1
|
Jain K, Wang Y, Jain P, Kalita B, Shivarathri R, Chauhan M, Kaur H, Chauhan N, Xu J, Chowdhary A. Genomic analyses reveal high diversity and rapid evolution of Pichia kudriavzevii within a neonatal intensive care unit in Delhi, India. Antimicrob Agents Chemother 2025:e0170924. [PMID: 39853119 DOI: 10.1128/aac.01709-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 12/16/2024] [Indexed: 01/26/2025] Open
Abstract
Pichia kudriavzevii causes life-threatening infections in immunocompromised hosts, including hospitalized neonates. This pathogen is intrinsically resistant to fluconazole, while uncommon P. kudriavzevii strains resistant to multiple antifungal drugs, including voriconazole, amphotericin B, and echinocandins, have also been reported from healthcare environments. Thus, understanding how P. kudriavzevii spread, persist, and adapt to healthcare settings could help us develop better infection management strategies. In this study, whole genome sequencing identifies multiple outbreaks of bloodstream infections in a single neonatal intensive care unit (NICU) over 5 years caused by genetically diverse strains of P. kudriavzevii. Interestingly, two genetically distinct clusters of P. kudriavzevii strains showed frequent loss of heterozygosity (LOH) events between two temporal samples. The first outbreak cluster (2015-2016) showed LOH at chromosomes 1, 4, and 5, and the other outbreak cluster (2020) exhibited LOH at chromosome 2. The circulation of two separate strain clusters of P. kudriavzevii suggests nosocomial transmission in the NICU in different time periods. Furthermore, we compared the transcriptomic profiles of three isolates of clusters I and II that exhibited distinct fluconazole and itraconazole MICs. While no significant difference in gene expression was found at the azole-target gene ERG11 or the ATP-binding cassette (ABC) transporter genes, such differences were found in genes involved in cell division and filamentation, such as SIR2 (sirtuin deacetylase) and RFA1 (replication factor A). Interestingly, increased filamentation was observed in clade I isolate exhibiting high fluconazole MICs. Together, our study indicates significant diversity, persistence, and rapid evolution of P. kudriavzevii within a single NICU.
Collapse
Affiliation(s)
- Kusum Jain
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Yue Wang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Peeyush Jain
- Department of Paediatrics, Hindu Rao Hospital and NDMC Medical College, Delhi, India
| | - Barsha Kalita
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| | - Raju Shivarathri
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Manju Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Hardeep Kaur
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Neeraj Chauhan
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Jianping Xu
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Anuradha Chowdhary
- Medical Mycology Unit, Department of Microbiology, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
- National Reference Laboratory for Antimicrobial Resistance in Fungal Pathogens, Vallabhbhai Patel Chest Institute, University of Delhi, Delhi, India
| |
Collapse
|
2
|
My R, Gupte AP, Bizzotto E, Frizzarin M, Antoniali P, Campanaro S, Favaro L. Unveiling the fitness of Saccharomyces cerevisiae strains for lignocellulosic bioethanol: a genomic exploration through fermentation stress tests. N Biotechnol 2024; 85:63-74. [PMID: 39675422 DOI: 10.1016/j.nbt.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/02/2024] [Accepted: 12/12/2024] [Indexed: 12/17/2024]
Abstract
Lignocellulosic biomass holds significant promise as a substrate for bioethanol production, yet the financial viability of lignocellulosic fermentation poses challenges. The pre-treatment step needed for lignocellulosic substrates generates inhibitors that impede Saccharomyces cerevisiae growth, affecting the fermentation process and overall yield. In modern sugarcane-to-ethanol plants, a rapid succession of yeast strains occurs, with dominant strains prevailing. Therefore, yeast strains with both dominance potential and inhibitor tolerance are crucial towards the development of superior strains with industrial fitness. This study adopted a hybrid approach combining biotechnology and bioinformatics to explore a cluster of 20 S. cerevisiae strains, including industrial and oenological strains exhibiting diverse phenotypic features. In-depth genomic analyses focusing on gene copy number variations (CNVs) and single nucleotide polymorphisms (SNPs) were conducted and compared with results from fermentation tests once inoculated in multiple strains kinetics under stressing conditions such as low nitrogen availability and high formic or acetic acid levels. Some strains showed high resistance to biotic stress and acetic acid. Moreover, four out of 20 strains - namely S. cerevisiae YI30, Fp89, Fp90 and CESPLG05 - displayed promising resistance also to formic acid, the most impactful weak acids in pre-treated lignocellulosic biomass. These strains have the potential to be used for the development of superior S. cerevisiae strains tailored for lignocellulosic bioethanol production.
