1
|
Zhuang X, Zarif M, Shen Y, Zhang Z, He J, Xie L, Wu Q, Lin X, Chen K, Tian Y, Lin Y, Zhang Y, Cai Z, Qiu Z, Chen L. Hepatic Abnormal Secretion of Apolipoprotein C3 Promotes Inflammation in Aortic Dissection. J Am Heart Assoc 2025; 14:e037172. [PMID: 39846283 DOI: 10.1161/jaha.124.037172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/22/2024] [Indexed: 01/24/2025]
Abstract
BACKGROUND Apolipoprotein C3 (apo C3) is primarily secreted by the liver and is involved in promoting sterile inflammation and organ damage under pathological conditions. Previous studies have shown that apo C3 is abundant in the plasma exosomes of patients with aortic dissection (AD), but its specific role in AD remains unclear. METHODS AND RESULTS In vivo, adeno-associated virus was used to knock down hepatic apo C3 expression in an AD mouse model to assess the impact of liver-derived apo C3 on the development of AD. In vitro, recombinant apo C3 protein was added to the culture medium of J774A.1 macrophages to evaluate its effect on macrophage polarization and to identify the underlying mechanisms. Additionally, the effect of apo C3 on the function of aortic endothelial and smooth muscle cells was explored. Apo C3 in the aortas of AD mice was found to originate from abnormal hepatic secretion, which enters the bloodstream and subsequently deposits in the aorta. Adeno-associated virus-mediated hepatic apo C3 knockdown significantly reduced AD incidence (P=0.0036), macrophage infiltration (P=0.0004), and collagen deposition in the aorta (P=0.0016). Similarly, inhibiting the apo C3 receptor Toll-like receptor 2 significantly lowered AD incidence (P=0.0352). In vitro, recombinant apo C3 protein promoted M1 polarization and matrix metalloproteinase secretion in macrophages by activating the Toll-like receptor 2/NLR family pyrin domain containing 3 pathway. Additionally, apo C3 increased adhesion molecule expression in endothelial cells and induced inflammation, chemotaxis, and apoptosis in vascular smooth muscle cells. CONCLUSIONS Our findings highlight the role of abnormally secreted hepatic apo C3 in promoting aortic inflammation.
Collapse
Affiliation(s)
- Xinghui Zhuang
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Mohammad Zarif
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Yue Shen
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Zhaofeng Zhang
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Jian He
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Linfeng Xie
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Qingsong Wu
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Xinfan Lin
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Keyuan Chen
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Yue Tian
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Yong Lin
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Yuling Zhang
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
| | - Ziwen Cai
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
- Fujian Provincial Center for Cardiovascular Medicine Fuzhou China
| | - Zhihuang Qiu
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
- Fujian Provincial Center for Cardiovascular Medicine Fuzhou China
| | - Liangwan Chen
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou China
- Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou China
- Fujian Provincial Center for Cardiovascular Medicine Fuzhou China
| |
Collapse
|
2
|
Tomlinson B, Chan P. Exploring emerging pharmacotherapies for type 2 diabetes patients with hypertriglyceridemia. Expert Opin Pharmacother 2025; 26:279-289. [PMID: 39794291 DOI: 10.1080/14656566.2025.2451752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
INTRODUCTION Atherogenic dyslipidemia with increased triglycerides, low high-density lipoprotein cholesterol levels and increased small dense low-density lipoprotein (LDL) particles is a major risk factor contributing to the increased cardiovascular (CV) risk in patients with type 2 diabetes (T2D). This is regarded as a residual risk after achieving target levels of LDL cholesterol. AREAS COVERED This article reviews the novel therapies to reduce triglycerides in patients with T2D. These were identified by a PubMed search and mainly focus on pemafibrate and the drugs targeting apolipoprotein C3 (apoC3) and angiopoietin-like 3 (ANGPTL3). EXPERT OPINION Current therapies to reduce triglycerides in patients with T2D include fibrates and omega-3 fatty acids but these are often not sufficient and the evidence for CV benefits is limited. Pemafibrate was effective in reducing triglycerides in patients with T2D but did not reduce CV events in the PROMINENT study. Inhibitors of apoC3 are effective in reducing triglycerides even in familial chylomicronaemia syndrome and olezarsen and plozasiran in this group are being studied in patients with combined hyperlipidemia. The ANGPTL3 inhibitor evinacumab has been approved for homozygous familial hypercholesterolemia, and other ANGPTL3 inhibitors may prove to be useful to reduce triglycerides in T2D.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| | - Paul Chan
- Division of Cardiology, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
3
|
Tomlinson B. An up-to-date review of emerging biologic therapies for hypercholesterolemia. Expert Opin Biol Ther 2025; 25:69-78. [PMID: 39668448 DOI: 10.1080/14712598.2024.2442455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
INTRODUCTION Hypercholesterolemia and other lipid disorders are major causes of atherosclerotic cardiovascular disease (ASCVD). Statins have been the mainstay of lipid-lowering therapy for many years, but they may not be adequate to achieve the target low-density lipoprotein (LDL) cholesterol levels and there are other residual lipid risk factors. AREAS COVERED This article reviews the biologic therapies in development for hypercholesterolemia identified by a PubMed search. Inhibition of proprotein convertase subtilisin/kexin type 9 (PCSK9) is a major focus, but the drugs targeting apolipoprotein C3 (apoC3) and angiopoietin-like 3 (ANGPTL3) that were originally developed to reduce the levels of triglyceride-rich lipoproteins are now being explored to reduce cardiovascular events in a wider range of patients. A brief overview of biologic therapies targeting lipoprotein(a) [Lp(a)] is also proved. EXPERT OPINION Inhibition of PCSK9 remains an attractive target. In addition to the currently available monoclonal antibodies (mAbs) and small interfering RNA (siRNA), new mAbs and the adenectin lerodalcibep are promising therapies. The antisense oligonucleotide (ASO) and siRNA inhibitors of apoC3 and ANGPTL3 are effective in severe hypertriglyceridemia and homozygous familial hypercholesterolemia, respectively, and may prove to have wider applications. ASO and siRNA inhibitors of Lp(a) are currently in cardiovascular outcome studies.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science & Technology, Macau, China
| |
Collapse
|
4
|
Dang C, Wang X, Liu P, Liu J, Yu X. Genetically Proxied Therapeutic Effect of Lipid-Lowering Drugs Use, Breast Cancer, and Endometrial Cancer's Risk: A Drug Target-Based Mendelian Randomization Study. Int J Womens Health 2024; 16:2033-2041. [PMID: 39633845 PMCID: PMC11614999 DOI: 10.2147/ijwh.s468733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Background Observational studies have investigated the association between lipid-lowering drugs and breast cancer (BC) and endometrial cancer (EC), but some controversy remains. Objective This paper aims to explore the causal relationship between genetic proxies for lipid-lowering drugs and breast and endometrial cancers using drug-target Mendelian randomization (MR). Methods Analyses were mainly performed using inverse variance weighted (IVW), heterogeneity and horizontal pleiotropy tests, and sensitivity analysis to assess the robustness of the results and causal relationship. Results HMGCR, APOB, and NPC1L1 increased the risk of breast cancer, LPL increased the risk of endometrial cancer, and APOC3 decreased the risk of breast and endometrial cancer. No heterogeneity or horizontal pleiotropy was detected, and nor was there any evidence of an association between other lipid-lowering drugs and breast and endometrial cancer. Conclusion Our study demonstrated genetically that HMGCR inhibition, APOB inhibition, and NPC1L1 inhibition decrease the risk of breast cancer, LPL agonist increases the risk of endometrial cancer, and APOC3 inhibition decreases the risk of breast cancer and endometrial cancer, and these findings provide genetic insights into the potential risks of lipid-lowering drug therapy.
Collapse
Affiliation(s)
- Chunxiao Dang
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xiaofeng Wang
- Dongying People’s Hospital (Dongying Hospital of Shandong Provincial Hospital Group), Dongying, Shandong, People’s Republic of China
| | - Pengfei Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Jinxing Liu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| | - Xiao Yu
- Department of Gynecology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, People’s Republic of China
| |
Collapse
|
5
|
Pan BY, Chen CS, Chen FY, Shen MY. Multifaceted Role of Apolipoprotein C3 in Cardiovascular Disease Risk and Metabolic Disorder in Diabetes. Int J Mol Sci 2024; 25:12759. [PMID: 39684468 PMCID: PMC11641554 DOI: 10.3390/ijms252312759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Apolipoprotein C3 (APOC3) plays a critical role in regulating triglyceride levels and serves as a key predictor of cardiovascular disease (CVD) risk, particularly in patients with diabetes. While APOC3 is known to inhibit lipoprotein lipase, recent findings reveal its broader influence across lipoprotein metabolism, where it modulates the structure and function of various lipoproteins. Therefore, this review examines the complex metabolic cycle of APOC3, emphasizing the impact of APOC3-containing lipoproteins on human metabolism, particularly in patients with diabetes. Notably, APOC3 affects triglyceride-rich lipoproteins and causes structural changes in high-, very low-, intermediate-, and low-density lipoproteins, thereby increasing CVD risk. Evidence suggests that elevated APOC3 levels-above the proposed safe range of 10-15 mg/dL-correlate with clinically significant CVD outcomes. Recognizing APOC3 as a promising biomarker for CVD, this review underscores the urgent need for high-throughput, clinically feasible methods to further investigate its role in lipoprotein physiology in both animal models and human studies. Additionally, we analyze the relationship between APOC3-related genes and lipoproteins, reinforcing the value of large-population studies to understand the impact of APOC3 on metabolic diseases. Ultimately, this review supports the development of therapeutic strategies targeting APOC3 reduction as a preventive approach for diabetes-related CVD.
Collapse
Affiliation(s)
- Bo-Yi Pan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (B.-Y.P.); (F.-Y.C.)
| | - Chen-Sheng Chen
- The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung 40402, Taiwan;
| | - Fang-Yu Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (B.-Y.P.); (F.-Y.C.)
| | - Ming-Yi Shen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (B.-Y.P.); (F.-Y.C.)
- Department of Medical Research, China Medical University Hospital, Taichung 40402, Taiwan
- Department of Nursing, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
6
|
Al-Awar A, Hussain S. Interplay of Reactive Oxygen Species (ROS) and Epigenetic Remodelling in Cardiovascular Diseases Pathogenesis: A Contemporary Perspective. FRONT BIOSCI-LANDMRK 2024; 29:398. [PMID: 39614429 DOI: 10.31083/j.fbl2911398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 12/01/2024]
Abstract
Cardiovascular diseases (CVDs) continue to be the leading cause of mortality worldwide, necessitating the development of novel therapies. Despite therapeutic advancements, the underlying mechanisms remain elusive. Reactive oxygen species (ROS) show detrimental effects at high concentrations but act as essential signalling molecules at physiological levels, playing a critical role in the pathophysiology of CVD. However, the link between pathologically elevated ROS and CVDs pathogenesis remains poorly understood. Recent research has highlighted the remodelling of the epigenetic landscape as a crucial factor in CVD pathologies. Epigenetic changes encompass alterations in DNA methylation, post-translational histone modifications, adenosine triphosphate (ATP)-dependent chromatin modifications, and noncoding RNA transcripts. Unravelling the intricate link between ROS and epigenetic changes in CVD is challenging due to the complexity of epigenetic signals in gene regulation. This review aims to provide insights into the role of ROS in modulating the epigenetic landscape within the cardiovascular system. Understanding these interactions may offer novel therapeutic strategies for managing CVD by targeting ROS-induced epigenetic changes. It has been widely accepted that epigenetic modifications are established during development and remain fixed once the lineage-specific gene expression pattern is achieved. However, emerging evidence has unveiled its remarkable dynamism. Consequently, it is now increasingly recognized that epigenetic modifications may serve as a crucial link between ROS and the underlying mechanisms implicated in CVD.
Collapse
Affiliation(s)
- Amin Al-Awar
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| | - Shafaat Hussain
- Department of Molecular and Clinical Medicine, Institute of Medicine, Gothenburg University, 41345 Gothenburg, Sweden
| |
Collapse
|
7
|
Kamrul-Hasan ABM, Dutta D, Nagendra L, Mondal S, Bhattacharya S, Kalra S. Safety and Efficacy of the Novel RNA Interference Therapies for Hypertriglyceridemia and Mixed Hyperlipidemia Management: A Systematic Review and Meta-analysis. Endocr Pract 2024; 30:1103-1112. [PMID: 39243856 DOI: 10.1016/j.eprac.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND No meta-analysis has holistically analyzed and summarized the safety and therapeutic efficacy of the newer RNA interference (RNAi) therapies, olezarsen, plozasiran, and zodasiran, in managing conditions associated with hypertriglyceridemia (HTG). METHODS Randomized controlled trials (RCTs) involving patients with HTG or mixed hyperlipidemia (MHL) receiving either olezarsen, plozasiran, or zodasiran in the intervention arm and a placebo in the control arm were searched through electronic databases. The primary outcome was the safety profile of the drugs studied; secondary outcomes included the percent change from baseline (CFB) in the lipid levels, including triglyceride (TG). RESULTS Six RCTs with 334 participants were evaluated. Olezarsen, plozasiran, and zodasiran were well-tolerated with no higher risk of serious adverse events or injection-site reactions. After 24 weeks, plozasiran increased alanine aminotransferase and HbA1c more than placebo, although the difference was insignificant at 48 weeks. Plozasiran and zodasiran had little effect on hyperglycemia worsening. Olezarsen increased the likelihood of mild platelet count decreases without clinical harm. At their longest clinical trial follow-up, the highest doses of olezarsen, plozasiran, and zodasiran lowered TG by 55.2%, 50.57%, and 51.2% of baseline levels. All three drugs decreased non-HDL-C and remnant cholesterol. Olezarsen and plozasiran lowered ApoC-III and increased HDL-C, whereas zodasiran reduced HDL-C. Zodasiran decreased LDL-C, whereas olezarsen and plozasiran had no effects on LDL-C. Plozasiran and zodasiran lowered apolipoprotein B, but not olezarsen. CONCLUSION The newer RNA interference (RNAi) therapies appear safe and have excellent TG-lowering efficacy in patients with HTG and MHL.
