1
|
Kattenberg JH, Mutsaers M, Nguyen VH, Nguyen THN, Umugwaneza A, Lara-Escandell M, Nguyen XX, Nguyen THB, Rosanas-Urgell A. Genetic surveillance shows spread of ACT resistance during period of malaria decline in Vietnam (2018-2020). Front Genet 2024; 15:1478706. [PMID: 39687741 PMCID: PMC11646998 DOI: 10.3389/fgene.2024.1478706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 11/13/2024] [Indexed: 12/18/2024] Open
Abstract
Introduction Vietnam's goal to eliminate malaria by 2030 is challenged by the further spread of drug-resistant Plasmodium falciparum malaria to key antimalarials, particularly dihydroartemisinin-piperaquine (DHA-PPQ). Methods The custom targeted NGS amplicon sequencing assay, AmpliSeq Pf Vietnam v2, targeting drug resistance, population genetic- and other markers, was applied to detect genetic diversity and resistance profiles in samples from 8 provinces in Vietnam (n = 354), in a period of steep decline of incidence (2018-2020). Variants in 14 putative resistance genes, including P. falciparum Kelch 13 (PfK13) and P. falciparum chloroquine resistance transporter (Pfcrt), were analyzed and within-country parasite diversity was evaluated. Other targets included KEL1-lineage markers and diagnostic markers of Pfhrp2/3. Results A concerning level of DHA-PPQ resistance was detected. The C580Y mutation in PfK13 was found in nearly 80% of recent samples, a significant rise from previous data. Vietnam has experienced a significant challenge with the spread of DHA-PPQ resistant malaria parasites, particularly in the provinces of Binh Phuoc and Gia Lai. Resistance spread to high levels in Binh Thuan prior to the country-wide treatment policy change from DHA-PPQ to pyronadine-artesunate (PA). A complex picture of PPQ-resistance dynamics was observed, with an increase of PPQ-resistance associated Pfcrt mutations, indicating an evolutionary response to antimalarial pressure. Additionally, the compensatory mutation C258W in Pfcrt, which increases chloroquine (CQ) resistance while reversing PPQ resistance, is emerging in Gia Lai following the adoption of PA as the first-line treatment. This study found high levels of multidrug resistance, with over 70% of parasites in 6 out of 8 provinces showing significant sulfadoxine-pyrimethamine (SP) resistance and widespread chloroquine-resistant Pfcrt haplotypes. We also report an absence of P. falciparum histidine rich protein 2 and 3 (Pfhrp2/3) gene deletions, ensuring the continued reliability of HRP2/3-based rapid diagnostic tests. P. falciparum populations in Vietnam are becoming more isolated, with clonal populations showing high geographical clustering by province. The central highlands, particularly Gia Lai province, have the highest residual malaria burden but exhibit low diversity and clonal populations, likely due to the pressures from the antimalarial drugs and targeted national malaria control program (NMCP) efforts. Discussion In conclusion, examining a broad panel of full-length resistance genes and SNPs provided high-resolution insights into genetic diversity and resistance evolution in Vietnam, offering valuable information to inform local treatment and intervention strategies.
Collapse
Affiliation(s)
| | - Mathijs Mutsaers
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Van Hong Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Thi Hong Ngoc Nguyen
- Department of Molecular Biology, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Arlette Umugwaneza
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Maria Lara-Escandell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Xuan Xa Nguyen
- Regional Artemisinin Initiative, RAI project, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Thi Huong Binh Nguyen
- Department of Clinical Research, National Institute of Malariology, Parasitology and Entomology, Hanoi, Vietnam
| | - Anna Rosanas-Urgell
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
2
|
Mrva M, Malíková L, Garajová M. Plants of the family Lamiaceae as a source of therapeutic agents against Acanthamoeba infections. Mem Inst Oswaldo Cruz 2024; 119:e240171. [PMID: 39536187 PMCID: PMC11556588 DOI: 10.1590/0074-02760240171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Acanthamoebae are causative agents of severe and complicated human infections without a standard effective therapy to date. Therefore, the research is focused on the development of new amoebicidal drugs based on the natural products. Plants of the family Lamiaceae are typical with several phenolic secondary metabolites that make them interesting in medical point of view. OBJECTIVE In this review, we concentrate on anti-Acanthamoeba activities of plant extracts, essential oils, and phytochemicals of Lamiaceae in the published literature. FINDINGS A total of 13 articles in the research field were found. Totally, 16 plant species belonging to family Lamiaceae were studied against trophozoites and cysts of Acanthamoeba in in vitro conditions. Low toxicity of the Lamiaceae plant extracts to tissue cultures enhances their possible potential for clinical use. The research demonstrated promising trophocidal and cysticidal effects against acanthamoebae. Further research is needed with inclusion of more clinical isolates and in vivo studies. MAIN CONCLUSION Reviewing the related literature highlights the promising amoebicidal activities of plant extracts, essential oils and bioactive compounds of family Lamiaceae. Identifying the active components could lead to production new effective and well-tolerated drugs for the Acanthamoeba infections treatment.
Collapse
Affiliation(s)
- Martin Mrva
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Zoology, Bratislava, Slovakia
| | | | - Mária Garajová
- Comenius University in Bratislava, Faculty of Natural Sciences, Department of Zoology, Bratislava, Slovakia
| |
Collapse
|
3
|
Rosenthal PJ, Asua V, Conrad MD. Emergence, transmission dynamics and mechanisms of artemisinin partial resistance in malaria parasites in Africa. Nat Rev Microbiol 2024; 22:373-384. [PMID: 38321292 DOI: 10.1038/s41579-024-01008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2024] [Indexed: 02/08/2024]
Abstract
Malaria, mostly due to Plasmodium falciparum infection in Africa, remains one of the most important infectious diseases in the world. Standard treatment for uncomplicated P. falciparum malaria is artemisinin-based combination therapy (ACT), which includes a rapid-acting artemisinin derivative plus a longer-acting partner drug, and standard therapy for severe P. falciparum malaria is intravenous artesunate. The efficacy of artemisinins and ACT has been threatened by the emergence of artemisinin partial resistance in Southeast Asia, mediated principally by mutations in the P. falciparum Kelch 13 (K13) protein. High ACT treatment failure rates have occurred when resistance to partner drugs is also seen. Recently, artemisinin partial resistance has emerged in Rwanda, Uganda and the Horn of Africa, with independent emergences of different K13 mutants in each region. In this Review, we summarize our current knowledge of artemisinin partial resistance and focus on the emergence of resistance in Africa, including its epidemiology, transmission dynamics and mechanisms. At present, the clinical impact of emerging resistance in Africa is unclear and most available evidence suggests that the efficacies of leading ACTs remain excellent, but there is an urgent need to better appreciate the extent of the problem and its consequences for the treatment and control of malaria.
