1
|
Xu MY, Xu JJ, Kang LJ, Liu ZH, Su MM, Zhao WQ, Wang ZH, Sun L, Xiao JB, Evans PC, Tian XY, Wang L, Huang Y, Liang XM, Weng JP, Xu SW. Urolithin A promotes atherosclerotic plaque stability by limiting inflammation and hypercholesteremia in Apolipoprotein E-deficient mice. Acta Pharmacol Sin 2024; 45:2277-2289. [PMID: 38886550 PMCID: PMC11489441 DOI: 10.1038/s41401-024-01317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024] Open
Abstract
Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 μM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.
Collapse
Affiliation(s)
- Meng-Yun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Jing-Jing Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li-Jing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zheng-Hong Liu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Mei-Ming Su
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Wen-Qi Zhao
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Zhi-Hua Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Lu Sun
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Jian-Bo Xiao
- Universidade de Vigo, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, 32004, Spain
| | - Paul C Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Xiao-Yu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xin-Miao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China.
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China.
| | - Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China.
| |
Collapse
|
2
|
Mierke CT. Mechanosensory entities and functionality of endothelial cells. Front Cell Dev Biol 2024; 12:1446452. [PMID: 39507419 PMCID: PMC11538060 DOI: 10.3389/fcell.2024.1446452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The endothelial cells of the blood circulation are exposed to hemodynamic forces, such as cyclic strain, hydrostatic forces, and shear stress caused by the blood fluid's frictional force. Endothelial cells perceive mechanical forces via mechanosensors and thus elicit physiological reactions such as alterations in vessel width. The mechanosensors considered comprise ion channels, structures linked to the plasma membrane, cytoskeletal spectrin scaffold, mechanoreceptors, and junctional proteins. This review focuses on endothelial mechanosensors and how they alter the vascular functions of endothelial cells. The current state of knowledge on the dysregulation of endothelial mechanosensitivity in disease is briefly presented. The interplay in mechanical perception between endothelial cells and vascular smooth muscle cells is briefly outlined. Finally, future research avenues are highlighted, which are necessary to overcome existing limitations.
Collapse
|
3
|
Suraya R, Nagano T, Yumura M, Hara T, Akashi M, Yamamoto M, Tachihara M, Nishimura Y, Kobayashi K. Loss of JCAD/KIAA1462 Protects the Lung from Acute and Chronic Consequences of Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2024; 25:9492. [PMID: 39273437 PMCID: PMC11394678 DOI: 10.3390/ijms25179492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Even with recent advances in pathobiology and treatment options, chronic obstructive pulmonary disease (COPD) remains a major contributor to morbidity and mortality. To develop new ways of combating this disease, breakthroughs in our understanding of its mechanisms are sorely needed. Investigating the involvement of underanalyzed lung cell types, such as endothelial cells (ECs), is one way to further our understanding of COPD. JCAD is a junctional protein in endothelial cells (ECs) arising from the KIAA1462 gene, and a mutation in this gene has been implicated in the risk of developing COPD. In our study, we induced inflammation and emphysema in mice via the global knockout of KIAA1462/JCAD (JCAD-KO) and confirmed it in HPMECs and A549 to examine how the loss of JCAD could affect COPD development. We found that KIAA1462/JCAD loss reduced acute lung inflammation after elastase treatment. Even after 3 weeks of elastase, JCAD-KO mice demonstrated a preserved lung parenchymal structure and vasculature. In vitro, after KIAA1462 expression is silenced, both endothelial and epithelial cells showed alterations in pro-inflammatory gene expression after TNF-α treatment. We concluded that JCAD loss could ameliorate COPD through its anti-inflammatory and anti-angiogenic effects, and that KIAA1462/JCAD could be a novel target for COPD therapy.
Collapse
Affiliation(s)
- Ratoe Suraya
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Tatsuya Nagano
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Masako Yumura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Tetsuya Hara
- Laboratory of Clinical Pharmaceutical Science, Kobe Pharmaceutical University, Kobe 658-8558, Japan;
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan;
| | - Masatsugu Yamamoto
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Motoko Tachihara
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Yoshihiro Nishimura
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| | - Kazuyuki Kobayashi
- Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan; (R.S.); (T.N.); (M.Y.); (M.Y.); (Y.N.); (K.K.)
| |
Collapse
|
4
|
Wang X, He B. Endothelial dysfunction: molecular mechanisms and clinical implications. MedComm (Beijing) 2024; 5:e651. [PMID: 39040847 PMCID: PMC11261813 DOI: 10.1002/mco2.651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
Cardiovascular disease (CVD) and its complications are a leading cause of death worldwide. Endothelial dysfunction plays a crucial role in the initiation and progression of CVD, serving as a pivotal factor in the pathogenesis of cardiovascular, metabolic, and other related diseases. The regulation of endothelial dysfunction is influenced by various risk factors and intricate signaling pathways, which vary depending on the specific disease context. Despite numerous research efforts aimed at elucidating the mechanisms underlying endothelial dysfunction, the precise molecular pathways involved remain incompletely understood. This review elucidates recent research findings on the pathophysiological mechanisms involved in endothelial dysfunction, including nitric oxide availability, oxidative stress, and inflammation-mediated pathways. We also discuss the impact of endothelial dysfunction on various pathological conditions, including atherosclerosis, heart failure, diabetes, hypertension, chronic kidney disease, and neurodegenerative diseases. Furthermore, we summarize the traditional and novel potential biomarkers of endothelial dysfunction as well as pharmacological and nonpharmacological therapeutic strategies for endothelial protection and treatment for CVD and related complications. Consequently, this review is to improve understanding of emerging biomarkers and therapeutic approaches aimed at reducing the risk of developing CVD and associated complications, as well as mitigating endothelial dysfunction.
Collapse
Affiliation(s)
- Xia Wang
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ben He
- Department of CardiologyShanghai Chest Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
5
|
Luo J, Wang L, Cui C, Chen H, Zeng W, Li X. MicroRNA-19a-3p inhibits endothelial dysfunction in atherosclerosis by targeting JCAD. BMC Cardiovasc Disord 2024; 24:394. [PMID: 39080547 PMCID: PMC11287888 DOI: 10.1186/s12872-024-04063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024] Open
Abstract
OBJECTIVE To examine the influences and mechanisms of MicroRNA-19a-3p (miR-19a-3p) on endothelial dysfunction in atherosclerosis. METHODS An analysis of miR-19a expression was carried out using the Gene Expression Omnibus (GEO) database. The effect of miR-19a-3p on endothelial function in HUVECs was evaluated by miR-19a-3p overexpression under TNF-α treatment. Luciferase assays were performed to explore the potential target genes. Overexpression of junctional protein associated with coronary artery disease (JCAD) was used to examine the effects of miR-19a-3p on cell adhesion, and proliferation. RESULTS MiR-19a-3p expression in endothelial cells decreased after exposure to TNF-α and/or oscillatory flow, consistent with the expression change of miR-19a-3p found in atherosclerotic plaques. Additionally, endothelial cell dysfunction and inflammation were significantly diminished by miR-19a-3p overexpression but markedly exacerbated by miR-19a-3p inhibition. MiR-19a-3p transfection significantly decreased the expression of JCAD by binding to the 3'-UTR of JCAD mRNA. Furthermore, the protective effect of miR-19a-3p against endothelial cell dysfunction and inflammation was achieved by regulating JCAD and was closely linked to the Hippo/YAP signaling pathway. CONCLUSION MiR-19a-3p expression is a crucial molecular switch in the onset of atherosclerosis and miR-19a-3p overexpression is a possible pharmacological therapeutic strategy for reversing the development of atherosclerosis.
Collapse
Affiliation(s)
- Jinque Luo
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
- College of Pharmacy, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Ling Wang
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
- College of Pharmacy, Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Functional Nucleic Acid, Changsha Medical University, Changsha, 410219, Hunan, China
| | - Chaoyue Cui
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
| | - Hongyu Chen
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
| | - Wanli Zeng
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China
| | - Xin Li
- Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, "The 14th Five-Year Plan" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), College of Pharmacy, Changsha Medical University, 1501 Leifeng Avenue, Changsha, 410219, Hunan, China.
| |
Collapse
|
6
|
Liu HH, Wei W, Wu FF, Cao L, Yang BJ, Fu JN, Li JX, Liang XY, Dong HY, Heng YY, Zhang PF. Sodium tanshinone IIA sulfonate protects vascular relaxation in ApoE-knockout mice by inhibiting the SYK-NLRP3 inflammasome-MMP2/9 pathway. BMC Cardiovasc Disord 2024; 24:354. [PMID: 38992615 PMCID: PMC11241843 DOI: 10.1186/s12872-024-03990-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/19/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Hyperlipidemia damages vascular wall and serves as a foundation for diseases such as atherosclerosis, hypertension and stiffness. The NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome is implicated in vascular dysfunction associated with hyperlipidemia-induced vascular injury. Sodium tanshinone IIA sulfonate (STS), a well-established cardiovascular protective drug with recognized anti-inflammatory, antioxidant, and vasodilatory properties, is yet to be thoroughly investigated for its impact on vascular relaxant imbalance induced by hyperlipidemia. METHODS In this study, we treated ApoE-knockout (ApoE-/-) mouse with STS and assessed the activation of the NLRP3 inflammasome, expression of MMP2/9, integrity of elastic fibers, and vascular constriction and relaxation. RESULTS Our findings reveal that STS intervention effectively preserves elastic fibers, significantly restores aortic relaxation function in ApoE-/- mice, and reduces their excessive constriction. Furthermore, STS inhibits the phosphorylation of spleen tyrosine kinase (SYK), suppresses NLRP3 inflammasome activation, and reduces MMP2/9 expression. CONCLUSIONS These results demonstrate that STS protects vascular relaxation against hyperlipidemia-induced damage through modulation of the SYK-NLRP3 inflammasome-MMP2/9 pathway. This research provides novel insights into the mechanisms underlying vascular relaxation impairment in a hyperlipidemic environment and uncovers a unique mechanism by which STS preserves vascular relaxation, offering valuable foundational research evidence for its clinical application in promoting vascular health.
Collapse
Affiliation(s)
- Hai-Hua Liu
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Wei Wei
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China.
- Department of Pharmacology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China.
- Department of Clinical Center Laboratory, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China.
| | - Fei-Fei Wu
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Lu Cao
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Bing-Jie Yang
- Department of Stomatology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Jia-Ning Fu
- Department of Stomatology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Jing-Xia Li
- Department of Anesthesia, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Xin-Yue Liang
- Department of Medical Imageology, Changzhi Medical College, No.161, Jiefang East Street, Changzhi, 046000, Shanxi, China
| | - Hao-Yu Dong
- Department of Endocrinology, Heping Hospital Affiliated to Changzhi Medical College, No.110, Yan'an South Road, Changzhi, 046000, Shanxi, China
| | - Yan-Yan Heng
- Department of Nephrology Heping Hospital, Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China
| | - Peng-Fei Zhang
- Department of Nephrology Heping Hospital, Changzhi Medical College, No.110, Yanan Road South, Changzhi, 046000, Shanxi, China
| |
Collapse
|
7
|
Wang X, Liu L, Zhai L, Palade P, Wang X, Mehta JL. Direct Impact of PCSK9 on SMC Senescence and Apoptosis: A New Focus in Cardiovascular Diseases. Arterioscler Thromb Vasc Biol 2024; 44:1491-1496. [PMID: 38924434 DOI: 10.1161/atvbaha.124.320140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Xiaoping Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China (Xiaoping Wang, L.L., L.Z., Xianwei Wang)
- Department of Human Anatomy and Histoembryology (Xiaoping Wang, L.L., Xianwei Wang), Xinxiang Medical University, China
| | - Lu Liu
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China (Xiaoping Wang, L.L., L.Z., Xianwei Wang)
- Department of Human Anatomy and Histoembryology (Xiaoping Wang, L.L., Xianwei Wang), Xinxiang Medical University, China
| | - Liyue Zhai
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China (Xiaoping Wang, L.L., L.Z., Xianwei Wang)
- Henan Key Laboratory of Medical Tissue Regeneration (L.Z., Xianwei Wang), Xinxiang Medical University, China
| | - Philip Palade
- Department of Pharmacology and Toxicology, University of Arkansas for Medical Sciences, Little Rock (P.P.)
| | - Xianwei Wang
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Weihui, China (Xiaoping Wang, L.L., L.Z., Xianwei Wang)
- Department of Human Anatomy and Histoembryology (Xiaoping Wang, L.L., Xianwei Wang), Xinxiang Medical University, China
- Henan Key Laboratory of Medical Tissue Regeneration (L.Z., Xianwei Wang), Xinxiang Medical University, China
| | - Jawahar L Mehta
- Department of Medicine (Cardiology), University of Arkansas for Medical Sciences and the Veterans Affairs Medical Center, Little Rock (J.L.M.)
| |
Collapse
|
8
|
Zhang Y, Ren Y, Li X, Li M, Fu M, Zhou W, Yu Y, Xiong Y. A review on decoding the roles of YAP/TAZ signaling pathway in cardiovascular diseases: Bridging molecular mechanisms to therapeutic insights. Int J Biol Macromol 2024; 271:132473. [PMID: 38795886 DOI: 10.1016/j.ijbiomac.2024.132473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/02/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) serve as transcriptional co-activators that dynamically shuttle between the cytoplasm and nucleus, resulting in either the suppression or enhancement of their downstream gene expression. Recent emerging evidence demonstrates that YAP/TAZ is strongly implicated in the pathophysiological processes that contribute to cardiovascular diseases (CVDs). In the cardiovascular system, YAP/TAZ is involved in the orchestration of a range of biological processes such as oxidative stress, inflammation, proliferation, and autophagy. Furthermore, YAP/TAZ has been revealed to be closely associated with the initiation and development of various cardiovascular diseases, including atherosclerosis, pulmonary hypertension, myocardial fibrosis, cardiac hypertrophy, and cardiomyopathy. In this review, we delve into recent studies surrounding YAP and TAZ, along with delineating their roles in contributing to the pathogenesis of CVDs with a link to various physiological processes in the cardiovascular system. Additionally, we highlight the current potential drugs targeting YAP/TAZ for CVDs therapy and discuss their challenges for translational application. Overall, this review may offer novel insights for understanding and treating cardiovascular disorders.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yuanyuan Ren
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Xiaofang Li
- Department of Gastroenterology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Man Li
- Department of Endocrinology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University, Xi'an, Shaanxi 710018, PR China
| | - Mingdi Fu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Wenjing Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China
| | - Yi Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China.