Collapse
Affiliation(s)
- A B M Kamrul-Hasan
- Department of Endocrinology, Mymensingh Medical College, Mymensingh, Bangladesh.
| | - Deep Dutta
- Department of Endocrinology, CEDAR Superspeciality Healthcare, Dwarka, New Delhi, Delhi, India
| | - Lakshmi Nagendra
- Department of Endocrinology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Sunetra Mondal
- Department of Endocrinology, NRS Medical College, Kolkata, India
| | | | - Sanjay Kalra
- Department of Endocrinology, Bharti Hospital, Karnal, Haryana, India
| |
Collapse
|
8
|
Olatunji G, Ogieuhi IJ, Kokori E, Oluwatomiwa AV, Ajimotokan OI, Odukudu GDO, Owolabi S, Anyacho S, Nwakama CN, Babalola AE, Andibanbang F, Aderinto N. Olezarsen and Plozasiran in Dyslipidemia Management: A Narrative Review of Clinical Trials. High Blood Press Cardiovasc Prev 2024; 31:567-576. [PMID: 39352667 DOI: 10.1007/s40292-024-00677-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/20/2024] [Indexed: 11/29/2024] Open
Abstract
Cardiovascular diseases are a worldwide known cause of mortality, often due to dyslipidemia and other modifiable and non-modifiable factors. Rare genetic conditions such as familial chylomicronemia are underdiagnosed and mismanaged. Traditional lipid-lowering therapies, such as statins, often have limitations, such as adverse effects and suboptimal lipid control in certain patient populations. Olezarsen and Plozasiran, as emerging therapies, offer potential benefits by targeting specific pathways involved in lipid metabolism. The asymptomatic presentation and high mortality rate warrant novel agents that can manage dyslipidemia. In this article, olezarsen and plozasiran are thoroughly reviewed. From clinical trials, plozasiran significantly improved non-HDL cholesterol levels, highlighting its comprehensive lipid-modifying effects. Olezarsen also demonstrated remarkable efficacy in reducing fasting triglycerides from baseline levels. Utilizing these medications for primary and secondary prevention of atherosclerotic cardiovascular diseases can significantly reduce the global burden of cardiovascular disease and its complications. The review discusses the therapeutic effects of Olezarsen and Plozasiran in managing dyslipidemia, especially familial chylomicronemia syndrome (FCS). While traditional treatments like lifestyle modifications and statins are common, novel antisense oligonucleotides such as Olezarsen and Plozasiran have significant modulatory effects on apolipoproteins, disrupting specific genes involved in lipid metabolism.
Collapse
|
9
|
Burks KH, Stitziel NO, Davidson NO. Molecular Regulation and Therapeutic Targeting of VLDL Production in Cardiometabolic Disease. Cell Mol Gastroenterol Hepatol 2024; 19:101409. [PMID: 39406347 PMCID: PMC11609389 DOI: 10.1016/j.jcmgh.2024.101409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 11/16/2024]
Abstract
There exists a complex relationship between steatotic liver disease (SLD) and atherosclerotic cardiovascular disease (CVD). CVD is a leading cause of morbidity and mortality among individuals with SLD, particularly those with metabolic dysfunction-associated SLD (MASLD), a significant proportion of whom also exhibit features of insulin resistance. Recent evidence supports an expanded role of very low-density lipoprotein (VLDL) in the pathogenesis of CVD in patients, both with and without associated metabolic dysfunction. VLDL represents the major vehicle for exporting neutral lipid from hepatocytes, with each particle containing one molecule of apolipoproteinB100 (APOB100). VLDL production becomes dysregulated under conditions characteristic of MASLD including steatosis and insulin resistance. Insulin resistance not only affects VLDL production but also mediates the pathogenesis of atherosclerotic CVD. VLDL assembly and secretion therefore represents an important pathway in the setting of cardiometabolic disease and offers several candidates for therapeutic targeting, particularly in metabolically complex patients with MASLD at increased risk of atherosclerotic CVD. Here we review the clinical significance as well as the translational and therapeutic potential of key regulatory steps impacting VLDL initiation, maturation, secretion, catabolism, and clearance.
Collapse
Affiliation(s)
- Kendall H Burks
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, Missouri
| | - Nathan O Stitziel
- Division of Cardiology, Department of Medicine, Center for Cardiovascular Research, Washington University School of Medicine, Saint Louis, Missouri
| | - Nicholas O Davidson
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri.
| |
Collapse
|
10
|
Karwatowska-Prokopczuk E, Lesogor A, Yan JH, Hoenlinger A, Margolskee A, Li L, Tsimikas S. Efficacy and safety of olezarsen in lowering apolipoprotein C-III and triglycerides in healthy Japanese Americans. Lipids Health Dis 2024; 23:329. [PMID: 39363329 PMCID: PMC11448427 DOI: 10.1186/s12944-024-02297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Olezarsen is a GalNAc3-conjugated, hepatic-targeted antisense oligonucleotide that lowers apolipoprotein C-III (apoC-III) and triglyceride levels. The efficacy and safety of olezarsen has not previously been studied in ethnically diverse American populations. The aim of this study is to assess the effect of olezarsen in healthy Japanese Americans. METHODS A randomized, placebo-controlled, double-blind phase 1 study was performed in 28 healthy Japanese American participants treated with olezarsen in single-ascending doses (SAD; 30, 60, 90 mg) or multiple doses (MD; 60 mg every 4 weeks for 4 doses). The primary, secondary, and exploratory objectives were safety and tolerability, pharmacokinetics, and effects of olezarsen on fasting serum triglycerides and apoC-III, respectively. RESULTS There were 20 participants (16 active:4 placebo) in the SAD part of the study, and 8 participants (6 active:2 placebo) in the MD part of the study. For the primary endpoint, no serious adverse events or clinically relevant laboratory abnormalities were reported. The majority of olezarsen plasma exposure occurred within 24 h post-dose. In the SAD cohorts at Day 15 the percentage reduction in apoC-III/TG was - 39.4%/ - 17.8%, - 60.8%/ - 52.7%, and - 68.1%/ - 39.2% in the 30, 60 and 90 mg doses, respectively, vs 2.3%/44.5% increases in placebo. In the MD cohort, at Day 92 the percentage reduction in apoC-III/TG was - 81.6/ - 73.8% vs - 17.2/ - 40.8% reduction in placebo. Favorable changes were also present in VLDL-C, apoB and HDL-C. CONCLUSIONS Single- and multiple-dose administration of olezarsen was safe, was well tolerated, and significantly reduced apoC-III and triglyceride levels in healthy Japanese Americans.
Collapse
Affiliation(s)
| | | | | | | | | | - Lu Li
- Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Sotirios Tsimikas
- Ionis Pharmaceuticals, Carlsbad, CA, USA.
- Division of Cardiovascular Medicine, Department of Medicine, University of California San Diego, 9500 Gilman Drive, BSB 1080, La Jolla, CA, 92093-0682, USA.
| |
Collapse
|
11
|
Hooper AJ, Bell DA, Burnett JR. Olezarsen, a liver-directed APOC3 ASO therapy for hypertriglyceridemia. Expert Opin Pharmacother 2024; 25:1861-1866. [PMID: 39305266 DOI: 10.1080/14656566.2024.2408369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
INTRODUCTION Apolipoprotein (apo)C-III, a key regulator of plasma triglyceride (TG) levels, is a prime candidate for the treatment of hypertriglyceridemia (HTG), prevention of acute pancreatitis, and reduction of future atherosclerotic cardiovascular disease (ASCVD) events. AREAS COVERED We discuss the role of apoC-III as a therapeutic target for HTG, describe the pharmacodynamics, pharmacokinetics, and metabolism of olezarsen, as well as report on the findings of recent clinical trials with this liver-directed APOC3 antisense oligonucleotide (ASO). EXPERT OPINION Olezarsen, a GalNac-conjugated ASO targeting apoC-III, can reduce TG levels by ~ 50% in patients with extreme HTG due to familial chylomicronemia syndrome, as well as in patients with moderate HTG. Attention is now focused on whether olezarsen reduces ASCVD risk in patients with moderate and severe HTG. While olezarsen does cause elevations in liver enzymes, these changes are not clinically meaningful, and are not associated with thrombocytopenia, an issue with its predecessor, volanesorsen. The need for 4-weekly administration puts olezarsen at a disadvantage to competing injectables. Results from the CORE, CORE2, and ESSENCE phase III clinical trials in patients with severe HTG, expected in the second half of 2025, will help determine the requirement for a larger cardiovascular outcomes trial.
Collapse
Affiliation(s)
- Amanda J Hooper
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital & Fiona Stanley Hospital Network, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| | - Damon A Bell
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital & Fiona Stanley Hospital Network, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
- Cardiometabolic Service, Department of Cardiology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - John R Burnett
- Department of Clinical Biochemistry, PathWest Laboratory Medicine WA, Royal Perth Hospital & Fiona Stanley Hospital Network, Perth, Western Australia, Australia
- School of Medicine, University of Western Australia, Perth, Western Australia, Australia
| |
Collapse
|
12
|
Xiao Q, Wang L, Wang J, Wang M, Wang DW, Ding H. A novel lncRNA GM47544 modulates triglyceride metabolism by inducing ubiquitination-dependent protein degradation of APOC3. Mol Metab 2024; 88:102011. [PMID: 39173944 PMCID: PMC11399561 DOI: 10.1016/j.molmet.2024.102011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
OBJECTIVE Emerging evidence highlights the pivotal roles of long non-coding RNAs (lncRNAs) in lipid metabolism. Apoprotein C3 (ApoC3) is a well-established therapeutic target for hypertriglyceridemia and exhibits a strong association with cardiovascular disease. However, the exact mechanisms via which the lncRNAs control ApoC3 expression remain unclear. METHODS We identified a novel long noncoding RNA (lncRNA), GM47544, within the ApoA1/C3/A4/A5 gene cluster. Subsequently, the effect of GM47544 on intracellular triglyceride metabolism was analyzed. The diet-induced mouse models of hyperlipidemia and atherosclerosis were established to explore the effect of GM47544 on dyslipidemia and plaque formation in vivo. The molecular mechanism was explored through RNA sequencing, immunoprecipitation, RNA pull-down assay, and RNA immunoprecipitation. RESULTS GM47544 was overexpressed under high-fat stimulation. GM47544 effectively improved hepatic steatosis, reduced blood lipid levels, and alleviated atherosclerosis in vitro and in vivo. Mechanistically, GM47544 directly bound to ApoC3 and facilitated the ubiquitination at lysine 79 in ApoC3, thereby facilitating ApoC3 degradation via the ubiquitin-proteasome pathway. Moreover, we identified AP006216.5 as the human GM47544 transcript, which fulfills a comparable function in human hepatocytes. CONCLUSIONS The identification of GM47544 as a lncRNA modulator of ApoC3 reveals a novel mechanism of post-translational modification, with significant clinical implications for the treatment of hypertriglyceridemia and atherosclerosis.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Man Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China
| | - Dao Wen Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, PR China; Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
13
|
Dimitriadis K, Theofilis P, Iliakis P, Pyrpyris N, Dri E, Sakalidis A, Soulaidopoulos S, Tsioufis P, Fragkoulis C, Chrysohoou C, Tsiachris D, Tsioufis K. Management of dyslipidemia in coronary artery disease: the present and the future. Coron Artery Dis 2024; 35:516-524. [PMID: 38682459 DOI: 10.1097/mca.0000000000001375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Coronary artery disease (CAD) remains a leading cause of global morbidity and mortality, necessitating continuous refinement in the management of dyslipidemia, one of its major risk factors, to mitigate cardiovascular risks. Previous studies have proven the critical role of immediate and robust low-density lipoprotein cholesterol (LDL-C) reduction in the aftermath of acute coronary syndrome (ACS). Emphasizing the evidence supporting this approach, we delve into the impact of early intervention on cardiovascular outcomes and propose optimal strategies for achieving rapid LDL-C lowering, while also providing the rationale for early proprotein convertase subtilisin/kexin 9 inhibitor use after an ACS. Given the importance of the residual lipidemic risk, we present an overview of emerging therapeutic avenues poised to reshape dyslipidemia management, such as bempedoic acid, lipoprotein(a) inhibition, ApoC3 modulation, and angiopoietin-like protein 3 targeting. This comprehensive review amalgamates current evidence with future prospects, offering a holistic perspective on the management of dyslipidemia in CAD. By exploring both the urgency for immediate post-ACS LDL-C reduction and the exciting advancements on the horizon, this article provides a roadmap for clinicians navigating the intricate landscape of lipid-lowering therapies in CAD.
