1
|
Petry R, de Almeida JM, Côa F, Crasto de Lima F, Martinez DST, Fazzio A. Interaction of graphene oxide with tannic acid: computational modeling and toxicity mitigation in C. elegans. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1297-1311. [PMID: 39498295 PMCID: PMC11533115 DOI: 10.3762/bjnano.15.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 09/27/2024] [Indexed: 11/07/2024]
Abstract
Graphene oxide (GO) undergoes multiple transformations when introduced to biological and environmental media. GO surface favors the adsorption of biomolecules through different types of interaction mechanisms, modulating the biological effects of the material. In this study, we investigated the interaction of GO with tannic acid (TA) and its consequences for GO toxicity. We focused on understanding how TA interacts with GO, its impact on the material surface chemistry, colloidal stability, as well as, toxicity and biodistribution using the Caenorhabditis elegans model. Employing computational modeling, including reactive classical molecular dynamics and ab initio calculations, we reveal that TA preferentially binds to the most reactive sites on GO surfaces via the oxygen-containing groups or the carbon matrix; van der Waals interaction forces dominate the binding energy. TA exhibits a dose-dependent mitigating effect on the toxicity of GO, which can be attributed not only to the surface interactions between the molecule and the material but also to the inherent biological properties of TA in C. elegans. Our findings contribute to a deeper understanding of GO's environmental behavior and toxicity and highlight the potential of tannic acid for the synthesis and surface functionalization of graphene-based nanomaterials, offering insights into safer nanotechnology development.
Collapse
Affiliation(s)
- Romana Petry
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| | - James M de Almeida
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Francine Côa
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center of Nuclear Energy in Agriculture (CENA), University of São Paulo (USP), Piracicaba, SP, Brazil
| | - Felipe Crasto de Lima
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Diego Stéfani T Martinez
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - Adalberto Fazzio
- Ilum School of Science, Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
- Center for Natural and Human Sciences, Federal University of ABC (UFABC), Santo André, 09210-580, São Paulo, Brazil
| |
Collapse
|
2
|
Carrara M, Richaud M, Cuq P, Galas S, Margout-Jantac D. Influence of Oleacein, an Olive Oil and Olive Mill Wastewater Phenolic Compound, on Caenorhabditis elegans Longevity and Stress Resistance. Foods 2024; 13:2146. [PMID: 38998651 PMCID: PMC11241402 DOI: 10.3390/foods13132146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Oleacein, a bioactive compound of olive oil and olive mill wastewater, has one of the strongest antioxidant activities among olive phenolics. However, few reports explore the in vivo antioxidant activity of oleacein, with no clear identification of the biological pathway involved. Earlier studies have demonstrated a link between stress resistance, such as oxidative stress, and longevity. This study presents the effects of oleacein on Caenorhabditis elegans mean lifespan and stress resistance. A significant lifespan extension was observed with an increase of 20% mean lifespan at 5 µg/mL with a hormetic-like dose-dependent effect. DAF-16 and SIR-2.1 were involved in the effects of oleacein on the longevity of C. elegans, while the DAF-2 receptor was not involved. This study also shows the capacity of oleacein to significantly enhance C. elegans resistance to oxidative and thermal stress and allows a better understanding of the positive effects of olive phenolics on health.
Collapse
Affiliation(s)
- Morgane Carrara
- Qualisud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| | - Myriam Richaud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France
| | - Simon Galas
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, ENSCM, Université de Montpellier, 34090 Montpellier, France
| | - Delphine Margout-Jantac
- Qualisud, Université de Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, 34093 Montpellier, France
| |
Collapse
|
3
|
Song L, Zhang S. Anti-Aging Activity and Modes of Action of Compounds from Natural Food Sources. Biomolecules 2023; 13:1600. [PMID: 38002283 PMCID: PMC10669485 DOI: 10.3390/biom13111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/26/2023] Open
Abstract
Aging is a natural and inescapable phenomenon characterized by a progressive deterioration of physiological functions, leading to increased vulnerability to chronic diseases and death. With economic and medical development, the elderly population is gradually increasing, which poses a great burden to society, the economy and the medical field. Thus, healthy aging has now become a common aspiration among people over the world. Accumulating evidence indicates that substances that can mediate the deteriorated physiological processes are highly likely to have the potential to prolong lifespan and improve aging-associated diseases. Foods from natural sources are full of bioactive compounds, such as polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins. These bioactive compounds and their derivatives have been shown to be able to delay aging and/or improve aging-associated diseases, thereby prolonging lifespan, via regulation of various physiological processes. Here, we summarize the current understanding of the anti-aging activities of the compounds, polysaccharides, polyphenols, carotenoids, sterols, terpenoids and vitamins from natural food sources, and their modes of action in delaying aging and improving aging-associated diseases. This will certainly provide a reference for further research on the anti-aging effects of bioactive compounds from natural food sources.
Collapse
Affiliation(s)
- Lili Song
- Key Laboratory of Biomedical Materials of Zhangjiakou, College of Lab Medicine, Hebei North University, Zhangjiakou 075000, China;
| | - Shicui Zhang
- College of Life and Geographic Sciences, Kashi University, Kashi 844000, China
- Xinjiang Key Laboratory of Biological Resources and Ecology of Pamirs Plateau, Kashi 844000, China
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
4
|
Matthewman C, Narin A, Huston H, Hopkins CE. Systems to model the personalized aspects of microbiome health and gut dysbiosis. Mol Aspects Med 2022; 91:101115. [PMID: 36104261 DOI: 10.1016/j.mam.2022.101115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/03/2022] [Indexed: 01/17/2023]
Abstract
The human gut microbiome is a complex and dynamic microbial entity that interacts with the environment and other parts of the body including the brain, heart, liver, and immune system. These multisystem interactions are highly conserved from invertebrates to humans, however the complexity and diversity of human microbiota compositions often yield a context that is unique to each individual. Yet commonalities remain across species, where a healthy gut microbiome will be rich in symbiotic commensal biota while an unhealthy gut microbiota will be experiencing abnormal blooms of pathobiont bacteria. In this review we discuss how omics technologies can be applied in a personalized approach to understand the microbial crosstalk and microbial-host interactions that affect the delicate balance between eubiosis and dysbiosis in an individual gut microbiome. We further highlight the strengths of model organisms in identifying and characterizing these conserved synergistic and/or pathogenic host-microbe interactions. And finally, we touch upon the growing area of personalized therapeutic interventions targeting gut microbiome.
Collapse
|
5
|
Hlaing CB, Chariyakornkul A, Pilapong C, Punvittayagul C, Srichairatanakool S, Wongpoomchai R. Assessment of Systemic Toxicity, Genotoxicity, and Early Phase Hepatocarcinogenicity of Iron (III)-Tannic Acid Nanoparticles in Rats. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1040. [PMID: 35407158 PMCID: PMC9000733 DOI: 10.3390/nano12071040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/09/2022] [Accepted: 03/19/2022] [Indexed: 02/07/2023]
Abstract
Iron-tannic acid nanoparticles (Fe-TA NPs) presented MRI contrast enhancement in both liver cancer cells and preneoplastic rat livers, while also exhibiting an anti-proliferative effect via enhanced autophagic death of liver cancer cells. Hence, a toxicity assessment of Fe-TA NPs was carried out in the present study. Acute and systemic toxicity of intraperitoneal Fe-TA NPs administration was investigated via a single dose of 55 mg/kg body weight (bw). Doses were then repeated 10 times within a range of 0.22 to 5.5 mg/kg bw every 3 days in rats. Furthermore, clastogenicity was assessed by rat liver micronucleus assay. Carcinogenicity was evaluated by medium-term carcinogenicity assay using glutathione S-transferase placental form positive foci as a preneoplastic marker, while three doses ranging from 0.55 to 17.5 mg/kg bw were administered 10 times weekly via intraperitoneum. Our study found that the LD50 value of Fe-TA NPs was greater than 55 mg/kg bw. Repeated dose administration of Fe-TA NPs over a period of 28 days and 10 weeks revealed no obvious signs of systemic toxicity, clastogenicity, and hepatocarcinogenicity. Furthermore, Fe-TA NPs did not alter liver function or serum iron status, however, increased liver iron content at certain dose in rats. Notably, antioxidant response was observed when a dose of 17.5 mg/kg bw was given to rats. Accordingly, our study found no signs of toxicity, genotoxicity, and early phase hepatocarcinogenicity of Fe-TA NPs in rats.
Collapse
Affiliation(s)
- Chi Be Hlaing
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| | - Arpamas Chariyakornkul
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| | - Chalermchai Pilapong
- Center of Excellence for Molecular Imaging (CEMI), Department of Radiologic Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Charatda Punvittayagul
- Research Affairs, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai 50100, Thailand;
| | - Somdet Srichairatanakool
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| | - Rawiwan Wongpoomchai
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (C.B.H.); (A.C.); (S.S.)
| |
Collapse
|
6
|
Okoro NO, Odiba AS, Osadebe PO, Omeje EO, Liao G, Fang W, Jin C, Wang B. Bioactive Phytochemicals with Anti-Aging and Lifespan Extending Potentials in Caenorhabditis elegans. Molecules 2021; 26:molecules26237323. [PMID: 34885907 PMCID: PMC8658929 DOI: 10.3390/molecules26237323] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 12/11/2022] Open
Abstract
In the forms of either herbs or functional foods, plants and their products have attracted medicinal, culinary, and nutraceutical applications due to their abundance in bioactive phytochemicals. Human beings and other animals have employed those bioactive phytochemicals to improve health quality based on their broad potentials as antioxidant, anti-microbial, anti-carcinogenic, anti-inflammatory, neuroprotective, and anti-aging effects, amongst others. For the past decade and half, efforts to discover bioactive phytochemicals both in pure and crude forms have been intensified using the Caenorhabditis elegans aging model, in which various metabolic pathways in humans are highly conserved. In this review, we summarized the aging and longevity pathways that are common to C. elegans and humans and collated some of the bioactive phytochemicals with health benefits and lifespan extending effects that have been studied in C. elegans. This simple animal model is not only a perfect system for discovering bioactive compounds but is also a research shortcut for elucidating the amelioration mechanisms of aging risk factors and associated diseases.