| | - Yuyan Xiong
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, Xi'an 710069, Shaanxi, PR China; Xi'an Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Xi'an No.3 Hospital, the Affiliated Hospital of Northwest University, 710018 Xi'an, Shaanxi, PR China.
| |
Collapse
|
9
|
Li S, Xu Z, Wang Y, Chen L, Wang X, Zhou Y, Lei D, Zang G, Wang G. Recent advances of mechanosensitive genes in vascular endothelial cells for the formation and treatment of atherosclerosis. Genes Dis 2024; 11:101046. [PMID: 38292174 PMCID: PMC10825297 DOI: 10.1016/j.gendis.2023.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/09/2023] [Accepted: 06/06/2023] [Indexed: 02/01/2024] Open
Abstract
Atherosclerotic cardiovascular disease and its complications are a high-incidence disease worldwide. Numerous studies have shown that blood flow shear has a huge impact on the function of vascular endothelial cells, and it plays an important role in gene regulation of pro-inflammatory, pro-thrombotic, pro-oxidative stress, and cell permeability. Many important endothelial cell mechanosensitive genes have been discovered, including KLK10, CCN gene family, NRP2, YAP, TAZ, HIF-1α, NF-κB, FOS, JUN, TFEB, KLF2/KLF4, NRF2, and ID1. Some of them have been intensively studied, whereas the relevant regulatory mechanism of other genes remains unclear. Focusing on these mechanosensitive genes will provide new strategies for therapeutic intervention in atherosclerotic vascular disease. Thus, this article reviews the mechanosensitive genes affecting vascular endothelial cells, including classical pathways and some newly screened genes, and summarizes the latest research progress on their roles in the pathogenesis of atherosclerosis to reveal effective therapeutic targets of drugs and provide new insights for anti-atherosclerosis.
Collapse
Affiliation(s)
- Shuyu Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Zichen Xu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Lizhao Chen
- Department of Neurosurgery, Daping Hospital, Army Medical Center of PLA, Army Medical University, Chongqing 400042, China
| | - Xiangxiu Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yanghao Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Daoxi Lei
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guangchao Zang
- College of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Guixue Wang
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, National and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing 400030, China
| |
Collapse
|
10
|
Pepin ME, Gupta RM. The Role of Endothelial Cells in Atherosclerosis: Insights from Genetic Association Studies. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:499-509. [PMID: 37827214 PMCID: PMC10988759 DOI: 10.1016/j.ajpath.2023.09.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Endothelial cells (ECs) mediate several biological functions that are relevant to atherosclerosis and coronary artery disease (CAD), regulating an array of vital processes including vascular tone, wound healing, reactive oxygen species, shear stress response, and inflammation. Although which of these functions is linked causally with CAD development and/or progression is not yet known, genome-wide association studies have implicated more than 400 loci associated with CAD risk, among which several have shown EC-relevant functions. Given the arduous process of mechanistically interrogating single loci to CAD, high-throughput variant characterization methods, including pooled Clustered Regularly Interspaced Short Palindromic Repeats screens, offer exciting potential to rapidly accelerate the discovery of bona fide EC-relevant genetic loci. These discoveries in turn will broaden the therapeutic avenues for CAD beyond lipid lowering and behavioral risk modification to include EC-centric modalities of risk prevention and treatment.
Collapse
Affiliation(s)
- Mark E Pepin
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, Massachusetts
| | - Rajat M Gupta
- Cardiovascular Disease Initiative, The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Divisions of Genetics and Cardiovascular Medicine, Brigham & Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
11
|
Xie L, Chen H, Zhang L, Ma Y, Zhou Y, Yang YY, Liu C, Wang YL, Yan YJ, Ding J, Teng X, Yang Q, Liu XP, Wu J. JCAD deficiency attenuates activation of hepatic stellate cells and cholestatic fibrosis. Clin Mol Hepatol 2024; 30:206-224. [PMID: 38190829 PMCID: PMC11016487 DOI: 10.3350/cmh.2023.0506] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/10/2024] Open
Abstract
BACKGROUND/AIMS Cholestatic liver diseases including primary biliary cholangitis (PBC) are associated with active hepatic fibrogenesis, which ultimately progresses to cirrhosis. Activated hepatic stellate cells (HSCs) are the main fibrogenic effectors in response to cholangiocyte damage. JCAD regulates cell proliferation and malignant transformation in nonalcoholic steatoheaptitis-associated hepatocellular carcinoma (NASH-HCC). However, its participation in cholestatic fibrosis has not been explored yet. METHODS Serial sections of liver tissue of PBC patients were stained with immunofluorescence. Hepatic fibrosis was induced by bile duct ligation (BDL) in wild-type (WT), global JCAD knockout mice (JCAD-KO) and HSC-specific JCAD knockout mice (HSC-JCAD-KO), and evaluated by histopathology and biochemical tests. In situ-activated HSCs isolated from BDL mice were used to determine effects of JCAD on HSC activation. RESULTS In consistence with staining of liver sections from PBC patients, immunofluorescent staining revealed that JCAD expression was identified in smooth muscle α-actin (α-SMA)-positive fibroblast-like cells and was significantly up-regulated in WT mice with BDL. JCAD deficiency remarkably ameliorated BDL-induced hepatic injury and fibrosis, as documented by liver hydroxyproline content, when compared to WT mice with BDL. Histopathologically, collagen deposition was dramatically reduced in both JCAD-KO and HSC-JCAD-KO mice compared to WT mice, as visualized by Trichrome staining and semi-quantitative scores. Moreover, JCAD deprivation significantly attenuated in situ HSC activation and reduced expression of fibrotic genes after BDL. CONCLUSION JCAD deficiency effectively suppressed hepatic fibrosis induced by BDL in mice, and the underlying mechanisms are largely through suppressed Hippo-YAP signaling activity in HSCs.
Collapse
Affiliation(s)
- Li Xie
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Hui Chen
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Li Zhang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yue Ma
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yuan Zhou
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yong-Yu Yang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Chang Liu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Yu-Li Wang
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
| | - Ya-Jun Yan
- Department of Pathology, Shanghai Fifth People’s Hospital, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jia Ding
- Department of Gastroenterology, Jing’an District Central Hospital, Fudan University, Shanghai, China
| | - Xiao Teng
- HistoIndex Pte Ltd, Singapore, Singapore
| | - Qiang Yang
- Hangzhou Choutu Technology Co., Ltd., Hangzhou, China
| | - Xiu-Ping Liu
- Department of Pathology, Shanghai Fifth People’s Hospital, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jian Wu
- Department of Medical Microbiology & Parasitology, MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Fudan University Shanghai Medical College, Shanghai, China
- Department of Gastroenterology & Hepatology, Zhongshan Hospital of Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Fudan University Shanghai Medical College, Shanghai, China
| |
Collapse
|
12
|
Zhang L, Yang Y, Xie L, Zhou Y, Zhong Z, Ding J, Wang Z, Wang Y, Liu X, Yu F, Wu J. JCAD deficiency delayed liver regenerative repair through the Hippo-YAP signalling pathway. Clin Transl Med 2024; 14:e1630. [PMID: 38509842 PMCID: PMC10955226 DOI: 10.1002/ctm2.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND AND AIMS Liver regeneration retardation post partial hepatectomy (PH) is a common clinical problem after liver transplantation. Identification of key regulators in liver regeneration post PH may be beneficial for clinically improving the prognosis of patients after liver transplantation. This study aimed to clarify the function of junctional protein-associated with coronary artery disease (JCAD) in liver regeneration post PH and to reveal the underlying mechanisms. METHODS JCAD knockout (JCAD-KO), liver-specific JCAD-KO (Jcad△Hep) mice and their control group were subjected to 70% PH. RNA sequencing was conducted to unravel the related signalling pathways. Primary hepatocytes from KO mice were treated with epidermal growth factor (EGF) to evaluate DNA replication. Fluorescent ubiquitination-based cell cycle indicator (FUCCI) live-imaging system was used to visualise the phases of cell cycle. RESULTS Both global and liver-specific JCAD deficiency postponed liver regeneration after PH as indicated by reduced gene expression of cell cycle transition and DNA replication. Prolonged retention in G1 phase and failure to transition over the cell cycle checkpoint in JCAD-KO cell line was indicated by a FUCCI live-imaging system as well as pharmacologic blockage. JCAD replenishment by adenovirus reversed the impaired DNA synthesis in JCAD-KO primary hepatocyte in exposure to EGF, which was abrogated by a Yes-associated protein (YAP) inhibitor, verteporfin. Mechanistically, JCAD competed with large tumour suppressor 2 (LATS2) for WWC1 interaction, leading to LATS2 inhibition and thereafter YAP activation, and enhanced expression of cell cycle-associated genes. CONCLUSION JCAD deficiency led to delayed regeneration after PH as a result of blockage in cell cycle progression through the Hippo-YAP signalling pathway. These findings uncovered novel functions of JCAD and suggested a potential strategy for improving graft growth and function post liver transplantation. KEY POINTS JCAD deficiency leads to an impaired liver growth after PH due to cell division blockage. JCAD competes with LATS2 for WWC1 interaction, resulting in LATS2 inhibition, YAP activation and enhanced expression of cell cycle-associated genes. Delineation of JCADHippoYAP signalling pathway would facilitate to improve prognosis of acute liver failure and graft growth in living-donor liver transplantation.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yong‐Yu Yang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Li Xie
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yuan Zhou
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Zhenxing Zhong
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghai Key Laboratory of Medical EpigeneticsInternational Co‐Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Jia Ding
- Jing'an Central District HospitalShanghaiChina
| | - Zhong‐Hua Wang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yu‐Li Wang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Xiu‐Ping Liu
- Department of Pathology and Laboratory MedicineSchool of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Fa‐Xing Yu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghai Key Laboratory of Medical EpigeneticsInternational Co‐Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Jian Wu
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
- Department of Gastroenterology & HepatologyZhongshan Hospital of Fudan UniversityShanghaiChina
- Shanghai Institute of Liver DiseasesFudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
13
|
Wang J, Luo J, Rotili D, Mai A, Steegborn C, Xu S, Jin ZG. SIRT6 Protects Against Lipopolysaccharide-Induced Inflammation in Human Pulmonary Lung Microvascular Endothelial Cells. Inflammation 2024; 47:323-332. [PMID: 37819455 DOI: 10.1007/s10753-023-01911-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/16/2023] [Accepted: 09/20/2023] [Indexed: 10/13/2023]
Abstract
Inflammatory response in the pulmonary endothelium drives the pathogenesis of acute lung injury and sepsis. Sirtuin 6 (SIRT6), a member of class III NAD+-dependent deacetylases belonging to the sirtuin family, regulates senescence, metabolism, and inflammation and extends lifespan in mice and model organisms. However, the role of SIRT6 in pulmonary endothelial inflammation is unknown. Thus, we hypothesized that SIRT6 suppresses inflammatory response in human lung microvascular cells (HLMEC) and ensues monocyte adhesion to endothelial cells. Primary HLMECs were treated with control or SIRT6 adenovirus or SIRT6 agonist, with or without lipopolysaccharide (LPS) treatment. We observed that treatment with LPS did not affect the protein expression of SIRT6 in HLMECs. However, adenovirus-mediated SIRT6 overexpression attenuated LPS-induced VCAM1 gene and protein expression, followed by decreased monocyte adhesion to endothelial cells. Similarly, activation of SIRT6 by a recently reported SIRT6 activator UBCS039, but not the regioisomer negative control compound UBCS060, ameliorated LPS-induced VCAM1 mRNA and protein expression as well as monocyte adhesion. Moreover, luciferase assay revealed that SIRT6 adenovirus decreased the activity of NF-κB, the master regulator of vascular inflammation. Taken together, these results indicate that molecular and pharmacological activation of SIRT6 protects against lung microvascular inflammation via suppressing NF-κB activation, implicating the therapeutic potential of the SIRT6 activators for lung disorders associated with microvascular inflammation.
Collapse
Affiliation(s)
- Jinping Wang
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry , 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Department of Pharmacy, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, 518035, Shenzhen, China
- School of Business Administration, Shenyang Pharmaceutical University, 110016, Shenyang, China
| | - Jinque Luo
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry , 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Present Address: Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
- Pasteur Institute, Cenci Bolognetti Foundation, Sapienza University, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440, Bayreuth, Germany
| | - Suowen Xu
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry , 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA
- Present address: Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute (CVRI), Department of Medicine, University of Rochester School of Medicine and Dentistry , 601 Elmwood Avenue, Box CVRI, Rochester, NY, 14642, USA.
| |
Collapse
|
14
|
Zhu QM, Hsu YHH, Lassen FH, MacDonald BT, Stead S, Malolepsza E, Kim A, Li T, Mizoguchi T, Schenone M, Guzman G, Tanenbaum B, Fornelos N, Carr SA, Gupta RM, Ellinor PT, Lage K. Protein interaction networks in the vasculature prioritize genes and pathways underlying coronary artery disease. Commun Biol 2024; 7:87. [PMID: 38216744 PMCID: PMC10786878 DOI: 10.1038/s42003-023-05705-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024] Open
Abstract
Population-based association studies have identified many genetic risk loci for coronary artery disease (CAD), but it is often unclear how genes within these loci are linked to CAD. Here, we perform interaction proteomics for 11 CAD-risk genes to map their protein-protein interactions (PPIs) in human vascular cells and elucidate their roles in CAD. The resulting PPI networks contain interactions that are outside of known biology in the vasculature and are enriched for genes involved in immunity-related and arterial-wall-specific mechanisms. Several PPI networks derived from smooth muscle cells are significantly enriched for genetic variants associated with CAD and related vascular phenotypes. Furthermore, the networks identify 61 genes that are found in genetic loci associated with risk of CAD, prioritizing them as the causal candidates within these loci. These findings indicate that the PPI networks we have generated are a rich resource for guiding future research into the molecular pathogenesis of CAD.
