicate that these effectors are not necessary for gonococcal engulfment, yet all 3 effectors contribute to CEACAM3-mediated cytokine production. Interestingly, although Bcl10 and Malt1 are often inextricably linked, Bcl10 enabled synergy between toll-like receptor 4 and CEACAM3, whereas Malt1 did not. Together, these findings reveal an integration of the specific innate immune receptor CEACAM3 into the network of more conventional pattern recognition receptors, providing a mechanism by which the innate immune system can unleash its response to a relentless pathogen.
Collapse
Affiliation(s)
- Anna Sintsova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Cynthia X Guo
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Helen Sarantis
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Tak W Mak
- The Campbell Family Institute for Breast Cancer Research, University Health Network, Toronto, Ontario, Canada
| | - Michael Glogauer
- Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada
| | - Scott D Gray-Owen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Zwozdesky MA, Fei C, Lillico DME, Stafford JL. Imaging flow cytometry and GST pulldown assays provide new insights into channel catfish leukocyte immune-type receptor-mediated phagocytic pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:126-138. [PMID: 27984101 DOI: 10.1016/j.dci.2016.10.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 10/26/2016] [Accepted: 10/26/2016] [Indexed: 06/06/2023]
Abstract
Channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs) control various innate immune cell effector responses including the phagocytic process. This large immunoregulatory receptor family also consists of multiple receptor-types with variable signaling abilities that is dependent on their inherent or acquired tyrosine-containing cytoplasmic tail (CYT) regions. For example, IpLITR 2.6b associates with the immunoreceptor tyrosine-based activation motif (ITAM)-containing adaptor molecule IpFcRγ-L, and when expressed in mammalian cells it activates phagocytosis using a similar profile of intracellular signaling mediators that also regulate the prototypical mammalian Fc receptor (FcR) phagocytic pathway. Alternatively, IpLITR 1.1b contains a long tyrosine-containing CYT with multifunctional capabilities including both inhibitory and stimulatory actions. Recently, we demonstrated that IpLITR 1.1b activates a unique phagocytic pathway involving the generation of multiple plasma membrane extensions that rapidly capture extracellular targets and secure them on the cell surface in phagocytic cup-like structures. Occasionally, these captured targets are completely engulfed albeit at a significantly lower rate than what was observed for IpLITR 2.6b. While this novel IpLITR 1.1b phagocytic activity is insensitive to classical blockers of phagocytosis, its distinct target capture and engulfment actions depend on the engagement of the actin polymerization machinery. However, it is not known how this protein translates target recognition into intracellular signaling events during this atypical mode of phagocytosis. Using imaging flow cytometry and GST pulldown assays, the aims of this study were to specifically examine what regions of the IpLITR 1.1b CYT trigger phagocytosis and to establish what profile of intracellular signaling molecules likely participate in its actions. Our results show that in stably transfected AD293 cells, the membrane proximal and distal CYT segments of IpLITR 1.1b independently regulate its phagocytic activities. These CYT regions were also shown to differentially recruit various SH2 domain-containing intracellular mediators, which provides new information about the dynamic immunoregulatory abilities of IpLITR 1.1b. Overall, this work further advances our understanding of how certain immunoregulatory receptor-types link extracellular target binding events to the actin polymerization machinery during a non-classical mode of phagocytosis.
Collapse
Affiliation(s)
- Myron A Zwozdesky
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Chenjie Fei
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Dustin M E Lillico
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
10
|
ATP Induces IL-1 β Secretion in Neisseria gonorrhoeae-Infected Human Macrophages by a Mechanism Not Related to the NLRP3/ASC/Caspase-1 Axis. Mediators Inflamm 2016; 2016:1258504. [PMID: 27803513 PMCID: PMC5075643 DOI: 10.1155/2016/1258504] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 08/12/2016] [Accepted: 09/06/2016] [Indexed: 12/24/2022] Open
Abstract
Neisseria gonorrhoeae (Ngo) has developed multiple immune evasion mechanisms involving the innate and adaptive immune responses. Recent findings have reported that Ngo reduces the IL-1β secretion of infected human monocyte-derived macrophages (MDM). Here, we investigate the role of adenosine triphosphate (ATP) in production and release of IL-1β in Ngo-infected MDM. We found that the exposure of Ngo-infected MDM to ATP increases IL-1β levels about ten times compared with unexposed Ngo-infected MDM (P < 0.01). However, we did not observe any changes in inflammasome transcriptional activation of speck-like protein containing a caspase recruitment domain (CARD) (ASC, P > 0.05) and caspase-1 (CASP1, P > 0.05). In addition, ATP was not able to modify caspase-1 activity in Ngo-infected MDM but was able to increase pyroptosis (P > 0.01). Notably ATP treatment defined an increase of positive staining for IL-1β with a distinctive intracellular pattern of distribution. Collectively, these data demonstrate that ATP induces IL-1β secretion by a mechanism not related to the NLRP3/ASC/caspase-1 axis and likely is acting at the level of vesicle trafficking or pore formation.
Collapse
|
11
|
Hill SA, Masters TL, Wachter J. Gonorrhea - an evolving disease of the new millennium. MICROBIAL CELL (GRAZ, AUSTRIA) 2016; 3:371-389. [PMID: 28357376 PMCID: PMC5354566 DOI: 10.15698/mic2016.09.524] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/30/2016] [Indexed: 12/21/2022]
Abstract
Etiology, transmission and protection: Neisseria gonorrhoeae (the gonococcus) is the etiological agent for the strictly human sexually transmitted disease gonorrhea. Infections lead to limited immunity, therefore individuals can become repeatedly infected. Pathology/symptomatology: Gonorrhea is generally a non-complicated mucosal infection with a pustular discharge. More severe sequellae include salpingitis and pelvic inflammatory disease which may lead to sterility and/or ectopic pregnancy. Occasionally, the organism can disseminate as a bloodstream infection. Epidemiology, incidence and prevalence: Gonorrhea is a global disease infecting approximately 60 million people annually. In the United States there are approximately 300, 000 cases each year, with an incidence of approximately 100 cases per 100,000 population. Treatment and curability: Gonorrhea is susceptible to an array of antibiotics. Antibiotic resistance is becoming a major problem and there are fears that the gonococcus will become the next "superbug" as the antibiotic arsenal diminishes. Currently, third generation extended-spectrum cephalosporins are being prescribed. Molecular mechanisms of infection: Gonococci elaborate numerous strategies to thwart the immune system. The organism engages in extensive phase (on/off switching) and antigenic variation of several surface antigens. The organism expresses IgA protease which cleaves mucosal antibody. The organism can become serum resistant due to its ability to sialylate lipooligosaccharide in conjunction with its ability to subvert complement activation. The gonococcus can survive within neutrophils as well as in several other lymphocytic cells. The organism manipulates the immune response such that no immune memory is generated which leads to a lack of protective immunity.
Collapse
Affiliation(s)
- Stuart A. Hill
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| | - Thao L. Masters
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| | - Jenny Wachter
- Department of Epidemiology, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7435
| |
Collapse
|
12
|
Rodas PI, Álamos-Musre AS, Álvarez FP, Escobar A, Tapia CV, Osorio E, Otero C, Calderón IL, Fuentes JA, Gil F, Paredes-Sabja D, Christodoulides M. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion. FEMS Microbiol Lett 2016; 363:fnw181. [PMID: 27465490 PMCID: PMC5812539 DOI: 10.1093/femsle/fnw181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2016] [Accepted: 07/21/2016] [Indexed: 12/18/2022] Open
Abstract
The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE-6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human β-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes.