Collapse
Affiliation(s)
| | - Victor Asua
- Infectious Diseases Research Collaboration, Kampala, Uganda
- University of Tübingen, Tübingen, Germany
| | | |
Collapse
|
4
|
Gonçalves AF, Lima-Pinheiro A, Teixeira M, Cassiano GC, Cravo P, Ferreira PE. Mutation in the 26S proteasome regulatory subunit rpn2 gene in Plasmodium falciparum confers resistance to artemisinin. Front Cell Infect Microbiol 2024; 14:1342856. [PMID: 38404287 PMCID: PMC10884193 DOI: 10.3389/fcimb.2024.1342856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/22/2024] [Indexed: 02/27/2024] Open
Abstract
Introduction Malaria parasites increasingly develop resistance to all drugs available in the market, hampering the goal of reducing malaria burden. Methods Herein, we evaluated the impact of a single-nucleotide variant, E738K, present in the 26S proteasome regulatory subunit rpn2 gene, identified in Plasmodium chabaudi resistant parasites. Plasmids carrying a functional rpn2 interspecies chimeric gene with 5' recombination region from P. falciparum and 3' from P. chabaudi were constructed and transfected into Dd2 P. falciparum parasites. Results and discussion The 738K variant parasite line presented increased parasite survival when subjected to dihydroartemisinin (DHA), as well as increased chymotrypsin-like activity and decreased accumulation of polyubiquitinated proteins. We thus conclude that the ubiquitin-proteasome pathway, including the 738K variant, play an important role in parasite response to DHA, being the first report of a mutation in a potential DHA drug target enhancing parasite survival and contributing to a significant advance in the understanding the biology of artemisinin resistance.
Collapse
Affiliation(s)
- Adriana F. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS)/ Biomaterials, Biodegradables and Biomimetics Research Group (3B's)-PT Government Associate Laboratory, Braga, Portugal
| | - Ana Lima-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS)/ Biomaterials, Biodegradables and Biomimetics Research Group (3B's)-PT Government Associate Laboratory, Braga, Portugal
| | - Miguel Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS)/ Biomaterials, Biodegradables and Biomimetics Research Group (3B's)-PT Government Associate Laboratory, Braga, Portugal
- Department of Protection of Specific Crops, InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | - Gustavo Capatti Cassiano
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Pedro Cravo
- Global Health and Tropical Medicine (GHTM), Associate Laboratory in Translation and Innovation Towards Global Health (LA-REAL), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| | - Pedro E. Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS)/ Biomaterials, Biodegradables and Biomimetics Research Group (3B's)-PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
5
|
Gnondjui AA, Toure OA, Ako BA, Koui TS, Assohoun SE, Gbessi EA, N'Guessan LT, Tuo K, Beourou S, Assi SB, Yapo FA, Sanogo I, Jambou R. In vitro delayed response to dihydroartemisinin of malaria parasites infecting sickle cell erythocytes. Malar J 2024; 23:9. [PMID: 38178227 PMCID: PMC10768257 DOI: 10.1186/s12936-023-04819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/09/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Decreased efficacy of artemisinin-based combination therapy (ACT) for Plasmodium falciparum malaria has been previously reported in patients with sickle cell disease (SCD). The main purpose of this study was to investigate the in vitro susceptibility of isolates to dihydro-artemisinin (DHA) to provide a hypothesis to explain this treatment failure. METHODS Isolates were collected from patients attending health centres in Abidjan with uncomplicated P. falciparum malaria. The haemoglobin type has been identified and in vitro drug sensitivity tests were conducted with the ring stage assay and maturation inhibition assay. RESULTS 134 isolates were obtained. Parasitaemia and haemoglobin levels at inclusion were lower in patients with haemoglobin HbSS and HbSC than in patients with normal HbAA. After ex vivo RSA and drug inhibition assays, the lowest rate of parasitic growth was found with isolates from HbAS red cells. Conversely, a significantly higher survival rate of parasites ranging from 15 to 34% were observed in isolates from HbSS. Isolates with in vitro reduced DHA sensitivity correlate with lower RBC count and haematocrit and higher parasitaemia at inclusion compared to those with isolates with normal DHA sensitivity. However, this decrease of in vitro sensitivity to DHA was not associated with Kelch 13-Propeller gene polymorphism. CONCLUSION This study highlights an in vitro decreased sensitivity to DHA, for isolates collected from HbSS patients, not related to the Pfkelch13 gene mutations. These results are in line with recent studies pointing out the role of the redox context in the efficacy of the drug. Indeed, SCD red cells harbour a highly different ionic and redox context in comparison with normal red cells. This study offers new insights into the understanding of artemisinin selective pressure on the malaria parasite in the context of haemoglobinopathies in Africa.
Collapse
Affiliation(s)
- Albert A Gnondjui
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Offianan A Toure
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Berenger A Ako
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Tossea S Koui
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Stanislas E Assohoun
- Laboratoire de Mécanique et Informatique, Université Felix Houphouët BoignyCôte d'Ivoire, Abidjan, Côte d'Ivoire
| | - Eric A Gbessi
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | - Landry T N'Guessan
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Karim Tuo
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Sylvain Beourou
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire
| | - Serge-Brice Assi
- Institut Pierre Richet/Programme National de Lutte contre le Paludisme, Bouaké, Côte d'Ivoire
| | - Francis A Yapo
- Laboratoire Biologie et Santé, Université Felix Houphouët Boigny, Abidjan, Côte d'Ivoire
| | | | - Ronan Jambou
- Unité de Paludologie, Institut Pasteur Côte d'Ivoire, 01 BP 490, Abidjan 01, Côte d'Ivoire.
