1
|
Balling M, Afzal S, Varbo A, Nordestgaard BG, Langsted A. Remnant Cholesterol: Quantification, Concentrations by Sex and Age, and Risk of Ischemic Heart Disease. Clin Chem 2024:hvae217. [PMID: 39723642 DOI: 10.1093/clinchem/hvae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Observational and genetic causal studies have shown an association between high concentrations of remnant cholesterol and increased risk of ischemic heart disease. However, findings from randomized intervention trials that reduced plasma triglycerides, a surrogate marker of remnant cholesterol, have been conflicting. The exact mechanisms by which remnant cholesterol contributes to atherosclerosis and, ultimately, ischemic heart disease remain incompletely understood. Additionally, insight on sex and age differences and the importance of measurement differences of remnant cholesterol in plasma concentrations and risk of ischemic heart disease are sparse. CONTENT This review covers current knowledge regarding remnant cholesterol and its role in ischemic heart disease, with particular attention to measurement and sex- and age-specific differences. SUMMARY Findings from observational, genetic, and mechanistic studies support the notion that higher remnant cholesterol may be an important cause of ischemic heart disease in both women and men. Concentrations of remnant cholesterol vary by age, with a sharp increase at early adulthood for men and around menopause for women. Remnant cholesterol can be calculated from a standard lipid profile and in addition measured directly using manual ultracentrifugation, automated assays, and nuclear magnetic resonance spectroscopy. Irrespective of the method used to assess plasma concentrations, high concentrations of remnant cholesterol are consistently associated with increased risk of myocardial infarction and ischemic heart disease in observational and genetic causal studies; cholesterol rather than triglycerides in remnants drive this risk. Importantly, results from ongoing randomized clinical trials aiming specifically at lowering remnant cholesterol and ischemic heart disease are eagerly awaited.
Collapse
Affiliation(s)
- Mie Balling
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shoaib Afzal
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anette Varbo
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Wierzbicki AS. Advances in the pharmacological management of hyperlipidemia through the use of combination therapies. Expert Opin Pharmacother 2024:1-9. [PMID: 39709627 DOI: 10.1080/14656566.2024.2444986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/02/2024] [Accepted: 12/17/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Lipid-lowering therapies are well established for the treatment of cardiovascular disease (CVD). Historically monotherapy studies have been performed, but the introduction of statins has led to these drugs being recognized as baseline therapies and to the investigation of combination therapy of both older and newer medications with them. AREAS COVERED Surrogate marker studies have shown additive effects on LDL-C, triglycerides and HDL-C of combination therapies with statins and these have extended to lipoprotein (a). Imaging studies have often shown benefits paralleling lipid studies. However, outcome studies have failed to show added benefits with niacin or fibrates while confirming the benefits of ezetimibe, bempedoic acid and proprotein convertase subtilisin kexin-9 (PCSK-9) inhibitors and icosapent ethyl. EXPERT OPINION Combination therapy for LDL-C in dual combinations is well validated. Data for intervention on triglycerides is limited to icosapent ethyl, but this may exert effects independent of lipids. New drugs targeting triglycerides through apolipoprotein C3 and angiopoietin-like peptides are in development. Studies on combination therapy raising HDL-C have generally disappointed, though cholesterol ester transfer protein (CETP) inhibition remains a target. Lipoprotein (a) is recognized as a CVD risk factor and effective therapies are in development but results on CVD events are lacking.
Collapse
Affiliation(s)
- Anthony S Wierzbicki
- Department of Metabolic Medicine/Chemical Pathology Guy's, St Thomas' Hospitals, London, UK
| |
Collapse
|
3
|
Zhang W, Gan D, Huo S, Chen P. Unraveling the discrepancies between REDUCE-IT and STRENGTH trials with omega-3 fatty acids: new analytical approaches. Front Nutr 2024; 11:1490953. [PMID: 39758310 PMCID: PMC11697285 DOI: 10.3389/fnut.2024.1490953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Two large-scale, randomized, double-blind, placebo-controlled trials-REDUCE-IT and STRENGTH-have garnered significant attention in cardiovascular medicine. Both trials aimed to evaluate the effects of prolonged administration of nutritional lipids, specifically omega-3 fatty acids, on major adverse cardiovascular events (MACEs) in high-risk patients undergoing statin therapy. REDUCE-IT used eicosapentaenoic acid (EPA) ethyl ester with mineral oil as a control, while STRENGTH utilized a carboxylic acid formulation of both EPA and docosahexaenoic acid (DHA) with corn oil as a control. Notably, REDUCE-IT demonstrated a reduction in MACE risk with EPA, whereas STRENGTH showed no such benefit with the combination of EPA and DHA. Despite extensive and insightful discussions following the publication of these trials, the underlying reasons for this discrepancy remain elusive. We posit that further investigation into resting heart rate (RHR), heart rate variability (HRV), and ethnic subgroup data-collected but not fully explored-is critical to unraveling the divergent outcomes of the REDUCE-IT and STRENGTH trials. These additional analyses could provide pivotal insights into the mechanisms driving the differential effects of omega-3 fatty acids in high-risk cardiovascular patients. Given that previous discussions have not fully addressed these potential variables, exploring them may illuminate unexplored pathways and offer a deeper understanding of the mechanistic and clinical roles of omega-3 s in cardiovascular health. We hypothesize that by delving into these under-analyzed factors, we can not only clarify the discrepancies between the trials but also advance our broader understanding of cardiovascular nutrition and medicine.
Collapse
Affiliation(s)
- Weiguo Zhang
- Las Colinas Institutes, Irving, TX, United States
| | - Dan Gan
- R&D, Sirio Life Technology Co., Ltd, Shanghai, China
| | - Shaofeng Huo
- R&D, Sirio Life Technology Co., Ltd, Shanghai, China
| | - Peng Chen
- R&D, Sirio Pharma Co., Ltd, Shantou, Guangdong, China
| |
Collapse
|
4
|
Wadström BN, Pedersen KM, Wulff AB, Nordestgaard BG. One in Five Atherosclerotic Cardiovascular Disease Events in Individuals With Diabetes Attributed to Elevated Remnant Cholesterol. Diabetes Metab Res Rev 2024; 40:e70005. [PMID: 39550770 DOI: 10.1002/dmrr.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/09/2024] [Accepted: 09/27/2024] [Indexed: 11/19/2024]
Abstract
AIMS Elevated remnant cholesterol (= the cholesterol carried in triglyceride-rich lipoproteins) is a causal risk factor for atherosclerotic cardiovascular disease (ASCVD) and is common in individuals with diabetes. We tested the hypothesis that ASCVD in individuals with diabetes can be partly attributed to elevated remnant cholesterol. MATERIALS AND METHODS We included 3806 individuals with diabetes identified among 107,243 individuals from the Copenhagen General Population Study and used multivariable adjusted Poisson regression to estimate the fraction of ASCVD attributable to elevated remnant cholesterol. Elevated remnant cholesterol was defined as levels higher than those observed in individuals with non-high-density lipoprotein (non-HDL) cholesterol < 2.6 mmol/L (100 mg/dL), the European guideline goal. Results were replicated in the UK Biobank. RESULTS During 15 years of follow-up, 498 patients were diagnosed with ASCVD, 172 with peripheral artery disease, 185 with myocardial infarction and 195 with ischaemic stroke. In individuals with non-HDL cholesterol < 2.6 mmol/L (100 mg/dL) and in all individuals with diabetes, median remnant cholesterol levels were 0.5 mmol/L (20 mg/dL) and 0.8 mmol/L (31 mg/dL). The fraction of events attributable to elevated remnant cholesterol was 19% (95% confidence interval: 10%-28%) for ASCVD, 21% (5%-37%) for peripheral artery disease, 24% (10%-37%) for myocardial infarction and 17% (1%-31%) for ischaemic stroke; in the UK Biobank, corresponding values were 16% (9%-22%), 25% (12%-36%), 17% (8%-25%) and 7% (0%-19%), respectively. CONCLUSIONS One in five ASCVD events in individuals with diabetes can be attributed to elevated remnant cholesterol. It remains to be determined in clinical trials if remnant cholesterol-lowering therapy may prevent ASCVD.
Collapse
Affiliation(s)
- Benjamin N Wadström
- Department of Clinical Biochemistry, Copenhagen University Hospital─Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital─Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper M Pedersen
- Department of Clinical Biochemistry, Copenhagen University Hospital─Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital─Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anders B Wulff
- Department of Clinical Biochemistry, Copenhagen University Hospital─Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital─Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital─Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital─Herlev and Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Doi T, Langsted A, Nordestgaard BG. Remnant cholesterol, LDL cholesterol, and apoB absolute mass changes explain results of the PROMINENT trial. Atherosclerosis 2024; 393:117556. [PMID: 38678642 DOI: 10.1016/j.atherosclerosis.2024.117556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND AND AIMS The PROMINENT trial, a cardiovascular outcome trial of the triglyceride- and remnant cholesterol-lowering agent pemafibrate, has shown neutral results despite reduction in plasma triglycerides and remnant cholesterol. We tested the hypothesis that absolute mass changes in remnant cholesterol, LDL cholesterol, and apolipoprotein B explain the results of the PROMINENT trial. METHODS Among 108,431 individuals from the Copenhagen General Population Study (CGPS), those who met the key inclusion criteria of the PROMINENT trial were analyzed to mimic the trial design. Endpoint atherosclerotic cardiovascular disease (ASCVD) was cardiovascular death, myocardial infarction, ischemic stroke, and coronary revascularization as defined in PROMINENT. RESULTS In the PROMINENT trial, treatment with pemafibrate resulted in -7 mg/dL (-0.18 mmol/L; -18 %) change in remnant cholesterol, +10 mg/dL (+0.26 mmol/L; +12 %) LDL cholesterol, and +5 mg/dL (+0.05 g/L; +5 %) apolipoprotein B. In the CGPS mimicking PROMINENT, the estimated hazard ratios for ASCVD were 0.97 (95 % confidence interval: 0.94-0.99) for a -7 mg/dL (-0.18 mmol/L) change in remnant cholesterol, 1.04 (1.01-1.07) for a +10 mg/dL (+0.26 mmol/L) change in LDL cholesterol, and 1.02 (1.01-1.03) for a +5 mg/dL (+0.05 g/L) change in apolipoprotein B. When combining absolute changes in remnant cholesterol, LDL cholesterol, and apolipoprotein B, the estimated hazard ratio for ASCVD was 1.05 (0.96-1.14) in the CGPS mimicking PROMINENT compared to 1.03 (0.91-1.15) in the PROMINENT trial. CONCLUSIONS Absolute mass changes in remnant cholesterol, LDL cholesterol, and apolipoprotein B can explain results of the PROMINENT trial. The 3 mg/dL (0.08 mmol/L) higher total atherogenic cholesterol together with 5 mg/dL (0.05 g/L) higher apolipoprotein B seem to explain the trend toward more ASCVD in the pemafibrate arm.
