1
|
Zintel TM, Ely JJ, Raghanti MA, Hopkins WD, Hof PR, Sherwood CC, Kamilar JM, Bauernfeind AL, Babbitt CC. Ecological Trait Differences Are Associated with Gene Expression in the Primary Visual Cortex of Primates. Genes (Basel) 2025; 16:117. [PMID: 40004446 PMCID: PMC11855002 DOI: 10.3390/genes16020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Primate species differ drastically from most other mammals in how they visually perceive their environments, which is particularly important for foraging, predator avoidance, and detection of social cues. BACKGROUND/OBJECTIVES Although it is well established that primates display diversity in color vision and various ecological specializations, it is not understood how visual system characteristics and ecological adaptations may be associated with gene expression levels within the primary visual cortex (V1). METHODS We performed RNA-Seq on V1 tissue samples from 28 individuals, representing 13 species of primates, including hominoids, cercopithecoids, and platyrrhines. We explored trait-dependent differential expression (DE) by contrasting species with differing visual system phenotypes and ecological traits. RESULTS Between 4-25% of genes were determined to be differentially expressed in primates that varied in type of color vision (trichromatic or polymorphic di/trichromatic), habitat use (arboreal or terrestrial), group size (large or small), and primary diet (frugivorous, folivorous, or omnivorous). CONCLUSIONS Interestingly, our DE analyses revealed that humans and chimpanzees showed the most marked differences between any two species, even though they are only separated by 6-8 million years of independent evolution. These results show a combination of species-specific and trait-dependent differences in the evolution of gene expression in the primate visual cortex.
Collapse
Affiliation(s)
- Trisha M. Zintel
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | | - Mary Ann Raghanti
- Department of Anthropology, Kent State University, Kent, OH 44242, USA;
| | - William D. Hopkins
- Keeling Center for Comparative Medicine and Research, The University of Texas, MD Anderson Cancer Center, Bastrop, TX 78602, USA;
| | - Patrick R. Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
- New York Consortium in Evolutionary Primatology, New York, NY 10065, USA
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052, USA;
| | - Jason M. Kamilar
- Department of Anthropology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Amy L. Bauernfeind
- Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA;
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Courtney C. Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| |
Collapse
|
2
|
Joshy D, Santpere G, Yi SV. Accelerated cell-type-specific regulatory evolution of the human brain. Proc Natl Acad Sci U S A 2024; 121:e2411918121. [PMID: 39680759 PMCID: PMC11670112 DOI: 10.1073/pnas.2411918121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/30/2024] [Indexed: 12/18/2024] Open
Abstract
The molecular basis of human brain evolution is a key piece in understanding the evolution of human-specific cognitive and behavioral traits. Comparative studies have suggested that human brain evolution was accompanied by accelerated changes of gene expression (referred to as "regulatory evolution"), especially those leading to an increase of gene products involved in energy production and metabolism. However, the signals of accelerated regulatory evolution were not always consistent across studies. One confounding factor is the diversity of distinctive cell types in the human brain. Here, we leveraged single-cell human and nonhuman primate transcriptomic data to investigate regulatory evolution at cell-type resolution. We relied on six well-established major cell types: excitatory and inhibitory neurons, astrocytes, microglia, oligodendrocytes, and oligodendrocyte precursor cells. We found pervasive signatures of accelerated regulatory evolution in the human brains compared to the chimpanzee brains in the major six cell types, as well as across multiple neuronal subtypes. Moreover, regulatory evolution is highly cell type specific rather than shared between cell types and strongly associated with cellular-level epigenomic features. Evolutionarily differentially expressed genes (DEGs) exhibit greater cell-type specificity than other genes, suggesting their role in the functional specialization of individual cell types in the human brain. As we continue to unfold the cellular complexity of the brain, the actual scope of DEGs in the human brain appears to be much broader than previously estimated. Our study supports the acceleration of cell-type-specific functional programs as an important feature of human brain evolution.
Collapse
Affiliation(s)
- Dennis Joshy
- Department of Mechanical Engineering, University of California, Santa Barbara, CA93106
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
| | - Gabriel Santpere
- Hospital del Mar Research Institute, Parc de Recerca Biomèdica de Barcelona, Barcelona08003, Catalonia, Spain
| | - Soojin V. Yi
- Neuroscience Research Institute, University of California, Santa Barbara, CA93106
- Department of Ecology, Evolution, Marine Biology, University of California, Santa Barbara, CA93106
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA93106
| |
Collapse
|
3
|
Rickelton K, Zintel TM, Pizzollo J, Miller E, Ely JJ, Raghanti MA, Hopkins WD, Hof PR, Sherwood CC, Bauernfeind AL, Babbitt CC. Tempo and mode of gene expression evolution in the brain across primates. eLife 2024; 13:e70276. [PMID: 38275218 PMCID: PMC10876213 DOI: 10.7554/elife.70276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/25/2024] [Indexed: 01/27/2024] Open
Abstract
Primate evolution has led to a remarkable diversity of behavioral specializations and pronounced brain size variation among species (Barton, 2012; DeCasien and Higham, 2019; Powell et al., 2017). Gene expression provides a promising opportunity for studying the molecular basis of brain evolution, but it has been explored in very few primate species to date (e.g. Khaitovich et al., 2005; Khrameeva et al., 2020; Ma et al., 2022; Somel et al., 2009). To understand the landscape of gene expression evolution across the primate lineage, we generated and analyzed RNA-seq data from four brain regions in an unprecedented eighteen species. Here, we show a remarkable level of variation in gene expression among hominid species, including humans and chimpanzees, despite their relatively recent divergence time from other primates. We found that individual genes display a wide range of expression dynamics across evolutionary time reflective of the diverse selection pressures acting on genes within primate brain tissue. Using our samples that represent a 190-fold difference in primate brain size, we identified genes with variation in expression most correlated with brain size. Our study extensively broadens the phylogenetic context of what is known about the molecular evolution of the brain across primates and identifies novel candidate genes for the study of genetic regulation of brain evolution.
Collapse
Affiliation(s)
- Katherine Rickelton
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Trisha M Zintel
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Jason Pizzollo
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts AmherstAmherstUnited States
| | - Emily Miller
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| | - John J Ely
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
- MAEBIOS Epidemiology UnitAlamogordoUnited States
| | - Mary Ann Raghanti
- Department of Anthropology, School of Biomedical Sciences, and Brain Health Research Institute, Kent State UniversityKentUnited States
| | - William D Hopkins
- Department of Comparative Medicine, Michale E. Keeling Center for Comparative Medicine,The University of Texas M D Anderson Cancer CentreBastropUnited States
| | - Patrick R Hof
- New York Consortium in Evolutionary PrimatologyNew YorkUnited States
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount SinaiNew YorkUnited States
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington UniversityWashingtonUnited States
| | - Amy L Bauernfeind
- Department of Neuroscience, Washington University School of MedicineSt. LouisUnited States
- Department of Anthropology, Washington University in St. LouisSt. LouisUnited States
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts AmherstAmherstUnited States
| |
Collapse
|
4
|
Zintel TM, Pizzollo J, Claypool CG, Babbitt CC. Astrocytes Drive Divergent Metabolic Gene Expression in Humans and Chimpanzees. Genome Biol Evol 2024; 16:evad239. [PMID: 38159045 PMCID: PMC10829071 DOI: 10.1093/gbe/evad239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/13/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024] Open
Abstract
The human brain utilizes ∼20% of all of the body's metabolic resources, while chimpanzee brains use <10%. Although previous work shows significant differences in metabolic gene expression between the brains of primates, we have yet to fully resolve the contribution of distinct brain cell types. To investigate cell type-specific interspecies differences in brain gene expression, we conducted RNA-seq on neural progenitor cells, neurons, and astrocytes generated from induced pluripotent stem cells from humans and chimpanzees. Interspecies differential expression analyses revealed that twice as many genes exhibit differential expression in astrocytes (12.2% of all genes expressed) than neurons (5.8%). Pathway enrichment analyses determined that astrocytes, rather than neurons, diverged in expression of glucose and lactate transmembrane transport, as well as pyruvate processing and oxidative phosphorylation. These findings suggest that astrocytes may have contributed significantly to the evolution of greater brain glucose metabolism with proximity to humans.
Collapse
Affiliation(s)
- Trisha M Zintel
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Jason Pizzollo
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Christopher G Claypool
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
5
|
Hao Y, Song G, Zhang YE, Zhai W, Jia C, Ji Y, Tang S, Lv H, Qu Y, Lei F. Divergent contributions of coding and noncoding sequences to initial high-altitude adaptation in passerine birds endemic to the Qinghai-Tibet Plateau. Mol Ecol 2023; 32:3524-3540. [PMID: 37000417 DOI: 10.1111/mec.16942] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/27/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023]
Abstract
Early events in the evolution of an ancestral lineage can shape the adaptive patterns of descendant species, but the evolutionary mechanisms driving initial adaptation from an ancestor remain largely unexplored. High-altitude adaptations have been extensively explored from the viewpoint of protein-coding genes; however, the contribution of noncoding regions remains relatively neglected. Here, we integrate genomic and transcriptomic data to investigate adaptive evolution in the ancestor of three high-altitude snowfinch species endemic to the Qinghai-Tibet Plateau. Our genome-wide scan for adaptation in the snowfinch ancestor identifies strong adaptation signals in functions of development and metabolism for the coding genes, but in functions of the nervous system development for noncoding regions. This pattern is exclusive to the snowfinch ancestor compared to a control ancestral lineage subject to weak selection. Changes in noncoding regions in the snowfinch ancestor, especially those nearest to coding genes, may be disproportionately associated with the differential expression of genes in the brain tissue compared to other tissues. Extensive gene expression in the brain tissue can be further altered via genetic regulatory networks of transcription factors harbouring potential accelerated regulatory regions (e.g., the development-related transcription factor YEATS4). Altogether, our study provides new evidence concerning how coding and noncoding sequences work through decoupled pathways in initial adaptation to the selective pressure of high-altitude environments. The analysis highlights the idea that noncoding sequences may be promising elements in facilitating the rapid evolution and adaptation to high altitudes.