Collapse
Affiliation(s)
- Paula I Rodas
- Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - A Said Álamos-Musre
- Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Francisca P Álvarez
- Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Escobar
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Cecilia V Tapia
- Laboratorio Clínica Dávila, Santiago, Chile Laboratorio de Micología Médica, Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eduardo Osorio
- Servicio de Ginecología y Obstetricia, Clínica Dávila, Santiago, Chile
| | - Carolina Otero
- Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Iván L Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Fernando Gil
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Sir Henry Wellcome Laboratories, Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, England
| |
Collapse
|
13
|
Heinrich A, Heyl KA, Klaile E, Müller MM, Klassert TE, Wiessner A, Fischer K, Schumann RR, Seifert U, Riesbeck K, Moter A, Singer BB, Bachmann S, Slevogt H. Moraxella catarrhalis induces CEACAM3-Syk-CARD9-dependent activation of human granulocytes. Cell Microbiol 2016; 18:1570-1582. [PMID: 27038042 PMCID: PMC5096018 DOI: 10.1111/cmi.12597] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/18/2016] [Accepted: 03/21/2016] [Indexed: 12/14/2022]
Abstract
The human restricted pathogen Moraxella catarrhalis is an important causal agent for exacerbations in chronic obstructive lung disease in adults. In such patients, increased numbers of granulocytes are present in the airways, which correlate with bacteria-induced exacerbations and severity of the disease. Our study investigated whether the interaction of M. catarrhalis with the human granulocyte-specific carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-3 is linked to NF-κB activation, resulting in chemokine production. Granulocytes from healthy donors and NB4 cells were infected with M. catarrhalis in the presence of different inhibitors, blocking antibodies and siRNA. The supernatants were analysed by enzyme-linked immunosorbent assay for chemokines. NF-κB activation was determined using a luciferase reporter gene assay and chromatin-immunoprecipitation. We found evidence that the specific engagement of CEACAM3 by M. catarrhalis ubiquitous surface protein A1 (UspA1) results in the activation of pro-inflammatory events, such as degranulation of neutrophils, ROS production and chemokine secretion. The interaction of UspA1 with CEACAM3 induced the activation of the NF-κB pathway via Syk and the CARD9 pathway and was dependent on the phosphorylation of the CEACAM3 ITAM-like motif. These findings suggest that the CEACAM3 signalling in neutrophils is able to specifically modulate airway inflammation caused by infection with M. catarrhalis.
Collapse
Affiliation(s)
- A Heinrich
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - K A Heyl
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - E Klaile
- Septomics Research Center, Jena University Hospital, Jena, Germany.,Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - M M Müller
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - T E Klassert
- Septomics Research Center, Jena University Hospital, Jena, Germany
| | - A Wiessner
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - K Fischer
- Septomics Research Center, Jena University Hospital, Jena, Germany.,Department of Infectious Diseases and Pulmonary Medicine, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - R R Schumann
- Institute for Microbiology and Hygiene, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - U Seifert
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - K Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - A Moter
- Biofilmcenter, German Heart Institute Berlin, Berlin, Germany
| | - B B Singer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - S Bachmann
- Institute of Vegetative Anatomy, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - H Slevogt
- Septomics Research Center, Jena University Hospital, Jena, Germany.
| |
Collapse
|
14
|
Salinas RP, Ortiz Flores RM, Distel JS, Aguilera MO, Colombo MI, Berón W. Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK. PLoS One 2015; 10:e0145211. [PMID: 26674774 PMCID: PMC4682630 DOI: 10.1371/journal.pone.0145211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 12/01/2015] [Indexed: 01/09/2023] Open
Abstract
The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that process.
Collapse
Affiliation(s)
- Romina P. Salinas
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Rodolfo M. Ortiz Flores
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Jesús S. Distel
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Milton O. Aguilera
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - María I. Colombo
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Walter Berón
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
- * E-mail:
| |
Collapse
|
15
|
Stein DC, LeVan A, Hardy B, Wang LC, Zimmerman L, Song W. Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells. PLoS One 2015; 10:e0134342. [PMID: 26244560 PMCID: PMC4526573 DOI: 10.1371/journal.pone.0134342] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 07/08/2015] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen–related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.
Collapse
Affiliation(s)
- Daniel C. Stein
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (DCS); (WS)
| | - Adriana LeVan
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Britney Hardy
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Liang-Chun Wang
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Lindsey Zimmerman
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (DCS); (WS)
| |
Collapse
|
16
|
Pathogenesis of human diffusely adhering Escherichia coli expressing Afa/Dr adhesins (Afa/Dr DAEC): current insights and future challenges. Clin Microbiol Rev 2015; 27:823-69. [PMID: 25278576 DOI: 10.1128/cmr.00036-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The pathogenicity and clinical pertinence of diffusely adhering Escherichia coli expressing the Afa/Dr adhesins (Afa/Dr DAEC) in urinary tract infections (UTIs) and pregnancy complications are well established. In contrast, the implication of intestinal Afa/Dr DAEC in diarrhea is still under debate. These strains are age dependently involved in diarrhea in children, are apparently not involved in diarrhea in adults, and can also be asymptomatic intestinal microbiota strains in children and adult. This comprehensive review analyzes the epidemiology and diagnosis and highlights recent progress which has improved the understanding of Afa/Dr DAEC pathogenesis. Here, I summarize the roles of Afa/Dr DAEC virulence factors, including Afa/Dr adhesins, flagella, Sat toxin, and pks island products, in the development of specific mechanisms of pathogenicity. In intestinal epithelial polarized cells, the Afa/Dr adhesins trigger cell membrane receptor clustering and activation of the linked cell signaling pathways, promote structural and functional cell lesions and injuries in intestinal barrier, induce proinflammatory responses, create angiogenesis, instigate epithelial-mesenchymal transition-like events, and lead to pks-dependent DNA damage. UTI-associated Afa/Dr DAEC strains, following adhesin-membrane receptor cell interactions and activation of associated lipid raft-dependent cell signaling pathways, internalize in a microtubule-dependent manner within urinary tract epithelial cells, develop a particular intracellular lifestyle, and trigger a toxin-dependent cell detachment. In response to Afa/Dr DAEC infection, the host epithelial cells generate antibacterial defense responses. Finally, I discuss a hypothetical role of intestinal Afa/Dr DAEC strains that can act as "silent pathogens" with the capacity to emerge as "pathobionts" for the development of inflammatory bowel disease and intestinal carcinogenesis.
Collapse
|
17
|
Quintero CA, Tudela JG, Damiani MT. Rho GTPases as pathogen targets: Focus on curable sexually transmitted infections. Small GTPases 2015; 6:108-18. [PMID: 26023809 DOI: 10.4161/21541248.2014.991233] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pathogens have evolved highly specialized mechanisms to infect hosts. Several microorganisms modulate the eukaryotic cell surface to facilitate their engulfment. Once internalized, they hijack the molecular machinery of the infected cell for their own benefit. At different stages of phagocytosis, particularly during invasion, certain pathogens manipulate pathways governed by small GTPases. In this review, we focus on the role of Rho proteins on curable, sexually transmitted infections caused by Chlamydia trachomatis, Neisseria gonorrhoeae, Trichomonas vaginalis and Treponema pallidum. Despite the high, worldwide frequencies of these sexually-transmitted diseases, very little is known about the strategies developed by these microorganisms to usurp key eukaryotic proteins that control intracellular signaling and actin dynamics. Improved knowledge of these molecular mechanisms will contribute to the elucidation of how these clinically important pathogens manipulate intracellular processes and parasitize their hosts.
Collapse
Affiliation(s)
- Cristián A Quintero
- a Laboratory of Phagocytosis and Intracellular Trafficking; IHEM-CONICET; School of Medicine; University of Cuyo ; Mendoza , Argentina
| | | | | |
Collapse
|
18
|
Smirnov A, Solga MD, Lannigan J, Criss AK. An improved method for differentiating cell-bound from internalized particles by imaging flow cytometry. J Immunol Methods 2015; 423:60-9. [PMID: 25967947 DOI: 10.1016/j.jim.2015.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 04/04/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022]
Abstract
Recognition, binding, internalization, and elimination of pathogens and cell debris are important functions of professional as well as non-professional phagocytes. However, high-throughput methods for quantifying cell-associated particles and discriminating bound from internalized particles have been lacking. Here we describe a protocol for using imaging flow cytometry to quantify the attached and phagocytosed particles that are associated with a population of cells. Cells were exposed to fluorescent particles, fixed, and exposed to an antibody of a different fluorophore that recognizes the particles. The antibody is added without cell permeabilization, such that the antibody only binds extracellular particles. Cells with and without associated particles were identified by imaging flow cytometry. For each cell with associated particles, a spot count algorithm was employed to quantify the number of extracellular (double fluorescent) and intracellular (single fluorescent) particles per cell, from which the percent particle internalization was determined. The spot count algorithm was empirically validated by examining the fluorescence and phase contrast images acquired by the flow cytometer. We used this protocol to measure binding and internalization of the bacterium Neisseria gonorrhoeae by primary human neutrophils, using different bacterial variants and under different cellular conditions. The results acquired using imaging flow cytometry agreed with findings that were previously obtained using conventional immunofluorescence microscopy. This protocol provides a rapid, powerful method for measuring the association and internalization of any particle by any cell type.