Collapse
Affiliation(s)
- Takahito Doi
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; The Copenhagen General Population Study, Copenhagen University Hospital - Herlev and Gentofte, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
6
|
Doi T, Langsted A, Nordestgaard BG. Mass changes in remnant cholesterol and LDL cholesterol explain part of the results of gemfibrozil and non-gemfibrozil fibrate trials. J Intern Med 2024; 295:707-710. [PMID: 38343109 DOI: 10.1111/joim.13771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Affiliation(s)
- Takahito Doi
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte, Herlev, Denmark
- Faculty of Health and Medical Sciences, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Nicholls SJ, Nelson AJ. New targets and mechanisms of action for lipid-lowering and anti-inflammatory therapies in atherosclerosis: where does the field stand? Expert Opin Ther Targets 2024; 28:375-384. [PMID: 38815057 DOI: 10.1080/14728222.2024.2362644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/29/2024] [Indexed: 06/01/2024]
Abstract
INTRODUCTION Atherosclerotic cardiovascular disease remains a leading cause of morbidity and mortality worldwide, despite widespread use of statins. There is a need to develop additional therapeutic strategies that will complement statins to achieve more effective reductions in cardiovascular risk. AREAS COVERED This review provides a comprehensive summary of current areas of therapeutic development targeting both lipid and inflammatory factors implicated in the pathogenesis of atherosclerosis. In addition to develop of novel approaches that will produce more effective lowering of low-density lipoprotein cholesterol, clinical trials are currently evaluating the potential to target other atherogenic lipid parameters such as triglyceride-rich lipoproteins and Lp(a), in addition to promoting the biological properties of high-density lipoproteins. Targeting inflammation within the vascular wall has emerged as a new frontier in cardiovascular prevention, with early evidence that use of anti-inflammatory agents have the potential to reduce cardiovascular risk. EXPERT OPINION Clinical practice has an increasing array of therapeutic tools to achieve more effective lowering of low-density lipoprotein cholesterol for high-risk patients. In addition, clinical trials have the potential to deliver a range of additional agents to the clinic, that target alternative lipid and inflammatory mediators. This will permit the potential to personalize cardiovascular prevention.
Collapse
Affiliation(s)
| | - Adam J Nelson
- Victorian Heart Institute, Monash University, Melbourne, Australia
| |
Collapse
|
8
|
Hall WL. Long chain n-3 polyunsaturated fatty acid intake across the life span for cardiovascular disease prevention in women. Proc Nutr Soc 2024:1-12. [PMID: 38444046 DOI: 10.1017/s0029665124000181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a major health concern for women. Historically there has been a misconception that men are at greater risk because CVD tends to occur earlier in life compared to women. Clinical guidelines for prevention of heart disease are currently the same for both sexes, but accumulating evidence demonstrates that risk profiles diverge. In fact, several CVD risk factors confer an even greater risk in women relative to men, including high blood pressure, obesity, diabetes and raised triglycerides. Furthermore, many female-specific CVD risk factors exist, including early menarche, pregnancy complications, polycystic ovary syndrome, reproductive hormonal treatments and menopause. Little is known about how diet interacts with CVD risk factors at various stages of a woman’s life. Long chain (LC) n-3 polyunsaturated fatty acid (PUFA) intakes are a key dietary factor that may impact risk of CVD throughout the life course differentially in men and women. Oestrogen enhances conversion of the plant n-3 PUFA, alpha-linolenic acid, to LCn-3 PUFA. Increasing the frequency of oily fish consumption or LCn-3 PUFA supplementation may be important for reducing coronary risk during the menopausal transition, during which time oestrogen levels decline and the increase in CVD risk factors is accelerated. Women are under-represented in the evidence base for CVD prevention following LC n-3 PUFA supplementation. Therefore it is not clear whether there are sex differences in response to treatment. Furthermore, there is a lack of evidence on optimal intakes of LC n-3 PUFA across the lifespan for CVD prevention in women.
Collapse
Affiliation(s)
- Wendy Louise Hall
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
9
|
Elías-López D, Doi T, Nordestgaard BG, Kobylecki CJ. Remnant cholesterol and low-grade inflammation jointly in atherosclerotic cardiovascular disease: implications for clinical trials. Curr Opin Clin Nutr Metab Care 2024; 27:125-135. [PMID: 38320159 DOI: 10.1097/mco.0000000000000999] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
PURPOSE OF REVIEW Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of death despite the development of effective treatments. Recently, elevated remnant cholesterol and low-grade inflammation have emerged as factors explaining part of the residual ASCVD risk. Interestingly, the coexistence of both high remnant cholesterol and low-grade inflammation can further increase the risk of ASCVD. The aim of this review is to describe the role of elevated remnant cholesterol and low-grade inflammation, separately and combined, in ASCVD. RECENT FINDINGS Results from recently published studies, including observational and genetic Mendelian randomization studies, support a causal relationship between elevated remnant cholesterol and low-grade inflammation on risk of ASCVD in both primary and secondary prevention settings. In addition, current evidence from observational studies suggests that the coexistence of elevated remnant cholesterol and low-grade inflammation further increases the risk of ASCVD. SUMMARY Recent observational studies suggest that high remnant cholesterol combined with low-grade inflammation may confer a particular high risk for ASCVD. Attention on the dual threat from high remnant cholesterol and low-grade inflammation is necessary, and further research in this field is warranted. The effect of remnant cholesterol-lowering drugs and anti-inflammatory drugs on ASCVD risk alone and combined remains to be elucidated. VIDEO ABSTRACT http://links.lww.com/COCN/A20.
Collapse
Affiliation(s)
- Daniel Elías-López
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark
- Department of Endocrinology and Metabolism and Research Center of Metabolic Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, México City, México
| | - Takahito Doi
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla J Kobylecki
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Herlev, Denmark
| |
Collapse
|
10
|
Gaba P, Bhatt DL, Boden WE. Icosapent ethyl for hypertriglyceridaemia and atherosclerosis: greater RESPECT for increased therapeutic use. Eur Heart J 2024; 45:439-442. [PMID: 37889071 PMCID: PMC10849332 DOI: 10.1093/eurheartj/ehad668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Affiliation(s)
- Prakriti Gaba
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Deepak L Bhatt
- Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy Place, Box 1030, New York, NY 10029, USA
| | - William E Boden
- Division of Cardiovascular Medicine, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Ishida T. Are Omega-3 Fatty Acids A Magic Potion? J Atheroscler Thromb 2024; 31:117-118. [PMID: 38030237 PMCID: PMC10857840 DOI: 10.5551/jat.ed246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Affiliation(s)
- Tatsuro Ishida
- Division of Nursing Practice, Kobe University Graduate School of Health Sciences, Kobe, Japan
- Division of Cardiovascular Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
12
|
Egalini F, Rossi M, Massussi M, Gaggero G, Beccuti G, Benso A, Piepoli MF, Broglio F. Eicosapentaenoic Acid: between Cardiovascular Benefits and the Risk of Atrial Fibrillation. Endocr Metab Immune Disord Drug Targets 2024; 24:651-663. [PMID: 38083891 PMCID: PMC11275313 DOI: 10.2174/0118715303280825231122153024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/31/2024]
Abstract
In recent years, scientific research has increasingly focused on the cardiovascular benefits of omega-3 polyunsaturated fatty acids (n-3 PUFAs) supplements. The most promising results emerged from the new trials on a high-dose eicosapentaenoic acid (EPA)-only approach, instead of the previously prescribed therapy with EPA + docosahexaenoic acid (DHA). The evidence of the reduction of cardiovascular events in patients at high cardiovascular risk with EPA is intriguing. However, physicians have expressed concern about the potential high risk of atrial fibrillation (AF) occurrence due to such an approach. This study aims to investigate the current evidence on the cardiovascular benefits of EPA and its association with atrial arrhythmogenesis. Current guidelines consider EPA (as IPE) treatment for selected patients but with no specific indication regarding AF risk evaluation. We propose a flowchart that could be a starting point for the future development of an algorithm to help clinicians to prescribe EPA safely and effectively, especially in patients at high risk of incipient AF.
Collapse
Affiliation(s)
- Filippo Egalini
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Mattia Rossi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Mauro Massussi
- Cardiac Catheterization Laboratory and Cardiology, ASST Spedali Civili di Brescia, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| | - Giulia Gaggero
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Guglielmo Beccuti
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Andrea Benso
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| | - Massimo F Piepoli
- Clinical Cardiology, IRCCS Policlinico San Donato, Piazza Malan, San Donato Milanese, 20097 Milan, Italy
- Department of Biomedical Science for the Health, University of Milan, Via Festa del Perdono, 7, 20122, Milan, Italy
| | - Fabio Broglio
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Corso Dogliotti 14, Turin, 10126, Italy
| |
Collapse
|
13
|
Morton JI, Liew D, Nicholls SJ, Ademi Z. Should we continue to subsidise therapeutics with uncertain efficacy? Health economic implications for icosapent ethyl. Eur J Prev Cardiol 2023; 30:1935-1938. [PMID: 36125211 DOI: 10.1093/eurjpc/zwac212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/01/2022] [Accepted: 09/13/2022] [Indexed: 11/14/2022]
Affiliation(s)
- Jedidiah I Morton
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- School of Public Health and Preventive Medicine, Monash University, Australia
- Baker Heart and Diabetes Institute, Australia
| | - Danny Liew
- Adelaide Medical School, University of Adelaide, Australia
| | | | - Zanfina Ademi
- Centre for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
14
|
Doi T, Langsted A, Nordestgaard BG. Lipoproteins, Cholesterol, and Atherosclerotic Cardiovascular Disease in East Asians and Europeans. J Atheroscler Thromb 2023; 30:1525-1546. [PMID: 37704428 PMCID: PMC10627775 DOI: 10.5551/jat.rv22013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
One fifth of the world population live in East Asia comprising Japan, Korea, and China where ischemic heart disease, a major component of atherosclerotic cardiovascular disease (ASCVD), is the second most frequent cause of death. Each of low-density lipoproteins (LDL), remnant lipoproteins, and lipoprotein(a), summarized as non-high-density lipoproteins (non-HDL) or apolipoprotein B (apoB) containing lipoproteins, causes ASCVD. However, a significant proportion of the evidence on lipoproteins and lipoprotein cholesterol with risk of ASCVD came from White people mainly living in Europe and North America and not from people living in East Asia or of East Asian descent. With a unique biological, geohistorical, and social background in this world region, East Asians have distinctive characteristics that might have potential impact on the association of lipoproteins and lipoprotein cholesterol with risk of ASCVD. Considering the movement across national borders in the World, understanding of lipoprotein and lipoprotein cholesterol evidence on ASCVD in East Asia is important for both East Asian and non-East Asian populations wherever they live in the World.In this review, we introduce the biological features of lipoproteins and lipoprotein cholesterol and the evidence for their association with risk of ASCVD in East Asian and European populations. We also provide an overview of guideline recommendations for prevention of ASCVD in these two different world regions. Finally, specific preventive strategies and future perspectives are touched upon.
Collapse
Affiliation(s)
- Takahito Doi
- Department of Clinical Biochemistry, Copenhagen University Hospital . Herlev Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital . Herlev Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Copenhagen University Hospital . Herlev Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Børge G. Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital . Herlev Gentofte, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital . Herlev Gentofte, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Kelsey MD, Pagidipati NJ. Should We "RESPECT EPA" More Now? EPA and DHA for Cardiovascular Risk Reduction. Curr Cardiol Rep 2023; 25:1601-1609. [PMID: 37812346 DOI: 10.1007/s11886-023-01972-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/24/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW There has been much debate surrounding the use of omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), for cardiovascular (CV) risk reduction. RECENT FINDINGS Recent trials of EPA and DHA have offered conflicting evidence. Some demonstrate reduction in CV risk using EPA alone in select populations. Others have demonstrated no benefit, with potential for side effects, such as new-onset atrial fibrillation. Both EPA and DHA have favorable impact on lipids and inflammation, suggesting some biological plausibility for CV risk reduction. However, clinical trials of these agents have produced mixed results. Based on available evidence, EPA may work better for CV risk than DHA and EPA combined. The benefit of EPA seems to be dose dependent, though higher doses may have more side effects. Further research is needed to define the role of EPA and DHA in the landscape of CV risk reduction.