Collapse
Affiliation(s)
- Yan Hao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Gang Song
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Weiwei Zhai
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Chenxi Jia
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yanzhu Ji
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Tang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Hongrui Lv
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yanhua Qu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
6
|
Deng A, Wang T, Wang J, Li L, Wang X, Liu L, Wen T. Adaptive mechanisms of Bacillus to near space extreme environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 886:163952. [PMID: 37164076 DOI: 10.1016/j.scitotenv.2023.163952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/12/2023]
Abstract
Earth's near space is an extreme atmosphere environment with high levels of radiation, low atmospheric pressure and dramatic temperature fluctuations. The region is above the flight altitude of aircraft but below the orbit of satellites, which has special and Mars-like conditions for investigating the survival and evolution of life. Technical limitations including flight devices, payloads and technologies/methodologies hinder microbiological research in near space. In this study, we investigated microbial survival and adaptive strategies in near space using a scientific balloon fight mission and multi-omics analyses. Methods for sample preparation, storage, protector and vessel were optimized to prepare the exposed microbial samples. After 3 h 17 min of exposure at a float altitude of ~32 km, only Bacillus strains were alive with survival efficiencies of 0-10-6. Diverse mutants with significantly altered metabolites were generated, firstly proving that Earth's near space could be used as a new powerful microbial breeding platform. Multi-omics analyses of mutants revealed cascade changes at the genome, transcriptome and proteome levels. In response to environmental stresses, two mutants had similar proteome changes caused by different genomic mutations and mRNA expression levels. Metabolic network analysis combined with proteins' expression levels revealed that metabolic fluxes of EMP, PPP and purine synthesis-related pathways were significantly altered to increase/decrease inosine production. Further analysis showed that proteins related to translation, molecular chaperones, cell wall/membrane, sporulation, DNA replication/repair and anti-oxidation were significantly upregulated, enabling cells to efficiently repair DNA/protein damages and improve viability against environmental stress. Overall, these results revealed genetic and metabolic responses of Bacillus to the harsh conditions in near space, providing a research basis for bacterial adaptive mechanisms in extreme environments.
Collapse
Affiliation(s)
- Aihua Deng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tiantian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junyue Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lai Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueliang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Liu
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Tingyi Wen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Savaid medical school, University of Chinese Academy of Sciences, Beijing 100049, China; China Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Abstract
DNA methylation is a critical regulatory mechanism implicated in development, learning, memory, and disease in the human brain. Here we have elucidated DNA methylation changes during recent human brain evolution. We demonstrate dynamic evolutionary trajectories of DNA methylation in cell-type and cytosine-context specific manner. Specifically, DNA methylation in non-CG context, namely CH methylation, has increased (hypermethylation) in neuronal gene bodies during human brain evolution, contributing to human-specific down-regulation of genes and co-expression modules. The effects of CH hypermethylation is particularly pronounced in early development and neuronal subtypes. In contrast, DNA methylation in CG context shows pronounced reduction (hypomethylation) in human brains, notably in cis-regulatory regions, leading to upregulation of downstream genes. We show that the majority of differential CG methylation between neurons and oligodendrocytes originated before the divergence of hominoids and catarrhine monkeys, and harbors strong signal for genetic risk for schizophrenia. Remarkably, a substantial portion of differential CG methylation between neurons and oligodendrocytes emerged in the human lineage since the divergence from the chimpanzee lineage and carries significant genetic risk for schizophrenia. Therefore, recent epigenetic evolution of human cortex has shaped the cellular regulatory landscape and contributed to the increased vulnerability to neuropsychiatric diseases.
Collapse
|
8
|
Liu Y, Konopka G. An integrative understanding of comparative cognition: lessons from human brain evolution. Integr Comp Biol 2020; 60:991-1006. [PMID: 32681799 PMCID: PMC7608741 DOI: 10.1093/icb/icaa109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A comprehensive understanding of animal cognition requires the integration of studies on behavior, electrophysiology, neuroanatomy, development, and genomics. Although studies of comparative cognition are receiving increasing attention from organismal biologists, most current studies focus on the comparison of behaviors and anatomical structures to understand their adaptative values. However, to understand the most potentially complex cognitive program of the human brain a greater synthesis of a multitude of disciplines is needed. In this review, we start with extensive neuroanatomic comparisons between humans and other primates. One likely specialization of the human brain is the expansion of neocortex, especially in regions for high-order cognition (e.g., prefrontal cortex). We then discuss how such an expansion can be linked to heterochrony of the brain developmental program, resulting in a greater number of neurons and enhanced computational capacity. Furthermore, alteration of gene expression in the human brain has been associated with positive selection in DNA sequences of gene regulatory regions. These results not only imply that genes associated with brain development are a major factor in the evolution of cognition, but also that high-quality whole-genome sequencing and gene manipulation techniques are needed for an integrative and functional understanding of comparative cognition in non-model organisms.
Collapse
Affiliation(s)
- Yuxiang Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
9
|
Anderson JA, Vilgalys TP, Tung J. Broadening primate genomics: new insights into the ecology and evolution of primate gene regulation. Curr Opin Genet Dev 2020; 62:16-22. [PMID: 32569794 PMCID: PMC7483836 DOI: 10.1016/j.gde.2020.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/17/2022]
Abstract
Comparative analyses have played a key role in understanding how gene regulatory evolution contributes to primate phenotypic diversity. Recently, these studies have expanded to include a wider range of species, within-population as well as interspecific analyses, and research on wild as well as captive individuals. This expansion provides context for understanding genetic and environmental effects on gene regulation in humans, including the importance of the pathogen and social environments. Although taxonomic representation remains biased, inclusion of more species has also begun to reveal the evolutionary processes that explain whether and when gene regulation is conserved. Together, this work highlights how studies in other primates contribute to understanding evolution in our own lineage, and we conclude by identifying promising avenues for future work.
Collapse
Affiliation(s)
- Jordan A Anderson
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Tauras P Vilgalys
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA; Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jenny Tung
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA; Institute of Primate Research, National Museums of Kenya, Nairobi 00502, Kenya; Duke Population Research Institute, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
10
|
Bauernfeind AL, Babbitt CC. Metabolic changes in human brain evolution. Evol Anthropol 2020; 29:201-211. [PMID: 32329960 DOI: 10.1002/evan.21831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/30/2019] [Accepted: 03/13/2020] [Indexed: 12/23/2022]
Abstract
Because the human brain is considerably larger than those of other primates, it is not surprising that its energy requirements would far exceed that of any of the species within the order. Recently, the development of stem cell technologies and single-cell transcriptomics provides novel ways to address the question of what specific genomic changes underlie the human brain's unique phenotype. In this review, we consider what is currently known about human brain metabolism using a variety of methods from brain imaging and stereology to transcriptomics. Next, we examine novel opportunities that stem cell technologies and single-cell transcriptomics provide to further our knowledge of human brain energetics. These new experimental approaches provide the ability to elucidate the functional effects of changes in genetic sequence and expression levels that potentially had a profound impact on the evolution of the human brain.
Collapse
Affiliation(s)
- Amy L Bauernfeind
- Department of Neuroscience, Washington University Medical School, St. Louis, Missouri, USA.,Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
11
|
Penso-Dolfin L, Haerty W, Hindle A, Di Palma F. microRNA profiling in the Weddell seal suggests novel regulatory mechanisms contributing to diving adaptation. BMC Genomics 2020; 21:303. [PMID: 32293246 PMCID: PMC7158035 DOI: 10.1186/s12864-020-6675-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022] Open
Abstract
Background The Weddell Seal (Leptonychotes weddelli) represents a remarkable example of adaptation to diving among marine mammals. This species is capable of diving > 900 m deep and remaining underwater for more than 60 min. A number of key physiological specializations have been identified, including the low levels of aerobic, lipid-based metabolism under hypoxia, significant increase in oxygen storage in blood and muscle; high blood volume and extreme cardiovascular control. These adaptations have been linked to increased abundance of key proteins, suggesting an important, yet still understudied role for gene reprogramming. In this study, we investigate the possibility that post-transcriptional gene regulation by microRNAs (miRNAs) has contributed to the adaptive evolution of diving capacities in the Weddell Seal. Results Using small RNA data across 4 tissues (brain, heart, muscle and plasma), in 3 biological replicates, we generate the first miRNA annotation in this species, consisting of 559 high confidence, manually curated miRNA loci. Evolutionary analyses of miRNA gain and loss highlight a high number of Weddell seal specific miRNAs. Four hundred sixteen miRNAs were differentially expressed (DE) among tissues, whereas 80 miRNAs were differentially expressed (DE) across all tissues between pups and adults and age differences for specific tissues were detected in 188 miRNAs. mRNA targets of these altered miRNAs identify possible protective mechanisms in individual tissues, particularly relevant to hypoxia tolerance, anti-apoptotic pathways, and nitric oxide signal transduction. Novel, lineage-specific miRNAs associated with developmental changes target genes with roles in angiogenesis and vasoregulatory signaling. Conclusions Altogether, we provide an overview of miRNA composition and evolution in the Weddell seal, and the first insights into their possible role in the specialization to diving.
