1
|
Desai DA, Baby A, Ananthamohan K, Green LC, Arif M, Duncan BC, Kumar M, Singh RR, Koch SE, Natesan S, Rubinstein J, Jegga AG, Sadayappan S. Roles of cMyBP-C phosphorylation on cardiac contractile dysfunction in db/db mice. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 8:100075. [PMID: 38957358 PMCID: PMC11218625 DOI: 10.1016/j.jmccpl.2024.100075] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Type 2 diabetes mellitus (T2DM) is a metabolic disease and comorbidity associated with several conditions, including cardiac dysfunction leading to heart failure with preserved ejection fraction (HFpEF), in turn resulting in T2DM-induced cardiomyopathy (T2DM-CM). However, the molecular mechanisms underlying the development of T2DM-CM are poorly understood. It is hypothesized that molecular alterations in myopathic genes induced by diabetes promote the development of HFpEF, whereas cardiac myosin inhibitors can rescue the resultant T2DM-mediated cardiomyopathy. To test this hypothesis, a Leptin receptor-deficient db/db homozygous (Lepr db/db) mouse model was used to define the pathogenesis of T2DM-CM. Echocardiographic studies at 4 and 6 months revealed that Lepr db/db hearts started developing cardiac dysfunction by four months, and left ventricular hypertrophy with diastolic dysfunction was evident at 6 months. RNA-seq data analysis, followed by functional enrichment, revealed the differential regulation of genes related to cardiac dysfunction in Lepr db/db heart tissues. Strikingly, the level of cardiac myosin binding protein-C phosphorylation was significantly increased in Lepr db/db mouse hearts. Finally, using isolated skinned papillary muscles and freshly isolated cardiomyocytes, CAMZYOS ® (mavacamten, MYK-461), a prescription heart medicine used for symptomatic obstructive hypertrophic cardiomyopathy treatment, was tested for its ability to rescue T2DM-CM. Compared with controls, MYK-461 significantly reduced force generation in papillary muscle fibers and cardiomyocyte contractility in the db/db group. This line of evidence shows that 1) T2DM-CM is associated with hyperphosphorylation of cardiac myosin binding protein-C and 2) MYK-461 significantly lessened disease progression in vitro, suggesting its promise as a treatment for HFpEF.
Collapse
Affiliation(s)
- Darshini A. Desai
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Akhil Baby
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Kalyani Ananthamohan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Lisa C. Green
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mohammed Arif
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Brittany C. Duncan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Mohit Kumar
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rohit R. Singh
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sheryl E. Koch
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Sankar Natesan
- Department of Genetic Engineering, School of Biotechnology, Madurai Kamaraj University, Madurai 625021, India
| | - Jack Rubinstein
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Anil G. Jegga
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Sakthivel Sadayappan
- Center for Cardiovascular Research, Department of Internal Medicine, Division of Cardiovascular Health and Disease, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| |
Collapse
|
2
|
Schroeder L, Soltesz L, Leyens J, Strizek B, Berg C, Mueller A, Kipfmueller F. Vasoactive Management of Pulmonary Hypertension and Ventricular Dysfunction in Neonates Following Complicated Monochorionic Twin Pregnancies: A Single-Center Experience. CHILDREN (BASEL, SWITZERLAND) 2024; 11:548. [PMID: 38790543 PMCID: PMC11120423 DOI: 10.3390/children11050548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 04/26/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
OBJECTIVES Twins resulting from a complicated monochorionic (MC) twin pregnancy are at risk for postnatal evolution of pulmonary hypertension (PH) and cardiac dysfunction (CD). Both pathologies are important contributors to short- and long-term morbidity in these infants. The aim of the present retrospective single-center cohort study was to evaluate the need for vasoactive treatment for PH and CD in these neonates. METHODOLOGY In-born neonates following a complicated MC twin pregnancy admitted to the department of neonatology of the University Children's Hospital Bonn (UKB) between October 2019 and December 2023 were screened for study inclusion. Finally, 70 neonates were included in the final analysis, with 37 neonates subclassified as recipient twins (group A) and 33 neonates as donor twins (group B). RESULTS The overall PH incidence at day of life (DOL) 1 was 17% and decreased to 6% at DOL 7 (p = 0.013), with no PH findings at DOL 28. The overall incidence of CD was 56% at DOL 1 and decreased strongly until DOL 7 (10%, p = 0.015), with no diagnosis of CD at DOL 28. The use of dobutamine, norepinephrine, and vasopressin at DOL 1 until DOL 7 did not differ between the subgroups, whereas the dosing of milrinone was significantly higher in Group B at DOL 1 (p = 0.043). Inhaled nitric oxide (iNO) was used in 16% of the cohort, and a levosimendan therapy was administered in 34% of the neonates. One-third of the cohort was treated with oral beta blockers, and in 10%, an intravenous beta blockade (landiolol) was administered. The maximum levosimendan vasoactive-inotropic score (LVISmax) increased from DOL 1 (12.4 [3/27]) to DOL 2 (14.6 [1/68], p = 0.777), with a significant decrease thereafter as measured at DOL 7 (9.5 [2/30], p = 0.011). CONCLUSION Early PH and CD are frequent diagnoses in neonates following a complicated MC twin pregnancy, and an individualized vasoactive treatment strategy is required in the management of these infants.
Collapse
Affiliation(s)
- Lukas Schroeder
- Department of Neonatology and Pediatric Intensive Care Medicine, University Children’s Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (F.K.)
| | - Leon Soltesz
- Department of Neonatology and Pediatric Intensive Care Medicine, University Children’s Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (F.K.)
| | - Judith Leyens
- Department of Neonatology and Pediatric Intensive Care Medicine, University Children’s Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (F.K.)
| | - Brigitte Strizek
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph Berg
- Department of Obstetrics and Prenatal Medicine, University Hospital Bonn, 53127 Bonn, Germany
- Division of Prenatal Medicine and Gynecologic Sonography, Department of Obstetrics and Gynecology, University of Cologne, 50931 Cologne, Germany
| | - Andreas Mueller
- Department of Neonatology and Pediatric Intensive Care Medicine, University Children’s Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (F.K.)
| | - Florian Kipfmueller
- Department of Neonatology and Pediatric Intensive Care Medicine, University Children’s Hospital Bonn, Venusberg-Campus 1, 53127 Bonn, Germany (F.K.)
| |
Collapse
|
3
|
Pasetto M, Calabrò LA, Annoni F, Scolletta S, Labbé V, Donadello K, Taccone FS. Ivabradine in Septic Shock: A Narrative Review. J Clin Med 2024; 13:2338. [PMID: 38673611 PMCID: PMC11051007 DOI: 10.3390/jcm13082338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
In patients with septic shock, compensatory tachycardia initially serves to maintain adequate cardiac output and tissue oxygenation but may persist despite appropriate fluid and vasopressor resuscitation. This sustained elevation in heart rate and altered heart rate variability, indicative of autonomic dysfunction, is a well-established independent predictor of adverse outcomes in critical illness. Elevated heart rate exacerbates myocardial oxygen demand, reduces ventricular filling time, compromises coronary perfusion during diastole, and impairs the isovolumetric relaxation phase of the cardiac cycle, contributing to ventricular-arterial decoupling. This also leads to increased ventricular and atrial filling pressures, with a heightened risk of arrhythmias. Ivabradine, a highly selective inhibitor of the sinoatrial node's pacemaker current (If or "funny" current), mitigates heart rate by modulating diastolic depolarization slope without affecting contractility. By exerting a selective chronotropic effect devoid of negative inotropic properties, ivabradine shows potential for improving hemodynamics in septic shock patients with cardiac dysfunction. This review evaluates the plausible mechanisms and existing evidence regarding the utility of ivabradine in managing patients with septic shock.
Collapse
Affiliation(s)
- Marco Pasetto
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
- Department of Surgery, Dentistry, Gynecology and Paediatrics, University of Verona, 37129 Verona, Italy
| | - Lorenzo Antonino Calabrò
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Filippo Annoni
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Sabino Scolletta
- Anesthesia and Intensive Care Unit, Department of Medicine, Surgery and Neuroscience, University Hospital of Siena, 53100 Siena, Italy
| | - Vincent Labbé
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Katia Donadello
- Department of Surgery, Dentistry, Gynecology and Paediatrics, University of Verona, 37129 Verona, Italy
- Anesthesia and Intensive Care Unit B, University Hospital Integrated Trust of Verona, 37134 Verona, Italy
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, 1070 Brussels, Belgium
| |
Collapse
|
4
|
Shao JW, Chen BH, Abu-Shaban K, Baiyasi A, Wu LM, Ma J. Epicardial adipose tissue in obesity with heart failure with preserved ejection fraction: Cardiovascular magnetic resonance biomarker study. World J Cardiol 2024; 16:149-160. [PMID: 38576524 PMCID: PMC10989227 DOI: 10.4330/wjc.v16.i3.149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/09/2024] [Accepted: 02/06/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Obesity has become a serious public health issue, significantly elevating the risk of various complications. It is a well-established contributor to Heart failure with preserved ejection fraction (HFpEF). Evaluating HFpEF in obesity is crucial. Epicardial adipose tissue (EAT) has emerged as a valuable tool for validating prognostic biomarkers and guiding treatment targets. Hence, assessing EAT is of paramount importance. Cardiovascular magnetic resonance (CMR) imaging is acknowledged as the gold standard for analyzing cardiac function and morphology. We hope to use CMR to assess EAT as a bioimaging marker to evaluate HFpEF in obese patients. AIM To assess the diagnostic utility of CMR for evaluating heart failure with preserved ejection fraction [HFpEF; left ventricular (LV) ejection fraction ≥ 50%] by measuring the epicardial adipose tissue (EAT) volumes and EAT mass in obese patients. METHODS Sixty-two obese patients were divided into two groups for a case-control study based on whether or not they had heart failure with HFpEF. The two groups were defined as HFpEF+ and HFpEF-. LV geometry, global systolic function, EAT volumes and EAT mass of all subjects were obtained using cine magnetic resonance sequences. RESULTS Forty-five patients of HFpEF- group and seventeen patients of HFpEF+ group were included. LV mass index (g/m2) of HFpEF+ group was higher than HFpEF- group (P < 0.05). In HFpEF+ group, EAT volumes, EAT volume index, EAT mass, EAT mass index and the ratio of EAT/[left atrial (LA) left-right (LR) diameter] were higher compared to HFpEF- group (P < 0.05). In multivariate analysis, Higher EAT/LA LR diameter ratio was associated with higher odds ratio of HFpEF. CONCLUSION EAT/LA LR diameter ratio is highly associated with HFpEF in obese patients. It is plausible that there may be utility in CMR for assessing obese patients for HFpEF using EAT/LA LR diameter ratio as a diagnostic biomarker. Further prospective studies, are needed to validate these proof-of-concept findings.
Collapse
Affiliation(s)
- Ju-Wei Shao
- Department of Radiology, The Affiliated Hospital of Yunnan University, Kunming 650021, Yunnan Province, China
| | - Bing-Hua Chen
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Kamil Abu-Shaban
- Department of Radiology, University of Toledo College of Medicine, Toledo, OH 43623, United States
| | - Ahmad Baiyasi
- Department of Radiology, Wayne State University School of Medicine, Detroit, MI 48201, United States
| | - Lian-Ming Wu
- Department of Radiology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jing Ma
- Department of Endocrinology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China.
| |
Collapse
|
5
|
Reil JC, Saisho H, Jockwer A, Fujita B, Paluszkiewicz L, Reil GH, Ensminger S, Scharfschwerdt M, Aboud A. Impact of heart rate, aortic compliance and stroke volume on the aortic regurgitation fraction studied in an ex vivo pig model. Open Heart 2023; 10:e002319. [PMID: 37696617 PMCID: PMC10496650 DOI: 10.1136/openhrt-2023-002319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 08/18/2023] [Indexed: 09/13/2023] Open
Abstract
INTRODUCTION Drug therapy to reduce the regurgitation fraction (RF) of high-grade aortic regurgitation (AR) by increasing heart rate (HR) is generally recommended. However, chronic HR reduction in HFREF patients can significantly improve aortic compliance and thereby potentially decrease RF. To clarify these contrasts, we examined the influence of HR, aortic compliance and stroke volume (SV) on RF in an ex vivo porcine model of severe AR. METHODS Experiments were performed on porcine ascending aorta with aortic valves (n=12). Compliance was varied by inserting a Dacron graft close to the aortic valve. Both tube systems were connected to a left heart simulator varying HR and SV. AR was accomplished by punching a 0.3 cm2 hole in one aortic cusp. Flow, RF, SV and aortic pressure were measured, aortic compliance with transoesophageal ultrasound probes. RESULTS Compliance of the aorta was significantly reduced after Dacron graft insertion (0.55%±0.21%/mm Hg vs 0.01%±0.007%/mm Hg, p<0.001, respectively). With increasing HR, RF was significantly reduced in each steady state of the native aorta (HR 40 bpm: 88%±7% vs HR 120 bpm: 42%±10%; p<0.001), but Dacron tube did not affect RF (HR 40 bpm: 87%±8%; p=0.79; HR 120 bpm: 42%±3%; p=0.86). Increasing SV also reduced RF independent of the stiff Dacron graft. CONCLUSION Aortic compliance did not affect AR in the ex vivo porcine model of AR. RF was significantly reduced with increasing HR and SV. These results affirm that HR lowering and negative inotropic drugs should be avoided to treat severe AR.
Collapse
Affiliation(s)
- Jan Christian Reil
- Cardiology, Herz- und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany
| | - Hiroyuki Saisho
- Cardiothoracic Surgery, Universitätsklinikum Schleswig-Holstein Universitäres Herzzentrum Lübeck, Lubeck, Germany
| | - Antonia Jockwer
- Cardiothoracic Surgery, Universitätsklinikum Schleswig-Holstein Universitäres Herzzentrum Lübeck, Lubeck, Germany
| | - Buntaro Fujita
- Cardiothoracic Surgery, Universitätsklinikum Schleswig-Holstein Universitäres Herzzentrum Lübeck, Lubeck, Germany
| | - Lech Paluszkiewicz
- Cardiothoracic Surgery, Herz- und Diabeteszentrum Nordrhein-Westfalen, Bad Oeynhausen, Germany
| | | | - Stephan Ensminger
- Cardiothoracic Surgery, Universitätsklinikum Schleswig-Holstein Universitäres Herzzentrum Lübeck, Lubeck, Germany
| | - Michael Scharfschwerdt
- Cardiothoracic Surgery, Universitätsklinikum Schleswig-Holstein Universitäres Herzzentrum Lübeck, Lubeck, Germany
| | - Anas Aboud
- Cardiothoracic Surgery, Universitätsklinikum Schleswig-Holstein Universitäres Herzzentrum Lübeck, Lubeck, Germany
| |
Collapse
|
6
|
Matsiukevich D, Kovacs A, Li T, Kokkonen-Simon K, Matkovich SJ, Oladipupo SS, Ornitz DM. Characterization of a robust mouse model of heart failure with preserved ejection fraction. Am J Physiol Heart Circ Physiol 2023; 325:H203-H231. [PMID: 37204871 DOI: 10.1152/ajpheart.00038.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 05/21/2023]
Abstract
Heart failure (HF) is a leading cause of morbidity and mortality particularly in older adults and patients with multiple metabolic comorbidities. Heart failure with preserved ejection fraction (HFpEF) is a clinical syndrome with multisystem organ dysfunction in which patients develop symptoms of HF as a result of high left ventricular (LV) diastolic pressure in the context of normal or near normal LV ejection fraction (LVEF; ≥50%). Challenges to create and reproduce a robust rodent phenotype that recapitulates the multiple comorbidities that exist in this syndrome explain the presence of various animal models that fail to satisfy all the criteria of HFpEF. Using a continuous infusion of angiotensin II and phenylephrine (ANG II/PE), we demonstrate a strong HFpEF phenotype satisfying major clinically relevant manifestations and criteria of this pathology, including exercise intolerance, pulmonary edema, concentric myocardial hypertrophy, diastolic dysfunction, histological signs of microvascular impairment, and fibrosis. Conventional echocardiographic analysis of diastolic dysfunction identified early stages of HFpEF development and speckle tracking echocardiography analysis including the left atrium (LA) identified strain abnormalities indicative of contraction-relaxation cycle impairment. Diastolic dysfunction was validated by retrograde cardiac catheterization and analysis of LV end-diastolic pressure (LVEDP). Among mice that developed HFpEF, two major subgroups were identified with predominantly perivascular fibrosis and interstitial myocardial fibrosis. In addition to major phenotypic criteria of HFpEF that were evident at early stages of this model (3 and 10 days), accompanying RNAseq data demonstrate activation of pathways associated with myocardial metabolic changes, inflammation, activation of extracellular matrix (ECM) deposition, microvascular rarefaction, and pressure- and volume-related myocardial stress.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is an emerging epidemic affecting up to half of patients with heart failure. Here we used a chronic angiotensin II/phenylephrine (ANG II/PE) infusion model and instituted an updated algorithm for HFpEF assessment. Given the simplicity in generating this model, it may become a useful tool for investigating pathogenic mechanisms, identification of diagnostic markers, and for drug discovery aimed at both prevention and treatment of HFpEF.
