1
|
Wang J, Kan S, Kong J, Nie L, Fan W, Ren Y, Reeve W, Mower JP, Wu Z. Accumulation of Large Lineage-Specific Repeats Coincides with Sequence Acceleration and Structural Rearrangement in Plantago Plastomes. Genome Biol Evol 2024; 16:evae177. [PMID: 39190481 PMCID: PMC11354287 DOI: 10.1093/gbe/evae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
Repeats can mediate rearrangements and recombination in plant mitochondrial genomes and plastid genomes. While repeat accumulations are linked to heightened evolutionary rates and complex structures in specific lineages, debates persist regarding the extent of their influence on sequence and structural evolution. In this study, 75 Plantago plastomes were analyzed to investigate the relationships between repeats, nucleotide substitution rates, and structural variations. Extensive repeat accumulations were associated with significant rearrangements and inversions in the large inverted repeats (IRs), suggesting that repeats contribute to rearrangement hotspots. Repeats caused infrequent recombination that potentially led to substoichiometric shifting, supported by long-read sequencing. Repeats were implicated in elevating evolutionary rates by facilitating localized hypermutation, likely through DNA damage and repair processes. This study also observed a decrease in nucleotide substitution rates for loci translocating into IRs, supporting the role of biased gene conversion in maintaining lower substitution rates. Combined with known parallel changes in mitogenomes, it is proposed that potential dysfunction in nuclear-encoded genes associated with DNA replication, recombination, and repair may drive the evolution of Plantago organellar genomes. These findings contribute to understanding how repeats impact organellar evolution and stability, particularly in rapidly evolving plant lineages.
Collapse
Affiliation(s)
- Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Marine College, Shandong University, Weihai 264209, China
| | - Jiali Kong
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Liyun Nie
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Weishu Fan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yonglin Ren
- College of Environmental and Life Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Wayne Reeve
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Perth, WA 6150, Australia
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| |
Collapse
|
2
|
Wang J, Kan S, Liao X, Zhou J, Tembrock LR, Daniell H, Jin S, Wu Z. Plant organellar genomes: much done, much more to do. TRENDS IN PLANT SCIENCE 2024; 29:754-769. [PMID: 38220520 DOI: 10.1016/j.tplants.2023.12.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
Plastids and mitochondria are the only organelles that possess genomes of endosymbiotic origin. In recent decades, advances in sequencing technologies have contributed to a meteoric rise in the number of published organellar genomes, and have revealed greatly divergent evolutionary trajectories. In this review, we quantify the abundance and distribution of sequenced plant organellar genomes across the plant tree of life. We compare numerous genomic features between the two organellar genomes, with an emphasis on evolutionary trajectories, transfers, the current state of organellar genome editing by transcriptional activator-like effector nucleases (TALENs), transcription activator-like effector (TALE)-mediated deaminase, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas), as well as genetic transformation. Finally, we propose future research to understand these different evolutionary trajectories, and genome-editing strategies to promote functional studies and eventually improve organellar genomes.
Collapse
Affiliation(s)
- Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6000-6999, Australia
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Marine College, Shandong University, Weihai, 264209, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiawei Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
3
|
Han S, Zhang S, Yi R, Bi D, Ding H, Yang J, Ye Y, Xu W, Wu L, Zhuo R, Kan X. Phylogenomics and plastomics offer new evolutionary perspectives on Kalanchoideae (Crassulaceae). ANNALS OF BOTANY 2024; 133:585-604. [PMID: 38359907 PMCID: PMC11037489 DOI: 10.1093/aob/mcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND AND AIMS Kalanchoideae is one of three subfamilies within Crassulaceae and contains four genera. Despite previous efforts, the phylogeny of Kalanchoideae remains inadequately resolved with persistent issues including low support, unstructured topologies and polytomies. This study aimed to address two central objectives: (1) resolving the pending phylogenetic questions within Kalanchoideae by using organelle-scale 'barcodes' (plastomes) and nuclear data; and (2) investigating interspecific diversity patterns among Kalanchoideae plastomes. METHODS To explore the plastome evolution in Kalanchoideae, we newly sequenced 38 plastomes representing all four constituent genera (Adromischus, Cotyledon, Kalanchoe and Tylecodon). We performed comparative analyses of plastomic features, including GC and gene contents, gene distributions at the IR (inverted repeat) boundaries, nucleotide divergence, plastomic tRNA (pttRNA) structures and codon aversions. Additionally, phylogenetic inferences were inferred using both the plastomic dataset (79 genes) and nuclear dataset (1054 genes). KEY RESULTS Significant heterogeneities were observed in plastome lengths among Kalanchoideae, strongly correlated with LSC (large single copy) lengths. Informative diversities existed in the gene content at SSC/IRa (small single copy/inverted repeat a), with unique patterns individually identified in Adromischus leucophyllus and one major Kalanchoe clade. The ycf1 gene was assessed as a shared hypervariable region among all four genera, containing nine lineage-specific indels. Three pttRNAs exhibited unique structures specific to Kalanchoideae and the genera Adromischus and Kalanchoe. Moreover, 24 coding sequences revealed a total of 41 lineage-specific unused codons across all four constituent genera. The phyloplastomic inferences clearly depicted internal branching patterns in Kalanchoideae. Most notably, by both plastid- and nuclear-based phylogenies, our research offers the first evidence that Kalanchoe section Eukalanchoe is not monophyletic. CONCLUSIONS This study conducted comprehensive analyses on 38 newly reported Kalanchoideae plastomes. Importantly, our results not only reconstructed well-resolved phylogenies within Kalanchoideae, but also identified highly informative unique markers at the subfamily, genus and species levels. These findings significantly enhance our understanding of the evolutionary history of Kalanchoideae.
Collapse
Affiliation(s)
- Shiyun Han
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Sijia Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Ran Yi
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - De Bi
- Suzhou Polytechnic Institute of Agriculture, Suzhou 215000, China
| | - Hengwu Ding
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jianke Yang
- School of Basic Medical Sciences, Wannan Medical College, Wuhu 241000, China
| | - Yuanxin Ye
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenzhong Xu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Renying Zhuo
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding of Zhejiang Province, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xianzhao Kan
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
- The Institute of Bioinformatics, College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
4
|
Park S, Kwak M, Park S. Complete organelle genomes of Korean fir, Abies koreana and phylogenomics of the gymnosperm genus Abies using nuclear and cytoplasmic DNA sequence data. Sci Rep 2024; 14:7636. [PMID: 38561351 PMCID: PMC10985005 DOI: 10.1038/s41598-024-58253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Abies koreana E.H.Wilson is an endangered evergreen coniferous tree that is native to high altitudes in South Korea and susceptible to the effects of climate change. Hybridization and reticulate evolution have been reported in the genus; therefore, multigene datasets from nuclear and cytoplasmic genomes are needed to better understand its evolutionary history. Using the Illumina NovaSeq 6000 and Oxford Nanopore Technologies (ONT) PromethION platforms, we generated complete mitochondrial (1,174,803 bp) and plastid (121,341 bp) genomes from A. koreana. The mitochondrial genome is highly dynamic, transitioning from cis- to trans-splicing and breaking conserved gene clusters. In the plastome, the ONT reads revealed two structural conformations of A. koreana. The short inverted repeats (1186 bp) of the A. koreana plastome are associated with different structural types. Transcriptomic sequencing revealed 1356 sites of C-to-U RNA editing in the 41 mitochondrial genes. Using A. koreana as a reference, we additionally produced nuclear and organelle genomic sequences from eight Abies species and generated multiple datasets for maximum likelihood and network analyses. Three sections (Balsamea, Momi, and Pseudopicea) were well grouped in the nuclear phylogeny, but the phylogenomic relationships showed conflicting signals in the mitochondrial and plastid genomes, indicating a complicated evolutionary history that may have included introgressive hybridization. The obtained data illustrate that phylogenomic analyses based on sequences from differently inherited organelle genomes have resulted in conflicting trees. Organelle capture, organelle genome recombination, and incomplete lineage sorting in an ancestral heteroplasmic individual can contribute to phylogenomic discordance. We provide strong support for the relationships within Abies and new insights into the phylogenomic complexity of this genus.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Myounghai Kwak
- National Institute of Biological Resources, Incheon, 22689, South Korea.
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
5
|
Zhou S, Ma K, Mower JP, Liu Y, Zhou R. Leaf variegation caused by plastome structural variation: an example from Dianella tasmanica. HORTICULTURE RESEARCH 2024; 11:uhae009. [PMID: 38464478 PMCID: PMC10923649 DOI: 10.1093/hr/uhae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/01/2024] [Indexed: 03/12/2024]
Abstract
Variegated plants often exhibit plastomic heteroplasmy due to single-nucleotide mutations or small insertions/deletions in their albino sectors. Here, however, we identified a plastome structural variation in albino sectors of the variegated plant Dianella tasmanica (Asphodelaceae), a perennial herbaceous plant widely cultivated as an ornamental in tropical Asia. This structural variation, caused by intermolecular recombination mediated by an 11-bp inverted repeat flanking a 92-bp segment in the large single-copy region (LSC), generates a giant plastome (228 878 bp) with the largest inverted repeat of 105 226 bp and the smallest LSC of 92 bp known in land plants. It also generates an ~7-kb deletion on the boundary of the LSC, which eliminates three protein coding genes (psbA, matK, and rps16) and one tRNA gene (trnK). Albino sectors exhibit dramatic changes in expression of many plastid genes, including negligible expression of psbA, matK, and rps16, reduced expression of photosynthesis-related genes, and increased expression of genes related to the translational apparatus. Microscopic and ultrastructure observations showed that albino tissues were present in both green and albino sectors of the variegated individuals, and chloroplasts were poorly developed in the mesophyll cells of the albino tissues of the variegated individuals. These poorly developed chloroplasts likely carry the large and rearranged plastome, which is likely responsible for the loss of photosynthesis and albinism in the leaf margins. Considering that short repeats are relatively common in plant plastomes and that photosynthesis is not necessary for albino sectors, structural variation of this kind may not be rare in the plastomes of variegated plants.
Collapse
Affiliation(s)
- Shuaixi Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Kainan Ma
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation and Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68588, USA
| | - Ying Liu
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Renchao Zhou
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Fu CN, Wicke S, Zhu AD, Li DZ, Gao LM. Distinctive plastome evolution in carnivorous angiosperms. BMC PLANT BIOLOGY 2023; 23:660. [PMID: 38124058 PMCID: PMC10731798 DOI: 10.1186/s12870-023-04682-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Independent origins of carnivory in multiple angiosperm families are fabulous examples of convergent evolution using a diverse array of life forms and habitats. Previous studies have indicated that carnivorous plants have distinct evolutionary trajectories of plastid genome (plastome) compared to their non-carnivorous relatives, yet the extent and general characteristics remain elusive. RESULTS We compared plastomes from 9 out of 13 carnivorous families and their non-carnivorous relatives to assess carnivory-associated evolutionary patterns. We identified inversions in all sampled Droseraceae species and four species of Utricularia, Pinguicula, Darlingtonia and Triphyophyllum. A few carnivores showed distinct shifts in inverted repeat boundaries and the overall repeat contents. Many ndh genes, along with some other genes, were independently lost in several carnivorous lineages. We detected significant substitution rate variations in most sampled carnivorous lineages. A significant overall substitution rate acceleration characterizes the two largest carnivorous lineages of Droseraceae and Lentibulariaceae. We also observe moderate substitution rates acceleration in many genes of Cephalotus follicularis, Roridula gorgonias, and Drosophyllum lusitanicum. However, only a few genes exhibit significant relaxed selection. CONCLUSION Our results indicate that the carnivory of plants have different effects on plastome evolution across carnivorous lineages. The complex mechanism under carnivorous habitats may have resulted in distinctive plastome evolution with conserved plastome in the Brocchinia hechtioides to strongly reconfigured plastomes structures in Droseraceae. Organic carbon obtained from prey and the efficiency of utilizing prey-derived nutrients might constitute possible explanation.
Collapse
Affiliation(s)
- Chao-Nan Fu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China
| | - Susann Wicke
- Institute for Biology, Humboldt-University Berlin, Berlin, Germany
- Späth-Arboretum of the Humboldt-University Berlin, Berlin, Germany
| | - An-Dan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - De-Zhu Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lian-Ming Gao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, 674100, Yunnan, China.
| |
Collapse
|
7
|
Choi K, Hwang Y, Hong JK, Kang JS. Comparative Plastid Genome and Phylogenomic Analyses of Potamogeton Species. Genes (Basel) 2023; 14:1914. [PMID: 37895263 PMCID: PMC10606940 DOI: 10.3390/genes14101914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/29/2023] Open
Abstract
Potamogetonaceae are aquatic plants divided into six genera. The largest genus in the family is Potamogeton, which is morphologically diverse with many hybrids and polyploids. Potamogetonaceae plastomes were conserved in genome size (155,863 bp-156,669 bp), gene contents (113 genes in total, comprising 79 protein-coding genes and 30 tRNA and 4 rRNA genes), and GC content (36.5%). However, we detected a duplication of the trnH gene in the IR region of the Potamogeton crispus and P. maakianus plastomes. A comparative analysis of Alismatales indicated that the plastomes of Potamogetonaceae, Cymodaceae, and Ruppiaceae have experienced a 6-kb inversion of the rbcL-trnV region and the ndh complex has been lost in the Najas flexilis plastome. Five divergent hotspots (rps16-trnQ, atpF intron, rpoB-trnC, trnC-psbM, and ndhF-rpl32) were identified among the Potamogeton plastomes, which will be useful for species identification. Phylogenetic analyses showed that the family Potamogetonaceae is a well-defined with 100% bootstrap support and divided into two different clades, Potamogeton and Stuckenia. Compared to the nucleotide substitution rates among Alismatales, we found neutral selection in all plastid genes of Potamogeton species. Our results reveal the complete plastome sequences of Potamogeton species, and will be helpful for taxonomic identification, the elucidation of phylogenetic relationships, and the plastome structural analysis of aquatic plants.