- Global Health Department, Institut Pasteur Paris, 25 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
6
|
Grossman T, Vainer J, Paran Y, Studentsky L, Manor U, Dzikowski R, Schwartz E. Emergence of artemisinin-based combination treatment failure in patients returning from sub-Saharan Africa with P. falciparum malaria. J Travel Med 2023; 30:taad114. [PMID: 37606241 DOI: 10.1093/jtm/taad114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/23/2023]
Abstract
BACKGROUND Artemisinin-based combination therapies (ACTs) are recommended as first-line treatment against uncomplicated Plasmodium falciparum infection. Mutations in the PfKelch13 (PF3D7_1343700) gene led to resistance to artemisinin in Southeast Asia. Mutations in the Pfcoronin (PF3D7_1251200) gene confer reduced artemisinin susceptibility in vitro to an African Plasmodium strain, but their role in clinical resistance has not been established. METHODS We conducted a retrospective observational study of Israeli travellers returning from sub-Saharan Africa with P. falciparum malaria, including patients with artemether-lumefantrine (AL) failure. Blood samples from all malaria-positive patients are delivered to the national Parasitology Reference Laboratory along with personal information. Confirmation of malaria, species identification and comparative parasite load analysis were performed using real-time PCR. DNA extractions from stored leftover samples were analysed for the presence of mutations in Pfkelch13 and Pfcoronin. Age, weight, initial parasitaemia level and Pfcoronin status were compared in patients who failed treatment vs responders. RESULTS During 2009-2020, 338 patients had P. falciparum malaria acquired in Africa. Of those, 15 (24-69 years old, 14 males) failed treatment with AL. Four were still parasitemic at the end of treatment, and 11 had malaria recrudescence. Treatment failure rates were 0% during 2009-2012, 9.1% during 2013-2016 and 17.4% during 2017-2020. In all patients, the Pfkelch13 propeller domain had a wild-type sequence. We did find the P76S mutation in the propeller domain of Pfcoronin in 4/15 (28.6%) of the treatment-failure cases compared to only 3/56 (5.5%) in the successfully treated patients (P = 0.027). CONCLUSION AL treatment failure emergence was not associated with mutations in Pfkelch13. However, P76S mutation in the Pfcoronin gene was more frequently present in the treatment-failure group and merits further investigation. The increase of malaria incidence in sub-Saharan-Africa partly attributed to the COVID-19 pandemic might also reflect a wider spread of ACT resistance.
Collapse
Affiliation(s)
- Tamar Grossman
- Parasitology Reference Laboratory, Public Health Laboratories-Jerusalem (PHL-J), Public Health Services (PHS), Ministry of Health (MOH), Jerusalem 9134302, Israel
| | - Julia Vainer
- Parasitology Reference Laboratory, Public Health Laboratories-Jerusalem (PHL-J), Public Health Services (PHS), Ministry of Health (MOH), Jerusalem 9134302, Israel
| | - Yael Paran
- Infectious Disease Department, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Liora Studentsky
- Parasitology Reference Laboratory, Public Health Laboratories-Jerusalem (PHL-J), Public Health Services (PHS), Ministry of Health (MOH), Jerusalem 9134302, Israel
| | - Uri Manor
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- The Center for Geographic Medicine, Sheba Medical Center, Tel HaShomer 5262000, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Eli Schwartz
- Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
- The Center for Geographic Medicine, Sheba Medical Center, Tel HaShomer 5262000, Israel
| |
Collapse
|
7
|
Haldar K, Alam MS, Koepfli C, Lobo NF, Phru CS, Islam MN, Faiz A, Khan WA, Haque R. Bangladesh in the era of malaria elimination. Trends Parasitol 2023; 39:760-773. [PMID: 37500334 DOI: 10.1016/j.pt.2023.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 07/29/2023]
Abstract
Bangladesh has dramatically reduced malaria by 93% from 2008 to 2020. The strategy has been district-wise, phased elimination; however, the last districts targeted for elimination include remote, forested regions which present several challenges for prevention, detection, and treatment of malaria. These districts border Myanmar which harbors Plasmodium falciparum malaria parasites resistant to artemisinins, key drugs used in artemisinin-based combination therapies (ACTs) that have been vital for control programs. Challenges in monitoring emergence of artemisinin resistance (AR), tracking parasite reservoirs, changes in vector behavior and responses to insecticides, as well as other environmental and host factors (including the migration of Forcibly Displaced Myanmar Nationals; FDMNs) may pose added hazards in the final phase of eliminating malaria in Bangladesh.
Collapse
Affiliation(s)
- Kasturi Haldar
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA; Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, IN, USA; Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, IN, USA.