Collapse
Affiliation(s)
- Dzmitry Matsiukevich
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Attila Kovacs
- Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | - Tiandao Li
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| | | | - Scot J Matkovich
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - Sunday S Oladipupo
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, United States
| | - David M Ornitz
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, Missouri, United States
| |
Collapse
|
7
|
Liu B, Shalamu A, Pei Z, Liu L, Wei Z, Qu Y, Song S, Luo W, Dong Z, Weng X, Ge J. A novel mouse model of heart failure with preserved ejection fraction after chronic kidney disease induced by retinol through JAK/STAT pathway. Int J Biol Sci 2023; 19:3661-3677. [PMID: 37564202 PMCID: PMC10411473 DOI: 10.7150/ijbs.83432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/26/2023] [Indexed: 08/12/2023] Open
Abstract
Heart failure is the leading cardiovascular comorbidity in chronic kidney disease (CKD) patients. Among the types of heart failure according to ejection fraction, heart failure with preserved ejection fraction (HFpEF) is the most common type of heart failure in CKD patients. However, the specific animal model of HFpEF afer CKD is currently missing. In this study, we determined the heart failure characteristics and dynamic progression in CKD mice. Based on these features, we established the practical HFpEF after CKD mouse model using 5/6 subtotal nephrectomy and retinol administration. Active apoptosis, impaired calcium handling, an imbalance between eNOS and oxidative stress and engaged endoplasmic reticulum stress were observed in our model. RNSseq revealed distinct gene expression patterns between HFpEF after CKD and metabolic induced-HFpEF. Furthermore, we revealed the potential mechanism of the pro-HFpEF effect of retinol. Serum accumulation of retinol in CKD prompts myocardial hypertrophy and fibrosis by activating JAK2 and phosphorylating STAT5. Finally, using small molecule inhibitor AC-4-130, we found STAT5 phosphorylation inhibitor may be a potential intervention target for HFpEF after CKD. In conclusion, we provide a novel animal model and a potential drug target for HFpEF intervention in CKD.
Collapse
Affiliation(s)
- Bowen Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Adilan Shalamu
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| | - Zhiqiang Pei
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Department of Cardiology, Taiyuan Central Hospital of Shanxi Medical University, Shanxi, 030000, China
| | - Liwei Liu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Zilun Wei
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Yanan Qu
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Shuai Song
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Wei Luo
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
| | - Zhen Dong
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| | - Xinyu Weng
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| | - Junbo Ge
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200000, China
- National Clinical Research for Interventional Medicine, Shanghai, 200000, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Chinese Academy of Medical Sciences, Shanghai, 200000, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200000, China
| |
Collapse
|
8
|
Szabo PL, Marksteiner J, Ebner J, Dostal C, Podesser BK, Sauer J, Kubista H, Todt H, Hackl B, Koenig X, Kiss A, Hilber K. Ivabradine acutely improves cardiac Ca handling and function in a rat model of Duchenne muscular dystrophy. Physiol Rep 2023; 11:e15664. [PMID: 37032434 PMCID: PMC10083165 DOI: 10.14814/phy2.15664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/22/2023] [Accepted: 03/22/2023] [Indexed: 04/11/2023] Open
Abstract
The muscular dystrophies caused by dystrophin deficiency, the so-called dystrophinopathies, are associated with impaired cardiac contractility and arrhythmias, which considerably contribute to disease morbidity and mortality. Impaired Ca handling in ventricular cardiomyocytes has been identified as a causative factor for complications in the dystrophic heart, and restoration of normal Ca handling in myocytes has emerged as a promising new therapeutic strategy. In the present study, we explored the hypothesis that ivabradine, a drug clinically approved for the treatment of heart failure and stable angina pectoris, improves Ca handling in dystrophic cardiomyocytes and thereby enhances contractile performance in the dystrophic heart. Therefore, ventricular cardiomyocytes were isolated from the hearts of adult dystrophin-deficient DMDmdx rats, and the effects of acutely applied ivabradine on intracellular Ca transients were tested. In addition, the drug's acute impact on cardiac function in DMDmdx rats was assessed by transthoracic echocardiography. We found that administration of ivabradine to DMDmdx rats significantly improved cardiac function. Moreover, the amplitude of electrically induced intracellular Ca transients in ventricular cardiomyocytes isolated from DMDmdx rats was increased by the drug. We conclude that ivabradine enhances Ca release from the sarcoplasmic reticulum in dystrophic cardiomyocytes and thereby improves contractile performance in the dystrophic heart.
Collapse
Affiliation(s)
- Petra Lujza Szabo
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Jessica Marksteiner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Janine Ebner
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Christopher Dostal
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Bruno K Podesser
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Jakob Sauer
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Helmut Kubista
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Hannes Todt
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Benjamin Hackl
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Xaver Koenig
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| | - Attila Kiss
- Ludwig Boltzmann Institute for Cardiovascular Research at the Center for Biomedical Research and Translational Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Karlheinz Hilber
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090, Vienna, Austria
| |
Collapse
|
9
|
Dongari S, Jindal S, Seenappa R. Pre-operative continuation of ivabradine therapy for dilated cardiomyopathy - Skip it or not? Saudi J Anaesth 2023; 17:284-285. [PMID: 37260645 PMCID: PMC10228852 DOI: 10.4103/sja.sja_561_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/02/2023] Open
Affiliation(s)
- Sushmitha Dongari
- Department of Anaesthesia and Intensive Care, Government Medical College and Hospital, Chandigarh, India
| | - Swati Jindal
- Department of Anaesthesia and Intensive Care, Government Medical College and Hospital, Chandigarh, India
| | - Renuka Seenappa
- Department of Anaesthesia and Intensive Care, Government Medical College and Hospital, Chandigarh, India
| |
Collapse
|
10
|
Elia A, Fossati S. Autonomic nervous system and cardiac neuro-signaling pathway modulation in cardiovascular disorders and Alzheimer's disease. Front Physiol 2023; 14:1060666. [PMID: 36798942 PMCID: PMC9926972 DOI: 10.3389/fphys.2023.1060666] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023] Open
Abstract
The heart is a functional syncytium controlled by a delicate and sophisticated balance ensured by the tight coordination of its several cell subpopulations. Accordingly, cardiomyocytes together with the surrounding microenvironment participate in the heart tissue homeostasis. In the right atrium, the sinoatrial nodal cells regulate the cardiac impulse propagation through cardiomyocytes, thus ensuring the maintenance of the electric network in the heart tissue. Notably, the central nervous system (CNS) modulates the cardiac rhythm through the two limbs of the autonomic nervous system (ANS): the parasympathetic and sympathetic compartments. The autonomic nervous system exerts non-voluntary effects on different peripheral organs. The main neuromodulator of the Sympathetic Nervous System (SNS) is norepinephrine, while the principal neurotransmitter of the Parasympathetic Nervous System (PNS) is acetylcholine. Through these two main neurohormones, the ANS can gradually regulate cardiac, vascular, visceral, and glandular functions by turning on one of its two branches (adrenergic and/or cholinergic), which exert opposite effects on targeted organs. Besides these neuromodulators, the cardiac nervous system is ruled by specific neuropeptides (neurotrophic factors) that help to preserve innervation homeostasis through the myocardial layers (from epicardium to endocardium). Interestingly, the dysregulation of this neuro-signaling pathway may expose the cardiac tissue to severe disorders of different etiology and nature. Specifically, a maladaptive remodeling of the cardiac nervous system may culminate in a progressive loss of neurotrophins, thus leading to severe myocardial denervation, as observed in different cardiometabolic and neurodegenerative diseases (myocardial infarction, heart failure, Alzheimer's disease). This review analyzes the current knowledge on the pathophysiological processes involved in cardiac nervous system impairment from the perspectives of both cardiac disorders and a widely diffused and devastating neurodegenerative disorder, Alzheimer's disease, proposing a relationship between neurodegeneration, loss of neurotrophic factors, and cardiac nervous system impairment. This overview is conducive to a more comprehensive understanding of the process of cardiac neuro-signaling dysfunction, while bringing to light potential therapeutic scenarios to correct or delay the adverse cardiovascular remodeling, thus improving the cardiac prognosis and quality of life in patients with heart or neurodegenerative disorders.
Collapse
|
11
|
Li J, Fredericks M, Tang M, Cannell M, Joshi S, Kumar R, Andre P, Suragani RNVS. The activin receptor ligand trap ActRIIB:ALK4-Fc ameliorates cardiomyopathy induced by neuromuscular disease and diabetes. FEBS Lett 2022; 596:3145-3158. [PMID: 35920165 DOI: 10.1002/1873-3468.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 01/14/2023]
Abstract
Cardiomyopathies are ascribed to a variety of etiologies, present with diverse clinical phenotypes, and lack disease-modifying treatments. Mounting evidence implicates dysregulated activin receptor signaling in heart disease and highlights inhibition of this pathway as a potential therapeutic target. Here, we explored the effects of activin ligand inhibition using ActRIIB:ALK4-Fc, a heterodimeric receptor fusion protein, in two mechanistically distinct murine models of cardiomyopathy. Treatment with ActRIIB:ALK4-Fc significantly improved systolic or diastolic function in cardiomyopathy induced by neuromuscular disease or diabetes mellitus. Moreover, ActRIIB:ALK4-Fc corrected Ca2+ handling protein expression in diseased heart tissues, suggesting that activin signaling inhibition could alleviate cardiomyopathies in part by rebalancing aberrant intracellular Ca2+ homeostasis-a common underlying pathomechanism in diverse heart diseases.
Collapse
Affiliation(s)
- Jia Li
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Maureen Fredericks
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Mingxin Tang
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Marishka Cannell
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Sachindra Joshi
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Ravindra Kumar
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | - Patrick Andre
- Discovery Group, Acceleron Pharma Inc., a subsidiary of Merck & Co., Inc., Rahway, NJ, USA
| | | |
Collapse
|
12
|
Hamilton S, Terentyev D. ER stress and calcium-dependent arrhythmias. Front Physiol 2022; 13:1041940. [PMID: 36425292 PMCID: PMC9679650 DOI: 10.3389/fphys.2022.1041940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
The sarcoplasmic reticulum (SR) plays the key role in cardiac function as the major source of Ca2+ that activates cardiomyocyte contractile machinery. Disturbances in finely-tuned SR Ca2+ release by SR Ca2+ channel ryanodine receptor (RyR2) and SR Ca2+ reuptake by SR Ca2+-ATPase (SERCa2a) not only impair contraction, but also contribute to cardiac arrhythmia trigger and reentry. Besides being the main Ca2+ storage organelle, SR in cardiomyocytes performs all the functions of endoplasmic reticulum (ER) in other cell types including protein synthesis, folding and degradation. In recent years ER stress has become recognized as an important contributing factor in many cardiac pathologies, including deadly ventricular arrhythmias. This brief review will therefore focus on ER stress mechanisms in the heart and how these changes can lead to pro-arrhythmic defects in SR Ca2+ handling machinery.
Collapse
Affiliation(s)
- Shanna Hamilton
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Shanna Hamilton,
| | - Dmitry Terentyev
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, United States,Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
13
|
Schroeder L, Monno P, Unger M, Ackerl J, Shatilova O, Schmitt J, Dresbach T, Mueller A, Kipfmueller F. Heart rate control with landiolol hydrochloride in infants with ventricular dysfunction and pulmonary hypertension. ESC Heart Fail 2022; 10:385-396. [PMID: 36256500 PMCID: PMC9871696 DOI: 10.1002/ehf2.14202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/30/2022] [Accepted: 10/02/2022] [Indexed: 01/27/2023] Open
Abstract
AIMS Sinus tachycardia potentially leads to a deterioration of cardiac function in critically ill infants. The ultrashort-acting beta-blocker landiolol hydrochloride is a new pharmacological option for a selective heart rate (HR) control in patients with sinus tachycardia and heart failure. METHODS AND RESULTS This study was a monocentric retrospective medical chart review study at the University Children's Hospital Bonn (Germany) from 01 January 2018 until 30 June 2020. This study included a cohort of 62 term and preterm infants with a diagnosis of ventricular dysfunction and/or pulmonary hypertension (PH), in combination with preexisting tachycardia and treatment with landiolol hydrochloride. Infants were allocated to subgroups according to weeks of gestational age (GA): born at <35 weeks of GA (Group A) and born at >35 weeks of GA (Group B). Tachycardia was defined depending on GA (<35 weeks of GA: >170 b.p.m.; ≥ 35 weeks of GA: >150 b.p.m.). The primary endpoint was defined as percentage of patients achieving HR normalization during the first 24 h of landiolol treatment. Twenty-nine infants were allocated to Group A and 33 infants to Group B. The overall median GA of the infants was 35.3 (23.3/41.3), with 53% female infants. The primary endpoint was achieved in 57 patients (91.9%). The median time to reach target HR was 1.8 (0.3-24) h. The median starting dose of landiolol was 8.8 (3.9-25.3) μk/kg/min, with a median dosing during the first 24 h of landiolol treatment of 9.9 (2.8-35.4) μk/kg/min. The median landiolol dose while achieving the target HR was 10 (2.4-44.4) μk/kg/min. The right ventricular dysfunction improved significantly in both groups 24 h after onset of landiolol infusion (P = 0.001 in Group A and P = 0.045 in Group B). The left ventricular and biventricular dysfunction improved significantly 24 h after onset of landiolol infusion in infants of Group B (P = 0.004 and P = 0.006, respectively). The severity of PH improved significantly after 24 h in infants of Group A (P < 0.001). During landiolol treatment, no severe drug-related adverse event was noted. CONCLUSIONS The use of landiolol hydrochloride for HR control of non-arrhythmic tachycardia in critically ill infants is well tolerated. Reduction of HR can be guided quickly and landiolol treatment is associated with an improvement of ventricular dysfunction and PH.