Collapse
Affiliation(s)
- Luca Penso-Dolfin
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK. .,German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| | - Wilfried Haerty
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| | - Allyson Hindle
- Massachusetts General Hospital, 55 Fruit St, Boston, MA, 02114, USA.,University of Nevada Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV, 89154, USA
| | - Federica Di Palma
- Earlham Institute, Norwich Research Park, Colney Lane, Norwich, NR47UZ, UK
| |
Collapse
|
12
|
Housman G, Quillen EE, Stone AC. Intraspecific and interspecific investigations of skeletal DNA methylation and femur morphology in primates. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 173:34-49. [PMID: 32170728 DOI: 10.1002/ajpa.24041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/11/2020] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Epigenetic mechanisms influence the development and maintenance of complex phenotypes and may also contribute to the evolution of species-specific phenotypes. With respect to skeletal traits, little is known about the gene regulation underlying these hard tissues or how tissue-specific patterns are associated with bone morphology or vary among species. To begin exploring these topics, this study evaluates one epigenetic mechanism, DNA methylation, in skeletal tissues from five nonhuman primate species which display anatomical and locomotor differences representative of their phylogenetic groups. MATERIALS AND METHODS First, we test whether intraspecific variation in skeletal DNA methylation is associated with intraspecific variation in femur morphology. Second, we identify interspecific differences in DNA methylation and assess whether these lineage-specific patterns may have contributed to species-specific morphologies. Specifically, we use the Illumina Infinium MethylationEPIC BeadChip to identify DNA methylation patterns in femur trabecular bone from baboons (n = 28), macaques (n = 10), vervets (n = 10), chimpanzees (n = 4), and marmosets (n = 6). RESULTS Significant differentially methylated positions (DMPs) were associated with a subset of morphological variants, but these likely have small biological effects and may be confounded by other variables associated with morphological variation. Conversely, several species-specific DMPs were identified, and these are found in genes enriched for functions associated with complex skeletal traits. DISCUSSION Overall, these findings reveal that while intraspecific epigenetic variation is not readily associated with skeletal morphology differences, some interspecific epigenetic differences in skeletal tissues exist and may contribute to evolutionarily distinct phenotypes. This work forms a foundation for future explorations of gene regulation and skeletal trait evolution in primates.
Collapse
Affiliation(s)
- Genevieve Housman
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| | - Ellen E Quillen
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, Arizona, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
13
|
Blake LE, Roux J, Hernando-Herraez I, Banovich NE, Perez RG, Hsiao CJ, Eres I, Cuevas C, Marques-Bonet T, Gilad Y. A comparison of gene expression and DNA methylation patterns across tissues and species. Genome Res 2020; 30:250-262. [PMID: 31953346 PMCID: PMC7050529 DOI: 10.1101/gr.254904.119] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 01/02/2020] [Indexed: 01/02/2023]
Abstract
Previously published comparative functional genomic data sets from primates using frozen tissue samples, including many data sets from our own group, were often collected and analyzed using nonoptimal study designs and analysis approaches. In addition, when samples from multiple tissues were studied in a comparative framework, individuals and tissues were confounded. We designed a multitissue comparative study of gene expression and DNA methylation in primates that minimizes confounding effects by using a balanced design with respect to species, tissues, and individuals. We also developed a comparative analysis pipeline that minimizes biases attributable to sequence divergence. Thus, we present the most comprehensive catalog of similarities and differences in gene expression and DNA methylation levels between livers, kidneys, hearts, and lungs, in humans, chimpanzees, and rhesus macaques. We estimate that overall, interspecies and inter-tissue differences in gene expression levels can only modestly be accounted for by corresponding differences in promoter DNA methylation. However, the expression pattern of genes with conserved inter-tissue expression differences can be explained by corresponding interspecies methylation changes more often. Finally, we show that genes whose tissue-specific regulatory patterns are consistent with the action of natural selection are highly connected in both gene regulatory and protein–protein interaction networks.
Collapse
Affiliation(s)
- Lauren E Blake
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Julien Roux
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.,Department of Biomedicine, University of Basel, 4031 Basel, Switzerland.,Swiss Institute of Bioinformatics, 4031 Basel, Switzerland
| | | | - Nicholas E Banovich
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Raquel Garcia Perez
- Universitat Pompeu Fabra, Institute of Evolutionary Biology, 88 08003 Barcelona, Spain
| | - Chiaowen Joyce Hsiao
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Ittai Eres
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Claudia Cuevas
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Tomas Marques-Bonet
- Universitat Pompeu Fabra, Institute of Evolutionary Biology, 88 08003 Barcelona, Spain.,Passeig de Lluís Companys, Catalan Institution of Research and Advanced Studies, 23 08010 Barcelona, Spain.,Barcelona Institute of Science and Technology, Centre for Genomic Regulation, 88 08003 Barcelona, Spain.,Universitat Autònoma de Barcelona, Institut Català de Paleontologia Miquel Crusafont, 08193 Barcelona, Spain
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA.,Department of Medicine, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
14
|
Abstract
Circadian rhythms are driven by a transcription-translation feedback loop that separates anabolic and catabolic processes across the Earth's 24-h light-dark cycle. Central pacemaker neurons that perceive light entrain a distributed clock network and are closely juxtaposed with hypothalamic neurons involved in regulation of sleep/wake and fast/feeding states. Gaps remain in identifying how pacemaker and extrapacemaker neurons communicate with energy-sensing neurons and the distinct role of circuit interactions versus transcriptionally driven cell-autonomous clocks in the timing of organismal bioenergetics. In this review, we discuss the reciprocal relationship through which the central clock drives appetitive behavior and metabolic homeostasis and the pathways through which nutrient state and sleep/wake behavior affect central clock function.
Collapse
Affiliation(s)
- Jonathan Cedernaes
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Nathan Waldeck
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | - Joseph Bass
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| |
Collapse
|
15
|
Wang Y, Gao S, Zhao Y, Chen WH, Shao JJ, Wang NN, Li M, Zhou GX, Wang L, Shen WJ, Xu JT, Deng WD, Wang W, Chen YL, Jiang Y. Allele-specific expression and alternative splicing in horse×donkey and cattle×yak hybrids. Zool Res 2019; 40:293-304. [PMID: 31271004 PMCID: PMC6680129 DOI: 10.24272/j.issn.2095-8137.2019.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Divergence of gene expression and alternative splicing is a crucial driving force in the evolution of species; to date, however the molecular mechanism remains unclear. Hybrids of closely related species provide a suitable model to analyze allele-specific expression (ASE) and allele-specific alternative splicing (ASS). Analysis of ASE and ASS can uncover the differences in cis-regulatory elements between closely related species, while eliminating interference of trans-regulatory elements. Here, we provide a detailed characterization of ASE and ASS from 19 and 10 transcriptome datasets across five tissues from reciprocal-cross hybrids of horse×donkey (mule/hinny) and cattle×yak (dzo), respectively. Results showed that 4.8%-8.7% and 10.8%-16.7% of genes exhibited ASE and ASS, respectively. Notably, lncRNAs and pseudogenes were more likely to show ASE than protein-coding genes. In addition, genes showing ASE and ASS in mule/hinny were found to be involved in the regulation of muscle strength, whereas those of dzo were involved in high-altitude adaptation. In conclusion, our study demonstrated that exploration of genes showing ASE and ASS in hybrids of closely related species is feasible for species evolution research.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Shan Gao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Yue Zhao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Wei-Huang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Jun-Jie Shao
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Ni-Ni Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Ming Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Guang-Xian Zhou
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Lei Wang
- Stake Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining Qinghai 810016, China
| | - Wen-Jing Shen
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Jing-Tao Xu
- Stake Key Laboratory of Plateau Ecology and Agriculture, Qinghai Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining Qinghai 810016, China
| | - Wei-Dong Deng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming Yunnan 650223, China
| | - Wen Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Yu-Lin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling Shaanxi 712100, China
| |
Collapse
|
16
|
Koopmans F, Pandya NJ, Franke SK, Phillippens IHCMH, Paliukhovich I, Li KW, Smit AB. Comparative Hippocampal Synaptic Proteomes of Rodents and Primates: Differences in Neuroplasticity-Related Proteins. Front Mol Neurosci 2018; 11:364. [PMID: 30333727 PMCID: PMC6176546 DOI: 10.3389/fnmol.2018.00364] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 09/13/2018] [Indexed: 01/20/2023] Open
Abstract
Key to the human brain’s unique capacities are a myriad of neural cell types, specialized molecular expression signatures, and complex patterns of neuronal connectivity. Neurons in the human brain communicate via well over a quadrillion synapses. Their specific contribution might be key to the dynamic activity patterns that underlie primate-specific cognitive function. Recently, functional differences were described in transmission capabilities of human and rat synapses. To test whether unique expression signatures of synaptic proteins are at the basis of this, we performed a quantitative analysis of the hippocampal synaptic proteome of four mammalian species, two primates, human and marmoset, and two rodents, rat and mouse. Abundance differences down to 1.15-fold at an FDR-corrected p-value of 0.005 were reliably detected using SWATH mass spectrometry. The high measurement accuracy of SWATH allowed the detection of a large group of differentially expressed proteins between individual species and rodent vs. primate. Differentially expressed proteins between rodent and primate were found highly enriched for plasticity-related proteins.
Collapse
Affiliation(s)
- Frank Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nikhil J Pandya
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sigrid K Franke
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
17
|
Berto S, Nowick K. Species-Specific Changes in a Primate Transcription Factor Network Provide Insights into the Molecular Evolution of the Primate Prefrontal Cortex. Genome Biol Evol 2018; 10:2023-2036. [PMID: 30059966 PMCID: PMC6105097 DOI: 10.1093/gbe/evy149] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/27/2018] [Indexed: 02/07/2023] Open
Abstract
The human prefrontal cortex (PFC) differs from that of other primates with respect to size, histology, and functional abilities. Here, we analyzed genome-wide expression data of humans, chimpanzees, and rhesus macaques to discover evolutionary changes in transcription factor (TF) networks that may underlie these phenotypic differences. We determined the co-expression networks of all TFs with species-specific expression including their potential target genes and interaction partners in the PFC of all three species. Integrating these networks allowed us inferring an ancestral network for all three species. This ancestral network as well as the networks for each species is enriched for genes involved in forebrain development, axonogenesis, and synaptic transmission. Our analysis allows us to directly compare the networks of each species to determine which links have been gained or lost during evolution. Interestingly, we detected that most links were gained on the human lineage, indicating increase TF cooperativity in humans. By comparing network changes between different tissues, we discovered that in brain tissues, but not in the other tissues, the human networks always had the highest connectivity. To pinpoint molecular changes underlying species-specific phenotypes, we analyzed the sub-networks of TFs derived only from genes with species-specific expression changes in the PFC. These sub-networks differed significantly in structure and function between the human and chimpanzee. For example, the human-specific sub-network is enriched for TFs implicated in cognitive disorders and for genes involved in synaptic plasticity and cognitive functions. Our results suggest evolutionary changes in TF networks that might have shaped morphological and functional differences between primate brains, in particular in the human PFC.