Collapse
Affiliation(s)
- Michelle D Kelsey
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA.
- Duke Clinical Research Institute, 300 W Morgan St, Durham, NC, 27710, USA.
| | - Neha J Pagidipati
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, 300 W Morgan St, Durham, NC, 27710, USA
| |
Collapse
|
16
|
Wadström BN, Wulff AB, Pedersen KM, Nordestgaard BG. Do Triglyceride-Rich Lipoproteins Equal Low-Density Lipoproteins in Risk of ASCVD? Curr Atheroscler Rep 2023; 25:795-803. [PMID: 37768410 DOI: 10.1007/s11883-023-01153-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW Recent large clinical trials have failed to show that triglyceride-rich lipoprotein-lowering therapies decrease the risk of atherosclerotic cardiovascular disease (ASCVD). In this review, we reconcile these findings with evidence showing that elevated levels of triglyceride-rich lipoproteins and the cholesterol they contain, remnant cholesterol, cause ASCVD alongside low-density lipoprotein (LDL) cholesterol. RECENT FINDINGS Results from observational epidemiology, genetic epidemiology, and randomized controlled trials indicate that lowering of remnant cholesterol and LDL cholesterol decrease ASCVD risk by a similar magnitude per 1 mmol/L (39 mg/dL) lower non-high-density lipoprotein cholesterol (remnant cholesterol+LDL cholesterol). Indeed, recent guidelines for ASCVD prevention recommend the use of non-high-density lipoprotein cholesterol instead of LDL cholesterol. Current consensus is moving towards recognizing remnant cholesterol and LDL cholesterols as equals per 1 mmol/L (39 mg/dL) higher levels in the risk assessment of ASCVD; hence, triglyceride-rich lipoprotein-lowering therapies should also lower levels of non-HDL cholesterol to reduce ASCVD risk.
Collapse
Affiliation(s)
- Benjamin N Wadström
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark
| | - Anders B Wulff
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark
| | - Kasper M Pedersen
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, N5, DK-2730, Herlev, Denmark.
- The Copenhagen General Population Study, Copenhagen University Hospital - Herlev Gentofte, Borgmester Ib Juuls Vej 73, entrance 7, 4th floor, M3, DK-2730, Herlev, Denmark.
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3b 33.5, DK-2200, Copenhagen, Denmark.
| |
Collapse
|
17
|
von Schacky C, Kuipers RS, Pijl H, Muskiet FAJ, Grobbee DE. Omega-3 fatty acids in heart disease-why accurately measured levels matter. Neth Heart J 2023; 31:415-423. [PMID: 36795219 PMCID: PMC10602979 DOI: 10.1007/s12471-023-01759-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 02/17/2023] Open
Abstract
Current guidelines barely support marine omega‑3 fatty acids eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in cardiology, mainly because results of large trials were equivocal. Most large trials have tested EPA alone or EPA + DHA combined as a drug, thereby disregarding the relevance of their blood levels. These levels are frequently assessed with the Omega‑3 Index (percentage of EPA + DHA in erythrocytes), which is determined using a specific standardised analytical procedure. EPA and DHA are present in every human being at unpredictable levels (even in the absence of intake), and their bioavailability is complex. Both facts need to be incorporated into trial design and should direct clinical use of EPA and DHA. An Omega‑3 Index in the target range of 8-11% is associated with lower total mortality, fewer major adverse cardiac and other cardiovascular events. Moreover, functions of organs such as the brain benefit from an Omega‑3 Index in the target range, while untoward effects, such as bleeding or atrial fibrillation, are minimised. In pertinent intervention trials, several organ functions were improved, with improvements correlating with the Omega‑3 Index. Thus, the Omega‑3 Index is relevant in trial design and clinical medicine, which calls for a widely available standardised analytical procedure and a discussion on possible reimbursement of this test.
Collapse
Affiliation(s)
| | - R S Kuipers
- Heart Centre, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
- Department of Cardiology, Dijklander Hospital, Purmerend/Hoorn, The Netherlands
| | - H Pijl
- Department of Internal Medicine, Leiden University Medical Centre, Leiden, The Netherlands
| | - F A J Muskiet
- Department of Laboratory Medicine, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - D E Grobbee
- Julius Global Health, Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| |
Collapse
|
18
|
Caffrey C, Leamy A, O’Sullivan E, Zabetakis I, Lordan R, Nasopoulou C. Cardiovascular Diseases and Marine Oils: A Focus on Omega-3 Polyunsaturated Fatty Acids and Polar Lipids. Mar Drugs 2023; 21:549. [PMID: 37999373 PMCID: PMC10672651 DOI: 10.3390/md21110549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/11/2023] [Accepted: 10/21/2023] [Indexed: 11/25/2023] Open
Abstract
Cardiovascular diseases (CVD) remain the leading cause of death across the globe, hence, establishing strategies to counteract CVD are imperative to reduce mortality and the burden on health systems. Dietary modification is an effective primary prevention strategy against CVD. Research regarding dietary supplementation has become increasingly popular. This review focuses on the current in vivo, in vitro, and epidemiological studies associated with that of omega-3 polyunsaturated fatty acids (n-3 PUFAs) and polar lipids (PLs) and how they play a role against CVD. Furthermore, this review focuses on the results of several major clinical trials examining n-3 PUFAs regarding both primary and secondary prevention of CVD. Notably, we place a lens on the REDUCE-IT and STRENGTH trials. Finally, supplementation of PLs has recently been suggested as a potential alternative avenue for the reduction of CVD incidence versus neutral forms of n-3 PUFAs. However, the clinical evidence for this argument is currently rather limited. Therefore, we draw on the current literature to suggest future clinical trials for PL supplementation. We conclude that despite conflicting evidence, future human trials must be completed to confirm whether PL supplementation may be more effective than n-3 PUFA supplementation to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Cliodhna Caffrey
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Anna Leamy
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Ellen O’Sullivan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.C.); (A.L.); (E.O.); (I.Z.)
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Constantina Nasopoulou
- Laboratory of Food Chemistry—Technology and Quality of Food of Animal Origin, Department of Food Science and Nutrition, University of the Aegean, 814 00 Lemnos, Greece
| |
Collapse
|
19
|
Roeters van Lennep JE, Tokgözoğlu LS, Badimon L, Dumanski SM, Gulati M, Hess CN, Holven KB, Kavousi M, Kayıkçıoğlu M, Lutgens E, Michos ED, Prescott E, Stock JK, Tybjaerg-Hansen A, Wermer MJH, Benn M. Women, lipids, and atherosclerotic cardiovascular disease: a call to action from the European Atherosclerosis Society. Eur Heart J 2023; 44:4157-4173. [PMID: 37611089 PMCID: PMC10576616 DOI: 10.1093/eurheartj/ehad472] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women and men globally, with most due to atherosclerotic cardiovascular disease (ASCVD). Despite progress during the last 30 years, ASCVD mortality is now increasing, with the fastest relative increase in middle-aged women. Missed or delayed diagnosis and undertreatment do not fully explain this burden of disease. Sex-specific factors, such as hypertensive disorders of pregnancy, premature menopause (especially primary ovarian insufficiency), and polycystic ovary syndrome are also relevant, with good evidence that these are associated with greater cardiovascular risk. This position statement from the European Atherosclerosis Society focuses on these factors, as well as sex-specific effects on lipids, including lipoprotein(a), over the life course in women which impact ASCVD risk. Women are also disproportionately impacted (in relative terms) by diabetes, chronic kidney disease, and auto-immune inflammatory disease. All these effects are compounded by sociocultural components related to gender. This panel stresses the need to identify and treat modifiable cardiovascular risk factors earlier in women, especially for those at risk due to sex-specific conditions, to reduce the unacceptably high burden of ASCVD in women.
Collapse
Affiliation(s)
- Jeanine E Roeters van Lennep
- Department of Internal Medicine, Cardiovascular Institute, Erasmus Medical Center, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands
| | - Lale S Tokgözoğlu
- Department of Cardiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Lina Badimon
- Cardiovascular Science Program-ICCC, IR-Hospital de la Santa Creu I Santa Pau, Ciber CV, Autonomous University of Barcelona, Barcelona, Spain
| | - Sandra M Dumanski
- Department of Medicine, Cumming School of Medicine, University of Calgary, Libin Cardiovascular Institute, and O’Brien Institute for Public Health, Calgary, Canada
| | - Martha Gulati
- Barbra Streisand Women’s Heart Center, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, USA
| | - Connie N Hess
- Division of Cardiology, Department of Medicine, University of Colorado School of Medicine, Aurora and CPC Clinical Research Aurora, CO, USA
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, and National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Maryam Kavousi
- Department of Epidemiology, Erasmus Medical Center, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Meral Kayıkçıoğlu
- Department of Cardiology, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Esther Lutgens
- Cardiovascular Medicine and Immunology, Mayo Clinic, Rochester, MN, USA
| | - Erin D Michos
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eva Prescott
- Department of Cardiology, Bispebjerg University Hospital, Bispebjerg Bakke 23, 2400 Copenhagen, Denmark
| | - Jane K Stock
- European Atherosclerosis Society, Mässans Gata 10, SE-412 51 Gothenburg, Sweden
| | - Anne Tybjaerg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte Hospital, and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marieke J H Wermer
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Neurology at University Medical Center Groningen, Groningen, The Netherlands
| | - Marianne Benn
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, The Copenhagen General Population Study, Copenhagen University Hospital-Herlev and Gentofte Hospital, and Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
20
|
Tybjærg-Hansen A, Nordestgaard BG, Christoffersen M. Triglyceride-rich remnant lipoproteins are more atherogenic than LDL per particle: is this important? Eur Heart J 2023; 44:4196-4198. [PMID: 37403539 DOI: 10.1093/eurheartj/ehad419] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/06/2023] Open
Affiliation(s)
- Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital-Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Mette Christoffersen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
21
|
Toth PP, Ferrières J, Waters M, Mortensen MB, Lan NSR, Wong ND. Global eligibility and cost effectiveness of icosapent ethyl in primary and secondary cardiovascular prevention. Front Cardiovasc Med 2023; 10:1220017. [PMID: 37719970 PMCID: PMC10501481 DOI: 10.3389/fcvm.2023.1220017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 08/08/2023] [Indexed: 09/19/2023] Open
Abstract
Icosapent ethyl (IPE) is a purified eicosapentaenoic acid-only omega-3 fatty acid that significantly reduced cardiovascular (CV) events in patients receiving statins with established cardiovascular disease (CVD) and those with diabetes and additional risk factors in the pivotal REDUCE-IT trial. Since the publication of REDUCE-IT, there has been global interest in determining IPE eligibility in different patient populations, the proportion of patients who may benefit from IPE, and cost effectiveness of IPE in primary and secondary prevention settings. The aim of this review is to summarize information from eligibility and cost effectiveness studies of IPE to date. A total of sixteen studies were reviewed, involving 2,068,111 patients in the primary or secondary prevention settings worldwide. Up to forty-five percent of patients were eligible for IPE, depending on the selection criteria used (ie, REDUCE-IT criteria, US Food and Drug Administration label, Health Canada label, practice guidelines) and the population studied. Overall, eight cost-effectiveness studies across the United States, Canada, Germany, Israel, and Australia were included in this review and findings indicated that IPE is particularly cost effective in patients with established CVD.
