1
|
Dua P, Seth S, Prasher B, Mukerji M, Maulik SK, Reeta KH. Pharmacogenomic biomarkers in coronary artery disease: a narrative review. Biomark Med 2024; 18:191-202. [PMID: 38456296 DOI: 10.2217/bmm-2023-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Coronary artery disease (CAD) has a high mortality rate. Despite various therapeutic targets, non-responsiveness to drugs remains a prevalent issue. Pharmacogenomics assesses the way an individual's genetic attributes affect their likely response to drug therapy. Single-nucleotide polymorphisms play a crucial role in determining these outcomes. This review offers an overview of single-nucleotide polymorphisms investigated in clinical studies and their associations with drug response/nonresponse in the treatment of CAD. A total of 104 studies of whole sets of chromosomes and several genes were explored. A total of 161 polymorphisms exhibited associations with drug response/nonresponse in CAD across diverse ethnic populations. This pool can serve as a pharmacogenomic biomarker for predicting response to drug therapy in patients with CAD.
Collapse
Affiliation(s)
- Pamila Dua
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | - Sandeep Seth
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| | | | - Mitali Mukerji
- Indian Institute of Technology, Jodhpur, Rajasthan, India
| | | | - K H Reeta
- All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India
| |
Collapse
|
2
|
Hou X. Epoxidase inhibitor-aspirin resistance and the relationship with genetic polymorphisms: a review. J Int Med Res 2024; 52:3000605241230429. [PMID: 38420770 PMCID: PMC10903214 DOI: 10.1177/03000605241230429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 01/18/2024] [Indexed: 03/02/2024] Open
Abstract
Strokes are the leading cause of death in most regions of the world. Epoxidase inhibitors include the drug aspirin (acetylsalicylic acid). Aspirin is widely used as first-line treatment for the prevention of cardiovascular and cerebrovascular diseases in at-risk patients. However, patients using conventional doses of aspirin can still develop ischaemic cardiovascular and cerebrovascular diseases, a phenomenon known as aspirin resistance. The occurrence of aspirin resistance hinders the prevention and treatment of ischaemic cardiovascular and cerebrovascular diseases. There are many factors affecting aspirin resistance, such as sex, drug dose, metabolic disease, genetic polymorphisms, drug interactions and pharmacokinetics. Genetic polymorphism refers to the simultaneous and frequent presence of two or more discontinuous variants or genotypes or alleles in a population of organisms. Platelets contain a large number of highly polymorphic transmembrane glycoprotein receptors encoded by two or more isomeric alleles. Changes in gene polymorphisms in various pathways during platelet aggregation can lead to aspirin resistance. This narrative review describes the gene polymorphisms that have been demonstrated to be significantly associated with aspirin resistance. Research on the mechanisms of aspirin resistance and increased knowledge should provide accurate drug guidance in individuals that require first-line antiplatelet therapy.
Collapse
Affiliation(s)
- Xiaolin Hou
- Department of Emergency Medicine, Zigong First People’s Hospital, Zigong City, China
| |
Collapse
|
3
|
The Future of Biomarkers in Veterinary Medicine: Emerging Approaches and Associated Challenges. Animals (Basel) 2022; 12:ani12172194. [PMID: 36077913 PMCID: PMC9454634 DOI: 10.3390/ani12172194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Simple Summary In this review we seek to outline the role of new technologies in biomarker discovery, particularly within the veterinary field and with an emphasis on ‘omics’, as well as to examine why many biomarkers-despite much excitement-have not yet made it to clinical practice. Further we emphasise the critical need for close collaboration between clinicians, researchers and funding bodies and the need to set clear goals for biomarker requirements and realistic application in the clinical setting, ensuring that biomarker type, method of detection and clinical utility are compatible, and adequate funding, time and sample size are available for all phases of development. Abstract New biomarkers promise to transform veterinary practice through rapid diagnosis of diseases, effective monitoring of animal health and improved welfare and production efficiency. However, the road from biomarker discovery to translation is not always straightforward. This review focuses on molecular biomarkers under development in the veterinary field, introduces the emerging technological approaches transforming this space and the role of ‘omics platforms in novel biomarker discovery. The vast majority of veterinary biomarkers are at preliminary stages of development and not yet ready to be deployed into clinical translation. Hence, we examine the major challenges encountered in the process of biomarker development from discovery, through validation and translation to clinical practice, including the hurdles specific to veterinary practice and to each of the ‘omics platforms–transcriptomics, proteomics, lipidomics and metabolomics. Finally, recommendations are made for the planning and execution of biomarker studies with a view to assisting the success of novel biomarkers in reaching their full potential.
Collapse
|
4
|
Shiga T. OUP accepted manuscript. Eur Heart J Suppl 2022; 24:D11-D21. [PMID: 35706898 PMCID: PMC9190747 DOI: 10.1093/eurheartjsupp/suac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Atrial tachyarrhythmias often occur in patients with worsening heart failure (HF), and the development of atrial tachyarrhythmias in acute decompensated HF (ADHF) causes an uncontrolled heart rate (HR) and leads to further exacerbation of HF and persistence of a decompensated HF state. Landiolol, a short-acting intravenous beta-1 blocker, shows very high cardiac beta-1 selectivity and has a very short elimination half-life of approximately 4 min. As shown in several reports, the benefit of intravenous landiolol is that it lowers the ventricular rate early after the start of use without markedly deteriorating haemodynamics. After the cardiac status is stabilized by rapid control of HR, subsequent basic HF pharmacotherapy and rhythm control therapies will be effective for improving outcomes. Because of the pharmacokinetic properties of landiolol, if the patient suffers an adverse reaction such as hypotension or bradycardia, such effects can be quickly reversed by tapering the dose or discontinuing use altogether. Based on several clinical studies, this review discusses the efficacy, safety and role of intravenous landiolol in acute HR control in patients with atrial tachyarrhythmias and ADHF.
Collapse
Affiliation(s)
- Tsuyoshi Shiga
- Corresponding author. Tel: +81 3 3433 1111, Fax: +81 3 5472 6466,
| |
Collapse
|
5
|
Camilli M, Iannaccone G, Del Buono MG, Crea F, Aspromonte N. Genetic background of coronary artery disease: clinical implications and perspectives. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2020. [DOI: 10.1080/23808993.2020.1746640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Massimiliano Camilli
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Giulia Iannaccone
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Marco G. Del Buono
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| |
Collapse
|
6
|
Ruiz-Iruela C, Candás-Estébanez B, Pintó-Sala X, Baena-Díez N, Caixàs-Pedragós A, Güell-Miró R, Navarro-Badal R, Calmarza P, Puzo-Foncilla JL, Alía-Ramos P, Padró-Miquel A. Genetic contribution to lipid target achievement with statin therapy: a prospective study. THE PHARMACOGENOMICS JOURNAL 2019; 20:494-504. [DOI: 10.1038/s41397-019-0136-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/21/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
|
7
|
Sun C, Chen L, Shen Z. Mechanisms of gastrointestinal microflora on drug metabolism in clinical practice. Saudi Pharm J 2019; 27:1146-1156. [PMID: 31885474 PMCID: PMC6921184 DOI: 10.1016/j.jsps.2019.09.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 09/28/2019] [Indexed: 02/06/2023] Open
Abstract
Considered as an essential "metabolic organ", intestinal microbiota plays a key role in human health and the predisposition to diseases. It is an aggregate genome of trillions of microorganisms residing in the human gastrointestinal tract. Since the 20th century, researches have showed that intestinal microbiome possesses a variety of metabolic activities that are able to modulate the fate of more than 30 approved drugs and immune checkpoint inhibitors. These drugs are transformed to bioactive, inactive, or toxic metabolites by microbial direct action or host-microbial co-metabolism. These metabolites are responsible for therapeutic effects exerted by these drugs or side effects induced by these drugs, even for death. In view of the significant effect on the drugs metabolism by the gut microbiota, it is pivotal for personalized medicine to explore additional drugs affected by gut microbiota and their involved strains for further making mechanism clear through suitable animal models. This review mainly focus on specific mechanisms involved, with reference to the current literature about drugs metabolism by related bacteria or its enzymes available.
Collapse
Affiliation(s)
- Chaonan Sun
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| | - Ling Chen
- Department of Dermatology, Daping Hospital, Army Medical University, Chongqing, 410042, China
| | - Zhu Shen
- Department of Dermatology, Institute of Dermatology and Venereology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, Sichuan, 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610054, China
| |
Collapse
|
8
|
Karmaus PW, Shi M, Perl S, Biancotto A, Candia J, Cheung F, Kotliarov Y, Young N, Fessler MB. Effects of rosuvastatin on the immune system in healthy volunteers with normal serum cholesterol. JCI Insight 2019; 4:131530. [PMID: 31573980 DOI: 10.1172/jci.insight.131530] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUNDHMG-CoA reductase inhibitors (statins) are prescribed to millions of people. Statins are antiinflammatory independent of their cholesterol-reducing effects. To date, most reports on the immune effects of statins have assayed a narrow array of variables and have focused on cell lines, rodent models, or patient cohorts. We sought to define the effect of rosuvastatin on the "immunome" of healthy, normocholesterolemic subjects.METHODSWe conducted a prospective study of rosuvastatin (20 mg/d × 28 days) in 18 statin-naive adults with LDL cholesterol <130 mg/dL. A panel of >180 immune/biochemical/endocrinologic variables was measured at baseline and on days 14, 28, and 42 (14 days after drug withdrawal). Drug effect was evaluated using linear mixed-effects models. Potential interactions between drug and baseline high-sensitivity C-reactive protein (hsCRP) were evaluated.RESULTSA wide array of immune measures changed (nominal P < 0.05) during rosuvastatin treatment, although the changes were modest in magnitude, and few met an FDR of 0.05. Among changes noted were a concordant increase in proinflammatory cytokines (IFN-γ, IL-1β, IL-5, IL-6, and TNF-α) and peripheral blood neutrophil frequency, and a decline in activated Treg frequency. Several drug effects were significantly modified by baseline hsCRP, and some did not resolve after drug withdrawal. Among other unexpected rosuvastatin effects were changes in erythrocyte indices, glucose-regulatory hormones, CD8+ T cells, and haptoglobin.CONCLUSIONRosuvastatin induces modest changes in immunologic and metabolic measures in normocholesterolemic subjects, with several effects dependent on baseline CRP. Future, larger studies are warranted to validate these changes and their physiological significance.TRIAL REGISTRATIONClinicalTrials.gov NCT01200836.FUNDINGThis research was supported by the Intramural Research Program of the NIH, National Institute of Environmental Health Sciences (Z01 ES102005), and the trans-NIH Center for Human Immunology.