Collapse
Affiliation(s)
- Nkwachukwu Oziamara Okoro
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Arome Solomon Odiba
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
| | - Patience Ogoamaka Osadebe
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Edwin Ogechukwu Omeje
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria; (P.O.O.); (E.O.O.)
| | - Guiyan Liao
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Wenxia Fang
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China;
| | - Cheng Jin
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bin Wang
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Academy of Sciences, Nanning 530007, China; (N.O.O.); (A.S.O.); (C.J.)
- College of Life Science and Technology, Guangxi University, Nanning 530007, China;
- Correspondence: ; Tel.: +86-771-2503-601
| |
Collapse
|
7
|
A collective analysis of lifespan-extending compounds in diverse model organisms, and of species whose lifespan can be extended the most by the application of compounds. Biogerontology 2021; 22:639-653. [PMID: 34687363 DOI: 10.1007/s10522-021-09941-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/17/2021] [Indexed: 12/13/2022]
Abstract
Research on aging and lifespan-extending compounds has been carried out using diverse model organisms, including yeast, worms, flies and mice. Many studies reported the identification of novel lifespan-extending compounds in different species, some of which may have the potential to translate to the clinic. However, studies collectively and comparatively analyzing all the data available in these studies are highly limited. Here, by using data from the DrugAge database, we first identified top compounds in terms of their effects on percent change in average lifespan of diverse organisms, collectively (n = 1728). We found that, when data from all organisms studied were combined for each compound, aspirin resulted in the highest percent increase in average lifespan (52.01%), followed by minocycline (27.30%), N-acetyl cysteine (17.93%), nordihydroguaiaretic acid (17.65%) and rapamycin (15.66%), in average. We showed that minocycline led to the highest percent increase in average lifespan among other compounds, in both Drosophila melanogaster (28.09%) and Caenorhabditis elegans (26.67%), followed by curcumin (11.29%) and gluconic acid (5.51%) for D. melanogaster and by metformin (26.56%), resveratrol (15.82%) and quercetin (9.58%) for C. elegans. Moreover, we found that top 5 species whose lifespan can be extended the most by compounds with lifespan-extending properties are Philodina acuticornis, Acheta domesticus, Aeolosoma viride, Mytilina brevispina and Saccharomyces cerevisiae (211.80%, 76%, 70.26%, 55.18% and 45.71% in average, respectively). This study provides novel insights on lifespan extension in model organisms, and highlights the importance of databases with high quality content curated by researchers from multiple resources, in aging research.
Collapse
|
8
|
Liu L, Guo P, Wang P, Zheng S, Qu Z, Liu N. The Review of Anti-aging Mechanism of Polyphenols on Caenorhabditis elegans. Front Bioeng Biotechnol 2021; 9:635768. [PMID: 34327192 PMCID: PMC8314386 DOI: 10.3389/fbioe.2021.635768] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Micronutrients extracted from natural plants or made by biological synthesis are widely used in anti-aging research and applications. Among more than 30 effective anti-aging substances, employing polyphenol organic compounds for modification or delaying of the aging process attracts great interest because of their distinct contribution in the prevention of degenerative diseases, such as cardiovascular disease and cancer. There is a profound potential for polyphenol extracts in the research of aging and the related diseases of the elderly. Previous studies have mainly focused on the properties of polyphenols implicated in free radical scavenging; however, the anti-oxidant effect cannot fully elaborate its biological functions, such as neuroprotection, Aβ protein production, ion channel coupling, and signal transduction pathways. Caenorhabditis elegans (C. elegans) has been considered as an ideal model organism for exploring the mechanism of anti-aging research and is broadly utilized in screening for natural bioactive substances. In this review, we have described the molecular mechanisms and pathways responsible for the slowdown of aging processes exerted by polyphenols. We also have discussed the possible mechanisms for their anti-oxidant and anti-aging properties in C. elegans from the perspective of different classifications of the specific polyphenols, such as flavonols, anthocyanins, flavan-3-ols, hydroxybenzoic acid, hydroxycinnamic acid, and stilbenes.
Collapse
Affiliation(s)
- Limin Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
| | - Peisen Guo
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Peixi Wang
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
| | - Shanqing Zheng
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhi Qu
- Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China.,Institute of Chronic Disease Risks Assessment, School of Nursing and Health, Henan University, Kaifeng, China.,Institute of Environment and Health, South China Hospital, Health Science Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Goji berry (Lycium barbarum L.) juice reduces lifespan and premature aging of Caenorhabditis elegans: Is it safe to consume it? Food Res Int 2021; 144:110297. [PMID: 34053563 DOI: 10.1016/j.foodres.2021.110297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022]
Abstract
Goji berry fruit is considered a healthy food. However, studies on its effects on aging and safety are rare. This study is the first to evaluate the effects of goji berry juice (GBJ) on oxidative stress, metabolic markers, and lifespan of Caenorhabditis elegans. GBJ caused toxicity, reduced the lifespan of C. elegans by 50%, and increased the reactive oxygen species (ROS) production by 45-50% at all tested concentrations (1-20 mg/µL) of GBJ. Moreover, the highest concentration of GBJ increased lipid peroxidation by 80% and altered the antioxidant enzymes. These effects could be attributed to a pro-oxidant effect induced by GBJ polyphenols and carotenoids. Moreover, GBJ increased lipofuscin, glucose levels, number of apoptotic bodies, and lipase activity. The use of mutant strains demonstrated that these effects observed in the worms treated with GBJ were not associated with the Daf-16/FOXO or SKN-1 pathways. Our findings revealed that GBJ (mainly the highest concentration) exerted toxic effects and promoted premature aging in C. elegans. Therefore, its consumption should be carefully considered until further studies in mammals are conducted.
Collapse
|
10
|
Gaddy MA, Kuang S, Alfhili MA, Lee MH. The soma-germline communication: implications for somatic and reproductive aging. BMB Rep 2021. [PMID: 33407997 PMCID: PMC8167245 DOI: 10.5483/bmbrep.2021.54.5.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Aging is characterized by a functional decline in most physiological processes, including alterations in cellular metabolism and defense mechanisms. Increasing evidence suggests that caloric restriction extends longevity and retards age-related diseases at least in part by reducing metabolic rate and oxidative stress in a variety of species, including yeast, worms, flies, and mice. Moreover, recent studies in invertebrates – worms and flies, highlight the intricate interrelation between reproductive longevity and somatic aging (known as disposable soma theory of aging), which appears to be conserved in vertebrates. This review is specifically focused on how the reproductive system modulates somatic aging and vice versa in genetic model systems. Since many signaling pathways governing the aging process are evolutionarily conserved, similar mechanisms may be involved in controlling soma and reproductive aging in vertebrates.
Collapse
Affiliation(s)
- Matthew A. Gaddy
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States
| | - Swana Kuang
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States
| | - Mohammad A. Alfhili
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
| | - Myon Hee Lee
- Department of Internal Medicine, Division of Hematology/Oncology, Brody School of Medicine at East Carolina University, Greenville, NC 27834, United States
| |
Collapse
|
11
|
Chen Y, Onken B, Chen H, Zhang X, Driscoll M, Cao Y, Huang Q. Healthy lifespan extension mediated by oenothein B isolated from Eucalyptus grandis × Eucalyptus urophylla GL9 in Caenorhabditis elegans. Food Funct 2021; 11:2439-2450. [PMID: 32129349 DOI: 10.1039/c9fo02472g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Oenothein B (OEB) exhibits extensive biological activities, but few investigations have been carried out on the pharmacologic influence of OEB on longevity in any organism. To explore the potential pharmacological ability of OEB to postpone the progression of age-related degenerative processes and diseases, we monitored the effects of OEB isolated from Eucalyptus leaves on the lifespan of Caenorhabditis elegans (C. elegans) at four different concentrations. We found that OEB increased the median lifespan of worms by up to 22% in a dose-dependent manner. Further studies demonstrated that OEB significantly enhanced youthfulness (healthy lifespan) by increasing the whole adult life's locomotory mobility, reducing age pigment and reactive oxygen species (ROS) accumulation, and enhancing thermal stress resistance. Furthermore, the genes daf-16, age-1, eat-2, sir-2.1, and isp-1 were required for the healthy longevity benefits induced by OEB, but not the genes mev-1 and clk-1. Taken together, OEB might modulate multiple genetic pathways involved in insulin/IGF-1 signaling (IIS) via age-1 and daf-16, the dietary restriction (DR) pathway via eat-2 and sir-2.1, and the mitochondrial electron transport chain via isp-1 to promote healthy lifespan including the reduction of age pigment and ROS accumulation and the enhancement of locomotory mobility, thermal stress tolerance and lifespan. These findings indicated that OEB has the potential to be developed into the next generation of multi-target drugs for prolonging healthy lifespan and intervening in age-related diseases.