Collapse
Affiliation(s)
- Asya Smirnov
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Michael D Solga
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Joanne Lannigan
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA.
| | - Alison K Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
19
|
Selection for a CEACAM receptor-specific binding phenotype during Neisseria gonorrhoeae infection of the human genital tract. Infect Immun 2015; 83:1372-83. [PMID: 25605771 DOI: 10.1128/iai.03123-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infections by Neisseria gonorrhoeae are increasingly common, are often caused by antibiotic-resistant strains, and can result in serious and lasting sequelae, prompting the reemergence of gonococcal disease as a leading global health concern. N. gonorrhoeae is a human-restricted pathogen that primarily colonizes urogenital mucosal surfaces. Disease progression varies greatly between the sexes: men usually present with symptomatic infection characterized by a painful purulent urethral discharge, while in women, the infection is often asymptomatic, with the most severe pathology occurring when the bacteria ascend from the lower genital tract into the uterus and fallopian tubes. Classical clinical studies demonstrated that clinically infectious strains uniformly express Opa adhesins; however, their specificities were unknown at the time. While in vitro studies have since identified CEACAM proteins as the primary target of Opa proteins, the gonococcal specificity for this human family of receptors has not been addressed in the context of natural infection. In this study, we characterize a collection of low-passage-number clinical-specimen-derived N. gonorrhoeae isolates for Opa expression and assess their CEACAM-binding profiles. We report marked in vivo selection for expression of phase-variable Opa proteins that bind CEACAM1 and CEACAM5 but selection against expression of Opa variants that bind to the neutrophil-restricted decoy receptor CEACAM3. This is the first study showing phenotypic selection for distinct CEACAM-binding phenotypes in vivo, and it supports the opposing functions of CEACAMs that facilitate infection versus driving inflammation within the genital tract.
Collapse
|
20
|
Faulstich M, Hagen F, Avota E, Kozjak-Pavlovic V, Winkler AC, Xian Y, Schneider-Schaulies S, Rudel T. Neutral sphingomyelinase 2 is a key factor for PorB-dependent invasion of Neisseria gonorrhoeae. Cell Microbiol 2014; 17:241-53. [PMID: 25224994 DOI: 10.1111/cmi.12361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 09/04/2014] [Accepted: 09/08/2014] [Indexed: 12/25/2022]
Abstract
Disseminated gonococcal infection (DGI) is a rare but serious complication caused by the spread of Neisseria gonorrhoeae in the human host. Gonococci associated with DGI mainly express the outer membrane protein PorBIA that binds to the scavenger receptor expressed on endothelial cells (SREC-I) and mediates bacterial uptake. We recently demonstrated that this interaction relies on intact membrane rafts that acquire SREC-I upon attachment of gonococci and initiates the signalling cascade that finally leads to the uptake of gonococci in epithelial cells. In this study, we analysed the role of sphingomyelinases and their breakdown product ceramide. Gonococcal infection induced increased levels of ceramide that was enriched at bacterial attachment sites. Interestingly, neutral but not acid sphingomyelinase was mandatory for PorBIA -mediated invasion into host cells. Neutral sphingomyelinase was required to recruit the PI3 kinase to caveolin and thereby activates the PI3 kinase-dependent downstream signalling leading to bacterial uptake. Thus, this study elucidates the initial signalling processes of bacterial invasion during DGI and demonstrates a novel role for neutral sphingomyelinase in the course of bacterial infections.
Collapse
Affiliation(s)
- Michaela Faulstich
- Department of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Lee SY, Jeong JS, Ahn JJ, Lee SW, Seo H, Ahn Y, Hwang SY. Development of electrochemical microbiochip for the biological diagnosis of Neisseria gonorrhoeae. ANAL SCI 2013; 29:1203-8. [PMID: 24334988 DOI: 10.2116/analsci.29.1203] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A sexually transmitted disease is an illness that has a high probability of transmission between humans or animals who have sexual contact. Our research is based on the development of a microbiochip for Neisseria gonorrhoeae (N.G.). In our study, we have employed fusion technology between microarray technology and a microfluidic system for quantitative analysis of N.G. A great deal of attention has been focused on electrochemical detection by using a DNA probe, which is a specific DNA sequence and binds to a target biomolecule, because of high affinity, ease of usage, and fast measurement. The microbiochip consisted of two electrode systems and microchannel based PDMS. Our detection principles use electrochemical detection. Consequently, our microbiochip detected 5 ng/mL of N.G. and the correlation rate was over 0.95. We can produce a microbiochip, which could bind to a DNA probe and detect sample of interest. We expect that our electrobiochemical chip will be used for the development of a portable device.
Collapse
Affiliation(s)
- Seung Yong Lee
- Department of Bio-Nanotechnology, Graduate School, Hanyang University
| | | | | | | | | | | | | |
Collapse
|
22
|
Faulstich M, Böttcher JP, Meyer TF, Fraunholz M, Rudel T. Pilus phase variation switches gonococcal adherence to invasion by caveolin-1-dependent host cell signaling. PLoS Pathog 2013; 9:e1003373. [PMID: 23717204 PMCID: PMC3662692 DOI: 10.1371/journal.ppat.1003373] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 04/05/2013] [Indexed: 02/08/2023] Open
Abstract
Many pathogenic bacteria cause local infections but occasionally invade into the blood stream, often with fatal outcome. Very little is known about the mechanism underlying the switch from local to invasive infection. In the case of Neisseria gonorrhoeae, phase variable type 4 pili (T4P) stabilize local infection by mediating microcolony formation and inducing anti-invasive signals. Outer membrane porin PorB(IA), in contrast, is associated with disseminated infection and facilitates the efficient invasion of gonococci into host cells. Here we demonstrate that loss of pili by natural pilus phase variation is a prerequisite for the transition from local to invasive infection. Unexpectedly, both T4P-mediated inhibition of invasion and PorB(IA)-triggered invasion utilize membrane rafts and signaling pathways that depend on caveolin-1-Y14 phosphorylation (Cav1-pY14). We identified p85 regulatory subunit of PI3 kinase (PI3K) and phospholipase Cγ1 as new, exclusive and essential interaction partners for Cav1-pY14 in the course of PorBIA-induced invasion. Active PI3K induces the uptake of gonococci via a new invasion pathway involving protein kinase D1. Our data describe a novel route of bacterial entry into epithelial cells and offer the first mechanistic insight into the switch from local to invasive gonococcal infection.
Collapse
Affiliation(s)
- Michaela Faulstich
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Jan-Peter Böttcher
- Max Planck Institute for Infection Biology, Dept. Molecular Biology, Berlin, Germany
| | - Thomas F. Meyer
- Max Planck Institute for Infection Biology, Dept. Molecular Biology, Berlin, Germany
| | - Martin Fraunholz
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
- * E-mail:
| |
Collapse
|
23
|
Actin cytoskeleton manipulation by effector proteins secreted by diarrheagenic Escherichia coli pathotypes. BIOMED RESEARCH INTERNATIONAL 2012; 2013:374395. [PMID: 23509714 PMCID: PMC3591105 DOI: 10.1155/2013/374395] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 10/22/2012] [Indexed: 11/18/2022]
Abstract
The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. Disruption of the epithelial barrier coincides with alterations of the actin cytoskeleton in several disease states. These disruptions primarily affect the paracellular space, which is normally regulated by tight junctions. Thereby, the actin cytoskeleton is a common and recurring target of bacterial virulence factors. In order to manipulate the actin cytoskeleton, bacteria secrete and inject toxins and effectors to hijack the host cell machinery, which interferes with host-cell pathways and with a number of actin binding proteins. An interesting model to study actin manipulation by bacterial effectors is Escherichia coli since due to its genome plasticity it has acquired diverse genetic mobile elements, which allow having different E. coli varieties in one bacterial species. These E. coli pathotypes, including intracellular and extracellular bacteria, interact with epithelial cells, and their interactions depend on a specific combination of virulence factors. In this paper we focus on E. coli effectors that mimic host cell proteins to manipulate the actin cytoskeleton. The study of bacterial effector-cytoskeleton interaction will contribute not only to the comprehension of the molecular causes of infectious diseases but also to increase our knowledge of cell biology.