| | - Mohammed Shafiul Alam
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| | - Cristian Koepfli
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA; Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, IN, USA
| | - Neil F Lobo
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, IN, USA; Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, IN, USA
| | - Ching Shwe Phru
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| | | | - Abul Faiz
- Dev Care Foundation, Dhaka, Bangladesh
| | - Wasif Ali Khan
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| | - Rashidul Haque
- Infectious Disease Division, International Center of Diarrheal Diseases, Bangladesh, (icddr, b), Dhaka, Bangladesh
| |
Collapse
|
8
|
Kattenberg JH, Fernandez-Miñope C, van Dijk NJ, Llacsahuanga Allcca L, Guetens P, Valdivia HO, Van geertruyden JP, Rovira-Vallbona E, Monsieurs P, Delgado-Ratto C, Gamboa D, Rosanas-Urgell A. Malaria Molecular Surveillance in the Peruvian Amazon with a Novel Highly Multiplexed Plasmodium falciparum AmpliSeq Assay. Microbiol Spectr 2023; 11:e0096022. [PMID: 36840586 PMCID: PMC10101074 DOI: 10.1128/spectrum.00960-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 08/02/2022] [Indexed: 02/24/2023] Open
Abstract
Molecular surveillance for malaria has great potential to support national malaria control programs (NMCPs). To bridge the gap between research and implementation, several applications (use cases) have been identified to align research, technology development, and public health efforts. For implementation at NMCPs, there is an urgent need for feasible and cost-effective tools. We designed a new highly multiplexed deep sequencing assay (Pf AmpliSeq), which is compatible with benchtop sequencers, that allows high-accuracy sequencing with higher coverage and lower cost than whole-genome sequencing (WGS), targeting genomic regions of interest. The novelty of the assay is its high number of targets multiplexed into one easy workflow, combining population genetic markers with 13 nearly full-length resistance genes, which is applicable for many different use cases. We provide the first proof of principle for hrp2 and hrp3 deletion detection using amplicon sequencing. Initial sequence data processing can be performed automatically, and subsequent variant analysis requires minimal bioinformatic skills using any tabulated data analysis program. The assay was validated using a retrospective sample collection (n = 254) from the Peruvian Amazon between 2003 and 2018. By combining phenotypic markers and a within-country 28-single-nucleotide-polymorphism (SNP) barcode, we were able to distinguish different lineages with multiple resistance haplotypes (in dhfr, dhps, crt and mdr1) and hrp2 and hrp3 deletions, which have been increasing in recent years. We found no evidence to suggest the emergence of artemisinin (ART) resistance in Peru. These findings indicate a parasite population that is under drug pressure but is susceptible to current antimalarials and demonstrate the added value of a highly multiplexed molecular tool to inform malaria strategies and surveillance systems. IMPORTANCE While the power of next-generation sequencing technologies to inform and guide malaria control programs has become broadly recognized, the integration of genomic data for operational incorporation into malaria surveillance remains a challenge in most countries where malaria is endemic. The main obstacles include limited infrastructure, limited access to high-throughput sequencing facilities, and the need for local capacity to run an in-country analysis of genomes at a large-enough scale to be informative for surveillance. In addition, there is a lack of standardized laboratory protocols and automated analysis pipelines to generate reproducible and timely results useful for relevant stakeholders. With our standardized laboratory and bioinformatic workflow, malaria genetic surveillance data can be readily generated by surveillance researchers and malaria control programs in countries of endemicity, increasing ownership and ensuring timely results for informed decision- and policy-making.
Collapse
Affiliation(s)
| | - Carlos Fernandez-Miñope
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Norbert J. van Dijk
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Lidia Llacsahuanga Allcca
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Pieter Guetens
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Hugo O. Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | - Eduard Rovira-Vallbona
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Pieter Monsieurs
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| | - Christopher Delgado-Ratto
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Anna Rosanas-Urgell
- Institute of Tropical Medicine Antwerp, Biomedical Sciences Department, Antwerp, Belgium
| |
Collapse
|
9
|
Funwei RI, Uyaiabasi GN, Hammed WA, Ojurongbe O, Walker O, Falade CO. High prevalence of persistent residual parasitemia on days 3 and 14 after artemether-lumefantrine or pyronaridine-artesunate treatment of uncomplicated Plasmodium falciparum malaria in Nigeria. Parasitol Res 2023; 122:519-526. [PMID: 36510009 DOI: 10.1007/s00436-022-07753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/02/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Microscopic evaluation of parasite clearance is the gold standard in antimalarial drug efficacy trials. However, the presence of sub-microscopic residual parasitemia after artemisinin-based combination therapy (ACT) needs to be investigated. METHODS One hundred and twenty (AL: n = 60, PA: n = 60) days 3 and 14 dried blood spots, negative by microscopy were analysed for residual parasitemia using nested PCR. Isolates with residual parasitemia on days 3 and 14 were further genotyped with their corresponding day-0 isolates using merozoite surface proteins msp-1, msp-2, and glurp genes for allelic similarity. RESULTS Persistent PCR-determined sub-microscopic residual parasitemia at day 3 post ACT treatment was 83.3 (AL) and 88.3% (PA), respectively (ρ = 0.600), while 63.6 and 36.4% (ρ = 0.066) isolates were parasitemic at day 14 for AL and PA, respectively. Microscopy-confirmed gametocytemia persisted from days 0 to 7 and from days 0 to 21 for AL and PA. When the alleles of day 3 versus day 0 were compared according to base pair sizes, 59% of parasites shared identical alleles for glurp, 36% each for 3D7 and FC27, while K1 was 77%, RO33 64%, and MAD20 23%, respectively. Similarly, day 14 versus day 0 was 36% (glurp), 64% (3D7), and 32% (FC27), while 73% (K1), 77% (RO33), and 41% (MAD20), respectively. CONCLUSION The occurrence of residual parasitemia on days 3 and 14 following AL or PA treatment may be attributable to the presence of either viable asexual, gametocytes, or dead parasite DNAs, which requires further investigation.
Collapse
Affiliation(s)
- Roland I Funwei
- Department of Pharmacology, Babcock University, Ilishan-Remo, Ogun State, Nigeria. .,Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria.
| | - Gabriel N Uyaiabasi
- Department of Pharmacology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.,Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Wasiu A Hammed
- Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Olusola Ojurongbe
- Department of Medical Microbiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria.,Center for Emerging and Re-Emerging Infectious Diseases (CERID), Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oladapo Walker
- Department of Pharmacology, Babcock University, Ilishan-Remo, Ogun State, Nigeria.,Center for Advanced Medical Research and Biotechnology (CAMRAB), Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Catherine O Falade
- Department of Pharmacology and Therapeutics, University of Ibadan, Ibadan, Nigeria.,Institute for Advanced Medical Research and Training (IAMRAT), University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
10
|
Ring stage dormancy of Plasmodium falciparum tolerant to artemisinin and its analogues - A genetically regulated "Sleeping Beauty". Int J Parasitol Drugs Drug Resist 2023; 21:61-64. [PMID: 36708651 PMCID: PMC9883618 DOI: 10.1016/j.ijpddr.2023.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023]
Abstract
The appearance in 2008 in western Cambodia of Plasmodium falciparum tolerant to artemisinin, defined by longer parasite clearance time following drug administration and in vitro by a slightly higher survival rate of the ring stage after a 3-h treatment with 700 nM artemisinin (or analogues, collectively termed ART), has raised concerns of the possible loss of this frontline antimalarial [used in the form of an artemisinin combination therapy (ACT)], with its low IC50 value against the ring stage and pleiotropic pro-drug/poison property. The key genetic marker of ART tolerance phenotype is a number of non-synonymous mutations in Pfkelch13 propeller domain. This results in defective assembly at the ring stage of a cytostome structure located at cytoplasmic side of the parasite membrane required for invagination of a double-membrane endosome carrying host cytosol haemoglobin to the digestive vacuole. The consequential deprivation of amino acids initiates ring stage parasites bearing the causal mutations in PfK13 (or other key cytostome components) entry into a dormant state ("Sleeping Beauty"), which, after a duration longer than that the short-lived ART, "Sleeping Beauty" ring parasite resumes its normal, but accelerated, development to maintain the 48-h intra-erythrocytic life-cycle. We posit that when ART-tolerant P. falciparum has acquired under ART stress the causative PfK13 mutation (not obligatory if mutations occur in other critical cytostome components), together with other necessary mutations to adjust to the new normalcy and to provide survival competitiveness, ART-tolerant parasite has now evolved into a genetically programmed "Sleeping Beauty". The onus of preventing the spread of ART-tolerant P. falciparum lies with the efficacy of ACT partner drug, hence the recommendation of a triple ACT (TACT). Nevertheless, attention should also be focussed on understanding the mechanisms of dormancy, such as induction, maintenance and recovery, to enable discovery and development of novel antimalarials targeting this unique parasite stage.