Collapse
Affiliation(s)
- Lukas Schroeder
- Department of Neonatology and Pediatric Intensive Care MedicineUniversity Children's Hospital BonnVenusberg‐Campus 1D‐53127BonnGermany
| | - Paulina Monno
- Department of Neonatology and Pediatric Intensive Care MedicineUniversity Children's Hospital BonnVenusberg‐Campus 1D‐53127BonnGermany
| | | | | | | | - Joachim Schmitt
- Department of Neonatology and Pediatric Intensive Care MedicineUniversity Children's Hospital BonnVenusberg‐Campus 1D‐53127BonnGermany
| | - Till Dresbach
- Department of Neonatology and Pediatric Intensive Care MedicineUniversity Children's Hospital BonnVenusberg‐Campus 1D‐53127BonnGermany
| | - Andreas Mueller
- Department of Neonatology and Pediatric Intensive Care MedicineUniversity Children's Hospital BonnVenusberg‐Campus 1D‐53127BonnGermany
| | - Florian Kipfmueller
- Department of Neonatology and Pediatric Intensive Care MedicineUniversity Children's Hospital BonnVenusberg‐Campus 1D‐53127BonnGermany
| |
Collapse
|
14
|
Böhm M, Butler J, Mahfoud F, Filippatos G, Ferreira JP, Pocock SJ, Slawik J, Brueckmann M, Linetzky B, Schüler E, Wanner C, Zannad F, Packer M, Anker SD. Heart failure outcomes according to heart rate and effects of empagliflozin in patients of the EMPEROR-Preserved trial. Eur J Heart Fail 2022; 24:1883-1891. [PMID: 36087309 PMCID: PMC9828798 DOI: 10.1002/ejhf.2677] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 08/27/2022] [Indexed: 01/12/2023] Open
Abstract
AIMS Empagliflozin reduces cardiovascular death (CVD) or heart failure hospitalization (HHF) in patients with heart failure and preserved ejection fraction (HFpEF). Treatment effects and safety in relation to resting heart rate (RHR) have not been studied. METHODS AND RESULTS The interplay of RHR and empagliflozin effects in EMPEROR-Preserved was evaluated. We grouped patients (n = 5988) according to their baseline RHR (<70 bpm [n = 2650], 70-75 bpm [n = 967], >75 bpm [n = 1736]) and explored the influence of RHR on CVD or HHF (primary outcome) and its components in sinus rhythm or atrial fibrillation/flutter (AF) and adverse events. We studied the efficacy of empagliflozin across the RHR spectrum. Compared to placebo, empagliflozin did not change heart rate over time. The primary outcome (p for trend = 0.0004) and its components CVD (p trend = 0.0002), first HHF (p for trend = 0.0099) and all-cause death (p < 0.0001) increased with RHR only in sinus rhythm but not AF. The risk increase with RHR was similar in patients with heart failure and mildly reduced ejection fraction (left ventricular ejection fraction [LVEF] 40-49%) and HFpEF (LVEF ≥50%). Baseline RHR had no influence on the effect of empagliflozin on the primary outcomes (p for trend = 0.20), first HHF (p for trend = 0.49). There were no clinically relevant differences in adverse events between empagliflozin and placebo across the RHR groups. CONCLUSION Resting heart rate associates with outcomes only in sinus rhythm but not in AF. Empagliflozin reduced outcomes over the entire RHR spectrum without increase of adverse events.
Collapse
Affiliation(s)
- Michael Böhm
- Klinik für Innere Medizin IIIUniversitätsklinikum des Saarlandes, Saarland UniversitySaarlandGermany
- Cape Heart InstituteCape TownSouth Africa
| | - Javed Butler
- Department of MedicineUniversity of Mississippi School of MedicineJacksonMSUSA
- Baylor Scott and White Research InstituteDallasTexasUSA
| | - Felix Mahfoud
- Klinik für Innere Medizin IIIUniversitätsklinikum des Saarlandes, Saarland UniversitySaarlandGermany
| | - Gerasimos Filippatos
- National and Kapodistrian University of Athens School of MedicineAthens University Hospital AttikonAthensGreece
| | - João Pedro Ferreira
- Centre d'Investigation Clinique‐ Plurithématique Inserm CIC‐P 1433Université de LorraineNancyFrance
- France Inserm U1116, CHRU Nancy BraboisF‐CRIN INI‐CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
| | - Stuart J. Pocock
- Department of Medical StatisticsLondon School of Hygiene & Tropical MedicineLondonUK
| | - Jonathan Slawik
- Klinik für Innere Medizin IIIUniversitätsklinikum des Saarlandes, Saarland UniversitySaarlandGermany
| | - Martina Brueckmann
- Boehringer Ingelheim InternationalIngelheimGermany
- First Department of Medicine, Faculty of Medicine MannheimUniversity of HeidelbergMannheimGermany
| | - Bruno Linetzky
- Eli Lilly Interamerica Inc, Suc ArgentinaBuenos AiresArgentina
| | | | - Christoph Wanner
- Medizinische Klinik und Poliklinik 1, Schwerpunkt NephrologieUniversitätsklinikum WürzburgWürzburgGermany
| | - Faiez Zannad
- Centre d'Investigation Clinique‐ Plurithématique Inserm CIC‐P 1433Université de LorraineNancyFrance
- France Inserm U1116, CHRU Nancy BraboisF‐CRIN INI‐CRCT (Cardiovascular and Renal Clinical Trialists)NancyFrance
| | - Milton Packer
- Baylor University Medical CenterDallasTXUSA
- Imperial CollegeLondonUK
| | - Stefan D. Anker
- Department of Cardiology (CVK); and Berlin Institute of Health Center for Regenerative Therapies (BCRT); German Centre for Cardiovascular Research (DZHK) partner site BerlinCharité Universitätsmedizin BerlinBerlinGermany
| | | |
Collapse
|
15
|
Smith AN, Altara R, Amin G, Habeichi NJ, Thomas DG, Jun S, Kaplan A, Booz GW, Zouein FA. Genomic, Proteomic, and Metabolic Comparisons of Small Animal Models of Heart Failure With Preserved Ejection Fraction: A Tale of Mice, Rats, and Cats. J Am Heart Assoc 2022; 11:e026071. [PMID: 35904190 PMCID: PMC9375492 DOI: 10.1161/jaha.122.026071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a medical anomaly that baffles researchers and physicians alike. The overall phenotypical changes of diastolic function and left ventricular hypertrophy observed in HFpEF are definable; however, the metabolic and molecular alterations that ultimately produce these changes are not well established. Comorbidities such as obesity, hypertension, and diabetes, as well as general aging, play crucial roles in its development and progression. Various animal models have recently been developed to better understand the pathophysiological and metabolic developments in HFpEF and to illuminate novel avenues for pharmacotherapy. These models include multi‐hit rodents and feline aortic constriction animals. Recently, genomic, proteomic, and metabolomic approaches have been used to define altered signaling pathways in the heart associated with HFpEF, including those involved in inflammation, cGMP‐related, Ca2+ handling, mitochondrial respiration, and the unfolded protein response in endoplasmic reticulum stress. This article aims to present an overview of what has been learnt by these studies, focusing mainly on the findings in common while highlighting unresolved issues. The knowledge gained from these research models will not simply be of benefit for treating HFpEF but will undoubtedly provide new insights into the mechanisms by which the heart deals with external stresses and how the processes involved can fail.
Collapse
Affiliation(s)
- Alex N Smith
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Raffaele Altara
- Department of Pathology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France
| | - Daniel G Thomas
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Seungho Jun
- Division of Cardiology The Johns Hopkins Medical Institutions Baltimore MD
| | - Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Cardiology Clinic Rumeli Hospital Istanbul Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS.,Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
16
|
Lewis GA, Rosala-Hallas A, Dodd S, Schelbert EB, Williams SG, Cunnington C, McDonagh T, Miller CA. Predictors of myocardial fibrosis and response to anti-fibrotic therapy in heart failure with preserved ejection fraction. Int J Cardiovasc Imaging 2022; 38:1569-1578. [PMID: 35138474 PMCID: PMC9797453 DOI: 10.1007/s10554-022-02544-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/25/2022] [Indexed: 01/01/2023]
Abstract
Myocardial fibrosis, measured using magnetic resonance extracellular volume (ECV), associates with adverse outcome in heart failure with preserved ejection fraction (HFpEF). In the PIROUETTE (The Pirfenidone in Patients with Heart Failure and Preserved Left Ventricular Ejection Fraction) trial, the novel anti-fibrotic agent pirfenidone reduced myocardial fibrosis. We sought to identify baseline characteristics that associate with myocardial fibrotic burden, the change in myocardial fibrosis over a year, and predict response to pirfenidone in patients with HFpEF. Amongst patients enrolled in the PIROUETTE trial (n = 107), linear regression models were used to assess the relationship between baseline variables and baseline myocardial ECV, with change in myocardial ECV adjusting for treatment allocation, and to identify variables that modified the pirfenidone treatment effect. Body mass index, left atrial reservoir strain, haemoglobin and aortic distensibility were associated with baseline ECV in stepwise modelling, and systolic blood pressure, and log N-terminal pro B-type natriuretic peptide were associated with baseline ECV in clinically-guided modelling. QRS duration, left ventricular mass and presence of an infarct at baseline were associated with an increase in ECV from baseline to week 52. Whilst QRS duration, presence of an infarct, global longitudinal strain and left atrial strain modified the treatment effect of pirfenidone when considered individually, no variable modified treatment effect on multivariable modelling. Baseline characteristics were identified that associate with myocardial fibrosis and predict change in myocardial fibrosis. No variables that independently modify the treatment effect of pirfenidone were identified (PIROUETTE, NCT02932566).
Collapse
Affiliation(s)
- Gavin A Lewis
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, England
- Manchester University NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, England
| | - Anna Rosala-Hallas
- Liverpool Clinical Trials Centre, Clinical Directorate, Faculty of Health and Life Sciences, University of Liverpool (a member of Liverpool Health Partners), Alder Hey Children's NHS Foundation Trust, Liverpool, L12 2AP, England
| | - Susanna Dodd
- Department of Health Data Science, Institute of Population Health, Faculty of Health and Life Sciences, University of Liverpool (a member of Liverpool Health Partners), Block F, Waterhouse Bld, 1-5 Brownlow Street, Liverpool, L69 3GL, England
| | - Erik B Schelbert
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Cardiovascular Magnetic Resonance Center, Heart and Vascular Institute, Pittsburgh, PA, USA
- Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon G Williams
- Manchester University NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, England
| | - Colin Cunnington
- Manchester University NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, England
| | | | - Christopher A Miller
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, M13 9PL, England.
- Manchester University NHS Foundation Trust, Southmoor Road, Manchester, M23 9LT, England.
- Division of Cell-Matrix Biology & Regenerative Medicine, School of Biology, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, Wellcome Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester, M13 9PT, England.
| |
Collapse
|
17
|
A normal pattern of mitral inflow predicts a better prognosis following cardiovascular events in early advanced-age patients. Sci Rep 2022; 12:9594. [PMID: 35688929 PMCID: PMC9187729 DOI: 10.1038/s41598-022-13802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/27/2022] [Indexed: 11/08/2022] Open
Abstract
Although a mitral inflow pattern usually changes from a normal pattern to an abnormal relaxation pattern as part of the aging process in healthy people, some early advanced-age individuals maintain a normal pattern. We investigated whether a normal pattern of mitral inflow predicts a better prognosis following cardiovascular (CV) events in early advanced-age patients. We enrolled 425 patients aged 60-65 years with 0.6 < E/A < 1.5. Patients were divided according to their mitral inflow pattern, i.e., a normal pattern group (E/A ≥ 1.0, n = 77) and an abnormal relaxation pattern group (E/A < 1, n = 348), and were evaluated the relationship with CV events. Multivariate regression analysis found that the normal inflow pattern was associated with odds ratios of 0.859 for body mass index (BMI; 95% confidence interval [CI]: 0.778-0.937), 0.529 for hypertension (0.303-0.924), and 0.325 for heart rate (0.228-0.463). During the follow-up period (4.9 ± 1.8 years), the adjusted-hazard ratio was significantly lower in the normal pattern group (HR: 0.119, 95% CI 0.016-0.910). Kaplan-Meier curves showed a higher event-free rate for the normal pattern group than for the abnormal relaxation pattern group (p = 0.0292). Normal inflow pattern in early advanced-age patients predicts a better prognosis following CV events.
Collapse
|
18
|
Chen X, Lin H, Xiong W, Pan J, Huang S, Xu S, He S, Lei M, Chang ACY, Zhang H. p53-Dependent Mitochondrial Compensation in Heart Failure With Preserved Ejection Fraction. J Am Heart Assoc 2022; 11:e024582. [PMID: 35656994 PMCID: PMC9238719 DOI: 10.1161/jaha.121.024582] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) accounts for 50% of patients with heart failure. Clinically, HFpEF prevalence shows age and gender biases. Although the majority of patients with HFpEF are elderly, there is an emergence of young patients with HFpEF. A better understanding of the underlying pathogenic mechanism is urgently needed. Here, we aimed to determine the role of aging in the pathogenesis of HFpEF. Methods and Results HFpEF dietary regimen (high‐fat diet + Nω‐Nitro‐L‐arginine methyl ester hydrochloride) was used to induce HFpEF in wild type and telomerase RNA knockout mice (second‐generation and third‐generation telomerase RNA component knockout), an aging murine model. First, both male and female animals develop HFpEF equally. Second, cardiac wall thickening preceded diastolic dysfunction in all HFpEF animals. Third, accelerated HFpEF onset was observed in second‐generation telomerase RNA component knockout (at 6 weeks) and third‐generation telomerase RNA component knockout (at 4 weeks) compared with wild type (8 weeks). Fourth, we demonstrate that mitochondrial respiration transitioned from compensatory state (normal basal yet loss of maximal respiratory capacity) to dysfunction (loss of both basal and maximal respiratory capacity) in a p53 dosage dependent manner. Last, using myocardial‐specific p53 knockout animals, we demonstrate that loss of p53 activation delays the development of HFpEF. Conclusions Here we demonstrate that p53 activation plays a role in the pathogenesis of HFpEF. We show that short telomere animals exhibit a basal level of p53 activation, mitochondria upregulate mtDNA encoded genes as a mean to compensate for blocked mitochondrial biogenesis, and loss of myocardial p53 delays HFpEF onset in high fat diet + Nω‐Nitro‐L‐arginine methyl ester hydrochloride challenged murine model.
Collapse
Affiliation(s)
- Xiaonan Chen
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Hao Lin
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Weiyao Xiong
- Shanghai Institute of Precision MedicineNinth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Jianan Pan
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Shuying Huang
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Shan Xu
- Shanghai Institute of Precision MedicineNinth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Shufang He
- Shanghai Institute of Precision MedicineNinth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Ming Lei
- Shanghai Institute of Precision MedicineNinth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Alex Chia Yu Chang
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China.,Shanghai Institute of Precision MedicineNinth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| | - Huili Zhang
- Department of Cardiology Ninth People's HospitalShanghai Jiao Tong University School of Medicine Shanghai China
| |
Collapse
|
19
|
Thanaj M, Mielke J, McGurk KA, Bai W, Savioli N, de Marvao A, Meyer HV, Zeng L, Sohler F, Lumbers RT, Wilkins MR, Ware JS, Bender C, Rueckert D, MacNamara A, Freitag DF, O’Regan DP. Genetic and environmental determinants of diastolic heart function. NATURE CARDIOVASCULAR RESEARCH 2022; 1:361-371. [PMID: 35479509 PMCID: PMC7612636 DOI: 10.1038/s44161-022-00048-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/08/2022] [Indexed: 01/14/2023]
Abstract
Diastole is the sequence of physiological events that occur in the heart during ventricular filling and principally depends on myocardial relaxation and chamber stiffness. Abnormal diastolic function is related to many cardiovascular disease processes and is predictive of health outcomes, but its genetic architecture is largely unknown. Here, we use machine learning cardiac motion analysis to measure diastolic functional traits in 39,559 participants of the UK Biobank and perform a genome-wide association study. We identified 9 significant, independent loci near genes that are associated with maintaining sarcomeric function under biomechanical stress and genes implicated in the development of cardiomyopathy. Age, sex and diabetes were independent predictors of diastolic function and we found a causal relationship between genetically-determined ventricular stiffness and incident heart failure. Our results provide insights into the genetic and environmental factors influencing diastolic function that are relevant for identifying causal relationships and potential tractable targets.