Collapse
|
24
|
Buntru A, Roth A, Nyffenegger-Jann NJ, Hauck CR. HemITAM signaling by CEACAM3, a human granulocyte receptor recognizing bacterial pathogens. Arch Biochem Biophys 2012; 524:77-83. [DOI: 10.1016/j.abb.2012.03.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 03/15/2012] [Accepted: 03/16/2012] [Indexed: 10/28/2022]
|
25
|
Voges M, Bachmann V, Naujoks J, Kopp K, Hauck CR. Extracellular IgC2 constant domains of CEACAMs mediate PI3K sensitivity during uptake of pathogens. PLoS One 2012; 7:e39908. [PMID: 22768164 PMCID: PMC3386982 DOI: 10.1371/journal.pone.0039908] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 05/29/2012] [Indexed: 11/22/2022] Open
Abstract
Background Several pathogenic bacteria utilize receptors of the CEACAM family to attach to human cells. Binding to different members of this receptor family can result in uptake of the bacteria. Uptake of Neisseria gonorrhoeae, a Gram-negative human pathogen, via CEACAMs found on epithelial cells, such as CEACAM1, CEA or CEACAM6, differs mechanistically from phagocytosis mediated by CEACAM3, a CEACAM family member expressed selectively by human granulocytes. Principal Findings We find that CEACAM1- as well as CEACAM3-mediated bacterial internalization are accompanied by a rapid increase in phosphatidylinositol-3,4,5 phosphate (PI(3,4,5)P) at the site of bacterial entry. However, pharmacological inhibition of phosphatidylinositol-3′ kinase (PI3K) selectively affects CEACAM1-mediated uptake of Neisseria gonorrhoeae. Accordingly, overexpression of the PI(3,4,5)P phosphatase SHIP diminishes and expression of a constitutive active PI3K increases CEACAM1-mediated internalization of gonococci, without influencing uptake by CEACAM3. Furthermore, bacterial uptake by GPI-linked members of the CEACAM family (CEA and CEACAM6) and CEACAM1-mediated internalization of N. meningitidis by endothelial cells require PI3K activity. Sensitivity of CEACAM1-mediated uptake toward PI3K inhibition is independent of receptor localization in cholesterol-rich membrane microdomains and does not require the cytoplasmic or the transmembrane domain of CEACAM1. However, PI3K inhibitor sensitivity requires the IgC2-like domains of CEACAM1, which are also present in CEA and CEACAM6, but which are absent from CEACAM3. Accordingly, overexpression of CEACAM1 IgC2 domains blocks CEACAM1-mediated internalization. Conclusions Our results provide novel mechanistic insight into CEACAM1-mediated endocytosis and suggest that epithelial CEACAMs associate in cis with other membrane receptor(s) via their extracellular domains to trigger bacterial uptake in a PI3K-dependent manner.
Collapse
Affiliation(s)
- Maike Voges
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Verena Bachmann
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Jan Naujoks
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Kathrin Kopp
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl Zellbiologie, Universität Konstanz, Konstanz, Germany
- Konstanz Research School Chemical Biology, Universität Konstanz, Konstanz, Germany
- * E-mail:
| |
Collapse
|
26
|
The adaptor molecule Nck localizes the WAVE complex to promote actin polymerization during CEACAM3-mediated phagocytosis of bacteria. PLoS One 2012; 7:e32808. [PMID: 22448228 PMCID: PMC3308951 DOI: 10.1371/journal.pone.0032808] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 02/02/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CEACAM3 is a granulocyte receptor mediating the opsonin-independent recognition and phagocytosis of human-restricted CEACAM-binding bacteria. CEACAM3 function depends on an intracellular immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is tyrosine phosphorylated by Src family kinases upon receptor engagement. The phosphorylated ITAM-like sequence triggers GTP-loading of Rac by directly associating with the guanine nucleotide exchange factor (GEF) Vav. Rac stimulation in turn is critical for actin cytoskeleton rearrangements that generate lamellipodial protrusions and lead to bacterial uptake. PRINCIPAL FINDINGS In our present study we provide biochemical and microscopic evidence that the adaptor proteins Nck1 and Nck2, but not CrkL, Grb2 or SLP-76, bind to tyrosine phosphorylated CEACAM3. The association is phosphorylation-dependent and requires the Nck SH2 domain. Overexpression of the isolated Nck1 SH2 domain, RNAi-mediated knock-down of Nck1, or genetic deletion of Nck1 and Nck2 interfere with CEACAM3-mediated bacterial internalization and with the formation of lamellipodial protrusions. Nck is constitutively associated with WAVE2 and directs the actin nucleation promoting WAVE complex to tyrosine phosphorylated CEACAM3. In turn, dominant-negative WAVE2 as well as shRNA-mediated knock-down of WAVE2 or the WAVE-complex component Nap1 reduce internalization of bacteria. CONCLUSIONS Our results provide novel mechanistic insight into CEACAM3-initiated phagocytosis. We suggest that the CEACAM3 ITAM-like sequence is optimized to co-ordinate a minimal set of cellular factors needed to efficiently trigger actin-based lamellipodial protrusions and rapid pathogen engulfment.
Collapse
|
27
|
A bacterial siren song: intimate interactions between Neisseria and neutrophils. Nat Rev Microbiol 2012; 10:178-90. [PMID: 22290508 DOI: 10.1038/nrmicro2713] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Neisseria gonorrhoeae and Neisseria meningitidis are Gram-negative bacterial pathogens that are exquisitely adapted for growth at human mucosal surfaces and for efficient transmission between hosts. One factor that is essential to neisserial pathogenesis is the interaction between the bacteria and neutrophils, which are recruited in high numbers during infection. Although this vigorous host response could simply reflect effective immune recognition of the bacteria, there is mounting evidence that in fact these obligate human pathogens manipulate the innate immune response to promote infectious processes. This Review summarizes the mechanisms used by pathogenic neisseriae to resist and modulate the antimicrobial activities of neutrophils. It also details some of the major outstanding questions about the Neisseria-neutrophil relationship and proposes potential benefits of this relationship for the pathogen.
Collapse
|
28
|
Defining the roles of human carcinoembryonic antigen-related cellular adhesion molecules during neutrophil responses to Neisseria gonorrhoeae. Infect Immun 2011; 80:345-58. [PMID: 22064717 DOI: 10.1128/iai.05702-11] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Symptomatic infection of humans with Neisseria gonorrhoeae is characterized by a neutrophil-rich cervical or urethral exudate, suggesting that neutrophils are important both for the clearance of these bacteria and for the pathogenesis of gonorrhea. Neisseria interacts with neutrophils through ligation of human carcinoembryonic antigen related-cellular adhesion molecules (CEACAMs) by their surface-expressed Opa proteins, resulting in bacterial binding, engulfment, and neutrophil activation. Multiple CEACAMs are expressed by human neutrophils, and yet their coexpression has precluded understanding of the relative contribution of each CEACAM to functional responses of neutrophils during neisserial infection. In this work, we directly address the role of each CEACAM during infection by introducing individual human CEACAMs into a differentiated murine MPRO cell line-derived neutrophil model. Murine neutrophils cannot bind the human-restricted Neisseria; however, we show that introducing any of the Opa-binding CEACAMs of human neutrophils (CEACAM1, CEACAM3, and CEACAM6) allows binding and entry of Neisseria into murine neutrophils. While CEACAM1- and CEACAM6-expressing neutrophils bind more bacteria, neisserial uptake via these two receptors unexpectedly proceeds without appreciable neutrophil activation. In stark contrast, neisserial engulfment via CEACAM3 recapitulates the oxidative burst and intracellular granule release seen during human neutrophil infection. Finally, by coexpressing multiple CEACAMs in our model, we show that the expression of CEACAM1 and CEACAM6 potentiate, rather than hinder, CEACAM3-dependent responses of neutrophils, exposing a cooperative role for this family of proteins during neisserial infection of neutrophils. These observations illustrate a divergence in function of CEACAMs in neutrophils and implicate the human-restricted CEACAM3 in the neutrophil innate response to neisserial infection.
Collapse
|
29
|
Li G, Jiao H, Yan H, Wang J, Wang X, Ji M. Establishment of a human CEACAM1 transgenic mouse model for the study of gonococcal infections. J Microbiol Methods 2011; 87:350-4. [PMID: 21986029 DOI: 10.1016/j.mimet.2011.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 09/25/2011] [Accepted: 09/26/2011] [Indexed: 12/30/2022]
Abstract
Neisseria gonorrhoeae is the causative microorganism for the sexually transmitted disease (STD) gonorrhea and humans are its only natural host. An animal model would be a useful tool for gonorrhea research, therefore we developed the hCEACAM1 transgenic mice, using an eukaryotic expression vector, pCDPCAM1-GI. This construct was microinjected into the zygotes of C57BL/6 mice and 22 F0 generation transgenic mice were obtained. Four (lines 50, 53, 54, and 59) of the F0 generation were found to carry the transgene by PCR and sequence analysis, respectively. Western blotting and Fluorescence-Activated Cell Sorting Analysis demonstrated that hCEACAM1 was expressed on the cell membrane of various tissues in the line 53 transgenic mouse. To initiate the disease in the animal model, the F2 or F3 transgenic mice were inoculated with N. gonorrhoeae intravaginally. Compared with normal mice, N. gonorrhoeae can successfully infect and cause inflammation in the transgenic mice. These data suggested the feasibility of using hCEACAM1 transgenic mice as an animal model for gonococcal infections.