Collapse
Affiliation(s)
- KyoungSu Choi
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (Y.H.); (J.-K.H.)
| | - Yong Hwang
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (Y.H.); (J.-K.H.)
| | - Jeong-Ki Hong
- Plant Research Team, Animal and Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (Y.H.); (J.-K.H.)
| | - Jong-Soo Kang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics & Breeding Institute, Research Institute of Agriculture and Life Science, College of Agriculture & Life Sciences, Seoul National University, Seoul 08826, Republic of Korea;
| |
Collapse
|
8
|
Xia Q, Zhang H, Lv D, El-Kassaby YA, Li W. Insights into phylogenetic relationships in Pinus inferred from a comparative analysis of complete chloroplast genomes. BMC Genomics 2023; 24:346. [PMID: 37349702 DOI: 10.1186/s12864-023-09439-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/09/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Pinus is the largest genus of Pinaceae and the most primitive group of modern genera. Pines have become the focus of many molecular evolution studies because of their wide use and ecological significance. However, due to the lack of complete chloroplast genome data, the evolutionary relationship and classification of pines are still controversial. With the development of new generation sequencing technology, sequence data of pines are becoming abundant. Here, we systematically analyzed and summarized the chloroplast genomes of 33 published pine species. RESULTS Generally, pines chloroplast genome structure showed strong conservation and high similarity. The chloroplast genome length ranged from 114,082 to 121,530 bp with similar positions and arrangements of all genes, while the GC content ranged from 38.45 to 39.00%. Reverse repeats showed a shrinking evolutionary trend, with IRa/IRb length ranging from 267 to 495 bp. A total of 3,205 microsatellite sequences and 5,436 repeats were detected in the studied species chloroplasts. Additionally, two hypervariable regions were assessed, providing potential molecular markers for future phylogenetic studies and population genetics. Through the phylogenetic analysis of complete chloroplast genomes, we offered novel opinions on the genus traditional evolutionary theory and classification. CONCLUSION We compared and analyzed the chloroplast genomes of 33 pine species, verified the traditional evolutionary theory and classification, and reclassified some controversial species classification. This study is helpful in analyzing the evolution, genetic structure, and the development of chloroplast DNA markers in Pinus.
Collapse
Affiliation(s)
- Qijing Xia
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongbin Zhang
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734031, China
| | - Dong Lv
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, 734031, China
| | - Yousry A El-Kassaby
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, Canada
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Castro AA, Nunes R, Carvalho LR, Targueta CP, Dos Santos Braga-Ferreira R, de Melo-Ximenes AA, Corvalán LCJ, Bertoni BW, Pereira AMS, de Campos Telles MP. Chloroplast genome characterization of Uncaria guianensis and Uncaria tomentosa and evolutive dynamics of the Cinchonoideae subfamily. Sci Rep 2023; 13:8390. [PMID: 37225737 DOI: 10.1038/s41598-023-34334-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/27/2023] [Indexed: 05/26/2023] Open
Abstract
Uncaria species are used in traditional medicine and are considered of high therapeutic value and economic importance. This work describes the assembly and annotation of the chloroplast genomes of U. guianensis and U. tomentosa, as well as a comparative analysis. The genomes were sequenced on MiSeq Illumina, assembled with NovoPlasty, and annotated using CHLOROBOX GeSeq. Addictionaly, comparative analysis were performed with six species from NCBI databases and primers were designed in Primer3 for hypervariable regions based on the consensus sequence of 16 species of the Rubiaceae family and validated on an in-silico PCR in OpenPrimeR. The genome size of U. guianensis and U. tomentosa was 155,505 bp and 156,390 bp, respectively. Both Species have 131 genes and GC content of 37.50%. The regions rpl32-ccsA, ycf1, and ndhF-ccsA showed the three highest values of nucleotide diversity within the species of the Rubiaceae family and within the Uncaria genus, these regions were trnH-psbA, psbM-trnY, and rps16-psbK. Our results indicates that the primer of the region ndhA had an amplification success for all species tested and can be promising for usage in the Rubiaceae family. The phylogenetic analysis recovered a congruent topology to APG IV. The gene content and the chloroplast genome structure of the analyzed species are conserved and most of the genes are under negative selection. We provide the cpDNA of Neotropical Uncaria species, an important genomic resource for evolutionary studies of the group.
Collapse
Affiliation(s)
- Andrezza Arantes Castro
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Rhewter Nunes
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil.
- Instituto Federal de Goiás - Campus Cidade de Goiás (IFG), Goiás, GO, 74600-000, Brazil.
| | - Larissa Resende Carvalho
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Cíntia Pelegrineti Targueta
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Ramilla Dos Santos Braga-Ferreira
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Amanda Alves de Melo-Ximenes
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | - Leonardo Carlos Jeronimo Corvalán
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
| | | | | | - Mariana Pires de Campos Telles
- Laboratório de Genética and Biodiversidade (LGBio), Instituto de Ciências Biológicas - Universidade Federal de Goiás (UFG), Goiânia, GO, 74045-155, Brazil
- Escola de Ciências Médicas e da Vida, Pontifícia Universidade Católica de Goiás (PUC - GO), Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
10
|
Li WJ, Feng T, Li J, He B, Zou S, Liu PJ. The complete chloroplast genome of Pseudotsuga sinensis, a China endemic species. Mitochondrial DNA B Resour 2023; 8:23-25. [PMID: 36632080 PMCID: PMC9828758 DOI: 10.1080/23802359.2022.2080012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In this study, we collected plant material from Pseudotsuga sinensis in Guizhou, China, and sequenced it. The complete chloroplast genome consisted of 122,243 bp, including a large single-copy (LSC) region, a small single-copy (SSC) region, and two inverted repeat regions like those in P. sinensis var. wilsoniana. The GC content of P. sinensis and P. sinensis var. wilsoniana are 38.7% and 38.8%, respectively. The reconstructed phylogenetic tree reveals that P. sinensis was a sister species to P. sinensis var. wilsoniana. Hence, the availability of the chloroplast genome of P. sinensis will promote further phylogenetic studies of the family Pinaceae.
Collapse
Affiliation(s)
- Wang Jun Li
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Guizhou University of Engineering Science, Bijie, China
| | - Tu Feng
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Guizhou University of Engineering Science, Bijie, China
| | - Jun Li
- Nature Reserve Service Station for Pseudotsuga sinensis in Weining, Bijie, China
| | - Bin He
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Guizhou University of Engineering Science, Bijie, China
| | - Shun Zou
- Guizhou Province Key Laboratory of Ecological Protection and Restoration of Typical Plateau Wetlands, Guizhou University of Engineering Science, Bijie, China
| | - Peng Ju Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China,CONTACT Peng Ju Liu CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
11
|
Wang P, Bai J, Li X, Liu T, Yan Y, Yang Y, Li H. Phylogenetic relationship and comparative analysis of the main Bupleuri Radix species in China. PeerJ 2023; 11:e15157. [PMID: 37077311 PMCID: PMC10108860 DOI: 10.7717/peerj.15157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 03/10/2023] [Indexed: 04/21/2023] Open
Abstract
Background Bupleuri Radix (Chaihu) is a famous traditional Chinese medicine derived from Bupleurum, Apiaceae. The origin of cultivated Chaihu germplasm in China is unclear, which has led to unstable Chaihu quality. In this study, we reconstructed the phylogeny of the main Chaihu germplasm species in China and identified potential molecular markers to authenticate its origin. Methods Three Bupleurum species (eight individuals), B. bicaule, B. chinense, and B. scorzonerifolium, were selected for genome skimming. Published genomes from B. falcatum and B. marginatum var. stenophyllum were used for comparative analysis. Results Sequences of the complete plastid genomes were conserved with 113 identical genes ranging from 155,540 to 155,866 bp in length. Phylogenetic reconstruction based on complete plastid genomes resolved intrageneric relationships of the five Bupleurum species with high support. Conflicts between the plastid and nuclear phylogenies were observed, which were mainly ascribed to introgressive hybridization. Comparative analysis showed that noncoding regions of the plastomes had most of the variable sequences. Eight regions (atpF-atpH, petN-psbM, rps16-psbK, petA-psbJ, ndhC-trnV/UAC and ycf1) had high divergence values in Bupleurum species and could be promising DNA barcodes for Chaihu authentication. A total of seven polymorphic cpSSRs and 438 polymorphic nSSRs were detected across the five Chaihu germplasms. Three photosynthesis-related genes were under positive selection, of which accD reflected the adaptation fingerprint of B. chinense to different ecological habitats. Our study provides valuable genetic information for phylogenetic investigation, germplasm authentication, and molecular breeding of Chaihu species.
Collapse
Affiliation(s)
- Ping Wang
- Xianyang Normal University, Xianyang, China
| | - Jiqing Bai
- Shaanxi University of Chinese Medicine, Xianyang, China
| | - Xue Li
- Xianyang Food and Drug Administration, Xianyang, China
| | | | - Yumeng Yan
- Xianyang Normal University, Xianyang, China
| | | | - Huaizhu Li
- Xianyang Normal University, Xianyang, China
| |
Collapse
|
12
|
A Large Intergenic Spacer Leads to the Increase in Genome Size and Sequential Gene Movement around IR/SC Boundaries in the Chloroplast Genome of Adiantum malesianum (Pteridaceae). Int J Mol Sci 2022; 23:ijms232415616. [PMID: 36555263 PMCID: PMC9778900 DOI: 10.3390/ijms232415616] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
Expansion and contraction (ebb and flow events) of inverted repeat (IR) boundaries occur and are generally considered to be major factors affecting chloroplast (cp) genome size changes. Nonetheless, the Adiantum malesianum cp genome does not seem to follow this pattern. We sequenced, assembled and corrected the A. flabellulatum and A. malesianum cp genomes using the Illumina NovaSeq6000 platform, and we performed a comparative genome analysis of six Adiantum species. The results revealed differences in the IR/SC boundaries of A. malesianum caused by a 6876 bp long rpoB-trnD-GUC intergenic spacer (IGS) in the LSC. This IGS may create topological tension towards the LSC/IRb boundary in the cp genome, resulting in a sequential movement of the LSC genes. Consequently, this leads to changes of the IR/SC boundaries and may even destroy the integrity of trnT-UGU, which is located in IRs. This study provides evidence showing that it is the large rpoB-trnD-GUC IGS that leads to A. malesianum cp genome size change, rather than ebb and flow events. Then, the study provides a model to explain how the rpoB-trnD-GUC IGS in LSC affects A. malesianum IR/SC boundaries. Moreover, this study also provides useful data for dissecting the evolution of cp genomes of Adiantum. In future research, we can expand the sample to Pteridaceae to test whether this phenomenon is universal in Pteridaceae.
Collapse
|
13
|
Assembly and Annotation of Red Spruce ( Picea rubens) Chloroplast Genome, Identification of Simple Sequence Repeats, and Phylogenetic Analysis in Picea. Int J Mol Sci 2022; 23:ijms232315243. [PMID: 36499570 PMCID: PMC9739956 DOI: 10.3390/ijms232315243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/22/2022] [Accepted: 11/27/2022] [Indexed: 12/11/2022] Open
Abstract
We have sequenced the chloroplast genome of red spruce (Picea rubens) for the first time using the single-end, short-reads (44 bp) Illumina sequences, assembled and functionally annotated it, and identified simple sequence repeats (SSRs). The contigs were assembled using SOAPdenovo2 following the retrieval of chloroplast genome sequences using the black spruce (Picea mariana) chloroplast genome as the reference. The assembled genome length was 122,115 bp (gaps included). Comparatively, the P. rubens chloroplast genome reported here may be considered a near-complete draft. Global genome alignment and phylogenetic analysis based on the whole chloroplast genome sequences of Picea rubens and 10 other Picea species revealed high sequence synteny and conservation among 11 Picea species and phylogenetic relationships consistent with their known classical interrelationships and published molecular phylogeny. The P. rubens chloroplast genome sequence showed the highest similarity with that of P. mariana and the lowest with that of P. sitchensis. We have annotated 107 genes including 69 protein-coding genes, 28 tRNAs, 4 rRNAs, few pseudogenes, identified 42 SSRs, and successfully designed primers for 26 SSRs. Mononucleotide A/T repeats were the most common followed by dinucleotide AT repeats. A similar pattern of microsatellite repeats occurrence was found in the chloroplast genomes of 11 Picea species.