Collapse
Affiliation(s)
- Rebecca My
- Department of Agronomy, Food, Natural resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, Legnaro 35020, Italy
| | - Ameya Pankaj Gupte
- Department of Agronomy, Food, Natural resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, Legnaro 35020, Italy
| | - Edoardo Bizzotto
- Department of Biology, University of Padova, Padova 35131, Italy
| | | | | | | | - Lorenzo Favaro
- Department of Agronomy, Food, Natural resources, Animals and the Environment (DAFNAE), University of Padova, Agripolis, Legnaro 35020, Italy; Department of Microbiology, Stellenbosch University, Private Bag X1, South Africa 7602, South Africa.
| |
Collapse
|
3
|
Kwon SG, Bae GH, Hong JH, Choi JW, Choi JH, Lim NS, Jeon C, Mali NM, Jun MS, Shin J, Kim J, Cho ES, Han MH, Oh JW. Comprehensive analysis of somatic mutations and structural variations in domestic pig. Mamm Genome 2024; 35:645-656. [PMID: 39177814 DOI: 10.1007/s00335-024-10058-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/01/2024] [Indexed: 08/24/2024]
Abstract
Understanding somatic mutations and structural variations in domestic pigs (Sus scrofa domestica) is critical due to their increasing importance as model organisms in biomedical research. In this study, we conducted a comprehensive analysis through whole-genome sequencing of skin, organs, and blood samples. By examining two pig pedigrees, we investigated the inheritance and sharedness of structural variants among fathers, mothers, and offsprings. Utilizing single-cell clonal expansion techniques, we observed significant variations in the number of somatic mutations across different tissues. An in-house developed pipeline enabled precise filtering and analysis of these mutations, resulting in the construction of individual phylogenetic trees for two pigs. These trees explored the developmental relationships between different tissues, revealing insights into clonal expansions from various anatomical locations. This study enhances the understanding of pig genomes, affirming their increasing value in clinical and genomic research, and provides a foundation for future studies in other animals, paralleling previous studies in mice and humans. This approach not only deepens our understanding of mammalian genomic variations but also strengthens the role of pigs as a crucial model in human health and disease research.
Collapse
Affiliation(s)
- Seong Gyu Kwon
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Geon Hue Bae
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Joo Hee Hong
- Department of Anatomy, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jeong-Woo Choi
- Department of Anatomy, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - June Hyug Choi
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Nam Seop Lim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - CheolMin Jeon
- Department of Anatomy, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Nanda Maya Mali
- Department of Anatomy, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Mee Sook Jun
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - JaeEun Shin
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - JinSoo Kim
- Department of Animal Industry Convergence, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun-Seok Cho
- Department of Livestock Resource Development, National Institute of Animal Science, Jeonbuk, Republic of Korea
| | - Man-Hoon Han
- Department of Pathology, Kyungpook National University Hospital, Daegu, Republic of Korea.