Collapse
Affiliation(s)
- Guocai Li
- Department of Pathogen Biology and Immunology, Yangzhou University School of Medicine, Yangzhou, China.
| | | | | | | | | | | |
Collapse
|
30
|
Sadarangani M, Pollard AJ, Gray-Owen SD. Opa proteins and CEACAMs: pathways of immune engagement for pathogenic Neisseria. FEMS Microbiol Rev 2011; 35:498-514. [PMID: 21204865 DOI: 10.1111/j.1574-6976.2010.00260.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Neisseria meningitidis and Neisseria gonorrhoeae are globally important pathogens, which in part owe their success to their ability to successfully evade human immune responses over long periods. The phase-variable opacity-associated (Opa) adhesin proteins are a major surface component of these organisms, and are responsible for bacterial adherence and entry into host cells and interactions with the immune system. Most immune interactions are mediated via binding to members of the carcinoembryonic antigen cell adhesion molecule (CEACAM) family. These Opa variants are able to bind to different receptors of the CEACAM family on epithelial cells, neutrophils, and T and B lymphocytes, influencing the innate and adaptive immune responses. Increased epithelial cell adhesion creates the potential for prolonged infection, invasion and dissemination. Furthermore, Opa proteins may inhibit T-lymphocyte activation and proliferation, B-cell antibody production, and innate inflammatory responses by infected epithelia, in addition to conferring increased resistance to antibody-dependent, complement-mediated killing. While vaccines containing Opa proteins could induce adhesion-blocking and bactericidal antibodies, the consequence of CEACAM binding by a candidate Opa-containing vaccine requires further investigation. This review summarizes current knowledge of the immunological consequences of the interaction between meningococcal and gonococcal Opa proteins and human CEACAMs, considering the implications for pathogenesis and vaccine development.
Collapse
Affiliation(s)
- Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, UK.
| | | | | |
Collapse
|
31
|
Buntru A, Kopp K, Voges M, Frank R, Bachmann V, Hauck CR. Phosphatidylinositol 3'-kinase activity is critical for initiating the oxidative burst and bacterial destruction during CEACAM3-mediated phagocytosis. J Biol Chem 2011; 286:9555-66. [PMID: 21216968 DOI: 10.1074/jbc.m110.216085] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) is an immunoglobulin-related receptor expressed on human granulocytes. CEACAM3 functions as a single chain phagocytotic receptor recognizing gram-negative bacteria such as Neisseria gonorrhoeae, which possess CEACAM-binding adhesins on their surface. The cytoplasmic domain of CEACAM3 contains an immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is phosphorylated upon receptor engagement. Here we show that the SH2 domains of the regulatory subunit of phosphatidylinositol 3'-kinase (PI3K) bind to tyrosine residue 230 of CEACAM3 in a phosphorylation-dependent manner. PI3K is rapidly recruited and directly associates with CEACAM3 upon bacterial binding as shown by FRET analysis. Although PI3K activity is not required for efficient uptake of the bacteria by CEACAM3-transfected cells or primary human granulocytes, it is critical for the stimulated production of reactive oxygen species by infected phagocytes and the intracellular degradation of CEACAM-binding bacteria. Together, our results highlight the ability of CEACAM3 to coordinate signaling events that not only mediate bacterial uptake, but also trigger the killing of internalized pathogens.
Collapse
Affiliation(s)
- Alexander Buntru
- Lehrstuhl für Zellbiologie, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
32
|
Singh B, Su YC, Riesbeck K. Vitronectin in bacterial pathogenesis: a host protein used in complement escape and cellular invasion. Mol Microbiol 2010; 78:545-60. [DOI: 10.1111/j.1365-2958.2010.07373.x] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
33
|
Kepp O, Gottschalk K, Churin Y, Rajalingam K, Brinkmann V, Machuy N, Kroemer G, Rudel T. Bim and Bmf synergize to induce apoptosis in Neisseria gonorrhoeae infection. PLoS Pathog 2009; 5:e1000348. [PMID: 19300516 PMCID: PMC2654407 DOI: 10.1371/journal.ppat.1000348] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2008] [Accepted: 02/25/2009] [Indexed: 11/18/2022] Open
Abstract
Bcl-2 family proteins including the pro-apoptotic BH3-only proteins are central regulators of apoptotic cell death. Here we show by a focused siRNA miniscreen that the synergistic action of the BH3-only proteins Bim and Bmf is required for apoptosis induced by infection with Neisseria gonorrhoeae (Ngo). While Bim and Bmf were associated with the cytoskeleton of healthy cells, they both were released upon Ngo infection. Loss of Bim and Bmf from the cytoskeleton fraction required the activation of Jun-N-terminal kinase-1 (JNK-1), which in turn depended on Rac-1. Depletion and inhibition of Rac-1, JNK-1, Bim, or Bmf prevented the activation of Bak and Bax and the subsequent activation of caspases. Apoptosis could be reconstituted in Bim-depleted and Bmf-depleted cells by additional silencing of antiapoptotic Mcl-1 and Bcl-XL, respectively. Our data indicate a synergistic role for both cytoskeletal-associated BH3-only proteins, Bim, and Bmf, in an apoptotic pathway leading to the clearance of Ngo-infected cells. A variety of physiological death signals, as well as pathological insults, trigger apoptosis, a genetically programmed form of cell death. Pathogens often induce host cell apoptosis to establish a successful infection. Neisseria gonorrhoeae (Ngo), the etiological agent of the sexually transmitted disease gonorrhoea, is a highly adapted obligate human-specific pathogen and has been shown to induce apoptosis in infected cells. Here we unveil the molecular mechanisms leading to apoptosis of infected cells. We show that Ngo-mediated apoptosis requires a special subset of proapoptotic proteins from the group of BH3-only proteins. BH3-only proteins act as stress sensors to translate toxic environmental signals to the initiation of apoptosis. In a siRNA-based miniscreen, we found Bim and Bmf, BH3-only proteins associated with the cytoskeleton, necessary to induce host cell apoptosis upon infection. Bim and Bmf inactivated different inhibitors of apoptosis and thereby induced cell death in response to infection. Our data unveil a novel pathway of infection-induced apoptosis that enhances our understanding of the mechanism by which BH3-only proteins control apoptotic cell death.
Collapse
Affiliation(s)
- Oliver Kepp
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Kathleen Gottschalk
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Yuri Churin
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Krishnaraj Rajalingam
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Volker Brinkmann
- Core Facility for Microscopy, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nikolaus Machuy
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Guido Kroemer
- INSERM, U848, Institute Gustave Roussy, Université Paris Sud, Paris, France
| | - Thomas Rudel
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Berlin, Germany
- Biozentrum, University of Würzburg, Department of Microbiology, Würzburg, Germany
- * E-mail:
| |
Collapse
|
34
|
Human decay-accelerating factor and CEACAM receptor-mediated internalization and intracellular lifestyle of Afa/Dr diffusely adhering Escherichia coli in epithelial cells. Infect Immun 2008; 77:517-31. [PMID: 19015254 DOI: 10.1128/iai.00695-08] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We used transfected epithelial CHO-B2 cells as a model to identify the mechanism mediating internalization of Afa/Dr diffusely adhering Escherichia coli. We provide evidence that neither the alpha5 or beta1 integrin subunits nor alpha5beta1 integrin functioned as a receptor mediating the adhesion and/or internalization of Dr or Afa-III fimbria-positive bacteria. We also demonstrated that (i) whether or not the AfaD or DraD invasin subunits were present, there was no difference in the cell association and entry of bacteria and that (ii) DraE or AfaE-III adhesin subunits are necessary and sufficient to promote the receptor-mediated bacterial internalization into epithelial cells expressing human decay-accelerating factor (DAF), CEACAM1, CEA, or CEACAM6. Internalization of Dr fimbria-positive E. coli within CHO-DAF, CHO-CEACAM1, CHO-CEA, or CHO-CEACAM6 cells occurs through a microfilament-independent, microtubule-dependent, and lipid raft-dependent mechanism. Wild-type Dr fimbria-positive bacteria survived better within cells expressing DAF than bacteria internalized within CHO-CEACAM1, CHO-CEA, or CHO-CEACAM6 cells. In DAF-positive cells, internalized Dr fimbria-positive bacteria were located in vacuoles that contained more than one bacterium, displaying some of the features of late endosomes, including the presence of Lamp-1 and Lamp-2, and some of the features of CD63 proteins, but not of cathepsin D, and were acidic. No interaction between Dr fimbria-positive-bacterium-containing vacuoles and the autophagic pathway was observed.