Collapse
|
14
|
Wang ZX, Wang DJ, Yi TS. Does IR-loss promote plastome structural variation and sequence evolution? FRONTIERS IN PLANT SCIENCE 2022; 13:888049. [PMID: 36247567 PMCID: PMC9560873 DOI: 10.3389/fpls.2022.888049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Plastids are one of the main distinguishing characteristics of the plant cell. The plastid genome (plastome) of most autotrophic seed plants possesses a highly conserved quadripartite structure containing a large single-copy (LSC) and a small single-copy (SSC) region separated by two copies of the inverted repeat (termed as IRA and IRB). The IRs have been inferred to stabilize the plastid genome via homologous recombination-induced repair mechanisms. IR loss has been documented in seven autotrophic flowering plant lineages and two autotrophic gymnosperm lineages, and the plastomes of these species (with a few exceptions) are rearranged to a great extent. However, some plastomes containing normal IRs also show high structural variation. Therefore, the role of IRs in maintaining plastome stability is still controversial. In this study, we first integrated and compared genome structure and sequence evolution of representative plastomes of all nine reported IR-lacking lineages and those of their closest relative(s) with canonical inverted repeats (CRCIRs for short) to explore the role of the IR in maintaining plastome structural stability and sequence evolution. We found the plastomes of most IR-lacking lineages have experienced significant structural rearrangement, gene loss and duplication, accumulation of novel small repeats, and acceleration of synonymous substitution compared with those of their CRCIRs. However, the IR-lacking plastomes show similar structural variation and sequence evolution rate, and even less rearrangement distance, dispersed repeat number, tandem repeat number, indels frequency and GC3 content than those of IR-present plastomes with variation in Geraniaceae. We argue that IR loss is not a driver of these changes but is instead itself a consequence of other processes that more broadly shape both structural and sequence-level plastome evolution.
Collapse
Affiliation(s)
- Zi-Xun Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Ding-Jie Wang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
15
|
Cay SB, Cinar YU, Kuralay SC, Inal B, Zararsiz G, Ciftci A, Mollman R, Obut O, Eldem V, Bakir Y, Erol O. Genome skimming approach reveals the gene arrangements in the chloroplast genomes of the highly endangered Crocus L. species: Crocus istanbulensis (B.Mathew) Rukšāns. PLoS One 2022; 17:e0269747. [PMID: 35704623 PMCID: PMC9200356 DOI: 10.1371/journal.pone.0269747] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 05/27/2022] [Indexed: 11/19/2022] Open
Abstract
Crocus istanbulensis (B.Mathew) Rukšāns is one of the most endangered Crocus species in the world and has an extremely limited distribution range in Istanbul. Our recent field work indicates that no more than one hundred individuals remain in the wild. In the present study, we used genome skimming to determine the complete chloroplast (cp) genome sequences of six C. istanbulensis individuals collected from the locus classicus. The cp genome of C. istanbulensis has 151,199 base pairs (bp), with a large single-copy (LSC) (81,197 bp), small single copy (SSC) (17,524 bp) and two inverted repeat (IR) regions of 26,236 bp each. The cp genome contains 132 genes, of which 86 are protein-coding (PCGs), 8 are rRNA and 38 are tRNA genes. Most of the repeats are found in intergenic spacers of Crocus species. Mononucleotide repeats were most abundant, accounting for over 80% of total repeats. The cp genome contained four palindrome repeats and one forward repeat. Comparative analyses among other Iridaceae species identified one inversion in the terminal positions of LSC region and three different gene (psbA, rps3 and rpl22) arrangements in C. istanbulensis that were not reported previously. To measure selective pressure in the exons of chloroplast coding sequences, we performed a sequence analysis of plastome-encoded genes. A total of seven genes (accD, rpoC2, psbK, rps12, ccsA, clpP and ycf2) were detected under positive selection in the cp genome. Alignment-free sequence comparison showed an extremely low sequence diversity across naturally occurring C. istanbulensis specimens. All six sequenced individuals shared the same cp haplotype. In summary, this study will aid further research on the molecular evolution and development of ex situ conservation strategies of C. istanbulensis.
Collapse
Affiliation(s)
- Selahattin Baris Cay
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Yusuf Ulas Cinar
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Selim Can Kuralay
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Behcet Inal
- Department of Agricultural Biotechnology, Faculty of Agriculture, University of Siirt, Siirt, Turkey
| | - Gokmen Zararsiz
- Department of Biostatistics, Erciyes University, Kayseri, Turkey
- Drug Application and Research Center (ERFARMA), Erciyes University, Kayseri, Turkey
| | - Almila Ciftci
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Rachel Mollman
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Onur Obut
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| | - Vahap Eldem
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
- * E-mail:
| | - Yakup Bakir
- Department of Plant Bioactive Metabolites, ACTV Biotechnology, Inc., Istanbul, Turkey
| | - Osman Erol
- Department of Biology, Faculty of Sciences, Istanbul University, Istanbul, Turkey
| |
Collapse
|
16
|
Qu XJ, Zhang XJ, Cao DL, Guo XX, Mower JP, Fan SJ. Plastid and mitochondrial phylogenomics reveal correlated substitution rate variation in Koenigia (Polygonoideae, Polygonaceae) and a reduced plastome for Koenigia delicatula including loss of all ndh genes. Mol Phylogenet Evol 2022; 174:107544. [PMID: 35690375 DOI: 10.1016/j.ympev.2022.107544] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 01/19/2022] [Accepted: 06/01/2022] [Indexed: 10/18/2022]
Abstract
Koenigia, a genus proposed by Linnaeus, has a contentious taxonomic history. In particular, relationships among species and the circumscription of the genus relative to Aconogonon remain uncertain. To explore phylogenetic relationships of Koenigia with other members of tribe Persicarieae and to establish the timing of major evolutionary diversification events, genome skimming of organellar sequences was used to assemble plastomes and mitochondrial genes from 15 individuals representing 13 species. Most Persicarieae plastomes exhibit a conserved structure and content relative to other flowering plants. However, Koenigia delicatula has lost functional copies of all ndh genes and the intron from atpF. In addition, the rpl32 gene was relocated in the K. delicatula plastome, which likely occurred via overlapping inversions or differential expansion and contraction of the inverted repeat. The highly supported but conflicting relationships between plastome and mitochondrial trees and among gene trees complicates the circumscription of Koenigia, which could be caused by rapid diversification within a short period. Moreover, the plastome and mitochondrial trees revealed correlated variation in substitution rates among Persicarieae species, suggesting a shared underlying mechanism promoting evolutionary rate variation in both organellar genomes. The divergence of dwarf K. delicatula from other Koenigia species may be associated with the well-known Eocene Thermal Maximum 2 or Early Eocene Climatic Optimum event, while diversification of the core-Koenigia clade associates with the Mid-Miocene Climatic Optimum and the uplift of Qinghai-Tibetan Plateau and adjacent areas.
Collapse
Affiliation(s)
- Xiao-Jian Qu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xue-Jie Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Dong-Ling Cao
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Xiu-Xiu Guo
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE 68588, USA; Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE 68583, USA.
| | - Shou-Jin Fan
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, Shandong Normal University, Ji'nan 250014, Shandong, China.
| |
Collapse
|
17
|
Jost M, Naumann J, Bolin JF, Martel C, Rocamundi N, Cocucci AA, Lupton D, Neinhuis C, Wanke S. Structural plastome evolution in holoparasitic Hydnoraceae with special focus on inverted and direct repeats. Genome Biol Evol 2022; 14:6602284. [PMID: 35660863 PMCID: PMC9168662 DOI: 10.1093/gbe/evac077] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/14/2022] Open
Abstract
Plastome condensation during adaptation to a heterotrophic lifestyle is generally well understood and lineage-independent models have been derived. However, understanding the evolutionary trajectories of comparatively old heterotrophic lineages, that are on the cusp of a minimal plastomes, is essential to complement and expand current knowledge. We study Hydnoraceae, one of the oldest and least investigated parasitic angiosperm lineages. Plastome comparative genomics, using seven out of eight known species of the genus Hydnora and three species of Prosopanche, reveal a high degree of structural similarity and shared gene content; contrasted by striking dissimilarities with respect to repeat content (inverted and direct repeats). We identified varying IR content and positions, likely resulting from multiple, independent evolutionary events and a direct repeat gain in Prosopanche. Considering different evolutionary trajectories and based on a fully resolved and supported species-level phylogenetic hypothesis, we describe three possible, distinct models to explain the Hydnoraceae plastome states. For comparative purposes we also report the first plastid genomes for the closely related autotrophic genera Lactoris (Lactoridaceae) and Thottea (Aristolochiaceae).
Collapse
Affiliation(s)
- Matthias Jost
- Institut für Botanik, Technische Universität Dresden, Germany
| | - Julia Naumann
- Institut für Botanik, Technische Universität Dresden, Germany
| | | | - Carlos Martel
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3DS, UK.,Instituto de Ciencias Ómicas y Biotecnología Aplicada, Pontificia Universidad Católica del Perú, Peru
| | - Nicolás Rocamundi
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET and Universidad Nacional de Córdoba, Argentina
| | - Andrea A Cocucci
- Laboratorio de Ecología Evolutiva y Biología Floral, IMBIV, CONICET and Universidad Nacional de Córdoba, Argentina
| | - Darach Lupton
- Oman Botanic Garden, Sultanate of Oman.,National Botanic Gardens, Glasnevin, Ireland
| | | | - Stefan Wanke
- Institut für Botanik, Technische Universität Dresden, Germany.,Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
Ren T, Xie D, Peng C, Gui L, Price M, Zhou S, He X. Molecular evolution and phylogenetic relationships of Ligusticum (Apiaceae) inferred from the whole plastome sequences. BMC Ecol Evol 2022; 22:55. [PMID: 35501703 PMCID: PMC9063207 DOI: 10.1186/s12862-022-02010-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/21/2022] [Indexed: 12/04/2022] Open
Abstract
Background The genus Ligusticum belongs to Apiaceae, and its taxonomy has long been a major difficulty. A robust phylogenetic tree is the basis of accurate taxonomic classification of Ligusticum. We herein used 26 (including 14 newly sequenced) plastome-scale data to generate reliable phylogenetic trees to explore the phylogenetic relationships of Chinese Ligusticum. Results We found that these plastid genomes exhibited diverse plastome characteristics across all four currently identified clades in China, while the plastid protein-coding genes were conserved. The phylogenetic analyses by the concatenation and coalescent methods obtained a more robust molecular phylogeny than prior studies and showed the non-monophyly of Chinese Ligusticum. In the concatenation-based phylogeny analyses, the two datasets yielded slightly different topologies that may be primarily due to the discrepancy in the number of variable sites. Conclusions Our plastid phylogenomics analyses emphasized that the current circumscription of the Chinese Ligusticum should be reduced, and the taxonomy of Ligusticum urgently needs revision. Wider taxon sampling including the related species of Ligusticum will be necessary to explore the phylogenetic relationships of this genus. Overall, our study provided new insights into the taxonomic classification of Ligusticum and would serve as a framework for future studies on taxonomy and delimitation of Ligusticum from the perspective of the plastid genome. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-02010-z.
Collapse
|
19
|
Ping J, Hao J, Li J, Yang Y, Su Y, Wang T. Loss of the IR region in conifer plastomes: Changes in the selection pressure and substitution rate of protein-coding genes. Ecol Evol 2022; 12:e8499. [PMID: 35136556 PMCID: PMC8809450 DOI: 10.1002/ece3.8499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 11/10/2022] Open
Abstract
Plastid genomes (plastomes) have a quadripartite structure, but some species have drastically reduced or lost inverted repeat (IR) regions. IR regions are important for genome stability and the evolution rate. In the evolutionary process of gymnosperms, the typical IRs of conifers were lost, possibly affecting the evolutionary rate and selection pressure of genomic protein-coding genes. In this study, we selected 78 gymnosperm species (51 genera, 13 families) for evolutionary analysis. The selection pressure analysis results showed that negative selection effects were detected in all 50 common genes. Among them, six genes in conifers had higher ω values than non-conifers, and 12 genes had lower ω values. The evolutionary rate analysis results showed that 9 of 50 common genes differed between conifers and non-conifers. It is more obvious that in non-conifers, the rates of psbA (trst, trsv, ratio, dN, dS, and ω) were 2.6- to 3.1-fold of conifers. In conifers, trsv, ratio, dN, dS, and ω of ycf2 were 1.2- to 3.6-fold of non-conifers. In addition, the evolution rate of ycf2 in the IR was significantly reduced. psbA is undergoing dynamic change, with an abnormally high evolution rate as a small portion of it enters the IR region. Although conifers have lost the typical IR regions, we detected no change in the substitution rate or selection pressure of most protein-coding genes due to gene function, plant habitat, or newly acquired IRs.