Collapse
Affiliation(s)
- Stefano Berto
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX.,Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Germany
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics (IZBI), University of Leipzig, Germany.,Faculty for Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Germany
| |
Collapse
|
18
|
Fontenot MR, Berto S, Liu Y, Werthmann G, Douglas C, Usui N, Gleason K, Tamminga CA, Takahashi JS, Konopka G. Novel transcriptional networks regulated by CLOCK in human neurons. Genes Dev 2017; 31:2121-2135. [PMID: 29196536 PMCID: PMC5749161 DOI: 10.1101/gad.305813.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/07/2017] [Indexed: 01/01/2023]
Abstract
Fontenot et al. show that CLOCK regulates the expression of genes involved in neuronal migration. Dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. The molecular mechanisms underlying human brain evolution are not fully understood; however, previous work suggested that expression of the transcription factor CLOCK in the human cortex might be relevant to human cognition and disease. In this study, we investigated this novel transcriptional role for CLOCK in human neurons by performing chromatin immunoprecipitation sequencing for endogenous CLOCK in adult neocortices and RNA sequencing following CLOCK knockdown in differentiated human neurons in vitro. These data suggested that CLOCK regulates the expression of genes involved in neuronal migration, and a functional assay showed that CLOCK knockdown increased neuronal migratory distance. Furthermore, dysregulation of CLOCK disrupts coexpressed networks of genes implicated in neuropsychiatric disorders, and the expression of these networks is driven by hub genes with human-specific patterns of expression. These data support a role for CLOCK-regulated transcriptional cascades involved in human brain evolution and function.
Collapse
Affiliation(s)
- Miles R Fontenot
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Stefano Berto
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Yuxiang Liu
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Gordon Werthmann
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Connor Douglas
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kelly Gleason
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Carol A Tamminga
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Joseph S Takahashi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
19
|
Sousa AMM, Zhu Y, Raghanti MA, Kitchen RR, Onorati M, Tebbenkamp ATN, Stutz B, Meyer KA, Li M, Kawasawa YI, Liu F, Perez RG, Mele M, Carvalho T, Skarica M, Gulden FO, Pletikos M, Shibata A, Stephenson AR, Edler MK, Ely JJ, Elsworth JD, Horvath TL, Hof PR, Hyde TM, Kleinman JE, Weinberger DR, Reimers M, Lifton RP, Mane SM, Noonan JP, State MW, Lein ES, Knowles JA, Marques-Bonet T, Sherwood CC, Gerstein MB, Sestan N. Molecular and cellular reorganization of neural circuits in the human lineage. Science 2017; 358:1027-1032. [PMID: 29170230 PMCID: PMC5776074 DOI: 10.1126/science.aan3456] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 10/17/2017] [Indexed: 01/06/2023]
Abstract
To better understand the molecular and cellular differences in brain organization between human and nonhuman primates, we performed transcriptome sequencing of 16 regions of adult human, chimpanzee, and macaque brains. Integration with human single-cell transcriptomic data revealed global, regional, and cell-type-specific species expression differences in genes representing distinct functional categories. We validated and further characterized the human specificity of genes enriched in distinct cell types through histological and functional analyses, including rare subpallial-derived interneurons expressing dopamine biosynthesis genes enriched in the human striatum and absent in the nonhuman African ape neocortex. Our integrated analysis of the generated data revealed diverse molecular and cellular features of the phylogenetic reorganization of the human brain across multiple levels, with relevance for brain function and disease.
Collapse
Affiliation(s)
- André M M Sousa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Ying Zhu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Robert R Kitchen
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Marco Onorati
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Biology, Unit of Cell and Developmental Biology, University of Pisa, Pisa, Italy
| | - Andrew T N Tebbenkamp
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Bernardo Stutz
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, New Haven, CT, USA
| | - Kyle A Meyer
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Mingfeng Li
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Yuka Imamura Kawasawa
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Departments of Pharmacology and Biochemistry and Molecular Biology, Institute for Personalized Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Fuchen Liu
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Raquel Garcia Perez
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Catalonia, Spain
| | - Marta Mele
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Catalonia, Spain
| | - Tiago Carvalho
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Catalonia, Spain
| | - Mario Skarica
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Forrest O Gulden
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Mihovil Pletikos
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Akemi Shibata
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Alexa R Stephenson
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Melissa K Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - John J Ely
- Alamogordo Primate Facility, Holloman Air Force Base, NM, USA
| | - John D Elsworth
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Tamas L Horvath
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, New Haven, CT, USA
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas M Hyde
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Joel E Kleinman
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins University Medical Campus, Baltimore, MD, USA
| | - Mark Reimers
- Neuroscience Program, Michigan State University, East Lansing, MI, USA
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Yale University, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Shrikant M Mane
- Yale Center for Genomic Analysis, Yale School of Medicine, New Haven, CT, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Matthew W State
- Department of Psychiatry and Langley Porter Psychiatric Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, WA, USA
| | - James A Knowles
- Department of Psychiatry and Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Tomas Marques-Bonet
- Institut de Biologia Evolutiva, Consejo Superior de Investigaciones Científicas, Universitat Pompeu Fabra, Barcelona Biomedical Research Park, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
- Centro Nacional de Analisis Genomico, Barcelona, Catalonia, Spain
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, USA
| | - Mark B Gerstein
- Program in Computational Biology and Bioinformatics, Departments of Molecular Biophysics and Biochemistry and Computer Science, Yale University, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, New Haven, CT, USA
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Program in Cellular Neuroscience, Neurodegeneration, and Repair and Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
20
|
Affiliation(s)
- Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
| | - Aida Gómez-Robles
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC 20052
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
21
|
Neuronal-expressed microRNA-targeted pseudogenes compete with coding genes in the human brain. Transl Psychiatry 2017; 7:e1199. [PMID: 28786976 PMCID: PMC5611730 DOI: 10.1038/tp.2017.163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/07/2017] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs orchestrate brain functioning via interaction with microRNA recognition elements (MRE) on target transcripts. However, the global impact of potential competition on the microRNA pool between coding and non-coding brain transcripts that share MREs with them remains unexplored. Here we report that non-coding pseudogene transcripts carrying MREs (PSG+MRE) often show duplicated origin, evolutionary conservation and higher expression in human temporal lobe neurons than comparable duplicated MRE-deficient pseudogenes (PSG-MRE). PSG+MRE participate in neuronal RNA-induced silencing complexes (RISC), indicating functional involvement. Furthermore, downregulation cell culture experiments validated bidirectional co-regulation of PSG+MRE with MRE-sharing coding transcripts, frequently not their mother genes, and with targeted microRNAs; also, PSG+MRE single-nucleotide polymorphisms associated with schizophrenia, bipolar disorder and autism, suggesting interaction with mental diseases. Our findings indicate functional roles of duplicated PSG+MRE in brain development and cognition, supporting physiological impact of the reciprocal co-regulation of PSG+MRE with MRE-sharing coding transcripts in human brain neurons.
Collapse
|
22
|
Sousa AMM, Meyer KA, Santpere G, Gulden FO, Sestan N. Evolution of the Human Nervous System Function, Structure, and Development. Cell 2017; 170:226-247. [PMID: 28708995 DOI: 10.1016/j.cell.2017.06.036] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 04/21/2017] [Accepted: 06/22/2017] [Indexed: 12/22/2022]
Abstract
The nervous system-in particular, the brain and its cognitive abilities-is among humans' most distinctive and impressive attributes. How the nervous system has changed in the human lineage and how it differs from that of closely related primates is not well understood. Here, we consider recent comparative analyses of extant species that are uncovering new evidence for evolutionary changes in the size and the number of neurons in the human nervous system, as well as the cellular and molecular reorganization of its neural circuits. We also discuss the developmental mechanisms and underlying genetic and molecular changes that generate these structural and functional differences. As relevant new information and tools materialize at an unprecedented pace, the field is now ripe for systematic and functionally relevant studies of the development and evolution of human nervous system specializations.
Collapse
Affiliation(s)
- André M M Sousa
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Kyle A Meyer
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Gabriel Santpere
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Forrest O Gulden
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA; Department of Genetics, Yale School of Medicine, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Section of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT, USA; Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
23
|
Babbitt CC, Haygood R, Nielsen WJ, Wray GA. Gene expression and adaptive noncoding changes during human evolution. BMC Genomics 2017; 18:435. [PMID: 28583075 PMCID: PMC5460488 DOI: 10.1186/s12864-017-3831-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/31/2017] [Indexed: 01/14/2023] Open
Abstract
Background Despite evidence for adaptive changes in both gene expression and non-protein-coding, putatively regulatory regions of the genome during human evolution, the relationship between gene expression and adaptive changes in cis-regulatory regions remains unclear. Results Here we present new measurements of gene expression in five tissues of humans and chimpanzees, and use them to assess this relationship. We then compare our results with previous studies of adaptive noncoding changes, analyzing correlations at the level of gene ontology groups, in order to gain statistical power to detect correlations. Conclusions Consistent with previous studies, we find little correlation between gene expression and adaptive noncoding changes at the level of individual genes; however, we do find significant correlations at the level of biological function ontology groups. The types of function include processes regulated by specific transcription factors, responses to genetic or chemical perturbations, and differentiation of cell types within the immune system. Among functional categories co-enriched with both differential expression and noncoding adaptation, prominent themes include cancer, particularly epithelial cancers, and neural development and function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3831-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Courtney C Babbitt
- Department of Biology, Duke University, Durham, NC, 27708, USA. .,Institute for Genome Sciences & Policy, Duke University, Durham, NC, 27708, USA. .,Present Address: Department of Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA.
| | | | | | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, 27708, USA.,Institute for Genome Sciences & Policy, Duke University, Durham, NC, 27708, USA.,Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
24
|
Mendizabal I, Shi L, Keller TE, Konopka G, Preuss TM, Hsieh TF, Hu E, Zhang Z, Su B, Yi SV. Comparative Methylome Analyses Identify Epigenetic Regulatory Loci of Human Brain Evolution. Mol Biol Evol 2016; 33:2947-2959. [PMID: 27563052 PMCID: PMC5062329 DOI: 10.1093/molbev/msw176] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
How do epigenetic modifications change across species and how do these modifications affect evolution? These are fundamental questions at the forefront of our evolutionary epigenomic understanding. Our previous work investigated human and chimpanzee brain methylomes, but it was limited by the lack of outgroup data which is critical for comparative (epi)genomic studies. Here, we compared whole genome DNA methylation maps from brains of humans, chimpanzees and also rhesus macaques (outgroup) to elucidate DNA methylation changes during human brain evolution. Moreover, we validated that our approach is highly robust by further examining 38 human-specific DMRs using targeted deep genomic and bisulfite sequencing in an independent panel of 37 individuals from five primate species. Our unbiased genome-scan identified human brain differentially methylated regions (DMRs), irrespective of their associations with annotated genes. Remarkably, over half of the newly identified DMRs locate in intergenic regions or gene bodies. Nevertheless, their regulatory potential is on par with those of promoter DMRs. An intriguing observation is that DMRs are enriched in active chromatin loops, suggesting human-specific evolutionary remodeling at a higher-order chromatin structure. These findings indicate that there is substantial reprogramming of epigenomic landscapes during human brain evolution involving noncoding regions.