Collapse
Affiliation(s)
- Marjola Thanaj
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Johanna Mielke
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Kathryn A. McGurk
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Wenjia Bai
- Department of Computing, Imperial College London, London, UK
- Department of Brain Sciences, Imperial College London
| | - Nicolò Savioli
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- Department of Computing, Imperial College London, London, UK
| | - Antonio de Marvao
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| | - Hannah V. Meyer
- Cold Spring Harbor Laboratory, Simons Center for Quantitative Biology, USA
| | - Lingyao Zeng
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Florian Sohler
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | | | - Martin R. Wilkins
- National Heart and Lung Institute, Imperial College London, London, UK
| | - James S. Ware
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Christian Bender
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Daniel Rueckert
- Department of Computing, Imperial College London, London, UK
- Institute for Artificial Intelligence and Informatics, Klinikum rechts der Isar, Technical University of Munich, Germany
| | - Aidan MacNamara
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Daniel F. Freitag
- Bayer AG, Research & Development, Pharmaceuticals, Wuppertal, Germany
| | - Declan P. O’Regan
- MRC London Institute of Medical Sciences, Imperial College London, London, UK
| |
Collapse
|
20
|
Rocca A, van Heeswijk RB, Richiardi J, Meyer P, Hullin R. The Cardiomyocyte in Heart Failure with Preserved Ejection Fraction-Victim of Its Environment? Cells 2022; 11:867. [PMID: 35269489 PMCID: PMC8909081 DOI: 10.3390/cells11050867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/01/2022] [Indexed: 12/07/2022] Open
Abstract
Heart failure (HF) with preserved left ventricular ejection fraction (HFpEF) is becoming the predominant form of HF. However, medical therapy that improves cardiovascular outcome in HF patients with almost normal and normal systolic left ventricular function, but diastolic dysfunction is missing. The cause of this unmet need is incomplete understanding of HFpEF pathophysiology, the heterogeneity of the patient population, and poor matching of therapeutic mechanisms and primary pathophysiological processes. Recently, animal models improved understanding of the pathophysiological role of highly prevalent and often concomitantly presenting comorbidity in HFpEF patients. Evidence from these animal models provide first insight into cellular pathophysiology not considered so far in HFpEF disease, promising that improved understanding may provide new therapeutical targets. This review merges observation from animal models and human HFpEF disease with the intention to converge cardiomyocytes pathophysiological aspects and clinical knowledge.
Collapse
Affiliation(s)
- Angela Rocca
- Department of Cardiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| | - Ruud B. van Heeswijk
- Department of Diagnostic and Interventional Radiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.v.H.); (J.R.)
| | - Jonas Richiardi
- Department of Diagnostic and Interventional Radiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland; (R.B.v.H.); (J.R.)
| | - Philippe Meyer
- Cardiology Service, Department of Medical Specialties, Faculty of Science, Geneva University Hospital, University of Geneva, 1205 Geneva, Switzerland;
| | - Roger Hullin
- Department of Cardiology, Faculty of Biology and Medicine, Lausanne University Hospital, University of Lausanne, 1011 Lausanne, Switzerland;
| |
Collapse
|
21
|
Hubesch G, Hanthazi A, Acheampong A, Chomette L, Lasolle H, Hupkens E, Jespers P, Vegh G, Wembonyama CWM, Verhoeven C, Dewachter C, Vachiery JL, Entee KM, Dewachter L. A Preclinical Rat Model of Heart Failure With Preserved Ejection Fraction With Multiple Comorbidities. Front Cardiovasc Med 2022; 8:809885. [PMID: 35097026 PMCID: PMC8793630 DOI: 10.3389/fcvm.2021.809885] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a common complex clinical syndrome for which there are currently few evidence-based therapies. As patients with HFpEF very often present with comorbidities comprising the metabolic syndrome, we hypothesized, that metabolic syndrome could lead over time to the development of diastolic dysfunction and HFpEF. Obesity-prone rats were exposed to high-fat diet and compared to obesity-resistant rats fed with standard chow. Phenotyping of metabolic syndrome, associated with echocardiographic and cardiac hemodynamic measurements, was performed after 4 and 12 months. Blood and myocardial tissue sampling were performed for pathobiological evaluation. High-fat diet in obesity-prone rats elicited metabolic syndrome, characterized by increased body and abdominal fat weights, glucose intolerance and hyperlipidemia, as well as increased left ventricular (LV) systolic pressure (after 12 months). This was associated with LV diastolic dysfunction (assessed by increased LV end-diastolic pressure) and pulmonary hypertension (assessed by increased right ventricular systolic pressure). Echocardiography revealed significant concentric LV hypertrophy, while LV ejection fraction was preserved. LV remodeling was associated with cardiomyocyte hypertrophy, as well as myocardial and perivascular fibrosis. Circulating levels of soluble ST2 (the interleukin-1 receptor-like) markedly increased in rats with HFpEF, while plasma NT-proBNP levels decreased. RNA-sequencing analysis identified clusters of genes implicated in fatty acid metabolism and calcium-dependent contraction as upregulated pathways in the myocardium of rats with HFpEF. High-fat diet during 12 months in obesity-prone rats led to the development of a relevant preclinical model of HFpEF with multiple comorbidities, suitable for investigating novel therapeutic interventions.
Collapse
Affiliation(s)
- Géraldine Hubesch
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Aliénor Hanthazi
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Angela Acheampong
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Cardiology, Erasme Academic Hospital, Brussels, Belgium
| | - Laura Chomette
- Department of Cardiology, Erasme Academic Hospital, Brussels, Belgium.,Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Hélène Lasolle
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Emeline Hupkens
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Pascale Jespers
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Grégory Vegh
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Cécile Watu Malu Wembonyama
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Caroline Verhoeven
- Department of Mathematics Education, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Céline Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium.,Department of Cardiology, Erasme Academic Hospital, Brussels, Belgium
| | - Jean-Luc Vachiery
- Department of Cardiology, Erasme Academic Hospital, Brussels, Belgium
| | - Kathleen Mc Entee
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Laurence Dewachter
- Laboratory of Physiology and Pharmacology, Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
22
|
Al-Hasani J, Sens-Albert C, Ghosh S, Trogisch FA, Nahar T, Friede PAP, Reil JC, Hecker M. Zyxin protects from hypertension-induced cardiac dysfunction. Cell Mol Life Sci 2022; 79:93. [PMID: 35075545 PMCID: PMC8786748 DOI: 10.1007/s00018-022-04133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/19/2021] [Accepted: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Arterial hypertension causes left ventricular hypertrophy leading to dilated cardiomyopathy. Following compensatory cardiomyocyte hypertrophy, cardiac dysfunction develops due to loss of cardiomyocytes preceded or paralleled by cardiac fibrosis. Zyxin acts as a mechanotransducer in vascular cells that may promote cardiomyocyte survival. Here, we analyzed cardiac function during experimental hypertension in zyxin knockout (KO) mice. In zyxin KO mice, made hypertensive by way of deoxycorticosterone acetate (DOCA)-salt treatment telemetry recording showed an attenuated rise in systolic blood pressure. Echocardiography indicated a systolic dysfunction, and isolated working heart measurements showed a decrease in systolic elastance. Hearts from hypertensive zyxin KO mice revealed increased apoptosis, fibrosis and an upregulation of active focal adhesion kinase as well as of integrins α5 and β1. Both interstitial and perivascular fibrosis were even more pronounced in zyxin KO mice exposed to angiotensin II instead of DOCA-salt. Stretched microvascular endothelial cells may release collagen 1α2 and TGF-β, which is characteristic for the transition to an intermediate mesenchymal phenotype, and thus spur the transformation of cardiac fibroblasts to myofibroblasts resulting in excessive scar tissue formation in the heart of hypertensive zyxin KO mice. While zyxin KO mice per se do not reveal a cardiac phenotype, this is unmasked upon induction of hypertension and owing to enhanced cardiomyocyte apoptosis and excessive fibrosis causes cardiac dysfunction. Zyxin may thus be important for the maintenance of cardiac function in spite of hypertension.
Collapse
Affiliation(s)
- Jaafar Al-Hasani
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Carla Sens-Albert
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Subhajit Ghosh
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Felix A Trogisch
- Division of Cardiovascular Physiology, European Center for Angioscience, Heidelberg University, 68167, Mannheim, Germany
| | - Taslima Nahar
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Prisca A P Friede
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| | - Jan-Christian Reil
- Medical Clinic II, University Heart Center Lübeck, University Hospital Schleswig-Holstein, 23538, Lübeck, Germany
| | - Markus Hecker
- Department of Cardiovascular Physiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Mesquita T, Zhang R, Cho JH, Zhang R, Lin YN, Sanchez L, Goldhaber J, Yu JK, Liang JA, Liu W, Trayanova NA, Cingolani E. Mechanisms of Sinoatrial Node Dysfunction in Heart Failure With Preserved Ejection Fraction. Circulation 2022; 145:45-60. [PMID: 34905696 PMCID: PMC9083886 DOI: 10.1161/circulationaha.121.054976] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 11/09/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND The ability to increase heart rate during exercise and other stressors is a key homeostatic feature of the sinoatrial node (SAN). When the physiological heart rate response is blunted, chronotropic incompetence limits exercise capacity, a common problem in patients with heart failure with preserved ejection fraction (HFpEF). Despite its clinical relevance, the mechanisms of chronotropic incompetence remain unknown. METHODS Dahl salt-sensitive rats fed a high-salt diet and C57Bl6 mice fed a high-fat diet and an inhibitor of constitutive nitric oxide synthase (Nω-nitro-L-arginine methyl ester [L-NAME]; 2-hit) were used as models of HFpEF. Myocardial infarction was created to induce HF with reduced ejection fraction. Rats and mice fed with a normal diet or those that had a sham surgery served as respective controls. A comprehensive characterization of SAN function and chronotropic response was conducted by in vivo, ex vivo, and single-cell electrophysiologic studies. RNA sequencing of SAN was performed to identify transcriptomic changes. Computational modeling of biophysically-detailed human HFpEF SAN was created. RESULTS Rats with phenotypically-verified HFpEF exhibited limited chronotropic response associated with intrinsic SAN dysfunction, including impaired β-adrenergic responsiveness and an alternating leading pacemaker within the SAN. Prolonged SAN recovery time and reduced SAN sensitivity to isoproterenol were confirmed in the 2-hit mouse model. Adenosine challenge unmasked conduction blocks within the SAN, which were associated with structural remodeling. Chronotropic incompetence and SAN dysfunction were also found in rats with HF with reduced ejection fraction. Single-cell studies and transcriptomic profiling revealed HFpEF-related alterations in both the "membrane clock" (ion channels) and the "Ca2+ clock" (spontaneous Ca2+ release events). The physiologic impairments were reproduced in silico by empirically-constrained quantitative modeling of human SAN function. CONCLUSIONS Chronotropic incompetence and SAN dysfunction were seen in both models of HF. We identified that intrinsic abnormalities of SAN structure and function underlie the chronotropic response in HFpEF.
Collapse
Affiliation(s)
- Thassio Mesquita
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Jae Hyung Cho
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Rui Zhang
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Yen-Nien Lin
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Lizbeth Sanchez
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joshua Goldhaber
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joseph K. Yu
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Jialiu A. Liang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Weixin Liu
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Natalia A. Trayanova
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
- Alliance for Cardiovascular and Diagnostic and treatment Innovation (ADVANCE), Johns Hopkins University, Baltimore, Maryland
| | - Eugenio Cingolani
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
24
|
Benko J, Samoš M, Bolek T, Prídavková D, Jurica J, Péč MJ, Galajda P, Mokáň M. Diabetic Heart Failure with Preserved Left Ventricular Ejection Fraction: Review of Current Pharmacotherapy. J Diabetes Res 2022; 2022:3366109. [PMID: 35296100 PMCID: PMC8920624 DOI: 10.1155/2022/3366109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/15/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022] Open
Abstract
Diabetes is associated with several diabetic-related abnormalities which increase the risk of onset or worsening of heart failure. Recent studies showed that the majority of diabetic patients present with heart failure with preserved ejection fraction (HFpEF), and the prevalence of HFpEF in diabetics is alarming. Moreover, outcomes in HFpEF are poor and could be compared to those of heart failure with reduced ejection fraction (HFrEF), with 1-year mortality ranging between 10 and 30%. In contrast to HFrEF, there is very limited evidence for pharmacologic therapy in symptomatic patients with preserved ejection fraction, and therefore, the optimal selection of treatment for diabetic HFpEF remains challenging. This narrative review article summarizes the currently available data on the pharmacological treatment of HFpEF in patients with diabetes.
Collapse
Affiliation(s)
- Jakub Benko
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Matej Samoš
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Tomáš Bolek
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Dana Prídavková
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Jakub Jurica
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Martin Jozef Péč
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Peter Galajda
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Marián Mokáň
- Department of Internal Medicine I, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| |
Collapse
|
25
|
Otto M, Brabenec L, Müller M, Kintrup S, Hellenthal KEM, Holtmeier R, Steinbuch SC, Karsten OS, Pryvalov H, Rossaint J, Gross ER, Wagner NM. Development of heart failure with preserved ejection fraction in type 2 diabetic mice is ameliorated by preserving vascular function. Life Sci 2021; 284:119925. [PMID: 34480933 PMCID: PMC8484044 DOI: 10.1016/j.lfs.2021.119925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/13/2021] [Accepted: 08/21/2021] [Indexed: 11/26/2022]
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction and is frequent in people with type 2 diabetes mellitus. In diabetic patients, increased levels of the eicosanoid 12-hydroxyeicosatetraenoic acid (12-HETE) are linked to vascular dysfunction. Here, we aimed to identify the importance of 12-HETE in type 2 diabetic patients exhibiting diastolic dysfunction, and mice exhibiting HFpEF and whether targeting 12-HETE is a means to ameliorate HFpEF progression by improving vascular function in diabetes. MATERIAL AND METHODS Subjects with diagnosed type 2 diabetes mellitus and reported diastolic dysfunction or healthy controls were recruited and 12(S)-HETE levels determined by ELISA. 12(S)-HETE levels were determined in type 2 diabetic, leptin receptor deficient mice (LepRdb/db) and HFpEF verified by echocardiography. Mitochondrial function, endothelial function and capillary density were assessed using Seahorse technique, pressure myography and immunohistochemistry in LepRdb/db or non-diabetic littermate controls. 12/15Lo generation was inhibited using ML351 and 12(S)-HETE action by using the V1-cal peptide. KEY FINDINGS Endothelium-dependent vasodilation and mitochondrial functional capacity both improved in response to either application of ML351 or the V1-cal peptide. Correlating to improved vascular function, mice treated with either pharmacological agent exhibited improved diastolic filling and left ventricular relaxation that correlated with increased myocardial capillary density. SIGNIFICANCE Our results suggest that 12-HETE may serve as a biomarker indicating endothelial dysfunction and the resulting cardiovascular consequences such as HFpEF in type 2 diabetic patients. Antagonizing 12-HETE is a potent means to causally control HFpEF development and progression in type 2 diabetes by preserving vascular function.