Collapse
Affiliation(s)
- Jingyao Ping
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jing Hao
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Jinye Li
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Yiqing Yang
- College of Life Science and TechnologyCentral South University of Forestry and TechnologyChangshaChina
| | - Yingjuan Su
- School of Life SciencesSun Yat‐sen UniversityGuangzhouChina
- Research Institute of Sun Yat‐sen UniversityShenzhenChina
| | - Ting Wang
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| |
Collapse
|
20
|
Asaf S, Khan AL, Jan R, Khan A, Khan A, Kim KM, Lee IJ. The dynamic history of gymnosperm plastomes: Insights from structural characterization, comparative analysis, phylogenomics, and time divergence. THE PLANT GENOME 2021; 14:e20130. [PMID: 34505399 DOI: 10.1002/tpg2.20130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 05/25/2023]
Abstract
Gymnosperms are among the most endangered groups of plant species; they include ginkgo, pines (Conifers I), cupressophytes (Conifers II), cycads, and gnetophytes. The relationships among the five extant gymnosperm groups remain equivocal. We analyzed 167 available gymnosperm plastomes and investigated their diversity and phylogeny. We found that plastome size, structure, and gene order were highly variable in the five gymnosperm groups, of which Parasitaxus usta (Vieill.) de Laub. and Macrozamia mountperriensis F.M.Bailey had the smallest and largest plastomes, respectively. The inverted repeats (IRs) of the five groups were shown to have evolved through distinctive evolutionary scenarios. The IRs have been lost in all conifers but retained in cycads and gnetophytes. A positive association between simple sequence repeat (SSR) abundance and plastome size was observed, and the SSRs with the most variation were found in Pinaceae. Furthermore, the number of repeats was negatively correlated with IR length; thus, the highest number of repeats was detected in Conifers I and II, in which the IRs had been lost. We constructed a phylogeny based on 29 shared genes from 167 plastomes. With the plastome tree and 13 calibrations, we estimated the tree height between present-day angiosperms and gymnosperms to be ∼380 million years ago (mya). The placement of Gnetales in the tree agreed with the Gnetales-other gymnosperms hypothesis. The divergence between Ginkgo and cycads was estimated as ∼284 mya; the crown age of the cycads was 251 mya. Our time-calibrated plastid-based phylogenomic tree provides a framework for comparative studies of gymnosperm evolution.
Collapse
Affiliation(s)
- Sajjad Asaf
- Natural and Medical Sciences Research Center, Univ. of Nizwa, Nizwa, 616, Oman
| | - Abdul Latif Khan
- Dep. of Biotechnology, College of Technology, Univ. of Houston, Houston, TX, 77204, USA
| | - Rahmatullah Jan
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National Univ., Daegu, 41566, Republic of Korea
| | - Arif Khan
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord Univ., Bodø, 8049, Norway
| | - Adil Khan
- Institute of Genomics for Crop Abiotic Stress Tolerance, Dep. of Plant and Soil Science, Texas Tech Univ., Lubbock, TX, 79409, USA
| | - Kyung-Min Kim
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National Univ., Daegu, 41566, Republic of Korea
| | - In-Jung Lee
- Division of Plant Biosciences, School of Applied Biosciences, College of Agriculture & Life Science, Kyungpook National Univ., Daegu, 41566, Republic of Korea
| |
Collapse
|
21
|
Charboneau JLM, Cronn RC, Liston A, Wojciechowski MF, Sanderson MJ. Plastome Structural Evolution and Homoplastic Inversions in Neo-Astragalus (Fabaceae). Genome Biol Evol 2021; 13:evab215. [PMID: 34534296 PMCID: PMC8486006 DOI: 10.1093/gbe/evab215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2021] [Indexed: 12/23/2022] Open
Abstract
The plastid genomes of photosynthetic green plants have largely maintained conserved gene content and order as well as structure over hundreds of millions of years of evolution. Several plant lineages, however, have departed from this conservation and contain many plastome structural rearrangements, which have been associated with an abundance of repeated sequences both overall and near rearrangement endpoints. We sequenced the plastomes of 25 taxa of Astragalus L. (Fabaceae), a large genus in the inverted repeat-lacking clade of legumes, to gain a greater understanding of the connection between repeats and plastome inversions. We found plastome repeat structure has a strong phylogenetic signal among these closely related taxa mostly in the New World clade of Astragalus called Neo-Astragalus. Taxa without inversions also do not differ substantially in their overall repeat structure from four taxa each with one large-scale inversion. For two taxa with inversion endpoints between the same pairs of genes, differences in their exact endpoints indicate the inversions occurred independently. Our proposed mechanism for inversion formation suggests the short inverted repeats now found near the endpoints of the four inversions may be there as a result of these inversions rather than their cause. The longer inverted repeats now near endpoints may have allowed the inversions first mediated by shorter microhomologous sequences to propagate, something that should be considered in explaining how any plastome rearrangement becomes fixed regardless of the mechanism of initial formation.
Collapse
Affiliation(s)
- Joseph L M Charboneau
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| | - Richard C Cronn
- Pacific Northwest Research Station, USDA Forest Service, Corvallis, Oregon, USA
| | - Aaron Liston
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | | | - Michael J Sanderson
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
22
|
Cauz-Santos LA, da Costa ZP, Callot C, Cauet S, Zucchi MI, Bergès H, van den Berg C, Vieira MLC. A Repertory of Rearrangements and the Loss of an Inverted Repeat Region in Passiflora Chloroplast Genomes. Genome Biol Evol 2021; 12:1841-1857. [PMID: 32722748 PMCID: PMC7586853 DOI: 10.1093/gbe/evaa155] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
Chloroplast genomes (cpDNA) in angiosperms are usually highly conserved. Although rearrangements have been observed in some lineages, such as Passiflora, the mechanisms that lead to rearrangements are still poorly elucidated. In the present study, we obtained 20 new chloroplast genomes (18 species from the genus Passiflora, and Dilkea retusa and Mitostemma brevifilis from the family Passifloraceae) in order to investigate cpDNA evolutionary history in this group. Passiflora cpDNAs vary in size considerably, with ∼50 kb between shortest and longest. Large inverted repeat (IR) expansions were identified, and at the extreme opposite, the loss of an IR was detected for the first time in Passiflora, a rare event in angiosperms. The loss of an IR region was detected in Passiflora capsularis and Passiflora costaricensis, a species in which occasional biparental chloroplast inheritance has previously been reported. A repertory of rearrangements such as inversions and gene losses were detected, making Passiflora one of the few groups with complex chloroplast genome evolution. We also performed a phylogenomic study based on all the available cp genomes and our analysis implies that there is a need to reconsider the taxonomic classifications of some species in the group.
Collapse
Affiliation(s)
- Luiz Augusto Cauz-Santos
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Zirlane Portugal da Costa
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Caroline Callot
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Stéphane Cauet
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Maria Imaculada Zucchi
- Polo Regional de Desenvolvimento Tecnológico do Centro Sul, Agência Paulista de Tecnologia dos Agronegócios, Piracicaba, SP, Brazil
| | - Hélène Bergès
- Centre National de Ressources Génomiques Végétales, INRA, Auzeville, Castanet-Tolosan, France
| | - Cássio van den Berg
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil.,Departamento de Ciências Biológicas, Universidade Estadual de Feira de Santana, BA, Brazil
| | - Maria Lucia Carneiro Vieira
- Departamento de Genética, Escola Superior de Agricultura "Luiz de Queiroz," Universidade de São Paulo, Piracicaba, SP, Brazil
| |
Collapse
|
23
|
Lee C, Choi IS, Cardoso D, de Lima HC, de Queiroz LP, Wojciechowski MF, Jansen RK, Ruhlman TA. The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:861-875. [PMID: 34021942 DOI: 10.1111/tpj.15351] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
The plastid genome (plastome), while surprisingly constant in gene order and content across most photosynthetic angiosperms, exhibits variability in several unrelated lineages. During the diversification history of the legume family Fabaceae, plastomes have undergone many rearrangements, including inversions, expansion, contraction and loss of the typical inverted repeat (IR), gene loss and repeat accumulation in both shared and independent events. While legume plastomes have been the subject of study for some time, most work has focused on agricultural species in the IR-lacking clade (IRLC) and the plant model Medicago truncatula. The subfamily Papilionoideae, which contains virtually all of the agricultural legume species, also comprises most of the plastome variation detected thus far in the family. In this study three non-papilioniods were included among 34 newly sequenced legume plastomes, along with 33 publicly available sequences, to assess plastome structural evolution in the subfamily. In an effort to examine plastome variation across the subfamily, approximately 20% of the sampling represents the IRLC with the remainder selected to represent the early-branching papilionoid clades. A number of IR-related and repeat-mediated changes were identified and examined in a phylogenetic context. Recombination between direct repeats associated with ycf2 resulted in intraindividual plastome heteroplasmy. Although loss of the IR has not been reported in legumes outside of the IRLC, one genistoid taxon was found to completely lack the typical plastome IR. The role of the IR and non-IR repeats in the progression of plastome change is discussed.
Collapse
Affiliation(s)
- Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - In-Su Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, 85287-4501, USA
| | - Domingos Cardoso
- Instituto de Biologia, Universidade Federal de Bahia (UFBA), Rua Barão de Jeremoabo, s.n., Ondina, Salvador, Bahia, 40170-115, Brazil
| | - Haroldo C de Lima
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, Rio de Janeiro, 915 22460-030, Brazil
| | - Luciano P de Queiroz
- Universidade Estadual de Feira de Santana, Av. Transnordestina, s/n, Novo Horizonte, Feira de Santana, Bahia, 44036-900, Brazil
| | | | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
- Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
24
|
Lee C, Ruhlman TA, Jansen RK. Unprecedented Intraindividual Structural Heteroplasmy in Eleocharis (Cyperaceae, Poales) Plastomes. Genome Biol Evol 2021; 12:641-655. [PMID: 32282915 PMCID: PMC7426004 DOI: 10.1093/gbe/evaa076] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
Plastid genomes (plastomes) of land plants have a conserved quadripartite structure in a gene-dense unit genome consisting of a large inverted repeat that separates two single copy regions. Recently, alternative plastome structures were suggested in Geraniaceae and in some conifers and Medicago the coexistence of inversion isomers has been noted. In this study, plastome sequences of two Cyperaceae, Eleocharis dulcis (water chestnut) and Eleocharis cellulosa (gulf coast spikerush), were completed. Unlike the conserved plastomes in basal groups of Poales, these Eleocharis plastomes have remarkably divergent features, including large plastome sizes, high rates of sequence rearrangements, low GC content and gene density, gene duplications and losses, and increased repetitive DNA sequences. A novel finding among these features was the unprecedented level of heteroplasmy with the presence of multiple plastome structural types within a single individual. Illumina paired-end assemblies combined with PacBio single-molecule real-time sequencing, long-range polymerase chain reaction, and Sanger sequencing data identified at least four different plastome structural types in both Eleocharis species. PacBio long read data suggested that one of the four E. dulcis plastome types predominates.
Collapse
Affiliation(s)
- Chaehee Lee
- Department of Integrative Biology, University of Texas at Austin
| | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin.,Center of Excellence for Bionanoscience Research, King Abdulaziz University (KAU), Jeddah, Saudi Arabia
| |
Collapse
|
25
|
Wu CS, Sudianto E, Chaw SM. Tight association of genome rearrangements with gene expression in conifer plastomes. BMC PLANT BIOLOGY 2021; 21:33. [PMID: 33419387 PMCID: PMC7796615 DOI: 10.1186/s12870-020-02809-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/20/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Our understanding of plastid transcriptomes is limited to a few model plants whose plastid genomes (plastomes) have a highly conserved gene order. Consequently, little is known about how gene expression changes in response to genomic rearrangements in plastids. This is particularly important in the highly rearranged conifer plastomes. RESULTS We sequenced and reported the plastomes and plastid transcriptomes of six conifer species, representing all six extant families. Strand-specific RNAseq data show a nearly full transcription of both plastomic strands and detect C-to-U RNA-editing sites at both sense and antisense transcripts. We demonstrate that the expression of plastid coding genes is strongly functionally dependent among conifer species. However, the strength of this association declines as the number of plastomic rearrangements increases. This finding indicates that plastomic rearrangement influences gene expression. CONCLUSIONS Our data provide the first line of evidence that plastomic rearrangements not only complicate the plastomic architecture but also drive the dynamics of plastid transcriptomes in conifers.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Edi Sudianto
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
26
|
Chen N, Sha LN, Wang YL, Yin LJ, Zhang Y, Wang Y, Wu DD, Kang HY, Zhang HQ, Zhou YH, Sun GL, Fan X. Variation in Plastome Sizes Accompanied by Evolutionary History in Monogenomic Triticeae (Poaceae: Triticeae). FRONTIERS IN PLANT SCIENCE 2021; 12:741063. [PMID: 34966398 PMCID: PMC8710740 DOI: 10.3389/fpls.2021.741063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/02/2021] [Indexed: 05/17/2023]
Abstract
To investigate the pattern of chloroplast genome variation in Triticeae, we comprehensively analyzed the indels in protein-coding genes and intergenic sequence, gene loss/pseudonization, intron variation, expansion/contraction in inverted repeat regions, and the relationship between sequence characteristics and chloroplast genome size in 34 monogenomic Triticeae plants. Ancestral genome reconstruction suggests that major length variations occurred in four-stem branches of monogenomic Triticeae followed by independent changes in each genus. It was shown that the chloroplast genome sizes of monogenomic Triticeae were highly variable. The chloroplast genome of Pseudoroegneria, Dasypyrum, Lophopyrum, Thinopyrum, Eremopyrum, Agropyron, Australopyrum, and Henradia in Triticeae had evolved toward size reduction largely because of pseudogenes elimination events and length deletion fragments in intergenic. The Aegilops/Triticum complex, Taeniatherum, Secale, Crithopsis, Herteranthelium, and Hordeum in Triticeae had a larger chloroplast genome size. The large size variation in major lineages and their subclades are most likely consequences of adaptive processes since these variations were significantly correlated with divergence time and historical climatic changes. We also found that several intergenic regions, such as petN-trnC and psbE-petL containing unique genetic information, which can be used as important tools to identify the maternal relationship among Triticeae species. Our results contribute to the novel knowledge of plastid genome evolution in Triticeae.