Collapse
|
11
|
A Plasmodium falciparum ubiquitin-specific protease (PfUSP) is essential for parasite survival and its disruption enhances artemisinin efficacy. Biochem J 2023; 480:25-39. [PMID: 36511651 DOI: 10.1042/bcj20220429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/14/2022]
Abstract
Proteins associated with ubiquitin-proteasome system (UPS) are potential drug targets in the malaria parasite. The ubiquitination and deubiquitination are key regulatory processes for the functioning of UPS. In this study, we have characterized the biochemical and functional role of a novel ubiquitin-specific protease (USP) domain-containing protein of the human malaria parasite Plasmodium falciparum (PfUSP). We have shown that the PfUSP is an active deubiquitinase associated with parasite endoplasmic reticulum (ER). Selection linked integration (SLI) method for C-terminal tagging and GlmS-ribozyme mediated inducible knock-down (iKD) of PfUSP was utilized to assess its functional role. Inducible knockdown of PfUSP resulted in a remarkable reduction in parasite growth and multiplication; specifically, PfUSP-iKD disrupted ER morphology and development, blocked the development of healthy schizonts, and hindered proper merozoite development. PfUSP-iKD caused increased ubiquitylation of specific proteins, disrupted organelle homeostasis and reduced parasite survival. Since the mode of action of artemisinin and the artemisinin-resistance are shown to be associated with the proteasome machinery, we analyzed the effect of dihydroartemisinin (DHA) on PfUSP-iKD parasites. Importantly, the PfUSP-knocked-down parasite showed increased sensitivity to dihydroartemisinin (DHA), whereas no change in chloroquine sensitivity was observed, suggesting a role of PfUSP in combating artemisinin-induced cellular stress. Together, the results show that Plasmodium PfUSP is an essential protease for parasite survival, and its inhibition increases the efficacy of artemisinin-based drugs. Therefore, PfUSP can be targeted to develop novel scaffolds for developing new antimalarials to combat artemisinin resistance.
Collapse
|
12
|
Paris L, Tackie RG, Beshir KB, Tampuori J, Awandare GA, Binka FN, Urban BC, Dinko B, Sutherland CJ. Parasite clearance dynamics in children hospitalised with severe malaria in the Ho Teaching Hospital, Volta Region, Ghana. Parasite Epidemiol Control 2022; 19:e00276. [PMID: 36263093 PMCID: PMC9574762 DOI: 10.1016/j.parepi.2022.e00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/07/2022] [Accepted: 09/30/2022] [Indexed: 11/21/2022] Open
Abstract
Background Over 90% of severe malaria (SM) cases occur in African children. Parenteral artesunate is currently the recommended treatment for SM. Studies of parasite clearance in paediatric SM cases are needed for assessment of therapeutic outcomes but are lacking in Africa. Methods Severe malaria patients were recruited in the children's emergency ward at Ho Teaching Hospital, Ghana, in 2018. Blood samples were taken upon admission, every 24 h for 3 days and 1 week after treatment, and DNA extracted. Parasitaemia and parasite densities were performed by microscopy at enrolment and the follow-up days wherever possible. Relative parasite density was measured at each timepoint by duplex qPCR and parameters of parasite clearance estimated. Results Of 25 evaluable SM patients, clearance of qPCR-detectable parasites occurred within 48 h for 17 patients, but three out of the remaining eight were still qPCR-positive on day 3. Increased time to parasite clearance was seen in children ≥5 years old, those with lower haemoglobin levels and those with a high number of previous malaria diagnoses, but these associations were not statistically significant. Conclusion We examined parasite clearance dynamics among paediatric cases of SM. Our observations suggest that daily sampling for qPCR estimation of P. falciparum peripheral density is a useful method for assessing treatment response in hospitalised SM cases. The study demonstrated varied parasite clearance response, thus illuminating the complex nature of the mechanism in this important patient group, and further investigations utilizing larger sample sizes are needed to confirm our findings.