Collapse
Affiliation(s)
- Kyriakos Dimitriadis
- First Department of Cardiology, School of Medicine, National and Kapodistrian University of Athens
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Saad ALGhasab N, Fogacci F, Avagimyan A, Cicero AFG. Expanding therapeutic options: overview of novel pharmacotherapies for dyslipidemia. Expert Opin Pharmacother 2024; 25:1795-1805. [PMID: 39286934 DOI: 10.1080/14656566.2024.2406270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 08/18/2024] [Accepted: 09/16/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION Dyslipidemia plays a crucial role in the development of atherosclerotic cardiovascular diseases. AREAS COVERED This article explores the emerging therapeutic targets for the treatment of dyslipidemia and provides novel insights into this field. Thus, it aims to contribute to the understanding and advancement of therapeutic options for managing dyslipidemia. EXPERT OPINION Optimizing the use of available first- and second-line lipid-lowering drugs allows us to adequately control low-density lipoprotein cholesterol (LDL-C) levels, even in statin-intolerant individuals and in patients at high and very high risk of developing cardiovascular diseases who must reach more aggressive LDL-C targets. The drugs under development will further improve our ability to manage the overall lipid-related cardiovascular disease risk and target other dyslipidemia biomarkers.
Collapse
Affiliation(s)
- Naif Saad ALGhasab
- Department of Internal Medicine, Medical College, Ha'il University, Ha'il, Saudi Arabia
- Department of Cardiology, Libin cardiovascular institute, Calgary University, Calgary, Canada
| | - Federica Fogacci
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Ashot Avagimyan
- Anatomical Pathology and Clinical Morphology Department, Yerevan State Medical University, Yerevan, Armenia
| | - Arrigo F G Cicero
- Hypertension and Cardiovascular Risk Research Center, Medical and Surgical Sciences Department, Alma Mater Studiorum University of Bologna, Bologna, Italy
- Cardiovascular Medicine Unit, IRCCS AOUBO, Bologna, Italy
| |
Collapse
|
15
|
Kim M, Zheng Z. Walking the VLDL tightrope in cardiometabolic diseases. Trends Endocrinol Metab 2024:S1043-2760(24)00201-7. [PMID: 39191606 DOI: 10.1016/j.tem.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024]
Abstract
Very-low-density lipoprotein (VLDL), a triglyceride-rich lipoprotein secreted by hepatocytes, is pivotal for supplying peripheral tissues with fatty acids for energy production. As if walking on a tightrope, perturbations in the balance of VLDL metabolism contribute to cardiometabolic dysfunction, promoting pathologies such as cardiovascular disease (CVD) or metabolic dysfunction-associated steatotic liver disease (MASLD). Despite the advent of lipid-lowering therapies, including statins and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, risks for cardiovascular events persist. With limitations to currently available CVD therapeutics and no US Food and Drug Administration (FDA)-approved treatment for MASLD, this review summarizes the current understanding of VLDL metabolism that sheds light on novel therapeutic avenues to pursue for cardiometabolic disorders.
Collapse
Affiliation(s)
- Mindy Kim
- Medical Scientist Training Program, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA.
| | - Ze Zheng
- Department of Physiology, Medical College of Wisconsin, Milwaukee, 53226, USA; Department of Medicine, Medical College of Wisconsin, Milwaukee, 53226, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, 53226, USA; Thrombosis & Hemostasis Program, Versiti Blood Research Institute, Milwaukee, 53226, USA.
| |
Collapse
|
16
|
Alradwan I, AL Fayez N, Alomary MN, Alshehri AA, Aodah AH, Almughem FA, Alsulami KA, Aldossary AM, Alawad AO, Tawfik YMK, Tawfik EA. Emerging Trends and Innovations in the Treatment and Diagnosis of Atherosclerosis and Cardiovascular Disease: A Comprehensive Review towards Healthier Aging. Pharmaceutics 2024; 16:1037. [PMID: 39204382 PMCID: PMC11360443 DOI: 10.3390/pharmaceutics16081037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) are classed as diseases of aging, which are associated with an increased prevalence of atherosclerotic lesion formation caused by such diseases and is considered as one of the leading causes of death globally, representing a severe health crisis affecting the heart and blood vessels. Atherosclerosis is described as a chronic condition that can lead to myocardial infarction, ischemic cardiomyopathy, stroke, and peripheral arterial disease and to date, most pharmacological therapies mainly aim to control risk factors in patients with cardiovascular disease. Advances in transformative therapies and imaging diagnostics agents could shape the clinical applications of such approaches, including nanomedicine, biomaterials, immunotherapy, cell therapy, and gene therapy, which are emerging and likely to significantly impact CVD management in the coming decade. This review summarizes the current anti-atherosclerotic therapies' major milestones, strengths, and limitations. It provides an overview of the recent discoveries and emerging technologies in nanomedicine, cell therapy, and gene and immune therapeutics that can revolutionize CVD clinical practice by steering it toward precision medicine. CVD-related clinical trials and promising pre-clinical strategies that would significantly impact patients with CVD are discussed. Here, we review these recent advances, highlighting key clinical opportunities in the rapidly emerging field of CVD medicine.
Collapse
Affiliation(s)
- Ibrahim Alradwan
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Nojoud AL Fayez
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Mohammad N. Alomary
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Abdullah A. Alshehri
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Alhassan H. Aodah
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Fahad A. Almughem
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Khulud A. Alsulami
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| | - Ahmad M. Aldossary
- Wellness and Preventative Medicine Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Abdullah O. Alawad
- Healthy Aging Research Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia;
| | - Yahya M. K. Tawfik
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Tawfik
- Advanced Diagnostics and Therapeutics Institute, Health Sector, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia; (I.A.); (N.A.F.); (M.N.A.); (A.A.A.); (A.H.A.); (F.A.A.); (K.A.A.)
| |
Collapse
|
17
|
Shah M, Sharma A, Ayyad M, Swartz E, Jafrani D, Gala D. Targeting Apolipoprotein C-III for the Management of Severe Hypertriglyceridemia: Current Research and Future Directions. Cureus 2024; 16:e67091. [PMID: 39286687 PMCID: PMC11405074 DOI: 10.7759/cureus.67091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/17/2024] [Indexed: 09/19/2024] Open
Abstract
Hypertriglyceridemia is characterized by elevated triglyceride levels in the blood, which increases the risk of cardiovascular disease and pancreatitis. This condition stems from multiple factors including lifestyle choices, genetics, and conditions such as diabetes and metabolic syndrome. Apolipoprotein C-III (APOC3), a protein for lipid metabolism, hinders enzymes necessary for breaking down triglycerides and thus plays a key role in hypertriglyceridemia. Variations in the APOC3 gene are associated with varying triglyceride levels among individuals. Recent genetic studies and clinical trials have shed light on the potential of targeting APOC3 as a potentially promising therapeutic modality of hypertriglyceridemia. Antisense oligonucleotides like volanesorsen have displayed effectiveness in lowering triglyceride levels in individuals with severe hypertriglyceridemia. This review article delves into how APOC3 influences triglyceride control and its potential use in targeting APOC3 to manage severe hypertriglyceridemia.
Collapse
Affiliation(s)
- Mili Shah
- Internal Medicine, American University of the Caribbean School of Medicine, Sint Maarten, SXM
| | - Abisheikh Sharma
- Internal Medicine, American University of the Caribbean School of Medicine, Sint Maarten, SXM
| | - Mohammed Ayyad
- Internal Medicine, Rutgers University New Jersey Medical School, Newark, USA
| | - Ethan Swartz
- Internal Medicine, Rutgers University New Jersey Medical School, Newark, USA
| | - Danyaal Jafrani
- Internal Medicine, Rutgers University New Jersey Medical School, Newark, USA
| | - Dhir Gala
- Internal Medicine, Rutgers University New Jersey Medical School, Newark, USA
| |
Collapse
|
18
|
Hou G, Alissa M, Alsuwat MA, Ali Alarjany HM, Alzahrani KJ, Althobaiti FM, Mujalli HM, Alotaiby MM, Al-Doaiss AA, Anthony S. The art of healing hearts: Mastering advanced RNA therapeutic techniques to shape the evolution of cardiovascular medicine in biomedical science. Curr Probl Cardiol 2024; 49:102627. [PMID: 38723793 DOI: 10.1016/j.cpcardiol.2024.102627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide and are associated with increasing financial health burden that requires research into novel therapeutic approaches. Since the early 2000s, the availability of next-generation sequencing techniques such as microRNAs, circular RNAs, and long non-coding RNAs have been proven as potential therapeutic targets for treating various CVDs. Therapeutics based on RNAs have become a viable option for addressing the intricate molecular pathways that underlie the pathophysiology of CVDs. We provide an in-depth analysis of the state of RNA therapies in the context of CVDs, emphasizing various approaches that target the various stages of the basic dogma of molecular biology to effect temporary or long-term changes. In this review, we summarize recent methodologies used to screen for novel coding and non-coding RNA candidates with diagnostic and treatment possibilities in cardiovascular diseases. These methods include single-cell sequencing techniques, functional RNA screening, and next-generation sequencing.Lastly, we highlighted the potential of using oligonucleotide-based chemical products such as modified RNA and RNA mimics/inhibitors for the treatment of CVDs. Moreover, there will be an increasing number of potential RNA diagnostic and therapeutic for CVDs that will progress to expand for years to come.
Collapse
Affiliation(s)
- Guoliang Hou
- Department of Cardiology, Tengzhou Central People's Hospital, Shandong 277599, China
| | - Mohammed Alissa
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Meshari A Alsuwat
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | | | - Khalid J Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21974, Saudi Arabia
| | - Fahad M Althobaiti
- Department of Nursing Leadership and Education, Nursing College, Taif University, Taif 21974, Saudi Arabia
| | | | - Monearah M Alotaiby
- Department of Laboratory, King Faisal Medical Complex, Ministry of Health, Taif 26514, Saudi Arabia
| | - Amin A Al-Doaiss
- Biology Department, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Stefan Anthony
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, Dalian Medical University Liaoning Provence China, China.
| |
Collapse
|
19
|
Krüger P, Hartinger R, Djabali K. Navigating Lipodystrophy: Insights from Laminopathies and Beyond. Int J Mol Sci 2024; 25:8020. [PMID: 39125589 PMCID: PMC11311807 DOI: 10.3390/ijms25158020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Recent research into laminopathic lipodystrophies-rare genetic disorders caused by mutations in the LMNA gene-has greatly expanded our knowledge of their complex pathology and metabolic implications. These disorders, including Hutchinson-Gilford progeria syndrome (HGPS), Mandibuloacral Dysplasia (MAD), and Familial Partial Lipodystrophy (FPLD), serve as crucial models for studying accelerated aging and metabolic dysfunction, enhancing our understanding of the cellular and molecular mechanisms involved. Research on laminopathies has highlighted how LMNA mutations disrupt adipose tissue function and metabolic regulation, leading to altered fat distribution and metabolic pathway dysfunctions. Such insights improve our understanding of the pathophysiological interactions between genetic anomalies and metabolic processes. This review merges current knowledge on the phenotypic classifications of these diseases and their associated metabolic complications, such as insulin resistance, hypertriglyceridemia, hepatic steatosis, and metabolic syndrome, all of which elevate the risk of cardiovascular disease, stroke, and diabetes. Additionally, a range of published therapeutic strategies, including gene editing, antisense oligonucleotides, and novel pharmacological interventions aimed at addressing defective adipocyte differentiation and lipid metabolism, will be explored. These therapies target the core dysfunctional lamin A protein, aiming to mitigate symptoms and provide a foundation for addressing similar metabolic and genetic disorders.
Collapse
Affiliation(s)
| | | | - Karima Djabali
- Epigenetics of Aging, Department of Dermatology and Allergy, TUM School of Medicine, Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), 85748 Garching, Germany; (P.K.); (R.H.)
| |
Collapse
|
20
|
Tokgözoğlu L, Pirillo A, Catapano AL. Disconnect between triglyceride reduction and cardiovascular outcomes: lessons from the PROMINENT and CLEAR Outcomes trials. Eur Heart J 2024; 45:2377-2379. [PMID: 37936268 DOI: 10.1093/eurheartj/ehad485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2023] Open
Affiliation(s)
- Lale Tokgözoğlu
- Department of Cardiology, Hacettepe University Medical Faculty, Sihhiye, 06100, Ankara, Turkey
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, via M. Gorki 50, 20092, Cinisello Balsamo, Milan, Italy
- IRCCS MultiMedica, via Milanese 300, 20099, Sesto San Giovanni, Milan, Italy
| | | |
Collapse
|
21
|
Chait A, Eckel RH, Vrablik M, Zambon A. Lipid-lowering in diabetes: An update. Atherosclerosis 2024; 394:117313. [PMID: 37945448 DOI: 10.1016/j.atherosclerosis.2023.117313] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/11/2023] [Accepted: 09/22/2023] [Indexed: 11/12/2023]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is accelerated in people with diabetes. Dyslipidemia, hyperglycemia, oxidative stress, and inflammation play a role via a variety of mechanisms operative in the artery wall. In addition, some unique features predispose people with type 1 diabetes to accelerated atherosclerosis. Various organizations have created guidelines that provide advice regarding screening, risk assessment, and roadmaps for treatment to prevent ASCVD in diabetes. Management of dyslipidemia, especially with statins, has proven to be of immense benefit in the prevention of clinical CVD. However, since many patients fail to attain the low levels of low-density lipoproteins (LDL) recommended in these guidelines, supplemental therapy, such as the addition of ezetimibe, bempedoic acid or PCSK9 inhibitors, is often required to reach LDL goals. As a result, the upfront use of combination therapies, particularly a statin plus ezetimibe, is a rational initial approach. The addition to statins of drugs that specifically lower triglyceride levels has not proven beneficial, although the addition of icosapent-ethyl has been shown to be of value, likely by mechanisms independent of triglyceride lowering. Newer treatments in development, including apoC-III and ANGPTL3 inhibitors, seem promising in further reducing apoB-containing lipoproteins.