Collapse
Affiliation(s)
- Yunjiao Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China. and Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Brian Onken
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | - Xiaoying Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
12
|
Martel J, Wu CY, Peng HH, Ko YF, Yang HC, Young JD, Ojcius DM. Plant and fungal products that extend lifespan in Caenorhabditis elegans. MICROBIAL CELL (GRAZ, AUSTRIA) 2020; 7:255-269. [PMID: 33015140 PMCID: PMC7517010 DOI: 10.15698/mic2020.10.731] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/16/2022]
Abstract
The nematode Caenorhabditis elegans is a useful model to study aging due to its short lifespan, ease of manipulation, and available genetic tools. Several molecules and extracts derived from plants and fungi extend the lifespan of C. elegans by modulating aging-related pathways that are conserved in more complex organisms. Modulation of aging pathways leads to activation of autophagy, mitochondrial biogenesis and expression of antioxidant and detoxifying enzymes in a manner similar to caloric restriction. Low and moderate concentrations of plant and fungal molecules usually extend lifespan, while high concentrations are detrimental, consistent with a lifespan-modulating mechanism involving hormesis. We review here molecules and extracts derived from plants and fungi that extend the lifespan of C. elegans, and explore the possibility that these natural substances may produce health benefits in humans.
Collapse
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Cheng-Yeu Wu
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Research Center of Bacterial Pathogenesis, Chang Gung University, Taoyuan, Taiwan
| | - Hsin-Hsin Peng
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Laboratory Animal Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
- Biochemical Engineering Research Center, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Hung-Chi Yang
- Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu, Taiwan
| | - John D. Young
- Chang Gung Biotechnology Corporation, Taipei, Taiwan
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Taoyuan, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA
| |
Collapse
|
13
|
Öhlinger T, Müllner EW, Fritz M, Sauer T, Werning M, Baron DM, Salzer U. Lysophosphatidic acid-induced pro-thrombotic phosphatidylserine exposure and ionophore-induced microvesiculation is mediated by the scramblase TMEM16F in erythrocytes. Blood Cells Mol Dis 2020; 83:102426. [PMID: 32222693 DOI: 10.1016/j.bcmd.2020.102426] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 03/12/2020] [Accepted: 03/12/2020] [Indexed: 12/31/2022]
Abstract
Recent studies indicate that erythrocytes actively modulate blood clotting and thrombus formation. The lipid mediator lysophosphatidic acid (LPA) is produced by activated platelets, and triggers a signaling process in erythrocytes. This results in cellular calcium uptake and exposure of phosphatidylserine (PS) at the cell surface, thereby generating activated membrane binding sites for factors of the clotting cascade. Moreover, erythrocytes of patients with a bleeding disorder and mutations in the scramblase TMEM16F show impaired PS exposure and microvesiculation upon treatment with calcium ionophore. We report that TMEM16F inhibitors tannic acid (TA) and epigallocatechin-3-gallate (EGCG) inhibit LPA-induced PS exposure and calcium uptake at low micromolar concentrations; fluoxetine, an antidepressant and a known activator of TMEM16F, enhances these processes. These effectors likewise modulate erythrocyte PS exposure and microvesicle shedding induced by calcium ionophore treatment. Further, LPA-treated erythrocytes triggered thrombin generation in platelet-free plasma which was partially impaired in the presence of TA and EGCG. Thus, this study suggests that LPA activates the scramblase TMEM16F in erythrocytes, thereby possibly mediating a pro-thrombotic function in these cells. EGCG as well as fluoxetine, substances with potentially high plasma concentrations due to alimentation or medical treatment, should be considered as potential effectors of systemic hemostatic regulation.
Collapse
Affiliation(s)
- Thomas Öhlinger
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria; Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ernst W Müllner
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Magdalena Fritz
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Thomas Sauer
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Maike Werning
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - David M Baron
- Department of Anaesthesia, Intensive Care Medicine and Pain Medicine, Medical University of Vienna, Vienna, Austria
| | - Ulrich Salzer
- Center for Medical Biochemistry, Max Perutz Laboratories, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
14
|
Costa-Orlandi CB, Serafim-Pinto A, da Silva PB, Bila NM, Bonatti JLDC, Scorzoni L, Singulani JDL, Dos Santos CT, Nazaré AC, Chorilli M, Regasini LO, Fusco-Almeida AM, Mendes-Giannini MJS. Incorporation of Nonyl 3,4-Dihydroxybenzoate Into Nanostructured Lipid Systems: Effective Alternative for Maintaining Anti-Dermatophytic and Antibiofilm Activities and Reducing Toxicity at High Concentrations. Front Microbiol 2020; 11:1154. [PMID: 32582096 PMCID: PMC7290161 DOI: 10.3389/fmicb.2020.01154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/06/2020] [Indexed: 12/18/2022] Open
Abstract
Dermatophytosis is the most common mycosis worldwide, affecting approximately 20 to 25% of the population, regardless of gender, race, color, and age. Most antifungal agents used for the treatment of dermatophytosis belong to the azole and allylamine classes. Dermatophytes are reported to be resistant to most commercial drugs, especially microbial biofilms, in addition to their considerable toxicity. It should be emphasized the importance of looking for new molecules with reduced toxicity, as well as new targets and mechanisms of action. This work aims to incorporate nonyl 3,4-dihydroxybenzoate, a potent fungicide compound against planktonic cells and dermatophyte biofilms in nanostructured lipid systems (NLS), in order to reduce toxicity in high concentrations, improve its solubility and maintain its effectiveness. The compound was incorporated into NLS constituted by cholesterol, mixture of polyoxyethylene (23) lauryl ether (Brij®98) and soybean phosphatidylcholine (Epikuron® 200)], 2: 1 ratio and PBS (phosphate-buffered saline). The characterization of the incorporation was performed. Susceptibility tests were conducted according to document M38-A2 by CLSI (2008). The toxicity of the NLS compound was evaluated in HaCaT cell lines by the sulforhodamine B method and in alternative models Caenorhabditis elegans and zebrafish. Finally, its efficacy was evaluated against the mature Trichophyton rubrum and Trichophyton mentagrophytes biofilms. NLS and nonyl 3,4-dihydroxybenzoate loaded into NLS displayed sizes ranging from 137.8 ± 1.815 to 167.9 ± 4.070 nm; the polydispersity index (PDI) varying from 0.331 ± 0.020 to 0.377 ± 0.004 and zeta potential ranging from −1.46 ± 0.157 to −4.63 ± 0.398 mV, respectively. Polarized light microscopy results confirmed the formation of NLS of the microemulsion type. Nonyl incorporated into NLS showed minimum inhibitory concentration (MIC) values, ranging from 2 to 15.6 mg/L. The toxicity tests presented cell viability higher than 80% in all tested concentrations, as well as, a significantly increased of the survival of Caenorhabditis elegans and zebrafish models. Anti-biofilm tests proved the efficacy of the incorporation. These findings contribute significantly to the search for new antifungals and allow the systemic administration of the compound, since the incorporation can increase the solubility of non-polar compounds, improve bioavailability, effectiveness and reduce toxicity.
Collapse
Affiliation(s)
- Caroline Barcelos Costa-Orlandi
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Aline Serafim-Pinto
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Patrícia Bento da Silva
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Níura Madalena Bila
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil.,Universidade Eduardo Mondlane, School of Veterinary, Maputo, Mozambique
| | - Jean Lucas de Carvalho Bonatti
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Liliana Scorzoni
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Junya de Lacorte Singulani
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Claudia Tavares Dos Santos
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Ana Carolina Nazaré
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drugs and Medicines, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | - Luis Octávio Regasini
- Institute of Biosciences, Humanities and Exact Sciences, Department of Chemistry and Environmental Sciences, Universidade Estadual Paulista (UNESP), São José do Rio Preto, Brazil
| | - Ana Marisa Fusco-Almeida
- School of Pharmaceutical Sciences, Department of Clinical Analysis, Universidade Estadual Paulista (UNESP), Araraquara, Brazil
| | | |
Collapse
|
15
|
Bacterial diet and weak cadmium stress affect the survivability of Caenorhabditis elegans and its resistance to severe stress. Heliyon 2019; 5:e01126. [PMID: 30705981 PMCID: PMC6348244 DOI: 10.1016/j.heliyon.2019.e01126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 09/20/2018] [Accepted: 01/03/2019] [Indexed: 01/11/2023] Open
Abstract
Stress may have negative or positive effects in dependence of its intensity (hormesis). We studied this phenomenon in Caenorhabditis elegans by applying weak or severe abiotic (cadmium, CdCl2) and/or biotic stress (different bacterial diets) during cultivation/breeding of the worms and determining their developmental speed or survival and performing transcriptome profiling and RT-qPCR analyses to explore the genetic basis of the detected phenotypic differences. To specify weak or severe stress, developmental speed was measured at different cadmium concentrations, and survival assays were carried out on different bacterial species as feed for the worms. These studies showed that 0.1 μmol/L or 10 mmol/L of CdCl2 were weak or severe abiotic stressors, and that E. coli HT115 or Chitinophaga arvensicola feeding can be considered as weak or severe biotic stress. Extensive phenotypic studies on wild type (WT) and different signaling mutants (e.g., kgb-1Δ and pmk-1Δ) and genetic studies on WT revealed, inter alia, the following results. WT worms bred on E. coli OP50, which is a known cause of high lipid levels in the worms, showed high resistance to severe abiotic stress and elevated gene expression for protein biosynthesis. WT worms bred under weak biotic stress (E. coli HT115 feeding which causes lower lipid levels) showed an elevated resistance to severe biotic stress, elevated gene expression for the innate immune response and signaling but reduced gene expression for protein biosynthesis. WT worms bred under weak biotic and abiotic stress (E. coli HT115 feeding plus 0.1 μmol/L of CdCl2) showed high resistance to severe biotic stress, elevated expression of DAF-16 target genes (e.g., genes for small heat shock proteins) but further reduced gene expression for protein biosynthesis. WT worms bred under weak biotic but higher abiotic stress (E. coli HT115 feeding plus 10 μmol/L of CdCl2) showed re-intensified gene expression for the innate immune response, signaling, and protein biosynthesis, which, however, did not caused a higher resistance to severe biotic stress. E. coli OP50 feeding as well as weak abiotic and biotic stress during incubations also improved the age-specific survival probability of adult WT worms. Thus, this study showed that a bacterial diet resulting in higher levels of energy resources in the worms (E. coli OP50 feeding) or weak abiotic and biotic stress promote the resistance to severe abiotic or biotic stress and the age-specific survival probability of WT.