Collapse
Affiliation(s)
- Ning Chen
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Li-Na Sha
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi-Ling Wang
- College of Life Science, Shanxi Normal University, Shanxi, China
| | - Ling-Juan Yin
- Lijiang Nationality Secondary Specialized School, Lijiang, China
| | - Yue Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Dan-Dan Wu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hou-Yang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hai-Qin Zhang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong-Hong Zhou
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Gen-Lou Sun
- Saint Mary’s University, Halifax, NS, Canada
- *Correspondence: Gen-Lou Sun,
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
- Xing Fan,
| |
Collapse
|
27
|
Abdullah, Henriquez CL, Mehmood F, Carlsen MM, Islam M, Waheed MT, Poczai P, Croat TB, Ahmed I. Complete Chloroplast Genomes of Anthurium huixtlense and Pothos scandens (Pothoideae, Araceae): Unique Inverted Repeat Expansion and Contraction Affect Rate of Evolution. J Mol Evol 2020; 88:562-574. [PMID: 32642873 PMCID: PMC7445159 DOI: 10.1007/s00239-020-09958-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/18/2020] [Indexed: 01/17/2023]
Abstract
The subfamily Pothoideae belongs to the ecologically important plant family Araceae. Here, we report the chloroplast genomes of two species of the subfamily Pothoideae: Anthurium huixtlense (size: 163,116 bp) and Pothos scandens (size: 164,719 bp). The chloroplast genome of P. scandens showed unique contraction and expansion of inverted repeats (IRs), thereby increasing the size of the large single-copy region (LSC: 102,956 bp) and decreasing the size of the small single-copy region (SSC: 6779 bp). This led to duplication of many single-copy genes due to transfer to IR regions from the small single-copy (SSC) region, whereas some duplicate genes became single copy due to transfer to large single-copy regions. The rate of evolution of protein-coding genes was affected by the contraction and expansion of IRs; we found higher mutation rates for genes that exist in single-copy regions as compared to those in IRs. We found a 2.3-fold increase of oligonucleotide repeats in P. scandens when compared with A. huixtlense, whereas amino acid frequency and codon usage revealed similarities. The ratio of transition to transversion mutations was 2.26 in P. scandens and 2.12 in A. huixtlense. Transversion mutations mostly translated in non-synonymous substitutions. The phylogenetic inference of the limited species showed the monophyly of the Araceae subfamilies. Our study provides insight into the molecular evolution of chloroplast genomes in the subfamily Pothoideae and family Araceae.
Collapse
Affiliation(s)
- Abdullah
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan.
| | - Claudia L Henriquez
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, USA
| | - Furrukh Mehmood
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | | | - Madiha Islam
- Department of Genetics, Hazara University, Mansehra, Pakistan
| | - Mohammad Tahir Waheed
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Peter Poczai
- Finnish Museum of Natural History, University of Helsinki, PO Box 7, 00014, Helsinki, Finland.
| | | | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, 45710, Pakistan.
| |
Collapse
|
28
|
Complete Chloroplast Genome of Japanese Larch (Larix kaempferi): Insights into Intraspecific Variation with an Isolated Northern Limit Population. FORESTS 2020. [DOI: 10.3390/f11080884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Research Highlights: The complete chloroplast genome for eight individuals of Japanese larch, including from the isolated population at the northern limit of the range (Manokami larch), revealed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed in Japanese larch. We detected intraspecific variation for possible candidate cpDNA markers in Japanese larch. Background and Objectives: The natural distribution of Japanese larch is limited to the mountainous range in the central part of Honshu Island, Japan, with an isolated northern limit population (Manokami larch). In this study, we determined the phylogenetic position of Manokami larch within Japanese larch, characterized the chloroplast genome of Japanese larch, detected intraspecific variation, and determined candidate cpDNA markers. Materials and Methods: The complete genome sequence was determined for eight individuals, including Manokami larch, in this study. The genetic position of the northern limit population was evaluated using phylogenetic analysis. The chloroplast genome of Japanese larch was characterized by comparison with eight individuals. Furthermore, intraspecific variations were extracted to find candidate cpDNA markers. Results: The phylogenetic tree showed that Japanese larch forms a monophyletic group, within which Manokami larch can be phylogenetically placed, based on the complete chloroplast genome, with a bootstrap value of 100%. The value of nucleotide diversity (π) was calculated at 0.00004, based on SNP sites for Japanese larch, suggesting that sequences had low variation. However, we found three hyper-polymorphic regions within the cpDNA. Finally, we detected 31 intraspecific variations, including 19 single nucleotide polymorphisms, 8 simple sequence repeats, and 4 insertions or deletions. Conclusions: Using a distant genotype in a northern limit population (Manokami larch), we detected sufficient intraspecific variation for the possible candidates of cpDNA markers in Japanese larch.
Collapse
|
29
|
Li J, Xu B, Yang Q, Liu ZL. The complete chloroplast genome sequence of Picea schrenkiana (Pinaceae). Mitochondrial DNA B Resour 2020; 5:2191-2192. [PMID: 33366966 PMCID: PMC7510663 DOI: 10.1080/23802359.2020.1768960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 05/09/2020] [Indexed: 11/30/2022] Open
Abstract
Picea is a phylogenetically complicate genus with great economic and ecological values. Here, we determined the whole complete chloroplast genome of Picea schrenkiana to provide genomic information for phylogenetic analysis of the genus. The plastome of P. schrenkiana is 124,060 bp in size and contains 114 genes, including 74 protein-coding genes, 36 tRNA genes, and four rRNA genes. The overall GC content is 38.7%. Unlike the typical plastome with a conserved quadripartite structure, loss of inverted repeat regions is found in the chloroplast genome. The phylogenetic tree shows that monophyly of P. schrenkiana is well supported.
Collapse
Affiliation(s)
- Jianfang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Bei Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Qian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an, China
| |
Collapse
|
30
|
Jin DM, Wicke S, Gan L, Yang JB, Jin JJ, Yi TS. The Loss of the Inverted Repeat in the Putranjivoid Clade of Malpighiales. FRONTIERS IN PLANT SCIENCE 2020; 11:942. [PMID: 32670335 PMCID: PMC7332575 DOI: 10.3389/fpls.2020.00942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/10/2020] [Indexed: 05/19/2023]
Abstract
The typical plastid genome (plastome) of photosynthetic angiosperms comprises a pair of Inverted Repeat regions (IRs), which separate a Large Single Copy region (LSC) from a Small Single Copy region (SSC). The independent losses of IRs have been documented in only a few distinct plant lineages. The majority of these taxa show uncommonly high levels of plastome structural variations, while a few have otherwise conserved plastomes. For a better understanding of the function of IRs in stabilizing plastome structure, more taxa that have lost IRs need to be investigated. We analyzed the plastomes of eight species from two genera of the putranjivoid clade of Malpighiales using Illumina paired-end sequencing, the de novo assembly strategy GetOrganelle, as well as a combination of two annotation methods. We found that all eight plastomes of the putranjivoid clade have lost their IRB, representing the fifth case of IR loss within autotrophic angiosperms. Coinciding with the loss of the IR, plastomes of the putranjivoid clade have experienced significant structural variations including gene and intron losses, multiple large inversions, as well as the translocation and duplication of plastome segments. However, Balanopaceae, one of the close relatives of the putranjivoid clade, exhibit a relatively conserved plastome organization with canonical IRs. Our results corroborate earlier reports that the IR loss and additional structural reorganizations are closely linked, hinting at a shared mechanism that underpins structural disturbances.
Collapse
Affiliation(s)
- Dong-Min Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Lu Gan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|
31
|
Barrett CF. Plastid genomes of the North American Rhus integrifolia-ovata complex and phylogenomic implications of inverted repeat structural evolution in Rhus L. PeerJ 2020; 8:e9315. [PMID: 32587799 PMCID: PMC7304433 DOI: 10.7717/peerj.9315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/17/2020] [Indexed: 12/12/2022] Open
Abstract
Plastid genomes (plastomes) represent rich sources of information for phylogenomics, from higher-level studies to below the species level. The genus Rhus (sumac) has received a significant amount of study from phylogenetic and biogeographic perspectives, but genomic studies in this genus are lacking. Rhus integrifolia and R. ovata are two shrubby species of high ecological importance in the southwestern USA and Mexico, where they occupy coastal scrub and chaparral habitats. They hybridize frequently, representing a fascinating system in which to investigate the opposing effects of hybridization and divergent selection, yet are poorly characterized from a genomic perspective. In this study, complete plastid genomes were sequenced for one accession of R. integrifolia and one each of R. ovata from California and Arizona. Sequence variation among these three accessions was characterized, and PCR primers potentially useful in phylogeographic studies were designed. Phylogenomic analyses were conducted based on a robustly supported phylogenetic framework based on 52 complete plastomes across the order Sapindales. Repeat content, rather than the size of the inverted repeat, had a stronger relative association with total plastome length across Sapindales when analyzed with phylogenetic least squares regression. Variation at the inverted repeat boundary within Rhus was striking, resulting in major shifts and independent gene losses. Specifically, rps19 was lost independently in the R. integrifolia-ovata complex and in R. chinensis, with a further loss of rps22 and a major contraction of the inverted repeat in two accessions of the latter. Rhus represents a promising novel system to study plastome structural variation of photosynthetic angiosperms at and below the species level.
Collapse
Affiliation(s)
- Craig F. Barrett
- Department of Biology, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
32
|
Li H, Guo Q, Li Q, Yang L. Long-reads reveal that Rhododendron delavayi plastid genome contains extensive repeat sequences, and recombination exists among plastid genomes of photosynthetic Ericaceae. PeerJ 2020; 8:e9048. [PMID: 32351791 PMCID: PMC7183307 DOI: 10.7717/peerj.9048] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/02/2020] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Rhododendron delavayi Franch. var. delavayi is a wild ornamental plant species in Guizhou Province, China. The lack of its plastid genome information seriously hinders the further application and conservation of the valuable resource. METHODS The complete plastid genome of R. delavayi was assembled from long sequence reads. The genome was then characterized, and compared with those of other photosynthetic Ericaceae species. RESULTS The plastid genome of R. delavayi has a typical quadripartite structure, and a length of 202,169 bp. It contains a large number of repeat sequences and shows preference for codon usage. The comparative analysis revealed the irregular recombination of gene sets, including rearrangement and inversion, in the large single copy region. The extreme expansion of the inverted repeat region shortened the small single copy, and expanded the full length of the genome. In addition, consistent with traditional taxonomy, R. delavayi with nine other species of the same family were clustered into Ericaceae based on the homologous protein-coding sequences of the plastid genomes. Thus, the long-read assembly of the plastid genome of R. delavayi would provide basic information for the further study of the evolution, genetic diversity, and conservation of R. delavayi and its relatives.
Collapse
Affiliation(s)
- Huie Li
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Qiqiang Guo
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
| | - Qian Li
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Lan Yang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
33
|
Yu T, Huang BH, Zhang Y, Liao PC, Li JQ. Chloroplast genome of an extremely endangered conifer Thuja sutchuenensis Franch.: gene organization, comparative and phylogenetic analysis. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:409-418. [PMID: 32205919 PMCID: PMC7078402 DOI: 10.1007/s12298-019-00736-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/24/2019] [Accepted: 11/22/2019] [Indexed: 06/10/2023]
Abstract
Thuja sutchuenensis is a critically endangered tertiary relict species of Cupressaceae from southwestern China. We sequenced the complete chloroplast (cp) genome of T. sutchuenensis, showing the genome content of 129,776 bp, 118 unique genes including 82 unique protein-coding genes, 32 tRNA genes, and 4 rRNA genes. The genome structures, gene order, and GC content are similar to other typical gymnosperm cp genomes. Thirty-eight simple sequence repeats were identified in the T. sutchuenensis cp genome. We also found an apparent inversion between trnT and psbK between genera Thuja and Thujopsis. In addition, positive selection signals were detected in seven genes with high Ka/Ks ratios. The reconstructed phylogeny based on locally collinear blocks of cp genomes among 21 gymnosperms species is similar to previous inferences. We also inferred a Late-Miocene divergence between T. sutchuenensis and T. standishii, according to the dating of ~ 11.05 Mya by cp genomes. These results will be helpful for future studies of Cupressaceae phylogeny as well as studies in population genetics, systematics, and cp genetic engineering.