Collapse
Affiliation(s)
- Laura Paris
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Richmond G. Tackie
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Khalid B. Beshir
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - John Tampuori
- Department of Urology, Ho Teaching Hospital, Ho, Ghana
| | - Gordon A. Awandare
- West African Centre for Cell Biology of Infectious Pathogens, Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Legon, Accra, Ghana
| | - Fred N. Binka
- Department of Epidemiology and Biostatistics, School of Public Health, University of Health and Allied Sciences, Ho, Ghana
| | - Britta C. Urban
- Department of Tropical Disease Biology, Faculty of Biological Sciences, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Bismarck Dinko
- Department of Biomedical Sciences, School of Basic and Biomedical Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Colin J. Sutherland
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
13
|
Nima MK, Mukherjee A, Sazed SA, Hossainey MRH, Phru CS, Johora FT, Safeukui I, Saha A, Khan AA, Marma ASP, Ware RE, Mohandas N, Calhoun B, Haque R, Khan WA, Alam MS, Haldar K. Assessment of Plasmodium falciparum Artemisinin Resistance Independent of kelch13 Polymorphisms and with Escalating Malaria in Bangladesh. mBio 2022; 13:e0344421. [PMID: 35073756 PMCID: PMC8787467 DOI: 10.1128/mbio.03444-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/26/2022] Open
Abstract
Emerging resistance to artemisinin drugs threatens the elimination of malaria. Resistance is widespread in South East Asia (SEA) and Myanmar. Neighboring Bangladesh, where 90% of infections occur in the Chittagong Hill Tracts (CHTs), lacks recent assessment. We undertook a prospective study in the sole district-level hospital in Bandarban, a CHT district with low population densities but 60% of reported malaria cases. Thirty patients presented with malaria in 2018. An increase to 68 patients in 2019 correlated with the district-level rise in malaria, rainfall, humidity, and temperature. Twenty-four patients (7 in 2018 and 17 in 2019) with uncomplicated Plasmodium falciparum monoinfection were assessed for clearing parasites after starting artemisinin combination therapy (ACT). The median (range) time to clear half of the initial parasites was 5.6 (1.5 to 9.6) h, with 20% of patients showing a median of 8 h. There was no correlation between parasite clearance and initial parasitemia, blood cell counts, or mutations of P. falciparum gene Pfkelch13 (the molecular marker of artemisinin resistance [AR]). The in vitro ring-stage survival assay (RSA) revealed one (of four) culture-adapted strains with a quantifiable resistance of 2.01% ± 0.1% (mean ± standard error of the mean [SEM]). Regression analyses of in vivo and in vitro measurements of the four CHT strains and WHO-validated K13 resistance mutations yielded good correlation (R2 = 0.7; ρ = 0.9, P < 0.005), strengthening evaluation of emerging AR with small sample sizes, a challenge in many low/moderate-prevalence sites. There is an urgent need to deploy multiple, complementary approaches to understand the evolutionary dynamics of the emergence of P. falciparum resistant to artemisinin derivatives in countries where malaria is endemic. IMPORTANCE Malaria elimination is a Millennium Development Goal. Artemisinins, fast-acting antimalarial drugs, have played a key role in malaria elimination. Emergence of artemisinin resistance threatens the global elimination of malaria. Over the last decade, advanced clinical and laboratory methods have documented its spread throughout South East Asia and Myanmar. Neighboring Bangladesh lies in the historical path of dissemination of antimalarial resistance to the rest of the world, yet it has not been evaluated by combinations of leading methods, particularly in the highland Chittagong Hill Tracts adjacent to Myanmar which contain >90% of malaria in Bangladesh. We show the first establishment of capacity to assess clinical artemisinin resistance directly in patients in the hilltops and laboratory adaptation of Bangladeshi parasite strains from a remote, sparsely populated malaria frontier that is responsive to climate. Our study also provides a generalized model for comprehensive monitoring of drug resistance for countries where malaria is endemic.
Collapse
Affiliation(s)
- Maisha Khair Nima
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Angana Mukherjee
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Saiful Arefeen Sazed
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | | | - Ching Swe Phru
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Innocent Safeukui
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Anjan Saha
- National Malaria Elimination & Aedes Transmitted Diseases Control Program, Directorate General of Health Services, Dhaka, Bangladesh
| | - Afsana Alamgir Khan
- National Malaria Elimination & Aedes Transmitted Diseases Control Program, Directorate General of Health Services, Dhaka, Bangladesh
| | | | - Russell E. Ware
- Division of Hematology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
- Global Health Center, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Barbara Calhoun
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
| | - Rashidul Haque
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Wasif Ali Khan
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Shafiul Alam
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Kasturi Haldar
- Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, Indiana, USA
- Eck Institute of Global Health, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
14
|
Mesén-Ramírez P, Bergmann B, Elhabiri M, Zhu L, von Thien H, Castro-Peña C, Gilberger TW, Davioud-Charvet E, Bozdech Z, Bachmann A, Spielmann T. The parasitophorous vacuole nutrient channel is critical for drug access in malaria parasites and modulates the artemisinin resistance fitness cost. Cell Host Microbe 2021; 29:1774-1787.e9. [PMID: 34863371 DOI: 10.1016/j.chom.2021.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/14/2021] [Accepted: 11/03/2021] [Indexed: 02/08/2023]
Abstract
Intraerythrocytic malaria parasites proliferate bounded by a parasitophorous vacuolar membrane (PVM). The PVM contains nutrient permeable channels (NPCs) conductive to small molecules, but their relevance for parasite growth for individual metabolites is largely untested. Here we show that growth-relevant levels of major carbon and energy sources pass through the NPCs. Moreover, we find that NPCs are a gate for several antimalarial drugs, highlighting their permeability properties as a critical factor for drug design. Looking into NPC-dependent amino acid transport, we find that amino acid shortage is a reason for the fitness cost in artemisinin-resistant (ARTR) parasites and provide evidence that NPC upregulation to increase amino acids acquisition is a mechanism of ARTR parasites in vitro and in human infections to compensate this fitness cost. Hence, the NPCs are important for nutrient and drug access and reveal amino acid deprivation as a critical constraint in ARTR parasites.
Collapse
Affiliation(s)
- Paolo Mesén-Ramírez
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Bärbel Bergmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Mourad Elhabiri
- UMR7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Lei Zhu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | - Heidrun von Thien
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany; Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, University of Hamburg, 20146 Hamburg, Germany
| | - Carolina Castro-Peña
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany
| | - Tim-Wolf Gilberger
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany; Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, University of Hamburg, 20146 Hamburg, Germany
| | - Elisabeth Davioud-Charvet
- UMR7042 Université de Strasbourg‒CNRS‒UHA, Laboratoire d'Innovation Moléculaire et Applications (LIMA), Team Bio(IN)organic and Medicinal Chemistry, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore; Honorary Visiting Research Fellow, Nuffield Department of Medicine, University of Oxford, UK
| | - Anna Bachmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany; Centre for Structural Systems Biology, Notkestraße 85, Building 15, 22607, University of Hamburg, 20146 Hamburg, Germany
| | - Tobias Spielmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard Nocht Str. 74, 20359 Hamburg, Germany.