Collapse
|
16
|
Martel J, Ojcius DM, Ko YF, Chang CJ, Young JD. Antiaging effects of bioactive molecules isolated from plants and fungi. Med Res Rev 2019; 39:1515-1552. [PMID: 30648267 DOI: 10.1002/med.21559] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 12/06/2018] [Accepted: 12/08/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Biomedical Sciences; University of the Pacific, Arthur Dugoni School of Dentistry; San Francisco California
| | - Yun-Fei Ko
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| | - Chih-Jung Chang
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Science; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University; Taoyuan Taiwan Republic of China
- Department of Microbiology and Immunology; College of Medicine, Chang Gung University; Taoyuan Taiwan Republic of China
| | - John D. Young
- Center for Molecular and Clinical Immunology, Chang Gung University; Taoyuan Taiwan Republic of China
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital; Taoyuan Taiwan, Republic of China
- Chang Gung Biotechnology Corporation; Taipei Taiwan Republic of China
- Biochemical Engineering Research Center, Ming Chi University of Technology; New Taipei City Taiwan Republic of China
| |
Collapse
|
17
|
Govindan S, Amirthalingam M, Duraisamy K, Govindhan T, Sundararaj N, Palanisamy S. Phytochemicals-induced hormesis protects Caenorhabditis elegans against α-synuclein protein aggregation and stress through modulating HSF-1 and SKN-1/Nrf2 signaling pathways. Biomed Pharmacother 2018; 102:812-822. [PMID: 29605769 DOI: 10.1016/j.biopha.2018.03.128] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 01/11/2023] Open
Abstract
Mild stress activates the adaptive cellular response for the subsequent severe stress called hormesis. Hormetic stress plays a vital role to activate multiple stress-responsive genes for the benefit of an organism. In tropical regions of world, tubers of Dioscorea spp. has been extensively used in folk medicine and also consumed as food. In this study, we report that the phytochemicals of Dioscorea alata L., tubers extends the lifespan of nematode model Caenorhabditis elegans by hormetic mechanism. We showed that the low dose of tubers extract at 200 and 300 μg/mL extends the mean lifespan of wild-type worms, whereas higher doses are found to be toxic. Supplementation of tubers extract slightly increased the intracellular ROS in second-day adult worms and it might activate the adaptive stress response, which protects the worms from oxidative and thermal stress. Transgenic reporter gene expression assay showed that extract treatment enhanced the expression of stress protective genes such as hsp-16.2, hsp-6, hsp-60 and gst-4. Further studies proved that the transcription factors HSF-1 and SKN-1/Nrf2 were implicated in hormetic stress response of the worms. Moreover, pretreatment of extract reduced the high glucose-mediated lipid accumulation by enhancing the expression of glyoxalase-1. It was also found that the aggregation of Parkinson's related protein α-synuclein reduced in the transgenic strain NL5901 and extended its lifespan. Finally, our results concluded that the presences of hormetic dietary phytochemicals in tubers might drive the stress response in C. elegans via HSF-1 and SKN-1/Nrf2 signaling pathways.
Collapse
Affiliation(s)
- Shanmugam Govindan
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Kalaiselvi Duraisamy
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Thiruppathi Govindhan
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | | - Sundararaj Palanisamy
- Unit of Nematology, Department of Zoology, Bharathiar University, Coimbatore, Tamil Nadu, India.
| |
Collapse
|
18
|
Ewald CY, Hourihan JM, Bland MS, Obieglo C, Katic I, Moronetti Mazzeo LE, Alcedo J, Blackwell TK, Hynes NE. NADPH oxidase-mediated redox signaling promotes oxidative stress resistance and longevity through memo-1 in C. elegans. eLife 2017; 6. [PMID: 28085666 PMCID: PMC5235354 DOI: 10.7554/elife.19493] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 12/27/2016] [Indexed: 12/23/2022] Open
Abstract
Transient increases in mitochondrially-derived reactive oxygen species (ROS) activate an adaptive stress response to promote longevity. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases produce ROS locally in response to various stimuli, and thereby regulate many cellular processes, but their role in aging remains unexplored. Here, we identified the C. elegans orthologue of mammalian mediator of ErbB2-driven cell motility, MEMO-1, as a protein that inhibits BLI-3/NADPH oxidase. MEMO-1 is complexed with RHO-1/RhoA/GTPase and loss of memo-1 results in an enhanced interaction of RHO-1 with BLI-3/NADPH oxidase, thereby stimulating ROS production that signal via p38 MAP kinase to the transcription factor SKN-1/NRF1,2,3 to promote stress resistance and longevity. Either loss of memo-1 or increasing BLI-3/NADPH oxidase activity by overexpression is sufficient to increase lifespan. Together, these findings demonstrate that NADPH oxidase-induced redox signaling initiates a transcriptional response that protects the cell and organism, and can promote both stress resistance and longevity. DOI:http://dx.doi.org/10.7554/eLife.19493.001
Collapse
Affiliation(s)
- Collin Yvès Ewald
- Department of Health Sciences and Technology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich, Switzerland.,Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland.,Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - John M Hourihan
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Monet S Bland
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Carolin Obieglo
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Iskra Katic
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland
| | - Lorenza E Moronetti Mazzeo
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Joy Alcedo
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland.,Department of Biological Sciences, Wayne State University, Detroit, United States
| | - T Keith Blackwell
- Department of Genetics, Harvard Medical School, Boston, United States.,Joslin Diabetes Center, Boston, United States.,Harvard Stem Cell Institute, Cambridge, United States
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, University of Basel, Basel, Switzerland
| |
Collapse
|
19
|
Longevity extension by phytochemicals. Molecules 2015; 20:6544-72. [PMID: 25871373 PMCID: PMC6272139 DOI: 10.3390/molecules20046544] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/31/2022] Open
Abstract
Phytochemicals are structurally diverse secondary metabolites synthesized by plants and also by non-pathogenic endophytic microorganisms living within plants. Phytochemicals help plants to survive environmental stresses, protect plants from microbial infections and environmental pollutants, provide them with a defense from herbivorous organisms and attract natural predators of such organisms, as well as lure pollinators and other symbiotes of these plants. In addition, many phytochemicals can extend longevity in heterotrophic organisms across phyla via evolutionarily conserved mechanisms. In this review, we discuss such mechanisms. We outline how structurally diverse phytochemicals modulate a complex network of signaling pathways that orchestrate a distinct set of longevity-defining cellular processes. This review also reflects on how the release of phytochemicals by plants into a natural ecosystem may create selective forces that drive the evolution of longevity regulation mechanisms in heterotrophic organisms inhabiting this ecosystem. We outline the most important unanswered questions and directions for future research in this vibrant and rapidly evolving field.
Collapse
|
20
|
Abstract
Geriatrics is a medical practice that addresses the complex needs of older patients and emphasizes maintaining functional independence even in the presence of chronic disease. Treatment of geriatric patients requires a different strategy and is very complex. Geriatric medicines aim to promote health by preventing and treating diseases and disabilities in older adults. Development of effective dietary interventions for promoting healthy aging is an active but challenging area of research because aging is associated with an increased risk of chronic disease, disability, and death. Aging populations are a global phenomenon. The most widespread conditions affecting older people are hypertension, congestive heart failure, dementia, osteoporosis, breathing problems, cataract, and diabetes to name a few. Decreased immunity is also partially responsible for the increased morbidity and mortality resulting from infectious agents in the elderly. Nutritional status is one of the chief variables that explains differences in both the incidence and pathology of infection. Elderly people are at increased risk for micronutrient deficiencies due to a variety of factors including social, physical, economic, and emotional obstacles to eating. Thus there is an urgent need to shift priorities to increase our attention on ways to prevent chronic illnesses associated with aging. Individually, people must put increased efforts into establishing healthy lifestyle practices, including consuming a more healthful diet. The present review thus focuses on the phytochemicals of nutraceutical importance for the geriatric population.
Collapse
Affiliation(s)
- Charu Gupta
- Amity Institute for Herbal Research & Studies, Amity University UP, Noida, India
| | | |
Collapse
|
21
|
Xiong LG, Huang JA, Li J, Yu PH, Xiong Z, Zhang JW, Gong YS, Liu ZH, Chen JH. Black tea increased survival of Caenorhabditis elegans under stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:11163-11169. [PMID: 25345740 DOI: 10.1021/jf503120j] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The present study examined the effects of black tea (Camellia sinensis) extracts (BTE) in Caenorhabditis elegans under various abiotic stressors. Results showed BTE increased nematode resistance to osmosis, heat, and UV irradiation treatments. However, BTE could not increase nematodes' lifespan under normal culture conditions and MnCl2-induced toxicity at concentrations we used. Further studies showed that BTE decreased reactive oxygen species and up-regulated some antioxidant enzymes, including GSH-PX, and genes, such as gsh-px and sod-3. However, only a slight extension in mev-1 mutants mean lifespan was observed without significance. These results indicated that the antioxidant activity of BTE might be necessary but not sufficient to protect against aging to C. elegans. Moreover, BTE increased the mRNA level of stress-response genes such as sir-2.1 and sek-1. Our finding demonstrated BTE might increase heat and UV stress resistance in a sir.2.1-dependent manner. Taken together, BTE enhanced stress resistance with multiple mechanisms in C. elegans.