Collapse
Affiliation(s)
- Peter P. Toth
- CGH Medical Center, Sterling, IL, United States
- Cicarrone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jean Ferrières
- Department of Cardiology, Toulouse Rangueil University Hospital, Toulouse University School of Medicine, Toulouse, France
| | - Max Waters
- Department of Cardiology, University Hospital Limerick, Limerick, Ireland
| | | | - Nick S. R. Lan
- Department of Cardiology, Fiona Stanley Hospital, Murdoch, WA, Australia
- Medical School, The University of Western Australia, Crawley, WA, Australia
| | - Nathan D. Wong
- Division of Cardiology, University of California, Irvine, CA, United States
| |
Collapse
|
22
|
Doi T, Langsted A, Nordestgaard BG. Dual elevated remnant cholesterol and C-reactive protein in myocardial infarction, atherosclerotic cardiovascular disease, and mortality. Atherosclerosis 2023; 379:117141. [PMID: 37217436 DOI: 10.1016/j.atherosclerosis.2023.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Elevated remnant cholesterol and low-grade inflammation each cause atherosclerotic cardiovascular disease (ASCVD); however, it is unknown whether joint elevation of both factors confers the highest risk. We tested the hypothesis that dual elevated remnant cholesterol and low-grade inflammation marked by elevated C-reactive protein is associated with the highest risk of myocardial infarction, ASCVD, and all-cause mortality. METHODS The Copenhagen General Population Study randomly recruited white Danish individuals aged 20-100 years in 2003-2015 and followed them for a median 9.5 years. ASCVD was cardiovascular mortality, myocardial infarction, stroke, and coronary revascularization. RESULTS In 103,221 individuals, we observed 2,454 (2.4%) myocardial infarctions, 5,437 (5.3%) ASCVD events, and 10,521 (10.2%) deaths. The hazard ratios increased with each of stepwise higher remnant cholesterol and stepwise higher C-reactive protein. In individuals with the highest tertile of both remnant cholesterol and C-reactive protein compared to individuals with the lowest tertile of both, the multivariable adjusted hazard ratios were 2.2 (95%CI:1.9-2.7) for myocardial infarction, 1.9 (1.7-2.2) for ASCVD, and 1.4 (1.3-1.5) for all-cause mortality. Corresponding values for only the highest tertile of remnant cholesterol were 1.6 (1.5-1.8), 1.4 (1.3-1.5), and 1.1 (1.0-1.1), and those for only the highest tertile of C-reactive protein were 1.7 (1.5-1.8), 1.6 (1.5-1.7), and 1.3 (1.3-1.4), respectively. There was no statistical evidence for interaction between elevated remnant cholesterol and elevated C-reactive protein on risk of myocardial infarction (p = 0.10), ASCVD (p = 0.40), or all-cause mortality (p = 0.74). CONCLUSIONS Dual elevated remnant cholesterol and C-reactive protein confers the highest risk of myocardial infarction, ASCVD, and all-cause mortality, that is, compared to either of these two factors individually.
Collapse
Affiliation(s)
- Takahito Doi
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Anne Langsted
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark; The Copenhagen General Population Study, Herlev and Gentofte Hospital, Copenhagen University Hospital, Borgmester Ib Juuls Vej 73, 2730, Herlev, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark.
| |
Collapse
|
23
|
Bae JH, Lim H, Lim S. The Potential Cardiometabolic Effects of Long-Chain ω-3 Polyunsaturated Fatty Acids: Recent Updates and Controversies. Adv Nutr 2023; 14:612-628. [PMID: 37031750 PMCID: PMC10334139 DOI: 10.1016/j.advnut.2023.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/09/2023] [Accepted: 03/30/2023] [Indexed: 04/11/2023] Open
Abstract
Various health-related effects of long-chain (LC) ω-3 PUFAs, EPA, and DHA have been suggested. LC ω-3 PUFAs reduce TG concentrations and have anti-inflammatory, immunomodulatory, antiplatelet, and vascular protective effects. Controversially, they might help in restoring glucose homeostasis via the gut microbiota. However, previous studies have not shown the clear benefits of LC ω-3 PUFAs for CVDs. REDUCE-IT and STRENGTH-representative randomized controlled trials (RCTs) that examined whether LC ω-3 PUFAs would prevent major adverse cardiovascular (CV) events (MACE)-showed conflicting results with differences in the types, doses, or comparators of LC ω-3 PUFAs and study populations. Therefore, we performed a meta-analysis using major RCTs to address this inconsistency and assess the clinical and biological effects of LC ω-3 PUFAs. We included RCTs that involved ≥500 participants with ≥1 y follow-up. Of 17 studies involving 143,410 people, LC ω-3 PUFA supplementation showed beneficial effects on CV death (RR: 0.94; 95% CI: 0.88, 0.99; P = 0.029) and fatal or nonfatal MI (RR: 0.83; 95% CI: 0.72, 0.95; P = 0.010). RCTs on EPA alone showed better results for 3-point MACE, CV death, and fatal or nonfatal MI. However, the benefits were not found for fatal or nonfatal stroke, all-cause mortality, and hospitalization for heart failure. Of note, studies of both the EPA/DHA combination and EPA alone showed a significant increase in risk of new-onset atrial fibrillation. Thus, well-designed studies are needed to investigate the underlying mechanisms involved in the distinct effects of EPA compared with DHA on cardiometabolic diseases. This review discusses the potential benefits and safety of LC ω-3 PUFAs from a cardiometabolic perspective focusing on recent updates and controversies.
Collapse
Affiliation(s)
- Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyunjung Lim
- Department of Medical Nutrition, Research Institute of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University, Yongin, Republic of Korea
| | - Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea.
| |
Collapse
|
24
|
El Hussein MT, Sharma A, Parmar K, Shelat K. Pharmacotherapeutics for dyslipidemia management. Nurse Pract 2023; 48:36-47. [PMID: 37227314 DOI: 10.1097/01.npr.0000000000000059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT Effective management of dyslipidemia is of paramount importance to prevent cardiovascular (CV) complications. Using current clinical practice guidelines is recommended to correct lipid levels and prevent further pathologic processes. This article presents an overview of treatment options for patients with dyslipidemia and CV disease, with a special focus on the following drug classes: HMG-CoA reductase inhibitors (also called statins), cholesterol absorption inhibitors (ezetimibe), bile acid sequestrants, fibrates, icosapent ethyl, and PCSK9 inhibitors.
Collapse
|
25
|
Park JK, Bafna S, Forrest IS, Duffy Á, Marquez-Luna C, Petrazzini BO, Vy HM, Jordan DM, Verbanck M, Narula J, Rosenson RS, Rocheleau G, Do R. Phenome-wide Mendelian randomization study of plasma triglyceride levels and 2600 disease traits. eLife 2023; 12:e80560. [PMID: 36988189 PMCID: PMC10079290 DOI: 10.7554/elife.80560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 03/28/2023] [Indexed: 03/30/2023] Open
Abstract
Background Causality between plasma triglyceride (TG) levels and atherosclerotic cardiovascular disease (ASCVD) risk remains controversial despite more than four decades of study and two recent landmark trials, STRENGTH, and REDUCE-IT. Further unclear is the association between TG levels and non-atherosclerotic diseases across organ systems. Methods Here, we conducted a phenome-wide, two-sample Mendelian randomization (MR) analysis using inverse-variance weighted (IVW) regression to systematically infer the causal effects of plasma TG levels on 2600 disease traits in the European ancestry population of UK Biobank. For replication, we externally tested 221 nominally significant associations (p<0.05) in an independent cohort from FinnGen. To account for potential horizontal pleiotropy and the influence of invalid instrumental variables, we performed sensitivity analyses using MR-Egger regression, weighted median estimator, and MR-PRESSO. Finally, we used multivariable MR (MVMR) controlling for correlated lipid fractions to distinguish the independent effect of plasma TG levels. Results Our results identified seven disease traits reaching Bonferroni-corrected significance in both the discovery (p<1.92 × 10-5) and replication analyses (p<2.26 × 10-4), suggesting a causal relationship between plasma TG levels and ASCVDs, including coronary artery disease (OR 1.33, 95% CI 1.24-1.43, p=2.47 × 10-13). We also identified 12 disease traits that were Bonferroni-significant in the discovery or replication analysis and at least nominally significant in the other analysis (p<0.05), identifying plasma TG levels as a novel potential risk factor for nine non-ASCVD diseases, including uterine leiomyoma (OR 1.19, 95% CI 1.10-1.29, p=1.17 × 10-5). Conclusions Taking a phenome-wide, two-sample MR approach, we identified causal associations between plasma TG levels and 19 disease traits across organ systems. Our findings suggest unrealized drug repurposing opportunities or adverse effects related to approved and emerging TG-lowering agents, as well as mechanistic insights for future studies. Funding RD is supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) (R35-GM124836) and the National Heart, Lung, and Blood Institute of the NIH (R01-HL139865 and R01-HL155915).
Collapse
Affiliation(s)
- Joshua K Park
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Medical Scientist Training Program, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Shantanu Bafna
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Iain S Forrest
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Medical Scientist Training Program, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Áine Duffy
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Carla Marquez-Luna
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ben O Petrazzini
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ha My Vy
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Daniel M Jordan
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | | | - Jagat Narula
- Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Cardiovascular Imaging Program, Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Robert S Rosenson
- Department of Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Metabolism and Lipids Unit, Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ghislain Rocheleau
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Ron Do
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount SinaiNew YorkUnited States
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| |
Collapse
|
26
|
Krauss RM, Lu JT, Higgins JJ, Clary CM, Tabibiazar R. VLDL receptor gene therapy for reducing atherogenic lipoproteins. Mol Metab 2023; 69:101685. [PMID: 36739970 PMCID: PMC9950951 DOI: 10.1016/j.molmet.2023.101685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/16/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Over the past 40 years, there has been considerable research into the management and treatment of atherogenic lipid disorders. Although the majority of treatments and management strategies for cardiovascular disease (CVD) center around targeting low-density lipoprotein cholesterol (LDL-C), there is mounting evidence for the residual CVD risk attributed to high triglyceride (TG) and lipoprotein(a) (Lp(a)) levels despite the presence of lowered LDL-C levels. Among the biological mechanisms for clearing TG-rich lipoproteins, the VLDL receptor (VLDLR) plays a key role in the trafficking and metabolism of lipoprotein particles in multiple tissues, but it is not ordinarily expressed in the liver. Since VLDLR is capable of binding and internalizing apoE-containing TG-rich lipoproteins as well as Lp(a), hepatic VLDLR expression has the potential for promoting clearance of these atherogenic particles from the circulation and managing the residual CVD risk not addressed by current lipid lowering therapies. This review provides an overview of VLDLR function and the potential for developing a genetic medicine based on liver-targeted VLDLR gene expression.