- Department of Pathology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea.
| | - Ji Won Oh
- Department of Anatomy, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Absolute DNA, Inc., Daegu, Republic of Korea.
| |
Collapse
|
4
|
Xie X, Shi L, Hou G, Zhong Z, Wang Z, Pan D, Na W, Xiao Q. Genome wide detection of CNV and their association with body size in Danzhou chickens. Poult Sci 2024; 103:104266. [PMID: 39293262 PMCID: PMC11426044 DOI: 10.1016/j.psj.2024.104266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/18/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Copy number variation (CNV) is a crucial component of genetic diversity in the genome, serving as the foundation for the genetic architecture and phenotypic variability of complex traits. In this study, we examined CNVs in the Danzhou (DZ) chicken, an indigenous breed exclusive to Hainan Province, China. By employing whole-genome resequencing data from 200 DZ chickens, we conducted a comprehensive genome-wide analysis of CNVs using CNVpytor and performed CNV-based genome-wide association studies (GWAS) on 6 body size traits, including body slope length (BSL), keel length (KeL), tibial length (TiL), tibial circumference (TiC), chest width (ChW), and chest depth (ChD) utilizing linear mixed model methods considering a genomic relationship matrix. We identified a total of 144,265 autosomal CNVs among the 200 individuals, comprising 67,818 deletions and 76,447 duplications. After merging these variants together, we obtained 4,824 distinct copy number variant regions, which accounted for approximately 20% of the chicken autosomal genome. Furthermore, we discovered several significantly associated CNV segments with body size traits located proximal to genes such as IHH, WNT6, WNT10A, LPR4, FZD2, WNT7B, and GNAS that have been extensively implicated in skeletal development and growth processes. These findings enhance our understanding of CNVs in chickens and their potential impact on body size traits by revealing candidate genes involved in the regulation of these traits. This establishes a solid framework for future studies and may prove particularly beneficial for exploring genetic structural variation in chickens.
Collapse
Affiliation(s)
- Xinfeng Xie
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Liguang Shi
- Chinese Academy of Tropical Agricultural Sciences,Haikou, Hainan 571101, China
| | - Guanyu Hou
- Chinese Academy of Tropical Agricultural Sciences,Haikou, Hainan 571101, China
| | - Ziqi Zhong
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ziyi Wang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Deyou Pan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wei Na
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Qian Xiao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Bilgrav Saether K, Eisfeldt J, Bengtsson JD, Lun MY, Grochowski CM, Mahmoud M, Chao HT, Rosenfeld JA, Liu P, Ek M, Schuy J, Ameur A, Dai H, Hwang JP, Sedlazeck FJ, Bi W, Marom R, Wincent J, Nordgren A, Carvalho CMB, Lindstrand A. Leveraging the T2T assembly to resolve rare and pathogenic inversions in reference genome gaps. Genome Res 2024; 34:1785-1797. [PMID: 39486878 DOI: 10.1101/gr.279346.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/12/2024] [Indexed: 11/04/2024]
Abstract
Chromosomal inversions (INVs) are particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage-sensitive genes in cis Short-read genome sequencing (srGS) can only resolve ∼70% of cytogenetically visible inversions referred to clinical diagnostic laboratories, likely due to breakpoints in repetitive regions. Here, we study 12 inversions by long-read genome sequencing (lrGS) (n = 9) or srGS (n = 3) and resolve nine of them. In four cases, the inversion breakpoint region was missing from at least one of the human reference genomes (GRCh37, GRCh38, T2T-CHM13) and a reference agnostic analysis was needed. One of these cases, an INV9 mappable only in de novo assembled lrGS data using T2T-CHM13 disrupts EHMT1 consistent with a Mendelian diagnosis (Kleefstra syndrome 1; MIM#610253). Next, by pairwise comparison between T2T-CHM13, GRCh37, and GRCh38, as well as the chimpanzee and bonobo, we show that hundreds of megabases of sequence are missing from at least one human reference, highlighting that primate genomes contribute to genomic diversity. Aligning population genomic data to these regions indicated that these regions are variable between individuals. Our analysis emphasizes that T2T-CHM13 is necessary to maximize the value of lrGS for optimal inversion detection in clinical diagnostics. These results highlight the importance of leveraging diverse and comprehensive reference genomes to resolve unsolved molecular cases in rare diseases.