Collapse
Affiliation(s)
- Li-Gui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University , Changsha, Hunan 410128, China
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Chen Y, Onken B, Chen H, Xiao S, Liu X, Driscoll M, Cao Y, Huang Q. Mechanism of longevity extension of Caenorhabditis elegans induced by pentagalloyl glucose isolated from eucalyptus leaves. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:3422-3431. [PMID: 24701969 DOI: 10.1021/jf500210p] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The multicellular model organism Caenorhabditis elegans (C. elegans) was used to identify the anti-aging effect of pentagalloyl glucose (PGG) isolated from Eucalyptus leaves at four different concentrations. For 160 μM PGG, the median lifespan of C. elegans was found to increase by 18%, and the thermal stress resistance was also increased. The anti-aging effect of PGG did not cause side effects on the physiological functions including the reproduction, pharyngeal pumping rate, age pigments accumulation, and locomotion ability. The life extension induced by PGG was found to rely on genes daf-16, age-1, eat-2, sir-2.1, and isp-1 but did not rely on genes mev-1 and clk-1. These findings suggested that the insulin/IGF-1 signaling pathway, dietary restriction, Sir-2.1 signaling, and mitochondrial electron transport chain became partly involved with the mechanism of lifespan extension mediated by PGG. Our results provided an insight into the mechanism of longevity extension mediated by PGG in C. elegans, which might be developed into a new generation of multitarget drug to prolong lifespan.
Collapse
Affiliation(s)
- Yunjiao Chen
- Department of Food Science, College of Food Science, South China Agricultural University , Guangzhou 510642, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Argyropoulou A, Aligiannis N, Trougakos IP, Skaltsounis AL. Natural compounds with anti-ageing activity. Nat Prod Rep 2014; 30:1412-37. [PMID: 24056714 DOI: 10.1039/c3np70031c] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ageing is a complex molecular process driven by diverse molecular pathways and biochemical events that are promoted by both environmental and genetic factors. Specifically, ageing is defined as a time-dependent decline of functional capacity and stress resistance, associated with increased chance of morbidity and mortality. These effects relate to age-related gradual accumulation of stressors that result in increasingly damaged biomolecules which eventually compromise cellular homeostasis. Nevertheless, the findings that genetic or diet interventions can increase lifespan in evolutionarily diverse organisms indicate that mortality can be postponed. Natural compounds represent an extraordinary inventory of high diversity structural scaffolds that can offer promising candidate chemical entities in the major healthcare challenge of increasing health span and/or delaying ageing. Herein, those natural compounds (either pure forms or extracts) that have been found to delay cellular senescence or in vivo ageing will be critically reviewed and summarized according to affected cellular signalling pathways. Moreover, the chemical structures of the identified natural compounds along with the profile of extracts related to their bioactive components will be presented and discussed. Finally, novel potential molecular targets for screening natural compounds for anti-ageing activity, as well as the idea that anti-ageing interventions represent a systemic approach that is also effective against age-related diseases will be discussed.
Collapse
Affiliation(s)
- Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, University of Athens, Panepistimiopolis Zografou, 15771, Athens, Greece.
| | | | | | | |
Collapse
|
24
|
Saul N, Pietsch K, Stürzenbaum SR, Menzel R, Steinberg CEW. Hormesis and longevity with tannins: free of charge or cost-intensive? CHEMOSPHERE 2013; 93:1005-1008. [PMID: 23876505 DOI: 10.1016/j.chemosphere.2013.05.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 05/21/2013] [Accepted: 05/25/2013] [Indexed: 06/02/2023]
Abstract
Hormetic lifespan extension is, for obvious reasons, beneficial to an individual. But is this effect really cost-neutral? To answer this question, four tannic polyphenols were tested on the nematode Caenorhabditis elegans. All were able to extend the lifespan, but only some in a hormetic fashion. Additional life trait variables including stress resistance, reproductive behavior, growth, and physical fitness were observed during the exposure to the most life extending concentrations. These traits represent the quality of life and the population fitness, being the most important parameters of a hormetic treatment besides lifespan. Indeed, it emerged that each life-extension is accompanied by a constraining effect in at least one other endpoint, for example growth, mobility, stress resistance, or reproduction. Thus, in this context, longevity could not be considered to be attained for free and therefore it is likely that other hormetic benefits may also incur cost-intensive and unpredictable side-effects.
Collapse
Affiliation(s)
- Nadine Saul
- Humboldt-Universität zu Berlin, Department of Biology, Laboratory of Freshwater & Stress Ecology, Späthstraße 80/81, 12437 Berlin, Germany.
| | | | | | | | | |
Collapse
|
25
|
Guha S, Cao M, Kane RM, Savino AM, Zou S, Dong Y. The longevity effect of cranberry extract in Caenorhabditis elegans is modulated by daf-16 and osr-1. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1559-74. [PMID: 22864793 PMCID: PMC3776105 DOI: 10.1007/s11357-012-9459-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 07/11/2012] [Indexed: 05/22/2023]
Abstract
Nutraceuticals are known to have numerous health and disease preventing properties. Recent studies suggest that extracts containing cranberry may have anti-aging benefits. However, little is known about whether and how cranberry by itself promotes longevity and healthspan in any organism. Here we examined the effect of a cranberry only extract on lifespan and healthspan in Caenorhabditis elegans. Supplementation of the diet with cranberry extract (CBE) increased the lifespan in C. elegans in a concentration-dependent manner. Cranberry also increased tolerance of C. elegans to heat shock, but not to oxidative stress or ultraviolet irradiation. In addition, we tested the effect of cranberry on brood size and motility and found that cranberry did not influence these behaviors. Our mechanistic studies indicated that lifespan extension induced by CBE requires the insulin/IGF signaling pathway and DAF-16. We also found that cranberry promotes longevity through osmotic stress resistant-1 (OSR-1) and one of its downstream effectors, UNC-43, but not through SEK-1, a component of the p38 MAP kinase pathway. However, SIR-2.1 and JNK signaling pathways are not required for cranberry to promote longevity. Our findings suggest that cranberry supplementation confers increased longevity and stress resistance in C. elegans through pathways modulated by daf-16 and osr-1. This study reveals the anti-aging property of widely consumed cranberry and elucidates the underpinning mechanisms.
Collapse
Affiliation(s)
- Sujay Guha
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | - Min Cao
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
- />Institute for Engaged Aging, Clemson University, Clemson, SC 29634 USA
| | - Ryan M. Kane
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | - Anthony M. Savino
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
| | - Sige Zou
- />Laboratory of Experimental Gerontology, National Institute on Aging, Baltimore, MD 21224 USA
| | - Yuqing Dong
- />Department of Biological Sciences, Clemson University, Clemson, SC 29634 USA
- />Institute for Engaged Aging, Clemson University, Clemson, SC 29634 USA
- />Clemson University, 132 Long Hall, Clemson, SC 29634 USA
| |
Collapse
|
26
|
Zhao Y, Zhao L, Zheng X, Fu T, Guo H, Ren F. Lactobacillus salivarius strain FDB89 induced longevity in Caenorhabditis elegans by dietary restriction. J Microbiol 2013; 51:183-8. [PMID: 23625218 DOI: 10.1007/s12275-013-2076-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 01/31/2013] [Indexed: 02/08/2023]
Abstract
In this study, we utilized the nematode Caenorhabditis elegans to assess potential life-expanding effect of Lactobacillus salivarius strain FDB89 (FDB89) isolated from feces of centenarians in Bama County (Guangxi, China). This study showed that feeding FDB89 extended the mean life span in C. elegans by up to 11.9% compared to that of control nematodes. The reduced reproductive capacities, pharyngeal pumping rate, growth, and increased superoxide dismutase (SOD) activity and XTT reduction capacity were also observed in FDB89 feeding worms. To probe the anti-aging mechanism further, we incorporated a food gradient feeding assay and assayed the life span of eat-2 mutant. The results demonstrated that the maximal life span of C. elegans fed on FDB89 was achieved at the concentration of 1.0 mg bacterial cells/plate, which was 10-fold greater than that of C. elegans fed on E. coli OP50 (0.1 mg bacterial cells/plate). However, feeding FDB89 could not further extend the life span of eat-2 mutant. These results indicated that FDB89 modulated the longevity of C. elegans in a dietary restriction-dependent manner and expanded the understanding of anti-aging effect of probiotics.
Collapse
Affiliation(s)
- Yang Zhao
- Key Laboratory of Functional Dairy Science of Beijing and Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, P. R. China
| | | | | | | | | | | |
Collapse
|
27
|
Moskalev AA, Shaposhnikov MV, Plyusnina EN, Zhavoronkov A, Budovsky A, Yanai H, Fraifeld VE. The role of DNA damage and repair in aging through the prism of Koch-like criteria. Ageing Res Rev 2013; 12:661-84. [PMID: 22353384 DOI: 10.1016/j.arr.2012.02.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Revised: 01/27/2012] [Accepted: 02/06/2012] [Indexed: 12/21/2022]
Abstract
Since the first publication on Somatic Mutation Theory of Aging (Szilárd, 1959), a great volume of knowledge in the field has been accumulated. Here we attempted to organize the evidence "for" and "against" the hypothesized causal role of DNA damage and mutation accumulation in aging in light of four Koch-like criteria. They are based on the assumption that some quantitative relationship between the levels of DNA damage/mutations and aging rate should exist, so that (i) the longer-lived individuals or species would have a lower rate of damage than the shorter-lived, and (ii) the interventions that modulate the level of DNA damage and repair capacity should also modulate the rate of aging and longevity and vice versa. The analysis of how the existing data meets the proposed criteria showed that many gaps should still be filled in order to reach a clear-cut conclusion. As a perspective, it seems that the main emphasis in future studies should be put on the role of DNA damage in stem cell aging.