Collapse
Affiliation(s)
| | - Min Shi
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, USA
| | - Shira Perl
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Angélique Biancotto
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Julián Candia
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Foo Cheung
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Yuri Kotliarov
- Trans-NIH Center for Human Immunology, Autoimmunity, and Inflammation, NIH, Bethesda, Maryland, USA
| | - Neal Young
- Hematology Branch, National Heart, Lung, and Blood Institute, NIH, Bethesda, Maryland, USA
| | | | -
- The CHI Consortium is detailed in the supplemental material
| |
Collapse
|
9
|
Zhu Y, Swanson KM, Rojas RL, Wang Z, St Sauver JL, Visscher SL, Prokop LJ, Bielinski SJ, Wang L, Weinshilboum R, Borah BJ. Systematic review of the evidence on the cost-effectiveness of pharmacogenomics-guided treatment for cardiovascular diseases. Genet Med 2019; 22:475-486. [PMID: 31591509 PMCID: PMC7056639 DOI: 10.1038/s41436-019-0667-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/23/2019] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To examine the evidence on the cost-effectiveness of implementing pharmacogenomics (PGx) in cardiovascular disease (CVD) care. METHODS We conducted a systematic review using multiple databases from inception to 2018. The titles and abstracts of cost-effectiveness studies on PGx-guided treatment in CVD care were screened, and full texts were extracted. RESULTS We screened 909 studies and included 46 to synthesize. Acute coronary syndrome and atrial fibrillation were the predominantly studied conditions (59%). Most studies (78%) examined warfarin-CYP2C9/VKORC1 or clopidogrel-CYP2C19. A payer's perspective was commonly used (39%) for cost calculations, and most studies (46%) were US-based. The majority (67%) of the studies found PGx testing to be cost-effective in CVD care, but cost-effectiveness varied across drugs and conditions. Two studies examined PGx panel testing, of which one examined pre-emptive testing strategies. CONCLUSION We found mixed evidence on the cost-effectiveness of PGx in CVD care. Supportive evidence exists for clopidogrel-CYP2C19 and warfarin-CYP2C9/VKORC1, but evidence is limited in other drug-gene combinations. Gaps persist, including unclear explanation of perspective and cost inputs, underreporting of study design elements critical to economic evaluations, and limited examination of PGx panel and pre-emptive testing for their cost-effectiveness. This review identifies the need for further research on economic evaluations of PGx implementation.
Collapse
Affiliation(s)
- Ye Zhu
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA.,Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Kristi M Swanson
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Ricardo L Rojas
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Zhen Wang
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA.,Evidence-Based Practice Center, Mayo Clinic, Rochester, MN, USA
| | - Jennifer L St Sauver
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA.,Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Sue L Visscher
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA
| | - Larry J Prokop
- Library Public Services, Mayo Clinic, Rochester, MN, USA
| | - Suzette J Bielinski
- Division of Epidemiology, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Liewei Wang
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Richard Weinshilboum
- Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Bijan J Borah
- Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN, USA. .,Division of Health Care Policy and Research, Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
10
|
Vélez Gómez S, Torres I, Manrique RD, Duque M, Gallo JE. Aplicación farmacogenómica de los genes CYP2C19, CYP2C9 y VKORC1 implicados en el metabolismo de los fármacos clopidogrel y warfarina. REVISTA COLOMBIANA DE CARDIOLOGÍA 2018. [DOI: 10.1016/j.rccar.2018.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Soko ND, Masimirembwa C, Dandara C. Pharmacogenomics of Rosuvastatin: A Glocal (Global+Local) African Perspective and Expert Review on a Statin Drug. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2018; 20:498-509. [PMID: 27631189 DOI: 10.1089/omi.2016.0114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The incidence of cardiovascular diseases (CVDs) in African populations residing in the African continent is on the rise fueled by both a steady increase in CVD risk factors and comorbidities such as human immunodeficiency virus/acquired immune deficiency syndrome (HIV/AIDS), tuberculosis, and parasitic diseases such as bilharzia. Statins are recommended together with lifestyle changes in the treatment of hypercholesterolemia and overall reduction of cardiovascular events. Rosuvastatin in particular is an attractive candidate in the management of CVDs in African populations often plagued with multimorbidities owing to both its potency and low drug-to-drug interaction potential. In this expert review, we describe the pharmacogenetics of rosuvastatin and how it may instrumentally affect the African populations. We describe polymorphisms in the candidate genes, ABCG2, SLCO1B1, CYP2C9, APOE, PCSK9, LDLR, LPA, and HMGCR, and their role in the potency and safety of rosuvastatin therapy. We report on qualitative and quantitative differences in the distribution of genetic variants that affect efficacy and toxicity of rosuvastatin. These differences are observed across world populations (Caucasian, European, and Asian) as well as within African populations. Finally, we advocate for extensive pharmacogenetic studies in African populations that take into account the genetic diversity of intra-African ethnic groups and the genetic differences between African populations and other global populations, with a collaborative and collective aim to provide effective and safe use of rosuvastatin in management of CVD in Africa. Our key thesis presented in this innovation field analysis is that rosuvastatin precision medicine can serve as a veritable Glocal (Global and Local) model to offer pharmacogenetic-guided optimal therapeutics for the public in both developing and developed regions of the world.
Collapse
Affiliation(s)
- Nyarai D Soko
- 1 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, and University of Cape Town , Cape Town, South Africa
| | - Collen Masimirembwa
- 2 African Institute of Biomedical Science and Technology (AiBST) , Wilkins Hospital, Harare, Zimbabwe .,3 Clinical Pharmacology, Department of Medicine, University of Cape Town , Cape Town, South Africa
| | - Collet Dandara
- 1 Pharmacogenetics Research Group, Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, and University of Cape Town , Cape Town, South Africa
| |
Collapse
|
12
|
Wanmasae S, Sirintronsopon W, Porntadavity S, Jeenduang N. The effect ofAPOE,CETP,andPCSK9polymorphisms on simvastatin response in Thai hypercholesterolemic patients. Cardiovasc Ther 2017; 35. [DOI: 10.1111/1755-5922.12302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 07/31/2017] [Accepted: 08/20/2017] [Indexed: 11/30/2022] Open
Affiliation(s)
- Smith Wanmasae
- School of Allied Health Sciences; Walailak University; Nakhon Si Thammarat Thailand
| | | | - Sureerut Porntadavity
- Department of Clinical Chemistry; Faculty of Medical Technology; Mahidol University; Bangkok Thailand
| | - Nutjaree Jeenduang
- School of Allied Health Sciences; Walailak University; Nakhon Si Thammarat Thailand
| |
Collapse
|
13
|
Messas N, Dubé MP, Tardif JC. Pharmacogenetics of Lipid-Lowering Agents: an Update Review on Genotype-Dependent Effects of HDL-Targetingand Statin Therapies. Curr Atheroscler Rep 2017; 19:43. [PMID: 28944433 DOI: 10.1007/s11883-017-0679-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW High-density lipoproteins (HDL) are involved in reverse cholesterol transport. Results from randomized trials of HDL-targeting therapies, including cholesteryl ester transfer protein (CETP) inhibitors, have shown a lack of benefit in unsegmented populations. These observations could be explained by inter-individual variability of clinical responses to such agents depending on the patients' genotypes. In parallel, although lowering of LDL cholesterol (LDL-c) with statin therapy reduces the risk of vascular events in a wide range of individuals, inter-individual variability exists with regard to LDL-c-lowering response as well as efficacy in reducing major cardiovascular events. RECENT FINDINGS Pharmacogenomic analyses were performed in the dal-OUTCOMES and dal-PLAQUE-2 studies. Beneficial and concordant results were observed in patients with the favorable genotype when treated with the CETP inhibitor dalcetrapib. Similarly, previous studies revealed genetic variants associated with differential LDL-c response to statin therapy. In this review, we discuss the pharmacogenetic determinants of HDL-targeting and statin therapy responses in light of the latest available published data, and their potential therapeutic applications.