| |
Collapse
|
15
|
Maneekesorn S, Knuepfer E, Green JL, Prommana P, Uthaipibull C, Srichairatanakool S, Holder AA. Deletion of Plasmodium falciparum ubc13 increases parasite sensitivity to the mutagen, methyl methanesulfonate and dihydroartemisinin. Sci Rep 2021; 11:21791. [PMID: 34750454 PMCID: PMC8575778 DOI: 10.1038/s41598-021-01267-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/18/2021] [Indexed: 12/18/2022] Open
Abstract
The inducible Di-Cre system was used to delete the putative ubiquitin-conjugating enzyme 13 gene (ubc13) of Plasmodium falciparum to study its role in ubiquitylation and the functional consequence during the parasite asexual blood stage. Deletion resulted in a significant reduction of parasite growth in vitro, reduced ubiquitylation of the Lys63 residue of ubiquitin attached to protein substrates, and an increased sensitivity of the parasite to both the mutagen, methyl methanesulfonate and the antimalarial drug dihydroartemisinin (DHA), but not chloroquine. The parasite was also sensitive to the UBC13 inhibitor NSC697923. The data suggest that this gene does code for an ubiquitin conjugating enzyme responsible for K63 ubiquitylation, which is important in DNA repair pathways as was previously demonstrated in other organisms. The increased parasite sensitivity to DHA in the absence of ubc13 function indicates that DHA may act primarily through this pathway and that inhibitors of UBC13 may both enhance the efficacy of this antimalarial drug and directly inhibit parasite growth.
Collapse
Affiliation(s)
- Supawadee Maneekesorn
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Ellen Knuepfer
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
- Molecular and Cellular Parasitology Laboratory, Department of Pathobiology and Population Sciences, The Royal Veterinary College, Hawkshead Lane, Hatfield, AL9 7TA, UK
| | - Judith L Green
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Parichat Prommana
- Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Chairat Uthaipibull
- Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
- Thailand Center of Excellence for Life Sciences (TCELS), Phayathai, 10400, Bangkok, Thailand
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Anthony A Holder
- Malaria Parasitology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| |
Collapse
|
16
|
Dhorda M, Amaratunga C, Dondorp AM. Artemisinin and multidrug-resistant Plasmodium falciparum - a threat for malaria control and elimination. Curr Opin Infect Dis 2021; 34:432-439. [PMID: 34267045 PMCID: PMC8452334 DOI: 10.1097/qco.0000000000000766] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
PURPOSE OF REVIEW Artemisinin-based combination therapies (ACTs) are globally the first-line treatment for uncomplicated falciparum malaria and new compounds will not be available within the next few years. Artemisinin-resistant Plasmodium falciparum emerged over a decade ago in the Greater Mekong Subregion (GMS) and, compounded by ACT partner drug resistance, has caused significant ACT treatment failure. This review provides an update on the epidemiology, and mechanisms of artemisinin resistance and approaches to counter multidrug-resistant falciparum malaria. RECENT FINDINGS An aggressive malaria elimination programme in the GMS has helped prevent the spread of drug resistance to neighbouring countries. However, parasites carrying artemisinin resistance-associated mutations in the P. falciparum Kelch13 gene (pfk13) have now emerged independently in multiple locations elsewhere in Asia, Africa and South America. Notably, artemisinin-resistant infections with parasites carrying the pfk13 R561H mutation have emerged and spread in Rwanda. SUMMARY Enhancing the geographic coverage of surveillance for resistance will be key to ensure prompt detection of emerging resistance in order to implement effective countermeasures without delay. Treatment strategies designed to prevent the emergence and spread of multidrug resistance must be considered, including deployment of triple drug combination therapies and multiple first-line therapies.
Collapse
Affiliation(s)
- Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
17
|
Behrens HM, Schmidt S, Spielmann T. The newly discovered role of endocytosis in artemisinin resistance. Med Res Rev 2021; 41:2998-3022. [PMID: 34309894 DOI: 10.1002/med.21848] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 04/15/2021] [Accepted: 07/03/2021] [Indexed: 12/28/2022]
Abstract
Artemisinin and its derivatives (ART) are the cornerstone of malaria treatment as part of artemisinin combination therapy (ACT). However, reduced susceptibility to artemisinin as well as its partner drugs threatens the usefulness of ACTs. Single point mutations in the parasite protein Kelch13 (K13) are necessary and sufficient for the reduced sensitivity of malaria parasites to ART but several alternative mechanisms for this resistance have been proposed. Recent work found that K13 is involved in the endocytosis of host cell cytosol and indicated that this is the process responsible for resistance in parasites with mutated K13. These studies also identified a series of further proteins that act together with K13 in the same pathway, including previously suspected resistance proteins such as UBP1 and AP-2μ. Here, we give a brief overview of artemisinin resistance, present the recent evidence of the role of endocytosis in ART resistance and discuss previous hypotheses in light of this new evidence. We also give an outlook on how the new insights might affect future research.
Collapse
Affiliation(s)
- Hannah Michaela Behrens
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Sabine Schmidt
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Tobias Spielmann
- Molecular Biology and Immunology Section, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| |
Collapse
|
18
|
Stokes BH, Dhingra SK, Rubiano K, Mok S, Straimer J, Gnädig NF, Deni I, Schindler KA, Bath JR, Ward KE, Striepen J, Yeo T, Ross LS, Legrand E, Ariey F, Cunningham CH, Souleymane IM, Gansané A, Nzoumbou-Boko R, Ndayikunda C, Kabanywanyi AM, Uwimana A, Smith SJ, Kolley O, Ndounga M, Warsame M, Leang R, Nosten F, Anderson TJ, Rosenthal PJ, Ménard D, Fidock DA. Plasmodium falciparum K13 mutations in Africa and Asia impact artemisinin resistance and parasite fitness. eLife 2021; 10:66277. [PMID: 34279219 PMCID: PMC8321553 DOI: 10.7554/elife.66277] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022] Open
Abstract
The emergence of mutant K13-mediated artemisinin (ART) resistance in Plasmodium falciparum malaria parasites has led to widespread treatment failures across Southeast Asia. In Africa, K13-propeller genotyping confirms the emergence of the R561H mutation in Rwanda and highlights the continuing dominance of wild-type K13 elsewhere. Using gene editing, we show that R561H, along with C580Y and M579I, confer elevated in vitro ART resistance in some African strains, contrasting with minimal changes in ART susceptibility in others. C580Y and M579I cause substantial fitness costs, which may slow their dissemination in high-transmission settings, in contrast with R561H that in African 3D7 parasites is fitness neutral. In Cambodia, K13 genotyping highlights the increasing spatio-temporal dominance of C580Y. Editing multiple K13 mutations into a panel of Southeast Asian strains reveals that only the R561H variant yields ART resistance comparable to C580Y. In Asian Dd2 parasites C580Y shows no fitness cost, in contrast with most other K13 mutations tested, including R561H. Editing of point mutations in ferredoxin or mdr2, earlier associated with resistance, has no impact on ART susceptibility or parasite fitness. These data underline the complex interplay between K13 mutations, parasite survival, growth and genetic background in contributing to the spread of ART resistance.