Collapse
|
35
|
Talà A, Progida C, De Stefano M, Cogli L, Spinosa MR, Bucci C, Alifano P. The HrpB-HrpA two-partner secretion system is essential for intracellular survival of Neisseria meningitidis. Cell Microbiol 2008; 10:2461-82. [PMID: 18680551 DOI: 10.1111/j.1462-5822.2008.01222.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In this study we used HeLa cells to investigate the role of the HrpB-HrpA two-partner secretion (TPS) system in the meningococcal infection cycle. Although there is evidence that several pathogenic microorganisms may use TPS systems to colonize epithelial surfaces, the meningococcal HrpB-HrpA TPS system was not primarily involved in adhesion to or invasion of HeLa cells. Instead, this system was essential for intracellular survival and escape from infected cells. Gentamicin protection assays, immunofluorescence and transmission electron microscopy analyses demonstrated that, in contrast to the wild-type strain, HrpB-HrpA-deficient mutants were primarily confined to late endocytic vacuoles and trapped in HeLa cells. Haemolytic tests using human erythrocytes suggested that the secreted HrpA proteins could act as manganese-dependent lysins directly involved in mediating vacuole escape. In addition, we demonstrated that escape of wild-type meningococci from infected cells required the use of an intact tubulin cytoskeleton and that the hrpB-hrpA genes, which are absent in other Neisseria spp., were upregulated during infection.
Collapse
Affiliation(s)
- Adelfia Talà
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali (DiSTeBA), Università del Salento, Via Provinciale Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Escherichia coli DraE adhesin-associated bacterial internalization by epithelial cells is promoted independently by decay-accelerating factor and carcinoembryonic antigen-related cell adhesion molecule binding and does not require the DraD invasin. Infect Immun 2008; 76:3869-80. [PMID: 18559426 DOI: 10.1128/iai.00427-08] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Dr family of Escherichia coli adhesins are virulence factors associated with diarrhea and urinary tract infections. Dr fimbriae are comprised of two subunits. DraE/AfaE represents the major structural, antigenic, and adhesive subunit, which recognizes decay-accelerating factor (DAF) and carcinoembryonic antigen (CEA)-related cell adhesion molecules (CEACAMs) CEA, CEACAM1, CEACAM3, and CEACAM6 as binding receptors. The DraD/AfaD subunit caps fimbriae and has been implicated in the entry of Dr-fimbriated E. coli into host cells. In this study, we demonstrate that DAF or CEACAM receptors independently promote DraE-mediated internalization of E. coli by CHO cell transfectants expressing these receptors. We also found that DraE-positive recombinant bacteria adhere to and are internalized by primary human bladder epithelial cells which express DAF and CEACAMs. DraE-mediated bacterial internalization by bladder cells was inhibited by agents which disrupt lipid rafts, microtubules, and phosphatidylinositol 3-kinase (PI3K) activity. Immunofluorescence confocal microscopic examination of epithelial cells detected considerable recruitment of caveolin, beta(1) integrin, phosphorylated ezrin, phosphorylated PI3K, and tubulin, but not F-actin, by cell-associated bacteria. Finally, we demonstrate that the DraD subunit, previously implicated as an "invasin," is not required for beta(1) integrin recruitment or bacterial internalization.
Collapse
|
37
|
Muenzner P, Bachmann V, Kuespert K, Hauck CR. The CEACAM1 transmembrane domain, but not the cytoplasmic domain, directs internalization of human pathogens via membrane microdomains. Cell Microbiol 2007; 10:1074-92. [PMID: 18081725 DOI: 10.1111/j.1462-5822.2007.01106.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several bacterial pathogens exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to promote attachment and uptake into eukaryotic host cells. The widely expressed isoform CEACAM1 is involved in cell-cell adhesion, regulation of cell proliferation, insulin homeostasis, and neo-angiogenesis, processes that depend on the cytoplasmic domain of CEACAM1. By analysing the molecular requirements for CEACAM1-mediated internalization of bacteria, we surprisingly find that the CEACAM1 cytoplasmic domain is completely obsolete for bacterial uptake. Accordingly, CEACAM1-4L as well as a CEACAM1 mutant with a complete deletion of the cytoplasmic domain (CEACAM1 DeltaCT) promote equivalent internalization of several human pathogens. CEACAM1-4L- and CEACAM1 DeltaCT-mediated uptake proceeds in the presence of inhibitors of actin microfilament dynamics, which is in contrast to CEACAM3-mediated internalization. Bacteria-engaged CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3, localize to a gangliosid GM1- and GPI-anchored protein-containing portion of the plasma membrane. In addition, interference with cholesterol-rich membrane microdomains severely blocks bacterial uptake via CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3. Similar to GPI-anchored CEACAM6, both CEACAM1-4L as well as CEACAM1 DeltaCT partition into a low-density, Triton-insoluble membrane fraction upon receptor clustering, whereas CEACAM3 is not detected in this fraction. Bacterial uptake by truncated CEACAM1 or chimeric CEACAM1/CEACAM3 molecules reveals that the transmembrane domain of CEACAM1 is responsible for its association with membrane microdomains. Together, these data argue for a functional role of lipid rafts in CEACAM1-mediated endocytosis that is promoted by the transmembrane domain of the receptor and that might be relevant for CEACAM1 function in physiologic settings.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl für Zellbiologie, Universität Konstanz, Postfach X908, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
38
|
Binker MG, Cosen-Binker LI, Terebiznik MR, Mallo GV, McCaw SE, Eskelinen EL, Willenborg M, Brumell JH, Saftig P, Grinstein S, Gray-Owen SD. Arrested maturation of Neisseria-containing phagosomes in the absence of the lysosome-associated membrane proteins, LAMP-1 and LAMP-2. Cell Microbiol 2007; 9:2153-66. [PMID: 17506821 DOI: 10.1111/j.1462-5822.2007.00946.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Mature, microbicidal phagosomes are rich in the lysosome-associated membrane proteins, LAMP-1 and LAMP-2, two highly glycosylated proteins presumed to form a protective barrier lining the phagosomal membrane. Pathogenic Neisseria secrete a protease that selectively cleaves LAMP-1, suggesting a critical role for LAMP proteins in the microbicidal competence of phagosomes. To determine the requirement for LAMP proteins in bacterial phagocytosis, we employed embryonic fibroblasts isolated from knockout mice lacking lamp-1, lamp-2 or both genes, as well as small interfering RNA (siRNA)-mediated knockdown of LAMP expression in a human epithelial cell line. Like wild-type cells, those lacking either LAMP-1 or LAMP-2 alone formed phagosomes that gradually acquired microbicidal activity and curtailed bacterial growth. In contrast, LAMP-1 and LAMP-2 double-deficient fibroblasts failed to kill engulfed Neisseria gonorrhoeae. In these cells, maturation was arrested prior to the acquisition of Rab7. As a result, the Rab7-interacting lysosomal protein (RILP, a Rab7 effector) was not recruited to the phagosomes, which were consequently unable to undergo dynein/dynactin-mediated centripetal displacement along microtubules and remained in a predominantly peripheral location. The inability of such phagosomes to migrate towards lysosomes likely contributed to their incomplete maturation and inability to eliminate bacteria. These findings suggest that neisserial degradation of LAMP-1 is not sufficient to affect its survival within the phagosome, and establish LAMP proteins as critical components in the process whereby phagosomes acquire microbicidal capabilities.
Collapse
Affiliation(s)
- Marcelo G Binker
- Cell Biology Program, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, M5G 1X8, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Wang JA, Meyer TF, Rudel T. Cytoskeleton and motor proteins are required for the transcytosis of Neisseria gonorrhoeae through polarized epithelial cells. Int J Med Microbiol 2007; 298:209-21. [PMID: 17683982 DOI: 10.1016/j.ijmm.2007.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2006] [Revised: 04/27/2007] [Accepted: 05/08/2007] [Indexed: 10/23/2022] Open
Abstract
Neisseria gonorrhoeae interact with polarized T84 epithelial cells by engaging carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) receptors. Adherent bacteria that are taken up by the cells are able to traverse the epithelial layer from the apical to the basal side. Herein, we demonstrate that the actin cytoskeleton of the cells is not required for the initial adherence of the bacteria, however, it is essential for invasion into and traversal through T84 cells. Furthermore, microtubule inhibitors blocked the traversal, but not the adherence and invasion of the bacteria. Inhibition of the motor activity of myosins reduced invasion and traversal, but not bacterial adherence. Immunofluorescence confocal laser scanning microscopy revealed the colocalization of the microtubule-based kinesin and dynein motors, and the actin-based motor myosin with adherent and intracellular gonococci. Transcytosis was reduced by blocking kinesin and myosin with specific antibodies. This underlines the importance of these motor proteins for the transcytosis of epithelial monolayers by N. gonorrhoeae.