Collapse
Affiliation(s)
- Alan Chait
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, University of Washington, WA, USA
| | - Robert H Eckel
- Department of Medicine, Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Michal Vrablik
- 3rd Department of Internal Medicine, General University Hospital and 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Alberto Zambon
- Department of Medicine - DIMED, University of Padova, and IRCCS Multimedica Milan, Italy.
| |
Collapse
|
22
|
Wang J, Kockx M, Bolek M, Lambert T, Sullivan D, Chow V, Kritharides L. Triglyceride-rich lipoprotein, remnant cholesterol, and apolipoproteins CII, CIII, and E in patients with schizophrenia. J Lipid Res 2024; 65:100577. [PMID: 38879166 PMCID: PMC11304881 DOI: 10.1016/j.jlr.2024.100577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024] Open
Abstract
Patients with schizophrenia show a disproportionally increased risk of cardiovascular disease. Hypertriglyceridemia is prevalent in this population; however, how this relates to levels of remnant cholesterol, triglyceride (TG)-rich lipoprotein (TRL) particle size and composition, TG turnover, and apolipoprotein (apo) and angiopoietin-like protein (ANGPTL) concentrations is unknown. Fasting levels of cholesterol (total [TC], LDL-C, HDL-C, non-HDL-C and remnant cholesterol) and TG were determined in 110 patients diagnosed with schizophrenia, and 46 healthy controls. TRL particle size, concentration and composition, and β-hydroxybutyrate (TG turnover marker) were assessed by NMR. Levels of apoCII, apoCIII, apoE, ANGPTL3, ANGPTL4, and ANGPTL8 were measured by ELISA, and apoCII, apoCIII and apoE were further evaluated in HDL and non-HDL fractions. Patients with schizophrenia had significantly elevated TG, TG:apoB ratio, non-HDL-C, remnant cholesterol, non-HDL-apoCII and non-HDL-apoCIII, and HDL-apoE (all P < 0.05), lower HDL-C and apoA-I (all P < 0.001), and comparable apoB, TC, TC:apoB ratio, LDL-C, β-hydroxybutyrate, ANGPTL3, ANGPTL4 and ANGPTL8 to healthy controls. Patients had a 12.0- and 2.5-fold increase in the concentration of large and medium TRL particles respectively, but similar cholesterol:TG ratio within each particle. Plasma TG, remnant cholesterol, and large and medium TRL particle concentrations correlated strongly with apoCII, apoCIII, and apoE in the non-HDL fraction, and with apoCIII and apoE in the HDL fraction in patients with schizophrenia. Differences in TG, HDL-C, TRL particle concentrations, apoCIII, and apoE persisted after adjustment for conventional risk factors. These results are consistent with impaired TRL lipolysis and clearance in patients with schizophrenia which may be responsive to targeting apoCIII.
Collapse
Affiliation(s)
- Jeffrey Wang
- Atherosclerosis Laboratory, ANZAC Research Institute, Concord Repatriation General Hospital and the University of Sydney, Sydney, Australia
| | - Maaike Kockx
- Atherosclerosis Laboratory, ANZAC Research Institute, Concord Repatriation General Hospital and the University of Sydney, Sydney, Australia
| | - Magdalena Bolek
- Atherosclerosis Laboratory, ANZAC Research Institute, Concord Repatriation General Hospital and the University of Sydney, Sydney, Australia
| | - Tim Lambert
- Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Collaborative Centre for Cardiometabolic Health, Charles Perkins Centre, University of Sydney, Sydney, Australia
| | - David Sullivan
- Department of Chemical Pathology, Royal Prince Alfred Hospital, Sydney, Australia; Central Clinical Medical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Vincent Chow
- Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Collaborative Centre for Cardiometabolic Health, Charles Perkins Centre, University of Sydney, Sydney, Australia; Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia
| | - Leonard Kritharides
- Atherosclerosis Laboratory, ANZAC Research Institute, Concord Repatriation General Hospital and the University of Sydney, Sydney, Australia; Concord Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Cardiology, Concord Repatriation General Hospital, Sydney, Australia.
| |
Collapse
|
23
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
24
|
Chan DC, Watts GF. ANGPTL3 and ApoC-III inhibitors for treating hypertriglyceridemia in context: horses for courses? Curr Opin Lipidol 2024; 35:101-109. [PMID: 38372218 DOI: 10.1097/mol.0000000000000920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
PURPOSE OF REVIEW Hypertriglyceridemia (HTG) is an independent and casual risk factor for atherosclerotic cardiovascular disease (ASCVD). There is an unmet need for more effective treatments for patients with HTG. Angiopoietin-like protein 3 (ANGPTL3) and apolipoprotein C-III (apoC-III) are key regulators of triglyceride-rich lipoprotein (TRL) metabolism. We review recent clinical trials targeting ANGPTL3 and apoC-III with monoclonal antibody and nucleic acid therapies, including antisense oligonucleotides and small interfering RNA. RECENT FINDINGS ANGPTL3 and apoC-III inhibitors are effective in lowering plasma triglycerides and TRLs, with possibly greater efficacy with the inhibition of apoC-III. By contrast to ANGPTL3 inhibition that has the advantage of greater lowering of plasma low-density lipoprotein (LDL)-cholesterol and apoB levels, apoC-III inhibition only has a modest or no effect in lowering plasma LDL-cholesterol and apoB concentrations. Therapeutic inhibition of ANGPTL3 and apoC-III can correct HTG possibly by reducing production and increasing catabolism of TRL particles, but this remains to be formally investigated in patients with HTG. SUMMARY Novel agents targeting ANGPTL3 and apoC-III can correct HTG and potentially lower risk of ASCVD in patients with HTG. The long-term safety and cost-effectiveness of these agents await confirmation in ongoing and future studies.
Collapse
Affiliation(s)
- Dick C Chan
- Medical School, University of Western Australia
| | - Gerald F Watts
- Medical School, University of Western Australia
- Lipid Disorders Clinic, Department of Cardiology and Internal Medicine, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
25
|
Filtz A, Parihar S, Greenberg GS, Park CM, Scotti A, Lorenzatti D, Badimon JJ, Soffer DE, Toth PP, Lavie CJ, Bittner V, Virani SS, Slipczuk L. New approaches to triglyceride reduction: Is there any hope left? Am J Prev Cardiol 2024; 18:100648. [PMID: 38584606 PMCID: PMC10998004 DOI: 10.1016/j.ajpc.2024.100648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/09/2024] Open
Abstract
Triglycerides play a crucial role in the efficient storage of energy in the body. Mild and moderate hypertriglyceridemia (HTG) is a heterogeneous disorder with significant association with atherosclerotic cardiovascular disease (ASCVD), including myocardial infarction, ischemic stroke, and peripheral artery disease and represents an important component of the residual ASCVD risk in statin treated patients despite optimal low-density lipoprotein cholesterol reduction. Individuals with severe HTG (>1,000 mg/dL) rarely develop atherosclerosis but have an incremental incidence of acute pancreatitis with significant morbidity and mortality. HTG can occur from a combination of genetic (both mono and polygenic) and environmental factors including poor diet, low physical activity, obesity, medications, and diseases like insulin resistance and other endocrine pathologies. HTG represents a potential target for ASCVD risk and pancreatitis risk reduction, however data on ASCVD reduction by treating HTG is still lacking and HTG-associated acute pancreatitis occurs too rarely to effectively demonstrate treatment benefit. In this review, we address the key aspects of HTG pathophysiology and examine the mechanisms and background of current and emerging therapies in the management of HTG.
Collapse
Affiliation(s)
- Annalisa Filtz
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
- IRCCS Ca' Granda Ospedale Maggiore Policlinico, Università degli Studi di Milano, Milan, Italy
| | - Siddhant Parihar
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Garred S Greenberg
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Christine M Park
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Andrea Scotti
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daniel Lorenzatti
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Juan J Badimon
- Cardiology Department, Hospital General Jaen, Jaen, Spain
- Atherothrombosis Research Unit, Mount Sinai School of Medicine, New York, New York, USA
| | - Daniel E Soffer
- Department of Internal Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter P Toth
- CGH Medical Center, Sterling, Illinois
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carl J Lavie
- John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the UQ School of Medicine, New Orleans, Louisiana, USA
| | - Vera Bittner
- Division of Cardiovascular Disease, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Salim S Virani
- Section of Cardiology, Department of Medicine, The Aga Khan University, Karachi, Pakistan
- Section of Cardiology, Texas Heart Institute & Baylor College of Medicine, Houston, TX, USA
| | - Leandro Slipczuk
- Cardiology Division, Montefiore-Einstein Center for Heart and Vascular Care, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
26
|
Xiao Q, Wang J, Wang L, Ding H. APOA1/C3/A4/A5 Gene Cluster at 11q23.3 and Lipid Metabolism Disorders: From Epigenetic Mechanisms to Clinical Practices. Biomedicines 2024; 12:1224. [PMID: 38927431 PMCID: PMC11201263 DOI: 10.3390/biomedicines12061224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/26/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
The APOA1/C3/A4/A5 cluster is an essential component in regulating lipoprotein metabolism and maintaining plasma lipid homeostasis. A genome-wide association analysis and Mendelian randomization have revealed potential associations between genetic variants within this cluster and lipid metabolism disorders, including hyperlipidemia and cardiovascular events. An enhanced understanding of the complexity of gene regulation has led to growing recognition regarding the role of epigenetic variation in modulating APOA1/C3/A4/A5 gene expression. Intensive research into the epigenetic regulatory patterns of the APOA1/C3/A4/A5 cluster will help increase our understanding of the pathogenesis of lipid metabolism disorders and facilitate the development of new therapeutic approaches. This review discusses the biology of how the APOA1/C3/A4/A5 cluster affects circulating lipoproteins and the current progress in the epigenetic regulation of the APOA1/C3/A4/A5 cluster.
Collapse
Affiliation(s)
- Qianqian Xiao
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Luyun Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Q.X.); (J.W.); (L.W.)
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, China
| |
Collapse
|
27
|
Xu D, Xie L, Cheng C, Xue F, Sun C. Triglyceride-rich lipoproteins and cardiovascular diseases. Front Endocrinol (Lausanne) 2024; 15:1409653. [PMID: 38883601 PMCID: PMC11176465 DOI: 10.3389/fendo.2024.1409653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
The global prevalence of cardiovascular diseases (CVD) continues to rise steadily, making it a leading cause of mortality worldwide. Atherosclerosis (AS) serves as a primary driver of these conditions, commencing silently at an early age and culminating in adverse cardiovascular events that severely impact patients' quality of life or lead to fatality. Dyslipidemia, particularly elevated levels of low-density lipoprotein cholesterol (LDL-C), plays a pivotal role in AS pathogenesis as an independent risk factor. Research indicates that abnormal LDL-C accumulation within arterial walls acts as a crucial trigger for atherosclerotic plaque formation. As the disease progresses, plaque accumulation may rupture or dislodge, resulting in thrombus formation and complete blood supply obstruction, ultimately causing myocardial infarction, cerebral infarction, and other common adverse cardiovascular events. Despite adequate pharmacologic therapy targeting LDL-C reduction, patients with cardiometabolic abnormalities remain at high risk for disease recurrence, highlighting the importance of addressing lipid risk factors beyond LDL-C. Recent attention has focused on the causal relationship between triglycerides, triglyceride-rich lipoproteins (TRLs), and their remnants in AS risk. Genetic, epidemiologic, and clinical studies suggest a causal relationship between TRLs and their remnants and the increased risk of AS, and this dyslipidemia may be an independent risk factor for adverse cardiovascular events. Particularly in patients with obesity, metabolic syndrome, diabetes, and chronic kidney disease, disordered TRLs and its remnants levels significantly increase the risk of atherosclerosis and cardiovascular disease development. Accumulation of over-synthesized TRLs in plasma, impaired function of enzymes involved in TRLs lipolysis, and impaired hepatic clearance of cholesterol-rich TRLs remnants can lead to arterial deposition of TRLs and its remnants, promoting foam cell formation and arterial wall inflammation. Therefore, understanding the pathogenesis of TRLs-induced AS and targeting it therapeutically could slow or impede AS progression, thereby reducing cardiovascular disease morbidity and mortality, particularly coronary atherosclerotic heart disease.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lin Xie
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Cheng Cheng
- Department of Cardiology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fei Xue
- State Key Laboratory for Innovation and Transformation of Luobing Theory, Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China
| | - Chaonan Sun
- Department of Radiation Oncology, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
28
|
Bergmark BA, Marston NA, Prohaska TA, Alexander VJ, Zimerman A, Moura FA, Murphy SA, Goodrich EL, Zhang S, Gaudet D, Karwatowska-Prokopczuk E, Tsimikas S, Giugliano RP, Sabatine MS. Olezarsen for Hypertriglyceridemia in Patients at High Cardiovascular Risk. N Engl J Med 2024; 390:1770-1780. [PMID: 38587249 DOI: 10.1056/nejmoa2402309] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
BACKGROUND Reducing the levels of triglycerides and triglyceride-rich lipoproteins remains an unmet clinical need. Olezarsen is an antisense oligonucleotide targeting messenger RNA for apolipoprotein C-III (APOC3), a genetically validated target for triglyceride lowering. METHODS In this phase 2b, randomized, controlled trial, we assigned adults either with moderate hypertriglyceridemia (triglyceride level, 150 to 499 mg per deciliter) and elevated cardiovascular risk or with severe hypertriglyceridemia (triglyceride level, ≥500 mg per deciliter) in a 1:1 ratio to either a 50-mg or 80-mg cohort. Patients were then assigned in a 3:1 ratio to receive monthly subcutaneous olezarsen or matching placebo within each cohort. The primary outcome was the percent change in the triglyceride level from baseline to 6 months, reported as the difference between each olezarsen group and placebo. Key secondary outcomes were changes in levels of APOC3, apolipoprotein B, non-high-density lipoprotein (HDL) cholesterol, and low-density lipoprotein (LDL) cholesterol. RESULTS A total of 154 patients underwent randomization at 24 sites in North America. The median age of the patients was 62 years, and the median triglyceride level was 241.5 mg per deciliter. The 50-mg and 80-mg doses of olezarsen reduced triglyceride levels by 49.3 percentage points and 53.1 percentage points, respectively, as compared with placebo (P<0.001 for both comparisons). As compared with placebo, each dose of olezarsen also significantly reduced the levels of APOC3, apolipoprotein B, and non-HDL cholesterol, with no significant change in the LDL cholesterol level. The risks of adverse events and serious adverse events were similar in the three groups. Clinically meaningful hepatic, renal, or platelet abnormalities were uncommon, with similar risks in the three groups. CONCLUSIONS In patients with predominantly moderate hypertriglyceridemia at elevated cardiovascular risk, olezarsen significantly reduced levels of triglycerides, apolipoprotein B, and non-HDL cholesterol, with no major safety concerns identified. (Funded by Ionis Pharmaceuticals; Bridge-TIMI 73a ClinicalTrials.gov number, NCT05355402.).