Collapse
Affiliation(s)
- Isabel Mendizabal
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country, Leioa, Spain
| | - Lei Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China The Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI
| | - Thomas E Keller
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX
| | - Todd M Preuss
- Division of Neuropharmacology and Neurologic Diseases & Center for Translational Social Neuroscience, Department of Pathology and Laboratory Medicine, Yerkes National Primate Research Center, Emory University School of Medicine, Emory University, Atlanta, GA
| | - Tzung-Fu Hsieh
- Department of Plant and Microbial Biology and Plants for Human Health Institute, North Carolina State University, Raleigh, NC
| | - Enzhi Hu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Soojin V Yi
- School of Biological Sciences, Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA
| |
Collapse
|
25
|
Advani AS, Chen AY, Babbitt CC. Human fibroblasts display a differential focal adhesion phenotype relative to chimpanzee. EVOLUTION MEDICINE AND PUBLIC HEALTH 2016; 2016:110-6. [PMID: 26971204 PMCID: PMC4804348 DOI: 10.1093/emph/eow010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 02/17/2016] [Indexed: 12/17/2022]
Abstract
It has been documented that there are differences in disease susceptibilities between humans and non-human primates. We investigate one of these differences in fibroblasts to examine differences in cellular adhesion between humans and chimpanzees using microscopy and gene expression and have found significant differences in both datasets. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors. There are a number of documented differences between humans and our closest relatives in responses to wound healing and in disease susceptibilities, suggesting a differential cellular response to certain environmental factors. In this study, we sought to look at a specific cell type, fibroblasts, to examine differences in cellular adhesion between humans and chimpanzees in visualized cells and in gene expression. We have found significant differences in the number of focal adhesions between primary human and chimpanzee fibroblasts. Additionally, we see that adhesion related gene ontology categories are some of the most differentially expressed between human and chimpanzee in normal fibroblast cells. These results suggest that human and chimpanzee fibroblasts may have somewhat different adhesive properties, which could play a role in differential disease phenotypes and responses to external factors.
Collapse
Affiliation(s)
| | - Annie Y Chen
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Courtney C Babbitt
- Department of Biology, Duke University, Durham, NC 27708, USA Department of Biology, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
26
|
Abstract
MicroRNAs (miRNAs) are endogenous, small non-coding RNA molecules that mediate post-transcriptional gene suppression by incomplete matches with their host mRNAs. In the central nervous system, miRNAs that functionally interact with their target genes constitute a flexible, robust and buffered regulatory network, exerting diverse roles in brain evolution and development. However, distinct variation either in hub miRNA expression levels or patterns may initiate and/or progress various adult-onset nerve-related diseases. In this review, we will summarize the current knowledge about the general hallmarks of brain miRNAs that act as vital determinants in increasingly complicated neural activities. We endeavor to provide a constructive insight into the neuroscience research in the quest to comprehend molecular underpinnings of physiological functions and pathological disorders in central nervous system.
Collapse
Affiliation(s)
- Wei Chen
- a Institute of Laboratory Animal Science; Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center; Peking Union Medical Collage (PUMC) ; Beijing , PR China
| | | |
Collapse
|
27
|
Krienen FM, Yeo BTT, Ge T, Buckner RL, Sherwood CC. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain. Proc Natl Acad Sci U S A 2016; 113:E469-78. [PMID: 26739559 PMCID: PMC4739529 DOI: 10.1073/pnas.1510903113] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.
Collapse
Affiliation(s)
- Fenna M Krienen
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology and Institute for Neuroscience, The George Washington University, Washington, DC 20052;
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Clinical Imaging Research Centre, Singapore Institute for Neurotechnology & Memory Networks Program, National University of Singapore, Singapore 117583; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129
| | - Tian Ge
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129; Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA 02114
| | - Randy L Buckner
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129; Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114; Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA 02138
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology and Institute for Neuroscience, The George Washington University, Washington, DC 20052
| |
Collapse
|
28
|
Weyer S, Pääbo S. Functional Analyses of Transcription Factor Binding Sites that Differ between Present-Day and Archaic Humans. Mol Biol Evol 2015; 33:316-22. [PMID: 26454764 PMCID: PMC4866544 DOI: 10.1093/molbev/msv215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
We analyze 25 previously identified transcription factor binding sites that carry DNA sequence changes that are present in all or nearly all present-day humans, yet occur in the ancestral state in Neandertals and Denisovans, the closest evolutionary relatives of humans. When the ancestral and derived forms of the transcription factor binding sites are tested using reporter constructs in 3 neuronal cell lines, the activity of 12 of the derived versions of transcription factor binding sites differ from the respective ancestral variants. This suggests that the majority of this class of evolutionary differences between modern humans and Neandertals may affect gene expression in at least some tissue or cell type.
Collapse
Affiliation(s)
- Sven Weyer
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Svante Pääbo
- Department of Evolutionary Genetics, Max-Planck-Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
29
|
Zhou X, Cain CE, Myrthil M, Lewellen N, Michelini K, Davenport ER, Stephens M, Pritchard JK, Gilad Y. Epigenetic modifications are associated with inter-species gene expression variation in primates. Genome Biol 2015; 15:547. [PMID: 25468404 PMCID: PMC4290387 DOI: 10.1186/s13059-014-0547-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Changes in gene regulation have long been thought to play an important role in evolution and speciation, especially in primates. Over the past decade, comparative genomic studies have revealed extensive inter-species differences in gene expression levels, yet we know much less about the extent to which regulatory mechanisms differ between species. RESULTS To begin addressing this gap, we perform a comparative epigenetic study in primate lymphoblastoid cell lines, to query the contribution of RNA polymerase II and four histone modifications, H3K4me1, H3K4me3, H3K27ac, and H3K27me3, to inter-species variation in gene expression levels. We find that inter-species differences in mark enrichment near transcription start sites are significantly more often associated with inter-species differences in the corresponding gene expression level than expected by chance alone. Interestingly, we also find that first-order interactions among the five marks, as well as chromatin states, do not markedly contribute to the degree of association between the marks and inter-species variation in gene expression levels, suggesting that the marginal effects of the five marks dominate this contribution. CONCLUSIONS Our observations suggest that epigenetic modifications are substantially associated with changes in gene expression levels among primates and may represent important molecular mechanisms in primate evolution.
Collapse
|
30
|
Ronke C, Dannemann M, Halbwax M, Fischer A, Helmschrodt C, Brügel M, André C, Atencia R, Mugisha L, Scholz M, Ceglarek U, Thiery J, Pääbo S, Prüfer K, Kelso J. Lineage-Specific Changes in Biomarkers in Great Apes and Humans. PLoS One 2015; 10:e0134548. [PMID: 26247603 PMCID: PMC4527672 DOI: 10.1371/journal.pone.0134548] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/10/2015] [Indexed: 12/15/2022] Open
Abstract
Although human biomedical and physiological information is readily available, such information for great apes is limited. We analyzed clinical chemical biomarkers in serum samples from 277 wild- and captive-born great apes and from 312 healthy human volunteers as well as from 20 rhesus macaques. For each individual, we determined a maximum of 33 markers of heart, liver, kidney, thyroid and pancreas function, hemoglobin and lipid metabolism and one marker of inflammation. We identified biomarkers that show differences between humans and the great apes in their average level or activity. Using the rhesus macaques as an outgroup, we identified human-specific differences in the levels of bilirubin, cholinesterase and lactate dehydrogenase, and bonobo-specific differences in the level of apolipoprotein A-I. For the remaining twenty-nine biomarkers there was no evidence for lineage-specific differences. In fact, we find that many biomarkers show differences between individuals of the same species in different environments. Of the four lineage-specific biomarkers, only bilirubin showed no differences between wild- and captive-born great apes. We show that the major factor explaining the human-specific difference in bilirubin levels may be genetic. There are human-specific changes in the sequence of the promoter and the protein-coding sequence of uridine diphosphoglucuronosyltransferase 1 (UGT1A1), the enzyme that transforms bilirubin and toxic plant compounds into water-soluble, excretable metabolites. Experimental evidence that UGT1A1 is down-regulated in the human liver suggests that changes in the promoter may be responsible for the human-specific increase in bilirubin. We speculate that since cooking reduces toxic plant compounds, consumption of cooked foods, which is specific to humans, may have resulted in relaxed constraint on UGT1A1 which has in turn led to higher serum levels of bilirubin in humans.