Collapse
Affiliation(s)
- Kristine Bilgrav Saether
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Science for Life Laboratory, Karolinska Insitutet, 171 65 Solna, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden;
- Science for Life Laboratory, Karolinska Insitutet, 171 65 Solna, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jesse D Bengtsson
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Ming Yin Lun
- Pacific Northwest Research Institute, Seattle, Washington 98122, USA
| | - Christopher M Grochowski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Medhat Mahmoud
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Center for Precision Health, McWilliams School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
- Cain Pediatric Neurology Research Laboratories, Jan and Dan Duncan Neurological Research Institute, Houston, Texas 77030, USA
- Division of Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030, USA
- McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, Texas 77024, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - Marlene Ek
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Jakob Schuy
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
| | - Adam Ameur
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, 751 85 Uppsala, Sweden
| | - Hongzheng Dai
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - James Paul Hwang
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Fritz J Sedlazeck
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030, USA
- Department of Computer Science, Rice University, Houston, Texas 77251, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Baylor Genetics Laboratory, Baylor College of Medicine, Houston, Texas 77021, USA
| | - Ronit Marom
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
- Texas Children's Hospital, Houston, Texas 77030, USA
| | - Josephine Wincent
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Laboratory Medicine, University of Gothenburg, 413 45 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden
| | | | - Anna Lindstrand
- Department of Molecular Medicine and Surgery, Karolinska Institute, 171 76 Stockholm, Sweden;
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, 171 76 Stockholm, Sweden
| |
Collapse
|
6
|
Batkovskyte D, Swolin-Eide D, Hammarsjö A, Sæther KB, Thunström S, Lundin J, Eisfeldt J, Lindstrand A, Nordgren A, Åström E, Grigelioniene G. Structural Variants in COL1A1 and COL1A2 in Osteogenesis Imperfecta. Am J Med Genet A 2024:e63935. [PMID: 39513464 DOI: 10.1002/ajmg.a.63935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Osteogenesis Imperfecta (OI) is a heterogeneous skeletal dysplasia characterized by bone fragility, skeletal deformities, and short stature. Most commonly, it is caused by autosomal dominant variants in the type I collagen genes, COL1A1 or COL1A2. Type I collagen is the main protein of the extracellular matrix in the skeleton and changes in its structure or quantity may lead to OI. 85%-90% of OI cases occur due to sequence variants in type I collagen genes, while OI caused by structural abnormalities in type I collagen genes is less common. In most cases, haploinsufficiency of type I collagen is associated with a milder OI phenotype. Large genomic deletions often involve several genes within the same chromosomal region, leading to microdeletion syndromes with OI features. Here, we report eight Swedish patients from five unrelated families with OI due to structural variants in the COL1A1 and COL1A2 genes. One patient with OI type III had a complex rearrangement with a deletion and duplication event in COL1A2, leading to reduced COL1A2 expression. Three other patients from two different families with OI type I had whole gene deletions involving COL1A1. In one family, three affected individuals with OI type I had a small intragenic deletion of exons 11-12 in COL1A2. One patient had a 2.1 Mb de novo deletion encompassing COL1A1 and DLX3 genes and features of OI and tricho-dento-osseous syndrome. Overall, this study highlights the importance of investigating gene dosage abnormalities in patients with OI and further delineates clinical and genetic variability of OI caused by structural variants in type I collagen genes.