Collapse
Affiliation(s)
- Qiuyu Martin Zhu
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Yu-Han H Hsu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Frederik H Lassen
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Bryan T MacDonald
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stephanie Stead
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edyta Malolepsza
- Genomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - April Kim
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Taibo Li
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Taiji Mizoguchi
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Monica Schenone
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gaelen Guzman
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Benjamin Tanenbaum
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nadine Fornelos
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Steven A Carr
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rajat M Gupta
- Divisions of Cardiovascular Medicine and Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Patrick T Ellinor
- Cardiovascular Disease Initiative & Precision Cardiology Laboratory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA.
| | - Kasper Lage
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA.
- Institute of Biological Psychiatry, Mental Health Centre Sct. Hans, Mental Health Services Copenhagen, Roskilde, Denmark.
| |
Collapse
|
15
|
Li C, Liu Z, Liu D, Jiang H, Bi C, Shi W. Down-regulation of JCAD Expression Attenuates Cardiomyocyte Injury by Regulating the Wnt/β-Catenin Pathway. Folia Biol (Praha) 2024; 70:229-238. [PMID: 39692577 DOI: 10.14712/fb2024070040229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Coronary heart disease (CHD) is one of the most commonly seen cardiovascular conditions across the globe. Junctional cadherin 5 associated (JCAD) protein is found in the intercellular junctions of endothelial cells and linked to cardiovascular diseases. Nonetheless, the influence of JCAD on cardiomyocyte injury caused by CHD is unclear. A model of H2O2-induced H9c2 cell injury was constructed, and JCAD mRNA and protein levels were assessed by qRT-PCR and Western blot. The impacts of JCAD on the proliferation or apoptosis of H9c2 cells were explored by CCK-8 assay, Western blot and TUNEL staining. The effect of JCAD on the inflammatory response and vascular endothelial function of H9c2 cells was detected using ELISA kits. The levels of Wnt/β-catenin pathway-related proteins were assessed by Western blot. H2O2 treatment led to a rise in the levels of JCAD in H9c2 cells. Over-expression of JCAD promoted H2O2-induced cellular injury, leading to notably elevated contents of inflammatory factors, along with vascular endothelial dysfunction. In contrast to over-expression of JCAD, silencing of JCAD attenuated H2O2-induced cellular injury and inhibited apoptosis, inflammatory response and vascular endothelial dysfunction. Notably, JCAD could regulate the Wnt/β-catenin pathway, while DKK-1, Wnt/β-catenin pathway antagonist, counteracted the enhancing impact of JCAD over-expression on H2O2-induced H9c2 cell injury, further confirming that JCAD acts by regulating the Wnt/β-catenin pathway. In summary, over-expression of JCAD promoted H2O2-induced H9c2 cell injury by activating the Wnt/β-catenin pathway, while silencing of JCAD attenuated the H2O2-induced cell injury.
Collapse
Affiliation(s)
- Can Li
- Dafeng People's Hospital of Yancheng City, Jiangsu Province, China
| | - Zhengdong Liu
- Dafeng People's Hospital of Yancheng City, Jiangsu Province, China
| | - Dong Liu
- Dafeng People's Hospital of Yancheng City, Jiangsu Province, China
| | - Hui Jiang
- Dafeng People's Hospital of Yancheng City, Jiangsu Province, China
| | - Chenglong Bi
- People's Hospital of Zibo City, Shandong Province, China
| | - Weiwei Shi
- Dafeng People's Hospital of Yancheng City, Jiangsu Province, China.
| |
Collapse
|
16
|
Ouyang S, Zhou ZX, Liu HT, Ren Z, Liu H, Deng NH, Tian KJ, Zhou K, Xie HL, Jiang ZS. LncRNA-mediated Modulation of Endothelial Cells: Novel Progress in the Pathogenesis of Coronary Atherosclerotic Disease. Curr Med Chem 2024; 31:1251-1264. [PMID: 36788688 DOI: 10.2174/0929867330666230213100732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 11/06/2022] [Accepted: 11/17/2022] [Indexed: 02/16/2023]
Abstract
Coronary atherosclerotic disease (CAD) is a common cardiovascular disease and an important cause of death. Moreover, endothelial cells (ECs) injury is an early pathophysiological feature of CAD, and long noncoding RNAs (lncRNAs) can modulate gene expression. Recent studies have shown that lncRNAs are involved in the pathogenesis of CAD, especially by regulating ECs. In this review, we summarize the novel progress of lncRNA-modulated ECs in the pathogenesis of CAD, including ECs proliferation, migration, adhesion, angiogenesis, inflammation, apoptosis, autophagy, and pyroptosis. Thus, as lncRNAs regulate ECs in CAD, lncRNAs will provide ideal and novel targets for the diagnosis and drug therapy of CAD.
Collapse
Affiliation(s)
- Shao Ouyang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
- Key Laboratory of Heart Failure Prevention & Treatment of Hengyang, Department of Cardiovascular Medicine, Hengyang Medical School, The Second Affiliated Hospital, Clinical Medicine Research Center of Arteriosclerotic Disease of Hunan Province, University of South China, Hunan 421001, China
| | - Zhi-Xiang Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Hui-Ting Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Zhong Ren
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Huan Liu
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Nian-Hua Deng
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Kai-Jiang Tian
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Kun Zhou
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Hai-Lin Xie
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| | - Zhi-Sheng Jiang
- Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, Institute of Cardiovascular Disease, University of South China, Hengyang 421001, China
| |
Collapse
|
17
|
Ye W, Wang J, Little PJ, Zou J, Zheng Z, Lu J, Yin Y, Liu H, Zhang D, Liu P, Xu S, Ye W, Liu Z. Anti-atherosclerotic effects and molecular targets of ginkgolide B from Ginkgo biloba. Acta Pharm Sin B 2024; 14:1-19. [PMID: 38239238 PMCID: PMC10792990 DOI: 10.1016/j.apsb.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/03/2023] [Accepted: 09/13/2023] [Indexed: 01/22/2024] Open
Abstract
Bioactive compounds derived from herbal medicinal plants modulate various therapeutic targets and signaling pathways associated with cardiovascular diseases (CVDs), the world's primary cause of death. Ginkgo biloba , a well-known traditional Chinese medicine with notable cardiovascular actions, has been used as a cardio- and cerebrovascular therapeutic drug and nutraceutical in Asian countries for centuries. Preclinical studies have shown that ginkgolide B, a bioactive component in Ginkgo biloba , can ameliorate atherosclerosis in cultured vascular cells and disease models. Of clinical relevance, several clinical trials are ongoing or being completed to examine the efficacy and safety of ginkgolide B-related drug preparations in the prevention of cerebrovascular diseases, such as ischemia stroke. Here, we present a comprehensive review of the pharmacological activities, pharmacokinetic characteristics, and mechanisms of action of ginkgolide B in atherosclerosis prevention and therapy. We highlight new molecular targets of ginkgolide B, including nicotinamide adenine dinucleotide phosphate oxidases (NADPH oxidase), lectin-like oxidized LDL receptor-1 (LOX-1), sirtuin 1 (SIRT1), platelet-activating factor (PAF), proprotein convertase subtilisin/kexin type 9 (PCSK9) and others. Finally, we provide an overview and discussion of the therapeutic potential of ginkgolide B and highlight the future perspective of developing ginkgolide B as an effective therapeutic agent for treating atherosclerosis.
Collapse
Affiliation(s)
- Weile Ye
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jiaojiao Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peter J. Little
- Pharmacy Australia Centre of Excellence, School of Pharmacy, University of Queensland, Woolloongabba QLD 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya QLD 4575, Australia
| | - Jiami Zou
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhihua Zheng
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Jing Lu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Yanjun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Hao Liu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Dongmei Zhang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Peiqing Liu
- National-Local Joint Engineering Lab of Druggability and New Drugs Evaluation, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-sen University, Guangzhou 510006, China
| | - Suowen Xu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Institute of Endocrine and Metabolic Diseases, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Wencai Ye
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zhiping Liu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou 510632, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
Fu Y, Jia Q, Ren M, Bie H, Zhang X, Zhang Q, He S, Li C, Zhou H, Wang Y, Gan X, Tao Z, Chen X, Jia E. Circular RNA ZBTB46 depletion alleviates the progression of Atherosclerosis by regulating the ubiquitination and degradation of hnRNPA2B1 via the AKT/mTOR pathway. Immun Ageing 2023; 20:66. [PMID: 37990246 PMCID: PMC10662463 DOI: 10.1186/s12979-023-00386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/31/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND CircZBTB46 has been identified as being associated with the risk of coronary artery disease (CAD) and has the potential to be a diagnostic biomarker for CAD. However, the specific function and detailed mechanism of circZBTB46 in CAD are still unknown. METHODS The expression levels and properties of circRNAs were examined using qRT‒PCR, RNA FISH, and subcellular localization analysis. ApoE-/- mice fed a high-fat diet were used to establish an atherosclerosis model. HE, Masson, and Oil Red O staining were used to analyze the morphological features of the plaque. CCK-8, Transwell, and wound healing assays, and flow cytometric analysis were used to evaluate cell proliferation, migration, and apoptosis. RNA pull-down, silver staining, mass spectrometry analysis, and RNA-binding protein immunoprecipitation (RIP) were performed to identify the interacting proteins of circZBTB46. RESULTS CircZBTB46 is highly conserved and is significantly upregulated in atherosclerotic lesions. Functional studies revealed that knockdown of circZBTB46 significantly decreased the atherosclerotic plaque area, attenuating the progression of atherosclerosis. In addition, silencing circZBTB46 inhibited cell proliferation and migration and induced apoptosis. Mechanistically, circZBTB46 physically interacted with hnRNPA2B1 and suppressed its degradation, thereby regulating cell functions and the formation of aortic atherosclerotic plaques. Additionally, circZBTB46 was identified as a functional mediator of PTEN-dependent regulation of the AKT/mTOR signaling pathway and thus affected cell proliferation and migration and induced apoptosis. CONCLUSION Our study provides the first direct evidence that circZBTB46 functions as an important regulatory molecule for CAD progression by interacting with hnRNPA2B1 and regulating the PTEN/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Yahong Fu
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Qiaowei Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Mengmeng Ren
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Hengjie Bie
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Qian Zhang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Shu He
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Chengcheng Li
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Hanxiao Zhou
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Yanjun Wang
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Xiongkang Gan
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China
| | - Zhengxian Tao
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China.
| | - Xiumei Chen
- Department of Geriatric, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China.
- Department of Cardiovascular Medicine, Liyang People's Hospital, 213300, Changzhou, Jiangsu Province, China.
| | - Enzhi Jia
- Department of Cardiovascular Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029, Nanjing, Jiangsu Province, China.
| |
Collapse
|
19
|
Pakhomov NV, Kostyunina DS, Macori G, Dillon E, Brady T, Sundaramoorthy G, Connolly C, Blanco A, Fanning S, Brennan L, McLoughlin P, Baugh JA. High-Soluble-Fiber Diet Attenuates Hypoxia-Induced Vascular Remodeling and the Development of Hypoxic Pulmonary Hypertension. Hypertension 2023; 80:2372-2385. [PMID: 37851762 DOI: 10.1161/hypertensionaha.123.20914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 08/10/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Hypoxic pulmonary hypertension is a difficult disease to manage that is characterized by sustained elevation of pulmonary vascular resistance and pulmonary artery pressure due to vasoconstriction, perivascular inflammation, and vascular remodeling. Consumption of soluble-fiber is associated with lower systemic blood pressure, but little is known about its ability to affect the pulmonary circulation. METHODS Mice were fed either a low- or high-soluble-fiber diet (0% or 16.9% inulin) and then exposed to hypoxia (FiO2, 0.10) for 21 days to induce pulmonary hypertension. The impact of diet on right ventricular systolic pressure and pulmonary vascular resistance was determined in vivo or in ex vivo isolated lungs, respectively, and correlated with alterations in the composition of the gut microbiome, plasma metabolome, pulmonary inflammatory cell phenotype, and lung proteome. RESULTS High-soluble-fiber diet increased the abundance of short-chain fatty acid-producing bacteria, with parallel increases in plasma propionate levels, and reduced the abundance of disease-related bacterial genera such as Staphylococcus, Clostridioides, and Streptococcus in hypoxic mice with parallel decreases in plasma levels of p-cresol sulfate. High-soluble-fiber diet decreased hypoxia-induced elevations of right ventricular systolic pressure and pulmonary vascular resistance. These changes were associated with reduced proportions of interstitial macrophages, dendritic cells, and nonclassical monocytes. Whole-lung proteomics revealed proteins and molecular pathways that may explain the effect of soluble-fiber supplementation. CONCLUSIONS This study demonstrates for the first time that a high-soluble-fiber diet attenuates hypoxia-induced pulmonary vascular remodeling and the development of pulmonary hypertension in a mouse model of hypoxic pulmonary hypertension and highlights diet-derived metabolites that may have an immuno-modulatory role in the lung.