Collapse
Affiliation(s)
- Claudius Ronke
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
- * E-mail:
| | - Michael Dannemann
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michel Halbwax
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Anne Fischer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christin Helmschrodt
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Mathias Brügel
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Claudine André
- Lola Ya Bonobo Sanctuary, “Petites Chutes de la Lukaya,” Kinshasa, Democratic Republic of Congo
| | - Rebeca Atencia
- Réserve Naturelle Sanctuaire à Chimpanzés de Tchimpounga, Jane Goodall Institute, Pointe-Noire, Republic of Congo
| | - Lawrence Mugisha
- Conservation & Ecosystem Health Alliance (CEHA), Kampala, Uganda
- College of Veterinary Medicine, Animal Resources & Biosecurity, Makerere University, Kampala, Uganda
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
| | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Joachim Thiery
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, Leipzig, Germany
| | - Svante Pääbo
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Kay Prüfer
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Janet Kelso
- Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| |
Collapse
|
31
|
Rozenberg A, Parida M, Leese F, Weiss LC, Tollrian R, Manak JR. Transcriptional profiling of predator-induced phenotypic plasticity in Daphnia pulex. Front Zool 2015. [PMID: 26213557 PMCID: PMC4514973 DOI: 10.1186/s12983-015-0109-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background Predator-induced defences are a prominent example of phenotypic plasticity found from single-celled organisms to vertebrates. The water flea Daphnia pulex is a very convenient ecological genomic model for studying predator-induced defences as it exhibits substantial morphological changes under predation risk. Most importantly, however, genetically identical clones can be transcriptionally profiled under both control and predation risk conditions and be compared due to the availability of the sequenced reference genome. Earlier gene expression analyses of candidate genes as well as a tiled genomic microarray expression experiment have provided insights into some genes involved in predator-induced phenotypic plasticity. Here we performed the first RNA-Seq analysis to identify genes that were differentially expressed in defended vs. undefended D. pulex specimens in order to explore the genetic mechanisms underlying predator-induced defences at a qualitatively novel level. Results We report 230 differentially expressed genes (158 up- and 72 down-regulated) identified in at least two of three different assembly approaches. Several of the differentially regulated genes belong to families of paralogous genes. The most prominent classes amongst the up-regulated genes include cuticle genes, zinc-metalloproteinases and vitellogenin genes. Furthermore, several genes from this group code for proteins recruited in chromatin-reorganization or regulation of the cell cycle (cyclins). Down-regulated gene classes include C-type lectins, proteins involved in lipogenesis, and other families, some of which encode proteins with no known molecular function. Conclusions The RNA-Seq transcriptome data presented in this study provide important insights into gene regulatory patterns underlying predator-induced defences. In particular, we characterized different effector genes and gene families found to be regulated in Daphnia in response to the presence of an invertebrate predator. These effector genes are mostly in agreement with expectations based on observed phenotypic changes including morphological alterations, i.e., expression of proteins involved in formation of protective structures and in cuticle strengthening, as well as proteins required for resource re-allocation. Our findings identify key genetic pathways associated with anti-predator defences. Electronic supplementary material The online version of this article (doi:10.1186/s12983-015-0109-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrey Rozenberg
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitaetsstrasse 150, Bochum, 44801 Germany
| | - Mrutyunjaya Parida
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| | - Florian Leese
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitaetsstrasse 150, Bochum, 44801 Germany.,Present address: University of Duisburg-Essen, Aquatic Ecosystems Research, Universitaetsstrasse 5, Essen, 45141 Germany
| | - Linda C Weiss
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitaetsstrasse 150, Bochum, 44801 Germany.,Environmental Genomics Group, School of Biosciences, University of Birmingham, Birmingham, B15 2TT UK
| | - Ralph Tollrian
- Department of Animal Ecology, Evolution and Biodiversity, Ruhr University Bochum, Universitaetsstrasse 150, Bochum, 44801 Germany
| | - J Robert Manak
- Departments of Biology and Pediatrics and the Roy J. Carver Center for Genomics, 459 Biology Building, University of Iowa, Iowa City, IA 52242 USA
| |
Collapse
|
32
|
Homo sapiens exhibit a distinct pattern of CNV genes regulation: an important role of miRNAs and SNPs in expression plasticity. Sci Rep 2015; 5:12163. [PMID: 26178010 PMCID: PMC4503977 DOI: 10.1038/srep12163] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 06/16/2015] [Indexed: 11/25/2022] Open
Abstract
Gene expression regulation is a complex and highly organized process involving a variety of genomic factors. It is widely accepted that differences in gene expression can contribute to the phenotypic variability between species, and that their interpretation can aid in the understanding of the physiologic variability. CNVs and miRNAs are two major players in the regulation of expression plasticity and may be responsible for the unique phenotypic characteristics observed in different lineages. We have previously demonstrated that a close interaction between these two genomic elements may have contributed to the regulation of gene expression during evolution. This work presents the molecular interactions between CNV and non CNV genes with miRNAs and other genomic elements in eight different species. A comprehensive analysis of these interactions indicates a unique nature of human CNV genes regulation as compared to other species. By using genes with short 3′ UTR that abolish the “canonical” miRNA-dependent regulation, as a model, we demonstrate a distinct and tight regulation of human genes that might explain some of the unique features of human physiology. In addition, comparison of gene expression regulation between species indicated that there is a significant difference between humans and mice possibly questioning the effectiveness of the latest as experimental models of human diseases.
Collapse
|
33
|
Bauernfeind AL, Reyzer ML, Caprioli RM, Ely JJ, Babbitt CC, Wray GA, Hof PR, Sherwood CC. High spatial resolution proteomic comparison of the brain in humans and chimpanzees. J Comp Neurol 2015; 523:2043-61. [PMID: 25779868 DOI: 10.1002/cne.23777] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/03/2015] [Accepted: 03/11/2015] [Indexed: 12/30/2022]
Abstract
We performed high-throughput mass spectrometry at high spatial resolution from individual regions (anterior cingulate and primary motor, somatosensory, and visual cortices) and layers of the neocortex (layers III, IV, and V) and cerebellum (granule cell layer), as well as the caudate nucleus in humans and chimpanzees. A total of 39 mass spectrometry peaks were matched with probable protein identifications in both species, allowing for comparison in expression. We explored how the pattern of protein expression varies across regions and cortical layers to provide insights into the differences in molecular phenotype of these neural structures between species. The expression of proteins differed principally in a region- and layer-specific pattern, with more subtle differences between species. Specifically, human and chimpanzee brains were similar in their distribution of proteins related to the regulation of transcription and enzyme activity but differed in their expression of proteins supporting aerobic metabolism. Whereas most work assessing molecular expression differences in the brains of primates has been performed on gene transcripts, this dataset extends current understanding of the differential molecular expression that may underlie human cognitive specializations.
Collapse
Affiliation(s)
- Amy L Bauernfeind
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, 63110.,Department of Anthropology, Washington University in St. Louis, St. Louis, Missouri, 63130.,Department of Anthropology, The George Washington University, Washington, DC, 20052
| | - Michelle L Reyzer
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, 37232.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, 37232
| | - Richard M Caprioli
- Mass Spectrometry Research Center, Vanderbilt University Medical Center, Nashville, Tennessee, 37232.,Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, 37232
| | - John J Ely
- MAEBIOS-TM, Alamogordo, New Mexico, 88310
| | - Courtney C Babbitt
- Department of Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003
| | - Gregory A Wray
- Institute for Genome Sciences & Policy, Duke University, Durham, North Carolina, 27708.,Department of Biology, Duke University, Durham, North Carolina, 27708.,Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, 27708
| | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 10029.,New York Consortium in Evolutionary Primatology, New York, New York
| | - Chet C Sherwood
- Department of Anthropology, The George Washington University, Washington, DC, 20052
| |
Collapse
|
34
|
Rebeiz M, Patel NH, Hinman VF. Unraveling the Tangled Skein: The Evolution of Transcriptional Regulatory Networks in Development. Annu Rev Genomics Hum Genet 2015; 16:103-31. [PMID: 26079281 DOI: 10.1146/annurev-genom-091212-153423] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The molecular and genetic basis for the evolution of anatomical diversity is a major question that has inspired evolutionary and developmental biologists for decades. Because morphology takes form during development, a true comprehension of how anatomical structures evolve requires an understanding of the evolutionary events that alter developmental genetic programs. Vast gene regulatory networks (GRNs) that connect transcription factors to their target regulatory sequences control gene expression in time and space and therefore determine the tissue-specific genetic programs that shape morphological structures. In recent years, many new examples have greatly advanced our understanding of the genetic alterations that modify GRNs to generate newly evolved morphologies. Here, we review several aspects of GRN evolution, including their deep preservation, their mechanisms of alteration, and how they originate to generate novel developmental programs.
Collapse
Affiliation(s)
- Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania 15260;
| | | | | |
Collapse
|
35
|
Tung J, Zhou X, Alberts SC, Stephens M, Gilad Y. The genetic architecture of gene expression levels in wild baboons. eLife 2015; 4. [PMID: 25714927 PMCID: PMC4383332 DOI: 10.7554/elife.04729] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 02/03/2015] [Indexed: 12/19/2022] Open
Abstract
Primate evolution has been argued to result, in part, from changes in how genes are regulated. However, we still know little about gene regulation in natural primate populations. We conducted an RNA sequencing (RNA-seq)-based study of baboons from an intensively studied wild population. We performed complementary expression quantitative trait locus (eQTL) mapping and allele-specific expression analyses, discovering substantial evidence for, and surprising power to detect, genetic effects on gene expression levels in the baboons. eQTL were most likely to be identified for lineage-specific, rapidly evolving genes; interestingly, genes with eQTL significantly overlapped between baboons and a comparable human eQTL data set. Our results suggest that genes vary in their tolerance of genetic perturbation, and that this property may be conserved across species. Further, they establish the feasibility of eQTL mapping using RNA-seq data alone, and represent an important step towards understanding the genetic architecture of gene expression in primates.