Collapse
Affiliation(s)
- Mandy Otto
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Laura Brabenec
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Melanie Müller
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Sebastian Kintrup
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Katharina E M Hellenthal
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Richard Holtmeier
- Institute of Clinical Radiology, University Hospital Muenster, Muenster, Germany
| | - Sophie Charlotte Steinbuch
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Ole Sönken Karsten
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Heorhii Pryvalov
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Jan Rossaint
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany
| | - Eric R Gross
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA, USA
| | - Nana-Maria Wagner
- Department of Anesthesiology, Intensive Care and Pain Medicine, University Hospital Muenster, Muenster, Germany.
| |
Collapse
|
26
|
Discharge heart rate and 1-year clinical outcomes in heart failure patients with atrial fibrillation. Chin Med J (Engl) 2021; 135:52-62. [PMID: 34982055 PMCID: PMC8850821 DOI: 10.1097/cm9.0000000000001768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The association between heart rate and 1-year clinical outcomes in heart failure (HF) patients with atrial fibrillation (AF), and whether this association depends on left ventricular ejection fraction (LVEF), are unclear. We investigated the relationship between discharge heart rate and 1-year clinical outcomes after discharge among hospitalized HF patients with AF, and further explored this association that differ by LVEF level. METHODS In this analysis, we enrolled 1760 hospitalized HF patients with AF from the China Patient-centered Evaluative Assessment of Cardiac Events Prospective Heart Failure study from August 2016 to May 2018. Patients were categorized into three groups with low (<65 beats per minute [bpm]), moderate (65-85 bpm), and high (≥86 bpm) heart rate measured at discharge. Cox proportional hazard models were employed to explore the association between heart rate and 1-year primary outcome, which was defined as a composite outcome of all-cause death and HF rehospitalization. RESULTS Among 1760 patients, 723 (41.1%) were women, the median age was 69 (interquartile range [IQR]: 60-77) years, median discharge heart rate was 75 (IQR: 69-84) bpm, and 934 (53.1%) had an LVEF <50%. During 1-year follow-up, a total of 792 (45.0%) individuals died or had at least one HF hospitalization. After adjusting for demographic characteristics, smoking status, medical history, anthropometric characteristics, and medications used at discharge, the groups with low (hazard ratio [HR]: 1.32, 95% confidence interval [CI]: 1.05-1.68, P = 0.020) and high (HR: 1.34, 95% CI: 1.07-1.67, P = 0.009) heart rate were associated with a higher risk of 1-year primary outcome compared with the moderate group. A significant interaction between discharge heart rate and LVEF for the primary outcome was observed (P for interaction was 0.045). Among the patients with LVEF ≥50%, only those with high heart rate were associated with a higher risk of primary outcome compared with the group with moderate heart rate (HR: 1.38, 95% CI: 1.01-1.89, P = 0.046), whereas there was no difference between the groups with low and moderate heart rate. Among the patients with LVEF <50%, only those with low heart rate were associated with a higher risk of primary outcome compared with the group with moderate heart rate (HR: 1.46, 95% CI: 1.09-1.96, P = 0.012), whereas there was no difference between the groups with high and moderate heart rate. CONCLUSIONS Among the overall HF patients with AF, both low (<65 bpm) and high (≥86 bpm) heart rates were associated with poorer outcomes as compared with moderate (65-85 bpm) heart rate. Among patients with LVEF ≥50%, only a high heart rate was associated with higher risk; while among those with LVEF <50%, only a low heart rate was associated with higher risk as compared with the group with moderate heart rate. TRAIL REGISTRATION Clinicaltrials.gov; NCT02878811.
Collapse
|
27
|
Tóth N, Soós A, Váradi A, Hegyi P, Tinusz B, Vágvölgyi A, Orosz A, Solymár M, Polyák A, Varró A, Farkas AS, Nagy N. Effect of ivabradine in heart failure: a meta-analysis of heart failure patients with reduced versus preserved ejection fraction. Can J Physiol Pharmacol 2021; 99:1159-1174. [PMID: 34636643 DOI: 10.1139/cjpp-2020-0700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In clinical trials of heart failure reduced ejection fraction (HFrEF), ivabradine seemed to be an effective heart rate lowering agent associated with lower risk of cardiovascular death. In contrast, ivabradine failed to improve cardiovascular outcomes in heart failure preserved ejection fraction (HFpEF) despite the significant effect on heart rate. This meta-analysis is the first to compare the effects of ivabradine on heart rate and mortality parameters in HFpEF versus HFrEF. We screened three databases: PubMed, Embase, and Cochrane Library. The outcomes of these studies were mortality, reduction in heart rate, and left ventricular function improvement. We compared the efficacy of ivabradine treatment in HFpEF versus HFrEF. Heart rate analysis of pooled data showed decrease in both HFrEF (-17.646 beats/min) and HFpEF (-11.434 beats/min), and a tendency to have stronger bradycardic effect in HFrEF (p = 0.094) in randomized clinical trials. Left ventricular ejection fraction analysis revealed significant improvement in HFrEF (5.936, 95% CI: [4.199-7.672], p < 0.001) when compared with placebo (p < 0.001). We found that ivabradine significantly improves left ventricular performance in HFrEF, at the same time it exerts a tendency to have improved bradycardic effect in HFrEF. These disparate effects of ivabradine and the higher prevalence of non-cardiac comorbidities in HFpEF may explain the observed beneficial effects in HFrEF and the unchanged outcomes in HFpEF patients after ivabradine treatment.
Collapse
Affiliation(s)
- Noémi Tóth
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary
| | - Alexandra Soós
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Alex Váradi
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Benedek Tinusz
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary.,First Department of Medicine, Medical School, University of Pécs, Ifjúság Street 13, Pécs 7624, Hungary
| | - Anna Vágvölgyi
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - Andrea Orosz
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary
| | - Margit Solymár
- Institute for Translational Medicine, Medical School, University of Pécs, 12 Szigeti Street, Pécs 7624, Hungary
| | - Alexandra Polyák
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - András Varró
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary.,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| | - Attila S Farkas
- Department of Internal Medicine, Albert Szent-Györgyi Medical School University of Szeged, Kálvária sgt. 57, Szeged 6720, Hungary
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Albert Szent-Györgyi Medical School University of Szeged, Dóm Square 12, Szeged 6720, Hungary.,ELKH-SZTE Research Group of Cardiovascular Pharmacology, Szeged, Hungary
| |
Collapse
|
28
|
Ivabradine Ameliorates Cardiac Function in Heart Failure with Preserved and Reduced Ejection Fraction via Upregulation of miR-133a. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:1257283. [PMID: 34630844 PMCID: PMC8494584 DOI: 10.1155/2021/1257283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/04/2021] [Indexed: 11/21/2022]
Abstract
Heart failure (HF) is a clinical syndrome caused by impairment of ventricular filling, ejection of blood, or both and is categorized as HF with reduced ejection fraction (HFrEF) or HF with preserved ejection fraction (HFpEF) based on left ventricular function. Cardiac fibrosis contributes to left ventricular dysfunction and leads to the development of HF. Ivabradine, an If current selective specific inhibitor, has been shown to improve the prognosis of patients with HF. However, the effects of ivabradine on cardiac function and fibrosis in HFpEF and HFrEF and the underlying mechanism remain unclear. In the present study, we utilized mouse models to mimic HFpEF and HFrEF and evaluated the therapeutic effects of ivabradine. By treating mice with different doses (10 mg/kg/d and 20 mg/kg/d) of ivabradine for 4 or 8 weeks, we found that a high dose of ivabradine improved cardiac diastolic function in HFpEF mice and ameliorated cardiac diastolic and systolic function and ventricular tachycardia incidence in HFrEF mice. Moreover, ivabradine significantly reduced the activation of cardiac fibroblasts and myocardial fibrosis in mice. Mechanistically, microRNA-133a, which was upregulated by ivabradine, targeted connective tissue growth factor and collagen 1 in cardiac fibroblasts and might contribute to the protective role of ivabradine. Together, our work utilized mouse models to study HFpEF and HFrEF, demonstrated the protective role of ivabradine in HFpEF and HFrEF, and elucidated the potential underlying mechanism, which provides an effective strategy for related diseases.
Collapse
|
29
|
Withaar C, Lam CSP, Schiattarella GG, de Boer RA, Meems LMG. Heart failure with preserved ejection fraction in humans and mice: embracing clinical complexity in mouse models. Eur Heart J 2021; 42:4420-4430. [PMID: 34414416 PMCID: PMC8599003 DOI: 10.1093/eurheartj/ehab389] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/15/2021] [Accepted: 06/02/2021] [Indexed: 02/06/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is a multifactorial disease accounting for a large and increasing proportion of all clinical HF presentations. As a clinical syndrome, HFpEF is characterized by typical signs and symptoms of HF, a distinct cardiac phenotype and raised natriuretic peptides. Non-cardiac comorbidities frequently co-exist and contribute to the pathophysiology of HFpEF. To date, no therapy has proven to improve outcomes in HFpEF, with drug development hampered, at least partly, by lack of consensus on appropriate standards for pre-clinical HFpEF models. Recently, two clinical algorithms (HFA-PEFF and H2FPEF scores) have been developed to improve and standardize the diagnosis of HFpEF. In this review, we evaluate the translational utility of HFpEF mouse models in the context of these HFpEF scores. We systematically recorded evidence of symptoms and signs of HF or clinical HFpEF features and included several cardiac and extra-cardiac parameters as well as age and sex for each HFpEF mouse model. We found that most of the pre-clinical HFpEF models do not meet the HFpEF clinical criteria, although some multifactorial models resemble human HFpEF to a reasonable extent. We therefore conclude that to optimize the translational value of mouse models to human HFpEF, a novel approach for the development of pre-clinical HFpEF models is needed, taking into account the complex HFpEF pathophysiology in humans.
Collapse
Affiliation(s)
- Coenraad Withaar
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Carolyn S P Lam
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands.,National University Heart Centre, Singapore and Duke-National University of Singapore
| | - Gabriele G Schiattarella
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Department of Cardiology, Center for Cardiovascular Research (CCR), Charité - Universitätsmedizin Berlin, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany.,Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy.,Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rudolf A de Boer
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| | - Laura M G Meems
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, the Netherlands
| |
Collapse
|
30
|
Myocardial Tissue Characterization in Heart Failure with Preserved Ejection Fraction: From Histopathology and Cardiac Magnetic Resonance Findings to Therapeutic Targets. Int J Mol Sci 2021; 22:ijms22147650. [PMID: 34299270 PMCID: PMC8304780 DOI: 10.3390/ijms22147650] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex clinical syndrome responsible for high mortality and morbidity rates. It has an ever growing social and economic impact and a deeper knowledge of molecular and pathophysiological basis is essential for the ideal management of HFpEF patients. The association between HFpEF and traditional cardiovascular risk factors is known. However, myocardial alterations, as well as pathophysiological mechanisms involved are not completely defined. Under the definition of HFpEF there is a wide spectrum of different myocardial structural alterations. Myocardial hypertrophy and fibrosis, coronary microvascular dysfunction, oxidative stress and inflammation are only some of the main pathological detectable processes. Furthermore, there is a lack of effective pharmacological targets to improve HFpEF patients' outcomes and risk factors control is the primary and unique approach to treat those patients. Myocardial tissue characterization, through invasive and non-invasive techniques, such as endomyocardial biopsy and cardiac magnetic resonance respectively, may represent the starting point to understand the genetic, molecular and pathophysiological mechanisms underlying this complex syndrome. The correlation between histopathological findings and imaging aspects may be the future challenge for the earlier and large-scale HFpEF diagnosis, in order to plan a specific and effective treatment able to modify the disease's natural course.
Collapse
|
31
|
Xie H, Shen XY, Zhao N, Ye P, Ge Z, Hu ZY. Ivabradine Ameliorates Cardiac Diastolic Dysfunction in Diabetic Mice Independent of Heart Rate Reduction. Front Pharmacol 2021; 12:696635. [PMID: 34239443 PMCID: PMC8259788 DOI: 10.3389/fphar.2021.696635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/04/2021] [Indexed: 12/03/2022] Open
Abstract
Cardiac fibroblast (CF) proliferation and activation play important roles in cardiac fibrosis and diastolic dysfunction (DD), which are involved in fibrosis-associated cardiovascular diseases. A previous study showed that ivabradine, a specific heart rate (HR)-lowering agent, significantly ameliorated DD in diabetic db/db mice by reducing HR. Herein, we attempted to determine whether ivabradine has antifibrotic and cardioprotective effects in diabetic mice by directly suppressing CF proliferation and activation, independent of a reduction in HR. We found that knockdown of c-Jun N-terminal kinase (JNK) or p38 mitogen-activated protein kinase (MAPK), or treatment with ivabradine, reduced JNK and p38 MAPK phosphorylation and the protein expression of proliferating cell nuclear antigen, collagen I, collagen III, tissue inhibitor of matrix metalloproteinase 2, and α-smooth muscle actin, accompanied with upregulation of matrix metalloproteinase 2 both in high glucose-treated neonatal rat CFs and left ventricular CFs isolated from db/db mice. However, zatebradine (a HR-lowering agent) did not have these effects in vitro or in vivo. In addition, cardiac fibrosis and DD were ameliorated in db/db mice that were intravenously administered lentiviruses carrying short hairpin RNAs targeting JNK and p38 MAPK or administered ivabradine. Taken together, these findings demonstrate that the ivabradine-induced amelioration of cardiac fibrosis, and DD in db/db mice may be at least in part attributable to the suppression of CF proliferation and activation, through the inhibition of JNK and p38 MAPK.
Collapse
Affiliation(s)
- Hao Xie
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xing-Yi Shen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Na Zhao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zuo-Ying Hu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
32
|
Hohneck AL, Fries P, Stroeder J, Schneider G, Schirmer SH, Reil JC, Böhm M, Laufs U, Custodis F. Effects of selective heart rate reduction with ivabradine on LV function and central hemodynamics in patients with chronic coronary syndrome. IJC HEART & VASCULATURE 2021; 34:100757. [PMID: 33851006 PMCID: PMC8024658 DOI: 10.1016/j.ijcha.2021.100757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
OBJECTIVES We assessed left ventricular (LV) function and central hemodynamic effects in patients with a heart rate (HR) at rest of ≥70 beats per minute (bpm) and chronic coronary syndrome (CCS) after long-term treatment with ivabradine compared to placebo by cardiac magnetic resonance (CMR) imaging. METHODS AND RESULTS In a randomized, double-blinded, prospective cross-over design, 23 patients (18 male, 5 female) were treated with ivabradine (7.5 mg bid) or placebo for 6 months. CMR imaging was performed at baseline and after 6 and 12 months to determine LV functional parameters.Mean resting HR on treatment with ivabradine was 58 ± 8.2 bpm and 70.2 ± 8.3 bpm during placebo (p < 0.0001).There was no difference in systolic LV ejection fraction (ivabradine 57.4 ± 11.2% vs placebo 53.0 ± 10.9%, p = 0.18), indexed end-diastolic (EDVi) or end-systolic volumes (ESVi). Indexed stroke volume (SVi) (ml/m2) remained unchanged after treatment with ivabradine. Volume time curve parameters reflecting systolic LV function (peak ejection rate and time) were unaffected by ivabradine, while both peak filling rate (PFR) and PFR/EDV were significantly increased. Mean aortic velocity (cm/s) was significantly reduced during treatment with ivabradine (ivabradine 6.7 ± 2.7 vs placebo 9.0 ± 3.4, p = 0.01). Aortic flow parameters were correlated to parameters of vascular stiffness. The strongest correlation was revealed for mean aortic velocity with aortic distensibility (AD) (r = -0.86 [-0.90 to -0.85], p < 0.0001). CONCLUSION Long-term reduction of HR with ivabradine in patients with CCS improved diastolic function and reduced mean aortic flow velocity.