Collapse
Affiliation(s)
- Ronald M. Krauss
- University of California, San Francisco, 5700 Martin Luther King, Jr. Way, Oakland CA 94609, USA,Corresponding author.
| | | | | | | | | |
Collapse
|
27
|
Bhat S, Sarkar S, Zaffar D, Dandona P, Kalyani RR. Omega-3 Fatty Acids in Cardiovascular Disease and Diabetes: a Review of Recent Evidence. Curr Cardiol Rep 2023; 25:51-65. [PMID: 36729217 DOI: 10.1007/s11886-022-01831-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW Omega-3 fatty acids (n-3 FA) lower triglycerides, have anti-inflammatory properties, and improve metabolism. Clinical evidence of cardiovascular benefit with omega-3 fatty acids is mixed. We discuss mechanisms providing biological plausibility of benefit of omega-3 fatty acids in cardiovascular risk reduction and review clinical trials investigating the benefits of prescription omega-3 fatty acids in dyslipidemia, atherosclerotic cardiovascular disease (ASCVD), and diabetes. RECENT FINDINGS Although early trials showed no benefit of omega-3 fatty acids in ASCVD, the REDUCE-IT trial noted significant risk reduction in ASCVD events with highly purified EPA (icosapent ethyl) use which has changed the landscape for currently available therapeutic options. However, other large trials like STRENGTH and VITAL, which used different formulations of prescription omega-3 fatty acids, did not note significant cardiovascular risk reduction. Thus the effectiveness of omega-3 fatty acids for cardiovascular disease prevention is an ongoing topic of debate. A relative paucity of studies examining benefits for glycemic outcomes in persons with diabetes exists; however, few studies have suggested lack of benefit to date. Significant residual cardiovascular risk exists for individuals with hypertriglyceridemia. Prescription omega-3 fatty acids are more commonly used for CV risk reduction in these patients. Clinical guideline statements now recommend icosapent ethyl use for selected individuals with hypertriglyceridemia to reduce cardiovascular events given recent evidence from the REDUCE-IT trial. Nonetheless, data from other large scale trials has been mixed, and future research is needed to better understand how different preparations of omega-3 may differ in their cardiovascular and metabolic effects, and the mechanisms for their benefit.
Collapse
Affiliation(s)
- Salman Bhat
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sudipa Sarkar
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Duha Zaffar
- Department of Internal Medicine, University of Maryland Midtown Campus, Baltimore, MD, USA
| | - Paresh Dandona
- Division of Endocrinology, Diabetes and Metabolism, University at Buffalo, Buffalo, NY, USA
| | - Rita R Kalyani
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
28
|
Li JJ, Dou KF, Zhou ZG, Zhao D, Ye P, Zhao JJ, Guo LX. Role of omega-3 fatty acids in the prevention and treatment of cardiovascular Diseases: A consensus statement from the Experts' Committee Of National Society Of Cardiometabolic Medicine. Front Pharmacol 2022; 13:1069992. [PMID: 36578548 PMCID: PMC9791266 DOI: 10.3389/fphar.2022.1069992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Low-density lipoprotein cholesterol (LDL-C) has been considered as the primary target for the prevention and treatment of atherosclerotic cardiovascular disease (ASCVD). However, there are still residual cardiovascular risks in some patients even if LDL-C achieves the target level. Emerging evidence suggestes that elevated triglyceride (TG) level or triglyceride-rich lipoprotein (TRL) cholesterol (TRL-C) is one of the important components of the residual cardiovascular risks. Omega-3 fatty acids have been shown to be one of the effective drugs for reducing TG. However, its efficacy in reducing the risk of ASCVD is inconsistent in large randomized clinical trials. There is lack of consensus among Experts regarding the application of omega-3 fatty acids in cardiovascular diseases including heart failure, arrhythmia, cardiomyopathy, hypertension, and sudden death. Hence, the current consensus will comprehensively and scientifically present the detailed knowledge about the omega-3 fatty acids from a variety of aspects to provide a reference for its management of omega-3 fatty acids application in the Chinese population.
Collapse
Affiliation(s)
- Jian-Jun Li
- Cardiometabolic Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ke-Fei Dou
- Cardiometabolic Center, Fuwai Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhi-Guang Zhou
- Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Dong Zhao
- Department of Epidemiology, Beijing Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Ping Ye
- Department of Cardiology of the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Jia-Jun Zhao
- Endocrine Department, Shandong Provincial Hospital, Jinan, Shandong, China
| | - Li-Xin Guo
- Endocrine Department, Beijing Hospital, Beijing, China
| |
Collapse
|
29
|
Goldberg IJ, Gjini J, Fisher EA. Big Fish or No Fish; Eicosapentaenoic Acid and Cardiovascular Disease. Endocrinol Metab Clin North Am 2022; 51:625-633. [PMID: 35963632 DOI: 10.1016/j.ecl.2022.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benefits of omega 3 fatty acids for cardiovascular and other diseases have been touted for more than 50 years. The one clear clinical benefit of these lipids is the reduction of circulating levels of triglycerides, making them a useful approach for the prevention of pancreatitis in severely hypertriglyceridemic patients. After a series of spectacularly failed clinical trials that were criticized for the choice of subjects and doses of omega 3 fatty acids used, Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT) using a high dose of icosapent ethyl (IPE) reported a reduction in cardiovascular disease (CVD) events. However, this trial has generated controversy due to the use of mineral oil in the control group and the associated side effects of the IPA. This review will focus on the following topics: What are the epidemiologic data suggesting a benefit of omega 3 fatty acids? What might be the mechanisms for these benefits? Why have the clinical trials failed to resolve whether these fatty acids provide benefit? What choices should a clinician consider?
Collapse
Affiliation(s)
- Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, 435 First Avenue, SB 617, New York, NY 10016, USA.
| | - Jana Gjini
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, 435 First Avenue, SB 617, New York, NY 10016, USA
| | - Edward A Fisher
- Division of Cardiology and Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, 435 First Avenue, SB 704, New York, NY 10016, USA
| |
Collapse
|
30
|
Shen Y, Wang XQ, Dai Y, Wang YX, Zhang RY, Lu L, Ding FH, Shen WF. Diabetic dyslipidemia impairs coronary collateral formation: An update. Front Cardiovasc Med 2022; 9:956086. [PMID: 36072863 PMCID: PMC9441638 DOI: 10.3389/fcvm.2022.956086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Coronary collateralization is substantially impaired in patients with type 2 diabetes and occlusive coronary artery disease, which leads to aggravated myocardial ischemia and a more dismal prognosis. In a diabetic setting, altered serum lipid profiles and profound glycoxidative modification of lipoprotein particles induce endothelial dysfunction, blunt endothelial progenitor cell response, and severely hamper growth and maturation of collateral vessels. The impact of dyslipidemia and lipid-lowering treatments on coronary collateral formation has become a topic of heightened interest. In this review, we summarized the association of triglyceride-based integrative indexes, hypercholesterolemia, increased Lp(a) with its glycoxidative modification, as well as quantity and quality abnormalities of high-density lipoprotein with impaired collateral formation. We also analyzed the influence of innovative lipid-modifying strategies on coronary collateral development. Therefore, clinical management of diabetic dyslipidemia should take into account of its effect on coronary collateralization in patients with occlusive coronary artery disease.
Collapse
Affiliation(s)
- Ying Shen
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Qun Wang
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Dai
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Xuan Wang
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Rui Yan Zhang
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Lin Lu
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Hua Ding
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- *Correspondence: Feng Hua Ding,
| | - Wei Feng Shen
- Department of Cardiovascular Medicine, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, China
- Institute of Cardiovascular Disease, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Wei Feng Shen,
| |
Collapse
|
31
|
Ridker PM, Rifai N, MacFadyen J, Glynn RJ, Jiao L, Steg PG, Miller M, Brinton EA, Jacobson TA, Tardif JC, Ballantyne CM, Mason RP, Bhatt DL. Effects of Randomized Treatment With Icosapent Ethyl and a Mineral Oil Comparator on Interleukin-1β, Interleukin-6, C-Reactive Protein, Oxidized Low-Density Lipoprotein Cholesterol, Homocysteine, Lipoprotein(a), and Lipoprotein-Associated Phospholipase A2: A REDUCE-IT Biomarker Substudy. Circulation 2022; 146:372-379. [PMID: 35762321 DOI: 10.1161/circulationaha.122.059410] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND REDUCE-IT (Reduction of Cardiovascular Events With Icosapent Ethyl-Intervention Trial) reported a 25% relative risk reduction in major adverse cardiovascular events with use of icosapent ethyl compared with pharmaceutical grade mineral oil. The mechanisms underlying this benefit remain uncertain. We explored whether treatment allocation in REDUCE-IT might affect a series of biomarkers in pathways known to associate with atherosclerosis risk. METHODS Serum levels of interleukin-1β, interleukin-6, high-sensitivity C-reactive protein, oxidized low-density lipoprotein cholesterol, homocysteine, lipoprotein(a), and lipoprotein-associated phospholipase A2 (Lp-PLA2) were measured at baseline, at 12 months, at 24 months, and at the end-of-study visit among REDUCE-IT participants with triglyceride levels ≥135 mg/dL and <500 mg/dL who were randomly allocated to treatment with either 4 grams daily of icosapent ethyl or mineral oil used as a comparator. RESULTS At baseline, median levels of each biomarker were similar in the 2 treatment groups. The levels of biomarkers associated with atherosclerosis increased over time among those allocated to mineral oil treatment; in this group at 12 months, the median percent increases from baseline were 1.5% for homocysteine, 2.2% for lipoprotein(a), 10.9% for oxidized low-density lipoprotein cholesterol, 16.2% for interleukin-6, 18.5% for lipoprotein-associated phospholipase A2, 21.9% for high-sensitivity C-reactive protein, and 28.9% for interleukin-1β (all P values <0.001), with similar changes at 24 months. In the icosapent ethyl group, there were minimal changes in these biomarkers at 12 and 24 months. As such, at study conclusion, between-group treatment differences largely reflected increases in the mineral oil group with median percent differences of 2.4% for lipoprotein(a), 3.0% for homocysteine, 4.2% for oxidized low-density lipoprotein cholesterol, 19.8% for interleukin-6, 26.2% for Lp-PLA2, 38.5% for high-sensitivity C-reactive protein, and 48.7% for interleukin-1β (all P values ≤0.007). These data are consistent with previous REDUCE-IT results in which the median percent change for low-density lipoprotein cholesterol at 12 months was -1.2% among those allocated to icosapent ethyl and 10.9% among those allocated to the mineral oil comparator. CONCLUSIONS Among participants in REDUCE-IT, allocation to icosapent ethyl had minimal effects on a series of biomarkers associated with atherosclerotic disease, whereas levels increased among those allocated to mineral oil. The effect of these findings on interpretation of the overall risk reductions in clinical events observed within REDUCE-IT is uncertain. REGISTRATION URL: https://www. CLINICALTRIALS gov; Unique identifier: NCT01492361.