Collapse
Affiliation(s)
- Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Diana Swolin-Eide
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristine Bilgrav Sæther
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Thunström
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institution of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Eva Åström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
7
|
Rymuza J, Kober P, Maksymowicz M, Nyc A, Mossakowska BJ, Woroniecka R, Maławska N, Grygalewicz B, Baluszek S, Zieliński G, Kunicki J, Bujko M. High level of aneuploidy and recurrent loss of chromosome 11 as relevant features of somatotroph pituitary tumors. J Transl Med 2024; 22:994. [PMID: 39497133 PMCID: PMC11536836 DOI: 10.1186/s12967-024-05736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/06/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Somatotroph neuroendocrine pituitary tumors (sPitNET) are a subtype of pituitary tumors that commonly cause acromegaly. Our study aimed to determine the spectrum of DNA copy number abnormalities (CNAs) in sPitNETs and their relevance. METHODS A landscape of CNAs in sPitNETs was determined using combined whole-genome approaches involving low-pass whole genome sequencing and SNP microarrays. Fluorescent in situ hybridization (FISH) was used for microscopic validation of CNAs. The tumors were also subjected to transcriptome and DNA methylation analyses with RNAseq and microarrays, respectively. RESULTS We observed a wide spectrum of cytogenetic changes ranging from multiple deletions, recurrent chromosome 11 loss, stable genomes, to duplication of the majority of the chromosomes. The identified CNAs were confirmed with FISH. sPitNETs with multiple duplications were characterized by intratumoral heterogeneity in chromosome number variation in individual tumor cells, as determined with FISH. These tumors were separate CNA-related sPitNET subtype in clustering analyses with CNA signature specific for whole genome doubling-related etiology. This subtype encompassed GNAS-wild type, mostly densely granulated tumors with favorable expression level of known prognosis-related genes, notably enriched with POUF1/NR5A1-double positive PitNETs. Chromosomal deletions in sPitNETs are functionally relevant. They occurred in gene-dense DNA regions and were related to genes downregulation and increased DNA methylation in the CpG island and promoter regions in the affected regions. Recurrent loss of chromosome 11 was reflected by lowered MEN1 and AIP. No such unequivocal relevance was found for chromosomal gains. Comparisons of transcriptomes of selected most cytogenetically stable sPitNETs with tumors with recurrent loss of chromosome 11 showed upregulation of processes related to gene dosage compensation mechanism in tumors with deletion. Comparison of stable tumors with those with multiple duplications showed upregulation of processes related to mitotic spindle, DNA repair, and chromatin organization. Both comparisons showed upregulation of the processes related to immune infiltration in cytogenetically stable tumors and deconvolution of DNA methylation data indicated a higher content of specified immune cells and lower tumor purity in these tumors. CONCLUSIONS sPitNETs fall into three relevant cytogenetic groups: highly aneuploid tumors characterized by known prognostically favorable features and low aneuploidy tumors including specific subtype with chromosome 11 loss.
Collapse
Affiliation(s)
- Julia Rymuza
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paulina Kober
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Maria Maksymowicz
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Aleksandra Nyc
- Department of Cancer Pathomorphology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata J Mossakowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Renata Woroniecka
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Natalia Maławska
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Beata Grygalewicz
- Cytogenetic Laboratory, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Szymon Baluszek
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Grzegorz Zieliński
- Department of Neurosurgery, Military Institute of Medicine, National Institute of Medicine, Warsaw, Poland
| | - Jacek Kunicki
- Department of Neurosurgery, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Bujko
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| |
Collapse
|
8
|
Bahbahani H, Mohammad Z, Al-Ateeqi A, Almathen F. A comprehensive map of copy number variations in dromedary camels based on whole genome sequence data. Sci Rep 2024; 14:25573. [PMID: 39462079 PMCID: PMC11513024 DOI: 10.1038/s41598-024-77773-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 10/25/2024] [Indexed: 10/28/2024] Open
Abstract
Copy number variants (CNVs) are structural variants within the eukaryotic genome that vary among individuals of a species. These variants have been associated with different phenotypic traits, making them a valuable consideration as markers for designing breeding programmes. In this study, whole genome sequence data of 60 dromedary camel samples originating from the Arabian Peninsula were analyzed to construct a comprehensive dromedary CNV map. Utilizing four CNV callers employing read-depth, split-read and paired-end mapping approaches, a total of 37,519 CNV events (17,847 deletions and 19,672 duplications) were called on the dromedary autosomes. These CNV events were merged into 2,557 regions, categorized as 1,322 losses, 122 gains, and 1,113 "mixed regions" comprising both types. The cumulative size of the CNV regions amounted to 22.5 Mb, covering roughly 1.16% of the dromedary autosomes. Approximately 32% of the defined CNV regions (comprising 60% losses, 18% gains, and 0.27% mixed regions) were found in ≥ 90% of the dromedary samples, classifying them as prevalent regions. Genes with biological functions related to the different adaptive physiologies of dromedary camels, such as fertility, heat stress, musculoskeletal development, and fat metabolism, were overlapping with or in close proximity to ~ 68% of the defined CNV regions, demonstrating their potential role in dromedaries' physiology. This study presents the first comprehensive CNV map of dromedary camels and builds on the present knowledge in understanding the genetic structure of this species.