Collapse
Key Words
- ACS, acute coronary syndrome
- AD, aortic distensibility
- Arterial stiffness
- CAD, coronary artery disease
- CCS, chronic coronary syndrome
- CMR, cardiac magnetic resonance
- CV, cardiovascular
- Chronic coronary syndrome
- EDV, end-diastolic
- EF, ejection fraction
- ESC, European Society of Cardiology
- ESV, end-systolic
- FMD, flow mediated dilation
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- HR, heart rate
- HRR, heart rate reduction
- Heart rate reduction
- Hemodynamics
- LV, left ventricular
- MRI, magnetic resonance imaging
- PER, peak ejection rate
- PET, peak ejection time
- PFR, peak filling rate
- PFT, peak filling time
- PWV, pulse wave velocity
- RHR, resting heart rate
- SV, stroke volume
- VTC, volume-time curve
- bpm, beats per minute
- cf, carotid-femoral
Collapse
Affiliation(s)
- Anna Lena Hohneck
- First Department of Medicine, University Medical Centre Mannheim (UMM), Faculty of Medicine Mannheim, University of Heidelberg and DZHK (German Centre for Cardiovascular Research) Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Peter Fries
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Saarland University, Homburg/Saar, Germany
| | - Jonas Stroeder
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Saarland University, Homburg/Saar, Germany
| | - Günther Schneider
- Clinic for Diagnostic and Interventional Radiology, Saarland University Medical Center, Saarland University, Homburg/Saar, Germany
| | | | - Jan-Christian Reil
- Second Department of Medicine, University Hospital Schleswig-Holstein Location Lübeck, Lübeck, Germany
| | - Michael Böhm
- Department of Internal Medicine III, Saarland University Medical Center, Saarland University, Homburg/Saar, Germany
| | - Ulrich Laufs
- Clinic and Polyclinic for Cardiology, University of Leipzig, Leipzig, Germany
| | - Florian Custodis
- Department of Internal Medicine III, Saarland University Medical Center, Saarland University, Homburg/Saar, Germany
- Department of Internal Medicine II, Klinikum Saarbrücken, Saarbrücken, Germany
| |
Collapse
|
33
|
Zern EK, Ho JE, Panah LG, Lau ES, Liu E, Farrell R, Sbarbaro JA, Schoenike MW, Pappagianopoulos PP, Namasivayam M, Malhotra R, Nayor M, Lewis GD. Exercise Intolerance in Heart Failure With Preserved Ejection Fraction: Arterial Stiffness and Aabnormal Left Ventricular Hemodynamic Responses During Exercise. J Card Fail 2021; 27:625-634. [PMID: 33647476 PMCID: PMC8180488 DOI: 10.1016/j.cardfail.2021.02.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Arterial stiffness is thought to contribute to the pathophysiology of heart failure with preserved ejection fraction (HFpEF). We sought to examine arterial stiffness in HFpEF and hypertension and investigate associations of arterial and left ventricular hemodynamic responses to exercise. METHODS AND RESULTS A total of 385 symptomatic individuals with an EF of ≥50% underwent upright cardiopulmonary exercise testing with invasive hemodynamic assessment of arterial stiffness and load (aortic augmentation pressure, augmentation index, systemic vascular resistance index, total arterial compliance index, effective arterial elastance index, and pulse pressure amplification) at rest and during incremental exercise. An abnormal hemodynamic response to exercise was defined as a steep increase in pulmonary capillary wedge pressure relative to cardiac output (∆PCWP/∆CO > 2 mm Hg/L/min). We compared rest and exercise measures between HFpEF and hypertension in multivariable analyses. Among 188 participants with HFpEF (mean age 61 ± 13 years, 56% women), resting arterial stiffness parameters were worse compared with 94 hypertensive participants (mean age 55 ± 15 years, 52% women); these differences were accentuated during exercise in HFpEF (all P ≤ .0001). Among all participants, exercise measures of arterial stiffness correlated with worse ∆PCWP/∆CO. Specifically, a 1 standard deviation higher exercise augmentation pressure was associated with 2.15-fold greater odds of abnormal LV hemodynamic response (95% confidence interval 1.52-3.05; P < .001). Further, exercise measures of systemic vascular resistance index, elastance index, and pulse pressure amplification correlated with a lower peak oxygen consumption. CONCLUSIONS Exercise accentuates the increased arterial stiffness found in HFpEF, which in turn correlates with left ventricular hemodynamic responses. Unfavorable ventricular-vascular interactions during exercise in HFpEF may contribute to exertional intolerance and inform future therapeutic interventions.
Collapse
Affiliation(s)
- Emily K Zern
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer E Ho
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts; Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts.
| | - Lindsay G Panah
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Emily S Lau
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Elizabeth Liu
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Robyn Farrell
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - John A Sbarbaro
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Mark W Schoenike
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Paul P Pappagianopoulos
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Mayooran Namasivayam
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Rajeev Malhotra
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew Nayor
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts
| | - Gregory D Lewis
- Corrigan Minehan Heart Center, Cardiology Division, Massachusetts General Hospital, Boston, Massachusetts.
| |
Collapse
|
34
|
Monma Y, Shindo T, Eguchi K, Kurosawa R, Kagaya Y, Ikumi Y, Ichijo S, Nakata T, Miyata S, Matsumoto A, Sato H, Miura M, Kanai H, Shimokawa H. Low-intensity pulsed ultrasound ameliorates cardiac diastolic dysfunction in mice: a possible novel therapy for heart failure with preserved left ventricular ejection fraction. Cardiovasc Res 2021; 117:1325-1338. [PMID: 32683442 DOI: 10.1093/cvr/cvaa221] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/30/2020] [Accepted: 07/14/2020] [Indexed: 01/01/2023] Open
Abstract
AIMS Heart failure with preserved left ventricular ejection fraction (HFpEF) is a serious health problem worldwide, as no effective therapy is yet available. We have previously demonstrated that our low-intensity pulsed ultrasound (LIPUS) therapy is effective and safe for angina and dementia. In this study, we aimed to examine whether the LIPUS therapy also ameliorates cardiac diastolic dysfunction in mice. METHODS AND RESULTS Twelve-week-old obese diabetic mice (db/db) and their control littermates (db/+) were treated with either the LIPUS therapy [1.875 MHz, 32 cycles, Ispta (spatial peak temporal average intensity) 117-162 mW/cm2, 0.25 W/cm2] or placebo procedure two times a week for 4 weeks. At 20-week-old, transthoracic echocardiography and invasive haemodynamic analysis showed that cardiac diastolic function parameters, such as e', E/e', end-diastolic pressure-volume relationship, Tau, and dP/dt min, were all deteriorated in placebo-treated db/db mice compared with db/+ mice, while systolic function was preserved. Importantly, these cardiac diastolic function parameters were significantly ameliorated in the LIPUS-treated db/db mice. We also measured the force (F) and intracellular Ca2+ ([Ca2+]i) in trabeculae dissected from ventricles. We found that relaxation time and [Ca2+]i decay (Tau) were prolonged during electrically stimulated twitch contractions in db/db mice, both of which were significantly ameliorated in the LIPUS-treated db/db mice, indicating that the LIPUS therapy also improves relaxation properties at tissue level. Functionally, exercise capacity was also improved in the LIPUS-treated db/db mice. Histologically, db/db mice displayed progressed cardiomyocyte hypertrophy and myocardial interstitial fibrosis, while those changes were significantly suppressed in the LIPUS-treated db/db mice. Mechanistically, western blot showed that the endothelial nitric oxide synthase (eNOS)-nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway and Ca2+-handling molecules were up-regulated in the LIPUS-treated heart. CONCLUSIONS These results indicate that the LIPUS therapy ameliorates cardiac diastolic dysfunction in db/db mice through improvement of eNOS-NO-cGMP-PKG pathway and cardiomyocyte Ca2+-handling system, suggesting its potential usefulness for the treatment of HFpEF patients.
Collapse
MESH Headings
- Animals
- Calcium Signaling
- Cyclic GMP-Dependent Protein Kinases/metabolism
- Disease Models, Animal
- Fibrosis
- Heart Failure, Diastolic/genetics
- Heart Failure, Diastolic/metabolism
- Heart Failure, Diastolic/physiopathology
- Heart Failure, Diastolic/therapy
- Isolated Heart Preparation
- Mice, Knockout
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Nitric Oxide/metabolism
- Nitric Oxide Synthase Type III/metabolism
- Receptors, Leptin/genetics
- Receptors, Leptin/metabolism
- Stroke Volume
- Ultrasonic Therapy
- Ultrasonic Waves
- Ventricular Dysfunction, Left/genetics
- Ventricular Dysfunction, Left/metabolism
- Ventricular Dysfunction, Left/physiopathology
- Ventricular Dysfunction, Left/therapy
- Ventricular Function, Left
- Mice
Collapse
Affiliation(s)
- Yuto Monma
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Tomohiko Shindo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Kumiko Eguchi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Ryo Kurosawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yuta Kagaya
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Yosuke Ikumi
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Sadamitsu Ichijo
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Takashi Nakata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| | - Satoshi Miyata
- Department of Evidence-Based Cardiovascular Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Ayana Matsumoto
- Department of Clinical Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Haruka Sato
- Department of Clinical Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masahito Miura
- Department of Clinical Physiology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroshi Kanai
- Department of Electronic Engineering, Tohoku University Graduate School of Engineering, Sendai, Japan
- Division of Biomedical Measurements and Diagnostics, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan
| |
Collapse
|
35
|
Simko F, Baka T. Ivabradine and Blood Pressure Reduction: Underlying Pleiotropic Mechanisms and Clinical Implications. Front Cardiovasc Med 2021; 8:607998. [PMID: 33644129 PMCID: PMC7902523 DOI: 10.3389/fcvm.2021.607998] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/07/2021] [Indexed: 12/19/2022] Open
Affiliation(s)
- Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Bratislava, Slovakia.,Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Tomas Baka
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
36
|
Chen M, Ou L, Chen Y, Men L, Zhong X, Yang S, Luan J. Effectiveness and safety of Baduanjin exercise (BDJE) on heart failure with preserved left ventricular ejection fraction (HFpEF): A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e22994. [PMID: 33181663 PMCID: PMC7668503 DOI: 10.1097/md.0000000000022994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Nearly half of the heart failure (HF) patients have been classified as HF with preserved left ventricular ejection fraction (HFpEF) and the prevalence has been increasing over time. The subject of this study is to assess the clinical effectiveness and safety of Baduanjin exercise (BDJE), as a kind of traditional Chinese exercises, for HFpEF patients. METHODS A systematic literature search for articles up to September 2020 will be performed in following electronic databases: PubMed, Embase, the Cochrane Library, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journals Database (VIP) Database, Chinese Biomedical Database (CBM), Chinese Biomedical Literature Service System (SinoMed) and Wanfang Database. Inclusion criteria are randomized controlled trials of BDJE applied on HFpEF patients. The primary outcome measures will be exercise capacity (cardiopulmonary exercise test or 6-minute walking test) and quality of life. The secondary outcomes will be as the following: blood pressure, heart rate, echocardiography, endothelial function, arterial stiffness and hypersensitive C-reactive protein and N-Terminal pro-B-type natriuretic peptide. The safety outcome measures will be adverse events, liver and kidney function. RevMan 5.3 software will be used for data synthesis, sensitivity analysis, subgroup analysis and risk of bias assessment. A funnel plot will be developed to evaluate reporting bias. Stata 12.0 will be used for meta-regression and Egger tests. We will use the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system to assess the quality of evidence. CONCLUSION The study will give an explicit evidence to evaluate the effectiveness and safety of BDJE for HFpEF patients. ETHICS AND DISSEMINATION This systematic review does not require ethics approval and will be submitted to a peer-reviewed journal. TRIAL REGISTRATION NUMBER PROSPERO CRD42020200324.
Collapse
Affiliation(s)
| | - Lijun Ou
- Department of Cardiovascular Disease
| | | | | | - Xiaoling Zhong
- Reproductive Health Department, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | | | | |
Collapse
|
37
|
Wintrich J, Kindermann I, Ukena C, Selejan S, Werner C, Maack C, Laufs U, Tschöpe C, Anker SD, Lam CSP, Voors AA, Böhm M. Therapeutic approaches in heart failure with preserved ejection fraction: past, present, and future. Clin Res Cardiol 2020; 109:1079-1098. [PMID: 32236720 PMCID: PMC7449942 DOI: 10.1007/s00392-020-01633-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/11/2020] [Indexed: 02/07/2023]
Abstract
In contrast to the wealth of proven therapies for heart failure with reduced ejection fraction (HFrEF), therapeutic efforts in the past have failed to improve outcomes in heart failure with preserved ejection fraction (HFpEF). Moreover, to this day, diagnosis of HFpEF remains controversial. However, there is growing appreciation that HFpEF represents a heterogeneous syndrome with various phenotypes and comorbidities which are hardly to differentiate solely by LVEF and might benefit from individually tailored approaches. These hypotheses are supported by the recently presented PARAGON-HF trial. Although treatment with LCZ696 did not result in a significantly lower rate of total hospitalizations for heart failure and death from cardiovascular causes among HFpEF patients, subanalyses suggest beneficial effects in female patients and those with an LVEF between 45 and 57%. In the future, prospective randomized trials should focus on dedicated, well-defined subgroups based on various information such as clinical characteristics, biomarker levels, and imaging modalities. These could clarify the role of LCZ696 in selected individuals. Furthermore, sodium-glucose cotransporter-2 inhibitors have just proven efficient in HFrEF patients and are currently also studied in large prospective clinical trials enrolling HFpEF patients. In addition, several novel disease-modifying drugs that pursue different strategies such as targeting cardiac inflammation and fibrosis have delivered preliminary optimistic results and are subject of further research. Moreover, innovative device therapies may enhance management of HFpEF, but need prospective adequately powered clinical trials to confirm safety and efficacy regarding clinical outcomes. This review highlights the past, present, and future therapeutic approaches in HFpEF.
Collapse
Affiliation(s)
- Jan Wintrich
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany.
| | - Ingrid Kindermann
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany
| | - Christian Ukena
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany
| | - Simina Selejan
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany
| | - Christian Werner
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany
| | - Christoph Maack
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Ulrich Laufs
- Klinik und Poliklinik für Kardiologie im Department für Innere Medizin, Neurologie und Dermatologie, Universitätsklinikum Leipzig, Leipzig, Germany
| | - Carsten Tschöpe
- Department of Cardiology, Universitätsmedizin Berlin, Charite, Campus Rudolf Virchow Clinic (CVK), Augustenburger Platz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany
- Berlin-Brandenburg Institute of Health/Center for Regenerative Therapies (BIHCRT), Berlin, Germany
| | - Stefan D Anker
- Department of Cardiology, Universitätsmedizin Berlin, Charite, Campus Rudolf Virchow Clinic (CVK), Augustenburger Platz 1, 13353, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site, Berlin, Germany
- Berlin-Brandenburg Institute of Health/Center for Regenerative Therapies (BIHCRT), Berlin, Germany
| | - Carolyn S P Lam
- National Heart Centre, Singapore and Duke-National University of Singapore, Singapore, Singapore
- University Medical Centre Groningen, Groningen, The Netherlands
- The George Institute for Global Health, Sydney, Australia
| | - Adriaan A Voors
- University Medical Centre Groningen, Groningen, The Netherlands
| | - Michael Böhm
- Klinik für Innere Medizin III-Kardiologie, Angiologie und Internistische Intensivmedizin, Universitätsklinikum des Saarlandes und Medizinische Fakultät der Universität des Saarlandes, Kirrberger Straße, 66421, Homburg/Saar, Germany
| |
Collapse
|
38
|
Hohl M, Mayr M, Lang L, Nickel AG, Barallobre-Barreiro J, Yin X, Speer T, Selejan SR, Goettsch C, Erb K, Fecher-Trost C, Reil JC, Linz B, Ruf S, Hübschle T, Maack C, Böhm M, Sadowski T, Linz D. Cathepsin A contributes to left ventricular remodeling by degrading extracellular superoxide dismutase in mice. J Biol Chem 2020; 295:12605-12617. [PMID: 32647007 DOI: 10.1074/jbc.ra120.013488] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/29/2020] [Indexed: 11/06/2022] Open
Abstract
In the heart, the serine carboxypeptidase cathepsin A (CatA) is distributed between lysosomes and the extracellular matrix (ECM). CatA-mediated degradation of extracellular peptides may contribute to ECM remodeling and left ventricular (LV) dysfunction. Here, we aimed to evaluate the effects of CatA overexpression on LV remodeling. A proteomic analysis of the secretome of adult mouse cardiac fibroblasts upon digestion by CatA identified the extracellular antioxidant enzyme superoxide dismutase (EC-SOD) as a novel substrate of CatA, which decreased EC-SOD abundance 5-fold. In vitro, both cardiomyocytes and cardiac fibroblasts expressed and secreted CatA protein, and only cardiac fibroblasts expressed and secreted EC-SOD protein. Cardiomyocyte-specific CatA overexpression and increased CatA activity in the LV of transgenic mice (CatA-TG) reduced EC-SOD protein levels by 43%. Loss of EC-SOD-mediated antioxidative activity resulted in significant accumulation of superoxide radicals (WT, 4.54 μmol/mg tissue/min; CatA-TG, 8.62 μmol/mg tissue/min), increased inflammation, myocyte hypertrophy (WT, 19.8 μm; CatA-TG, 21.9 μm), cellular apoptosis, and elevated mRNA expression of hypertrophy-related and profibrotic marker genes, without affecting intracellular detoxifying proteins. In CatA-TG mice, LV interstitial fibrosis formation was enhanced by 19%, and the type I/type III collagen ratio was shifted toward higher abundance of collagen I fibers. Cardiac remodeling in CatA-TG was accompanied by an increased LV weight/body weight ratio and LV end diastolic volume (WT, 50.8 μl; CatA-TG, 61.9 μl). In conclusion, CatA-mediated EC-SOD reduction in the heart contributes to increased oxidative stress, myocyte hypertrophy, ECM remodeling, and inflammation, implicating CatA as a potential therapeutic target to prevent ventricular remodeling.