Collapse
|
28
|
Steinberg CEW, Pietsch K, Saul N, Menzel S, Swain SC, Stürzenbaum SR, Menzel R. Transcript expression patterns illuminate the mechanistic background of hormesis in caenorhabditis elegans maupas. Dose Response 2013; 11:558-76. [PMID: 24298231 DOI: 10.2203/dose-response.12-024.steinberg] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The animal model Caenorhabditis elegans was employed to study polyphenol- and humic substances-induced hormetic changes in lifespan. A detailed insight into the underlying mechanism of hormesis was uncovered by applying whole genome DNA microarray experimentation over a range of quercetin (Q), tannic acid (TA), and humic substances (HuminFeed(®), HF) concentrations. The transcriptional response to all exposures followed a non-linear mode which highlighted differential signaling and metabolic pathways. While low Q concentrations regulated processes improving the health of the nematodes, higher concentrations extended lifespan and modulated substantially the global transcriptional response. Over-represented transcripts were notably part of the biotransformation process: enhanced catabolism of toxic intermediates possibly contributes to the lifespan extension. The regulation of transcription, Dauer entry, and nucleosome suggests the presence of distinct exposure dependent differences in transcription and signaling pathways. TA- and HF-mediated transcript expression patterns were overall similar to each other, but changed across the concentration range indicating that their transcriptional dynamics are complex and cannot be attributed to a simple adaptive response. In contrast, Q-mediated hormesis was well aligned to fit the definition of an adaptive response. Simple molecules are more likely to induce an adaptive response than more complex molecules.
Collapse
|
29
|
Lucanic M, Lithgow GJ, Alavez S. Pharmacological lifespan extension of invertebrates. Ageing Res Rev 2013; 12:445-58. [PMID: 22771382 DOI: 10.1016/j.arr.2012.06.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 01/11/2023]
Abstract
There is considerable interest in identifying small, drug-like compounds that slow aging in multiple species, particularly in mammals. Such compounds may prove to be useful in treating and retarding age-related disease in humans. Just as invertebrate models have been essential in helping us understand the genetic pathways that control aging, these model organisms are also proving valuable in discovering chemical compounds that influence longevity. The nematode Caenorhabditis elegans has numerous advantages for such studies including its short lifespan and has been exploited by a number of investigators to find compounds that impact aging. Here, we summarize the progress being made in identifying compounds that extend the lifespan of invertebrates, and introduce the challenges we face in translating this research into human therapies.
Collapse
|
30
|
Formation and regulation of adaptive response in nematode Caenorhabditis elegans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:564093. [PMID: 22997543 PMCID: PMC3446806 DOI: 10.1155/2012/564093] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 06/24/2012] [Indexed: 01/11/2023]
Abstract
All organisms respond to environmental stresses (e.g., heavy metal, heat, UV irradiation, hyperoxia, food limitation, etc.) with coordinated adjustments in order to deal with the consequences and/or injuries caused by the severe stress. The nematode Caenorhabditis elegans often exerts adaptive responses if preconditioned with low concentrations of agents or stressor. In C. elegans, three types of adaptive responses can be formed: hormesis, cross-adaptation, and dietary restriction. Several factors influence the formation of adaptive responses in nematodes, and some mechanisms can explain their response formation. In particular, antioxidation system, heat-shock proteins, metallothioneins, glutathione, signaling transduction, and metabolic signals may play important roles in regulating the formation of adaptive responses. In this paper, we summarize the published evidence demonstrating that several types of adaptive responses have converged in C. elegans and discussed some possible alternative theories explaining the adaptive response control.
Collapse
|
31
|
Nutraceutical interventions for promoting healthy aging in invertebrate models. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:718491. [PMID: 22991584 PMCID: PMC3444043 DOI: 10.1155/2012/718491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/08/2012] [Accepted: 08/10/2012] [Indexed: 01/11/2023]
Abstract
Aging is a complex and inevitable biological process that is associated with numerous chronically debilitating health effects. Development of effective interventions for promoting healthy aging is an active but challenging area of research. Mechanistic studies in various model organisms, noticeably two invertebrates, Caenorhabditis elegans and Drosophila melanogaster, have identified many genes and pathways as well as dietary interventions that modulate lifespan and healthspan. These studies have shed light on some of the mechanisms involved in aging processes and provide valuable guidance for developing efficacious aging interventions. Nutraceuticals made from various plants contain a significant amount of phytochemicals with diverse biological activities. Phytochemicals can modulate many signaling pathways that exert numerous health benefits, such as reducing cancer incidence and inflammation, and promoting healthy aging. In this paper, we outline the current progress in aging intervention studies using nutraceuticals from an evolutionary perspective in invertebrate models.
Collapse
|
32
|
Menzel R, Menzel S, Swain SC, Pietsch K, Tiedt S, Witczak J, Stürzenbaum SR, Steinberg CEW. The Nematode Caenorhabditis elegans, Stress and Aging: Identifying the Complex Interplay of Genetic Pathways Following the Treatment with Humic Substances. Front Genet 2012; 3:50. [PMID: 22529848 PMCID: PMC3328794 DOI: 10.3389/fgene.2012.00050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/20/2012] [Indexed: 01/02/2023] Open
Abstract
Low concentrations of the dissolved leonardite humic acid HuminFeed® (HF) prolonged the lifespan and enhanced the thermal stress resistance of the model organism Caenorhabditis elegans. However, growth was impaired and reproduction delayed, effects which have also been identified in response to other polyphenolic monomers, including Tannic acid, Rosmarinic acid, and Caffeic acid. Moreover, a chemical modification of HF, which increases its phenolic/quinonoid moieties, magnified the biological impact on C. elegans. To gain a deep insight into the molecular basis of these effects, we performed global transcriptomics on young adult (3 days) and old adult (11 days) nematodes exposed to two different concentrations of HF. We also studied several C. elegans mutant strains in respect to HF derived longevity and compared all results with data obtained for the chemically modified HF. The gene expression pattern of young HF-treated nematodes displayed a significant overlap to other conditions known to provoke longevity, including various plant polyphenol monomers. Besides the regulation of parts of the metabolism, transforming growth factor-beta signaling, and Insulin-like signaling, lysosomal activities seem to contribute most to HF’s and modified HF’s lifespan prolonging action. These results support the notion that the phenolic/quinonoid moieties of humic substances are major building blocks that drive the physiological effects observed in C. elegans.
Collapse
Affiliation(s)
- Ralph Menzel
- Laboratory of Freshwater and Stress Ecology, Department of Biology, Humboldt-Universität zu Berlin Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Pietsch K, Saul N, Swain SC, Menzel R, Steinberg CEW, Stürzenbaum SR. Meta-Analysis of Global Transcriptomics Suggests that Conserved Genetic Pathways are Responsible for Quercetin and Tannic Acid Mediated Longevity in C. elegans. Front Genet 2012; 3:48. [PMID: 22493606 PMCID: PMC3319906 DOI: 10.3389/fgene.2012.00048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/16/2012] [Indexed: 12/27/2022] Open
Abstract
Recent research has highlighted that the polyphenols Quercetin and Tannic acid are capable of extending the lifespan of Caenorhabditis elegans. To gain a deep understanding of the underlying molecular genetics, we analyzed the global transcriptional patterns of nematodes exposed to three concentrations of Quercetin or Tannic acid, respectively. By means of an intricate meta-analysis it was possible to compare the transcriptomes of polyphenol exposure to recently published datasets derived from (i) longevity mutants or (ii) infection. This detailed comparative in silico analysis facilitated the identification of compound specific and overlapping transcriptional profiles and allowed the prediction of putative mechanistic models of Quercetin and Tannic acid mediated longevity. Lifespan extension due to Quercetin was predominantly driven by the metabolome, TGF-beta signaling, Insulin-like signaling, and the p38 MAPK pathway and Tannic acid's impact involved, in part, the amino acid metabolism and was modulated by the TGF-beta and the p38 MAPK pathways. DAF-12, which integrates TGF-beta and Insulin-like downstream signaling, and genetic players of the p38 MAPK pathway therefore seem to be crucial regulators for both polyphenols. Taken together, this study underlines how meta-analyses can provide an insight of molecular events that go beyond the traditional categorization into gene ontology-terms and Kyoto encyclopedia of genes and genomes-pathways. It also supports the call to expand the generation of comparative and integrative databases, an effort that is currently still in its infancy.