Collapse
Affiliation(s)
- Nikolai V Pakhomov
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.V.P., D.S.K., T.B., P.M., J.A.B.)
| | - Daria S Kostyunina
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.V.P., D.S.K., T.B., P.M., J.A.B.)
| | - Guerrino Macori
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Ireland (G.M., S.F.)
| | - Eugene Dillon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (E.D., A.B.)
| | - Tara Brady
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.V.P., D.S.K., T.B., P.M., J.A.B.)
| | - Geetha Sundaramoorthy
- School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (G.S., C.C., L.B.)
| | - Claire Connolly
- School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (G.S., C.C., L.B.)
| | - Alfonso Blanco
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (E.D., A.B.)
| | - Séamus Fanning
- School of Public Health, Physiotherapy & Sports Science, University College Dublin, Ireland (G.M., S.F.)
| | - Lorraine Brennan
- School of Agriculture and Food Science, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (G.S., C.C., L.B.)
| | - Paul McLoughlin
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.V.P., D.S.K., T.B., P.M., J.A.B.)
| | - John A Baugh
- School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland (N.V.P., D.S.K., T.B., P.M., J.A.B.)
| |
Collapse
|
20
|
He Z, Luo J, Lv M, Li Q, Ke W, Niu X, Zhang Z. Characteristics and evaluation of atherosclerotic plaques: an overview of state-of-the-art techniques. Front Neurol 2023; 14:1159288. [PMID: 37900593 PMCID: PMC10603250 DOI: 10.3389/fneur.2023.1159288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/28/2023] [Indexed: 10/31/2023] Open
Abstract
Atherosclerosis is an important cause of cerebrovascular and cardiovascular disease (CVD). Lipid infiltration, inflammation, and altered vascular stress are the critical mechanisms that cause atherosclerotic plaque formation. The hallmarks of the progression of atherosclerosis include plaque ulceration, rupture, neovascularization, and intraplaque hemorrhage, all of which are closely associated with the occurrence of CVD. Assessing the severity of atherosclerosis and plaque vulnerability is crucial for the prevention and treatment of CVD. Integrating imaging techniques for evaluating the characteristics of atherosclerotic plaques with computer simulations yields insights into plaque inflammation levels, spatial morphology, and intravascular stress distribution, resulting in a more realistic and accurate estimation of plaque state. Here, we review the characteristics and advancing techniques used to analyze intracranial and extracranial atherosclerotic plaques to provide a comprehensive understanding of atheroma.
Collapse
Affiliation(s)
- Zhiwei He
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaying Luo
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengna Lv
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qingwen Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Ke
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xuan Niu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhaohui Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Mannion AJ, Holmgren L. Nuclear mechanosensing of the aortic endothelium in health and disease. Dis Model Mech 2023; 16:dmm050361. [PMID: 37909406 PMCID: PMC10629673 DOI: 10.1242/dmm.050361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023] Open
Abstract
The endothelium, the monolayer of endothelial cells that line blood vessels, is exposed to a number of mechanical forces, including frictional shear flow, pulsatile stretching and changes in stiffness influenced by extracellular matrix composition. These forces are sensed by mechanosensors that facilitate their transduction to drive appropriate adaptation of the endothelium to maintain vascular homeostasis. In the aorta, the unique architecture of the vessel gives rise to changes in the fluid dynamics, which, in turn, shape cellular morphology, nuclear architecture, chromatin dynamics and gene regulation. In this Review, we discuss recent work focusing on how differential mechanical forces exerted on endothelial cells are sensed and transduced to influence their form and function in giving rise to spatial variation to the endothelium of the aorta. We will also discuss recent developments in understanding how nuclear mechanosensing is implicated in diseases of the aorta.
Collapse
Affiliation(s)
- Aarren J. Mannion
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| | - Lars Holmgren
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 171 64, Sweden
| |
Collapse
|
22
|
Quaye LNK, Dalzell CE, Deloukas P, Smith AJP. The Genetics of Coronary Artery Disease: A Vascular Perspective. Cells 2023; 12:2232. [PMID: 37759455 PMCID: PMC10527262 DOI: 10.3390/cells12182232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified a large number of genetic loci for coronary artery disease (CAD), with many located close to genes associated with traditional CAD risk pathways, such as lipid metabolism and inflammation. It is becoming evident with recent CAD GWAS meta-analyses that vascular pathways are also highly enriched and present an opportunity for novel therapeutics. This review examines GWAS-enriched vascular gene loci, the pathways involved and their potential role in CAD pathogenesis. The functionality of variants is explored from expression quantitative trait loci, massively parallel reporter assays and CRISPR-based gene-editing tools. We discuss how this research may lead to novel therapeutic tools to treat cardiovascular disorders.
Collapse
Affiliation(s)
| | | | - Panos Deloukas
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; (L.N.K.Q.); (C.E.D.); (A.J.P.S.)
| | | |
Collapse
|
23
|
Hiraoka Y, Matsumura M, Kakei Y, Takeda D, Shigeoka M, Kimoto A, Hasegawa T, Akashi M. Expression of JCAD and EGFR in Perineurial Cell-Cell Junctions of Human Inferior Alveolar Nerve. J Histochem Cytochem 2023; 71:321-332. [PMID: 37309668 PMCID: PMC10315992 DOI: 10.1369/00221554231182193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/24/2023] [Indexed: 06/14/2023] Open
Abstract
Although perineurium has an important role in maintenance of the blood-nerve barrier, understanding of perineurial cell-cell junctions is insufficient. The aim of this study was to analyze the expression of junctional cadherin 5 associated (JCAD) and epidermal growth factor receptor (EGFR) in the perineurium of the human inferior alveolar nerve (IAN) and investigate their roles in perineurial cell-cell junctions using cultured human perineurial cells (HPNCs). In human IAN, JCAD was strongly expressed in endoneurial microvessels. JCAD and EGFR were expressed at various intensities in the perineurium. In HPNCs, JCAD was clearly expressed at cell-cell junctions. EGFR inhibitor AG1478 treatment changed cell morphology and the ratio of JCAD-positive cell-cell contacts of HPNCs. Therefore, JCAD and EGFR may have a role in the regulation of perineurial cell-cell junctions.
Collapse
Affiliation(s)
- Yujiro Hiraoka
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Megumi Matsumura
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasumasa Kakei
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Daisuke Takeda
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Manabu Shigeoka
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
- Division of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Akira Kimoto
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takumi Hasegawa
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Department of Oral and Maxillofacial Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
24
|
Guzik TJ, Channon KM. JCAD: a new GWAS target to reduce residual cardiovascular risk? Eur Heart J 2023; 44:1834-1836. [PMID: 36514298 PMCID: PMC10200022 DOI: 10.1093/eurheartj/ehac708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Tomasz J Guzik
- Centre for Cardiovascular Sciences, British Heart Foundation Centre of Research Excellence, Queen’s Medical Research Institute, Edinburgh Royal Infirmary, The University of Edinburgh, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
- Department of Medicine, Jagiellonian University, Collegium Medicum, Krakow, Poland
| | - Keith M Channon
- Radcliffe Department of Medicine, British Heart Foundation Centre of Research Excellence, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
25
|
Liberale L, Puspitasari YM, Ministrini S, Akhmedov A, Kraler S, Bonetti NR, Beer G, Vukolic A, Bongiovanni D, Han J, Kirmes K, Bernlochner I, Pelisek J, Beer JH, Jin ZG, Pedicino D, Liuzzo G, Stellos K, Montecucco F, Crea F, Lüscher TF, Camici GG. JCAD promotes arterial thrombosis through PI3K/Akt modulation: a translational study. Eur Heart J 2023; 44:1818-1833. [PMID: 36469488 PMCID: PMC10200023 DOI: 10.1093/eurheartj/ehac641] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 12/11/2022] Open
Abstract
AIMS Variants of the junctional cadherin 5 associated (JCAD) locus associate with acute coronary syndromes. JCAD promotes experimental atherosclerosis through the large tumor suppressor kinase 2 (LATS2)/Hippo pathway. This study investigates the role of JCAD in arterial thrombosis. METHODS AND RESULTS JCAD knockout (Jcad-/-) mice underwent photochemically induced endothelial injury to trigger arterial thrombosis. Primary human aortic endothelial cells (HAECs) treated with JCAD small interfering RNA (siJCAD), LATS2 small interfering RNA (siLATS2) or control siRNA (siSCR) were employed for in vitro assays. Plasma JCAD was measured in patients with chronic coronary syndrome or ST-elevation myocardial infarction (STEMI). Jcad-/- mice displayed reduced thrombogenicity as reflected by delayed time to carotid occlusion. Mechanisms include reduced activation of the coagulation cascade [reduced tissue factor (TF) expression and activity] and increased fibrinolysis [higher thrombus embolization episodes and D-dimer levels, reduced vascular plasminogen activator inhibitor (PAI)-1 expression]. In vitro, JCAD silencing inhibited TF and PAI-1 expression in HAECs. JCAD-silenced HAECs (siJCAD) displayed increased levels of LATS2 kinase. Yet, double JCAD and LATS2 silencing did not restore the control phenotype. si-JCAD HAECs showed increased levels of phosphoinositide 3-kinases (PI3K)/ proteinkinase B (Akt) activation, known to downregulate procoagulant expression. The PI3K/Akt pathway inhibitor-wortmannin-prevented the effect of JCAD silencing on TF and PAI-1, indicating a causative role. Also, co-immunoprecipitation unveiled a direct interaction between JCAD and Akt. Confirming in vitro findings, PI3K/Akt and P-yes-associated protein levels were higher in Jcad-/- animals. Lastly, as compared with chronic coronary syndrome, STEMI patients showed higher plasma JCAD, which notably correlated positively with both TF and PAI-1 levels. CONCLUSIONS JCAD promotes arterial thrombosis by modulating coagulation and fibrinolysis. Herein, reported translational data suggest JCAD as a potential therapeutic target for atherothrombosis.
Collapse
Affiliation(s)
- Luca Liberale
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine,
University of Genoa, 6 viale Benedetto XV, 16132
Genoa, Italy
| | - Yustina M Puspitasari
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Stefano Ministrini
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Internal Medicine, Angiology and Atherosclerosis, Department of Medicine
and Surgery, University of Perugia, piazzale Gambuli 1, 06124
Perugia, Italy
| | - Alexander Akhmedov
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Simon Kraler
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Nicole R Bonetti
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Cardiology, University Heart Center, University Hospital
Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
| | - Georgia Beer
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Ana Vukolic
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
| | - Dario Bongiovanni
- Division of Cardiology, Cardiocentro Ticino Institute, Ente Ospedaliero
Cantonale (EOC), Lugano, Switzerland
- Department of Biomedical Sciences, Humanitas University, Pieve
Emanuele, Milan, Italy
- Department of Cardiovascular Medicine, IRCCS Humanitas Research
Hospital, Rozzano, Milan, Italy
- Department of Internal Medicine I, School of Medicine, University Hospital
rechts der Isar, Technical University of Munich,
Munich, Germany
| | - Jiaying Han
- Department of Internal Medicine I, School of Medicine, University Hospital
rechts der Isar, Technical University of Munich,
Munich, Germany
| | - Kilian Kirmes
- Department of Internal Medicine I, School of Medicine, University Hospital
rechts der Isar, Technical University of Munich,
Munich, Germany
| | - Isabell Bernlochner
- Department of Internal Medicine I, School of Medicine, University Hospital
rechts der Isar, Technical University of Munich,
Munich, Germany
| | - Jaroslav Pelisek
- Department of Vascular Surgery, University Hospital Zurich,
Zurich, Switzerland
| | - Jürg H Beer
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Internal Medicine, Cantonal Hospital of Baden,
Im Ergel 1, 5404 Baden, Switzerland
| | - Zheng-Gen Jin
- Department of Medicine, Aab Cardiovascular Research Institute, University
of Rochester School of Medicine and Dentistry, Rochester,
NY, USA
| | - Daniela Pedicino
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario
A. Gemelli-IRCCS, Largo A. Gemelli 8, Rome 00168,
Italy
- Cardiovascular and Pulmonary Sciences, Catholic University,
Largo G. Vito, 1 - 00168 Rome, Italy
| | - Giovanna Liuzzo
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario
A. Gemelli-IRCCS, Largo A. Gemelli 8, Rome 00168,
Italy
- Cardiovascular and Pulmonary Sciences, Catholic University,
Largo G. Vito, 1 - 00168 Rome, Italy
| | - Konstantinos Stellos
- Biosciences Institute, Vascular Biology and Medicine Theme, Faculty of
Medical Sciences, Newcastle University, Newcastle Upon
Tyne, UK
- Department of Cardiology, Freeman Hospital, Newcastle upon Tyne Hospitals
NHS Foundation Trust, Newcastle Upon Tyne,
UK
- Department of Cardiovascular Research, European Center for Angioscience
(ECAS), Medical Faculty Mannheim, Heidelberg University,
Mannheim, Germany
- German Centre for Cardiovascular Research (Deutsches Zentrum für
Herz-Kreislauf-Forschung, DZHK), Heidelberg/Mannheim Partner Site,
Mannheim, Germany
- Department of Cardiology, University Hospital Mannheim,
Mannheim, Germany
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine,
University of Genoa, 6 viale Benedetto XV, 16132
Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genoa—Italian Cardiovascular
Network, L.go R. Benzi 10, 16132 Genoa, Italy
| | - Filippo Crea
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario
A. Gemelli-IRCCS, Largo A. Gemelli 8, Rome 00168,
Italy
- Cardiovascular and Pulmonary Sciences, Catholic University,
Largo G. Vito, 1 - 00168 Rome, Italy
| | - Thomas F Lüscher
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Heart Division, Royal Brompton and Harefield Hospitals and Nationl Heart
and Lung Institute, Imperial College, London,
United Kingdom
| | - Giovanni G Camici
- Center for Molecular Cardiology, Schlieren Campus, University of
Zurich, Wagistrasse 12, 8952 Schlieren, Switzerland
- Department of Research and Education, University Hospital
Zurich, Rämistrasse 100, 8092 Zurich, Switzerland
| |
Collapse
|
26
|
Bakr S, Brennan K, Mukherjee P, Argemi J, Hernaez M, Gevaert O. Identifying key multifunctional components shared by critical cancer and normal liver pathways via SparseGMM. CELL REPORTS METHODS 2023; 3:100392. [PMID: 36814838 PMCID: PMC9939431 DOI: 10.1016/j.crmeth.2022.100392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/16/2022] [Accepted: 12/21/2022] [Indexed: 01/19/2023]
Abstract
Despite the abundance of multimodal data, suitable statistical models that can improve our understanding of diseases with genetic underpinnings are challenging to develop. Here, we present SparseGMM, a statistical approach for gene regulatory network discovery. SparseGMM uses latent variable modeling with sparsity constraints to learn Gaussian mixtures from multiomic data. By combining coexpression patterns with a Bayesian framework, SparseGMM quantitatively measures confidence in regulators and uncertainty in target gene assignment by computing gene entropy. We apply SparseGMM to liver cancer and normal liver tissue data and evaluate discovered gene modules in an independent single-cell RNA sequencing (scRNA-seq) dataset. SparseGMM identifies PROCR as a regulator of angiogenesis and PDCD1LG2 and HNF4A as regulators of immune response and blood coagulation in cancer. Furthermore, we show that more genes have significantly higher entropy in cancer compared with normal liver. Among high-entropy genes are key multifunctional components shared by critical pathways, including p53 and estrogen signaling.