Collapse
Affiliation(s)
- Paul M Ridker
- Brigham and Women's Hospital, Boston, MA (P.M.R., J.M., R.J.G., R.P.M., D.L.B.)
| | - Nader Rifai
- Children's Hospital Medical Center, Boston, MA (N.R.)
| | - Jean MacFadyen
- Brigham and Women's Hospital, Boston, MA (P.M.R., J.M., R.J.G., R.P.M., D.L.B.)
| | - Robert J Glynn
- Brigham and Women's Hospital, Boston, MA (P.M.R., J.M., R.J.G., R.P.M., D.L.B.)
| | | | - Ph Gabriel Steg
- Université de Paris, FACT and INSERM-U1148, F75018 and Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, France (P.G.S.)
| | - Michael Miller
- University of Maryland School of Medicine, Baltimore (M.M.)
| | | | | | | | | | - R Preston Mason
- Brigham and Women's Hospital, Boston, MA (P.M.R., J.M., R.J.G., R.P.M., D.L.B.)
| | - Deepak L Bhatt
- Brigham and Women's Hospital, Boston, MA (P.M.R., J.M., R.J.G., R.P.M., D.L.B.)
| |
Collapse
|
32
|
Moon JH, Kim K, Choi SH. Lipoprotein Lipase: Is It a Magic Target for the Treatment of Hypertriglyceridemia. Endocrinol Metab (Seoul) 2022; 37:575-586. [PMID: 36065644 PMCID: PMC9449100 DOI: 10.3803/enm.2022.402] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/07/2022] [Indexed: 11/11/2022] Open
Abstract
High levels of triglycerides (TG) and triglyceride-rich lipoproteins (TGRLs) confer a residual risk of cardiovascular disease after optimal low-density lipoprotein cholesterol (LDL-C)-lowering therapy. Consensus has been made that LDL-C is a non-arguable primary target for lipid lowering treatment, but the optimization of TGRL for reducing the remnant risk of cardiovascular diseases is urged. Omega-3 fatty acids and fibrates are used to reduce TG levels, but many patients still have high TG and TGRL levels combined with low high-density lipoprotein concentration that need to be ideally treated. Lipoprotein lipase (LPL) is a key regulator for TGs that hydrolyzes TGs to glycerol and free fatty acids in lipoprotein particles for lipid storage and consumption in peripheral organs. A deeper understanding of human genetics has enabled the identification of proteins regulating the LPL activity, which include the apolipoproteins and angiopoietin-like families. Novel therapeutic approach such as antisense oligonucleotides and monoclonal antibodies that regulate TGs have been developed in recent decades. In this article, we focus on the biology of LPL and its modulators and review recent clinical application, including genetic studies and clinical trials of novel therapeutics. Optimization of LPL activity to lower TG levels could eventually reduce incident atherosclerotic cardiovascular disease in conjunction with successful LDL-C reduction.
Collapse
Affiliation(s)
- Joon Ho Moon
- Divison of Endocrinology & Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Kyuho Kim
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Sung Hee Choi
- Divison of Endocrinology & Metabolism, Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Divison of Endocrinology & Metabolism, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
- Corresponding author: Sung Hee Choi. Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, 82 Gumi-ro 173beon-gil, Bundang-gu, Seongnam 13620, Korea Tel: +82-31-787-7033, Fax: +82-31-787-4070, E-mail:
| |
Collapse
|
33
|
Neves JS, Newman C, Bostrom JA, Buysschaert M, Newman JD, Medina JL, Goldberg IJ, Bergman M. Management of dyslipidemia and atherosclerotic cardiovascular risk in prediabetes. Diabetes Res Clin Pract 2022; 190:109980. [PMID: 35787415 DOI: 10.1016/j.diabres.2022.109980] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/03/2022]
Abstract
Prediabetes affects at least 1 in 3 adults in the U.S. and 1 in 5 in Europe. Although guidelines advocate aggressive management of lipid parameters in diabetes, most guidelines do not address treatment of dyslipidemia in prediabetes despite the increased atherosclerotic cardiovascular disease (ASCVD) risk. Several criteria are used to diagnose prediabetes: impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and HbA1c of 5.7-6.4%. Individuals with prediabetes have a greater risk of diabetes, a higher prevalence of dyslipidemia with a more atherogenic lipid profile and an increased risk of ASCVD. In addition to calculating ASCVD risk using traditional methods, an OGTT may further stratify risk. Those with 1-hour plasma glucose ≥8.6 mmol/L (155 mg/dL) and/or 2-hour ≥7.8 mmol/L (140 mg/dL) (IGT) have a greater risk of ASCVD. Diet and lifestyle modification are fundamental in prediabetes. Statins, ezetimibe and PCSK9 inhibitors are recommended in people requiring pharmacotherapy. Although high-intensity statins may increase risk of diabetes, this is acceptable because of the greater reduction of ASCVD. The LDL-C goal in prediabetes should be individualized. In those with IGT and/or elevated 1-hour plasma glucose, the same intensive approach to dyslipidemia as recommended for diabetes should be considered, particularly if other ASCVD risk factors are present.
Collapse
Affiliation(s)
- João Sérgio Neves
- Department of Endocrinology, Diabetes and Metabolism, São João University Hospital Center, Porto, Portugal; Cardiovascular Research and Development Center, Department of Surgery and Physiology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Connie Newman
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, USA
| | - John A Bostrom
- Section of Cardiovascular Medicine, Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Martin Buysschaert
- Department of Endocrinology and Diabetology, Université Catholique de Louvain, University Clinic Saint-Luc, Brussels, Belgium
| | - Jonathan D Newman
- Division of Cardiology and the Center for the Prevention of Cardiovascular Disease, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Ira J Goldberg
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, USA
| | - Michael Bergman
- Division of Endocrinology, Diabetes and Metabolism, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
34
|
Recent Updates in Hypertriglyceridemia Management for Cardiovascular Disease Prevention. Curr Atheroscler Rep 2022; 24:767-778. [PMID: 35895246 DOI: 10.1007/s11883-022-01052-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2022] [Indexed: 11/03/2022]
Abstract
PURPOSE OF REVIEW Mounting evidence continues to support the causal role of triglyceride-rich lipoproteins (TRL) in the development of atherosclerotic cardiovascular disease (ASCVD). Substantial residual ASCVD risk remains among high-risk patients who have elevated triglycerides despite reduction in low-density lipoprotein cholesterol (LDL-C) with statin therapy. Ongoing research efforts have focused on evaluating triglyceride-lowering therapies among patients with hypertriglyceridemia. RECENT FINDINGS The REDUCE-IT trial showed that the addition of icosapent ethyl, a highly purified form of eicosapentaenoic acid (EPA), can reduce vascular events among statin-treated individuals with elevated triglycerides who have either clinical ASCVD or diabetes plus another risk factor. Although additional evidence for EPA has emerged from other trials, conflicting results have been reported by subsequent trials that tested different omega-3 fatty acid formulations. Randomized clinical trials have not demonstrated incremental ASCVD benefit of fibrates on background of statin therapy, but fibrates are used to help prevent pancreatitis in patients with severe hypertriglyceridemia. Selective inhibitors of apolipoprotein C-III (apoC3) and angiopoietin-like protein 3 (ANGPTL3), proteins that are involved in metabolism of TRLs by regulating lipoprotein lipase, have been tested in selected patient populations and showed significant reduction in triglyceride and LDL-C levels. Statin therapy continues to be the cornerstone of pharmacologic reduction of cardiovascular risk. High-dose EPA in the form of icosapent ethyl has been demonstrated to have cardiovascular benefit on top of statins in persons with elevated triglycerides at high ASCVD risk. Ongoing clinical trials are evaluating novel selective therapies such as apoC3 and ANGPTL3 inhibitors.
Collapse
|
35
|
Pulipati VP, Brinton EA, Hatipoglu B. Management of Mild-to-Moderate Hypertriglyceridemia. Endocr Pract 2022; 28:1187-1195. [PMID: 35850450 DOI: 10.1016/j.eprac.2022.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/07/2022] [Accepted: 07/10/2022] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Hypertriglyceridemia is highly prevalent globally and its prevalence is rising with international increases in the incidence of obesity and diabetes. This review examines current management and future therapies METHODS: For this review, hypertriglyceridemia is defined as mild-to-moderate triglyceride elevation, a fasting or non-fasting triglyceride level >150 mg/dL and <500 mg/dL. We reviewed scientific studies published over the last 30 years and current professional society recommendations regarding evaluation and treatment of hypertriglyceridemia. RESULTS Genetics, lifestyle, and other environmental factors impact triglyceride levels. In adults with mild-to-moderate hypertriglyceridemia, clinicians should routinely assess and treat secondary treatable causes (diet, physical activity, obesity, metabolic syndrome, and reduction or cessation of medications that elevate triglyceride levels). Since atherosclerotic cardiovascular disease (ASCVD) risk is the primary clinical concern, statins are usually first-line treatment. Patients with triglyceride levels between >150 mg/dL and <500 mg/dL whose LDL-C is treated adequately with statins (at "maximally tolerated" doses, per some statements) and have either prior cardiovascular disease or diabetes mellitus plus at least 2 additional cardiovascular disease risk factors should be considered for added icosapent ethyl treatment to further reduce their cardiovascular disease risk. Fibrates, niacin, and other approved agents or agents under development are also reviewed in detail. CONCLUSION The treatment paradigm for mild-to-moderate hypertriglyceridemia is changing based on data from recent clinical trials. Recent trials suggest that the addition of icosapent ethyl to background statin therapy may further reduce ASCVD risk in patients with moderate HTG, though a particular TG goal has not been identified.
Collapse
Affiliation(s)
| | | | - Betul Hatipoglu
- Case Western Reserve University School of Medicine, Department of Medicine; University Hospitals Cleveland Medical Center, Department of Medicine, Adult Endocrinology, 11100 Euclid Avenue, Cleveland, OH 44106.
| |
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW Use of omega-3 fatty acid (OM3FA) supplements to reduce risk of cardiovascular events has been investigated, largely without evidence of meaningful benefit, over the last 4 decades. RECENT FINDINGS The first contemporary clinical trial to show benefit of OM3FA use was the REDUCE-IT trial (2018), showing a remarkable 25% relative risk reduction in the intervention group that received icosapent ethyl 4 g daily compared to a mineral oil placebo group. The STRENGTH trial (2020), which was similar in design to the REDUCE-IT trial but compared 4 g daily dose of combined OM3FA with a corn oil placebo, was terminated early due to futility. SUMMARY This article provides a review of the data surrounding these trials and discusses the differing results of the two trials. There are key differences in the design of the two trials, the most notable is the use of mineral oil in the REDUCE-IT trial, which was potentially a nonneutral comparator. Additionally, both trials showed an increase in the incidence of atrial fibrillation. With the unclear benefit of OM3FA supplementation and possibility of harm, the current data suggest that the risk of routine use of OM3FA outweighs the possibility of reduction in risk of cardiovascular events.