Collapse
Affiliation(s)
- Tao Yu
- Forestry College, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083 China
| | - Bing-Hong Huang
- School of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec. 4, Taipei, 116 Taiwan
| | - Yuyang Zhang
- Forestry College, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083 China
| | - Pei-Chun Liao
- School of Life Science, National Taiwan Normal University, 88 Ting-Chow Rd., Sec. 4, Taipei, 116 Taiwan
| | - Jun-Qing Li
- Forestry College, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing, 100083 China
| |
Collapse
|
34
|
Henriquez CL, Ahmed I, Carlsen MM, Zuluaga A, Croat TB, McKain MR. Molecular evolution of chloroplast genomes in Monsteroideae (Araceae). PLANTA 2020; 251:72. [PMID: 32112137 DOI: 10.1007/s00425-020-03365-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/14/2020] [Indexed: 05/02/2023]
Abstract
This study provides broad insight into the chloroplast genomes of the subfamily Monsteroideae. The identified polymorphic regions may be suitable for designing unique and robust molecular markers for phylogenetic inference. Monsteroideae is the third largest subfamily (comprises 369 species) and one of the early diverging lineages of the monocot plant family Araceae. The phylogeny of this important subfamily is not well resolved at the species level due to scarcity of genomic resources and suitable molecular markers. Here, we report annotated chloroplast genome sequences of four Monsteroideae species: Spathiphyllum patulinervum, Stenospermation multiovulatum, Monstera adansonii, and Rhaphidophora amplissima. The quadripartite chloroplast genomes (size range 163,335-164,751 bp) consist of a pair of inverted repeats (25,270-25,931 bp), separating a small single copy region (21,448-22,346 bp) from a large single copy region (89,714-91,841 bp). The genomes contain 114 unique genes, including four rRNA genes, 80 protein-coding genes, and 30 tRNA genes. Gene features, amino acid frequencies, codon usage, GC contents, oligonucleotide repeats, and inverted repeats dynamics exhibit similarities among the four genomes. Higher rate of synonymous substitutions was observed as compared to non-synonymous substitutions in 76 protein-coding genes. Positive selection was observed in seven protein-coding genes, including psbK, ndhK, ndhD, rbcL, accD, rps8, and ycf2. Our included species of Araceae showed the monophyly in Monsteroideae and other subfamilies. We report 30 suitable polymorphic regions. The polymorphic regions identified here might be suitable for designing unique and robust markers for inferring the phylogeny and phylogeography among closely related species within the genus Spathiphyllum and among distantly related species within the subfamily Monsteroideae. The chloroplast genomes presented here are a valuable contribution towards understanding the molecular evolutionary dynamics in the family Araceae.
Collapse
Affiliation(s)
- Claudia L Henriquez
- University of California, Department of Ecology and Evolutionary Biology, Los Angeles, USA.
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad, 45710, Pakistan
| | | | - Alejandro Zuluaga
- Departamento de Biología, Universidad del Valle, Calle 13, 100-00, Cali, Colombia
| | | | - Michael R McKain
- The University of Alabama, Department of Biological Sciences, Tuscaloosa, AL, USA
| |
Collapse
|
35
|
Kim YK, Jo S, Cheon SH, Joo MJ, Hong JR, Kwak M, Kim KJ. Plastome Evolution and Phylogeny of Orchidaceae, With 24 New Sequences. FRONTIERS IN PLANT SCIENCE 2020; 11:22. [PMID: 32153600 PMCID: PMC7047749 DOI: 10.3389/fpls.2020.00022] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/10/2020] [Indexed: 05/08/2023]
Abstract
In order to understand the evolution of the orchid plastome, we annotated and compared 124 complete plastomes of Orchidaceae representing all the major lineages in their structures, gene contents, gene rearrangements, and IR contractions/expansions. Forty-two of these plastomes were generated from the corresponding author's laboratory, and 24 plastomes-including nine genera (Amitostigma, Bulbophyllum, Dactylorhiza, Dipodium, Galearis, Gymnadenia, Hetaeria, Oreorchis, and Sedirea)-are new in this study. All orchid plastomes, except Aphyllorchis montana, Epipogium aphyllum, and Gastrodia elata, have a quadripartite structure consisting of a large single copy (LSC), two inverted repeats (IRs), and a small single copy (SSC) region. The IR region was completely lost in the A. montana and G. elata plastomes. The SSC is lost in the E. aphyllum plastome. The smallest plastome size was 19,047 bp, in E. roseum, and the largest plastome size was 178,131 bp, in Cypripedium formosanum. The small plastome sizes are primarily the result of gene losses associated with mycoheterotrophic habitats, while the large plastome sizes are due to the expansion of noncoding regions. The minimal number of common genes among orchid plastomes to maintain minimal plastome activity was 15, including the three subunits of rpl (14, 16, and 36), seven subunits of rps (2, 3, 4, 7, 8, 11, and 14), three subunits of rrn (5, 16, and 23), trnC-GCA, and clpP genes. Three stages of gene loss were observed among the orchid plastomes. The first was ndh gene loss, which is widespread in Apostasioideae, Vanilloideae, Cypripedioideae, and Epidendroideae, but rare in the Orchidoideae. The second stage was the loss of photosynthetic genes (atp, pet, psa, and psb) and rpo gene subunits, which are restricted to Aphyllorchis, Hetaeria, Hexalectris, and some species of Corallorhiza and Neottia. The third stage was gene loss related to prokaryotic gene expression (rpl, rps, trn, and others), which was observed in Epipogium, Gastrodia, Lecanorchis, and Rhizanthella. In addition, an intermediate stage between the second and third stage was observed in Cyrtosia (Vanilloideae). The majority of intron losses are associated with the loss of their corresponding genes. In some orchid taxa, however, introns have been lost in rpl16, rps16, and clpP(2) without their corresponding gene being lost. A total of 104 gene rearrangements were counted when comparing 116 orchid plastomes. Among them, many were concentrated near the IRa/b-SSC junction area. The plastome phylogeny of 124 orchid species confirmed the relationship of {Apostasioideae [Vanilloideae (Cypripedioideae (Orchidoideae, Epidendroideae))]} at the subfamily level and the phylogenetic relationships of 17 tribes were also established. Molecular clock analysis based on the whole plastome sequences suggested that Orchidaceae diverged from its sister family 99.2 mya, and the estimated divergence times of five subfamilies are as follows: Apostasioideae (79.91 mya), Vanilloideae (69.84 mya), Cypripedioideae (64.97 mya), Orchidoideae (59.16 mya), and Epidendroideae (59.16 mya). We also released the first nuclear ribosomal (nr) DNA unit (18S-ITS1-5.8S-ITS2-28S-NTS-ETS) sequences for the 42 species of Orchidaceae. Finally, the phylogenetic tree based on the nrDNA unit sequences is compared to the tree based on the 42 identical plastome sequences, and the differences between the two datasets are discussed in this paper.
Collapse
Affiliation(s)
- Young-Kee Kim
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Sangjin Jo
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Se-Hwan Cheon
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Min-Jung Joo
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Ja-Ram Hong
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Myounghai Kwak
- Department of Plant Resources, National Institute of Biological Resources, Incheon, South Korea
| | - Ki-Joong Kim
- Division of Life Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
36
|
Wang L, He N, Li Y, Fang Y, Zhang F. Complete Chloroplast Genome Sequence of Chinese Lacquer Tree ( Toxicodendron vernicifluum, Anacardiaceae) and Its Phylogenetic Significance. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9014873. [PMID: 32071921 PMCID: PMC7011389 DOI: 10.1155/2020/9014873] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 11/11/2019] [Accepted: 11/25/2019] [Indexed: 11/29/2022]
Abstract
Chinese lacquer tree (Toxicodendron vernicifluum) is an important commercial arbor species widely cultivated in East Asia for producing highly durable lacquer. Here, we sequenced and analyzed the complete chloroplast (cp) genome of T. vernicifluum and reconstructed the phylogeny of Sapindales based on 52 cp genomes of six families. The plastome of T. vernicifluum is 159,571 bp in length, including a pair of inverted repeats (IRs) of 26,511 bp, separated by a large single-copy (LSC) region of 87,475 bp and a small single-copy (SSC) region of 19,074 bp. A total of 126 genes were identified, of which 81 are protein-coding genes, 37 are transfer RNA genes, and eight are ribosomal RNA genes. Forty-nine mononucleotide microsatellites, one dinucleotide microsatellite, two complex microsatellites, and 49 long repeats were determined. Structural differences such as inversion variation in LSC and gene loss in IR were detected across cp genomes of the six genera in Anacardiaceae. Phylogenetic analyses revealed that the genus Toxicodendron is closely related to Pistacia and Rhus. The phylogenetic relationships of the six families in Sapindales were well resolved. Overall, this study providing complete cp genome resources will be beneficial for determining potential molecular markers and evolutionary patterns of T. vernicifluum and its closely related species.
Collapse
Affiliation(s)
- Lu Wang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Na He
- Xi'an Raw Lacquer and Research Institute, Xi'an 710061, China
| | - Yao Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Yanming Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, Nanjing Forestry University, Nanjing 210037, China
| | - Feilong Zhang
- Xi'an Raw Lacquer and Research Institute, Xi'an 710061, China
| |
Collapse
|
37
|
Wang W, Lanfear R. Long-Reads Reveal That the Chloroplast Genome Exists in Two Distinct Versions in Most Plants. Genome Biol Evol 2019; 11:3372-3381. [PMID: 31750905 PMCID: PMC7145664 DOI: 10.1093/gbe/evz256] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2019] [Indexed: 12/18/2022] Open
Abstract
The chloroplast genome usually has a quadripartite structure consisting of a large single copy region and a small single copy region separated by two long inverted repeats. It has been known for some time that a single cell may contain at least two structural haplotypes of this structure, which differ in the relative orientation of the single copy regions. However, the methods required to detect and measure the abundance of the structural haplotypes are labor-intensive, and this phenomenon remains understudied. Here, we develop a new method, Cp-hap, to detect all possible structural haplotypes of chloroplast genomes of quadripartite structure using long-read sequencing data. We use this method to conduct a systematic analysis and quantification of chloroplast structural haplotypes in 61 land plant species across 19 orders of Angiosperms, Gymnosperms, and Pteridophytes. Our results show that there are two chloroplast structural haplotypes which occur with equal frequency in most land plant individuals. Nevertheless, species whose chloroplast genomes lack inverted repeats or have short inverted repeats have just a single structural haplotype. We also show that the relative abundance of the two structural haplotypes remains constant across multiple samples from a single individual plant, suggesting that the process which maintains equal frequency of the two haplotypes operates rapidly, consistent with the hypothesis that flip-flop recombination mediates chloroplast structural heteroplasmy. Our results suggest that previous claims of differences in chloroplast genome structure between species may need to be revisited.
Collapse
Affiliation(s)
- Weiwen Wang
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| | - Robert Lanfear
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Acton, Australian Capital Territory, Australia
| |
Collapse
|
38
|
Complete Chloroplast Genome of Pinus densiflora Siebold & Zucc. and Comparative Analysis with Five Pine Trees. FORESTS 2019. [DOI: 10.3390/f10070600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Pinus densiflora (Korean red pine) is widely distributed in East Asia and considered one of the most important species in Korea. In this study, the complete chloroplast genome of P. densiflora was sequenced by combining the advantages of Oxford Nanopore MinION and Illumina MiSeq. The sequenced genome was then compared with that of a previously published conifer plastome. The chloroplast genome was found to be circular and comprised of a quadripartite structure, including 113 genes encoding 73 proteins, 36 tRNAs and 4 rRNAs. It had short inverted repeat regions and lacked ndh gene family genes, which is consistent with other Pinaceae species. The gene content of P. densiflora was found to be most similar to that of P. sylvestris. The newly attempted sequencing method could be considered an alternative method for obtaining accurate genetic information, and the chloroplast genome sequence of P. densiflora revealed in this study can be used in the phylogenetic analysis of Pinus species.
Collapse
|
39
|
Zimmermann HH, Harms L, Epp LS, Mewes N, Bernhardt N, Kruse S, Stoof-Leichsenring KR, Pestryakova LA, Wieczorek M, Trense D, Herzschuh U. Chloroplast and mitochondrial genetic variation of larches at the Siberian tundra-taiga ecotone revealed by de novo assembly. PLoS One 2019; 14:e0216966. [PMID: 31291259 PMCID: PMC6619608 DOI: 10.1371/journal.pone.0216966] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/30/2019] [Indexed: 01/10/2023] Open
Abstract
Larix populations at the tundra-taiga ecotone in northern Siberia are highly under-represented in population genetic studies, possibly due to the remoteness of these regions that can only be accessed at extraordinary expense. The genetic signatures of populations in these boundary regions are therefore largely unknown. We aim to generate organelle reference genomes for the detection of single nucleotide polymorphisms (SNPs) that can be used for paleogenetic studies. We present 19 complete chloroplast genomes and mitochondrial genomic sequences of larches from the southern lowlands of the Taymyr Peninsula (northernmost range of Larix gmelinii (Rupr.) Kuzen.), the lower Omoloy River, and the lower Kolyma River (both in the range of Larix cajanderi Mayr). The genomic data reveal 84 chloroplast SNPs and 213 putatively mitochondrial SNPs. Parsimony-based chloroplast haplotype networks show no spatial structure of individuals from different geographic origins, while the mitochondrial haplotype network shows at least a slight spatial structure with haplotypes from the Omoloy and Kolyma populations being more closely related to each other than to most of the haplotypes from the Taymyr populations. Whole genome alignments with publicly available complete chloroplast genomes of different Larix species show that among official plant barcodes only the rcbL gene contains sufficient polymorphisms, but has to be sequenced completely to distinguish the different provenances. We provide 8 novel mitochondrial SNPs that are putatively diagnostic for the separation of L. gmelinii and L. cajanderi, while 4 chloroplast SNPs have the potential to distinguish the L. gmelinii/L. cajanderi group from other Larix species. Our organelle references can be used for a targeted primer and probe design allowing the generation of short amplicons. This is particularly important with regard to future investigations of, for example, the biogeographic history of Larix by screening ancient sedimentary DNA of Larix.