Collapse
Affiliation(s)
- Shaimaa Bakr
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Kevin Brennan
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Pritam Mukherjee
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Josepmaria Argemi
- Liver Unit, Clinica Universidad de Navarra, Hepatology Program, Center for Applied Medical Research, 31008 Pamplona, Navarra, Spain
| | - Mikel Hernaez
- Center for Applied Medical Research, University of Navarra, 31009 Pamplona, Navarra, Spain
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Wu X, Liu H, Brooks A, Xu S, Luo J, Steiner R, Mickelsen DM, Moravec CS, Jeffrey AD, Small EM, Jin ZG. SIRT6 Mitigates Heart Failure With Preserved Ejection Fraction in Diabetes. Circ Res 2022; 131:926-943. [PMID: 36278398 PMCID: PMC9669223 DOI: 10.1161/circresaha.121.318988] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 10/13/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a growing health problem without effective therapies. Epidemiological studies indicate that diabetes is a strong risk factor for HFpEF, and about 45% of patients with HFpEF are suffering from diabetes, yet the underlying mechanisms remain elusive. METHODS Using a combination of echocardiography, hemodynamics, RNA-sequencing, molecular biology, in vitro and in vivo approaches, we investigated the roles of SIRT6 (sirtuin 6) in regulation of endothelial fatty acid (FA) transport and HFpEF in diabetes. RESULTS We first observed that endothelial SIRT6 expression was markedly diminished in cardiac tissues from heart failure patients with diabetes. We then established an experimental mouse model of HFpEF in diabetes induced by a combination of the long-term high-fat diet feeding and a low-dose streptozocin challenge. We also generated a unique humanized SIRT6 transgenic mouse model, in which a single copy of human SIRT6 transgene was engineered at mouse Rosa26 locus and conditionally induced with the Cre-loxP technology. We found that genetically restoring endothelial SIRT6 expression in the diabetic mice ameliorated diastolic dysfunction concurrently with decreased cardiac lipid accumulation. SIRT6 gain- or loss-of-function studies showed that SIRT6 downregulated endothelial FA uptake. Mechanistically, SIRT6 suppressed endothelial expression of PPARγ through SIRT6-dependent deacetylation of histone H3 lysine 9 around PPARγ promoter region; and PPARγ reduction mediated SIRT6-dependent inhibition of endothelial FA uptake. Importantly, oral administration of small molecule SIRT6 activator MDL-800 to diabetic mice mitigated cardiac lipid accumulation and diastolic dysfunction. CONCLUSIONS The impairment of endothelial SIRT6 expression links diabetes to HFpEF through the alteration of FA transport across the endothelial barrier. Genetic and pharmacological strategies that restored endothelial SIRT6 function in mice with diabetes alleviated experimental HFpEF by limiting FA uptake and improving cardiac metabolism, thus warranting further clinical evaluation.
Collapse
Affiliation(s)
- Xiaoqian Wu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Science, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Huan Liu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Alan Brooks
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Suowen Xu
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jinque Luo
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Rebbeca Steiner
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Deanne M. Mickelsen
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Christine S. Moravec
- Department of Cardiovascular & Metabolic Sciences, Cleveland Clinic, Cleveland, OH, USA
| | - Alexis D. Jeffrey
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Eric M. Small
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Zheng Gen Jin
- Aab Cardiovascular Research Institute, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| |
Collapse
|
28
|
Zaharija B, Odorčić M, Hart A, Samardžija B, Marreiros R, Prikulis I, Juković M, Hyde TM, Kleinman JE, Korth C, Bradshaw NJ. TRIOBP-1 Protein Aggregation Exists in Both Major Depressive Disorder and Schizophrenia, and Can Occur through Two Distinct Regions of the Protein. Int J Mol Sci 2022; 23:ijms231911048. [PMID: 36232351 PMCID: PMC9569677 DOI: 10.3390/ijms231911048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/14/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022] Open
Abstract
The presence of proteinopathy, the accumulation of specific proteins as aggregates in neurons, is an emerging aspect of the pathology of schizophrenia and other major mental illnesses. Among the initial proteins implicated in forming such aggregates in these conditions is Trio and F-actin Binding Protein isoform 1 (TRIOBP-1), a ubiquitously expressed protein involved in the stabilization of the actin cytoskeleton. Here we investigate the insolubility of TRIOBP-1, as an indicator of aggregation, in brain samples from 25 schizophrenia patients, 25 major depressive disorder patients and 50 control individuals (anterior cingulate cortex, BA23). Strikingly, insoluble TRIOBP-1 is considerably more prevalent in both of these conditions than in controls, further implicating TRIOBP-1 aggregation in schizophrenia and indicating a role in major depressive disorder. These results were only seen using a high stringency insolubility assay (previously used to study DISC1 and other proteins), but not a lower stringency assay that would be expected to also detect functional, actin-bound TRIOBP-1. Previously, we have also determined that a region of 25 amino acids in the center of this protein is critical for its ability to form aggregates. Here we attempt to refine this further, through the expression of various truncated mutant TRIOBP-1 vectors in neuroblastoma cells and examining their aggregation. In this way, it was possible to narrow down the aggregation-critical region of TRIOBP-1 to just 8 amino acids (333–340 of the 652 amino acid-long TRIOBP-1). Surprisingly our results suggested that a second section of TRIOBP-1 is also capable of independently inducing aggregation: the optionally expressed 59 amino acids at the extreme N-terminus of the protein. As a result, the 597 amino acid long version of TRIOBP-1 (also referred to as “Tara” or “TAP68”) has reduced potential to form aggregates. The presence of insoluble TRIOBP-1 in brain samples from patients, combined with insight into the mechanism of aggregation of TRIOBP-1 and generation of an aggregation-resistant mutant TRIOBP-1 that lacks both these regions, will be of significant use in further investigating the mechanism and consequences of TRIOBP-1 aggregation in major mental illness.
Collapse
Affiliation(s)
- Beti Zaharija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Maja Odorčić
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Anja Hart
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Bobana Samardžija
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Rita Marreiros
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Ingrid Prikulis
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Maja Juković
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Baltimore, MD 21295, USA
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, John Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Baltimore, MD 21295, USA
- Department of Psychiatry and Behavioral Sciences, John Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: (C.K.); (N.J.B.)
| | - Nicholas J. Bradshaw
- Department of Biotechnology, University of Rijeka, 51000 Rijeka, Croatia
- Department of Neuropathology, Heinrich Heine University, 40225 Düsseldorf, Germany
- Correspondence: (C.K.); (N.J.B.)
| |
Collapse
|
29
|
Li R, Zhang H, Tang F, Duan C, Liu D, Wu N, Zhang Y, Wang L, Mo X. Coronary artery disease risk factors affected by RNA modification-related genetic variants. Front Cardiovasc Med 2022; 9:985121. [PMID: 36204584 PMCID: PMC9530202 DOI: 10.3389/fcvm.2022.985121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundSingle nucleotide polymorphisms that affect RNA modification (RNAm-SNPs) may have functional roles in coronary artery disease (CAD). The aim of this study was to identify RNAm-SNPs in CAD susceptibility loci and highlight potential risk factors.MethodsCAD-associated RNAm-SNPs were identified in the CARDIoGRAMplusC4D and UK Biobank genome-wide association studies. Gene expression and circulating protein levels affected by the RNAm-SNPs were identified by QTL analyses. Cell experiments and Mendelian randomization (MR) methods were applied to test whether the gene expression levels were associated with CAD.ResultsWe identified 81 RNAm-SNPs that were associated with CAD or acute myocardial infarction (AMI), including m6A-, m1A-, m5C-, A-to-I- and m7G-related SNPs. The m6A-SNPs rs3739998 in JCAD, rs148172130 in RPL14 and rs12190287 in TCF21 and the m7G-SNP rs186643756 in PVT1 were genome-wide significant. The RNAm-SNPs were associated with gene expression (e.g., MRAS, DHX36, TCF21, JCAD and SH2B3), and the expression levels were associated with CAD. Differential m6A methylation and differential expression in FTO-overexpressing human aorta smooth muscle cells and peripheral blood mononuclear cells of CAD patients and controls were detected. The RNAm-SNPs were associated with circulating levels of proteins with specific biological functions, such as blood coagulation, and the proteins (e.g., cardiotrophin-1) were confirmed to be associated with CAD and AMI in MR analyses.ConclusionThe present study identified RNAm-SNPs in CAD susceptibility genes, gene expression and circulating proteins as risk factors for CAD and suggested that RNA modification may play a role in the pathogenesis of CAD.
Collapse
Affiliation(s)
- Ru Li
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Fan Tang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Chengcheng Duan
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Dan Liu
- Key Laboratory of Cardiovascular Epidemiology, State Key Laboratory of Cardiovascular Disease, Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Naqiong Wu
- Cardiometabolic Center, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
| | - Laiyuan Wang
- Key Laboratory of Cardiovascular Epidemiology, State Key Laboratory of Cardiovascular Disease, Department of Epidemiology, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Laiyuan Wang
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Department of Epidemiology, School of Public Health, Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Soochow University, Suzhou, China
- *Correspondence: Xingbo Mo
| |
Collapse
|
30
|
Ma X, Su M, He Q, Zhang Z, Zhang F, Liu Z, Sun L, Weng J, Xu S. PHACTR1, a coronary artery disease risk gene, mediates endothelial dysfunction. Front Immunol 2022; 13:958677. [PMID: 36091033 PMCID: PMC9457086 DOI: 10.3389/fimmu.2022.958677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/01/2022] [Indexed: 01/13/2023] Open
Abstract
Genome-wide association studies (GWAS) have recently identified phosphatase and actin regulator-1 (PHACTR1) as a critical risk gene associated with polyvascular diseases. However, it remains largely unclear how PHACTR1 is involved in endothelial dysfunction. Here, by mining published datasets of human stable and vulnerable/ruptured plaque tissues, we observed upregulated expression of PHACTR1 in vulnerable/ruptured plaques. Congruent with these data, we demonstrated increased Phactr1 gene expression in aortic endothelium from ApoE-/- mice fed a western type diet compared with that in normal C57BL/6J mice. Relevantly, PHACTR1 gene expression was upregulated by pro-inflammatory and pro-atherogenic stimuli, including TNF-α, IL-1β and oxidized LDL (oxLDL). By employing next-generation RNA sequencing, we demonstrate that PHACTR1 overexpression disrupts pathways associated with endothelial homeostasis. Cell biological studies unravel that PHACTR1 mediates endothelial inflammation and monocyte adhesion by activating NF-κB dependent intercellular adhesion molecule 1 (ICAM1) and vascular cell adhesion molecule 1 (VCAM1) expression. In addition, overexpression of PHACTR1 also reduces the generation of nitric oxide (NO) by inhibiting Akt/eNOS activation. In-house compound screening of vasoprotective drugs identifies several drugs, including lipid-lowering statins, decreases PHACTR1 gene expression. However, PHACTR1 gene expression was not affected by another lipid-lowering drug-fenofibrate. We also performed a proteomic study to reveal PHACTR1 interacting proteins and validated that PHACTR1 can interact with heat shock protein A8 (HSPA8) which was reported to be associated with coronary artery disease and eNOS degradation. Further studies are warranted to confirm the precise mechanism of PHACTR1 in driving endothelial dysfunction. In conclusion, by using systems biology approach and molecular validation, we disclose the deleterious effects of PHACTR1 on endothelial function by inducing endothelial inflammation and reducing NO production, highlighting the potential to prevent endothelial dysfunction and atherosclerosis by targeting PHACTR1 expression. The precise role of endothelial cell PHACTR1 in polyvascular diseases remains to be validated in diseased conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Suowen Xu
- *Correspondence: Suowen Xu, ; Jianping Weng,
| |
Collapse
|
31
|
Zheng A, Chen Q, Zhang L. The Hippo-YAP pathway in various cardiovascular diseases: Focusing on the inflammatory response. Front Immunol 2022; 13:971416. [PMID: 36059522 PMCID: PMC9433876 DOI: 10.3389/fimmu.2022.971416] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/02/2022] [Indexed: 11/25/2022] Open
Abstract
The Hippo pathway was initially discovered in Drosophila melanogaster and mammals as a key regulator of tissue growth both in physiological and pathological states. Numerous studies depict the vital role of the Hippo pathway in cardiovascular development, heart regeneration, organ size and vascular remodeling through the regulation of YAP (yes-associated protein) translocation. Recently, an increasing number of studies have focused on the Hippo-YAP pathway in inflammation and immunology. Although the Hippo-YAP pathway has been revealed to play controversial roles in different contexts and cell types in the cardiovascular system, the mechanisms regulating tissue inflammation and the immune response remain to be clarified. In this review, we summarize findings from the past decade on the function and mechanism of the Hippo-YAP pathway in CVDs (cardiovascular diseases) such as myocardial infarction, cardiomyopathy and atherosclerosis. In particular, we emphasize the role of the Hippo-YAP pathway in regulating inflammatory cell infiltration and inflammatory cytokine activation.