Collapse
Affiliation(s)
- Jun A Wang
- Department of Molecular Biology, Max Planck Institute for Infection Biology, Charitéplatz 1, D-10117 Berlin, Germany
| | | | | |
Collapse
|
40
|
Sarantis H, Gray-Owen SD. The specific innate immune receptor CEACAM3 triggers neutrophil bactericidal activities via a Syk kinase-dependent pathway. Cell Microbiol 2007; 9:2167-80. [PMID: 17506820 DOI: 10.1111/j.1462-5822.2007.00947.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The human-restricted pathogens Neisseria gonorrhoeae, Neisseria meningitidis, Haemophilus influenzae and Moraxella catarrhalis colonize host tissues via carcinoembryonic antigen-related cellular adhesion molecules (CEACAMs). One such receptor, CEACAM3, acts in a host-protective manner by orchestrating the capture and engulfment of invasive bacteria by human neutrophils. Herein, we show that bacterial binding to CEACAM3 causes recruitment of the cytoplasmic tyrosine kinase Syk, resulting in the phosphorylation of both CEACAM3 and Syk. This interaction is specific for the immunoreceptor tyrosine-based activation motif (ITAM) in the CEACAM3 cytoplasmic domain. While dispensable for the phagocytic uptake of single bacteria by CEACAM3, Syk is necessary for internalization when cargo size increases or when the density of CEACAM-binding ligand on the cargo surface is below a critical threshold. Moreover, Syk engagement is required for an effective bacterial killing response, including the neutrophil oxidative burst and degranulation functions in response to N. gonorrhoeae. These data reveal CEACAM3 as a specific innate immune receptor that mediates the opsonin-independent clearance of CEACAM-binding bacteria via Syk, a molecular trigger for functional immunoreceptor responses of both the adaptive (TCR, BCR, FcR) and innate (Dectin-1, CEACAM3) immune systems.
Collapse
Affiliation(s)
- Helen Sarantis
- Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | |
Collapse
|
41
|
Scibelli A, Roperto S, Manna L, Pavone LM, Tafuri S, Della Morte R, Staiano N. Engagement of integrins as a cellular route of invasion by bacterial pathogens. Vet J 2007; 173:482-91. [PMID: 16546423 DOI: 10.1016/j.tvjl.2006.01.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Integrins are heterodimeric receptors that mediate important cell functions, including cell adhesion, migration and tissue organisation. These transmembrane receptors regulate the direct association of cells with each other and with extracellular matrix proteins. However, by binding their ligands, integrins provide a transmembrane link for the bidirectional transmission of mechanical forces and biochemical signals across the plasma membrane. Interestingly, several of this family of receptors are exploited by pathogens to establish contact with the host cells. Hence, microbes subvert normal eukaryotic cell processes to create a specialised niche which allows their survival. This review highlights the fundamental role of integrins in bacterial pathogenesis.
Collapse
Affiliation(s)
- Antonio Scibelli
- Dipartimento di Strutture, Funzioni e Tecnologie Biologiche, Università di Napoli Federico II, Via F. Delpino 1, 80137 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
42
|
Spinosa MR, Progida C, Talà A, Cogli L, Alifano P, Bucci C. The Neisseria meningitidis capsule is important for intracellular survival in human cells. Infect Immun 2007; 75:3594-603. [PMID: 17470547 PMCID: PMC1932921 DOI: 10.1128/iai.01945-06] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
While much data exist in the literature about how Neisseria meningitidis adheres to and invades human cells, its behavior inside the host cell is largely unknown. One of the essential meningococcal attributes for pathogenesis is the polysaccharide capsule, which has been shown to be important for bacterial survival in extracellular fluids. To investigate the role of the meningococcal capsule in intracellular survival, we used B1940, a serogroup B strain, and its isogenic derivatives, which lack either the capsule or both the capsule and the lipooligosaccharide outer core, to infect human phagocytic and nonphagocytic cells and monitor invasion and intracellular growth. Our data indicate that the capsule, which negatively affects bacterial adhesion and, consequently, entry, is, in contrast, fundamental for the intracellular survival of this microorganism. The results of in vitro assays suggest that an increased resistance to cationic antimicrobial peptides (CAMPs), important components of the host innate defense system against microbial infections, is a possible mechanism by which the capsule protects the meningococci in the intracellular environment. Indeed, unencapsulated bacteria were more susceptible than encapsulated bacteria to defensins, cathelicidins, protegrins, and polymyxin B, which has long been used as a model compound to define the mechanism of action of CAMPs. We also demonstrate that both the capsular genes (siaD and lipA) and those encoding an efflux pump involved in resistance to CAMPs (mtrCDE) were up-regulated during the intracellular phase of the infectious cycle.
Collapse
Affiliation(s)
- Maria Rita Spinosa
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università degli Studi del Salento, Via Monteroni, 73100 Lecce, Italy
| | | | | | | | | | | |
Collapse
|
43
|
Shao L, Allez M, Park MS, Mayer L. Immunomodulatory roles of the carcinoembryonic antigen family of glycoproteins. Ann N Y Acad Sci 2006; 1072:194-209. [PMID: 17057200 DOI: 10.1196/annals.1326.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
One of the most remarkable aspects of the immune system is its ability to fashion an immune response most appropriate to the activating stimulus. Although the immune system possesses a number of adaptations to accomplish this, an important theme is local immune regulation by site-specific expression of receptors and ligands. One family of molecules that is gaining attention as modulators of the immune system is the carcinoembryonic antigen cell-adhesion molecule family (CEACAM). Functionally, the carcinoembryonic antigen family can mediate cell-cell contact, host-pathogen interactions, and immune regulation. For example, biliary glycoprotein (CEACAM1) can have direct activity on T cells, leading to the inhibition of helper or cytotoxic T cell function. The expression of carcinoembryonic antigen (CEACAM5) on intestinal epithelial cells is involved in the activation of populations of regulatory CD8(+) T cells, while a distinct subset of regulatory CD8+ T cells is activated by nonspecific cross-reacting antigen (CEACAM6) on placental trophoblasts. Interestingly, the function and phenotype of these cells depend upon the specific member of the carcinoembryonic antigen family expressed, as well as the antigen-presenting molecule with which it associates. Thus, these glycoproteins comprise a family of molecules whose functions can depend on their nature and context.
Collapse
Affiliation(s)
- Ling Shao
- Center for Immunobiology, Mount Sinai School of Medicine, 1 Gustave L. Levy Place, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
44
|
Kühlewein C, Rechner C, Meyer TF, Rudel T. Low-phosphate-dependent invasion resembles a general way for Neisseria gonorrhoeae to enter host cells. Infect Immun 2006; 74:4266-73. [PMID: 16790801 PMCID: PMC1489691 DOI: 10.1128/iai.00215-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Obligate human-pathogenic Neisseria gonorrhoeae expresses numerous variant surface proteins mediating adherence to and invasion of target cells. The invariant major outer membrane porin PorB of serotype A (P.IA) gonococci triggers invasion into Chang cells only if the medium is devoid of phosphate. Since gonococci expressing PorB(IA) are frequently isolated from patients with severe disseminating infections, the interaction initiated by the porin may be of major relevance for the development of this serious disease. Here, we investigated the low-phosphate-dependent invasion and compared it to the well-known pathways of entry initiated by Opa proteins. P.IA-triggered invasion requires clathrin-coated pit formation and the action of actin and Rho GTPases. However, in contrast to Opa-initiated invasion via heparan sulfate proteoglycans, microtubules, acidic sphingomyelinase, phosphatidylinositol 3-kinase, and myosin light chain kinase are not involved in this entry pathway. Nor are Src kinases required, as they are in invasion, e.g., via the CEACAM3 receptor. Invasion by PorB(IA) occurs in a wide spectrum of cell types, such as primary human epithelial and endothelial cells and in cancer cells of human and animal origin. Low-phosphate-dependent invasion is thus a pathway of gonococcal entry distinct from Opa-mediated invasion.
Collapse
Affiliation(s)
- Christiane Kühlewein
- Max Planck Institute for Infection Biology, Department of Molecular Biology, Schumannstr. 21/22, D-10117 Berlin, Germany
| | | | | | | |
Collapse
|
45
|
Abstract
The carcinoembryonic-antigen-related cell-adhesion molecule (CEACAM) family of proteins has been implicated in various intercellular-adhesion and intracellular-signalling-mediated effects that govern the growth and differentiation of normal and cancerous cells. Recent studies show that there is an important role for members of the CEACAM family in modulating the immune responses associated with infection, inflammation and cancer. In this Review, we consider the evidence for CEACAM involvement in immunity, with a particular emphasis on CEACAM1, which functions as a regulatory co-receptor for both lymphoid and myeloid cell types.