Collapse
Affiliation(s)
- Jenny Tung
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Xiang Zhou
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Susan C Alberts
- Institute of Primate Research, National Museums of Kenya, Nairobi, Kenya
| | - Matthew Stephens
- Department of Human Genetics, University of Chicago, Chicago, United States
| | - Yoav Gilad
- Department of Human Genetics, University of Chicago, Chicago, United States
| |
Collapse
|
36
|
Bauernfeind AL, Babbitt CC. The appropriation of glucose through primate neurodevelopment. J Hum Evol 2014; 77:132-40. [DOI: 10.1016/j.jhevol.2014.05.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/22/2014] [Accepted: 05/02/2014] [Indexed: 12/25/2022]
|
37
|
Rao J, Yang L, Wang C, Zhang D, Shi J. Digital gene expression analysis of mature seeds of transgenic maize overexpressingAspergillus nigerphyA2and its non-transgenic counterpart. GM CROPS & FOOD 2014; 4:98-108. [DOI: 10.4161/gmcr.25593] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
38
|
Necsulea A, Kaessmann H. Evolutionary dynamics of coding and non-coding transcriptomes. Nat Rev Genet 2014; 15:734-48. [PMID: 25297727 DOI: 10.1038/nrg3802] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gene expression changes may underlie much of phenotypic evolution. The development of high-throughput RNA sequencing protocols has opened the door to unprecedented large-scale and cross-species transcriptome comparisons by allowing accurate and sensitive assessments of transcript sequences and expression levels. Here, we review the initial wave of the new generation of comparative transcriptomic studies in mammals and vertebrate outgroup species in the context of earlier work. Together with various large-scale genomic and epigenomic data, these studies have unveiled commonalities and differences in the dynamics of gene expression evolution for various types of coding and non-coding genes across mammalian lineages, organs, developmental stages, chromosomes and sexes. They have also provided intriguing new clues to the regulatory basis and phenotypic implications of evolutionary gene expression changes.
Collapse
Affiliation(s)
- Anamaria Necsulea
- Laboratory of Developmental Genomics, School of Life Sciences, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Henrik Kaessmann
- 1] Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland. [2] Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Somel M, Rohlfs R, Liu X. Transcriptomic insights into human brain evolution: acceleration, neutrality, heterochrony. Curr Opin Genet Dev 2014; 29:110-9. [PMID: 25233113 DOI: 10.1016/j.gde.2014.09.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 08/31/2014] [Accepted: 09/01/2014] [Indexed: 01/09/2023]
Abstract
Primate brain transcriptome comparisons within the last 12 years have yielded interesting but contradictory observations on how the transcriptome evolves, and its adaptive role in human cognitive evolution. Since the human-chimpanzee common ancestor, the human prefrontal cortex transcriptome seems to have evolved more than that of the chimpanzee. But at the same time, most expression differences among species, especially those observed in adults, appear as consequences of neutral evolution at cis-regulatory sites. Adaptive expression changes in the human brain may be rare events involving timing shifts, or heterochrony, in specific neurodevelopmental processes. Disentangling adaptive and neutral expression changes, and associating these with human-specific features of the brain require improved methods, comparisons across more species, and further work on comparative development.
Collapse
Affiliation(s)
- Mehmet Somel
- Department of Biology, Middle East Technical University, Ankara, Turkey.
| | - Rori Rohlfs
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Xiling Liu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Shanghai, China
| |
Collapse
|
40
|
Pfefferle LW, Wray GA. Insights from a chimpanzee adipose stromal cell population: opportunities for adult stem cells to expand primate functional genomics. Genome Biol Evol 2014; 5:1995-2005. [PMID: 24092797 PMCID: PMC3814206 DOI: 10.1093/gbe/evt148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Comparisons between humans and chimpanzees are essential for understanding traits unique to each species. However, linking important phenotypic differences to underlying molecular changes is often challenging. The ability to generate, differentiate, and profile adult stem cells provides a powerful but underutilized opportunity to investigate the molecular basis for trait differences between species within specific cell types and in a controlled environment. Here, we characterize adipose stromal cells (ASCs) from Clint, the chimpanzee whose genome was first sequenced. Using imaging and RNA-Seq, we compare the chimpanzee ASCs with three comparable human cell lines. Consistent with previous studies on ASCs in humans, the chimpanzee cells have fibroblast-like morphology and express genes encoding components of the extracellular matrix at high levels. Differentially expressed genes are enriched for distinct functional classes between species: immunity and protein processing are higher in chimpanzees, whereas cell cycle and DNA processing are higher in humans. Although hesitant to draw definitive conclusions from these data given the limited sample size, we wish to stress the opportunities that adult stem cells offer for studying primate evolution. In particular, adult stem cells provide a powerful means to investigate the profound disease susceptibilities unique to humans and a promising tool for conservation efforts with nonhuman primates. By allowing for experimental perturbations in relevant cell types, adult stem cells promise to complement classic comparative primate genomics based on in vivo sampling.
Collapse
|
41
|
Barbash S, Shifman S, Soreq H. Global coevolution of human microRNAs and their target genes. Mol Biol Evol 2014; 31:1237-47. [PMID: 24600049 DOI: 10.1093/molbev/msu090] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) have presumably contributed to the emergence of the novel expression patterns, higher brain functions, and skills underlying human evolution. However, it is incompletely understood how new miRNAs have evolved in the human lineage because their initial emergence predictably entailed deleterious consequences due to their powerful multitarget effects. Here, we report genetic variation and conservation parameters for miRNAs and their predicted targets in the genomes of 1,092 humans and 58 additional organisms. We show that miRNAs were evolutionarily more conserved than their predicted binding sites, which were inversely subject to the accumulation of single-nucleotide variations over short evolutionary timescales. Moreover, the predictably "younger" human-specific miRNAs presented lower genetic variation than other miRNAs; their targets displayed higher genetic variation compared with other miRNA targets in diverse human populations; and neuronal miRNAs showed yet lower levels of genetic variation and were found to target more protein-coding genes than nonneuronal miRNAs. Furthermore, enrichment analysis indicated that targets of human-specific miRNAs primarily perform neuronal functions. Specifically, the genomic regions harboring the vertebrate-conserved neuronal miRNA-132 presented considerably higher conservation scores than those of its target genes throughout evolution, whereas both the recently evolved human miRNA-941 and its acquired targets showed relatively low conservation. Our findings demonstrate inversely correlated genetic variation around miRNAs and their targets, consistent with theories of coevolution of these elements and the predicted role attributed to miRNAs in recent human evolution.
Collapse
Affiliation(s)
- Shahar Barbash
- Department of Biological Chemistry, The Institute of Life Sciences and The Edmond & Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
42
|
Abstract
What evolutionary events led to the emergence of human cognition? Although the genetic differences separating modern humans from both non-human primates (for example, chimpanzees) and archaic hominins (Neanderthals and Denisovans) are known, linking human-specific mutations to the cognitive phenotype remains a challenge. One strategy is to focus on human-specific changes at the level of intermediate phenotypes, such as gene expression and metabolism, in conjunction with evolutionary changes in gene regulation involving transcription factors, microRNA and proximal regulatory elements. In this Review we show how this strategy has yielded some of the first hints about the mechanisms of human cognition.
Collapse
|
43
|
Pipes L, Li S, Bozinoski M, Palermo R, Peng X, Blood P, Kelly S, Weiss JM, Thierry-Mieg J, Thierry-Mieg D, Zumbo P, Chen R, Schroth GP, Mason CE, Katze MG. The non-human primate reference transcriptome resource (NHPRTR) for comparative functional genomics. Nucleic Acids Res 2012. [PMID: 23203872 PMCID: PMC3531109 DOI: 10.1093/nar/gks1268] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
RNA-based next-generation sequencing (RNA-Seq) provides a tremendous amount of new information regarding gene and transcript structure, expression and regulation. This is particularly true for non-coding RNAs where whole transcriptome analyses have revealed that the much of the genome is transcribed and that many non-coding transcripts have widespread functionality. However, uniform resources for raw, cleaned and processed RNA-Seq data are sparse for most organisms and this is especially true for non-human primates (NHPs). Here, we describe a large-scale RNA-Seq data and analysis infrastructure, the NHP reference transcriptome resource (http://nhprtr.org); it presently hosts data from12 species of primates, to be expanded to 15 species/subspecies spanning great apes, old world monkeys, new world monkeys and prosimians. Data are collected for each species using pools of RNA from comparable tissues. We provide data access in advance of its deposition at NCBI, as well as browsable tracks of alignments against the human genome using the UCSC genome browser. This resource will continue to host additional RNA-Seq data, alignments and assemblies as they are generated over the coming years and provide a key resource for the annotation of NHP genomes as well as informing primate studies on evolution, reproduction, infection, immunity and pharmacology.
Collapse
Affiliation(s)
- Lenore Pipes
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Shulha HP, Crisci JL, Reshetov D, Tushir JS, Cheung I, Bharadwaj R, Chou HJ, Houston IB, Peter CJ, Mitchell AC, Yao WD, Myers RH, Chen JF, Preuss TM, Rogaev EI, Jensen JD, Weng Z, Akbarian S. Human-specific histone methylation signatures at transcription start sites in prefrontal neurons. PLoS Biol 2012; 10:e1001427. [PMID: 23185133 PMCID: PMC3502543 DOI: 10.1371/journal.pbio.1001427] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 10/12/2012] [Indexed: 11/18/2022] Open
Abstract
Cognitive abilities and disorders unique to humans are thought to result from adaptively driven changes in brain transcriptomes, but little is known about the role of cis-regulatory changes affecting transcription start sites (TSS). Here, we mapped in human, chimpanzee, and macaque prefrontal cortex the genome-wide distribution of histone H3 trimethylated at lysine 4 (H3K4me3), an epigenetic mark sharply regulated at TSS, and identified 471 sequences with human-specific enrichment or depletion. Among these were 33 loci selectively methylated in neuronal but not non-neuronal chromatin from children and adults, including TSS at DPP10 (2q14.1), CNTN4 and CHL1 (3p26.3), and other neuropsychiatric susceptibility genes. Regulatory sequences at DPP10 and additional loci carried a strong footprint of hominid adaptation, including elevated nucleotide substitution rates and regulatory motifs absent in other primates (including archaic hominins), with evidence for selective pressures during more recent evolution and adaptive fixations in modern populations. Chromosome conformation capture at two neurodevelopmental disease loci, 2q14.1 and 16p11.2, revealed higher order chromatin structures resulting in physical contact of multiple human-specific H3K4me3 peaks spaced 0.5-1 Mb apart, in conjunction with a novel cis-bound antisense RNA linked to Polycomb repressor proteins and downregulated DPP10 expression. Therefore, coordinated epigenetic regulation via newly derived TSS chromatin could play an important role in the emergence of human-specific gene expression networks in brain that contribute to cognitive functions and neurological disease susceptibility in modern day humans.