Collapse
MESH Headings
- Chromosome Mapping
- DNA, Ancient
- DNA, Chloroplast/genetics
- DNA, Mitochondrial/genetics
- DNA, Plant/genetics
- Genetic Variation
- Genetics, Population
- Genome, Chloroplast
- Genome, Mitochondrial
- Genome, Plant
- Haplotypes
- History, Ancient
- Larix/classification
- Larix/genetics
- Polymorphism, Single Nucleotide
- Siberia
- Taiga
- Tundra
Collapse
Affiliation(s)
- Heike H. Zimmermann
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- * E-mail: (HHZ); (UH)
| | - Lars Harms
- Scientific Computing, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany
| | - Laura S. Epp
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Nick Mewes
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Nadine Bernhardt
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Stefan Kruse
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Kathleen R. Stoof-Leichsenring
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | | | - Mareike Wieczorek
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
| | - Daronja Trense
- Institute for Integrated Natural Sciences, Biology, Koblenz-Landau University, Koblenz, Germany
| | - Ulrike Herzschuh
- Polar Terrestrial Environmental Systems Research Group, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Potsdam, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Institute of Environmental Sciences and Geography, University of Potsdam, Potsdam, Germany
- * E-mail: (HHZ); (UH)
| |
Collapse
|
40
|
Mosca E, Cruz F, Gómez-Garrido J, Bianco L, Rellstab C, Brodbeck S, Csilléry K, Fady B, Fladung M, Fussi B, Gömöry D, González-Martínez SC, Grivet D, Gut M, Hansen OK, Heer K, Kaya Z, Krutovsky KV, Kersten B, Liepelt S, Opgenoorth L, Sperisen C, Ullrich KK, Vendramin GG, Westergren M, Ziegenhagen B, Alioto T, Gugerli F, Heinze B, Höhn M, Troggio M, Neale DB. A Reference Genome Sequence for the European Silver Fir ( Abies alba Mill.): A Community-Generated Genomic Resource. G3 (BETHESDA, MD.) 2019; 9:2039-2049. [PMID: 31217262 PMCID: PMC6643874 DOI: 10.1534/g3.119.400083] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/11/2019] [Indexed: 02/08/2023]
Abstract
Silver fir (Abies alba Mill.) is a keystone conifer of European montane forest ecosystems that has experienced large fluctuations in population size during during the Quaternary and, more recently, due to land-use change. To forecast the species' future distribution and survival, it is important to investigate the genetic basis of adaptation to environmental change, notably to extreme events. For this purpose, we here provide a first draft genome assembly and annotation of the silver fir genome, established through a community-based initiative. DNA obtained from haploid megagametophyte and diploid needle tissue was used to construct and sequence Illumina paired-end and mate-pair libraries, respectively, to high depth. The assembled A. alba genome sequence accounted for over 37 million scaffolds corresponding to 18.16 Gb, with a scaffold N50 of 14,051 bp. Despite the fragmented nature of the assembly, a total of 50,757 full-length genes were functionally annotated in the nuclear genome. The chloroplast genome was also assembled into a single scaffold (120,908 bp) that shows a high collinearity with both the A. koreana and A. sibirica complete chloroplast genomes. This first genome assembly of silver fir is an important genomic resource that is now publicly available in support of a new generation of research. By genome-enabling this important conifer, this resource will open the gate for new research and more precise genetic monitoring of European silver fir forests.
Collapse
Affiliation(s)
- Elena Mosca
- C3A - Centro Agricoltura Alimenti Ambiente, University of Trento, via E. Mach 1, 38010 S. Michele a/Adige (TN), Italy
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
| | - Luca Bianco
- Fondazione Edmund Mach, Via Mach 1, 38010 S. Michele a/Adige (TN), Italy
| | - Christian Rellstab
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Sabine Brodbeck
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Katalin Csilléry
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
- University of Zürich, Department of Evolutionary Biology and Environmental Studies, Winterthurerstrasse 190, CH-8057 Zurich
| | - Bruno Fady
- Institut National de la Recherche Agronomique (INRA), Unité de Recherche Ecologie des Forêts Méditerranéennes (URFM), Site Agroparc, Domaine Saint Paul, 84914 Avignon, France
| | - Matthias Fladung
- Thünen-Institute of Forest Genetics, Sieker Landstr, 2, 22927 Grosshansdorf, Germany
| | - Barbara Fussi
- Bavarian Office for Forest Seeding and Planting (ASP), Applied Forest Genetics, Forstamtsplatz 1, 83317 Teisendorf, Germany
| | - Dušan Gömöry
- Technical University in Zvolen, TG Masaryka 24, 96053 Zvolen, Slovakia
| | - Santiago C González-Martínez
- Institut National de la Recherche Agronomique (INRA), UMR1202 Biodiversity, Genes & Communities (BIOGECO), University of Bordeaux, 69, route d'Arcachon, 33610 Cestas, France
| | - Delphine Grivet
- INIA Forest Research Centre, Carretera de la Coruña km 7.5, 28040 Madrid, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain
| | - Ole Kim Hansen
- Department of Geosciences and Natural Resource Management (IGN), University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Katrin Heer
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Zeki Kaya
- Department of Biological Sciences (METU), Middle East Technical University, 06800 Çankaya/Ankara, Turkey
| | - Konstantin V Krutovsky
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany
- Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Gubkina Str. 3, 11991 Moscow, Russia
- Laboratory of Forest Genomics, Genome Research and Education Center, Institute of Fundamental Biology and Biotechnology, Siberian Federal University, 50a/2 Akademgorodok, 660036 Krasnoyarsk, Russia
| | - Birgit Kersten
- Thünen-Institute of Forest Genetics, Sieker Landstr, 2, 22927 Grosshansdorf, Germany
| | - Sascha Liepelt
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Lars Opgenoorth
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Christoph Sperisen
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Kristian K Ullrich
- Department of Biological Sciences (METU), Middle East Technical University, 06800 Çankaya/Ankara, Turkey
| | - Giovanni G Vendramin
- Institute of Biosciences and BioResources, National Research Council, Via Madonna del Piano 10,50019 Sesto Fiorentino (Firenze), Italy
| | - Marjana Westergren
- Slovenian Forestry Institute (SFI), Gozdarskiinštitut Slovenije), Večna pot 2, 1000 Ljubljana, Slovenia
| | - Birgit Ziegenhagen
- Philipps-Universität Marburg, Faculty of Biology (PUM), Karl-von-Frisch-Str. 8, 35032 Marburg, Germany
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, BaldiriReixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Plaça de la Mercè, 10, 08002 Barcelona, Spain
| | - Felix Gugerli
- Swiss Federal Research Institute WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Berthold Heinze
- Federal Research and Training Centre for Forests, Natural Hazards and Landscape (BFW), Seckendorff-Gudent Weg 8, 1130 Wien, Austria
| | - Maria Höhn
- Max Planck Institute for Evolutionary Biology, Department for Evolutionary Genetics (MPI), August Thienemann Str. 2, 24306 Ploen, Germany
| | - Michela Troggio
- Fondazione Edmund Mach, Via Mach 1, 38010 S. Michele a/Adige (TN), Italy
| | - David B Neale
- Department of Plant Sciences, University of California at Davis (UCD), Davis 95616
| |
Collapse
|
41
|
Bondar EI, Putintseva YA, Oreshkova NV, Krutovsky KV. Siberian larch (Larix sibirica Ledeb.) chloroplast genome and development of polymorphic chloroplast markers. BMC Bioinformatics 2019; 20:38. [PMID: 30717673 PMCID: PMC6362560 DOI: 10.1186/s12859-018-2571-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The main objectives of this study were sequencing, assembling, and annotation of chloroplast genome of one of the main Siberian boreal forest tree conifer species Siberian larch (Larix sibirica Ledeb.) and detection of polymorphic genetic markers - microsatellite loci or simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). RESULTS We used the data of the whole genome sequencing of three Siberian larch trees from different regions - the Urals, Krasnoyarsk, and Khakassia, respectively. Sequence reads were obtained using the Illumina HiSeq2000 in the Laboratory of Forest Genomics at the Genome Research and Education Center of the Siberian Federal University. The assembling was done using the Bowtie2 mapping program and the SPAdes genomic assembler. The genome annotation was performed using the RAST service. We used the GMATo program for the SSRs search, and the Bowtie2 and UGENE programs for the SNPs detection. Length of the assembled chloroplast genome was 122,561 bp, which is similar to 122,474 bp in the closely related European larch (Larix decidua Mill.). As a result of annotation and comparison of the data with the existing data available only for three larch species - L. decidua, L. potaninii var. chinensis (complete genome 122,492 bp), and L. occidentalis (partial genome of 119,680 bp), we identified 110 genes, 34 of which represented tRNA, 4 rRNA, and 72 protein-coding genes. In total, 13 SNPs were detected; two of them were in the tRNA-Arg and Cell division protein FtsH genes, respectively. In addition, 23 SSR loci were identified. CONCLUSIONS The complete chloroplast genome sequence was obtained for Siberian larch for the first time. The reference complete chloroplast genomes, such as one described here, would greatly help in the chloroplast resequencing and search for additional genetic markers using population samples. The results of this research will be useful for further phylogenetic and gene flow studies in conifers.
Collapse
Affiliation(s)
- Eugeniya I Bondar
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation
| | - Yuliya A Putintseva
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation
| | - Nataliya V Oreshkova
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation
- Laboratory of Forest Genetics and Selection, V.N. Sukachev Institute of Forest, Siberian Branch of Russian Academy of Sciences, 660036, Krasnoyarsk, Russian Federation
| | - Konstantin V Krutovsky
- Laboratory of Forest Genomics, Genome Research and Education Center, Siberian Federal University, 660036, Krasnoyarsk, Russian Federation.
- Department of Forest Genetics and Forest Tree Breeding, Georg-August University of Göttingen, Büsgenweg 2, D-37077, Göttingen, Germany.
- Laboratory of Population Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333, Moscow, Russia.
- Department of Ecosystem Science and Management, Texas A&M University, College Station, TX, 77843-2138, USA.
| |
Collapse
|
42
|
Miao J, Tso S, Li J, Xie S, Mao K. The complete chloroplast genome of Juniperus tibetica (Cupressaceae), the conifer that occupies the highest known treeline in the Northern Hemisphere. Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2018.1561229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jibin Miao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
| | - Sonam Tso
- College of Science, Tibet University, Lhasa, People’s Republic of China
| | - Jialiang Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
| | - Siyu Xie
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
| | - Kangshan Mao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, People’s Republic of China
| |
Collapse
|
43
|
Park S, An B, Park S. Reconfiguration of the plastid genome in Lamprocapnos spectabilis: IR boundary shifting, inversion, and intraspecific variation. Sci Rep 2018; 8:13568. [PMID: 30206286 PMCID: PMC6134119 DOI: 10.1038/s41598-018-31938-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 08/09/2018] [Indexed: 12/23/2022] Open
Abstract
We generated a complete plastid genome (plastome) sequence for Lamprocapnos spectabilis, providing the first complete plastome from the subfamily Fumarioideae (Papaveraceae). The Lamprocapnos plastome shows large differences in size, structure, gene content, and substitution rates compared with two sequenced Papaveraceae plastomes. We propose a model that explains the major rearrangements observed, involving at least six inverted repeat (IR) boundary shifts and five inversions, generating a number of gene duplications and relocations, as well as a two-fold expansion of the IR and miniaturized small single-copy region. A reduction in the substitution rates for genes transferred from the single-copy regions to the IR was observed. Accelerated substitution rates of plastid accD and clpP were detected in the Lamprocapnos plastome. The accelerated substitution rate for the accD gene was correlated with a large insertion of amino acid repeat (AAR) motifs in the middle region, but the forces driving the higher substitution rate of the clpP gene are unclear. We found a variable number of AARs in Lamprocapnos accD and ycf1 genes within individuals, and the repeats were associated with coiled-coil regions. In addition, comparative analysis of three Papaveraceae plastomes revealed loss of rps15 in Papaver, and functional replacement to the nucleus was identified.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Boram An
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea.
| |
Collapse
|
44
|
Nunes GL, Oliveira RRM, Guimarães JTF, Giulietti AM, Caldeira C, Vasconcelos S, Pires E, Dias M, Watanabe M, Pereira J, Jaffé R, Bandeira CHMM, Carvalho-Filho N, da Silva EF, Rodrigues TM, dos Santos FMG, Fernandes T, Castilho A, Souza-Filho PWM, Imperatriz-Fonseca V, Siqueira JO, Alves R, Oliveira G. Quillworts from the Amazon: A multidisciplinary populational study on Isoetes serracarajensis and Isoetes cangae. PLoS One 2018; 13:e0201417. [PMID: 30089144 PMCID: PMC6082551 DOI: 10.1371/journal.pone.0201417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/13/2018] [Indexed: 01/20/2023] Open
Abstract
Isoetes are ancient quillworts members of the only genus of the order Isoetales. The genus is slow evolving but is resilient, and widespread worldwide. Two recently described species occur in the Eastern Brazilian Amazon, Isoetes serracarajensis and Isoetes cangae. They are found in the ironstone grasslands known as Canga. While I. serracarajensis is present mostly in seasonal water bodies, I. cangae is known to occur in a single permanent lake at the South mountain range. In this work, we undertake an extensive morphological, physiological and genetic characterization of both species to establish species boundaries and better understand the morphological and genetic features of these two species. Our results indicate that the morphological differentiation of the species is subtle and requires a quantitative assessment of morphological elements of the megaspore for diagnosis. We did not detect differences in microspore output, but morphological peculiarities may establish a reproductive barrier. Additionally, genetic analysis using DNA barcodes and whole chloroplast genomes indicate that although the plants are genetically very similar both approaches provide diagnostic characters. There was no indication of population structuring I. serracarajensis. These results set the basis for a deeper understanding of the evolution of the Isoetes genus.