Collapse
Affiliation(s)
- Barbara H Stokes
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Satish K Dhingra
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kelly Rubiano
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Sachel Mok
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Judith Straimer
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Nina F Gnädig
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Ioanna Deni
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kyra A Schindler
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Jade R Bath
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Kurt E Ward
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States.,Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Josefine Striepen
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Tomas Yeo
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Leila S Ross
- Department of Microbiology and Immunology, Columbia University Irving Medical Center, New York, United States
| | - Eric Legrand
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - Frédéric Ariey
- Institut Cochin, INSERM U1016, Université Paris Descartes, Paris, France
| | - Clark H Cunningham
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Issa M Souleymane
- Programme National de Lutte Contre le Paludisme au Tchad, Ndjamena, Chad
| | - Adama Gansané
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Romaric Nzoumbou-Boko
- Laboratoire de Parasitologie, Institut Pasteur de Bangui, Bangui, Central African Republic
| | | | | | - Aline Uwimana
- Malaria and Other Parasitic Diseases Division, Rwanda Biomedical Centre, Kigali, Rwanda
| | - Samuel J Smith
- National Malaria Control Program, Freetown, Sierra Leone
| | | | - Mathieu Ndounga
- Programme National de Lutte Contre le Paludisme, Brazzaville, Democratic Republic of the Congo
| | - Marian Warsame
- School of Public Health and Community Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rithea Leang
- National Center for Parasitology, Entomology & Malaria Control, Phnom Penh, Cambodia
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, United States
| | - Didier Ménard
- Malaria Genetics and Resistance Unit, Institut Pasteur, INSERM U1201, CNRS ERL9195, Paris, France
| | - David A Fidock
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, United States
| |
Collapse
|
19
|
Persistent Submicroscopic Plasmodium falciparum Parasitemia 72 Hours after Treatment with Artemether-Lumefantrine Predicts 42-Day Treatment Failure in Mali and Burkina Faso. Antimicrob Agents Chemother 2021; 65:e0087321. [PMID: 34060901 PMCID: PMC8284475 DOI: 10.1128/aac.00873-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A recent randomized controlled trial, the WANECAM (West African Network for Clinical Trials of Antimalarial Drugs) trial, conducted at seven centers in West Africa, found that artemether-lumefantrine, artesunate-amodiaquine, pyronaridine-artesunate, and dihydroartemisinin-piperaquine all displayed good efficacy. However, artemether-lumefantrine was associated with a shorter interval between clinical episodes than the other regimens. In a further comparison of these therapies, we identified cases of persisting submicroscopic parasitemia by quantitative PCR (qPCR) at 72 h posttreatment among WANECAM participants from 5 sites in Mali and Burkina Faso, and we compared treatment outcomes for this group to those with complete parasite clearance by 72 h. Among 552 evaluable patients, 17.7% had qPCR-detectable parasitemia at 72 h during their first treatment episode. This proportion varied among sites, reflecting differences in malaria transmission intensity, but did not differ among pooled drug treatment groups. However, patients who received artemether-lumefantrine and were qPCR positive at 72 h were significantly more likely to have microscopically detectable recurrent Plasmodium falciparum parasitemia by day 42 than those receiving other regimens and experienced, on average, a shorter interval before the next clinical episode. Haplotypes of pfcrt and pfmdr1 were also evaluated in persisting parasites. These data identify a possible threat to the parasitological efficacy of artemether-lumefantrine in West Africa, over a decade since it was first introduced on a large scale.
Collapse
|
20
|
Mok S, Stokes BH, Gnädig NF, Ross LS, Yeo T, Amaratunga C, Allman E, Solyakov L, Bottrill AR, Tripathi J, Fairhurst RM, Llinás M, Bozdech Z, Tobin AB, Fidock DA. Artemisinin-resistant K13 mutations rewire Plasmodium falciparum's intra-erythrocytic metabolic program to enhance survival. Nat Commun 2021; 12:530. [PMID: 33483501 PMCID: PMC7822823 DOI: 10.1038/s41467-020-20805-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
The emergence and spread of artemisinin resistance, driven by mutations in Plasmodium falciparum K13, has compromised antimalarial efficacy and threatens the global malaria elimination campaign. By applying systems-based quantitative transcriptomics, proteomics, and metabolomics to a panel of isogenic K13 mutant or wild-type P. falciparum lines, we provide evidence that K13 mutations alter multiple aspects of the parasite's intra-erythrocytic developmental program. These changes impact cell-cycle periodicity, the unfolded protein response, protein degradation, vesicular trafficking, and mitochondrial metabolism. K13-mediated artemisinin resistance in the Cambodian Cam3.II line was reversed by atovaquone, a mitochondrial electron transport chain inhibitor. These results suggest that mitochondrial processes including damage sensing and anti-oxidant properties might augment the ability of mutant K13 to protect P. falciparum against artemisinin action by helping these parasites undergo temporary quiescence and accelerated growth recovery post drug elimination.
Collapse
Affiliation(s)
- Sachel Mok
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Barbara H Stokes
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nina F Gnädig
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Leila S Ross
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Tomas Yeo
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erik Allman
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Lev Solyakov
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester, UK
| | - Andrew R Bottrill
- Protein Nucleic Acid Laboratory, University of Leicester, Leicester, UK
| | - Jaishree Tripathi
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.,Astra Zeneca, Gaithersburg, MD, 20878, USA
| | - Manuel Llinás
- Department of Biochemistry & Molecular Biology, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA.,Department of Chemistry, Huck Center for Malaria Research, Pennsylvania State University, University Park, PA, USA
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Andrew B Tobin
- The Centre for Translational Pharmacology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - David A Fidock
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY, USA. .,Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|