Collapse
Affiliation(s)
- Nathan Messas
- Department of Medicine, Montreal Heart Institute, 5000 Belanger St, Montreal, Quebec, H1T 1C8, Canada.,Pôle d'Activité Médico-Chirurgicale Cardio-Vasculaire, Nouvel Hôpital Civil, Strasbourg, France
| | - Marie-Pierre Dubé
- Department of Medicine, Montreal Heart Institute, 5000 Belanger St, Montreal, Quebec, H1T 1C8, Canada.,Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Jean-Claude Tardif
- Department of Medicine, Montreal Heart Institute, 5000 Belanger St, Montreal, Quebec, H1T 1C8, Canada. .,Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
14
|
Arrigoni E, Del Re M, Fidilio L, Fogli S, Danesi R, Di Paolo A. Pharmacogenetic Foundations of Therapeutic Efficacy and Adverse Events of Statins. Int J Mol Sci 2017; 18:ijms18010104. [PMID: 28067828 PMCID: PMC5297738 DOI: 10.3390/ijms18010104] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 12/11/2022] Open
Abstract
Background: In the era of precision medicine, more attention is paid to the search for predictive markers of treatment efficacy and tolerability. Statins are one of the classes of drugs that could benefit from this approach because of their wide use and their incidence of adverse events. Methods: Literature from PubMed databases and bibliography from retrieved publications have been analyzed according to terms such as statins, pharmacogenetics, epigenetics, toxicity and drug–drug interaction, among others. The search was performed until 1 October 2016 for articles published in English language. Results: Several technical and methodological approaches have been adopted, including candidate gene and next generation sequencing (NGS) analyses, the latter being more robust and reliable. Among genes identified as possible predictive factors associated with statins toxicity, cytochrome P450 isoforms, transmembrane transporters and mitochondrial enzymes are the best characterized. Finally, the solute carrier organic anion transporter family member 1B1 (SLCO1B1) transporter seems to be the best target for future studies. Moreover, drug–drug interactions need to be considered for the best approach to personalized treatment. Conclusions: Pharmacogenetics of statins includes several possible genes and their polymorphisms, but muscular toxicities seem better related to SLCO1B1 variant alleles. Their analysis in the general population of patients taking statins could improve treatment adherence and efficacy; however, the cost–efficacy ratio should be carefully evaluated.
Collapse
Affiliation(s)
- Elena Arrigoni
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Marzia Del Re
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Leonardo Fidilio
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Stefano Fogli
- Department of Pharmacy, University of Pisa, Via Bonanno Pisano 6, 56126 Pisa, Italy.
| | - Romano Danesi
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| | - Antonello Di Paolo
- Clinical Pharmacology and Pharmacogenetic Unit, Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy.
| |
Collapse
|
15
|
Iyngkaran P, Thomas MC, Johnson R, French J, Ilton M, McDonald P, Hare DL, Fatkin D. Contextualizing Genetics for Regional Heart Failure Care. Curr Cardiol Rev 2016; 12:231-42. [PMID: 27280306 PMCID: PMC5011192 DOI: 10.2174/1573403x12666160606123103] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 12/18/2015] [Accepted: 01/11/2016] [Indexed: 12/21/2022] Open
Abstract
Congestive heart failure (CHF) is a chronic and often devastating cardiovascular disorder with no cure. There has been much advancement in the last two decades that has seen improvements in morbidity and mortality. Clinicians have also noted variations in the responses to therapies. More detailed observations also point to clusters of diseases, phenotypic groupings, unusual severity and the rates at which CHF occurs. Medical genetics is playing an increasingly important role in answering some of these observations. This developing field in many respects provides more information than is currently clinically applicable. This includes making sense of the established single gene mutations or uncommon private mutations. In this thematic series which discusses the many factors that could be relevant for CHF care, once established treatments are available in the communities; this section addresses a contextual role for medical genetics.
Collapse
|
16
|
Jaja C, Barrett N, Patel N, Lyon M, Xu H, Kutlar A. Progressing Preemptive Genotyping of CYP2C19 Allelic Variants for Sickle Cell Disease Patients. Genet Test Mol Biomarkers 2016; 20:609-615. [PMID: 27551817 DOI: 10.1089/gtmb.2016.0001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AIMS Interindividual variability in drug response and adverse effects have been described for proton pump inhibitors, anticonvulsants, selective serotonin reuptake inhibitors, tricyclic antidepressants, and anti-infectives, but little is known about the safety and efficacy of these medications in patients with sickle cell disease (SCD). We genotyped the CYP2C19 gene which has been implicated in the metabolism of these drugs in an SCD patient cohort to determine the frequencies of reduced function, increased function, or complete loss-of-function variants. MATERIALS AND METHODS DNAs from 165 unrelated SCD patients were genotyped for nine CYP2C19 (*2, *3, *4, *5, *6, *7,*8, *12, and *17) alleles using the iPLEX® ADME PGx multiplex panel. RESULTS Three CYP2C19 alleles (*2, *12, and *17) were detected with the following frequencies: 0.209, 0.006, and 0.236, respectively. The predicted phenotype frequencies were distributed as extensive (31.5%), intermediate (24.8%), poor (5.5%), ultrarapid (30.3%), and unknown metabolizers (7.9%). DISCUSSION Prognostic genotyping is potentially useful for identifying SCD patients with allelic variants linked to proven clinical pharmacokinetic consequences for several drugs metabolized by the CYP2C19 gene. However, the main challenge to implementing a genetics-guided prescribing practice is ensuring concordance between CYP2C19 genotypes and metabolic phenotypes in SCD patients.
Collapse
Affiliation(s)
- Cheedy Jaja
- 1 College of Nursing, University of Cincinnati , Cincinnati, Ohio
| | - Nadine Barrett
- 2 Department of Medicine, Georgia Regents University , Augusta, Georgia
| | - Niren Patel
- 2 Department of Medicine, Georgia Regents University , Augusta, Georgia
| | - Matt Lyon
- 3 Department of Emergency Medicine, Georgia Regents University , Augusta, Georgia
| | - Hongyan Xu
- 4 Department of Biostatistics, Georgia Regents University , Augusta, Georgia
| | - Abdullah Kutlar
- 2 Department of Medicine, Georgia Regents University , Augusta, Georgia
| |
Collapse
|
17
|
Rath D, Schaeffeler E, Winter S, Hewer J, Müller K, Droppa M, Stimpfle F, Gawaz M, Schwab M, Geisler T. SDF1 Polymorphisms Influence Outcome in Patients with Symptomatic Cardiovascular Disease. PLoS One 2016; 11:e0161933. [PMID: 27607427 PMCID: PMC5015912 DOI: 10.1371/journal.pone.0161933] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 08/14/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND SDF1 and its cognate receptors CXCR4 and CXCR7 are involved in myocardial repair and are associated with outcome in cardiovascular patients. Hence, we aimed to investigate clinically significant SDF1 SNPs for their prognostic impact in patients with cardiovascular disease. METHODS AND RESULTS Genotyping for selected SDF1 variants (rs1065297, rs2839693, rs1801157, rs266087, rs266085 and rs266089 was performed in patients (n = 872) who underwent percutaneous coronary intervention. Carriers of variant rs2839693 and rs266089 showed significantly higher cumulative event-free survival compared with non-carriers. All other polymorphisms had no relevant influence on outcome. Multivariate Cox regression analysis showed a significant correlation of these SNPs with cardiovascular outcome after inclusion of clinical and prognostic relevant variables (hazard ratio (HR) 0.51 (95% CI 0.30-0.88), p = 0.015 and [HR 0.51 (95% CI 0.30-0.88), p = 0.016, respectively). In addition, multivariate Cox regression with SDF1 haplotypes revealed a significantly reduced risk for the haplotype carrying the minor alleles of rs2839693 and rs266089 (HR 0.47 (95% CI 0.27-0.84), p = 0.011). CONCLUSION Distinct SDF1 polymorphisms are associated with improved cardiovascular prognosis in CAD patients. Further studies are warranted to validate these results and to better describe the endogenous regeneration potential in carriers of these SNPs. Targeted, genotype guided therapeutic approaches to foster myocardial regeneration and thus cardiovascular prognosis should be evaluated in future.
Collapse
Affiliation(s)
- Dominik Rath
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, Stuttgart, Germany
| | - Stefan Winter
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, Stuttgart, Germany
| | - Jens Hewer
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Karin Müller
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Michal Droppa
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Fabian Stimpfle
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Meinrad Gawaz
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete-Fischer-Bosch Institute of Clinical Pharmacology, Auerbachstrasse 112, Stuttgart, Germany
- Department of Clinical Pharmacology, University Hospital Tuebingen, Auf der Morgenstelle 8, Tuebingen, Germany
| | - Tobias Geisler
- Department of Cardiology, University Hospital Tuebingen, Otfried-Mueller-Straße 10, Tuebingen, Germany
| |
Collapse
|
18
|
Najam O, Ray KK. Where to now in cardiovascular disease prevention. Atherosclerosis 2016; 251:483-489. [DOI: 10.1016/j.atherosclerosis.2016.06.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 05/16/2016] [Accepted: 06/17/2016] [Indexed: 01/24/2023]
|
19
|
Trompet S, Postmus I, Slagboom PE, Heijmans BT, Smit RAJ, Maier AB, Buckley BM, Sattar N, Stott DJ, Ford I, Westendorp RGJ, de Craen AJM, Jukema JW. Non-response to (statin) therapy: the importance of distinguishing non-responders from non-adherers in pharmacogenetic studies. Eur J Clin Pharmacol 2016; 72:431-7. [PMID: 26686871 PMCID: PMC4792342 DOI: 10.1007/s00228-015-1994-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/01/2015] [Indexed: 11/16/2022]
Abstract
PURPOSE In pharmacogenetic research, genetic variation in non-responders and high responders is compared with the aim to identify the genetic loci responsible for this variation in response. However, an important question is whether the non-responders are truly biologically non-responsive or actually non-adherent? Therefore, the aim of this study was to describe, within the PROspective Study of Pravastatin in the Elderly at Risk (PROSPER), characteristics of both non-responders and high responders of statin treatment in order to possibly discriminate non-responders from non-adherers. METHODS Baseline characteristics of non-responders to statin therapy (≤10 % LDL-C reduction) were compared with those of high responders (>40 % LDL-C reduction) through a linear regression analysis. In addition, pharmacogenetic candidate gene analysis was performed to show the effect of excluding non-responders from the analysis. RESULTS Non-responders to statin therapy were younger (p = 0.001), more often smoked (p < 0.001), had a higher alcohol consumption (p < 0.001), had lower LDL cholesterol levels (p < 0.001), had a lower prevalence of hypertension (p < 0.001), and had lower cognitive function (p = 0.035) compared to subjects who highly responded to pravastatin treatment. Moreover, excluding non-responders from pharmacogenetic studies yielded more robust results, as standard errors decreased. CONCLUSION Our results suggest that non-responders to statin therapy are more likely to actually be non-adherers, since they have more characteristics that are viewed as indicators of high self-perceived health and low disease awareness, possibly making the subjects less adherent to study medication. We suggest that in pharmacogenetic research, extreme non-responders should be excluded to overcome the problem that non-adherence is investigated instead of non-responsiveness.