Collapse
Affiliation(s)
- Hennady P. Shulha
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Jessica L. Crisci
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Denis Reshetov
- Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Moscow, Russian Federation
| | - Jogender S. Tushir
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Iris Cheung
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rahul Bharadwaj
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Hsin-Jung Chou
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Isaac B. Houston
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Cyril J. Peter
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Amanda C. Mitchell
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Wei-Dong Yao
- New England Primate Center, Southboro, Massachusetts, United States of America
| | - Richard H. Myers
- Department of Neurology, Boston University, Boston, Massachusetts, United States of America
| | - Jiang-fan Chen
- Department of Neurology, Boston University, Boston, Massachusetts, United States of America
| | - Todd M. Preuss
- Yerkes National Primate Research Center/Emory University, Atlanta, Georgia, United States of America
| | - Evgeny I. Rogaev
- Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Moscow, Russian Federation
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Research Center of Mental Health, Russian Academy of Medical Sciences, Moscow, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Russian Federation
| | - Jeffrey D. Jensen
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zhiping Weng
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Schahram Akbarian
- Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Departments of Psychiatry and Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, New York, United States of America
| |
Collapse
|
45
|
Konopka G, Friedrich T, Davis-Turak J, Winden K, Oldham MC, Gao F, Chen L, Wang GZ, Luo R, Preuss TM, Geschwind DH. Human-specific transcriptional networks in the brain. Neuron 2012; 75:601-17. [PMID: 22920253 DOI: 10.1016/j.neuron.2012.05.034] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/31/2012] [Indexed: 12/25/2022]
Abstract
Understanding human-specific patterns of brain gene expression and regulation can provide key insights into human brain evolution and speciation. Here, we use next-generation sequencing, and Illumina and Affymetrix microarray platforms, to compare the transcriptome of human, chimpanzee, and macaque telencephalon. Our analysis reveals a predominance of genes differentially expressed within human frontal lobe and a striking increase in transcriptional complexity specific to the human lineage in the frontal lobe. In contrast, caudate nucleus gene expression is highly conserved. We also identify gene coexpression signatures related to either neuronal processes or neuropsychiatric diseases, including a human-specific module with CLOCK as its hub gene and another module enriched for neuronal morphological processes and genes coexpressed with FOXP2, a gene important for language evolution. These data demonstrate that transcriptional networks have undergone evolutionary remodeling even within a given brain region, providing a window through which to view the foundation of uniquely human cognitive capacities.
Collapse
Affiliation(s)
- Genevieve Konopka
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
In this issue of Neuron, Konopka et al. (2012) describe their comparison of transcriptomes from frontal pole, caudate nucleus, and hippocampus of multiple adult humans, chimpanzees, and rhesus monkeys. The data provide an initial opportunity for linking genomic and brain differences among these primate species.
Collapse
|
47
|
Barrett LW, Fletcher S, Wilton SD. Regulation of eukaryotic gene expression by the untranslated gene regions and other non-coding elements. Cell Mol Life Sci 2012; 69:3613-34. [PMID: 22538991 PMCID: PMC3474909 DOI: 10.1007/s00018-012-0990-9] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 02/28/2012] [Accepted: 04/02/2012] [Indexed: 02/07/2023]
Abstract
There is now compelling evidence that the complexity of higher organisms correlates with the relative amount of non-coding RNA rather than the number of protein-coding genes. Previously dismissed as "junk DNA", it is the non-coding regions of the genome that are responsible for regulation, facilitating complex temporal and spatial gene expression through the combinatorial effect of numerous mechanisms and interactions working together to fine-tune gene expression. The major regions involved in regulation of a particular gene are the 5' and 3' untranslated regions and introns. In addition, pervasive transcription of complex genomes produces a variety of non-coding transcripts that interact with these regions and contribute to regulation. This review discusses recent insights into the regulatory roles of the untranslated gene regions and non-coding RNAs in the control of complex gene expression, as well as the implications of this in terms of organism complexity and evolution.
Collapse
Affiliation(s)
- Lucy W Barrett
- Centre for Neuromuscular and Neurological Disorders (CNND), The University of Western Australia (M518), 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | |
Collapse
|
48
|
Liu X, Song Y, Jiang N, Wang J, Tang B, Lu H, Peng S, Chang Z, Tang Y, Yin J, Liu M, Tan Y, Chen Q. Global gene expression analysis of the zoonotic parasite Trichinella spiralis revealed novel genes in host parasite interaction. PLoS Negl Trop Dis 2012; 6:e1794. [PMID: 22953016 PMCID: PMC3429391 DOI: 10.1371/journal.pntd.0001794] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 07/12/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Trichinellosis is a typical food-borne zoonotic disease which is epidemic worldwide and the nematode Trichinella spiralis is the main pathogen. The life cycle of T. spiralis contains three developmental stages, i.e. adult worms, new borne larva (new borne L1 larva) and muscular larva (infective L1 larva). Stage-specific gene expression in the parasites has been investigated with various immunological and cDNA cloning approaches, whereas the genome-wide transcriptome and expression features of the parasite have been largely unknown. The availability of the genome sequence information of T. spiralis has made it possible to deeply dissect parasite biology in association with global gene expression and pathogenesis. METHODOLOGY AND PRINCIPAL FINDINGS In this study, we analyzed the global gene expression patterns in the three developmental stages of T. spiralis using digital gene expression (DGE) analysis. Almost 15 million sequence tags were generated with the Illumina RNA-seq technology, producing expression data for more than 9,000 genes, covering 65% of the genome. The transcriptome analysis revealed thousands of differentially expressed genes within the genome, and importantly, a panel of genes encoding functional proteins associated with parasite invasion and immuno-modulation were identified. More than 45% of the genes were found to be transcribed from both strands, indicating the importance of RNA-mediated gene regulation in the development of the parasite. Further, based on gene ontological analysis, over 3000 genes were functionally categorized and biological pathways in the three life cycle stage were elucidated. CONCLUSIONS AND SIGNIFICANCE The global transcriptome of T. spiralis in three developmental stages has been profiled, and most gene activity in the genome was found to be developmentally regulated. Many metabolic and biological pathways have been revealed. The findings of the differential expression of several protein families facilitate understanding of the molecular mechanisms of parasite biology and the pathological aspects of trichinellosis.
Collapse
Affiliation(s)
- Xiaolei Liu
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Extensive evolutionary changes in regulatory element activity during human origins are associated with altered gene expression and positive selection. PLoS Genet 2012; 8:e1002789. [PMID: 22761590 PMCID: PMC3386175 DOI: 10.1371/journal.pgen.1002789] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Accepted: 05/07/2012] [Indexed: 11/19/2022] Open
Abstract
Understanding the molecular basis for phenotypic differences between humans and other primates remains an outstanding challenge. Mutations in non-coding regulatory DNA that alter gene expression have been hypothesized as a key driver of these phenotypic differences. This has been supported by differential gene expression analyses in general, but not by the identification of specific regulatory elements responsible for changes in transcription and phenotype. To identify the genetic source of regulatory differences, we mapped DNaseI hypersensitive (DHS) sites, which mark all types of active gene regulatory elements, genome-wide in the same cell type isolated from human, chimpanzee, and macaque. Most DHS sites were conserved among all three species, as expected based on their central role in regulating transcription. However, we found evidence that several hundred DHS sites were gained or lost on the lineages leading to modern human and chimpanzee. Species-specific DHS site gains are enriched near differentially expressed genes, are positively correlated with increased transcription, show evidence of branch-specific positive selection, and overlap with active chromatin marks. Species-specific sequence differences in transcription factor motifs found within these DHS sites are linked with species-specific changes in chromatin accessibility. Together, these indicate that the regulatory elements identified here are genetic contributors to transcriptional and phenotypic differences among primate species. The human genome shares a remarkable amount of genomic sequence with our closest living primate relatives. Researchers have long sought to understand what regions of the genome are responsible for unique species-specific traits. Previous studies have shown that many genes are differentially expressed between species, but the regulatory elements contributing to these differences are largely unknown. Here we report a genome-wide comparison of active gene regulatory elements in human, chimpanzee, and macaque, and we identify hundreds of regulatory elements that have been gained or lost in the human or chimpanzee genomes since their evolutionary divergence. These elements contain evidence of natural selection and correlate with species-specific changes in gene expression. Polymorphic DNA bases in transcription factor motifs that we found in these regulatory elements may be responsible for the varied biological functions across species. This study directly links phenotypic and transcriptional differences between species with changes in chromatin structure.
Collapse
|
50
|
Transcriptome of protoplasts reprogrammed into stem cells in Physcomitrella patens. PLoS One 2012; 7:e35961. [PMID: 22545152 PMCID: PMC3335808 DOI: 10.1371/journal.pone.0035961] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/26/2012] [Indexed: 11/22/2022] Open
Abstract
Background Differentiated plant cells can retain the capacity to be reprogrammed into pluripotent stem cells during regeneration. This capacity is associated with both cell cycle reactivation and acquisition of specific cellular characters. However, the molecular mechanisms underlying the reprogramming of protoplasts into stem cells remain largely unknown. Protoplasts of the moss Physcomitrella patens easily regenerate into protonema and therefore provide an ideal system to explore how differentiated cells can be reprogrammed to produce stem cells. Principal findings We obtained genome-wide digital gene expression tag profiles within the first three days of P. patens protoplast reprogramming. At four time-points during protoplast reprogramming, the transcript levels of 4827 genes changed more than four-fold and their expression correlated with the reprogramming phase. Gene ontology (GO) and pathway enrichment analysis of differentially expressed genes (DEGs) identified a set of significantly enriched GO terms and pathways, most of which were associated with photosynthesis, protein synthesis and stress responses. DEGs were grouped into six clusters that showed specific expression patterns using a K-means clustering algorithm. An investigation of function and expression patterns of genes identified a number of key candidate genes and pathways in early stages of protoplast reprogramming, which provided important clues to reveal the molecular mechanisms responsible for protoplast reprogramming. Conclusions We identified genes that show highly dynamic changes in expression during protoplast reprogramming into stem cells in P. patens. These genes are potential targets for further functional characterization and should be valuable for exploration of the mechanisms of stem cell reprogramming. In particular, our data provides evidence that protoplasts of P. patens are an ideal model system for elucidation of the molecular mechanisms underlying differentiated plant cell reprogramming.
Collapse
|