Collapse
Affiliation(s)
| | | | - Li Zhang
- *Correspondence: Li Zhang, ; Qishan Chen,
| |
Collapse
|
32
|
Frąk W, Wojtasińska A, Lisińska W, Młynarska E, Franczyk B, Rysz J. Pathophysiology of Cardiovascular Diseases: New Insights into Molecular Mechanisms of Atherosclerosis, Arterial Hypertension, and Coronary Artery Disease. Biomedicines 2022; 10:biomedicines10081938. [PMID: 36009488 PMCID: PMC9405799 DOI: 10.3390/biomedicines10081938] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases (CVDs) are disorders associated with the heart and circulatory system. Atherosclerosis is its major underlying cause. CVDs are chronic and can remain hidden for a long time. Moreover, CVDs are the leading cause of global morbidity and mortality, thus creating a major public health concern. This review summarizes the available information on the pathophysiological implications of CVDs, focusing on coronary artery disease along with atherosclerosis as its major cause and arterial hypertension. We discuss the endothelium dysfunction, inflammatory factors, and oxidation associated with atherosclerosis. Mechanisms such as dysfunction of the endothelium and inflammation, which have been identified as critical pathways for development of coronary artery disease, have become easier to diagnose in recent years. Relatively recently, evidence has been found indicating that interactions of the molecular and cellular elements such as matrix metalloproteinases, elements of the immune system, and oxidative stress are involved in the pathophysiology of arterial hypertension. Many studies have revealed several important inflammatory and genetic risk factors associated with CVDs. However, further investigation is crucial to improve our knowledge of CVDs progression and, more importantly, accelerate basic research to improve our understanding of the mechanism of pathophysiology.
Collapse
|
33
|
Jimenez Y, Paulsen C, Turner E, Iturra S, Cuevas O, Lay-son G, Repetto GM, Rojas M, Calderon JF. Exome Sequencing Identifies Genetic Variants Associated with Extreme Manifestations of the Cardiovascular Phenotype in Marfan Syndrome. Genes (Basel) 2022; 13:genes13061027. [PMID: 35741789 PMCID: PMC9223058 DOI: 10.3390/genes13061027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/06/2022] [Accepted: 06/02/2022] [Indexed: 11/26/2022] Open
Abstract
Marfan Syndrome (MFS) is an autosomal dominant condition caused by variants in the fibrillin-1 (FBN1) gene. Cardinal features of MFS include ectopia lentis (EL), musculoskeletal features and aortic root aneurysm and dissection. Although dissection of the ascending aorta is the main cause of mortality in MFS, the clinical course differs considerably in age of onset and severity, even among individuals who share the same causative variant, suggesting the existence of additional genetic variants that modify the severity of the cardiovascular phenotype in MFS. We recruited MFS patients and classified them into severe (n = 8) or mild aortic phenotype (n = 14) according to age of presentation of the first aorta-related incident. We used Exome Sequencing to identify the genetic variants associated with the severity of aortic manifestations and we performed linkage analysis where suitable. We found five genes associated with severe aortic phenotype and three genes that could be protective for this phenotype in MFS. These genes regulate components of the extracellular matrix, TGFβ pathway and other signaling pathways that are involved in the maintenance of the ECM or angiogenesis. Further studies will be required to understand the functional effect of these variants and explore novel, personalized risk management and, potentially, therapies for these patients.
Collapse
Affiliation(s)
- Yanireth Jimenez
- Doctorado en Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 8320000, Chile; (Y.J.); (M.R.)
| | - Cesar Paulsen
- Servicio de Cirugía Cardiovascular, Instituto Nacional del Tórax, Santiago 7500808, Chile; (C.P.); (E.T.); (S.I.); (O.C.)
| | - Eduardo Turner
- Servicio de Cirugía Cardiovascular, Instituto Nacional del Tórax, Santiago 7500808, Chile; (C.P.); (E.T.); (S.I.); (O.C.)
| | - Sebastian Iturra
- Servicio de Cirugía Cardiovascular, Instituto Nacional del Tórax, Santiago 7500808, Chile; (C.P.); (E.T.); (S.I.); (O.C.)
| | - Oscar Cuevas
- Servicio de Cirugía Cardiovascular, Instituto Nacional del Tórax, Santiago 7500808, Chile; (C.P.); (E.T.); (S.I.); (O.C.)
- Departamento de Cirugía Cardiovascular, Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile
| | - Guillermo Lay-son
- Unidad de Genética, División de Pediatría, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
| | - Gabriela M. Repetto
- Programa de Enfermedades Poco Frecuentes, Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Marcelo Rojas
- Doctorado en Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 8320000, Chile; (Y.J.); (M.R.)
| | - Juan F. Calderon
- Centro de Genética y Genómica, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina Clínica Alemana Universidad del Desarrollo, Santiago 8320000, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago 8320000, Chile
- Correspondence: ; Tel.: +56-22-578-5778
| |
Collapse
|
34
|
Turner AW, Hu SS, Mosquera JV, Ma WF, Hodonsky CJ, Wong D, Auguste G, Song Y, Sol-Church K, Farber E, Kundu S, Kundaje A, Lopez NG, Ma L, Ghosh SKB, Onengut-Gumuscu S, Ashley EA, Quertermous T, Finn AV, Leeper NJ, Kovacic JC, Björkegren JLM, Zang C, Miller CL. Single-nucleus chromatin accessibility profiling highlights regulatory mechanisms of coronary artery disease risk. Nat Genet 2022; 54:804-816. [PMID: 35590109 PMCID: PMC9203933 DOI: 10.1038/s41588-022-01069-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 03/31/2022] [Indexed: 12/24/2022]
Abstract
Coronary artery disease (CAD) is a complex inflammatory disease involving genetic influences across cell types. Genome-wide association studies have identified over 200 loci associated with CAD, where the majority of risk variants reside in noncoding DNA sequences impacting cis-regulatory elements. Here, we applied single-nucleus assay for transposase-accessible chromatin with sequencing to profile 28,316 nuclei across coronary artery segments from 41 patients with varying stages of CAD, which revealed 14 distinct cellular clusters. We mapped ~320,000 accessible sites across all cells, identified cell-type-specific elements and transcription factors, and prioritized functional CAD risk variants. We identified elements in smooth muscle cell transition states (for example, fibromyocytes) and functional variants predicted to alter smooth muscle cell- and macrophage-specific regulation of MRAS (3q22) and LIPA (10q23), respectively. We further nominated key driver transcription factors such as PRDM16 and TBX2. Together, this single-nucleus atlas provides a critical step towards interpreting regulatory mechanisms across the continuum of CAD risk.
Collapse
Affiliation(s)
- Adam W Turner
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Shengen Shawn Hu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Jose Verdezoto Mosquera
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Wei Feng Ma
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Chani J Hodonsky
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Doris Wong
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Gaëlle Auguste
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Yipei Song
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Katia Sol-Church
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
- Genome Analysis & Technology Core, University of Virginia, Charlottesville, VA, USA
| | - Emily Farber
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Genome Sciences Laboratory, University of Virginia, Charlottesville, VA, USA
| | - Soumya Kundu
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Nicolas G Lopez
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Lijiang Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
- Genome Sciences Laboratory, University of Virginia, Charlottesville, VA, USA
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - Euan A Ashley
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA
| | | | - Nicholas J Leeper
- Division of Vascular Surgery, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, New South Wales, Australia
| | - Johan L M Björkegren
- Department of Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Integrated Cardio Metabolic Centre, Department of Medicine, Karolinska Institutet, Huddinge, Sweden
| | - Chongzhi Zang
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| | - Clint L Miller
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA.
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA.
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
35
|
Machine learning approaches to explore digenic inheritance. Trends Genet 2022; 38:1013-1018. [DOI: 10.1016/j.tig.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/16/2022] [Accepted: 04/25/2022] [Indexed: 11/22/2022]
|
36
|
Liu XY, Zhou K, Tian KJ, Yan BJ, Ren Z, Zhou ZX, Xiong WH, Jiang ZS. Hippo: a new hub for atherosclerotic disease. Curr Pharm Des 2022; 28:1321-1328. [DOI: 10.2174/1381612828666220428090540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/15/2022] [Indexed: 11/22/2022]
Abstract
Abstract:
Hippo,an evolutionarily conserved kinase cascade reaction in organisms,can respond to a set of signals,such as mechanical signals and cell metabolism,to maintain cell growth,differentiation,tissue/organ development and homeostasis.In the past ten years,HIPPO has controlled the development of tissues and organs by regulating the process of cell proliferation,especially in the field of cardiac regeneration after myocardial infarction.This suggests that HIPPO signaling is closely linked to cardiovascular disease.Atherosclerosis is the most common disease of the cardiovascular system. It is characterised by chronic inflammation of the vascular wall, mainly involving dysfunction of endothelial cells, smooth muscle cells and macrophages.Oxidized Low density lipoprotein (LDL) damages the barrier function of endothelial cells, which enter the middle membrane of the vascular wall, accelerates the formation of foam cells and promotes the occurrence and development of atherosclerosis.Autophagy is associated with the development of atherosclerosis.However, the mechanism of HIPPO regulation of atherosclerosis has not meant to clarified.In view of the pivotal role of this signaling pathway in maintaining cell growth,proliferation and differentiation,the imbalance of Hippo is related to atherosclerosis and related diseases.In this review,we emphasized Hippo as a hub for regulating atherosclerosis and discussed its potential targets in pathophysiology,human diseases,and related pharmacology.
Collapse
Affiliation(s)
- Xi-Yan Liu
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Kun Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Kai-Jiang Tian
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Bin-Jie Yan
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Zhong Ren
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Zhi-Xiang Zhou
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Wen-Hao Xiong
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| | - Zhi-Sheng Jiang
- Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan Province, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan Province, University of South China, Hengyang, China, 421001
| |
Collapse
|
37
|
Jia M, Li Q, Guo J, Shi W, Zhu L, Huang Y, Li Y, Wang L, Ma S, Zhuang T, Wang X, Pan Q, Wei X, Qin Y, Li X, Jin J, Zhi X, Tang J, Jing Q, Li S, Jiang L, Qu L, Osto E, Zhang J, Wang X, Yu B, Meng D. Deletion of BACH1 Attenuates Atherosclerosis by Reducing Endothelial Inflammation. Circ Res 2022; 130:1038-1055. [PMID: 35196865 DOI: 10.1161/circresaha.121.319540] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The transcription factor BACH1 (BTB and CNC homology 1) suppressed endothelial cells (ECs) proliferation and migration and impaired angiogenesis in the ischemic hindlimbs of adult mice. However, the role and underlying mechanisms of BACH1 in atherosclerosis remain unclear. METHODS Mouse models of atherosclerosis in endothelial cell (EC)-specific-Bach1 knockout mice were used to study the role of BACH1 in the regulation of atherogenesis and the underlying mechanisms. RESULTS Genetic analyses revealed that coronary artery disease-associated risk variant rs2832227 was associated with BACH1 gene expression in carotid plaques from patients. BACH1 was upregulated in ECs of human and mouse atherosclerotic plaques. Endothelial Bach1 deficiency decreased turbulent blood flow- or western diet-induced atherosclerotic lesions, macrophage content in plaques, expression of endothelial adhesion molecules (ICAM1 [intercellular cell adhesion molecule-1] and VCAM1 [vascular cell adhesion molecule-1]), and reduced plasma TNF-α (tumor necrosis factor-α) and IL-1β levels in atherosclerotic mice. BACH1 deletion or knockdown inhibited monocyte-endothelial adhesion and reduced oscillatory shear stress or TNF-α-mediated induction of endothelial adhesion molecules and/or proinflammatory cytokines in mouse ECs, human umbilical vein ECs, and human aortic ECs. Mechanistic studies showed that upon oscillatory shear stress or TNF-α stimulation, BACH1 and YAP (yes-associated protein) were induced and translocated into the nucleus in ECs. BACH1 upregulated YAP expression by binding to the YAP promoter. BACH1 formed a complex with YAP inducing the transcription of adhesion molecules. YAP overexpression in ECs counteracted the antiatherosclerotic effect mediated by Bach1-deletion in mice. Rosuvastatin inhibited BACH1 expression by upregulating microRNA let-7a in ECs, and decreased Bach1 expression in the vascular endothelium of hyperlipidemic mice. BACH1 was colocalized with YAP, and the expression of BACH1 was positively correlated with YAP and proinflammatory genes, as well as adhesion molecules in human atherosclerotic plaques. CONCLUSIONS These data identify BACH1 as a mechanosensor of hemodynamic stress and reveal that the BACH1-YAP transcriptional network is essential to vascular inflammation and atherogenesis. BACH1 shows potential as a novel therapeutic target in atherosclerosis.
Collapse
Affiliation(s)
- Mengping Jia
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Qinhan Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Jieyu Guo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Weihao Shi
- Vascular Service, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China. (W.S., L.Z., Y.H., B.Y.)
| | - Lei Zhu
- Vascular Service, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China. (W.S., L.Z., Y.H., B.Y.)
| | - Yijun Huang
- Vascular Service, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China. (W.S., L.Z., Y.H., B.Y.)
| | - Yongbo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, China (L.W.)
| | - Siyu Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Tao Zhuang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Xiaoqun Wang
- Department of Cardiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China (Xiaoqun Wang.)
| | - Qi Pan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Xiangxiang Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Yue Qin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Xiaobo Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Jiayu Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Jingdong Tang
- Department of General Surgery, Shanghai Pudong Hospital, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J.T., B.Y.)
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Innovation Center for Intervention of Chronic Disease and Promotion of Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, China (Q.J.)
| | - Shanqun Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Lindi Jiang
- Department of Rheumatology, Zhongshan Hospital, (L.J.).,Department of General Surgery, Shanghai Pudon (L.J.)
| | - Lefeng Qu
- Department of Vascular and Endovascular Surgery, Changzheng Hospital, Naval Medical University, Shanghai, China (L.Q.)
| | - Elena Osto
- Institute of Clinical Chemistry and Department of Cardiology, University Heart Center, University and University Hospital Zurich, Switzerland (E.O.)
| | - Jianyi Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham (J.Z.)
| | - Xinhong Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| | - Bo Yu
- Vascular Service, Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China. (W.S., L.Z., Y.H., B.Y.).,Department of General Surgery, Shanghai Pudong Hospital, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, China (J.T., B.Y.)