Collapse
Affiliation(s)
- S Trompet
- Department of Cardiology, C5-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands.
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands.
| | - I Postmus
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - P E Slagboom
- Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - B T Heijmans
- Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - R A J Smit
- Department of Cardiology, C5-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - A B Maier
- Section Gerontology and Geriatrics, Department of Internal Medicine, VU Medical Center, Amsterdam, The Netherlands
| | - B M Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Cork, Ireland
| | - N Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, UK
| | - D J Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK
| | - I Ford
- Robertson Center for Biostatistics, University of Glasgow, Glasgow, UK
| | - R G J Westendorp
- Faculty of Health and Medical Sciences, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - A J M de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | - J W Jukema
- Department of Cardiology, C5-R, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
- Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands
- Interuniversity Cardiology Institute of the Netherlands, Utrecht, the Netherlands
| |
Collapse
|
20
|
Dretzke J, Riley RD, Lordkipanidzé M, Jowett S, O'Donnell J, Ensor J, Moloney E, Price M, Raichand S, Hodgkinson J, Bayliss S, Fitzmaurice D, Moore D. The prognostic utility of tests of platelet function for the detection of 'aspirin resistance' in patients with established cardiovascular or cerebrovascular disease: a systematic review and economic evaluation. Health Technol Assess 2016; 19:1-366. [PMID: 25984731 DOI: 10.3310/hta19370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The use of aspirin is well established for secondary prevention of cardiovascular disease. However, a proportion of patients suffer repeat cardiovascular events despite being prescribed aspirin treatment. It is uncertain whether or not this is due to an inherent inability of aspirin to sufficiently modify platelet activity. This report aims to investigate whether or not insufficient platelet function inhibition by aspirin ('aspirin resistance'), as defined using platelet function tests (PFTs), is linked to the occurrence of adverse clinical outcomes, and further, whether or not patients at risk of future adverse clinical events can be identified through PFTs. OBJECTIVES To review systematically the clinical effectiveness and cost-effectiveness evidence regarding the association between PFT designation of 'aspirin resistance' and the risk of adverse clinical outcome(s) in patients prescribed aspirin therapy. To undertake exploratory model-based cost-effectiveness analysis on the use of PFTs. DATA SOURCES Bibliographic databases (e.g. MEDLINE from inception and EMBASE from 1980), conference proceedings and ongoing trial registries up to April 2012. METHODS Standard systematic review methods were used for identifying clinical and cost studies. A risk-of-bias assessment tool was adapted from checklists for prognostic and diagnostic studies. (Un)adjusted odds and hazard ratios for the association between 'aspirin resistance', for different PFTs, and clinical outcomes are presented; however, heterogeneity between studies precluded pooling of results. A speculative economic model of a PFT and change of therapy strategy was developed. RESULTS One hundred and eight relevant studies using a variety of PFTs, 58 in patients on aspirin monotherapy, were analysed in detail. Results indicated that some PFTs may have some prognostic utility, i.e. a trend for more clinical events to be associated with groups classified as 'aspirin resistant'. Methodological and clinical heterogeneity prevented a quantitative summary of prognostic effect. Study-level effect sizes were generally small and absolute outcome risk was not substantially different between 'aspirin resistant' and 'aspirin sensitive' designations. No studies on the cost-effectiveness of PFTs for 'aspirin resistance' were identified. Based on assumptions of PFTs being able to accurately identify patients at high risk of clinical events and such patients benefiting from treatment modification, the economic model found that a test-treat strategy was likely to be cost-effective. However, neither assumption is currently evidence based. LIMITATIONS Poor or incomplete reporting of studies suggests a potentially large volume of inaccessible data. Analyses were confined to studies on patients prescribed aspirin as sole antiplatelet therapy at the time of PFT. Clinical and methodological heterogeneity across studies precluded meta-analysis. Given the lack of robust data the economic modelling was speculative. CONCLUSIONS Although evidence indicates that some PFTs may have some prognostic value, methodological and clinical heterogeneity between studies and different approaches to analyses create confusion and inconsistency in prognostic results, and prevented a quantitative summary of their prognostic effect. Protocol-driven and adequately powered primary studies are needed, using standardised methods of measurements to evaluate the prognostic ability of each test in the same population(s), and ideally presenting individual patient data. For any PFT to inform individual risk prediction, it will likely need to be considered in combination with other prognostic factors, within a prognostic model. STUDY REGISTRATION This study is registered as PROSPERO 2012:CRD42012002151. FUNDING The National Institute for Health Research Health Technology Assessment programme.
Collapse
Affiliation(s)
- Janine Dretzke
- Public Health, Epidemiology and Biostatistics, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - Richard D Riley
- Research Institute of Primary Care and Health Sciences, Keele University, Staffordshire, UK
| | | | - Susan Jowett
- Health Economics, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - Jennifer O'Donnell
- Primary Care Clinical Sciences, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - Joie Ensor
- Research Institute of Primary Care and Health Sciences, Keele University, Staffordshire, UK
| | - Eoin Moloney
- Institute of Health and Society, Newcastle University, Newcastle, UK
| | - Malcolm Price
- Public Health, Epidemiology and Biostatistics, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - Smriti Raichand
- Public Health, Epidemiology and Biostatistics, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - James Hodgkinson
- Primary Care Clinical Sciences, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - Susan Bayliss
- Public Health, Epidemiology and Biostatistics, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - David Fitzmaurice
- Primary Care Clinical Sciences, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| | - David Moore
- Public Health, Epidemiology and Biostatistics, School of Health and Population Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Leusink M, Onland-Moret NC, de Bakker PIW, de Boer A, Maitland-van der Zee AH. Seventeen years of statin pharmacogenetics: a systematic review. Pharmacogenomics 2015; 17:163-80. [PMID: 26670324 DOI: 10.2217/pgs.15.158] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AIM We evaluated the evidence of pharmacogenetic associations with statins in a systematic review. METHODS Two separate outcomes were considered of interest: modification of low-density lipoprotein cholesterol (LDL-C) response and modification of risk for cardiovascular events. RESULTS In candidate gene studies, 141 loci were claimed to be associated with LDL-C response. Only 5% of these associations were positively replicated. In addition, six genome-wide association studies of LDL-C response identified common SNPs in APOE, LPA, SLCO1B1, SORT1 and ABCG2 at genome-wide significance. None of the investigated SNPs consistently affected the risk reduction for cardiovascular events. CONCLUSION Only five genetic loci were consistently associated with LDL-C response. However, as effect sizes are modest, there is no evidence for the value of genetic testing in clinical practice.
Collapse
Affiliation(s)
- Maarten Leusink
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands.,Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - N Charlotte Onland-Moret
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul I W de Bakker
- Julius Center for Health Sciences & Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Medical Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anthonius de Boer
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anke H Maitland-van der Zee
- Division of Pharmacoepidemiology & Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
22
|
Hamrefors V. Common genetic risk factors for coronary artery disease: new opportunities for prevention? Clin Physiol Funct Imaging 2015; 37:243-254. [DOI: 10.1111/cpf.12289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/03/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Viktor Hamrefors
- Department of Clinical Sciences; Faculty of Medicine; Lund University; Malmö Sweden
- Department of Medical Imaging and Physiology; Skåne University Hospital; Malmö Sweden
| |
Collapse
|
23
|
Racial Differences in Heart Failure Outcomes. JACC-HEART FAILURE 2015; 3:531-538. [DOI: 10.1016/j.jchf.2015.03.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 11/18/2022]
|
24
|
Yip LY, Chan ECY. Investigation of Host-Gut Microbiota Modulation of Therapeutic Outcome. Drug Metab Dispos 2015; 43:1619-31. [PMID: 25979259 DOI: 10.1124/dmd.115.063750] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 05/15/2015] [Indexed: 02/06/2023] Open
Abstract
A broader understanding of factors underlying interindividual variation in pharmacotherapy is important for our pursuit of "personalized medicine." Based on knowledge gleaned from the investigation of human genetics, drug-metabolizing enzymes, and transporters, clinicians and pharmacists are able to tailor pharmacotherapies according to the genotype of patients. However, human host factors only form part of the equation that accounts for heterogeneity in therapeutic outcome. Notably, the gut microbiota possesses wide-ranging metabolic activities that expand the metabolic functions of the human host beyond that encoded by the human genome. In this review, we first illustrate the mechanisms in which gut microbes modulate pharmacokinetics and therapeutic outcome. Second, we discuss the application of metabonomics in deciphering the complex host-gut microbiota interaction in pharmacotherapy. Third, we highlight an integrative approach with particular mention of the investigation of gut microbiota using culture-based and culture-independent techniques to complement the investigation of the host-gut microbiota axes in pharmaceutical research.