Collapse
Affiliation(s)
- Zackary D Goff
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA
| | | |
Collapse
|
37
|
Ruscica M, Sirtori CR, Carugo S, Calder PC, Corsini A. OMEGA-3 AND CARDIOVASCULAR PREVENTION – IS THIS STILL A CHOICE? Pharmacol Res 2022; 182:106342. [DOI: 10.1016/j.phrs.2022.106342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/01/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023]
|
38
|
Kim K, Ginsberg HN, Choi SH. New, Novel Lipid-Lowering Agents for Reducing Cardiovascular Risk: Beyond Statins. Diabetes Metab J 2022; 46:517-532. [PMID: 35929170 PMCID: PMC9353557 DOI: 10.4093/dmj.2022.0198] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/20/2022] [Indexed: 11/24/2022] Open
Abstract
Statins are the cornerstone of the prevention and treatment of atherosclerotic cardiovascular disease (ASCVD). However, even under optimal statin therapy, a significant residual ASCVD risk remains. Therefore, there has been an unmet clinical need for novel lipid-lowering agents that can target low-density lipoprotein cholesterol (LDL-C) and other atherogenic particles. During the past decade, several drugs have been developed for the treatment of dyslipidemia. Inclisiran, a small interfering RNA that targets proprotein convertase subtilisin/kexin type 9 (PCSK9), shows comparable effects to that of PCSK9 monoclonal antibodies. Bempedoic acid, an ATP citrate lyase inhibitor, is a valuable treatment option for the patients with statin intolerance. Pemafibrate, the first selective peroxisome proliferator-activated receptor alpha modulator, showed a favorable benefit-risk balance in phase 2 trial, but the large clinical phase 3 trial (PROMINENT) was recently stopped for futility based on a late interim analysis. High dose icosapent ethyl, a modified eicosapentaenoic acid preparation, shows cardiovascular benefits. Evinacumab, an angiopoietin-like 3 (ANGPTL3) monoclonal antibody, reduces plasma LDL-C levels in patients with refractory hypercholesterolemia. Novel antisense oligonucleotides targeting apolipoprotein C3 (apoC3), ANGPTL3, and lipoprotein(a) have significantly attenuated the levels of their target molecules with beneficial effects on associated dyslipidemias. Apolipoprotein A1 (apoA1) is considered as a potential treatment to exploit the athero-protective effects of high-density lipoprotein cholesterol (HDL-C), but solid clinical evidence is necessary. In this review, we discuss the mode of action and clinical outcomes of these novel lipid-lowering agents beyond statins.
Collapse
Affiliation(s)
- Kyuho Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul,
Korea
| | - Henry N. Ginsberg
- Department of Preventive Medicine and Nutrition, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY,
USA
| | - Sung Hee Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam,
Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul,
Korea
| |
Collapse
|
39
|
George M, Gupta A. Blood Pressure-Lowering Effects of Omega-3 Polyunsaturated Fatty Acids: Are These the Missing Link to Explain the Relationship Between Omega-3 Polyunsaturated Fatty Acids and Cardiovascular Disease? J Am Heart Assoc 2022; 11:e026258. [PMID: 35647743 PMCID: PMC9238718 DOI: 10.1161/jaha.121.026258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Marc George
- Department of Clinical Pharmacology and Therapeutics University College London Hospitals NHS Foundation Trust London United Kingdom.,Institute of Cardiovascular Science University College London London United Kingdom
| | - Ajay Gupta
- Department of Clinical Pharmacology William Harvey Research Institute, Queen Mary University of London London United Kingdom.,Royal London Hospital Barts Health NHS Trust London United Kingdom
| |
Collapse
|
40
|
Boden WE, Andersson C. Optimizing Dyslipidemic Cardiovascular Residual Risk Reduction With Icosapent Ethyl in Post-MI Patients. J Am Coll Cardiol 2022; 79:1672-1674. [PMID: 35483754 DOI: 10.1016/j.jacc.2022.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 02/06/2023]
Affiliation(s)
- William E Boden
- VA New England Health Care System, Boston University School of Medicine, Boston, Massachusetts, USA.
| | - Charlotte Andersson
- Department of Medicine, Section of Cardiovascular Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Quispe R, Alfaddagh A, Kazzi B, Zghyer F, Marvel FA, Blumenthal RS, Sharma G, Martin SS. Controversies in the Use of Omega-3 Fatty Acids to Prevent Atherosclerosis. Curr Atheroscler Rep 2022; 24:571-581. [PMID: 35499805 DOI: 10.1007/s11883-022-01031-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW We discuss current controversies in the clinical use of omega-3 fatty acids (FA), primarily eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and examine discrepancies between recent trials. Furthermore, we discuss potential side effects reported in these studies and the role of mixed omega-3 FA dietary supplements and concerns about their use. RECENT FINDINGS REDUCE-IT showed that addition of icosapent ethyl, a highly purified form of EPA, can reduce risk of cardiovascular events among statin-treated individuals with high triglycerides. Additional supportive evidence for EPA has come from other trials and meta-analyses of omega-3 FA therapy. In contrast, trials of mixed EPA/DHA products have consistently failed to improve cardiovascular outcomes. Discrepancies in results reported in RCTs could be explained by differences in omega-3 FA products, dosing, study populations, and study designs including the placebo control formulation. Evidence obtained from highly purified forms should not be extrapolated to other mixed formulations, including "over-the-counter" omega-3 supplements. Targeting TG-rich lipoproteins represents a new frontier for mitigating ASCVD risk. Clinical and basic research evidence suggests that the use of omega-3 FA, specifically EPA, appears to slow atherosclerosis by reducing triglyceride-rich lipoproteins and/or inflammation, therefore addressing residual risk of clinical ASCVD.
Collapse
Affiliation(s)
- Renato Quispe
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Abdulhamied Alfaddagh
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Brigitte Kazzi
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Fawzi Zghyer
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Francoise A Marvel
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Roger S Blumenthal
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Garima Sharma
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA
| | - Seth S Martin
- Johns Hopkins Ciccarone Center for the Prevention of Cardiovascular Disease, Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, 600 N. Wolfe St, Carnegie 591, Baltimore, MD, 21287, USA.
| |
Collapse
|
42
|
Murai K, Kataoka Y, Noguchi T. Can High-Dose Eicosapentaenoic Acid Get a Place as a Plaque Modifier? Circ J 2022; 86:843-845. [PMID: 34924465 DOI: 10.1253/circj.cj-21-0955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kota Murai
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Yu Kataoka
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| | - Teruo Noguchi
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center
| |
Collapse
|
43
|
Zang T, Chen H, Shen S, Xu F, Wang R, Yin J, Chen X, Guan M, Shen L, Pan H, Ge J. Highly Purified Eicosapentaenoic Acid Alleviates the Inflammatory Response and Oxidative Stress in Macrophages during Atherosclerosis via the miR-1a-3p/sFRP1/Wnt/PCP-JNK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9451058. [PMID: 35464772 PMCID: PMC9021996 DOI: 10.1155/2022/9451058 10.1155/2022/9451058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2023]
Abstract
Highly purified eicosapentaenoic acid (EPA) has shown great effects in the prevention of atherosclerosis. In a murine model, it significantly reduced plaque accumulation, lowered plasma lipid levels, and decreased inflammation levels, which was also observed in vitro. Using microRNA sequencing, we identified differentially expressed microRNAs, among which miR-1a-3p was selected for further validation. Overexpression of miR-1a-3p in RAW264.7 cells worsened lipid accumulation, increased oxidative stress, and exacerbated inflammatory responses whereas its downregulation produced the opposite results. Potential targets of miR-1a-3p were analyzed by prediction tools. Then, secreted frizzled-related protein 1 (sFRP1), an antagonist of the Wnt pathway, was confirmed as the target gene of miR-1a-3p by a dual-luciferase reporter assay. Further research showed that in macrophages, EPA influenced the activation of the Wnt/planar cell polarity-c-Jun N-terminal kinase (Wnt/PCP-JNK) axis, which is consistent with the phenomenon that miR-1a-3p has an impact on this same axis. Collectively, our findings suggest that EPA mitigates inflammatory responses and oxidative responses both in vivo and in vitro by targeting the miR-1a-3p/sFRP1/Wnt/PCP-JNK axis in macrophages, which may explain the cardioprotective role of EPA and promote the application of EPA in clinical practice.
Collapse
Affiliation(s)
- Tongtong Zang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Han Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Shutong Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Fei Xu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Rui Wang
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Jia Yin
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xiehui Chen
- Shenzhen Longhua District Central Hospital/the Affiliated Central Hospital of Shenzhen Longhua District, Guangdong Medical University, Shenzhen, China
| | - Min Guan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Li Shen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Fudan University, Research Unit of Cardiovascular Techniques and Devices, Chinese Academy of Medical Sciences, Shanghai, China
- Shanghai Institute of Cardiovascular Diseases, Shanghai, China
- National Clinical Research Center for Interventional Medicine & Shanghai Clinical Research Center for Interventional Medicine, Shanghai, China
| |
Collapse
|
44
|
Highly Purified Eicosapentaenoic Acid Alleviates the Inflammatory Response and Oxidative Stress in Macrophages during Atherosclerosis via the miR-1a-3p/sFRP1/Wnt/PCP-JNK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9451058. [PMID: 35464772 PMCID: PMC9021996 DOI: 10.1155/2022/9451058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
Highly purified eicosapentaenoic acid (EPA) has shown great effects in the prevention of atherosclerosis. In a murine model, it significantly reduced plaque accumulation, lowered plasma lipid levels, and decreased inflammation levels, which was also observed in vitro. Using microRNA sequencing, we identified differentially expressed microRNAs, among which miR-1a-3p was selected for further validation. Overexpression of miR-1a-3p in RAW264.7 cells worsened lipid accumulation, increased oxidative stress, and exacerbated inflammatory responses whereas its downregulation produced the opposite results. Potential targets of miR-1a-3p were analyzed by prediction tools. Then, secreted frizzled-related protein 1 (sFRP1), an antagonist of the Wnt pathway, was confirmed as the target gene of miR-1a-3p by a dual-luciferase reporter assay. Further research showed that in macrophages, EPA influenced the activation of the Wnt/planar cell polarity-c-Jun N-terminal kinase (Wnt/PCP-JNK) axis, which is consistent with the phenomenon that miR-1a-3p has an impact on this same axis. Collectively, our findings suggest that EPA mitigates inflammatory responses and oxidative responses both in vivo and in vitro by targeting the miR-1a-3p/sFRP1/Wnt/PCP-JNK axis in macrophages, which may explain the cardioprotective role of EPA and promote the application of EPA in clinical practice.
Collapse
|
45
|
Ginsberg HN, Hounslow NJ, Senko Y, Suganami H, Bogdanski P, Ceska R, Kalina A, Libis RA, Supryadkina TV, Hovingh GK. Efficacy and Safety of K-877 (Pemafibrate), a Selective PPARα Modulator, in European Patients on Statin Therapy. Diabetes Care 2022; 45:898-908. [PMID: 35238894 DOI: 10.2337/dc21-1288] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/29/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE High plasma triglyceride (TG) is an independent risk factor for cardiovascular disease. Fibrates lower TG levels through peroxisome proliferator-activated receptor α (PPARα) agonism. Currently available fibrates, however, have relatively low selectivity for PPARα. The aim of this trial was to assess the safety, tolerability, and efficacy of K-877 (pemafibrate), a selective PPARα modulator, in statin-treated European patients with hypertriglyceridemia. RESEARCH DESIGN AND METHODS A total of 408 statin-treated adults were recruited from 68 European sites for this phase 2, randomized, double-blind, placebo-controlled trial. They had fasting TG between 175 and 500 mg/dL and HDL-cholesterol (HDL-C) ≤50 mg/dL for men and ≤55 mg/dL for women. Participants were randomly assigned to receive placebo or one of six pemafibrate regimens: 0.05 mg twice a day, 0.1 mg twice a day, 0.2 mg twice a day, 0.1 mg once daily, 0.2 mg once daily, or 0.4 mg once daily. The primary end points were TG and non-HDL-C level lowering at week 12. RESULTS Pemafibrate reduced TG at all doses (adjusted P value <0.001), with the greatest placebo-corrected reduction from baseline to week 12 observed in the 0.2-mg twice a day treatment group (54.4%). Reductions in non-HDL-C did not reach statistical significance. Reductions in TG were associated with improvements in other markers for TG-rich lipoprotein metabolism, including reductions in apoB48, apoCIII, and remnant cholesterol and an increase in HDL-C levels. Pemafibrate increased LDL-cholesterol levels, whereas apoB100 was unchanged. Pemafibrate was safe and well-tolerated, with only minor increases in serum creatinine and homocysteine concentrations. CONCLUSIONS Pemafibrate is effective, safe, and well-tolerated for the reduction of TG in European populations with hypertriglyceridemia despite statin treatment.