Collapse
Affiliation(s)
- Gisele Lopes Nunes
- Environmental Genomics Group, Instituto Tecnológico Vale, Belém, PA, Brazil
| | | | | | - Ana Maria Giulietti
- Biodiversity and Ecosystems Services Group, Instituto Tecnológico Vale, Belém, PA, Brazil
| | - Cecílio Caldeira
- Environmental Technology Group, Instituto Tecnológico Vale, Belém, PA, Brazil
| | | | - Eder Pires
- Environmental Genomics Group, Instituto Tecnológico Vale, Belém, PA, Brazil
| | - Mariana Dias
- Environmental Genomics Group, Instituto Tecnológico Vale, Belém, PA, Brazil
| | - Maurício Watanabe
- Biodiversity and Ecosystems Services Group, Instituto Tecnológico Vale, Belém, PA, Brazil
| | - Jovani Pereira
- Biodiversity and Ecosystems Services Group, Instituto Tecnológico Vale, Belém, PA, Brazil
| | - Rodolfo Jaffé
- Biodiversity and Ecosystems Services Group, Instituto Tecnológico Vale, Belém, PA, Brazil
| | | | | | | | | | | | - Taís Fernandes
- Environmental Studies Office, Vale, Belo Horizonte, MG, Brazil
| | | | | | | | | | - Ronnie Alves
- Environmental Genomics Group, Instituto Tecnológico Vale, Belém, PA, Brazil
| | - Guilherme Oliveira
- Environmental Genomics Group, Instituto Tecnológico Vale, Belém, PA, Brazil
- * E-mail:
| |
Collapse
|
45
|
Song Y, Yu WB, Tan Y, Liu B, Yao X, Jin J, Padmanaba M, Yang JB, Corlett RT. Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights into Loss Events in the Magnoliids. Genome Biol Evol 2018; 9:2354-2364. [PMID: 28957463 PMCID: PMC5610729 DOI: 10.1093/gbe/evx180] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/01/2017] [Indexed: 12/15/2022] Open
Abstract
Available plastomes of the Lauraceae show similar structure and varied size, but there has been no systematic comparison across the family. In order to understand the variation in plastome size and structure in the Lauraceae and related families of magnoliids, we here compare 47 plastomes, 15 newly sequenced, from 27 representative genera. We reveal that the two shortest plastomes are in the parasitic Lauraceae genus Cassytha, with lengths of 114,623 (C. filiformis) and 114,963 bp (C. capillaris), and that they have lost NADH dehydrogenase (ndh) genes in the large single-copy region and one entire copy of the inverted repeat (IR) region. The plastomes of the core Lauraceae group, with lengths from 150,749 bp (Nectandra angustifolia) to 152,739 bp (Actinodaphne trichocarpa), have lost trnI-CAU, rpl23, rpl2, a fragment of ycf2, and their intergenic regions in IRb region, whereas the plastomes of the basal Lauraceae group, with lengths from 157,577 bp (Eusideroxylon zwageri) to 158,530 bp (Beilschmiedia tungfangensis), have lost rpl2 in IRa region. The plastomes of Calycanthus (Calycanthaceae, Laurales) have lost rpl2 in IRb region, but the plastome of Caryodaphnopsis henryi (Lauraceae) remain intact, as do those of the nonLaurales magnoliid genera Piper, Liriodendron, and Magnolia. On the basis of our phylogenetic analysis and structural comparisons, different loss events occurred in different lineages of the Laurales, and fragment loss events in the IR regions have largely driven the contraction of the plastome in the Lauraceae. These results provide new insights into the evolution of the Lauraceae as well as the magnoliids as a whole.
Collapse
Affiliation(s)
- Yu Song
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Wen-Bin Yu
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Yunhong Tan
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| | - Bing Liu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Xin Yao
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jianjun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Michael Padmanaba
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China.,Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, Myanmar
| |
Collapse
|
46
|
Complete chloroplast genome sequence and comparative analysis of loblolly pine (Pinus taeda L.) with related species. PLoS One 2018; 13:e0192966. [PMID: 29596414 PMCID: PMC5875761 DOI: 10.1371/journal.pone.0192966] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Pinaceae, the largest family of conifers, has a diversified organization of chloroplast (cp) genomes with two typical highly reduced inverted repeats (IRs). In the current study, we determined the complete sequence of the cp genome of an economically and ecologically important conifer tree, the loblolly pine (Pinus taeda L.), using Illumina paired-end sequencing and compared the sequence with those of other pine species. The results revealed a genome size of 121,531 base pairs (bp) containing a pair of 830-bp IR regions, distinguished by a small single copy (42,258 bp) and large single copy (77,614 bp) region. The chloroplast genome of P. taeda encodes 120 genes, comprising 81 protein-coding genes, four ribosomal RNA genes, and 35 tRNA genes, with 151 randomly distributed microsatellites. Approximately 6 palindromic, 34 forward, and 22 tandem repeats were found in the P. taeda cp genome. Whole cp genome comparison with those of other Pinus species exhibited an overall high degree of sequence similarity, with some divergence in intergenic spacers. Higher and lower numbers of indels and single-nucleotide polymorphism substitutions were observed relative to P. contorta and P. monophylla, respectively. Phylogenomic analyses based on the complete genome sequence revealed that 60 shared genes generated trees with the same topologies, and P. taeda was closely related to P. contorta in the subgenus Pinus. Thus, the complete P. taeda genome provided valuable resources for population and evolutionary studies of gymnosperms and can be used to identify related species.
Collapse
|
47
|
Saina JK, Li ZZ, Gichira AW, Liao YY. The Complete Chloroplast Genome Sequence of Tree of Heaven (Ailanthus altissima (Mill.) (Sapindales: Simaroubaceae), an Important Pantropical Tree. Int J Mol Sci 2018; 19:E929. [PMID: 29561773 PMCID: PMC5979363 DOI: 10.3390/ijms19040929] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
Ailanthus altissima (Mill.) Swingle (Simaroubaceae) is a deciduous tree widely distributed throughout temperate regions in China, hence suitable for genetic diversity and evolutionary studies. Previous studies in A. altissima have mainly focused on its biological activities, genetic diversity and genetic structure. However, until now there is no published report regarding genome of this plant species or Simaroubaceae family. Therefore, in this paper, we first characterized A. altissima complete chloroplast genome sequence. The tree of heaven chloroplast genome was found to be a circular molecule 160,815 base pairs (bp) in size and possess a quadripartite structure. The A. altissima chloroplast genome contains 113 unique genes of which 79 and 30 are protein coding and transfer RNA (tRNA) genes respectively and also 4 ribosomal RNA genes (rRNA) with overall GC content of 37.6%. Microsatellite marker detection identified A/T mononucleotides as majority SSRs in all the seven analyzed genomes. Repeat analyses of seven Sapindales revealed a total of 49 repeats in A. altissima, Rhus chinensis, Dodonaea viscosa, Leitneria floridana, while Azadirachta indica, Boswellia sacra, and Citrus aurantiifolia had a total of 48 repeats. The phylogenetic analysis using protein coding genes revealed that A. altissima is a sister to Leitneria floridana and also suggested that Simaroubaceae is a sister to Rutaceae family. The genome information reported here could be further applied for evolution and invasion, population genetics, and molecular studies in this plant species and family.
Collapse
Affiliation(s)
- Josphat K Saina
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zhi-Zhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Andrew W Gichira
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
- Sino-African Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Yi-Ying Liao
- Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen 518004, China.
| |
Collapse
|
48
|
Wang YH, Wicke S, Wang H, Jin JJ, Chen SY, Zhang SD, Li DZ, Yi TS. Plastid Genome Evolution in the Early-Diverging Legume Subfamily Cercidoideae (Fabaceae). FRONTIERS IN PLANT SCIENCE 2018; 9:138. [PMID: 29479365 PMCID: PMC5812350 DOI: 10.3389/fpls.2018.00138] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/24/2018] [Indexed: 05/18/2023]
Abstract
The subfamily Cercidoideae is an early-branching legume lineage, which consists of 13 genera distributed in the tropical and warm temperate Northern Hemisphere. A previous study detected two plastid genomic variations in this subfamily, but the limited taxon sampling left the overall plastid genome (plastome) diversification across the subfamily unaddressed, and phylogenetic relationships within this clade remained unresolved. Here, we assembled eight plastomes from seven Cercidoideae genera and conducted phylogenomic-comparative analyses in a broad evolutionary framework across legumes. The plastomes of Cercidoideae all exhibited a typical quadripartite structure with a conserved gene content typical of most angiosperm plastomes. Plastome size ranged from 151,705 to 165,416 bp, mainly due to the expansion and contraction of inverted repeat (IR) regions. The order of genes varied due to the occurrence of several inversions. In Tylosema species, a plastome with a 29-bp IR-mediated inversion was found to coexist with a canonical-type plastome, and the abundance of the two arrangements of isomeric molecules differed between individuals. Complete plastome data were much more efficient at resolving intergeneric relationships of Cercidoideae than the previously used selection of only a few plastid or nuclear loci. In sum, our study revealed novel insights into the structural diversification of plastomes in an early-branching legume lineage, and, thus, into the evolutionary trajectories of legume plastomes in general.
Collapse
Affiliation(s)
- Yin-Huan Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Susann Wicke
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Jian-Jun Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Si-Yun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Shu-Dong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - De-Zhu Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Ting-Shuang Yi
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| |
Collapse
|
49
|
Kim HT, Chase MW. Independent degradation in genes of the plastid ndh gene family in species of the orchid genus Cymbidium (Orchidaceae; Epidendroideae). PLoS One 2017; 12:e0187318. [PMID: 29140976 PMCID: PMC5695243 DOI: 10.1371/journal.pone.0187318] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/17/2017] [Indexed: 11/23/2022] Open
Abstract
In this paper, we compare ndh genes in the plastid genome of many Cymbidium species and three closely related taxa in Orchidaceae looking for evidence of ndh gene degradation. Among the 11 ndh genes, there were frequently large deletions in directly repeated or AT-rich regions. Variation in these degraded ndh genes occurs between individual plants, apparently at population levels in these Cymbidium species. It is likely that ndh gene transfers from the plastome to mitochondrial genome (chondriome) occurred independently in Orchidaceae and that ndh genes in the chondriome were also relatively recently transferred between distantly related species in Orchidaceae. Four variants of the ycf1-rpl32 region, which normally includes the ndhF genes in the plastome, were identified, and some Cymbidium species contained at least two copies of that region in their organellar genomes. The four ycf1-rpl32 variants seem to have a clear pattern of close relationships. Patterns of ndh degradation between closely related taxa and translocation of ndh genes to the chondriome in Cymbidium suggest that there have been multiple bidirectional intracellular gene transfers between two organellar genomes, which have produced different levels of ndh gene degradation among even closely related species.
Collapse
Affiliation(s)
- Hyoung Tae Kim
- College of Agriculture and Life Sciences, Kyungpook University, Daegu, Korea
| | - Mark W. Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
50
|
Sullivan AR, Schiffthaler B, Thompson SL, Street NR, Wang XR. Interspecific Plastome Recombination Reflects Ancient Reticulate Evolution in Picea (Pinaceae). Mol Biol Evol 2017; 34:1689-1701. [PMID: 28383641 PMCID: PMC5455968 DOI: 10.1093/molbev/msx111] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Plastid sequences are a cornerstone in plant systematic studies and key aspects of their evolution, such as uniparental inheritance and absent recombination, are often treated as axioms. While exceptions to these assumptions can profoundly influence evolutionary inference, detecting them can require extensive sampling, abundant sequence data, and detailed testing. Using advancements in high-throughput sequencing, we analyzed the whole plastomes of 65 accessions of Picea, a genus of ∼35 coniferous forest tree species, to test for deviations from canonical plastome evolution. Using complementary hypothesis and data-driven tests, we found evidence for chimeric plastomes generated by interspecific hybridization and recombination in the clade comprising Norway spruce (P. abies) and 10 other species. Support for interspecific recombination remained after controlling for sequence saturation, positive selection, and potential alignment artifacts. These results reconcile previous conflicting plastid-based phylogenies and strengthen the mounting evidence of reticulate evolution in Picea. Given the relatively high frequency of hybridization and biparental plastid inheritance in plants, we suggest interspecific plastome recombination may be more widespread than currently appreciated and could underlie reported cases of discordant plastid phylogenies.
Collapse
Affiliation(s)
- Alexis R Sullivan
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Bastian Schiffthaler
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Stacey Lee Thompson
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden.,Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Nathaniel R Street
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| | - Xiao-Ru Wang
- Department of Ecology and Environmental Science, Umeå Plant Science Center, Umeå University, Umeå, Sweden
| |
Collapse
|