Collapse
Affiliation(s)
- Lian Yee Yip
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.Y.Y., E.C.Y.C.); and Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore (L.Y.Y.)
| | - Eric Chun Yong Chan
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore (L.Y.Y., E.C.Y.C.); and Bioprocessing Technology Institute, Agency for Science Technology and Research (A*STAR), Singapore (L.Y.Y.)
| |
Collapse
|
25
|
Katsanis SH, Minear MA, Vorderstrasse A, Yang N, Reeves JW, Rakhra-Burris T, Cook-Deegan R, Ginsburg GS, Simmons LA. Perspectives on genetic and genomic technologies in an academic medical center: the duke experience. J Pers Med 2015; 5:67-82. [PMID: 25854543 PMCID: PMC4493486 DOI: 10.3390/jpm5020067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/16/2015] [Accepted: 04/02/2015] [Indexed: 12/18/2022] Open
Abstract
UNLABELLED In this age of personalized medicine, genetic and genomic testing is expected to become instrumental in health care delivery, but little is known about its actual implementation in clinical practice. METHODS We surveyed Duke faculty and healthcare providers to examine the extent of genetic and genomic testing adoption. We assessed providers' use of genetic and genomic testing options and indications in clinical practice, providers' awareness of pharmacogenetic applications, and providers' opinions on returning research-generated genetic test results to participants. Most clinician respondents currently use family history routinely in their clinical practice, but only 18 percent of clinicians use pharmacogenetics. Only two respondents correctly identified the number of drug package inserts with pharmacogenetic indications. We also found strong support for the return of genetic research results to participants. Our results demonstrate that while Duke healthcare providers are enthusiastic about genomic technologies, use of genomic tools outside of research has been limited. Respondents favor return of research-based genetic results to participants, but clinicians lack knowledge about pharmacogenetic applications. We identified challenges faced by this institution when implementing genetic and genomic testing into patient care that should inform a policy and education agenda to improve provider support and clinician-researcher partnerships.
Collapse
Affiliation(s)
- Sara Huston Katsanis
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine and Health System, Durham, NC 27708, USA.
- Duke Science and Society, Duke University, Durham, NC 27708, USA.
| | - Mollie A Minear
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine and Health System, Durham, NC 27708, USA.
- Duke Science and Society, Duke University, Durham, NC 27708, USA.
| | - Allison Vorderstrasse
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine and Health System, Durham, NC 27708, USA.
- Duke University School of Nursing, Durham, NC 27708, USA.
| | - Nancy Yang
- Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | | | - Tejinder Rakhra-Burris
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine and Health System, Durham, NC 27708, USA.
| | - Robert Cook-Deegan
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine and Health System, Durham, NC 27708, USA.
- Duke Science and Society, Duke University, Durham, NC 27708, USA.
- Sanford School of Public Policy, Duke University, Durham, NC 27708, USA.
| | - Geoffrey S Ginsburg
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine and Health System, Durham, NC 27708, USA.
| | - Leigh Ann Simmons
- Center for Applied Genomics and Precision Medicine, Duke University School of Medicine and Health System, Durham, NC 27708, USA.
- Duke University School of Nursing, Durham, NC 27708, USA.
| |
Collapse
|
26
|
Shahabi P, Dubé MP. Cardiovascular pharmacogenomics; state of current knowledge and implementation in practice. Int J Cardiol 2015; 184:772-795. [DOI: 10.1016/j.ijcard.2015.02.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/17/2015] [Accepted: 02/21/2015] [Indexed: 02/07/2023]
|
27
|
|
28
|
Cabrera CP, Ng FL, Warren HR, Barnes MR, Munroe PB, Caulfield MJ. Exploring hypertension genome-wide association studies findings and impact on pathophysiology, pathways, and pharmacogenetics. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2015; 7:73-90. [DOI: 10.1002/wsbm.1290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/25/2014] [Accepted: 01/05/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Claudia P Cabrera
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Fu Liang Ng
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
| | - Helen R Warren
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Michael R Barnes
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Patricia B Munroe
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| | - Mark J Caulfield
- Department of Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry; Queen Mary University of London; London UK
- NIHR Barts Cardiovascular Biomedical Research Unit; Queen Mary University of London; London UK
| |
Collapse
|
29
|
Kirchhof P, Sipido KR, Cowie MR, Eschenhagen T, Fox KA, Katus H, Schroeder S, Schunkert H, Priori S. The continuum of personalized cardiovascular medicine: a position paper of the European Society of Cardiology. Eur Heart J 2014; 35:3250-7. [PMID: 25148837 PMCID: PMC4258224 DOI: 10.1093/eurheartj/ehu312] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 04/22/2014] [Accepted: 07/17/2014] [Indexed: 11/14/2022] Open
Abstract
There is strong need to develop the current stratified practice of CVD management into a better personalized cardiovascular medicine, within a broad framework of global patient care. Clinical information obtained from history and physical examination, functional and imaging studies, biochemical biomarkers, genetic/epigenetic data, and pathophysiological insights into disease-driving processes need to be integrated into a new taxonomy of CVDs to allow personalized disease management. This has the potential for major health benefits for the population suffering from cardiovascular diseases.
Collapse
|
30
|
Tang PCT, Ng YF, Ho S, Gyda M, Chan SW. Resveratrol and cardiovascular health--promising therapeutic or hopeless illusion? Pharmacol Res 2014; 90:88-115. [PMID: 25151891 DOI: 10.1016/j.phrs.2014.08.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 02/07/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene) is a natural polyphenolic compound that exists in Polygonum cuspidatum, grapes, peanuts and berries, as well as their manufactured products, especially red wine. Resveratrol is a pharmacologically active compound that interacts with multiple targets in a variety of cardiovascular disease models to exert protective effects or induce a reduction in cardiovascular risks parameters. This review attempts to primarily serve to summarize the current research findings regarding the putative cardioprotective effects of resveratrol and the molecular pathways underlying these effects. One intent is to hopefully provide a relatively comprehensive resource for clues that may prompt ideas for additional mechanistic studies which might further elucidate and strengthen the role of the stilbene family of compounds in cardiovascular disease and cardioprotection. Model systems that incorporate a significant functional association with tissues outside of the cardiovascular system proper, such as adipose (cell culture, obesity models) and pancreatic (diabetes) tissues, were reviewed, and the molecular pathways and/or targets related to these models and influenced by resveratrol are discussed. Because the body of work encompassing the stilbenes and other phytochemicals in the context of longevity and the ability to presumably mitigate a plethora of afflictions is replete with conflicting information and controversy, especially so with respect to the human response, we tried to remain as neutral as possible in compiling and presenting the more current data with minimal commentary, permitting the reader free reign to extract the knowledge most helpful to their own investigations.
Collapse
Affiliation(s)
- Philip Chiu-Tsun Tang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Yam-Fung Ng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China
| | - Susan Ho
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Michael Gyda
- Life Sciences Multimedia Productions, Drexel Hill, PA, USA.
| | - Shun-Wan Chan
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China; State Key Laboratory of Chinese Medicine and Molecular Pharmacology, Shenzhen, China; Food Safety and Technology Research Centre, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
31
|
Norata GD, Tibolla G, Catapano AL. Statins and skeletal muscles toxicity: from clinical trials to everyday practice. Pharmacol Res 2014; 88:107-13. [PMID: 24835295 DOI: 10.1016/j.phrs.2014.04.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/23/2014] [Accepted: 04/27/2014] [Indexed: 12/26/2022]
Abstract
The mechanism(s) underlying the occurrence of statin-induced myopathy are ill defined, but the results of observational studies and clinical trials provide compelling evidence that skeletal muscle toxicity is a frequent, dose-dependent, adverse event associated with all statins. It has been suggested that reduced availability of metabolites produced by the mevalonate pathway rather than intracellular cholesterol lowering per se might be the primary trigger of toxicity, however other alternative explanations have gained credibility in recent years. Aim of this review is: (i) to describe the molecular mechanisms associated to statin induced myopathy including defects in isoprenoids synthesis followed by altered prenylation of small GTPase, such as Ras and Rab proteins; (ii) to present the emerging aspects on pharmacogenetics, including CYP3A4, OATP1B1 and glycine amidinotransferase (GATM) polymorphisms impacting either statin bioavailability or creatine synthesis; (iii) to summarize the available epidemiological evidences; and (iii) to discuss the concepts that would be of interest to the clinicians for the daily management of patients with statin induced myopathy. The interplay between drug-environment and drug-drug interaction in the context of different genetic settings contribute to statins and skeletal muscles toxicity. Until specific assays/algorithms able to combine genetic scores with drug-drug-environment interaction to identify patients at risk of myopathies will become available, clinicians should continue to monitor carefully patients on polytherapy which include statins and be ready to reconsider dose, statin or switching to alternative treatments. The beneficial effects of adding agents to provide the muscle with the metabolites, such as CoQ10, affected by statin treatment will also be addressed.