Collapse
Affiliation(s)
- Hussain Bahbahani
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait City, Kuwait.
| | - Zainab Mohammad
- Department of Biological Sciences, Faculty of Science, Kuwait University, Sh. Sabah Al-Salem campus, Kuwait City, Kuwait
| | - Abdulaziz Al-Ateeqi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait City, Kuwait
| | - Faisal Almathen
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, 400, Al-Ahsa, Kingdom of Saudi Arabia
- Camel Research Center, King Faisal University, 400, Al-Ahsa, Saudi Arabia
| |
Collapse
|
9
|
Maury EA, Jones A, Seplyarskiy V, Nguyen TTL, Rosenbluh C, Bae T, Wang Y, Abyzov A, Khoshkhoo S, Chahine Y, Zhao S, Venkatesh S, Root E, Voloudakis G, Roussos P, Park PJ, Akbarian S, Brennand K, Reilly S, Lee EA, Sunyaev SR, Walsh CA, Chess A. Somatic mosaicism in schizophrenia brains reveals prenatal mutational processes. Science 2024; 386:217-224. [PMID: 39388546 PMCID: PMC11490355 DOI: 10.1126/science.adq1456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/16/2024] [Indexed: 10/12/2024]
Abstract
Germline mutations modulate the risk of developing schizophrenia (SCZ). Much less is known about the role of mosaic somatic mutations in the context of SCZ. Deep (239×) whole-genome sequencing (WGS) of brain neurons from 61 SCZ cases and 25 controls postmortem identified mutations occurring during prenatal neurogenesis. SCZ cases showed increased somatic variants in open chromatin, with increased mosaic CpG transversions (CpG>GpG) and T>G mutations at transcription factor binding sites (TFBSs) overlapping open chromatin, a result not seen in controls. Some of these variants alter gene expression, including SCZ risk genes and genes involved in neurodevelopment. Although these mutational processes can reflect a difference in factors indirectly involved in disease, increased somatic mutations at developmental TFBSs could also potentially contribute to SCZ.