Collapse
Affiliation(s)
- Mathias Hohl
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Manuel Mayr
- King's BHF Centre of Research Excellence, The James Black Centre, London, United Kingdom
| | - Lisa Lang
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Alexander G Nickel
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany.,Universitätsklinikum Würzburg, Deutsches Zentrum für Herzinsuffizienz (DZHI), Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | | | - Xiaoke Yin
- King's BHF Centre of Research Excellence, The James Black Centre, London, United Kingdom
| | - Thimoteus Speer
- Klinik für Innere Medizin IV, Universität des Saarlandes, Homburg/Saar, Germany
| | | | - Claudia Goettsch
- Medizinische Fakultät, Medizinische Klinik 1, Kardiologie, Universitätsklinikum, Aachen, Germany
| | - Katharina Erb
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | - Claudia Fecher-Trost
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie Universität des Saarlandes, Homburg/Saar, Germany
| | - Jan-Christian Reil
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany.,Klinik für Innere Medizin II, Universitäres Herzzentrum, Lübeck, Germany
| | - Benedikt Linz
- Faculty of Health and Medical Sciences, Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sven Ruf
- Sanofi-Aventis Deutschland GmbH, Frankfurt, Germany
| | | | - Christoph Maack
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany.,Universitätsklinikum Würzburg, Deutsches Zentrum für Herzinsuffizienz (DZHI), Comprehensive Heart Failure Center (CHFC), Würzburg, Germany
| | - Michael Böhm
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany
| | | | - Dominik Linz
- Klinik für Innere Medizin III, Universität des Saarlandes, Homburg/Saar, Germany .,University Maastricht, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands.,Department of Cardiology, Maastricht University Medical Centre, Maastricht, the Netherlands.,Centre for Heart Rhythm Disorders, Royal Adelaide Hospital, University of Adelaide, Adelaide, Australia
| |
Collapse
|
39
|
Reil JC, Reil GH, Kovács Á, Sequeira V, Waddingham MT, Lodi M, Herwig M, Ghaderi S, Kreusser MM, Papp Z, Voigt N, Dobrev D, Meyhöfer S, Langer HF, Maier LS, Linz D, Mügge A, Hohl M, Steendijk P, Hamdani N. CaMKII activity contributes to homeometric autoregulation of the heart: A novel mechanism for the Anrep effect. J Physiol 2020; 598:3129-3153. [PMID: 32394454 DOI: 10.1113/jp279607] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/04/2020] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS The Anrep effect represents the alteration of left ventricular (LV) contractility to acutely enhanced afterload in a few seconds, thereby preserving stroke volume (SV) at constant preload. As a result of the missing preload stretch in our model, the Anrep effect differs from the slow force response and has a different mechanism. The Anrep effect demonstrated two different phases. First, the sudden increased afterload was momentary equilibrated by the enhanced LV contractility as a result of higher power strokes of strongly-bound myosin cross-bridges. Second, the slightly delayed recovery of SV is perhaps dependent on Ca2+ /calmodulin-dependent protein kinase II activation caused by oxidation and myofilament phosphorylation (cardiac myosin-binding protein-C, myosin light chain 2), maximizing the recruitment of available strongly-bound myosin cross-bridges. Short-lived oxidative stress might present a new facet of subcellular signalling with respect to cardiovascular regulation. Relevance for human physiology was demonstrated by echocardiography disclosing the Anrep effect in humans during handgrip exercise. ABSTRACT The present study investigated whether oxidative stress and Ca2+ /calmodulin-dependent protein kinase II (CaMKII) activity are involved in triggering the Anrep effect. LV pressure-volume (PV) analyses of isolated, preload controlled working hearts were performed at two afterload levels (60 and 100 mmHg) in C57BL/6N wild-type (WT) and CaMKII-double knockout mice (DKOCaMKII ). In snap-frozen WT hearts, force-pCa relationship, H2 O2 generation, CaMKII oxidation and phosphorylation of myofilament and Ca2+ handling proteins were assessed. Acutely raised afterload showed significantly increased wall stress, H2 O2 generation and LV contractility in the PV diagram with an initial decrease and recovery of stroke volume, whereas end-diastolic pressure and volume, as well as heart rate, remained constant. Afterload induced increase in LV contractility was blunted in DKOCaMKII -hearts. Force development of single WT cardiomyocytes was greater with elevated afterload at submaximal Ca2+ concentration and associated with increases in CaMKII oxidation and phosphorylation of cardiac-myosin binding protein-C, myosin light chain and Ca2+ handling proteins. CaMKII activity is involved in the regulation of the Anrep effect and associates with stimulation of oxidative stress, presumably starting a cascade of CaMKII oxidation with downstream phosphorylation of myofilament and Ca2+ handling proteins. These mechanisms improve LV inotropy and preserve stroke volume within few seconds.
Collapse
Affiliation(s)
- Jan-Christian Reil
- Klinik für Innere Medizin II, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitäres Herzzentrum Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Gert-Hinrich Reil
- Klinik für Kardiologie, Klinikum Oldenburg, Innere Medizin I, Oldenburg, Germany
| | - Árpád Kovács
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University of Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
| | - Vasco Sequeira
- Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Germany
| | - Mark T Waddingham
- Department of Physiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Maria Lodi
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University of Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
| | - Melissa Herwig
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University of Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
| | - Shahrooz Ghaderi
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany
| | - Michael M Kreusser
- Departments of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Zoltán Papp
- Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Niels Voigt
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany.,Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Georg-August University Göttingen, Göttingen, Germany.,DZHK (German Center for Cardiovascular Research), partner site Göttingen, Göttingen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, Faculty of Medicine, University Duisburg-Essen, Essen, Germany
| | - Svenja Meyhöfer
- Institute for Endocrinology & Diabetes, University of Lübeck, Lübeck, Germany and German Center for Diabetes Research, Neuherberg, Germany
| | - Harald F Langer
- Klinik für Innere Medizin II, Kardiologie, Angiologie und Internistische Intensivmedizin, Universitäres Herzzentrum Lübeck, Universitätsklinikum Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Lars S Maier
- Klinik und Poliklinik für innere Medizin II, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Dominik Linz
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Andreas Mügge
- Department of Cardiology, St. Josef-Hospital, Ruhr University of Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany
| | - Mathias Hohl
- Klinik für Innere Medizin III (Kardiologie, Angiologie, Internistische Intensivmedizin), Universitätsklinikum des Saarlandes, Homburg/Saar, Germany
| | - Paul Steendijk
- Departments of Cardiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nazha Hamdani
- Institute of Physiology, Ruhr University Bochum, Bochum, Germany.,Department of Cardiology, St. Josef-Hospital, Ruhr University of Bochum, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr Universität Bochum, Bochum, Germany.,Department Clinical Pharmacology, Ruhr University of Bochum, Bochum, Germany
| |
Collapse
|
40
|
Xie M, Huang HL, Zhang WH, Gao L, Wang YW, Zhu XJ, Li W, Chen KS, Boutjdir M, Chen L. Increased sarcoplasmic/endoplasmic reticulum calcium ATPase 2a activity underlies the mechanism of the positive inotropic effect of ivabradine. Exp Physiol 2020; 105:477-488. [PMID: 31912915 DOI: 10.1113/ep087964] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 01/06/2020] [Indexed: 12/21/2022]
Abstract
NEW FINDINGS What is the central question of this study? The therapeutic effect of ivabradine on patients with chronic heart failure and chronic stable angina pectoris is mediated through a reduction in heart rate: what are the haemodynamic characteristics and the mechanism of the inotropic effect? What is the main finding and its importance? Ivabradine has a positive inotropic effect and lowers the heart rate both in vivo and in vitro. These effects are likely mediated by ivabradine's significant increase of the fast component rate constant mediated by sarcoplasmic/endoplasmic reticulum calcium ATPase 2a and decrease of the slow component rate constant that is mediated by the Na+ /Ca2+ exchanger and sarcolemmal Ca2+ -ATPase during the Ca2+ transient decay phase. ABSTRACT Ivabradine's therapeutic effect is mediated by a reduction of the heart rate; however, its haemodynamic characteristics and the mechanism of its inotropic effect are poorly understood. We aimed to investigate the positive inotropic effect of ivabradine and its underlying mechanism. The results demonstrated that ivabradine increased the positive inotropy of the rat heart in vivo by increasing the stroke work, cardiac output, stroke volume, end-diastolic volume, end-systolic pressure, ejection fraction, ±dP/dtmax , left ventricular end-systolic elastance and systolic blood pressure without altering the diastolic blood pressure and arterial elastance. This inotropic effect was observed in both non-paced and paced rat isolated heart. Ivabradine increased the Ca2+ transient amplitude and the reuptake rates of sarcoplasmic/endoplasmic reticulum calcium ATPase 2a (SERCA2a), lowered the diastolic Ca2+ level and suppressed the combined extrusion rate of the Na+ /Ca2+ exchanger and the sarcolemmal Ca2+ -ATPase. In addition, ivabradine widened the action potential duration, hyperpolarized the resting membrane potential, increased sarcoplasmic reticulum Ca2+ content and reduced Ca2+ leak. Overall, ivabradine had a positive inotropic effect brought about by enhanced SERCA2a activity, which might be mediated by increased phospholamban phosphorylation. The positive inotropic effect along with the lowered heart rate underlies ivabradine's therapeutic effect in heart failure.
Collapse
Affiliation(s)
- Ming Xie
- Department of Pharmacy, Jiangyin Hospital of TCM Affiliated to Nanjing University of Chinese Medicine, Jiangyin, China.,Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hui-Li Huang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen-Hui Zhang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Li Gao
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu-Wei Wang
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Jia Zhu
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke-Su Chen
- Department of Respiratory, Inpatient Wards for Senior Cadres, General Hospital of Eastern Theater Command, PLA, Nanjing, China
| | - Mohamed Boutjdir
- VA New York Harbor Healthcare System, 800 Poly place, Brooklyn, NY, USA.,State University of New York Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY, USA.,NYU School of Medicine, 550 First Avenue, New York, NY, USA
| | - Long Chen
- Jiangsu key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Institute of Chinese Medicine of Taizhou China Medical City, Double Tower, China Medical City, Taizhou, China
| |
Collapse
|
41
|
Upadhya B, Haykowsky MJ, Kitzman DW. Therapy for heart failure with preserved ejection fraction: current status, unique challenges, and future directions. Heart Fail Rev 2019; 23:609-629. [PMID: 29876843 DOI: 10.1007/s10741-018-9714-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is the most common form of HF. Among elderly women, HFpEF comprises more than 80% of incident HF cases. Adverse outcomes-exercise intolerance, poor quality of life, frequent hospitalizations, and reduced survival-approach those of classic HF with reduced EF (HFrEF). However, despite its importance, our understanding of the pathophysiology of HFpEF is incomplete, and despite intensive efforts, optimal therapy remains uncertain, as most trials to date have been negative. This is in stark contrast to management of HFrEF, where dozens of positive trials have established a broad array of effective, guidelines-based therapies that definitively improve a range of clinically meaningful outcomes. In addition to providing an overview of current management status, we examine evolving data that may help explain this paradox, overcome past challenges, provide a roadmap for future success, and that underpin a wave of new trials that will test novel approaches based on these insights.
Collapse
Affiliation(s)
- Bharathi Upadhya
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA
| | - Mark J Haykowsky
- College of Nursing and Health Innovation, University of Texas Arlington, Arlington, TX, USA
| | - Dalane W Kitzman
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA.
| |
Collapse
|
42
|
Shear FE. Novel paradigms in the therapeutic management of heart failure with preserved ejection fraction: clinical perspectives. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2019; 9:91-108. [PMID: 31763061 PMCID: PMC6872467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/13/2019] [Indexed: 06/10/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a pathological complexity that decreases cardiac output and elevates the ventricular filling pressure. HFpEF is usually misdiagnosed and maltreated. HFpEF is usually correlated with excessive morbidity and mortality. The prevalence of HFpEF is growing, and there is a deficiency of evidence-based therapy, creating challenges for the physician with no effective management guidelines. Moreover, HFpEF is not equivalent to diastolic heart failure as previously thought, as diastolic dysfunction is not the only underlying mechanism related to HFpEF and sometimes may be absent. Several other mechanisms may work in concert to produce HFpEF syndrome, either cardiac related (chronotropic incompetence, a longitudinal left ventricular (LV) systolic dysfunction despite a normal ejection fraction) or extracardiac related (pulmonary hypertension, abnormal ventricular-arterial coupling, abnormal exercise-induced vasodilation, extracardiac volume overload). These complex pathophysiologic mechanisms indicate that HFpEF is heterogeneous and that this syndrome might be related to a vascular or an endothelial dysfunction or might be considered a cardiac manifestation of one or more systemic illnesses. The heterogeneity of HFpEF necessitates excluding many differential diagnoses. In addition, the multiple comorbidities that are inherent to this condition need to be controlled in order to achieve effective management. Taken together, these key mechanisms might contribute to the multiple difficulties in the management of HFpEF patients; these mechanisms also explain why medications used in patients with other heart conditions may or may not be successful in these patients. Novel therapies and clinical trials including paradigm shifts in therapeutic management are needed to effectively manage HFpEF. The current review article sheds light on novel paradigms related to pathologies, diagnoses, and strategies, along with some proposed recommendations and clinical options for effective management of HFpEF.