Collapse
Affiliation(s)
- Giuseppe Danilo Norata
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; Center for the Study of Atherosclerosis, Società Italiana Studio Aterosclerosi, Bassini Hospital, Cinisello Balsamo, Italy
| | - Gianpaolo Tibolla
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; I.R.C.C.S. Multimedica, Milan, Italy
| | - Alberico Luigi Catapano
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Italy; I.R.C.C.S. Multimedica, Milan, Italy.
| |
Collapse
|
32
|
Wang H, Blumberg JB, Chen CYO, Choi SW, Corcoran MP, Harris SS, Jacques PF, Kristo AS, Lai CQ, Lamon-Fava S, Matthan NR, McKay DL, Meydani M, Parnell LD, Prokopy MP, Scott TM, Lichtenstein AH. Dietary modulators of statin efficacy in cardiovascular disease and cognition. Mol Aspects Med 2014; 38:1-53. [PMID: 24813475 DOI: 10.1016/j.mam.2014.04.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/14/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease remains the leading cause of morbidity and mortality in the United States and other developed countries, and is fast growing in developing countries, particularly as life expectancy in all parts of the world increases. Current recommendations for the prevention of cardiovascular disease issued jointly from the American Academy of Cardiology and American Heart Association emphasize that lifestyle modification should be incorporated into any treatment plan, including those on statin drugs. However, there is a dearth of data on the interaction between diet and statins with respect to additive, complementary or antagonistic effects. This review collates the available data on the interaction of statins and dietary patterns, cognition, genetics and individual nutrients, including vitamin D, niacin, omega-3 fatty acids, fiber, phytochemicals (polyphenols and stanols) and alcohol. Of note, although the available data is summarized, the scope is limited, conflicting and disparate. In some cases it is likely there is unrecognized synergism. Virtually no data are available describing the interactions of statins with dietary components or dietary pattern in subgroups of the population, particularly those who may benefit most were positive effects identified. Hence, it is virtually impossible to draw any firm conclusions at this time. Nevertheless, this area is important because were the effects of statins and diet additive or synergistic harnessing the effect could potentially lead to the use of a lower intensity statin or dose.
Collapse
Affiliation(s)
- Huifen Wang
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Jeffrey B Blumberg
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - C-Y Oliver Chen
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Sang-Woon Choi
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA.
| | - Michael P Corcoran
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Susan S Harris
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Paul F Jacques
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Aleksandra S Kristo
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Chao-Qiang Lai
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Stefania Lamon-Fava
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Nirupa R Matthan
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Diane L McKay
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Mohsen Meydani
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Laurence D Parnell
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Max P Prokopy
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Tammy M Scott
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| | - Alice H Lichtenstein
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA; Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Novel medical approaches and personalized medicine seek to use genetic information to 'individualize' and improve diagnosis, prevention, and therapy. The personalized management of cardiovascular disease involves a large spectrum of potential applications, from diagnostics of monogenic disorders, to prevention and management strategies based on modifier genes, to pharmacogenetics, in which individual genetic information is used to optimize the pharmacological treatments. RECENT FINDINGS Evidence suggests that the common polymorphic variants of modifier genes could influence drug response in cardiovascular disease in a variety of areas, including heart failure, arrhythmias, dyslipidemia, and hypertension. In heart failure, common genetic variants of β-adrenergic receptors, α-adrenergic receptors, and endothelin receptors (among others) have been associated with variable response to heart failure therapies. The challenge remains to develop strategies to leverage this information in ways that personalize and optimize cardiovascular therapy based on a patient's genetic profile. SUMMARY Although advances in technologies will continue to transition personalized medicine from the research to the clinical setting, healthcare providers will need to reshape the clinical diagnostic paradigms. Ultimately, pharmacogenetics will give providers the options for improving patient management on the basis of pharmacogenetic data.
Collapse
Affiliation(s)
- Luisa Mestroni
- University of Colorado Cardiovascular Institute and Adult Medical Genetics Program, Aurora, Colorado, USA
| | | | | | | |
Collapse
|
34
|
Postmus I, Johnson PCD, Trompet S, de Craen AJM, Slagboom PE, Devlin JJ, Shiffman D, Sacks FM, Kearney PM, Stott DJ, Buckley BM, Sattar N, Ford I, Westendorp RGJ, Jukema JW. In search for genetic determinants of clinically meaningful differential cardiovascular event reduction by pravastatin in the PHArmacogenetic study of Statins in the Elderly at risk (PHASE)/PROSPER study. Atherosclerosis 2014; 235:58-64. [PMID: 24816038 DOI: 10.1016/j.atherosclerosis.2014.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 02/12/2014] [Accepted: 04/07/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Statin therapy is widely used in the prevention and treatment of cardiovascular events and is associated with significant risk reductions. However, there is considerable variation in response to statin therapy both in terms of LDL cholesterol reduction and clinical outcomes. It has been hypothesized that genetic variation contributes importantly to this individual drug response. METHODS AND RESULTS We investigated the interaction between genetic variants and pravastatin or placebo therapy on the incidence of cardiovascular events by performing a genome-wide association study in the participants of the PROspective Study of Pravastatin in the Elderly at Risk for vascular disease--PHArmacogenetic study of Statins in the Elderly at risk (PROSPER/PHASE) study (n = 5244). We did not observe genome-wide significant associations with a clinically meaningful differential cardiovascular event reduction by pravastatin therapy. In addition, SNPs with p-values lower than 1 × 10(-4) were assessed for replication in a case-only analysis within two randomized placebo controlled pravastatin trials, CARE (n = 711) and WOSCOPS (n = 522). rs7102569, on chromosome 11 near the ODZ4 gene, was replicated in the CARE study (p = 0.008), however the direction of effect was opposite. This SNP was not associated in WOSCOPS. In addition, none of the SNPs replicated significantly after correcting for multiple testing. CONCLUSIONS We could not identify genetic variation that was significantly associated at genome-wide level with a clinically meaningful differential event reduction by pravastatin treatment in a large prospective study. We therefore assume that in daily practice the use of genetic characteristics to personalize pravastatin treatment to improve prevention of cardiovascular disease will be limited.
Collapse
Affiliation(s)
- Iris Postmus
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Paul C D Johnson
- Robertson Center for Biostatistics, University of Glasgow, United Kingdom.
| | - Stella Trompet
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands; Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - Anton J M de Craen
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | - P Eline Slagboom
- Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands; Department of Molecular Epidemiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands.
| | | | | | - Frank M Sacks
- Department of Nutrition, Harvard School of Public Health, Boston, MA, United States; Channing Division of Network Medicine, Brigham & Women's Hospital, Boston, MA, United States.
| | - Patricia M Kearney
- Department of Epidemiology and Public Health, University College Cork, Ireland.
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, United Kingdom.
| | - Brendan M Buckley
- Department of Pharmacology and Therapeutics, University College Cork, Ireland.
| | - Naveed Sattar
- BHF Glasgow Cardiovascular Research Centre, Faculty of Medicine, Glasgow, United Kingdom.
| | - Ian Ford
- Robertson Center for Biostatistics, University of Glasgow, United Kingdom.
| | - Rudi G J Westendorp
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Netherlands Consortium for Healthy Ageing, PO Box 9600, 2300 RC Leiden, The Netherlands; Leyden Academy of Vitality and Ageing, Leiden, The Netherlands.
| | - J Wouter Jukema
- Department of Cardiology, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands; Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands; Interuniversity Cardiology Institute of the Netherlands, Utrecht, The Netherlands.
| |
Collapse
|
35
|
Sweezy T, Mousa SA. Genotype-guided use of oral antithrombotic therapy: a pharmacoeconomic perspective. Per Med 2014; 11:223-235. [PMID: 29751379 DOI: 10.2217/pme.13.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pharmacogenomics focuses on tailoring therapy to the individual as opposed to the historical model of fitting the individual to the therapy, and it offers the potential to maximize medication efficacy while reducing adverse events. By its very nature, personalized medicine is conducive to a patient-centered care model. Oral antithrombotics as a class could benefit immensely from this type of approach because an imbalance of safety and efficacy in either direction can yield deadly consequences. Since the current healthcare climate in the USA requires thoughtful allocation of resources, pharmacoeconomic analysis has become critical for all stakeholders, and the adoption of new technologies hinges upon economic impact. This article summarizes the current state of genetics in oral antithrombotic therapy, including clinical relevance as well as cost-effectiveness from a US healthcare system perspective, and provides insight into the future of pharmacogenomics in treating and preventing thromboembolic disorders.
Collapse
Affiliation(s)
- Taylor Sweezy
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA
| | - Shaker A Mousa
- The Pharmaceutical Research Institute, Albany College of Pharmacy & Health Sciences, 1 Discovery Drive, Rensselaer, NY 12144, USA
| |
Collapse
|
36
|
Galve E, Alegría E, Cordero A, Fácila L, Fernández de Bobadilla J, Lluís-Ganella C, Mazón P, de Pablo Zarzosa C, González-Juanatey JR. Temas de actualidad en cardiología: riesgo vascular y rehabilitación cardiaca. Rev Esp Cardiol 2014. [DOI: 10.1016/j.recesp.2013.09.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
37
|
Galve E, Alegría E, Cordero A, Fácila L, Fernández de Bobadilla J, Lluís-Ganella C, Mazón P, de Pablo Zarzosa C, González-Juanatey JR. Update in cardiology: vascular risk and cardiac rehabilitation. ACTA ACUST UNITED AC 2014; 67:203-10. [PMID: 24774395 DOI: 10.1016/j.rec.2013.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2013] [Accepted: 09/26/2013] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease develops in a slow and subclinical manner over decades, only to manifest suddenly and unexpectedly. The role of prevention is crucial, both before and after clinical appearance, and there is ample evidence of the effectiveness and usefulness of the early detection of at-risk individuals and lifestyle modifications or pharmacological approaches. However, these approaches require time, perseverance, and continuous development. The present article reviews the developments in 2013 in epidemiological aspects related to prevention, includes relevant contributions in areas such as diet, weight control methods (obesity is now considered a disease), and physical activity recommendations (with warnings about the risk of strenuous exercise), deals with habit-related psychosocial factors such as smoking, provides an update on emerging issues such as genetics, addresses the links between cardiovascular disease and other pathologies such as kidney disease, summarizes the contributions of new, updated guidelines (3 of which have recently been released on topics of considerable clinical importance: hypertension, diabetes mellitus, and chronic kidney disease), analyzes the pharmacological advances (largely mediocre except for promising lipid-related results), and finishes by outlining developments in the oft-neglected field of cardiac rehabilitation. This article provides a briefing on controversial issues, presents interesting and somewhat surprising developments, updates established knowledge with undoubted application in clinical practice, and sheds light on potential future contributions.