Collapse
Affiliation(s)
- Brian A Bergmark
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Nicholas A Marston
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Thomas A Prohaska
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Veronica J Alexander
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - André Zimerman
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Filipe A Moura
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Sabina A Murphy
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Erica L Goodrich
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Shuanglu Zhang
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Daniel Gaudet
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Ewa Karwatowska-Prokopczuk
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Sotirios Tsimikas
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Robert P Giugliano
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| | - Marc S Sabatine
- From the TIMI Study Group, Division of Cardiovascular Medicine, Brigham and Women's Hospital, and Harvard Medical School, Boston (B.A.B., N.A.M., A.Z., F.A.M., S.A.M., E.L.G., S.Z., R.P.G., M.S.S.); Ionis Pharmaceuticals, Carlsbad (T.A.P., V.J.A., E.K.-P., S.T.), and the Division of Cardiovascular Medicine, Department of Medicine, University of California, San Diego, La Jolla (S.T.) - both in California; and the Department of Medicine, Université de Montréal and Ecogene-21 Clinical Research Centre, Quebec, QC, Canada (D.G.)
| |
Collapse
|
29
|
Stroes ESG, Alexander VJ, Karwatowska-Prokopczuk E, Hegele RA, Arca M, Ballantyne CM, Soran H, Prohaska TA, Xia S, Ginsberg HN, Witztum JL, Tsimikas S. Olezarsen, Acute Pancreatitis, and Familial Chylomicronemia Syndrome. N Engl J Med 2024; 390:1781-1792. [PMID: 38587247 DOI: 10.1056/nejmoa2400201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
BACKGROUND Familial chylomicronemia syndrome is a genetic disorder associated with severe hypertriglyceridemia and severe acute pancreatitis. Olezarsen reduces the plasma triglyceride level by reducing hepatic synthesis of apolipoprotein C-III. METHODS In a phase 3, double-blind, placebo-controlled trial, we randomly assigned patients with genetically identified familial chylomicronemia syndrome to receive olezarsen at a dose of 80 mg or 50 mg or placebo subcutaneously every 4 weeks for 49 weeks. There were two primary end points: the difference between the 80-mg olezarsen group and the placebo group in the percent change in the fasting triglyceride level from baseline to 6 months, and (to be assessed if the first was significant) the difference between the 50-mg olezarsen group and the placebo group. Secondary end points included the mean percent change from baseline in the apolipoprotein C-III level and an independently adjudicated episode of acute pancreatitis. RESULTS A total of 66 patients underwent randomization; 22 were assigned to the 80-mg olezarsen group, 21 to the 50-mg olezarsen group, and 23 to the placebo group. At baseline, the mean (±SD) triglyceride level among the patients was 2630±1315 mg per deciliter, and 71% had a history of acute pancreatitis within the previous 10 years. Triglyceride levels at 6 months were significantly reduced with the 80-mg dose of olezarsen as compared with placebo (-43.5 percentage points; 95% confidence interval [CI], -69.1 to -17.9; P<0.001) but not with the 50-mg dose (-22.4 percentage points; 95% CI, -47.2 to 2.5; P = 0.08). The difference in the mean percent change in the apolipoprotein C-III level from baseline to 6 months in the 80-mg group as compared with the placebo group was -73.7 percentage points (95% CI, -94.6 to -52.8) and between the 50-mg group as compared with the placebo group was -65.5 percentage points (95% CI, -82.6 to -48.3). By 53 weeks, 11 episodes of acute pancreatitis had occurred in the placebo group, and 1 episode had occurred in each olezarsen group (rate ratio [pooled olezarsen groups vs. placebo], 0.12; 95% CI, 0.02 to 0.66). Adverse events of moderate severity that were considered by a trial investigator at the site to be related to the trial drug or placebo occurred in 4 patients in the 80-mg olezarsen group. CONCLUSIONS In patients with familial chylomicronemia syndrome, olezarsen may represent a new therapy to reduce plasma triglyceride levels. (Funded by Ionis Pharmaceuticals; Balance ClinicalTrials.gov number, NCT04568434.).
Collapse
Affiliation(s)
- Erik S G Stroes
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Veronica J Alexander
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Ewa Karwatowska-Prokopczuk
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Robert A Hegele
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Marcello Arca
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Christie M Ballantyne
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Handrean Soran
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Thomas A Prohaska
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Shuting Xia
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Henry N Ginsberg
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Joseph L Witztum
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| | - Sotirios Tsimikas
- From the Department of Vascular Medicine, Amsterdam University Medical Center, Amsterdam, (E.S.G.S.); Ionis Pharmaceuticals, Carlsbad (V.J.A., E.K.-P., T.A.P., S.X., S.T.), and the Divisions of Endocrinology and Metabolism (J.L.W.) and Cardiovascular Medicine (S.T.), Department of Medicine, University of California, San Diego, La Jolla - both in California; the Department of Medicine and Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada (R.A.H.); the Department of Translational and Precision Medicine, Center for Rare Disorders of Lipid Metabolism, Sapienza University of Rome, Rome (M.A.); Baylor College of Medicine and the Texas Heart Institute, Houston (C.M.B.); the National Institute for Health Research and Wellcome Trust Clinical Research Facility, Manchester University Hospital NHS Foundation Trust, Manchester, United Kingdom (H.S.); and the Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York (H.N.G.)
| |
Collapse
|
30
|
Ariyanto EF, Wijaya I, Pradian ZA, Bhaskara APM, Rahman PHA, Oktavia N. Recent Updates on Epigenetic-Based Pharmacotherapy for Atherosclerosis. Diabetes Metab Syndr Obes 2024; 17:1867-1878. [PMID: 38706808 PMCID: PMC11068051 DOI: 10.2147/dmso.s463221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Atherosclerosis is one of the most dominant pathological processes responsible in cardiovascular diseases (CVD) caused by cholesterol accumulation accompanied by inflammation in the arteries which will subsequently lead to further complications, including myocardial infarction and stroke. Although the incidence of atherosclerosis is decreasing in some countries, it is still considered the leading cause of death worldwide. Atherosclerosis is a vascular pathological process that is chronically inflammatory and is characterized by the invasion of inflammatory cells and cytokines. Many reports have unraveled the pivotal roles of epigenetics such as DNA methylation, post-translational histone modifications, and non-coding RNAs (ncRNAs) in atherogenesis, which regulate the expression of numerous genes related to various responsible pathways. Many studies have been conducted to develop new therapeutical approaches based on epigenetic changes for combating atherosclerosis. This review elaborates on recent updates on the development of new atherosclerosis drugs whose mechanism of action is associated with the modulation of DNA methylation, posttranslational histone modifications, and ncRNA-based gene regulation.
Collapse
Affiliation(s)
- Eko Fuji Ariyanto
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | - Ibnu Wijaya
- Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| | | | | | | | - Nandina Oktavia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
31
|
Baylot V, Le TK, Taïeb D, Rocchi P, Colleaux L. Between hope and reality: treatment of genetic diseases through nucleic acid-based drugs. Commun Biol 2024; 7:489. [PMID: 38653753 PMCID: PMC11039704 DOI: 10.1038/s42003-024-06121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Rare diseases (RD) affect a small number of people compared to the general population and are mostly genetic in origin. The first clinical signs often appear at birth or in childhood, and patients endure high levels of pain and progressive loss of autonomy frequently associated with short life expectancy. Until recently, the low prevalence of RD and the gatekeeping delay in their diagnosis have long hampered research. The era of nucleic acid (NA)-based therapies has revolutionized the landscape of RD treatment and new hopes arise with the perspectives of disease-modifying drugs development as some NA-based therapies are now entering the clinical stage. Herein, we review NA-based drugs that were approved and are currently under investigation for the treatment of RD. We also discuss the recent structural improvements of NA-based therapeutics and delivery system, which overcome the main limitations in their market expansion and the current approaches that are developed to address the endosomal escape issue. We finally open the discussion on the ethical and societal issues that raise this new technology in terms of regulatory approval and sustainability of production.
Collapse
Affiliation(s)
- Virginie Baylot
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France.
| | - Thi Khanh Le
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| | - David Taïeb
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| | - Palma Rocchi
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France.
| | - Laurence Colleaux
- Aix Marseille Univ, CNRS, CINAM, ERL INSERM U 1326, CERIMED, Marseille, France
| |
Collapse
|
32
|
Gagnon E, Arsenault BJ. Drug target Mendelian randomization supports apolipoprotein C3-lowering for lipoprotein-lipid levels reductions and cardiovascular diseases prevention. Atherosclerosis 2024; 391:117501. [PMID: 38547584 DOI: 10.1016/j.atherosclerosis.2024.117501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND AND AIMS Inhibitors of apolipoprotein C-III (apoC3) are currently approved for the reduction of triglyceride levels in patients with Familial Chylomicronemia Syndrome. We used drug target Mendelian randomization (MR) to assess the effect of genetically predicted decrease in apoC3 blood protein levels on cardiometabolic traits and diseases. METHODS We quantified lifelong reductions in apoC3 blood levels by selecting all genome wide significant and independent (r2<0.1) single nucleotide polymorphisms (SNPs) in the APOC3 gene region ±1 Mb, from three genome-wide association studies (GWAS) of apoC3 blood protein levels (deCODE, n = 35,378, Fenland, n = 10,708 and ARIC, n = 7213). We included the largest GWASes on 18 cardiometabolic traits and 9 cardiometabolic diseases as study outcomes. RESULTS A one standard deviation lowering in apoC3 blood protein levels was associated with lower triglycerides, apolipoprotein B, low-density lipoprotein cholesterol, alanine aminotransferase, and glomerular filtration rate as well as higher high-density lipoprotein cholesterol levels. ApoC3 lowering was also associated with lower risk of acute pancreatitis (odds ratio [OR] = 0.91 95% CI = 0.82 to 1.00), aortic stenosis (OR = 0.82 95% CI = 0.73 to 0.93), and coronary artery disease (OR = 0.86 95% CI = 0.80 to 0.93), and was associated with increased parental lifespan (0.06 95% CI = 0.03-0.09 years). These results were concordant across robust MR methods, the three protein datasets and upon adjustment for APOA1, APOA4 and APOA5 using a multivariable MR framework. CONCLUSIONS These results provide evidence that apoC3 lowering could result in widespread benefits for cardiometabolic health and encourage the launch of trials on apoC3 inhibition for coronary artery disease prevention.
Collapse
Affiliation(s)
- Eloi Gagnon
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada
| | - Benoit J Arsenault
- Centre de Recherche de L'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec, QC, Canada; Department of Medicine, Faculty of Medicine, Université Laval, Québec, QC, Canada.
| |
Collapse
|
33
|
Chebli J, Larouche M, Gaudet D. APOC3 siRNA and ASO therapy for dyslipidemia. Curr Opin Endocrinol Diabetes Obes 2024; 31:70-77. [PMID: 38334488 DOI: 10.1097/med.0000000000000857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
PURPOSE OF REVIEW The aim of this review is to present the clinical indications of apolipoprotein C-III (apoC3) inhibition in the therapeutic arsenal for the treatment of lipid disorders and associated risks and to compare the most advanced modalities of apoC3 inhibition currently available or in development, specifically APOC3 antisense oligonucleotides (ASO) and small interfering RNA (siRNA). RECENT FINDINGS ApoC3 inhibition significantly decreases triglyceride levels by mechanisms coupling both lipoprotein lipase (LPL) upregulation and LPL-independent mechanisms. The main apoC3 inhibitors in advanced clinical development are the GalNAc-ASO olezarsen and the GalNAc-siRNA plozasiran. Clinical studies conducted with volanesorsen, the olezarsen precursor, showed a favorable effect on hepatic steatosis (nonalcoholic fatty liver disease, NAFLD). Olezarsen does not appear to be associated with the main side effects attributed to volanesorsen including thrombocytopenia. Plozasiran is in advanced clinical development and requires subcutaneous injection every 3 months and present to-date an efficacy and safety profile comparable to that of the monthly ASO. SUMMARY Inhibition of apoC3 is effective across all the spectrum of hypertriglyceridemia, might have a favorable effect on hepatic steatosis (NAFLD) and the effect of apoC3 inhibition on cardiovascular risk is not limited to its effect on plasma triglycerides. APOC3 GalNAc-conjugated ASO and siRNA are both effective in decreasing plasma apoC3 and triglyceride levels.