Collapse
Affiliation(s)
- Kerstin Pietsch
- Laboratory of Freshwater and Stress Ecology, Department of Biology, Humboldt-Universität zu Berlin Berlin, Germany
| | | | | | | | | | | |
Collapse
|
34
|
Hsu FL, Li WH, Yu CW, Hsieh YC, Yang YF, Liu JT, Shih J, Chu YJ, Yen PL, Chang ST, Liao VHC. In vivo antioxidant activities of essential oils and their constituents from leaves of the Taiwanese Cinnamomum osmophloeum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3092-3097. [PMID: 22380926 DOI: 10.1021/jf2045284] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Cinnamomum osmophloeum Kaneh is an indigenous tree species in Taiwan. In this study, phytochemical characteristics and antioxidant activities of the essential oils and key constituents from the leaves of two C. osmophloeum clones were investigated. The two trees possess two chemotypes, which were classified as the cinnamaldehyde type and camphor type. We demonstrated that the essential oils from C. osmophloeum leaves exerted in vivo antioxidant activities in Caenorhabditis elegans. In addition, trans-cinnamaldehyde and D-(+)-camphor, which respectively represent the major compounds in the cinnamaldehyde-type and camphor-type trees, exerted significant in vivo antioxidant activities against juglone-induced oxidative stress in C. elegans. Moreover, expressions of antioxidative-related genes, including superoxide dismutase (SOD) and glutathione S-transferase (GST), were significantly induced by trans-cinnamaldehyde and D-(+)-camphor from C. osmophloeum leaves. Our results showed that the essential oils from C. osmophloeum leaves and their major compounds might have good potential for further development as nutraceuticals or antioxidant remedies.
Collapse
Affiliation(s)
- Fu-Lan Hsu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Number 1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Hofmann S, Timofeyev MA, Putschew A, Saul N, Menzel R, Steinberg CEW. Leaf litter leachates have the potential to increase lifespan, body size, and offspring numbers in a clone of Moina macrocopa. CHEMOSPHERE 2012; 86:883-890. [PMID: 22115468 DOI: 10.1016/j.chemosphere.2011.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/19/2011] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Leaf litter processing is one major pathway of the global organic carbon cycle. During this process, a variety of small reactive organic compounds are released and transported to the aquatic environment, and may directly impact aquatic organisms as natural xenobiotics. We hypothesize that different forest stockings produce different leachate qualities, which in turn, stress the aquatic communities and, eventually, separate sensitive from tolerant species. Particularly, leachates from coniferous trees are suspected to have strongly adverse impacts on sensitive species. We exposed individuals of a clone of the model organism, Moina macrocopa, to comparable concentrations (approximately 2mM) of litter leachates of Norway spruce, Picea abies, Colorado blue spruce, Picea pungens, black poplar, Populus nigra, and sessile oak, Quercus petraea. The animals were fed ad libitum. The following life trait variables were recorded: growth, lifespan, and lifetime offspring. To identify, whether or not exposure to litter leachates provokes an internal oxidative stress in the exposed animals we measured the superoxide anion radical scavenging capacity via photoluminescence. Except of P. abies, exposure to the leachates reduced this antioxidant capacity by approximately 50%. Leachate exposures, except that of Quercus, increased body size and extended lifespan; furthermore, particularly the leachates of both Picea species significantly increased the offspring numbers. This unexpected behavior of exposed Moina may be based on food supplements (e.g., high carbohydrate contents) in the leachates or on yet to be identified regulatory pathways of energy allocation. Overall, our results suggest that the potentially adverse effects of litter leachates can be overruled by either bacterial-growth supporting fractions in the leachates or an internal compensation mechanism in the Moina individuals.
Collapse
Affiliation(s)
- Sylva Hofmann
- Humboldt-Universität zu Berlin, Department of Biology, Laboratory of Freshwater and Stress Ecology, Arboretum, 12437 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Shi YC, Liao VHC, Pan TM. Monascin from red mold dioscorea as a novel antidiabetic and antioxidative stress agent in rats and Caenorhabditis elegans. Free Radic Biol Med 2012; 52:109-17. [PMID: 22041455 DOI: 10.1016/j.freeradbiomed.2011.09.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 09/25/2011] [Accepted: 09/28/2011] [Indexed: 12/19/2022]
Abstract
Monascin is a major yellow compound from red mold dioscorea. We investigated monascin to test whether this compound acts as an antidiabetic and antioxidative stress agent in diabetic rats and Caenorhabditis elegans. The mechanisms by which monascin exerts its action in vivo were also examined. Streptozotocin (STZ)-induced diabetic rats were given monascin at 30 mg/kg/day and sacrificed after 8 weeks. Blood glucose and serum insulin, triglyceride, total cholesterol, and high-density lipoprotein and antioxidative enzymes in the pancreas of rats were measured. In addition, monascin was evaluated for stress resistance and potential associated mechanisms in C. elegans. Throughout the 8-week experimental period, significantly lowered blood glucose, serum triglyceride, and total cholesterol and higher high-density lipoprotein levels were observed in monascin-treated rats. Monascin-treated rats showed higher serum insulin level, lower reactive oxygen species production, and higher activities of glutathione peroxidase, superoxide dismutase, and catalase in the pancreas compared to diabetic control rats. In addition, monascin significantly induced the hepatic mRNA levels of FOXO3a, FOXO1, MnSOD, and catalase in STZ-induced diabetic rats. Monascin-treated C. elegans showed an increased survival rate during oxidative stress and heat stress treatments compared to untreated controls. Moreover, monascin extended the life span under high-glucose conditions and enhanced expression of small heat shock protein (sHSP-16.2), superoxide dismutase (SOD-3), and glutathione S-transferase (GST-4) in C. elegans. Finally, we showed that monascin affected the subcellular distribution of the FOXO transcription factor DAF-16, whereas it was unable to enhance oxidative stress resistance in the daf-16 deletion mutant in C. elegans. Mechanistic studies in rats and C. elegans suggest that the protective effects of monascin are mediated via regulation of the FOXO/DAF-16-dependent insulin signaling pathway by inducing the expression of stress response/antioxidant genes, thereby enhancing oxidative stress resistance.
Collapse
Affiliation(s)
- Yeu-Ching Shi
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | | | | |
Collapse
|
37
|
Menzel R, Menzel S, Tiedt S, Kubsch G, Stösser R, Bährs H, Putschew A, Saul N, Steinberg CEW. Enrichment of humic material with hydroxybenzene moieties intensifies its physiological effects on the nematode Caenorhabditis elegans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:8707-8715. [PMID: 21902274 DOI: 10.1021/es2023237] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Dissolved humic substances are taken up by organisms and interact on various molecular and biochemical levels. In the nematode Caenorhabditis elegans, such material can promote longevity and increase its reproductive capacity; moreover, the worms tend to stay for longer in humic-enriched environments. Here, we tested the hypothesis that the chemical enrichment of humic substances with hydroxybenzene moieties intensifies these physiological effects. Based on the leonardite humic acid HuminFeed (HF), we followed a polycondensation reaction in which this natural humic substance and a dihydroxybenzene (hydroquinone or benzoquinone) served as reaction partners. Several analytical methods showed the formation of the corresponding copolymers. The chemical modification boosted the antioxidant properties of HF both in vitro and in vivo. Humic substances enriched with hydroxybenzene moieties caused a significantly increased tolerance to thermal stress in C. elegans and extended its lifespan. Exposed nematodes showed delayed linear growth and onset of reproduction and a stronger pumping activity of the pharynx. Thus, treated nematodes act younger than they really are. In this feature the modified HF replicated the biological impact of hydroquinone-homopolymers and various plant polyphenol monomers, thereby supporting the hydroxybenzene moieties of humic substances as major effective structures for the physiological effects observed in C. elegans.
Collapse
Affiliation(s)
- Ralph Menzel
- Department of Biology, Freshwater and Stress Ecology, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Liao VHC, Yu CW, Chu YJ, Li WH, Hsieh YC, Wang TT. Curcumin-mediated lifespan extension in Caenorhabditis elegans. Mech Ageing Dev 2011; 132:480-7. [DOI: 10.1016/j.mad.2011.07.008] [Citation(s) in RCA: 178] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2011] [Revised: 06/30/2011] [Accepted: 07/31/2011] [Indexed: 12/26/2022]
|
39
|
Saul N, Pietsch K, Stürzenbaum SR, Menzel R, Steinberg CEW. Diversity of polyphenol action in Caenorhabditis elegans: between toxicity and longevity. JOURNAL OF NATURAL PRODUCTS 2011; 74:1713-1720. [PMID: 21805983 DOI: 10.1021/np200011a] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The model organism Caenorhabditis elegans was utilized to determine, in vivo, the mode(s) of action of four plant polyphenols, namely, tannic acid (TA), gallic acid (GA), ellagic acid (EA), and catechin (CT). The determination of lifespan, stress resistance, growth, reproduction, eating-related behaviors, antioxidative capacities, and lifespan assays with the mev-1 and the eat-2 mutants as well as in the presence of dead bacteria provided new insights into their action. All four compounds prolonged lifespan, but only TA and CT mediated distinct stress protection. Longevity is unlikely the result of antioxidant capacities but rather due to calorie restriction imitating and hormetic properties in the case of TA and EA or antimicrobial capacities of GA and EA. Furthermore, the prominent "disposable soma theory" is only partly reflected by these polyphenols. In summary, this study underlines the diversity of polyphenolic phytochemicals and their mechanistic background.