Collapse
Affiliation(s)
- Enrique Galve
- Servicio de Cardiología, Hospital Vall d'Hebron, Barcelona, Spain.
| | - Eduardo Alegría
- Servicio de Cardiología, Policlínica Gipuzkoa, San Sebastián, Guipúzcoa, Spain
| | - Alberto Cordero
- Departamento de Cardiología, Hospital Universitario de San Juan, Sant Joan d'Alacant, Alicante, Spain
| | - Lorenzo Fácila
- Servicio de Cardiología, Consorcio Hospital General de Valencia, Valencia, Spain
| | | | - Carla Lluís-Ganella
- Grupo de Epidemiología y Genética Cardiovascular, IMIM (Institut Hospital del Mar d'Investigacións Mèdiques), Barcelona, Spain
| | - Pilar Mazón
- Servicio de Cardiología, Hospital Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | | | - José Ramón González-Juanatey
- Servicio de Cardiología, Hospital Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| |
Collapse
|
38
|
Sayols-Baixeras S, Lluís-Ganella C, Lucas G, Elosua R. Pathogenesis of coronary artery disease: focus on genetic risk factors and identification of genetic variants. Appl Clin Genet 2014; 7:15-32. [PMID: 24520200 PMCID: PMC3920464 DOI: 10.2147/tacg.s35301] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Coronary artery disease (CAD) is the leading cause of death and disability worldwide, and its prevalence is expected to increase in the coming years. CAD events are caused by the interplay of genetic and environmental factors, the effects of which are mainly mediated through cardiovascular risk factors. The techniques used to study the genetic basis of these diseases have evolved from linkage studies to candidate gene studies and genome-wide association studies. Linkage studies have been able to identify genetic variants associated with monogenic diseases, whereas genome-wide association studies have been more successful in determining genetic variants associated with complex diseases. Currently, genome-wide association studies have identified approximately 40 loci that explain 6% of the heritability of CAD. The application of this knowledge to clinical practice is challenging, but can be achieved using various strategies, such as genetic variants to identify new therapeutic targets, personal genetic information to improve disease risk prediction, and pharmacogenomics. The main aim of this narrative review is to provide a general overview of our current understanding of the genetics of coronary artery disease and its potential clinical utility.
Collapse
Affiliation(s)
- Sergi Sayols-Baixeras
- Cardiovascular epidemiology and Genetics Research Group, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| | - Carla Lluís-Ganella
- Cardiovascular epidemiology and Genetics Research Group, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| | - Gavin Lucas
- Cardiovascular epidemiology and Genetics Research Group, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| | - Roberto Elosua
- Cardiovascular epidemiology and Genetics Research Group, Institut Hospital del Mar d’Investigacions Mèdiques, Barcelona, Spain
| |
Collapse
|
39
|
Gelissen IC, McLachlan AJ. The pharmacogenomics of statins. Pharmacol Res 2013; 88:99-106. [PMID: 24365577 DOI: 10.1016/j.phrs.2013.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 12/24/2022]
Abstract
The statin class of cholesterol-lowering drugs have been used for decades to successfully lower plasma cholesterol concentrations and cardiovascular risk. Adverse effects of statins are generally considered mild, but increase with age of patients and polypharmacy. One aspect of statin therapy that is still difficult for prescribers to predict is the individual's response to statin therapy. Recent advances in the field of pharmacogenomics have indicated variants of candidate genes that affect statin efficacy and safety. In this review, a number of candidates that affect statin pharmacokinetics and pharmacodynamics are discussed. Some of these candidates, in particular those involved in import and efflux of statins, have now been linked to increased risk of side effects. Furthermore, pharmacogenomic studies continue to reveal new players that are involved in the fine-tuning of the complex regulation of cholesterol homeostasis and response to statins.
Collapse
Affiliation(s)
| | - Andrew J McLachlan
- Faculty of Pharmacy, University of Sydney, NSW, Australia; Centre for Education and Research on Ageing, Concord Hospital, Sydney, NSW, Australia
| |
Collapse
|
40
|
Cardiovascular Pharmacogenomics: Expectations and Practical Benefits. Clin Pharmacol Ther 2013; 95:281-93. [DOI: 10.1038/clpt.2013.234] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 12/03/2013] [Indexed: 11/08/2022]
|
41
|
Patel J, Abd T, Blumenthal RS, Nasir K, Superko HR. Genetics and Personalized Medicine—a Role in Statin Therapy? Curr Atheroscler Rep 2013; 16:384. [DOI: 10.1007/s11883-013-0384-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
42
|
Barrett PM, Price MJ. Pharmacogenomics in Interventional Pharmacology: Present Status and Future Directions. Interv Cardiol Clin 2013; 2:615-625. [PMID: 28582188 DOI: 10.1016/j.iccl.2013.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pharmacogenomics offers the possibility of tailoring a drug to a patient's unique genetic signature, improving the likelihood of clinical efficacy while minimizing risks. Clopidogrel, a platelet P2Y12 receptor inhibitor that forms the cornerstone of dual antiplatelet therapy in patients with unstable coronary artery disease and those undergoing percutaneous coronary intervention, is the first broadly used drug in cardiovascular medicine in which genotyping may help optimize outcomes. This article describes techniques to identify the genetic determinants of drug response, their application (ie, clopidogrel), and the challenges to integration of pharmacogenomics into the practice of interventional cardiology.
Collapse
Affiliation(s)
- Paddy M Barrett
- Scripps Translational Science Institute, 3344 North Torrey Pines Court, Suite 300, La Jolla, CA 92037, USA
| | - Matthew J Price
- Scripps Translational Science Institute, 3344 North Torrey Pines Court, Suite 300, La Jolla, CA 92037, USA; Cardiac Catheterization Laboratory, Scripps Green Hospital, 10666 North Torrey Pines Road, Maildrop S1056, La Jolla, CA 92037, USA.
| |
Collapse
|
43
|
Thrombocytopenia, Dual Antiplatelet Therapy, and Heparin Bridging Strategy Increase Pocket Hematoma Complications in Patients Undergoing Cardiac Rhythm Device Implantation. Can J Cardiol 2013; 29:1110-7. [DOI: 10.1016/j.cjca.2012.12.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 12/13/2012] [Accepted: 12/13/2012] [Indexed: 11/21/2022] Open
|
44
|
Würtz M, Lordkipanidzé M, Grove EL. Pharmacogenomics in cardiovascular disease: focus on aspirin and ADP receptor antagonists. J Thromb Haemost 2013; 11:1627-39. [PMID: 23809178 DOI: 10.1111/jth.12318] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Indexed: 11/27/2022]
Abstract
Antiplatelet agents like aspirin and adenosine diphosphate receptor antagonists are effective in reducing recurrent ischemic events. Considerable inter-individual variability in the platelet inhibition obtained with these drugs has initiated a search for explanatory mechanisms and ways to improve treatment. In recent years, numerous genetic polymorphisms have been linked with reduced platelet inhibition and lack of clinical efficacy of antiplatelet drugs, particularly clopidogrel and aspirin. Consequently, attempts to adjust antiplatelet treatment according to genotype have been made, but the clinical benefit has been modest in studies performed so far. The progress in genome science over the last decade and the declining cost of sequencing technologies hold the promise of enabling genetically tailored antiplatelet therapy. However, more evidence is needed to clarify which polymorphisms may serve as targets to improve treatment. The present review outlines the panel of polymorphisms affecting the benefit of aspirin and adenosine diphosphate receptor antagonists, including novel and ongoing studies evaluating whether genotyping may be beneficial in tailoring antiplatelet therapy.