Collapse
Affiliation(s)
- Jasmine Chebli
- Clinical lipidology and Rare Lipid Disorders Unit, Community Gene Medicine Center, Department of Medicine, Université de Montréal and ECOGENE-21, Chicoutimi, Quebec, Canada
| | | | | |
Collapse
|
34
|
Chia SPS, Pang JKS, Soh BS. Current RNA strategies in treating cardiovascular diseases. Mol Ther 2024; 32:580-608. [PMID: 38291757 PMCID: PMC10928165 DOI: 10.1016/j.ymthe.2024.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 02/01/2024] Open
Abstract
Cardiovascular disease (CVD) continues to impose a significant global health burden, necessitating the exploration of innovative treatment strategies. Ribonucleic acid (RNA)-based therapeutics have emerged as a promising avenue to address the complex molecular mechanisms underlying CVD pathogenesis. We present a comprehensive review of the current state of RNA therapeutics in the context of CVD, focusing on the diverse modalities that bring about transient or permanent modifications by targeting the different stages of the molecular biology central dogma. Considering the immense potential of RNA therapeutics, we have identified common gene targets that could serve as potential interventions for prevalent Mendelian CVD caused by single gene mutations, as well as acquired CVDs developed over time due to various factors. These gene targets offer opportunities to develop RNA-based treatments tailored to specific genetic and molecular pathways, presenting a novel and precise approach to address the complex pathogenesis of both types of cardiovascular conditions. Additionally, we discuss the challenges and opportunities associated with delivery strategies to achieve targeted delivery of RNA therapeutics to the cardiovascular system. This review highlights the immense potential of RNA-based interventions as a novel and precise approach to combat CVD, paving the way for future advancements in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Shirley Pei Shan Chia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore
| | - Jeremy Kah Sheng Pang
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Boon-Seng Soh
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A∗STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117558, Singapore.
| |
Collapse
|
35
|
Packard CJ, Pirillo A, Tsimikas S, Ference BA, Catapano AL. Exploring apolipoprotein C-III: pathophysiological and pharmacological relevance. Cardiovasc Res 2024; 119:2843-2857. [PMID: 38039351 PMCID: PMC11484501 DOI: 10.1093/cvr/cvad177] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/21/2022] [Accepted: 02/07/2023] [Indexed: 12/03/2023] Open
Abstract
The availability of pharmacological approaches able to effectively reduce circulating LDL cholesterol (LDL-C) has led to a substantial reduction in the risk of atherosclerosis-related cardiovascular disease (CVD). However, a residual cardiovascular (CV) risk persists in treated individuals with optimal levels of LDL-C. Additional risk factors beyond LDL-C are involved, and among these, elevated levels of triglycerides (TGs) and TG-rich lipoproteins are causally associated with an increased CV risk. Apolipoprotein C-III (apoC-III) is a key regulator of TG metabolism and hence circulating levels through several mechanisms including the inhibition of lipoprotein lipase activity and alterations in the affinity of apoC-III-containing lipoproteins for both the hepatic receptors involved in their removal and extracellular matrix in the arterial wall. Genetic studies have clarified the role of apoC-III in humans, establishing a causal link with CVD and showing that loss-of-function mutations in the APOC3 gene are associated with reduced TG levels and reduced risk of coronary heart disease. Currently available hypolipidaemic drugs can reduce TG levels, although to a limited extent. Substantial reductions in TG levels can be obtained with new drugs that target specifically apoC-III; these include two antisense oligonucleotides, one small interfering RNA and an antibody.
Collapse
Affiliation(s)
- Chris J Packard
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Milan, Italy
- Center for the Study of Dyslipidaemias, IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
| | - Sotirios Tsimikas
- Division of Cardiovascular Medicine, Sulpizio Cardiovascular Center, University of California San Diego, La Jolla, CA, USA
| | - Brian A Ference
- Centre for Naturally Randomized Trials, University of Cambridge, Cambridge, UK
| | - Alberico L Catapano
- Center for the Study of Dyslipidaemias, IRCCS MultiMedica, Sesto S. Giovanni, 20099 Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, via Balzaretti 9, 20133 Milan, Italy
| |
Collapse
|
36
|
Baker BF, Xia S, Partridge W, Engelhardt JA, Tsimikas S, Crooke ST, Bhanot S, Geary RS. Safety and Tolerability of GalNAc 3-Conjugated Antisense Drugs Compared to the Same-Sequence 2'- O-Methoxyethyl-Modified Antisense Drugs: Results from an Integrated Assessment of Phase 1 Clinical Trial Data. Nucleic Acid Ther 2024; 34:18-25. [PMID: 38227794 DOI: 10.1089/nat.2023.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024] Open
Abstract
The triantennary N-acetylgalactosamine (GalNAc3) cluster has demonstrated the utility of receptor-mediated uptake of ligand-conjugated antisense drugs targeting RNA expressed by hepatocytes. GalNAc3-conjugated 2'-O-methoxyethyl (2'MOE) modified antisense oligonucleotides (ASOs) have demonstrated a higher potency than the unconjugated form to support lower doses for an equivalent pharmacological effect. We utilized the Ionis integrated safety database to compare four GalNAc3-conjugated and four same-sequence unconjugated 2'MOE ASOs. This assessment evaluated data from eight randomized placebo-controlled dose-ranging phase 1 studies involving 195 healthy volunteers (79 GalNAc3 ASO, 24 placebo; 71 ASO, 21 placebo). No safety signals were identified by the incidence of abnormal threshold values in clinical laboratory tests for either ASO group. However, there was a significant increase in mean alanine transaminase levels compared with placebo in the upper dose range of the unconjugated 2'MOE ASO group. The mean percentage of subcutaneous injections leading to local cutaneous reaction was 30-fold lower in the GalNAc3-conjugated ASO group compared with the unconjugated ASO group (0.9% vs. 28.6%), with no incidence of flu-like reactions (0.0% vs. 0.7%). Three subjects (4.2%) in the unconjugated ASO group discontinued dosing. An improvement in the overall safety and tolerability profile of GalNAc3-conjugated 2'MOE ASOs is evident in this comparison of short-term clinical data in healthy volunteers.
Collapse
Affiliation(s)
| | - Shuting Xia
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | | | | | | | | - Sanjay Bhanot
- Ionis Pharmaceuticals, Inc., Carlsbad, California, USA
| | | |
Collapse
|
37
|
Gomez-Delgado F, Raya-Cruz M, Katsiki N, Delgado-Lista J, Perez-Martinez P. Residual cardiovascular risk: When should we treat it? Eur J Intern Med 2024; 120:17-24. [PMID: 37845117 DOI: 10.1016/j.ejim.2023.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023]
Abstract
Cardiovascular disease (CVD) still being the most common cause of death in worldwide. In spite of development of new lipid-lowering therapies which optimize low-density lipoprotein cholesterol (LDL-c) levels, recurrence of CVD events implies addressing factors related with residual cardiovascular (CV) risk. The key determinants of residual CV risk include triglyceride-rich lipoproteins (TRLs) and remnant cholesterol (RC), lipoprotein(a) [Lp(a)] and inflammation including its biochemical markers such as high sensitivity C reactive protein (hs-CRP). On the other hand, unhealthy lifestyle habits, environmental pollution, residual thrombotic risk and the residual metabolic risk determined by obesity and type 2 diabetes (T2D) have a specific weight in the residual CV risk. New pharmacologic therapies and pathways are being explored such as inhibition of apolipoprotein C-III (apoC-III) and angiopoietin-related protein 3 (ANGPTL3) in order to explore if a reduction in TRLs and RC reduce CVD events. Therapeutic target of inflammation plays an attractive way to reduce the atherosclerotic process and to date, approved therapies as colchicine plays a beneficial effect in chronic inflammation and residual CV risk. Lp(a) constitutes one of the most residual CV risk factor due to linkage with CVD and aortic valve stenosis. New and hopeful treatments including antisense oligonucleotides (ASO) and small-interfering ribonucleic acid (siRNA) which interfere in LP(a) codification have been developed to achieve an adequate control in Lp(a) levels. This review points out the paradigms of residual CV risk, discus how we should manage their features and summarize the different therapies targeting each residual CV risk factor.
Collapse
Affiliation(s)
- Francisco Gomez-Delgado
- Vascular Risk Unit, Internal Medicine Unit, Jaen University Hospital, Av. del Ejercito Español, 10, PC: 23007, Jaen, Spain; CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, PC: 28029, Madrid, Spain
| | - Manuel Raya-Cruz
- Vascular Risk Unit, Internal Medicine Unit, Jaen University Hospital, Av. del Ejercito Español, 10, PC: 23007, Jaen, Spain
| | - Niki Katsiki
- Department of Nutritional Sciences and Dietetics, International Hellenic University, 57400, Thessaloniki, Greece; School of Medicine, European University Cyprus, Nicosia, 2404, Cyprus
| | - Javier Delgado-Lista
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, PC: 28029, Madrid, Spain; Lipids and Atherosclerosis Unit, IMIBIC, Reina Sofía University Hospital, University of Cordoba, Av. Menendez Pidal, s/n, PC: 14004, Cordoba, Spain
| | - Pablo Perez-Martinez
- CIBER Fisiopatologia Obesidad y Nutricion (CIBEROBN), Instituto de Salud Carlos III, Av. de Monforte de Lemos, 5, PC: 28029, Madrid, Spain; Lipids and Atherosclerosis Unit, IMIBIC, Reina Sofía University Hospital, University of Cordoba, Av. Menendez Pidal, s/n, PC: 14004, Cordoba, Spain.
| |
Collapse
|
38
|
Bornfeldt KE. Apolipoprotein C3: form begets function. J Lipid Res 2024; 65:100475. [PMID: 37972731 PMCID: PMC10805671 DOI: 10.1016/j.jlr.2023.100475] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/19/2023] Open
Abstract
Increased circulating levels of apolipoprotein C3 (APOC3) predict cardiovascular disease (CVD) risk in humans, and APOC3 promotes atherosclerosis in mouse models. APOC3's mechanism of action is due in large part to its ability to slow the clearance of triglyceride-rich lipoproteins (TRLs) and their remnants when APOC3 is carried by these lipoproteins. However, different pools and forms of APOC3 exert distinct biological effects or associations with atherogenic processes. Thus, lipid-free APOC3 induces inflammasome activation in monocytes whereas lipid particle-bound APOC3 does not. APOC3-enriched LDL binds better to the vascular glycosaminoglycan biglycan than does LDL depleted of APOC3. Patterns of APOC3 glycoforms predict CVD risk differently. The function of APOC3 bound to HDL is largely unknown. There is still much to learn about the mechanisms of action of different forms and pools of APOC3 in atherosclerosis and CVD, and whether APOC3 inhibition would prevent CVD risk in patients on LDL-cholesterol lowering medications.
Collapse
Affiliation(s)
- Karin E Bornfeldt
- Division of Metabolism, Endocrinology and Nutrition, Department of Medicine, UW Medicine Diabetes Institute and Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
39
|
Sharma R. Innovative Genoceuticals in Human Gene Therapy Solutions: Challenges and Safe Clinical Trials of Orphan Gene Therapy Products. Curr Gene Ther 2024; 24:46-72. [PMID: 37702177 DOI: 10.2174/1566523223666230911120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 09/14/2023]
Abstract
The success of gene therapy attempts is controversial and inconclusive. Currently, it is popular among the public, the scientific community, and manufacturers of Gene Therapy Medical Products. In the absence of any remedy or treatment options available for untreatable inborn metabolic orphan or genetic diseases, cancer, or brain diseases, gene therapy treatment by genoceuticals and T-cells for gene editing and recovery remains the preferred choice as the last hope. A new concept of "Genoceutical Gene Therapy" by using orphan 'nucleic acid-based therapy' aims to introduce scientific principles of treating acquired tissue damage and rare diseases. These Orphan Genoceuticals provide new scope for the 'genodrug' development and evaluation of genoceuticals and gene products for ideal 'gene therapy' use in humans with marketing authorization application (MAA). This perspective study focuses on the quality control, safety, and efficacy requirements of using 'nucleic acid-based and human cell-based new gene therapy' genoceutical products to set scientific advice on genoceutical-based 'orphan genodrug' design for clinical trials as per Western and European guidelines. The ethical Western FDA and European EMA guidelines suggest stringent legal and technical requirements on genoceutical medical products or orphan genodrug use for other countries to frame their own guidelines. The introduction section proposes lessknown 'orphan drug-like' properties of modified RNA/DNA, human cell origin gene therapy medical products, and their transgene products. The clinical trial section explores the genoceutical sources, FDA/EMA approvals for genoceutical efficacy criteria with challenges, and ethical guidelines relating to gene therapy of specific rare metabolic, cancer and neurological diseases. The safety evaluation of approved genoceuticals or orphan drugs is highlighted with basic principles and 'genovigilance' requirements (to observe any adverse effects, side effects, developed signs/symptoms) to establish their therapeutic use. Current European Union and Food and Drug Administration guidelines continuously administer fast-track regulatory legal framework from time to time, and they monitor the success of gene therapy medical product efficacy and safety. Moreover, new ethical guidelines on 'orphan drug-like genoceuticals' are updated for biodistribution of the vector, genokinetics studies of the transgene product, requirements for efficacy studies in industries for market authorization, and clinical safety endpoints with their specific concerns in clinical trials or public use.