Collapse
Affiliation(s)
- Henry N Ginsberg
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | | | | | | | - Pawel Bogdanski
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Richard Ceska
- Department of Internal Medicine, Charles University and University General Hospital, Prague, Czech Republic
| | - Akos Kalina
- Hungarian Defense Forces Medical Centre, Budapest, Hungary
| | | | | | - G Kees Hovingh
- Department of Vascular Medicine, Amsterdam UMC, Amsterdam, the Netherlands
| |
Collapse
|
46
|
Parhofer KG. New targets for treating hypertriglyceridemia. Curr Opin Endocrinol Diabetes Obes 2022; 29:106-111. [PMID: 35045528 DOI: 10.1097/med.0000000000000714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Elevated fasting and postprandial plasma triglyceride concentrations are associated with an increased risk for atherosclerotic cardiovascular disease in patients on and off low-density lipoprotein (LDL) lowering therapy. RECENT FINDINGS This association is not mediated by triglycerides directly. Other components of triglyceride rich lipoproteins, such as cholesterol and apolipoproteins B and -CIII can directly induce and enhance atherosclerosis. In addition, an elevated concentration of triglyceride rich lipoproteins affects the concentration, composition, function, and metabolism of LDL and high-density lipoprotein (HDL), which contributes to the risk. Especially in patients with hypertriglyceridemia, apolipoprotein B and non-HDL-cholesterol (encompassing cholesterol of all atherogenic lipoproteins) predict risk better than LDL-cholesterol and/or triglycerides. Therefore, current guidelines have stated secondary goals relating to non-HDL-cholesterol and apolipoprotein B (in addition to the primary goal relating to LDL-cholesterol). These secondary goals can be achieved by further reducing LDL-cholesterol or by decreasing triglyceride rich lipoproteins. However, only further LDL reduction has so far proven to be beneficial in outcome trials. In addition, high dose eicosapentaenoic acid (EPA) can reduce atherosclerotic cardio-vascular disease risk in patients with hypertriglyceridemia, although benefit is not (or not only) related to apolipoprotein B or non-HDL-cholesterol reduction. SUMMARY Non-HDL-cholesterol and apoB represent novel targets for patients with hypertriglyceridemia, but achieving LDL-cholesterol targets remains the first step for cardio-vascular risk reduction.
Collapse
Affiliation(s)
- Klaus G Parhofer
- Medizinische Klinik und Poliklinik IV, LMU Klinikum, Munich, Germany
| |
Collapse
|
47
|
Is Omega-3 Index necessary for fish oil supplements for CVD risk prevention? CARDIOLOGY PLUS 2022. [DOI: 10.1097/cp9.0000000000000015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
48
|
Borén J, Taskinen MR, Björnson E, Packard CJ. Metabolism of triglyceride-rich lipoproteins in health and dyslipidaemia. Nat Rev Cardiol 2022; 19:577-592. [PMID: 35318466 DOI: 10.1038/s41569-022-00676-y] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Accumulating evidence points to the causal role of triglyceride-rich lipoproteins and their cholesterol-enriched remnants in atherogenesis. Genetic studies in particular have not only revealed a relationship between plasma triglyceride levels and the risk of atherosclerotic cardiovascular disease, but have also identified key proteins responsible for the regulation of triglyceride transport. Kinetic studies in humans using stable isotope tracers have been especially useful in delineating the function of these proteins and revealing the hitherto unappreciated complexity of triglyceride-rich lipoprotein metabolism. Given that triglyceride is an essential energy source for mammals, triglyceride transport is regulated by numerous mechanisms that balance availability with the energy demands of the body. Ongoing investigations are focused on determining the consequences of dysregulation as a result of either dietary imprudence or genetic variation that increases the risk of atherosclerosis and pancreatitis. The identification of molecular control mechanisms involved in triglyceride metabolism has laid the groundwork for a 'precision-medicine' approach to therapy. Novel pharmacological agents under development have specific molecular targets within a regulatory framework, and their deployment heralds a new era in lipid-lowering-mediated prevention of disease. In this Review, we outline what is known about the dysregulation of triglyceride transport in human hypertriglyceridaemia.
Collapse
Affiliation(s)
- Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Elias Björnson
- Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
49
|
Chapman MJ, Zamorano JL, Parhofer KG. Reducing residual cardiovascular risk in Europe: Therapeutic implications of European medicines agency approval of icosapent ethyl/eicosapentaenoic acid. Pharmacol Ther 2022; 237:108172. [PMID: 35304222 DOI: 10.1016/j.pharmthera.2022.108172] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 02/19/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) and its atherothrombotic complications impose a substantial disease burden in Europe, representing a cost of €210 billion per year for the European Union. Hypertriglyceridemia, a major risk factor for premature ASCVD, is present in more than 20% of the European population, and is a key feature of atherogenic dyslipidemia. Recent findings from the Progression of Early Subclinical Atherosclerosis (PESA) cohort in Spain showed that even in apparently healthy, middle-aged individuals without a history of cardiovascular (CV) risk, elevated triglyceride levels are associated with subclinical atherosclerosis and arterial inflammation. Emerging evidence from epidemiologic and genetic studies supports an independent causative role of triglycerides, triglyceride-rich lipoproteins, and their remnants in this pathology. Icosapent ethyl (IPE) is a highly purified, stable ethyl ester of eicosapentaenoic acid (EPA) that was initially approved by the United States Food and Drug Administration to treat severe hypertriglyceridemia, and subsequently received an expanded indication to reduce the risk of CV events in adult statin-treated patients. Approval was based on the pivotal, randomized, placebo-controlled, double-blind Reduction of Cardiovascular Events with Icosapent Ethyl-Intervention Trial (REDUCE-IT), which showed that high-dose IPE (4 g/day) significantly reduced the risk of primary and secondary composite endpoints comprising major CV events and CV death relative to placebo. In 2021, the European Medicines Agency (EMA) approved IPE to reduce the risk of CV events in adult statin-treated patients at high CV risk with elevated triglyceride levels (≥1.7 mmol/L [≥150 mg/dL]) and established CV disease, or diabetes and at least one other CV risk factor. Clinical studies in Europe, which included patients with acute myocardial infarction, coronary artery disease, and those undergoing cardiac rehabilitation, established that 12.5% to 23.3% of these high-risk populations may benefit from treatment with IPE. Such clinical benefit may in part result from the moderate triglyceride-lowering properties of IPE/EPA; equally however, concentrations of atherogenic remnant particle-cholesterol are markedly reduced. Furthermore, IPE/EPA exerts pleiotropic actions beyond its lipid-lowering properties, which include modulation of endothelial function, attenuation of intra-plaque inflammation and oxidative stress, and reduction in macrophage accumulation. Plasma phospholipids, into which EPA is primarily incorporated and transported, appear to serve as precursors for a series of anti-inflammatory metabolites involving the resolvins RvE1 to RvE3, a pathway which may confer cardioprotective benefits. In addition, plaque imaging data from the Effect of Icosapent Ethyl on Progression of Coronary Atherosclerosis in Patients With Elevated Triglycerides on Statin Therapy (EVAPORATE) and the Combination Therapy of Eicosapentaenoic Acid and Pitavastatin for Coronary Plaque Regression Evaluated by Integrated Backscatter Intravascular Ultrasonography (CHERRY) trials show that plaque stabilization may be favorably affected. These factors may act synergistically to stabilize atherosclerotic plaques and reduce CV risk. In addition to robust efficacy data, multiple cost-utility studies across several countries indicate that IPE/EPA is a cost-effective treatment option that is favorably situated relative to some common willingness-to-pay thresholds. This review will evaluate the relevance of hypertriglyceridemia to residual ASCVD burden in statin-treated dyslipidemic patients, the potential of IPE/EPA to reduce the risk of ASCVD and cardiovascular mortality in high-risk patient populations, and the mechanisms which may underlie these effects. Finally, the clinical implications of the EMA label for IPE will be critically appraised in light of the updated 2019 European Society of Cardiology/European Atherosclerosis Society guidelines on the management of dyslipidemia and the recent European Atherosclerosis Society consensus statement on triglyceride-rich lipoproteins and their remnants, together with considerations of its cost-effectiveness across several countries.
Collapse
Affiliation(s)
- M John Chapman
- Sorbonne University, Endocrinology and Cardiovascular Disease Prevention, Pitié-Salpétrière University Hospital, and National Institute for Health and Medical Research (INSERM), Paris, France.
| | | | - Klaus G Parhofer
- Medical Clinic IV - Grosshadern Hospital of the University of Munich, Munich, Germany
| |
Collapse
|
50
|
Drenjančević I, Pitha J. Omega-3 Polyunsaturated Fatty Acids-Vascular and Cardiac Effects on the Cellular and Molecular Level (Narrative Review). Int J Mol Sci 2022; 23:ijms23042104. [PMID: 35216214 PMCID: PMC8879741 DOI: 10.3390/ijms23042104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/10/2022] [Accepted: 02/11/2022] [Indexed: 12/16/2022] Open
Abstract
In the prevention and treatment of cardiovascular disease, in addition to the already proven effective treatment of dyslipidemia, hypertension and diabetes mellitus, omega-3 polyunsaturated fatty acids (n-3 PUFAs) are considered as substances with additive effects on cardiovascular health. N-3 PUFAs combine their indirect effects on metabolic, inflammatory and thrombogenic parameters with direct effects on the cellular level. Eicosapentaenoic acid (EPA) seems to be more efficient than docosahexaenoic acid (DHA) in the favorable mitigation of atherothrombosis due to its specific molecular properties. The inferred mechanism is a more favorable effect on the cell membrane. In addition, the anti-fibrotic effects of n-3 PUFA were described, with potential impacts on heart failure with a preserved ejection fraction. Furthermore, n-3 PUFA can modify ion channels, with a favorable impact on arrhythmias. However, despite recent evidence in the prevention of cardiovascular disease by a relatively high dose of icosapent ethyl (EPA derivative), there is still a paucity of data describing the exact mechanisms of n-3 PUFAs, including the role of their particular metabolites. The purpose of this review is to discuss the effects of n-3 PUFAs at several levels of the cardiovascular system, including controversies.
Collapse
Affiliation(s)
- Ines Drenjančević
- Institute and Department of Physiology and Immunology, Faculty of Medicine Osijek, University Josip Juraj Strossmayer, Osijek J. Huttlera 4, HR-31000 Osijek, Croatia;
- Scientific Centre of Excellence for Personalized Health Care, University Josip Juraj Strossmayer Osijek, Trg Sv. Trojstva 3, HR-31000 Osijek, Croatia
| | - Jan Pitha
- Laboratory for Atherosclerosis Research, Center for Experimental Research, Department of Cardiology, Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
- Correspondence:
| |
Collapse
|