Collapse
Affiliation(s)
- M Würtz
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| | | | | |
Collapse
|
45
|
Abstract
Cardiovascular disease is a leading cause of death worldwide. Many pharmacologic therapies are available that aim to reduce the risk of cardiovascular disease but there is significant inter-individual variation in drug response, including both efficacy and toxicity. Pharmacogenetics aims to personalize medication choice and dosage to ensure that maximum clinical benefit is achieved whilst side effects are minimized. Over the past decade, our knowledge of pharmacogenetics in cardiovascular therapies has increased significantly. The anticoagulant warfarin represents the most advanced application of pharmacogenetics in cardiovascular medicine. Prospective randomized clinical trials are currently underway utilizing dosing algorithms that incorporate genetic polymorphisms in cytochrome P450 (CYP)2C9 and vitamin k epoxide reductase (VKORC1) to determine warfarin dosages. Polymorphisms in CYP2C9 and VKORC1 account for approximately 40 % of the variance in warfarin dose. There is currently significant controversy with regards to pharmacogenetic testing in anti-platelet therapy. Inhibition of platelet aggregation by aspirin in vitro has been associated with polymorphisms in the cyclo-oxygenase (COX)-1 gene. However, COX-1 polymorphisms did not affect clinical outcomes in patients prescribed aspirin therapy. Similarly, CYP2C19 polymorphisms have been associated with clopidogrel resistance in vitro, and have shown an association with stent thrombosis, but not with other cardiovascular outcomes in a consistent manner. Response to statins has been associated with polymorphisms in the cholesterol ester transfer protein (CETP), apolipoprotein E (APOE), 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, calmin (CLMN) and apolipoprotein-CI (APOC1) genes. Although these genes contribute to the variation in lipid levels during statin therapy, their effects on cardiovascular outcomes requires further investigation. Polymorphisms in the solute carrier organic anion transporter 1B1 (SLCO1B1) gene is associated with increased statin exposure and simvastatin-induced myopathy. Angiotensin-converting enzyme (ACE) inhibitors and β-adrenoceptor antagonists (β-blockers) are medications that are important in the management of hypertension and heart failure. Insertion and deletion polymorphisms in the ACE gene are associated with elevated and reduced serum levels of ACE, respectively. No significant association was reported between the polymorphism and blood pressure reduction in patients treated with perindopril. However, a pharmacogenetic score incorporating single nucleotide polymorphisms (SNPs) in the bradykinin type 1 receptor gene and angiotensin-II type I receptor gene predicted those most likely to benefit and suffer harm from perindopril therapy. Pharmacogenetic studies into β-blocker therapy have focused on variations in the β1-adrenoceptor gene and CYP2D6, but results have been inconsistent. Pharmacogenetic testing for ACE inhibitor and β-blocker therapy is not currently used in clinical practice. Despite extensive research, no pharmacogenetic tests are currently in clinical practice for cardiovascular medicines. Much of the research remains in the discovery phase, with researchers struggling to demonstrate clinical utility and validity. This is a problem seen in many areas of therapeutics and is because of many factors, including poor study design, inadequate sample sizes, lack of replication, and heterogeneity amongst patient populations and phenotypes. In order to progress pharmacogenetics in cardiovascular therapies, researchers need to utilize next-generation sequencing technologies, develop clear phenotype definitions and engage in multi-center collaborations, not only to obtain larger sample sizes but to replicate associations and confirm results across different ethnic groups.
Collapse
|
46
|
Nistala R, Andresen BT, Pulakat L, Meuth A, Sinak C, Mandavia C, Thekkumkara T, Speth RC, Whaley-Connell A, Sowers JR. Angiotensin type 1 receptor resistance to blockade in the opossum proximal tubule cell due to variations in the binding pocket. Am J Physiol Renal Physiol 2013; 304:F1105-13. [PMID: 23389452 PMCID: PMC3625841 DOI: 10.1152/ajprenal.00127.2012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 01/31/2013] [Indexed: 01/13/2023] Open
Abstract
Blockade of the angiotensin (ANG) II receptor type 1 (AT(1)R) with angiotensin receptor blockers (ARBs) is widely used in the treatment of hypertension. However, ARBs are variably effective in reducing blood pressure, likely due, in part, to polymorphisms in the ARB binding pocket of the AT(1)R. Therefore, we need a better understanding of variations/polymorphisms that alter binding of ARBs in heterogeneous patient populations. The opossum proximal tubule cell (OKP) line is commonly used in research to evaluate renal sodium handling and therefore blood pressure. Investigating this issue, we found natural sequence variations in the opossum AT(1)R paralleling those observed in the human AT(1)R. Therefore, we posited that these sequence variations may explain ARB resistance. We demonstrate that OKP cells express AT(1)R mRNA, bind (125)I-labeled ANG II, and exhibit ANG II-induced phosphorylation of Jak2. However, Jak2 phosphorylation is not inhibited by five different ARBs commonly used to treat hypertension. Additionally, nonradioactive ANG II competes (125)I-ANG II efficiently, whereas a 10-fold molar excess of olmesartan and the ANG II receptor type 2 blocker PD-123319 is unable to block (125)I-ANG II binding. In contrast, ANG II binding to OKP cells stably expressing rat AT(1A)Rs, which have a conserved AT(1)R-binding pocket with human AT(1)R, is efficiently inhibited by olmesartan. A novel observation was that resistance to ARB binding to opossum AT(1)Rs correlates with variations from the human receptor at positions 108, 163, 192, and 198 within the ARB-binding pocket. These observations highlight the potential utility of evaluating AT(1)R polymorphisms within the ARB-binding pocket in various hypertensive populations.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Angiotensin II Type 1 Receptor Blockers/pharmacology
- Animals
- Binding Sites
- Cell Line
- Drug Resistance/genetics
- Humans
- Imidazoles/pharmacology
- Iodine Radioisotopes
- Janus Kinase 2/metabolism
- Kidney Tubules, Proximal/cytology
- Kidney Tubules, Proximal/drug effects
- Opossums/genetics
- Phylogeny
- Polymorphism, Genetic/genetics
- Protein Structure, Secondary
- Protein Structure, Tertiary
- RNA, Messenger/genetics
- Rats
- Receptor, Angiotensin, Type 1/chemistry
- Receptor, Angiotensin, Type 1/genetics
- Receptor, Angiotensin, Type 1/metabolism
- Species Specificity
- Tetrazoles/pharmacology
- Vasoconstrictor Agents/metabolism
- Vasoconstrictor Agents/pharmacology
Collapse
Affiliation(s)
- Ravi Nistala
- Division of Nephrology, Department of Internal Medicine, University of Missouri-Columbia, Columbia, MO 65212, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
In the coming years, genomics will impact clinical practice in multiple ways. However, one of the most important applications will be in the determination of the best treatments in personalized medicine. This is, in fact, one of the fields in which genetic variants have already been most successful and useful to clinicians. Here, we briefly review the current state of the art on pharmacogenomics and its applications to modern cardiovascular medicine.
Collapse
|
48
|
Gong IY, Kim RB. Pharmacogenetic Advances in Cardiovascular Medicine: Relevance to Personalized Medicine. CURRENT GENETIC MEDICINE REPORTS 2013. [DOI: 10.1007/s40142-012-0001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
49
|
Postmus I, Verschuren JJW, de Craen AJM, Slagboom PE, Westendorp RGJ, Jukema JW, Trompet S. Pharmacogenetics of statins: achievements, whole-genome analyses and future perspectives. Pharmacogenomics 2012; 13:831-40. [PMID: 22594514 DOI: 10.2217/pgs.12.25] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Statins are the most commonly prescribed class of drug worldwide and therapy is highly effective in reducing low-density lipoprotein cholesterol levels and cardiovascular events. However, there is large variability in clinical response to statin treatment. Recent research provides evidence that genetic variation contributes to this variable response to statin treatment. Until recently, pharmacogenetic studies have used mainly candidate gene approaches to investigate these effects. Since candidate gene studies explain only a small part of the observed variation and results have often been inconsistent, genome-wide association (GWA) studies may be a better approach. In this paper the most important candidate gene studies and the first published GWA studies assessing statin response are discussed. Moreover, we describe the PHASE study, an EU-funded GWA study that will investigate the genetic variation responsible for the variation in response to pravastatin in a large randomized clinical trial.
Collapse
Affiliation(s)
- Iris Postmus
- Department of Gerontology & Geriatrics, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
50
|
Value of platelet pharmacogenetics in common clinical practice of patients with ST-segment elevation myocardial infarction. Int J Cardiol 2012; 167:2882-8. [PMID: 22940005 DOI: 10.1016/j.ijcard.2012.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/13/2012] [Accepted: 07/21/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND Antiplatelet drug resistance is a well-known problem, causing recurrent cardiovascular events. Multiple genetic polymorphisms have been related to antiplatelet resistance by several large trials, however data from common clinical practice is limited. We examined the influence of previously described polymorphisms, related to aspirin and clopidogrel resistance, on treatment outcome in a real life unselected population of patients presenting with ST-segment elevation myocardial infarction (STEMI) treated with percutaneous coronary intervention. METHODS AND RESULTS This cohort study consisted of 1327 patients with STEMI. Patients were treated according to a standardized guideline-based protocol. Nine polymorphisms, COX1 (-842A>G), P2Y1 (893C>T), GPIa (807C>T), GPIIIa (PlA1/A2), CYP2C19 (*2, *3 and *17), ABCB1 (3435T>C) and PON1 (576A>G), were genotyped. During 1 year of follow up the primary endpoint, a composite of cardiac death or recurrent myocardial infarction, was reached in 86 patients. The COX1 and CYP2C19*2 polymorphisms were associated with the primary endpoint, HR 2.55 (95% CI 1.48-4.40), P=0.001 and HR 2.03 (1.34-3.09) P=0.001, respectively. The combined analysis demonstrated a 2.5-fold increased risk for individuals with ≥ 2 risk alleles, P=6.9 × 10(-9). The association of COX1 was driven by mortality related events whereas that of CYP2C19*2 was mainly attributed to myocardial infarction and stent thrombosis. CONCLUSION In this unselected, real life population of STEMI patient on dual-antiplatelet therapy, the polymorphisms COX1 -842A>G and CYP2C19*2 were determinants of thrombotic complications during follow-up. We show that in a clinical setting, testing for these polymorphisms could be of value in the identification of STEMI patients at risk for recurrent cardiovascular events.
Collapse
|