Collapse
Affiliation(s)
- Rakesh Sharma
- Surgery NMR Lab, Plastic Surgery Research, Massachusetts General Hospital, Boston, MA 02114, USA
- CCSU, Government Medical College, Saharanpur, 247232 India
| |
Collapse
|
40
|
Tomlinson B, Wu QY, Zhong YM, Li YH. Advances in Dyslipidaemia Treatments: Focusing on ApoC3 and ANGPTL3 Inhibitors. J Lipid Atheroscler 2024; 13:2-20. [PMID: 38299167 PMCID: PMC10825570 DOI: 10.12997/jla.2024.13.1.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/23/2023] [Accepted: 10/09/2023] [Indexed: 02/02/2024] Open
Abstract
Apolipoprotein C3 (apoC3) and angiopoietin-like protein 3 (ANGPTL3) inhibit lipolysis by lipoprotein lipase and may influence the secretion and uptake of various lipoproteins. Genetic studies show that depletion of these proteins is associated with improved lipid profiles and reduced cardiovascular events so it was anticipated that drugs which mimic the effects of loss-of-function mutations would be useful lipid treatments. ANGPTL3 inhibitors were initially developed as a treatment for severe hypertriglyceridaemia including familial chylomicronaemia syndrome (FCS), which is usually not adequately controlled with currently available drugs. However, it was found ANGPTL3 inhibitors were also effective in reducing low-density lipoprotein cholesterol (LDL-C) and they were studied in patients with homozygous familial hypercholesterolaemia (FH). Evinacumab targets ANGPTL3 and reduced LDL-C by about 50% in patients with homozygous FH and it has been approved for that indication. The antisense oligonucleotide (ASO) vupanorsen targeting ANGPTL3 was less effective in reducing LDL-C in patients with moderate hypertriglyceridaemia and its development has been discontinued but the small interfering RNA (siRNA) ARO-ANG3 is being investigated in Phase 2 studies. ApoC3 can be inhibited by the ASO volanesorsen, which reduced triglycerides by >70% in patients with FCS and it was approved for FCS in Europe but not in the United States because of concerns about thrombocytopaenia. Olezarsen is an N-acetylgalactosamine-conjugated ASO targeting apoC3 which appears as effective as volanesorsen without the risk of thrombocytopaenia and is undergoing Phase 3 trials. ARO-APOC3 is an siRNA targeting apoC3 that is currently being investigated in Phase 3 studies.
Collapse
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Qian-yan Wu
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yi-ming Zhong
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Yan-hong Li
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
41
|
Parsamanesh N, Poudineh M, Siami H, Butler AE, Almahmeed W, Sahebkar A. RNA interference-based therapies for atherosclerosis: Recent advances and future prospects. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 204:1-43. [PMID: 38458734 DOI: 10.1016/bs.pmbts.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Atherosclerosis represents a pathological state that affects the arterial system of the organism. This chronic, progressive condition is typified by the accumulation of atheroma within arterial walls. Modulation of RNA molecules through RNA-based therapies has expanded the range of therapeutic options available for neurodegenerative diseases, infectious diseases, cancer, and, more recently, cardiovascular disease (CVD). Presently, microRNAs and small interfering RNAs (siRNAs) are the most widely employed therapeutic strategies for targeting RNA molecules, and for regulating gene expression and protein production. Nevertheless, for these agents to be developed into effective medications, various obstacles must be overcome, including inadequate binding affinity, instability, challenges of delivering to the tissues, immunogenicity, and off-target toxicity. In this comprehensive review, we discuss in detail the current state of RNA interference (RNAi)-based therapies.
Collapse
Affiliation(s)
- Negin Parsamanesh
- Department of Genetics and Molecular Medicine, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Haleh Siami
- School of Medicine, Islamic Azad University of Medical Science, Tehran, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Wael Almahmeed
- Heart and Vascular Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
42
|
Gogate A, Belcourt J, Shah M, Wang AZ, Frankel A, Kolmel H, Chalon M, Stephen P, Kolli A, Tawfik SM, Jin J, Bahal R, Rasmussen TP, Manautou JE, Zhong XB. Targeting the Liver with Nucleic Acid Therapeutics for the Treatment of Systemic Diseases of Liver Origin. Pharmacol Rev 2023; 76:49-89. [PMID: 37696583 PMCID: PMC10753797 DOI: 10.1124/pharmrev.123.000815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/13/2023] Open
Abstract
Systemic diseases of liver origin (SDLO) are complex diseases in multiple organ systems, such as cardiovascular, musculoskeletal, endocrine, renal, respiratory, and sensory organ systems, caused by irregular liver metabolism and production of functional factors. Examples of such diseases discussed in this article include primary hyperoxaluria, familial hypercholesterolemia, acute hepatic porphyria, hereditary transthyretin amyloidosis, hemophilia, atherosclerotic cardiovascular diseases, α-1 antitrypsin deficiency-associated liver disease, and complement-mediated diseases. Nucleic acid therapeutics use nucleic acids and related compounds as therapeutic agents to alter gene expression for therapeutic purposes. The two most promising, fastest-growing classes of nucleic acid therapeutics are antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs). For each listed SDLO disease, this article discusses epidemiology, symptoms, genetic causes, current treatment options, and advantages and disadvantages of nucleic acid therapeutics by either ASO or siRNA drugs approved or under development. Furthermore, challenges and future perspectives on adverse drug reactions and toxicity of ASO and siRNA drugs for the treatment of SDLO diseases are also discussed. In summary, this review article will highlight the clinical advantages of nucleic acid therapeutics in targeting the liver for the treatment of SDLO diseases. SIGNIFICANCE STATEMENT: Systemic diseases of liver origin (SDLO) contain rare and common complex diseases caused by irregular functions of the liver. Nucleic acid therapeutics have shown promising clinical advantages to treat SDLO. This article aims to provide the most updated information on targeting the liver with antisense oligonucleotides and small interfering RNA drugs. The generated knowledge may stimulate further investigations in this growing field of new therapeutic entities for the treatment of SDLO, which currently have no or limited options for treatment.
Collapse
Affiliation(s)
- Anagha Gogate
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Jordyn Belcourt
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Milan Shah
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Alicia Zongxun Wang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Alexis Frankel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Holly Kolmel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Matthew Chalon
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Prajith Stephen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Aarush Kolli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Sherouk M Tawfik
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Jing Jin
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Raman Bahal
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Theodore P Rasmussen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut
| |
Collapse
|
43
|
Ito K, Tajima G, Kamisato C, Tsumura M, Iwamoto M, Sekiguchi Y, Numata Y, Watanabe K, Yabe Y, Kanki S, Fujieda Y, Goto K, Sogawa Y, Oitate M, Nagase H, Tsuji S, Nishizawa T, Kakuta M, Masuda T, Onishi Y, Koizumi M, Nakamura H, Okada S, Matsuo M, Takaishi K. A splice-switching oligonucleotide treatment ameliorates glycogen storage disease type 1a in mice with G6PC c.648G>T. J Clin Invest 2023; 133:e163464. [PMID: 37788110 PMCID: PMC10688987 DOI: 10.1172/jci163464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/27/2023] [Indexed: 10/05/2023] Open
Abstract
Glycogen storage disease type 1a (GSD1a) is caused by a congenital deficiency of glucose-6-phosphatase-α (G6Pase-α, encoded by G6PC), which is primarily associated with life-threatening hypoglycemia. Although strict dietary management substantially improves life expectancy, patients still experience intermittent hypoglycemia and develop hepatic complications. Emerging therapies utilizing new modalities such as adeno-associated virus and mRNA with lipid nanoparticles are under development for GSD1a but potentially require complicated glycemic management throughout life. Here, we present an oligonucleotide-based therapy to produce intact G6Pase-α from a pathogenic human variant, G6PC c.648G>T, the most prevalent variant in East Asia causing aberrant splicing of G6PC. DS-4108b, a splice-switching oligonucleotide, was designed to correct this aberrant splicing, especially in liver. We generated a mouse strain with homozygous knockin of this variant that well reflected the pathophysiology of patients with GSD1a. DS-4108b recovered hepatic G6Pase activity through splicing correction and prevented hypoglycemia and various hepatic abnormalities in the mice. Moreover, DS-4108b had long-lasting efficacy of more than 12 weeks in mice that received a single dose and had favorable pharmacokinetics and tolerability in mice and monkeys. These findings together indicate that this oligonucleotide-based therapy could provide a sustainable and curative therapeutic option under easy disease management for GSD1a patients with G6PC c.648G>T.
Collapse
Affiliation(s)
- Kentaro Ito
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Go Tajima
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Division of Neonatal Screening, Research Institute, National Center for Child Health and Development, Tokyo, Japan
| | - Chikako Kamisato
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Miyuki Tsumura
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | | | | | | | - Kyoko Watanabe
- Drug Metabolism and Pharmacokinetics Research Laboratories
| | - Yoshiyuki Yabe
- Drug Metabolism and Pharmacokinetics Research Laboratories
| | - Satomi Kanki
- Drug Metabolism and Pharmacokinetics Research Laboratories
| | | | - Koichi Goto
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | - Hiroyuki Nagase
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Shinnosuke Tsuji
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Tomohiro Nishizawa
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Masayo Kakuta
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | | - Hidefumi Nakamura
- Department of Research and Development Supervision, National Center for Child Health and Development, Tokyo, Japan
| | - Satoshi Okada
- Department of Pediatrics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Masafumi Matsuo
- Research Center for Locomotion Biology, Kobe Gakuin University, Kobe, Japan
| | - Kiyosumi Takaishi
- Specialty Medicine Research Laboratories I, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
44
|
Pirillo A, Catapano AL. How to Handle Elevated Triglycerides: Life after PROMINENT. Curr Atheroscler Rep 2023; 25:921-929. [PMID: 38114852 DOI: 10.1007/s11883-023-01175-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2023] [Indexed: 12/21/2023]
Abstract
PURPOSE OF REVIEW Hypertriglyceridaemia (HTG) is a common condition characterised by elevated levels of plasma triglycerides (TG), which are transported in the blood mainly by TG-rich lipoproteins (TRL). Elevated TG levels (150-400 mg/dL) are associated with increased cardiovascular risk. Severe HTG (>880 mg/dL) is associated with a risk of acute pancreatitis only. Randomised clinical trials investigating the clinical benefit of TG-lowering drugs in patients with elevated TG levels have provided conflicting results. RECENT FINDINGS Elevated TG levels are only one marker of altered lipid/lipoprotein metabolism and indeed reflect altered concentrations of one or more classes or subfractions of TRL, which in turn may have a different association with CV risk. Fibrates, the drugs most commonly used to treat HTG, provide cardiovascular benefits to only a specific subgroup of patients. The lack of clinical benefit from pemafibrate has emphasised the concept that lowering TG levels is not sufficient to reduce the CV risk unless it is accompanied by a reduction in the number of circulating atherogenic lipoproteins, which can be assessed by determining apolipoprotein B levels. Treatment with omega-3 fatty acids was also ineffective in reducing CV risk, with the exception of icosapent ethyl, which, however, appears to have beneficial effects beyond lipids. New drugs are currently being developed that aim to lower TG levels by targeting apolipoprotein C-III or angiopoietin-like-3, both of which are involved in the metabolism of TGs. TG reduction can be achieved by various drugs, but most of them are ineffective in reducing CV risk. The results of outcome studies on new TG-lowering drugs will clarify whether lowering apoB levels is critical to achieve clinical benefit.
Collapse
Affiliation(s)
- Angela Pirillo
- Center for the Study of Atherosclerosis, E. Bassini Hospital, Cinisello Balsamo, Milan, Italy
| | - Alberico L Catapano
- IRCCS MultiMedica, Sesto S. Giovanni, Milan, Italy.
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy.
| |
Collapse
|
45
|
Poller W, Sahoo S, Hajjar R, Landmesser U, Krichevsky AM. Exploration of the Noncoding Genome for Human-Specific Therapeutic Targets-Recent Insights at Molecular and Cellular Level. Cells 2023; 12:2660. [PMID: 37998395 PMCID: PMC10670380 DOI: 10.3390/cells12222660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
While it is well known that 98-99% of the human genome does not encode proteins, but are nevertheless transcriptionally active and give rise to a broad spectrum of noncoding RNAs [ncRNAs] with complex regulatory and structural functions, specific functions have so far been assigned to only a tiny fraction of all known transcripts. On the other hand, the striking observation of an overwhelmingly growing fraction of ncRNAs, in contrast to an only modest increase in the number of protein-coding genes, during evolution from simple organisms to humans, strongly suggests critical but so far essentially unexplored roles of the noncoding genome for human health and disease pathogenesis. Research into the vast realm of the noncoding genome during the past decades thus lead to a profoundly enhanced appreciation of the multi-level complexity of the human genome. Here, we address a few of the many huge remaining knowledge gaps and consider some newly emerging questions and concepts of research. We attempt to provide an up-to-date assessment of recent insights obtained by molecular and cell biological methods, and by the application of systems biology approaches. Specifically, we discuss current data regarding two topics of high current interest: (1) By which mechanisms could evolutionary recent ncRNAs with critical regulatory functions in a broad spectrum of cell types (neural, immune, cardiovascular) constitute novel therapeutic targets in human diseases? (2) Since noncoding genome evolution is causally linked to brain evolution, and given the profound interactions between brain and immune system, could human-specific brain-expressed ncRNAs play a direct or indirect (immune-mediated) role in human diseases? Synergistic with remarkable recent progress regarding delivery, efficacy, and safety of nucleic acid-based therapies, the ongoing large-scale exploration of the noncoding genome for human-specific therapeutic targets is encouraging to proceed with the development and clinical evaluation of novel therapeutic pathways suggested by these research fields.