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei., Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang, D.M.).,Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China. (M.J., Q.L., J.G., Y.L., S.M., T.Z., Q.P., X. Wei, Y.Q., X.L., J.J., X.Z., S.L., Xinhong Wang., D.M.)
| |
Collapse
|
38
|
Dang R, Qu B, Guo K, Zhou S, Sun H, Wang W, Han J, Feng K, Lin J, Hu Y. Weighted Co-Expression Network Analysis Identifies RNF181 as a Causal Gene of Coronary Artery Disease. Front Genet 2022; 12:818813. [PMID: 35222523 PMCID: PMC8867041 DOI: 10.3389/fgene.2021.818813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
Background: Coronary artery disease (CAD) exerts a global challenge to public health. Genetic heritability is one of the most vital contributing factors in the pathophysiology of CAD. Co-expression network analysis is an applicable and robust method for the interpretation of biological interaction from microarray data. Previous CAD studies have focused on peripheral blood samples since the processes of CAD may vary from tissue to blood. It is therefore necessary to find biomarkers for CAD in heart tissues; their association also requires further illustration. Materials and Methods: To filter for causal genes, an analysis of microarray expression profiles, GSE12504 and GSE22253, was performed with weighted gene co-expression network analysis (WGCNA). Co-expression modules were constructed after batch effect removal and data normalization. The results showed that 7 co-expression modules with 8,525 genes and 1,210 differentially expressed genes (DEGs) were identified. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. Four major pathways in CAD tissue and hub genes were addressed in the Hybrid Mouse Diversity Panel (HMDP) and Human Protein Atlas (HPA), and isoproterenol (ISO)/doxycycline (DOX)-induced heart toxicity models were used to validate the hub genes. Lastly, the hub genes and risk variants were verified in the CAD cohort and in genome-wide association studies (GWAS). Results: The results showed that RNF181 and eight other hub genes are perturbed during CAD in heart tissues. Additionally, the expression of RNF181 was validated using RT-PCR and immunohistochemistry (IHC) staining in two cardiotoxicity mouse models. The association was further verified in the CAD patient cohort and in GWAS. Conclusion: Our findings illustrated for the first time that the E3 ubiquitination ligase protein RNF181 may serve as a potential biomarker in CAD, but further in vivo validation is warranted.
Collapse
Affiliation(s)
- Ruoyu Dang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Bojian Qu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Pharmaceutical Intelligence Platform, Tianjin International Joint Academy of Biomedicine, Tianjin, China
| | - Kaimin Guo
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Shuiping Zhou
- The State Key Laboratory of Core Technology in Innovative Chinese Medicine, Tasly Academy, Tasly Holding Group Co., Ltd, Tianjin, China
| | - He Sun
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Wenjia Wang
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
| | - Jihong Han
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Ke Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Jianping Lin
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
- Pharmaceutical Intelligence Platform, Tianjin International Joint Academy of Biomedicine, Tianjin, China
- *Correspondence: Jianping Lin, ; Yunhui Hu,
| | - Yunhui Hu
- GeneNet Pharmaceuticals Co. Ltd., Tianjin, China
- *Correspondence: Jianping Lin, ; Yunhui Hu,
| |
Collapse
|
39
|
Wu X, Xu M, Liu Z, Zhang Z, Liu Y, Luo S, Zheng X, Little PJ, Xu S, Weng J. Pharmacological inhibition of IRAK1 and IRAK4 prevents endothelial inflammation and atherosclerosis in ApoE -/- mice. Pharmacol Res 2022; 175:106043. [PMID: 34954030 DOI: 10.1016/j.phrs.2021.106043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/08/2023]
Abstract
Inflammation associated endothelial dysfunction represents a pivotal contributor to atherosclerosis. Increasingly, evidence has demonstrated that interleukin 1 receptor (IL1-R) / toll-like receptor (TLR) signaling participates in the development of atherosclerosis. Recent large-scale clinical trials have supported the therapeutic potential of anti-inflammatory therapies targeting IL-1β and IL-6 in reducing atherosclerosis. The present study examined the pharmacological effects of IL-1R-associated kinase 1 and 4 inhibitors (IRAK1/4i) in regulating inflammation of the endothelium and atherosclerosis. We demonstrate that dual pharmacological inhibition of IRAK1 and IRAK4 by an IRAK1/4i is more effective against LPS induced endothelial inflammation, compared with IRAK1 inhibitor or IRAK4 inhibitor monotherapy. IRAK1/4i showed little endothelial cell toxicity at concentrations from 1 μM up to 10 μM. Inhibition of IRAK1/4 reduced endothelial activation induced by LPS in vitro as evidenced by attenuated monocyte adhesion to the endothelium. Mechanistically, blockade of IRAK1/4 ameliorated the transcriptional activity of NF-κB. To assess the pharmacological effects of IRAK1/4i on atherosclerosis in vivo, ApoE-/- mice were orally administered IRAK1/4i (20 mg/kg/d) for 8 weeks. We show that IRAK1/4i reduced atherosclerotic lesion size in the aortic sinus and increased hepatic LDLR protein levels as well as lowered LDL-C level, without affecting other lipid parameters or glucose tolerance. Taken together, our findings demonstrate that dual pharmacological inhibition of IRAK1 and IRAK4 attenuates endothelial inflammation, lowers LDL-C levels and reduces atherosclerosis. Our study reinforces the evolving standing of anti-inflammatory approaches in cardiovascular therapeutics.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000 Guangzhou, China
| | - Mengyun Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhenghong Liu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhidan Zhang
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yujie Liu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, Australia
| | - Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| | - Jianping Weng
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000 Guangzhou, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
40
|
Exploring the Therapeutic Mechanisms of Huzhang-Shanzha Herb Pair against Coronary Heart Disease by Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5569666. [PMID: 34887932 PMCID: PMC8651359 DOI: 10.1155/2021/5569666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 10/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022]
Abstract
Background Coronary heart disease (CHD) seriously affects human health, and its pathogenesis is closely related to atherosclerosis. The Huzhang (the root of Polygonum cuspidatum)–Shanzha (the fruit of Crataegus sp.), a classic herb pair, has been widely used for the treatment of CHD. In recent years, Huzhang–Shanzha herb pair (HSHP) was found to have a wide range of effects in CHD; however, its therapeutic specific mechanisms remain to be further explored. The aim of this study was to elucidate the molecular mechanism of HSHP in the treatment of CHD using a network pharmacology analysis approach. Methods The Batman-TCM database was used to explore bioactive compounds and corresponding targets of HSHP. CHD disease targets were extracted from Genecards, OMIM, PharmGkb, TTD, and DrugBank databases. Then, the protein-protein interaction (PPI) network was constructed using the STRING web platform and Cytoscape software. GO functional and KEGG pathway enrichment analyses were carried out on the Metascape web platform. Finally, molecular docking of the active components was assessed to verify the potential targets of HSHP to treat CHD by the AutoDock Vina and PyMOL software. Results Totally, 243 active components and 2459 corresponding targets of LDP were screened out. Eighty-five common targets of HSHP and CHD were identified. The results of the network analysis showed that resveratrol, anthranone, emodin, and ursolic acid could be defined as four therapeutic components. TNF, ESR1, NFКB1, PPARG, INS, TP53, NFКBIA, AR, PIK3R1, PIK3CA, PTGS2, and NR3C1 might be the 12 key targets. These targets were mainly involved in the regulation of biological processes, such as inflammatory responses and lipid metabolism. Enrichment analysis showed that the identified genes were mainly involved in fluid shear force, insulin resistance (IR), inflammation, and lipid metabolism pathways to contribute to CHD. This suggests that resveratrol, anthranone, emodin, and ursolic acid from HSHP can be the main therapeutic components of atherosclerosis. Conclusion Using network pharmacology, we provide new clues on the potential mechanism of action of HSHP in the treatment of CHD, which may be closely related to the fluid shear force, lipid metabolism, and inflammatory response.
Collapse
|
41
|
Zhang X, Qi W, Shi Y, Li X, Yin J, Huo C, Zhang R, Zhao W, Ye J, Zhou L, Ye L. Role of miR-145-5p/ CD40 in the inflammation and apoptosis of HUVECs induced by PM 2.5. Toxicology 2021; 464:152993. [PMID: 34678319 DOI: 10.1016/j.tox.2021.152993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 12/25/2022]
Abstract
Fine particulate matter (PM2.5) exposure can cause the injury of vascular endothelial cells by inflammatory response. CD40 works in inflammation of endothelial cells and it may be regulated by the miRNAs. This study aimed to clarify the role and mechanism of CD40 and miR-145-5p in PM2.5-induced injury of human umbilical vein endothelial cells (HUVECs). HUVECs were treated with different concentrations of PM2.5 exposure (0, 100, 200, 400 μg/mL) for 24 h. The si-RNA was used for CD40 gene silencing (0, 200 μg/mL PM2.5, siRNA-CD40 and siRNA-CD40 + 200 μg/mL PM2.5). Mimics was used for overexpression of miR-145-5p (0, 200 μg/mL PM2.5, mimics and mimics+200 μg/mL PM2.5). The cell viability of HUVECs was detected with Cell Counting Kit8 (CCK8) kit. The level of cell apoptosis was detected by flow cytometry. The inflammation-related factor including interleukin-1β (IL-1β), interleukin-18 (IL-18), tumor necrosis factor α (TNF-α) and C1q complement/tumor necrosis factor (TNF)-associated proteins9 (CTRP9) were tested with enzyme-linked immunosorbent assay (ELISA) kits. The mRNA and protein expression levels of CD40, CD40L, caspase1, NLRP3 (Nod-like receptor family pyrin domain-containing 3) and IKKB were detected with quantitative real-time PCR (qRT-PCR), Western blot and Immunofluorescence. Compared with the control group, the cell viability of HUVECs exposed to PM2.5 was significantly decreased (p < 0.05); the levels of IL-Iβ and TNF-α were significantly increased, while the level of CTRP9 was significantly decreased (p < 0.05). The proportion of apoptotic cells was increased after being treated with PM2.5 (p < 0.05). Besides, the mRNA and protein levels of CD40, CD40L, IKKB, NLRP3 and caspase1 were increased comparing with the control group (p < 0.05). After CD40 silencing, the condition of inflammation and apoptosis in HUVECs exposed to PM2.5 was alleviated, and the expression levels of CD40L, IKKB, NLRP3 and caspase1 were significantly decreased (p < 0.05). Furthermore, miR-145-5p was significantly down-regulated after exposure to 200μg/mL PM2.5 (p < 0.05). After over-expression of miR-145-5p, the expression level of CD40 was decreased (p < 0.05). Taken together, PM2.5 can cause inflammation and apoptosis of HUVECs via the activation of CD40, which can be regulated by miR-145-5p. Over-expression of miR-145-5p can down-regulate CD40, further inhibiting the inflammation and apoptosis of HUVECs induced by PM2.5.
Collapse
Affiliation(s)
- Xueting Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xu Li
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianli Yin
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Chuanyi Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Ruxuan Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Weisen Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jiaming Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
42
|
Severino P, D’Amato A, Prosperi S, Magnocavallo M, Mariani MV, Netti L, Birtolo LI, De Orchi P, Chimenti C, Maestrini V, Miraldi F, Lavalle C, Caputo V, Palmirotta R, Mancone M, Fedele F. Potential Role of eNOS Genetic Variants in Ischemic Heart Disease Susceptibility and Clinical Presentation. J Cardiovasc Dev Dis 2021; 8:jcdd8090116. [PMID: 34564134 PMCID: PMC8472394 DOI: 10.3390/jcdd8090116] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Background: IHD is determined by an inadequate coronary blood supply to the myocardium, and endothelial dysfunction may represent one of the main pathophysiological mechanisms involved. Genetic predisposition to endothelial dysfunction has been associated with IHD and its clinical manifestation. However, studies are often confounding and inconclusive for several reasons, such as interethnic differences. Validation of results in larger cohorts and new populations is needed. The aim of this study is to evaluate the associations between the allelic variants of the eNOS rs1799983 single-nucleotide polymorphism, IHD susceptibility and its clinical presentation. Methods: A total of 362 consecutive patients with suspected myocardial ischemia were enrolled. Patients were divided into three groups: G1, coronary artery disease (CAD); G2, coronary microvascular dysfunction (CMD); and G3, a control group with anatomically and functionally normal coronary arteries. Analysis of three allelic variants, GT, GG and TT, of rs1799983 for the NOS3 gene, encoding for eNOS, was performed. Results: rs1799983_GT was significantly more expressed by the ischemic groups (G1 and G2) compared to G3. The TT variant was significantly more expressed by the G1 group, compared to the G2 group. Among ischemic patients, GT was significantly more expressed in patients with acute coronary syndrome (ACS) presentation, compared to other clinical presentations. In the multivariate analysis, the allelic variant GT was found to potentially represent an independent predictor of IHD and ACS presentation. Conclusion: The presence of the SNP rs1799983_GT, encoding for eNOS, is an independent risk factor for IHD and, remarkably, for ACS presentation, independently of cardiovascular risk factors. These results may be useful for the prediction of IHD development, particularly with an acute clinical manifestation. They may allow the early identification of patients at high risk of developing IHD with an ACS, promoting a genetic-based prevention strategy against IHD.