Collapse
Affiliation(s)
- Nadine Saul
- Laboratory of Freshwater & Stress Ecology, Department of Biology, Humboldt-Universität zu Berlin, Späthstrasse 80/81, 12437 Berlin, Germany.
| | | | | | | | | |
Collapse
|
40
|
Pietsch K, Saul N, Chakrabarti S, Stürzenbaum SR, Menzel R, Steinberg CEW. Hormetins, antioxidants and prooxidants: defining quercetin-, caffeic acid- and rosmarinic acid-mediated life extension in C. elegans. Biogerontology 2011; 12:329-47. [PMID: 21503726 DOI: 10.1007/s10522-011-9334-7] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 04/04/2011] [Indexed: 12/26/2022]
Abstract
Quercetin, Caffeic- and Rosmarinic acid exposure extend lifespan in Caenorhabditis elegans. This comparative study uncovers basic common and contrasting underlying mechanisms: For all three compounds, life extension was characterized by hormetic dose response curves, but hsp-level expression was variable. Quercetin and Rosmarinic acid both suppressed bacterial growth; however, antibacterial properties were not the dominant reason for life extension. Exposure to Quercetin, Caffeic- and Rosmarinic acid resulted in reduced body size, altered lipid-metabolism and a tendency towards a delay in reproductive timing; however the total number of offspring was not affected. An indirect dietary restriction effect, provoked by either chemo-repulsion or diminished pharyngeal pumping was rejected. Quercetin and Caffeic acid were shown to increase the antioxidative capacity in vivo and, by means of a lipofuscin assay, reduce the oxidative damage in the nematodes. Finally, it was possible to demonstrate that the life and thermotolerance enhancing properties of Caffeic- and Rosmarinic acid both rely on osr-1, sek-1, sir-2.1 and unc-43 plus daf-16 in the case of Caffeic acid. Taken together, hormesis, in vivo antioxidative/prooxidative properties, modulation of genetic players, as well as the re-allocation of energy all contribute (to some extent and dependent on the polyphenol) to life extension.
Collapse
Affiliation(s)
- Kerstin Pietsch
- Humboldt-Universität zu Berlin, Department of Biology, Laboratory of Freshwater & Stress Ecology, Späthstr. 80/81, 12437, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
41
|
Suhett AL, Steinberg CEW, Santangelo JM, Bozelli RL, Farjalla VF. Natural dissolved humic substances increase the lifespan and promote transgenerational resistance to salt stress in the cladoceran Moina macrocopa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:1004-1014. [PMID: 21301977 DOI: 10.1007/s11356-011-0455-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2010] [Accepted: 01/21/2011] [Indexed: 05/30/2023]
Abstract
PURPOSE Evidence has accumulated that humic substances (HS) are not inert biogeochemicals. Rather, they cause stress symptoms and may modulate the life history of aquatic organisms. Nevertheless, it is still not clear how HS interact with additional stressors and if their effects are transgenerational. We tested the interactive effects of HS and salt to cladocerans, discussing their consequences for the persistence in fluctuating environments, such as coastal lagoons. METHODS We used life-table experiments to test the effects of natural HS from a polyhumic coastal lagoon (0, 5, 10, 20, 50, and 100 mg dissolved organic carbon (DOC) L(-1)) on the life-history of the cladoceran Moina macrocopa. We further tested the effects of HS (10 mg DOC L(-1)), within and across generations, on the resistance of M. macrocopa to salt stress (5.5 g L(-1)). RESULTS HS at 5-20 mg DOC L(-1) extended the mean lifespan of M. macrocopa by ~30%. HS also increased body length at maturity by ~4% at 5-50 mg DOC L(-1) and stimulated male offspring production at all tested concentrations. Exposure to HS (even maternal only) alleviated the salt-induced reduction of somatic growth. Co-exposure to HS increased body volume by 12-22% relative to salt-only treatments, while pre-exposure to HS increased body volume by 40-56% in treatments with salt presence, when compared to non-pre-exposed animals. CONCLUSIONS HS at environmentally realistic concentrations, by acting as mild chemical stressors, modify crucial life-history traits of M. macrocopa, favoring its persistence in fluctuating environments. Some of the effects of HS are even transgenerational.
Collapse
Affiliation(s)
- Albert L Suhett
- Laboratório de Limnologia, Departamento de Ecologia, Universidade Federal do Rio de Janeiro (UFRJ), Ilha do Fundão, CEP 21941-590, PO Box 68020, Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | | | | | |
Collapse
|
42
|
Mendenhall AR, Wu D, Park SK, Cypser JR, Tedesco PM, Link CD, Phillips PC, Johnson TE. Genetic dissection of late-life fertility in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 2011; 66:842-54. [PMID: 21622982 DOI: 10.1093/gerona/glr089] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The large post-reproductive life span reported for the free-living hermaphroditic nematode, Caenorhabditis elegans, which lives for about 10 days after its 5-day period of self-reproduction, seems at odds with evolutionary theory. Species with long post-reproductive life spans such as mammals are sometimes explained by a need for parental care or transfer of information. This does not seem a suitable explanation for C elegans. Previous reports have shown that C elegans can regain fertility when mated after the self-fertile period but did not report the functional limits. Here, we report the functional life span of the C elegans germ line when mating with males. We show that C elegans can regain fertility late in life (significantly later than in previous reports) and that the end of this period corresponds quite well to its 3-week total life span. Genetic analysis reveals that late-life fertility is controlled by conserved pathways involved with aging and dietary restriction.
Collapse
|
43
|
Hulme SE, Whitesides GM. Die Chemie und der Wurm: Caenorhabditis elegans als Plattform für das Zusammenführen von chemischer und biologischer Forschung. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201005461] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
44
|
Hulme SE, Whitesides GM. Chemistry and the Worm: Caenorhabditis elegans as a Platform for Integrating Chemical and Biological Research. Angew Chem Int Ed Engl 2011; 50:4774-807. [DOI: 10.1002/anie.201005461] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Indexed: 12/15/2022]
|
45
|
Hou C, Bolt KM, Bergman A. Energetic basis of correlation between catch-up growth, health maintenance, and aging. J Gerontol A Biol Sci Med Sci 2011; 66:627-38. [PMID: 21393421 DOI: 10.1093/gerona/glr027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Catch-up growth, referring to infants with low birth weight reaching or exceeding normal body weight later in life, is negatively correlated to adult health outcome and life span. Life history theories have suggested that there exist trade-offs between early development and later health maintenance, but detailed mechanisms and the currency of the trade-off are unclear. In this paper, we present a general theoretical model for quantitatively elucidating the trade-off between growth rate and health maintenance in mammals from an energetic viewpoint. Based on the fundamental principles of energy conservation and organisms' energy budgets, our model analyzes the allocation of metabolic energy to growth and health maintenance in different sets of prenatal and postnatal environments. Our model also implies a relationship between growth rate and the general process of aging. Life-span predictions are supported by quantitative and qualitative empirical observations and offer theoretical frameworks for future experimental designs and data analyses.
Collapse
Affiliation(s)
- Chen Hou
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
46
|
Martorell P, Forment JV, de Llanos R, Montón F, Llopis S, González N, Genovés S, Cienfuegos E, Monzó H, Ramón D. Use of Saccharomyces cerevisiae and Caenorhabditis elegans as model organisms to study the effect of cocoa polyphenols in the resistance to oxidative stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:2077-85. [PMID: 21288028 DOI: 10.1021/jf104217g] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Developing functional foods to improve the quality of life for elderly people has great economic and social impact. Searching for and validating ingredients with in vivo antioxidant effects is one of the key steps in developing this kind of food. Here we describe the combined use of simple biological models and transcriptomics to define the functional intracellular molecular targets of a polyphenol-enriched cocoa powder. Cocoa powder supplemented culture medium led to increased resistance to oxidative stress, in both the budding yeast Saccharomyces cerevisiae and the nematode Caenorhabditis elegans, and, in the latter, lifespan was also increased. These effects are fully dependent on the polyphenols present in the cocoa powder and on the sirtuins Hst3 (yeast) and SIR-2.1 (worm). The transcription factor DAF-16 also plays an important role in the case of the nematode, indicating that the insulin/IGF-1 (insulin-like growth factor) signaling pathway is related with the antioxidative effect of cocoa polyphenols. All in all, these results confirm that this polyphenol-enriched cocoa powder, with antioxidant activity, has great potential use as a functional food ingredient for elderly people. Furthermore, this work reveals the value of using simple biological models to screen for compounds that are of interest for the food and pharmacological industry.
Collapse
Affiliation(s)
- Patricia Martorell
- Biópolis SL, Parc Científic Universitat de València, C/Catedrático Agustín Escardino 9, edificio 2, 46980-Paterna, Valencia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Swindell WR. Metallothionein and the biology of aging. Ageing Res Rev 2011; 10:132-45. [PMID: 20933613 DOI: 10.1016/j.arr.2010.09.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 09/24/2010] [Accepted: 09/24/2010] [Indexed: 12/22/2022]
Abstract
Metallothionein (MT) is a low molecular weight protein with anti-apoptotic properties that has been demonstrated to scavenge free radicals in vitro. MT has not been extensively investigated within the context of aging biology. The purpose of this review, therefore, is to discuss findings on MT that are relevant to basic aging mechanisms and to draw attention to the possible role of MT in pro-longevity interventions. MT is one of just a handful of proteins that, when overexpressed, has been demonstrated to increase mouse lifespan. MT also protects against development of obesity in mice provided a high fat diet as well as diet-induced oxidative stress damage. Abundance of MT is responsive to caloric restriction (CR) and inhibition of the insulin/insulin-like signaling (IIS) pathway, and elevated MT gene expression has been observed in tissues from fasted and CR-fed mice, long-lived dwarf mice, worms maintained under CR conditions, and long-lived daf-2 mutant worms. The dysregulation of MT in these systems is likely to have tissue-specific effects on aging outcomes. Further investigation will therefore be needed to understand how MT contributes to the response of invertebrates and mice to CR and the endocrine mutations studied by aging researchers.
Collapse
Affiliation(s)
- William R Swindell
- Department of Genetics, Harvard Medical School New Research Building, Room 0464, 77 Avenue Louis Pasteur, Boston, MA 02115, USA.
| |
Collapse
|