Collapse
Affiliation(s)
- Wolfgang Poller
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
| | - Susmita Sahoo
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, Box 1030, New York, NY 10029, USA;
| | - Roger Hajjar
- Gene & Cell Therapy Institute, Mass General Brigham, 65 Landsdowne St, Suite 143, Cambridge, MA 02139, USA;
| | - Ulf Landmesser
- Department for Cardiology, Angiology and Intensive Care Medicine, Deutsches Herzzentrum Charité (DHZC), Charité-Universitätsmedizin Berlin, 12200 Berlin, Germany;
- German Center for Cardiovascular Research (DZHK), Site Berlin, 10785 Berlin, Germany
- Berlin Institute of Health, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna M. Krichevsky
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
46
|
Malick WA, Do R, Rosenson RS. Severe hypertriglyceridemia: Existing and emerging therapies. Pharmacol Ther 2023; 251:108544. [PMID: 37848164 DOI: 10.1016/j.pharmthera.2023.108544] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
Severe hypertriglyceridemia (sHTG), defined as a triglyceride (TG) concentration ≥ 500 mg/dL (≥ 5.7 mmol/L) is an important risk factor for acute pancreatitis. Although lifestyle, some medications, and certain conditions such as diabetes may lead to HTG, sHTG results from a combination of major and minor genetic defects in proteins that regulate TG lipolysis. Familial chylomicronemia syndrome (FCS) is a rare disorder caused by complete loss of function in lipoprotein lipase (LPL) or LPL activating proteins due to two homozygous recessive traits or compound heterozygous traits. Multifactorial chylomicronemia syndrome (MCS) and sHTG are due to the accumulation of rare heterozygous variants and polygenic defects that predispose individuals to sHTG phenotypes. Until recently, treatment of sHTG focused on lifestyle interventions, control of secondary factors, and nonselective pharmacotherapies that had modest TG-lowering efficacy and no corresponding reductions in atherosclerotic cardiovascular disease events. Genetic discoveries have allowed for the development of novel pathway-specific therapeutics targeting LPL modulating proteins. New targets directed towards inhibition of apolipoprotein C-III (apoC-III), angiopoietin-like protein 3 (ANGPTL3), angiopoietin-like protein 4 (ANGPTL4), and fibroblast growth factor-21 (FGF21) offer far more efficacy in treating the various phenotypes of sHTG and opportunities to reduce the risk of acute pancreatitis and atherosclerotic cardiovascular disease events.
Collapse
Affiliation(s)
- Waqas A Malick
- Metabolism and Lipids Program, The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ron Do
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert S Rosenson
- Metabolism and Lipids Program, The Zena and Michael A. Wiener Cardiovascular Institute, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
47
|
Gabani M, Shapiro MD, Toth PP. The Role of Triglyceride-rich Lipoproteins and Their Remnants in Atherosclerotic Cardiovascular Disease. Eur Cardiol 2023; 18:e56. [PMID: 37860700 PMCID: PMC10583159 DOI: 10.15420/ecr.2023.16] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 10/21/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the world's leading cause of death. ASCVD has multiple mediators that therapeutic interventions target, such as dyslipidaemia, hypertension, diabetes and heightened systemic inflammatory tone, among others. LDL cholesterol is one of the most well-studied and established mediators targeted for primary and secondary prevention of ASCVD. However, despite the strength of evidence supporting LDL cholesterol reduction by multiple management strategies, ASCVD events can still recur, even in patients whose LDL cholesterol has been very aggressively reduced. Hypertriglyceridaemia and elevated levels of triglyceride-rich lipoproteins (TRLs) may be key contributors to ASCVD residual risk. Several observational and genetic epidemiological studies have highlighted the causal role of triglycerides within the TRLs and/or their remnant cholesterol in the development and progression of ASCVD. TRLs consist of intestinally derived chylomicrons and hepatically synthesised very LDL. Lifestyle modification has been considered the first line intervention for managing hypertriglyceridaemia. Multiple novel targeted therapies are in development, and have shown efficacy in the preclinical and clinical phases of study in managing hypertriglyceridaemia and elevated TRLs. This comprehensive review provides an overview of the biology, pathogenicity, epidemiology, and genetics of triglycerides and TRLs, and how they impact the risk for ASCVD. In addition, we provide a summary of currently available and novel emerging triglyceride-lowering therapies in development.
Collapse
Affiliation(s)
- Mohanad Gabani
- Division of Cardiology, Wake Forest Baptist HealthWinston-Salem, North Carolina, US
| | - Michael D Shapiro
- Division of Cardiology, Wake Forest Baptist HealthWinston-Salem, North Carolina, US
| | - Peter P Toth
- CGH Medical CenterSterling, Illinois, US
- Ciccarone Center for the Prevention of Cardiovascular Disease, Johns Hopkins University School of MedicineBaltimore, Maryland, US
| |
Collapse
|
48
|
Merćep I, Vujević A, Strikić D, Radman I, Pećin I, Reiner Ž. Present and Future of Dyslipidaemia Treatment-A Review. J Clin Med 2023; 12:5839. [PMID: 37762780 PMCID: PMC10531957 DOI: 10.3390/jcm12185839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
One of the greatest burdens on the healthcare systems of modern civilization is cardiovascular diseases (CVDs). Therefore, the medical community is looking for ways to reduce the incidence of CVDs. Simple lifestyle changes from an unhealthy to a healthy lifestyle are the cornerstone of prevention, but other risk factors for cardiovascular disease are also being currently targeted, most notably dyslipidaemia. It is well known that lowering serum lipid levels, and in particular lowering elevated LDL-cholesterol, leads to a reduction in major cardiovascular events. Although the focus to date has been on LDL-cholesterol levels and lowering them with statin therapy, this is often not enough because of increased concentrations of other lipoprotein particles in the serum and residual cardiovascular risk. Since lowering LDL-cholesterol levels is successful in most cases, there has been a recent focus on lowering residual cardiovascular risk. In recent years, new therapeutic options have emerged that target triglyceride-rich lipoproteins, lipoprotein (a) and apolipoproteins C and B. The effects of these drugs on serious adverse cardiovascular events are not yet known, but recent studies with some of these drugs have shown significant results in lowering total lipid levels. The aim of this review is to present the current therapeutic options for the treatment of dyslipidaemia and to describe the newly approved drugs as well as the drugs that are still in development. Although at this stage we cannot say with certainty whether these agents will be approved and widely used, it is safe to say that our views on the treatment of dyslipidaemia are certainly changing.
Collapse
Affiliation(s)
- Iveta Merćep
- Department of Internal Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.); (I.P.)
- Division of Clinical Pharmacology, Department of Internal Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Andro Vujević
- Division of Clinical Pharmacology, Department of Internal Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Dominik Strikić
- Division of Clinical Pharmacology, Department of Internal Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
| | - Ivana Radman
- Department of Ophthalmology, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia;
| | - Ivan Pećin
- Department of Internal Medicine, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (I.M.); (I.P.)
| | - Željko Reiner
- Division of Metabolic Diseases, Department of Internal Medicine, University Hospital Centre Zagreb, 10000 Zagreb, Croatia;
- Department of Cardiology and Congenital Diseases of Adults, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
49
|
Michaeli DT, Michaeli JC, Albers S, Boch T, Michaeli T. Established and Emerging Lipid-Lowering Drugs for Primary and Secondary Cardiovascular Prevention. Am J Cardiovasc Drugs 2023; 23:477-495. [PMID: 37486464 PMCID: PMC10462544 DOI: 10.1007/s40256-023-00594-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/02/2023] [Indexed: 07/25/2023]
Abstract
Despite treatment with statins, patients with elevated low-density lipoprotein cholesterol (LDL-C) and triglycerides remain at increased risk for adverse cardiovascular events. Consequently, novel pharmaceutical drugs have been developed to control and modify the composition of blood lipids to ultimately prevent fatal cardiovascular events in patients with dyslipidaemia. This article reviews established and emerging lipid-lowering drugs regarding their mechanism of action, development stage, ongoing clinical trials, side effects, effect on blood lipids and reduction in cardiovascular morbidity and mortality. We conducted a keyword search to identify studies on established and emerging lipid modifying drugs. Results were summarized in a narrative overview. Established pharmaceutical treatment options include the Niemann-Pick-C1 like-1 protein (NPC1L1) inhibitor ezetimibe, the protein convertase subtilisin-kexin type 9 (PCSK9) inhibitors alirocumab and evolocumab, fibrates as peroxisome proliferator receptor alpha (PPAR-α) activators, and the omega-3 fatty acid icosapent ethyl. Statins are recommended as the first-line therapy for primary and secondary cardiovascular prevention in patients with hypercholesterinaemia and hypertriglyceridemia. For secondary prevention in hypercholesterinaemia, second-line options such as statin add-on or statin-intolerant treatments are ezetimibe, alirocumab and evolocumab. For secondary prevention in hypertriglyceridemia, second-line options such as statin add-on or statin-intolerant treatments are icosapent ethyl and fenofibrate. Robust data for these add-on therapeutics in primary cardiovascular prevention remains scarce. Recent biotechnological advances have led to the development of innovative small molecules (bempedoic acid, lomitapide, pemafibrate, docosapentaenoic and eicosapentaenoic acid), antibodies (evinacumab), antisense oligonucleotides (mipomersen, volanesorsen, pelcarsen, olezarsen), small interfering RNA (inclisiran, olpasiran), and gene therapies for patients with dyslipidemia. These molecules specifically target new cellular pathways, such as the adenosine triphosphate-citrate lyase (bempedoic acid), PCSK9 (inclisiran), angiopoietin-like 3 (ANGPTL3: evinacumab), microsomal triglyceride transfer protein (MTP: lomitapide), apolipoprotein B-100 (ApoB-100: mipomersen), apolipoprotein C-III (ApoC-III: volanesorsen, olezarsen), and lipoprotein (a) (Lp(a): pelcarsen, olpasiran). The authors are hopeful that the development of new treatment modalities alongside new therapeutic targets will further reduce patients' risk of adverse cardiovascular events. Apart from statins, data on new drugs' use in primary cardiovascular prevention remain scarce. For their swift adoption into clinical routine, these treatments must demonstrate safety and efficacy as well as cost-effectiveness in randomized cardiovascular outcome trials.
Collapse
Affiliation(s)
- Daniel Tobias Michaeli
- Department of Medical Oncology, National Center for Tumour Diseases, Heidelberg University Hospital, Heidelberg, Germany.
| | - Julia Caroline Michaeli
- Department of Obstetrics and Gynaecology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Albers
- Department of Orthopaedics and Sport Orthopaedics, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Tobias Boch
- Department of Medical Oncology, National Center for Tumour Diseases, Heidelberg University Hospital, Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thomas Michaeli
- Department of Medical Oncology, National Center for Tumour Diseases, Heidelberg University Hospital, Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Division of Personalized Medical Oncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Personalized Oncology, University Hospital Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
50
|
Gligorijevic N, Stefanovic-Racic M, Kershaw EE. Medical management of hypertriglyceridemia in pancreatitis. Curr Opin Gastroenterol 2023:00001574-990000000-00085. [PMID: 37421386 DOI: 10.1097/mog.0000000000000956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/10/2023]
Abstract
PURPOSE OF REVIEW Hypertriglyceridemia-induced acute pancreatitis (HTG-AP) should be considered in all cases of acute pancreatitis and triglyceride levels measured early, so that appropriate early and long-term treatment can be initiated. RECENT FINDINGS In most cases of HTG-AP, conservative management (nothing by mouth, intravenous fluid resuscitation and analgesia) is sufficient to achieve triglyceride levels less than 500 mg/dl. Intravenous insulin and plasmapheresis are sometimes used, although prospective studies showing clinical benefits are lacking. Pharmacological management of hypertriglyceridemia (HTG) should start early and target triglyceride levels of less than 500 mg/dl to reduce the risk or recurrent acute pancreatitis. In addition to currently used fenofibrate and omega-3 fatty acids, several novel agents are being studied for long-term treatment of HTG. These emerging therapies focus mainly on modifying the action of lipoprotein lipase (LPL) through inhibition of apolipoprotein CIII and angiopoietin-like protein 3. Dietary modifications and avoidance of secondary factors that worsen triglyceride levels should also be pursued. In some cases of HTG-AP, genetic testing may help personalize management and improve outcomes. SUMMARY Patients with HTG-AP require acute and long-term management of HTG with the goal of reducing and maintaining triglyceride levels to less than 500 mg/dl.
Collapse
Affiliation(s)
- Nikola Gligorijevic
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|