Collapse
Affiliation(s)
- Paolo Severino
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
- Correspondence: ; Tel.: +39-06-49979021; Fax: +39-06-49979060
| | - Andrea D’Amato
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Silvia Prosperi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Michele Magnocavallo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Marco Valerio Mariani
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Lucrezia Netti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Lucia Ilaria Birtolo
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Paolo De Orchi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Viviana Maestrini
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Fabio Miraldi
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Carlo Lavalle
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Viviana Caputo
- Department of Experimental Medicine, Sapienza University of Rome, Policlinico Umberto I Hospital, Viale Regina Elena 324, 00161 Rome, Italy;
| | - Raffaele Palmirotta
- Interdisciplinary Department of Medicine, School of Medicine, University of Bari ‘Aldo Moro’, 70124 Bari, Italy;
| | - Massimo Mancone
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| | - Francesco Fedele
- Department of Clinical, Internal, Anesthesiology and Cardiovascular Sciences, Sapienza University of Rome, Viale del Policlinico 155, 00161 Rome, Italy; (A.D.); (S.P.); (M.M.); (M.V.M.); (L.N.); (L.I.B.); (P.D.O.); (C.C.); (V.M.); (F.M.); (C.L.); (M.M.); (F.F.)
| |
Collapse
|
43
|
Sun C, He B, Sun M, Lv X, Wang F, Chen J, Zhang J, Ye Z, Wen J, Liu P. Yes-Associated Protein in Atherosclerosis and Related Complications: A Potential Therapeutic Target That Requires Further Exploration. Front Cardiovasc Med 2021; 8:704208. [PMID: 34513949 PMCID: PMC8430249 DOI: 10.3389/fcvm.2021.704208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Atherosclerosis and its complications diseases remain leading causes of cardiovascular morbidity and mortality, bringing a massive burden on public health worldwide. Atherosclerosis is recognized as chronic inflammation, and involves several highly correlated processes, including lipid metabolism dysfunction, endothelial cell dysfunction, inflammation, oxidative stress, vascular smooth muscle cell activation, platelet activation, thrombosis, altered matrix metabolism, and vascular remodeling. Within the past few decades, accumulating evidence has shown that the Yes-associated protein (YAP), the major effector of the Hippo pathway, can play a crucial role in pathogenesis and development of atherosclerosis. Activation of YAP-related pathways, which are induced by alerting flow pattern and matrix stiffness among others, can regulate processes including vascular endothelial cell dysfunction, monocyte infiltration, and smooth muscle cell migration, which contribute to atherosclerotic lesion formation. Further, YAP potentially modulates atherosclerotic complications such as vascular calcification and intraplaque hemorrhage, which require further investigation. Here, we summarized the relevant literature to outline current findings detailing the relationship between of YAP and atherosclerosis and highlight areas for future research.
Collapse
Affiliation(s)
- Congrui Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Bin He
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Mingsheng Sun
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China
| | - Xiaoshuo Lv
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Feng Wang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jie Chen
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianbin Zhang
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Zhidong Ye
- Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Jianyan Wen
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Peng Liu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, China.,Department of Cardiovascular Surgery, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
44
|
Gorabi AM, Kiaie N, Khosrojerdi A, Jamialahmadi T, Al-Rasadi K, Johnston TP, Sahebkar A. Implications for the role of lipopolysaccharide in the development of atherosclerosis. Trends Cardiovasc Med 2021; 32:525-533. [PMID: 34492295 DOI: 10.1016/j.tcm.2021.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 08/16/2021] [Accepted: 08/31/2021] [Indexed: 10/20/2022]
Abstract
Mounting scientific evidence over decades has established that atherosclerosis is a chronic inflammatory disorder. Among the potentially critical sources of vascular inflammation during atherosclerosis are the components of pathogenic bacteria, especially lipopolysaccharide (LPS). Toll-like receptor (TLR)-4, expressed on different inflammatory cells involved with the recognition of bacterial LPS, has been recognized to have mutations that are prevalent in a number of ethnic groups. Such mutations have been associated with a decreased risk of atherosclerosis. In addition, epidemiological investigations have proposed that LPS confers a risk factor for the development of atherosclerosis. Gram-negative bacteria are the major source of LPS in an individual's serum, which may be generated during subclinical infections. The major cell receptors on inflammatory cells involved in the pathogenesis of atherosclerosis, like macrophages, monocytes, and dendritic cells (DCs), are CD14, MD-2, and LPS binding protein (LBP). These receptors have been blamed for the development of atherosclerosis through dysregulated activation following LPS recognition. Lipoproteins may also play a role in modulating the LPS-induced inflammatory events during atherosclerosis development. In this review article, we attempt to clarify the role of LPS in the initiation and progression of atherosclerotic lesion development.
Collapse
Affiliation(s)
- Armita Mahdavi Gorabi
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khosrojerdi
- Department of Medical Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, 64108, USA.
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
S-nitrosylation-mediated coupling of G-protein alpha-2 with CXCR5 induces Hippo/YAP-dependent diabetes-accelerated atherosclerosis. Nat Commun 2021; 12:4452. [PMID: 34294713 PMCID: PMC8298471 DOI: 10.1038/s41467-021-24736-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/01/2021] [Indexed: 12/30/2022] Open
Abstract
Atherosclerosis-associated cardiovascular disease is one of the main causes of death and disability among patients with diabetes mellitus. However, little is known about the impact of S-nitrosylation in diabetes-accelerated atherosclerosis. Here, we show increased levels of S-nitrosylation of guanine nucleotide-binding protein G(i) subunit alpha-2 (SNO-GNAI2) at Cysteine 66 in coronary artery samples from diabetic patients with atherosclerosis, consistently with results from mice. Mechanistically, SNO-GNAI2 acted by coupling with CXCR5 to dephosphorylate the Hippo pathway kinase LATS1, thereby leading to nuclear translocation of YAP and promoting an inflammatory response in endothelial cells. Furthermore, Cys-mutant GNAI2 refractory to S-nitrosylation abrogated GNAI2-CXCR5 coupling, alleviated atherosclerosis in diabetic mice, restored Hippo activity, and reduced endothelial inflammation. In addition, we showed that melatonin treatment restored endothelial function and protected against diabetes-accelerated atherosclerosis by preventing GNAI2 S-nitrosylation. In conclusion, SNO-GNAI2 drives diabetes-accelerated atherosclerosis by coupling with CXCR5 and activating YAP-dependent endothelial inflammation, and reducing SNO-GNAI2 is an efficient strategy for alleviating diabetes-accelerated atherosclerosis.
Collapse
|
46
|
Xu S, Liu Y, Ding Y, Luo S, Zheng X, Wu X, Liu Z, Ilyas I, Chen S, Han S, Little PJ, Jain MK, Weng J. The zinc finger transcription factor, KLF2, protects against COVID-19 associated endothelial dysfunction. Signal Transduct Target Ther 2021; 6:266. [PMID: 34253708 PMCID: PMC8273371 DOI: 10.1038/s41392-021-00690-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 06/11/2021] [Accepted: 06/20/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is regarded as an endothelial disease (endothelialitis) with its patho-mechanism being incompletely understood. Emerging evidence has demonstrated that endothelial dysfunction precipitates COVID-19 and its accompanying multi-organ injuries. Thus, pharmacotherapies targeting endothelial dysfunction have potential to ameliorate COVID-19 and its cardiovascular complications. The objective of the present study is to evaluate whether kruppel-like factor 2 (KLF2), a master regulator of vascular homeostasis, represents a therapeutic target for COVID-19-induced endothelial dysfunction. Here, we demonstrate that the expression of KLF2 was reduced and monocyte adhesion was increased in endothelial cells treated with COVID-19 patient serum due to elevated levels of pro-adhesive molecules, ICAM1 and VCAM1. IL-1β and TNF-α, two cytokines elevated in cytokine release syndrome in COVID-19 patients, decreased KLF2 gene expression. Pharmacologic (atorvastatin and tannic acid) and genetic (adenoviral overexpression) approaches to augment KLF2 levels attenuated COVID-19-serum-induced increase in endothelial inflammation and monocyte adhesion. Next-generation RNA-sequencing data showed that atorvastatin treatment leads to a cardiovascular protective transcriptome associated with improved endothelial function (vasodilation, anti-inflammation, antioxidant status, anti-thrombosis/-coagulation, anti-fibrosis, and reduced angiogenesis). Finally, knockdown of KLF2 partially reversed the ameliorative effect of atorvastatin on COVID-19-serum-induced endothelial inflammation and monocyte adhesion. Collectively, the present study implicates loss of KLF2 as an important molecular event in the development of COVID-19-induced vascular disease and suggests that efforts to augment KLF2 levels may be therapeutically beneficial.
Collapse
Affiliation(s)
- Suowen Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yujie Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Yu Ding
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiumei Wu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhenghong Liu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Iqra Ilyas
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Suyu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, P.R. China
| | - Shuxin Han
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Peter J Little
- Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, QLD, Australia
- School of Pharmacy, Pharmacy Australia Centre of Excellence, the University of Queensland, Woolloongabba, QLD, Australia
| | - Mukesh K Jain
- Department of Medicine, Case Cardiovascular Research Institute, Case Western Reserve University, Cleveland, OH, USA
- Department of Medicine, Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jianping Weng
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
- The First Affiliated Hospital, Bengbu Medical College, Bengbu, China.
| |
Collapse
|
47
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev 2021; 73:924-967. [PMID: 34088867 DOI: 10.1124/pharmrev.120.000096] [Citation(s) in RCA: 465] [Impact Index Per Article: 116.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1β monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peter J Little
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Hong Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Danielle Kamato
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Zhuoming Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peiqing Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jihong Han
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Ian C Harding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Eno E Ebong
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Scott J Cameron
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Alastair G Stewart
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| |
Collapse
|
48
|
Yuan W, Xu C, Li B, Xia H, Pan Y, Zhong W, Xu L, Chen R, Wang B. Contributions of Costimulatory Molecule CD137 in Endothelial Cells. J Am Heart Assoc 2021; 10:e020721. [PMID: 34027676 PMCID: PMC8483511 DOI: 10.1161/jaha.120.020721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
CD137 (4-1BB, tumor necrosis factor receptor superfamily 9) is a surface glycoprotein of the tumor necrosis factor receptor family that can be induced on a variety of immunocytes and nonimmune cells, including endothelial cells and smooth muscle cells. The importance of CD137 in immune response has been well recognized; however, the precise biological effects and underlying mechanisms of CD137 in endothelial cells are unclear. A single layer of cells called the endothelium constitutes the innermost layer of blood vessels including larger arteries, veins, the capillaries, and the lymphatic vessels. It not only acts as an important functional interface, but also participates in local inflammatory response. This review covers recent findings to illuminate the role of CD137 in endothelial cells in different pathophysiologic settings.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Chong Xu
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Bo Li
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Hao Xia
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Yingjie Pan
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Wei Zhong
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Liangjie Xu
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Rui Chen
- Department of Cardiology Affiliated Hospital of Jiangsu University Zhenjiang China
| | - Bin Wang
- Department of Geriatrics Union Hospital Tongji Medical CollegeHuazhong University of Science and Technology Wuhan China
| |
Collapse
|
49
|
Inflammation-Related Risk Loci in Genome-Wide Association Studies of Coronary Artery Disease. Cells 2021; 10:cells10020440. [PMID: 33669721 PMCID: PMC7921935 DOI: 10.3390/cells10020440] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/02/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Although the importance of inflammation in atherosclerosis is now well established, the exact molecular processes linking inflammation to the development and course of the disease are not sufficiently understood. In this context, modern genetics—as applied by genome-wide association studies (GWAS)—can serve as a comprehensive and unbiased tool for the screening of potentially involved pathways. Indeed, a considerable proportion of loci discovered by GWAS is assumed to affect inflammatory processes. Despite many well-replicated association findings, however, translating genomic hits to specific molecular mechanisms remains challenging. This review provides an overview of the currently most relevant inflammation-related GWAS findings in coronary artery disease and explores their potential clinical perspectives.
Collapse
|
50
|
Luo P, Wang Y, Zhao C, Guo J, Shi W, Ma H, Liu T, Yan D, Huo S, Wang M, Li C, Lin J, Li S, Lv J, Zhang C, Lin L. Bazedoxifene exhibits anti-inflammation and anti-atherosclerotic effects via inhibition of IL-6/IL-6R/STAT3 signaling. Eur J Pharmacol 2021; 893:173822. [PMID: 33347820 DOI: 10.1016/j.ejphar.2020.173822] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 01/14/2023]
Abstract
Atherosclerosis is regarded as chronic inflammatory disease. The IL-6/STAT3 pathway plays an important role in inflammation. We previously described a small-molecule compound, Bazedoxifene, which target IL-6/STAT3 pathway and has been approved for clinical use for osteoporosis in postmenopausal women. The aim of this study is to evaluate the effect of Bazedoxifene in the progression of atherosclerosis in apolipoprotein E-deficient (ApoE-/-) mice. Five-week-old male ApoE-/- mice were fed with High-fat diet (HFD) containing 5 mg/kg Bazedoxifene or a matching control for 12 weeks. Oil red O (ORO) staining was used to detect plaque size; immunohistochemical staining was used to detect the presence of endothelial cells, vascular muscle cells and phosphorylated STAT3 (P-STAT3) in localized plaques. The potential underlying mechanisms in human umbilical vein endothelial cells (HUVECs) and vascular muscle cells (VSMCs) was detected by Western blot analysis, Wound healing assay and Elisa assay. In the ApoE-/- mice fed with HFD, daily Bazedoxifene administration effectively attenuated atherosclerotic plaque area (P < 0.01), down-regulated IL-6 levels (P < 0.01), decreased STAT3 phosphorylation, reduced VSMCs proliferation and increased endothelial coverage in aortic vessels. Interestingly, we found HUVECs lack of membrane IL-6 receptor (IL-6R) compared to VSMCs (P < 0.01). Furthermore, we found that the soluble IL-6 receptor (sIL6R) participates in the activation of STAT3 induced by IL-6 or TNF-α in HUVECs and primary HUVECs. Bazedoxifene did not inhibit the growth of HUVECs while suppressing the proliferation of VSMCs. Bazedoxifene is an attractive novel therapeutic reagent for atherosclerosis diseases. This mechanism may be partially attributed to regulating IL-6/IL-6R/STAT3 signaling pathway.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Aorta/drug effects
- Aorta/metabolism
- Aorta/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Atherosclerosis/prevention & control
- Cell Proliferation/drug effects
- Cells, Cultured
- Disease Models, Animal
- Human Umbilical Vein Endothelial Cells/drug effects
- Human Umbilical Vein Endothelial Cells/metabolism
- Humans
- Indoles/pharmacology
- Interleukin-6/metabolism
- Male
- Mice, Knockout, ApoE
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Phosphorylation
- Plaque, Atherosclerotic
- Rats
- Receptors, Interleukin-6/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Pengcheng Luo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yina Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chongqiang Zhao
- Cardiovascular Department, Tianjin First Central Hospital, China
| | - Junyi Guo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haiyan Ma
- Division of Cardiology, Department of Internal Medicine, First People's Hospital of ShangQiu, Shangqiu, China
| | - Tianshu Liu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yan
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Departments of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengqi Huo
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Moran Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chenglong Li
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH, USA
| | - Jiayuh Lin
- Center for Childhood Cancer, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Sheng Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiagao Lv
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Departments of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Li Lin
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|