Collapse
Affiliation(s)
- Fayez El Shear
- King Fahad Cardiac Center (KFCC), King Khaled University Hospital (KKUH), King Saud UniversityRiyadh, Saudi Arabia
- National Heart InstituteCairo, Egypt
| |
Collapse
|
43
|
Validation of simple measures of aortic distensibility based on standard 4-chamber cine CMR: a new approach for clinical studies. Clin Res Cardiol 2019; 109:454-464. [PMID: 31302712 PMCID: PMC7098938 DOI: 10.1007/s00392-019-01525-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/02/2019] [Indexed: 02/05/2023]
Abstract
Objective Aortic distensibility (AD) represents a well-established parameter of aortic stiffness. It remains unclear, however, whether AD can be obtained with high reproducibility in standard 4-chamber cine CMR images of the descending aorta. This study investigated the intra- and inter-observer agreement of AD based on different angles of the aorta and provided a sample size calculation of AD for future trials. Methods Thirty-one patients underwent CMR. Angulation of the descending aorta was performed to obtain strictly transversal and orthogonal cross-sectional aortic areas. AD was obtained both area and diameter based. Results For area-based values, inter-observer agreement was highest for 4-chamber AD (ICC 0.97; 95% CI 0.93–99), followed by orthogonal AD (ICC 0.96; 95% CI 0.91–98) and transversal AD (ICC 0.93; 95% CI 0.80–97). For diameter-based values, agreement was also highest for 4-chamber AD (ICC 0.97; 95% CI 0.94–99), followed by orthogonal AD (ICC 0.96; 95% CI 0.92–98) and transversal AD (ICC 0.91; 95% CI 0.77–96). Bland–Altman plots confirmed a small variation among observers. Sample size calculation showed a sample size of 12 patients to detect a change in 4-chamber AD of 1 × 10−3 mmHg−1 with either the area or diameter approach. Conclusion AD measurements are highly reproducible and allow an accurate and rapid assessment of arterial compliance from standard 4-chamber cine CMR. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s00392-019-01525-8) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Zuo GF, Ren XM, Ge Q, Luo J, Ye P, Wang F, Wu W, Chao YL, Gu Y, Gao XF, Ge Z, Gao HB, Hu ZY, Zhang JJ, Chen SL. Activation of the PP2A catalytic subunit by ivabradine attenuates the development of diabetic cardiomyopathy. J Mol Cell Cardiol 2019; 130:170-183. [PMID: 30998977 DOI: 10.1016/j.yjmcc.2019.04.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 04/11/2019] [Accepted: 04/12/2019] [Indexed: 12/30/2022]
Abstract
Hyperglycemia-induced apoptosis plays a critical role in the pathogenesis of diabetic cardiomyopathy (DCM). Our previous study demonstrated that ivabradine, a selective If current antagonist, significantly attenuated myocardial apoptosis in diabetic mice, but the underlying mechanisms remained unknown. This study investigated the underlying mechanisms by which ivabradine exerts anti-apoptotic effects in experimental DCM. Pretreatment with ivabradine, but not ZD7288 (an established If current blocker), profoundly inhibited high glucose-induced apoptosis via inactivation of nuclear factor (NF)-κB signaling in neonatal rat cardiomyocytes. The effect was abolished by transfection of an siRNA targeting protein phosphatase 2A catalytic subunit (PP2Ac). In streptozotocin-induced diabetic mice, ivabradine treatment significantly inhibited left ventricular hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) and HCN4 (major components of the If current), activated PP2Ac, and attenuated NF-κB signaling activation and apoptosis, in line with improved histological abnormalities, fibrosis, and cardiac dysfunction without affecting hyperglycemia. These effects were not observed in diabetic mice with virus-mediated knockdown of HCN2 or HCN4 after myocardial injection, but were alleviated by knockdown of PP2Acα. Molecular docking and phosphatase activity assay confirmed direct binding of ivabradine to, and activation of, PP2Ac. In conclusion, ivabradine may directly activate PP2Ac, leading to inhibition of NF-κB signaling activation, myocardial apoptosis, and fibrosis, and eventually improving cardiac function in experimental DCM. Taken together, the present findings suggest that ivabradine may be a promising drug for treatment of DCM.
Collapse
Affiliation(s)
- Guang-Feng Zuo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Min Ren
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qing Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Jie Luo
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Ye
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Feng Wang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Wen Wu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yue-Lin Chao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Yue Gu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | - Xiao-Fei Gao
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Zhen Ge
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Han-Bin Gao
- The First People's Hospital of Taicang, Soochow University, Suzhou, China
| | - Zuo-Ying Hu
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Jun-Jie Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| | - Shao-Liang Chen
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
45
|
Ikonomidis I, Aboyans V, Blacher J, Brodmann M, Brutsaert DL, Chirinos JA, De Carlo M, Delgado V, Lancellotti P, Lekakis J, Mohty D, Nihoyannopoulos P, Parissis J, Rizzoni D, Ruschitzka F, Seferovic P, Stabile E, Tousoulis D, Vinereanu D, Vlachopoulos C, Vlastos D, Xaplanteris P, Zimlichman R, Metra M. The role of ventricular-arterial coupling in cardiac disease and heart failure: assessment, clinical implications and therapeutic interventions. A consensus document of the European Society of Cardiology Working Group on Aorta & Peripheral Vascular Diseases, European Association of Cardiovascular Imaging, and Heart Failure Association. Eur J Heart Fail 2019; 21:402-424. [PMID: 30859669 DOI: 10.1002/ejhf.1436] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/09/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Ventricular-arterial coupling (VAC) plays a major role in the physiology of cardiac and aortic mechanics, as well as in the pathophysiology of cardiac disease. VAC assessment possesses independent diagnostic and prognostic value and may be used to refine riskstratification and monitor therapeutic interventions. Traditionally, VAC is assessed by the non-invasive measurement of the ratio of arterial (Ea) to ventricular end-systolic elastance (Ees). With disease progression, both Ea and Ees may become abnormal and the Ea/Ees ratio may approximate its normal values. Therefore, the measurement of each component of this ratio or of novel more sensitive markers of myocardial (e.g. global longitudinal strain) and arterial function (e.g. pulse wave velocity) may better characterize VAC. In valvular heart disease, systemic arterial compliance and valvulo-arterial impedance have an established diagnostic and prognostic value and may monitor the effects of valve replacement on vascular and cardiac function. Treatment guided to improve VAC through improvement of both or each one of its components may delay incidence of heart failure and possibly improve prognosis in heart failure. In this consensus document, we describe the pathophysiology, the methods of assessment as well as the clinical implications of VAC in cardiac diseases and heart failure. Finally, we focus on interventions that may improve VAC and thus modify prognosis.
Collapse
Affiliation(s)
- Ignatios Ikonomidis
- Second Cardiology Department, Echocardiography Department and Laboratory of Preventive Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Victor Aboyans
- Department of Cardiology, Dupuytren University Hospital, Limoges, France.,Inserm 1094, Limoges School of Medicine, Limoges, France
| | - Jacque Blacher
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Paris-Descartes University, Hôtel-Dieu Hospital, AP-HP, Paris, France
| | - Marianne Brodmann
- Division of Angiology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Dirk L Brutsaert
- Department of Cardiology, University Hospital Antwerp, Edegem, Belgium
| | - Julio A Chirinos
- Perelman School of Medicine and Hospital of the University of Pennsylvania, University of Pennsylvania, Philadelphia, PA, USA
| | - Marco De Carlo
- Cardiac Catheterization Laboratory, Cardiothoracic and Vascular Department, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Victoria Delgado
- Department of Cardiology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Patrizio Lancellotti
- Department of Cardiology, University of Liège Hospital, GIGA Cardiovascular Sciences, CHU SantTilman, Liège, Belgium.,Gruppo Villa Maria Care and Research, Anthea Hospital, Bari, Italy
| | - John Lekakis
- Second Cardiology Department, Echocardiography Department and Laboratory of Preventive Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Dania Mohty
- Department of Cardiology, Dupuytren University Hospital, Limoges, France.,Inserm 1094, Limoges School of Medicine, Limoges, France
| | - Petros Nihoyannopoulos
- NHLI - National Heart and Lung Institute, Imperial College London, London, UK.,1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - John Parissis
- Heart Failure Unit, School of Medicine and Department of Cardiology, National and Kapodistrian University of Athens, Athens University Hospital Attikon, Athens, Greece
| | - Damiano Rizzoni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Frank Ruschitzka
- Department of Cardiology, University Hospital, Zurich, University Heart Center, Zurich, Switzerland
| | - Petar Seferovic
- Cardiology Department, Clinical Centre Serbia, School of Medicine, University of Belgrade, Belgrade, Serbia
| | - Eugenio Stabile
- Department of Advanced Biomedical Sciences, 'Federico II' University, Naples, Italy
| | - Dimitrios Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dragos Vinereanu
- University of Medicine and Pharmacy 'Carol Davila', and Department of Cardiology, University and Emergency Hospital, Bucharest, Romania
| | - Charalambos Vlachopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Dimitrios Vlastos
- Second Cardiology Department, Echocardiography Department and Laboratory of Preventive Cardiology, Athens University Hospital Attikon, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Panagiotis Xaplanteris
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Reuven Zimlichman
- Department of Medicine and Hypertension Institute, Brunner Institute for Cardiovascular Research, Sackler Faculty of Medicine, The E. Wolfson Medical Center, Institute for Quality in Medicine, Israeli Medical Association, Tel Aviv University, Tel Aviv, Israel
| | - Marco Metra
- Cardiology, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy
| |
Collapse
|
46
|
Grande D, Iacoviello M, Aspromonte N. The effects of heart rate control in chronic heart failure with reduced ejection fraction. Heart Fail Rev 2019; 23:527-535. [PMID: 29687317 DOI: 10.1007/s10741-018-9704-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Elevated heart rate has been associated with worse prognosis both in the general population and in patients with heart failure. Heart rate is finely modulated by neurohormonal signals and it reflects the balance between the sympathetic and the parasympathetic limbs of the autonomic nervous system. For this reason, elevated heart rate in heart failure has been considered an epiphenomenon of the sympathetic hyperactivation during heart failure. However, experimental and clinical evidence suggests that high heart rate could have a direct pathogenetic role. Consequently, heart rate might act as a pathophysiological mediator of heart failure as well as a marker of adverse outcome. This hypothesis has been supported by the observation that the positive effect of beta-blockade could be linked to the degree of heart rate reduction. In addition, the selective heart rate control with ivabradine has recently been demonstrated to be beneficial in patients with heart failure and left ventricular systolic dysfunction. The objective of this review is to examine the pathophysiological implications of elevated heart rate in chronic heart failure and explore the mechanisms underlying the effects of pharmacological heart rate control.
Collapse
Affiliation(s)
- Dario Grande
- School of Cardiology, University of Bari, Bari, Italy
| | - Massimo Iacoviello
- Cardiology Unit, Cardiothoracic Department, Policlinic University Hospital, Bari, Italy
| | - Nadia Aspromonte
- Department of Cardiovascular Medicine, Foundation Policlinico Gemelli, Rome, Italy.
| |
Collapse
|
47
|
Kakehi K, Iwanaga Y, Watanabe H, Sonobe T, Akiyama T, Shimizu S, Yamamoto H, Miyazaki S. Modulation of Sympathetic Activity and Innervation With Chronic Ivabradine and β-Blocker Therapies: Analysis of Hypertensive Rats With Heart Failure. J Cardiovasc Pharmacol Ther 2019; 24:387-396. [PMID: 30786751 DOI: 10.1177/1074248419829168] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Whether the reduction of heart rate with ivabradine (IVA) could affect sympathetic activation and cardiac innervation in heart failure (HF) remains unknown. PURPOSE The present study assessed the chronic effects of IVA and β-blocker on the systemic and local sympathetic nervous systems of hypertensive animals with HF. METHODS AND RESULTS The Dahl salt-sensitive rats received chronic IVA, bisoprolol (BIS), or placebo (CTL) therapy. The survival of the animal models with IVA and BIS significantly improved (median; 19.7 in IVA and 19.7 in BIS vs 17.0 weeks in CTL, P < .001). A similar decrease in 24-hour heart rate (mean; 305 in IVA and 329 in BIS vs 388 beats/min in CTL, P < .001) without effect on blood pressure, and an improvement in the left ventricular dysfunction (mean fractional shortening; 56.7% in IVA and 47.8% in BIS vs 39.0% in CTL, P < .001) were observed in the animals with IVA and BIS. However, a negative inotropic effect was only observed in the animals with BIS. Excessive urinary noradrenaline excretion in animals with CTL was only suppressed with the use of IVA (mean; 1.35 μg/d in IVA and 1.95 μg/d in BIS vs 2.27 μg/d in CTL, P = .002). In contrast, atrial noradrenaline and acetylcholine depletion in the animals with CTL improved and the tyrosine hydroxylase expression in the both atria were restored with the use of both IVA and BIS. CONCLUSIONS IVA therapy improved the survival of hypertensive animals with HF. Furthermore, it was associated with the amelioration of systemic sympathetic activation and cardiac sympathetic and parasympathetic nerve innervations. Chronic β-blocker therapy with negative inotropic effects had beneficial effects only on cardiac innervations.
Collapse
Affiliation(s)
- Kazuyoshi Kakehi
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Yoshitaka Iwanaga
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Heitaro Watanabe
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Takashi Sonobe
- 2 Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Tsuyoshi Akiyama
- 2 Department of Cardiac Physiology, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Shuji Shimizu
- 3 Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Suita, Japan
| | - Hiromi Yamamoto
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Shunichi Miyazaki
- 1 Division of Cardiology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
48
|
Jensen MT. Resting heart rate and relation to disease and longevity: past, present and future. Scandinavian Journal of Clinical and Laboratory Investigation 2019; 79:108-116. [PMID: 30761923 DOI: 10.1080/00365513.2019.1566567] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Assessment of heart rate has been used for millennia as a marker of health. Several studies have indicated that low resting heart rate (RHR) is associated with health and longevity, and conversely, a high resting heart to be associated with disease and adverse events. Longitudinal studies have shown a clear association between increase in heart rate over time and adverse events. RHR is a fundamental clinical characteristic and several trials have assessed the effectiveness of heart rate lowering medication, for instance beta-blockers and selective sinus node inhibition. Advances in technology have provided new insights into genetic factors related to RHR as well as insights into whether elevated RHR is a risk factor or risk marker. Recent animal research has suggested that heart rate lowering with sinus node inhibition is associated with increased lifespan. Furthermore, genome-wide association studies in the general population using Mendelian randomization have demonstrated a causal link between heart rate at rest and longevity. Furthermore, the development in personal digital devices such as mobile phones, fitness trackers and eHealth applications has made heart rate information and knowledge in this field as important as ever for the public as well as the clinicians. It should therefore be expected that clinicians and health care providers will be met by relevant questions and need of advice regarding heart rate information from patients and the public. The present review provides an overview of the current knowledge in the field of heart rate and health.
Collapse
Affiliation(s)
- Magnus T Jensen
- a Department of Cardiology , Rigshospitalet , Copenhagen, Denmark.,b Department of Cardiology , Herlev-Gentofte Hospital , Hellerup , Denmark
| |
Collapse
|
49
|
Ide T, Ohtani K, Higo T, Tanaka M, Kawasaki Y, Tsutsui H. Ivabradine for the Treatment of Cardiovascular Diseases. Circ J 2018; 83:252-260. [PMID: 30606942 DOI: 10.1253/circj.cj-18-1184] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Higher heart rate (HR) is independently related to worse outcomes in various cardiac diseases, including hypertension, coronary artery disease, and heart failure (HF). HR is determined by the pacemaker activity of cells within the sinoatrial node. The hyperpolarization-activated cyclic nucleotide-gated (HCN) 4 channel, one of 4 HCN isoforms, generates the If current and plays an important role in the regulation of pacemaker activity in the sinoatrial node. Ivabradine is a novel and only available HCN inhibitor, which can reduce HR and has been approved for stable angina and chronic HF in many countries other than Japan. In this review, we summarize the current knowledge of the HCN4 channel and ivabradine, including the function of HCN4 in cardiac pacemaking, the mechanism of action of If inhibition by ivabradine, and the pharmacological and clinical effects of ivabradine in cardiac diseases as HF, coronary artery disease, and atrial fibrillation.
Collapse
Affiliation(s)
- Tomomi Ide
- Department of Experimental and Clinical Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Kisho Ohtani
- Department of Experimental and Clinical Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | - Taiki Higo
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| | | | | | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University
| |
Collapse
|
50
|
Heart failure with preserved ejection fraction: A systemic disease linked to multiple comorbidities, targeting new therapeutic options. Arch Cardiovasc Dis 2018; 111:766-781. [DOI: 10.1016/j.acvd.2018.04.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/13/2022]
|