Collapse
Affiliation(s)
- Scott D Gray-Owen
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | | |
Collapse
|
46
|
Cougoule C, Hoshino S, Dart A, Lim J, Caron E. Dissociation of recruitment and activation of the small G-protein Rac during Fcgamma receptor-mediated phagocytosis. J Biol Chem 2006; 281:8756-64. [PMID: 16434390 DOI: 10.1074/jbc.m513731200] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Rho-family proteins play a central role in most actin-dependent processes, including the control and maintenance of cell shape, adhesion, motility, and phagocytosis. Activation of these GTP-binding proteins is tightly regulated spatially and temporally; however, very little is known of the mechanisms involved in their recruitment and activation in vivo. Because of its inducible, restricted signaling, phagocytosis offers an ideal physiological system to delineate the pathways linking surface receptors to actin remodeling via Rho GTPases. In this study, we investigated the involvement of early regulators of Fcgamma receptor signaling in Rac recruitment and activation. Using a combination of receptor mutagenesis, cellular, molecular, and pharmacological approaches, we show that Src family and Syk kinases control Rac and Vav function during phagocytosis. Importantly, both the immunoreceptor tyrosine-based activation motif within Fcgamma receptor cytoplasmic domain and Src kinase control the recruitment of Vav and Rac. However, Syk activity is dispensable for Vav and Rac recruitment. Moreover, we show that Rac and Cdc42 activities coordinate F-actin accumulation at nascent phagosomes. Our results provide new insights in the understanding of the spatiotemporal regulation of Rho-family GTPase function, and of Rac in particular, during phagocytosis. We believe they will contribute to a better understanding of more complex cellular processes, such as cell adhesion and migration.
Collapse
Affiliation(s)
- Céline Cougoule
- Centre for Molecular Microbiology and Infection, and Division of Cell and Molecular Cell biology, Faculty of Life Sciences, Imperial College London, London SW7 2AZ, United Kingdom
| | | | | | | | | |
Collapse
|
47
|
Ichikawa JK, English SB, Wolfgang MC, Jackson R, Butte AJ, Lory S. Genome-wide analysis of host responses to the Pseudomonas aeruginosa type III secretion system yields synergistic effects. Cell Microbiol 2005; 7:1635-46. [PMID: 16207250 DOI: 10.1111/j.1462-5822.2005.00581.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The type III secretion system (TTSS) is a dedicated bacterial pathogen protein targeting system that directly affects host cell signalling and response pathways. Our goal was to identify host responses to the Pseudomonas aeruginosa effectors, introduced into target cells utilizing the TTSS. We carried out expression profiling of a human lung pneumocyte cell line A549 exposed to isogenic mutants of P. aeruginosa PAK lacking individual or a combination of TTSS components. We then devised a data analysis method to isolate the key responses to specific secreted bacterial effector proteins as well as components of the TTSS machinery. Individually, the effector proteins elicited host responses consistent with their known functions, many of which were cell cycle-related. However, our analysis has shown that the effector proteins elicit a distinct host transcriptional response when present in combination, suggesting a synergistic effect. Furthermore, the pattern of host transcriptional responses is consistent with the pore forming ability of the TTSS needle complex. This study shows that the individual components of the TTSS define an integrated system and that a systems biology approach is required to fully understand the complex interplay between pathogen and host.
Collapse
Affiliation(s)
- Jeffrey K Ichikawa
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
48
|
Rudrabhatla RS, Selvaraj SK, Prasadarao NV. Role of Rac1 in Escherichia coli K1 invasion of human brain microvascular endothelial cells. Microbes Infect 2005; 8:460-9. [PMID: 16243562 PMCID: PMC1525332 DOI: 10.1016/j.micinf.2005.07.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2005] [Accepted: 07/20/2005] [Indexed: 11/22/2022]
Abstract
Escherichia coli K1 invasion of human brain microvascular endothelial cells (HBMEC) requires the reorganization of host cytoskeleton at the sites of bacterial entry. Both actin and myosin constitute the cytoskeletal architecture. We have previously shown that myosin light chain (MLC) phosphorylation by MLC kinase is regulated during E. coli invasion by an upstream kinase, p21-activated kinase 1 (PAK1), which is an effector protein of Rac and Cdc42 GTPases, but not of RhoA. Here, we report that the binding of only Rac1 to PAK1 decreases in HBMEC upon infection with E. coli K1, which resulted in increased phosphorylation of MLC. Overexpression of a constitutively active (cAc) form of Rac1 in HBMEC blocked the E. coli invasion significantly, whereas overexpression of a dominant negative form had no effect. Increased PAK1 phosphorylation was observed in HBMEC expressing cAc-Rac1 with a concomitant reduction in the phosphorylation of MLC. Immunocytochemistry studies demonstrated that the inhibition of E. coli invasion into cAc-Rac1/HBMEC is due to lack of phospho-MLC recruitment to the sites of E. coli entry. Taken together the data suggest that E. coli modulates the binding of Rac1, but not Cdc42, to PAK1 during the invasion of HBMEC.
Collapse
Affiliation(s)
- Rajyalakshmi S. Rudrabhatla
- Division of Infectious Diseases, The Saban Research Institute, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Suresh K. Selvaraj
- Division of Infectious Diseases, The Saban Research Institute, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
| | - Nemani V. Prasadarao
- Division of Infectious Diseases, The Saban Research Institute, Children’s Hospital Los Angeles, 4650 Sunset Blvd., Los Angeles, CA 90027, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA 90027, USA
- * Corresponding author. Tel.: +1 323 669 5465; fax: +1 323 660 2661. E-mail address: (N.V. Prasadarao)
| |
Collapse
|
49
|
Muenzner P, Rohde M, Kneitz S, Hauck CR. CEACAM engagement by human pathogens enhances cell adhesion and counteracts bacteria-induced detachment of epithelial cells. ACTA ACUST UNITED AC 2005; 170:825-36. [PMID: 16115956 PMCID: PMC2171332 DOI: 10.1083/jcb.200412151] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Exfoliation, which is the detachment of infected epithelial cells, is an innate defense mechanism to prevent bacterial colonization. Indeed, infection with Neisseria gonorrhoeae induced epithelial detachment from an extracellular matrix (ECM) substrate in vitro. Surprisingly, variants of N. gonorrhoeae that bind to human carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) failed to induce detachment and, instead, promoted enhanced host cell adhesion to the ECM. Microarray analysis revealed that CEACAM engagement by several human pathogens triggers expression of CD105. Blockage of CD105 expression by antisense oligonucleotides abolished infection-induced cell adhesion. The expression of full-length CD105 promoted cell adhesion to the ECM and was sufficient to prevent infection-induced detachment. The CD105-mediated increase in cell adhesion was dependent on the presence and function of integrin β1. CD105 expression did not elevate cellular integrin levels but caused a dramatic increase in the ECM-binding capacity of the cells, suggesting that CD105 affects integrin activity. The exploitation of CEACAMs to trigger CD105 expression and to counteract infection-induced cell detachment represents an intriguing adaptation of pathogens that are specialized to colonize the human mucosa.
Collapse
Affiliation(s)
- Petra Muenzner
- Zentrum für Infektionsforschung, Universität Würzburg, 97070 Würzburg, Germany
| | | | | | | |
Collapse
|
50
|
Pantelic M, Kim YJ, Bolland S, Chen I, Shively J, Chen T. Neisseria gonorrhoeae kills carcinoembryonic antigen-related cellular adhesion molecule 1 (CD66a)-expressing human B cells and inhibits antibody production. Infect Immun 2005; 73:4171-9. [PMID: 15972507 PMCID: PMC1168567 DOI: 10.1128/iai.73.7.4171-4179.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2004] [Revised: 11/15/2004] [Accepted: 01/19/2005] [Indexed: 01/10/2023] Open
Abstract
Neisseria gonorrhoeae cells (gonococci [GC]), the etiological agents for gonorrhea, can cause repeated infections. During and after gonococcal infection, local and systemic antigonococcal antibody levels are low. These clinical data indicate the possibility that GC may suppress immune responses during infection. Carcinoembryonic antigen-related cellular adhesion molecule 1 (CEACAM1 or CD66a), a receptor for GC opacity (Opa) proteins, was shown to mediate inhibitory signals. In the present study, human B cells were activated by interleukin-2 to express CEACAM1 and then stimulated to secrete antibodies and simultaneously coincubated with Opa- and OpaI GC of strain MS11. Our results show that this OpaI GC has the ability to inhibit antibody production. The interaction of GC and CEACAM1 with human peripheral B cells also results in induction of cell death. The same findings were observed in DT40 B cells. This CEACAM1-promoted cell death pathway does not involve the inhibitory signals or the tyrosine phosphatases SHP-1 and SHP-2 but depends on Bruton's tyrosine kinase in DT40 cells. Our results suggest that Neisseria gonorrhoeae possesses the ability to suppress antibody production by killing CEACAM1-expressing B cells.
Collapse
Affiliation(s)
- Milica Pantelic
- Department of Microbiology and Immunology, Division of Infectious Diseases, Walther Oncology Center, Indiana University School of Medicine, MS415E, 635 Barnhill Dr., Indianapolis, Indiana 46202-5120, USA
| | | | | | | | | | | |
Collapse
|