Collapse
Affiliation(s)
- Eduardo A. Maury
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Bioinformatics & Integrative Genomics Program and Harvard/MIT MD-PHD Program, Harvard Medical School, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Attila Jones
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Vladimir Seplyarskiy
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Thanh Thanh L. Nguyen
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Chaggai Rosenbluh
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Taejong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Sattar Khoshkhoo
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | - Yasmine Chahine
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sijing Zhao
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Sanan Venkatesh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elise Root
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Georgios Voloudakis
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panagiotis Roussos
- Center for Disease Neurogenomics, Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Peter J. Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
| | - Schahram Akbarian
- Department of Psychiatry and Neuroscience, Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
| | - Kristen Brennand
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
- Department of Psychiatry, Yale School of Medicine, New Haven, CT 06520, USA
| | - Steven Reilly
- Department of Genetics, Yale School of Medicine, New Haven, CT 06520, USA
| | - Eunjung A. Lee
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shamil R. Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Division of Genetics, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher A. Walsh
- Division of Genetics and Genomics, Manton Center for Orphan Disease, Boston Children’s Hospital, Boston, MA 02115, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Andrew Chess
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Neuroscience, Friedman Brain Institute, Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
10
|
Pierson Smela M, Pepe V, Lubbe S, Kiskinis E, Church GM. SeqVerify: An accessible analysis tool for cell line genomic integrity, contamination, and gene editing outcomes. Stem Cell Reports 2024; 19:1505-1515. [PMID: 39270651 PMCID: PMC11561455 DOI: 10.1016/j.stemcr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 09/15/2024] Open
Abstract
Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines such as aneuploidy, mutations, on-target and off-target editing errors, and microbial contamination can arise during PSC culture or due to undesired editing outcomes. The ongoing decline of next-generation sequencing prices has made whole-genome sequencing (WGS) a promising option for detecting these abnormalities. However, this approach has been held back by a lack of easily usable data analysis software. Here, we present SeqVerify, a computational pipeline designed to take raw WGS data and a list of intended genome edits, and verify that the edits are present and that there are no abnormalities. We anticipate that SeqVerify will be a useful tool for researchers generating edited PSCs, and more broadly, for cell line quality control in general.
Collapse
Affiliation(s)
| | - Valerio Pepe
- Wyss Institute at Harvard University, Boston MA, USA
| | - Steven Lubbe
- The Ken & Ruth Davee Department of Neurology and Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Simpson Querrey Center of Neurogenetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Evangelos Kiskinis
- The Ken & Ruth Davee Department of Neurology and Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - George M Church
- Wyss Institute at Harvard University, Boston MA, USA; Department of Genetics, Harvard Medical School, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
11
|
Boehler NA, Seheult SDI, Wahid M, Hase K, D’Amico SF, Saini S, Mascarenhas B, Bergman ME, Phillips MA, Faure PA, Cheng HYM. A novel copy number variant in the murine Cdh23 gene gives rise to profound deafness and vestibular dysfunction. Hum Mol Genet 2024; 33:1648-1659. [PMID: 38981620 PMCID: PMC11413645 DOI: 10.1093/hmg/ddae095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/10/2024] [Accepted: 05/30/2024] [Indexed: 07/11/2024] Open
Abstract
Hearing loss is the most common congenital sensory deficit worldwide and exhibits high genetic heterogeneity, making molecular diagnoses elusive for most individuals. Detecting novel mutations that contribute to hearing loss is crucial to providing accurate personalized diagnoses, tailored interventions, and improving prognosis. Copy number variants (CNVs) are structural mutations that are understudied, potential contributors to hearing loss. Here, we present the Abnormal Wobbly Gait (AWG) mouse, the first documented mutant exhibiting waltzer-like locomotor dysfunction, hyperactivity, circling behaviour, and profound deafness caused by a spontaneous CNV deletion in cadherin 23 (Cdh23). We were unable to identify the causative mutation through a conventional whole-genome sequencing (WGS) and variant detection pipeline, but instead found a linked variant in hexokinase 1 (Hk1) that was insufficient to recapitulate the AWG phenotype when introduced into C57BL/6J mice using CRISPR-Cas9. Investigating nearby deafness-associated genes revealed a pronounced downregulation of Cdh23 mRNA and a complete absence of full-length CDH23 protein, which is critical for the development and maintenance of inner ear hair cells, in whole head extracts from AWG neonates. Manual inspection of WGS read depth plots of the Cdh23 locus revealed a putative 10.4 kb genomic deletion of exons 11 and 12 that was validated by PCR and Sanger sequencing. This study underscores the imperative to refine variant detection strategies to permit identification of pathogenic CNVs easily missed by conventional variant calling to enhance diagnostic precision and ultimately improve clinical outcomes for individuals with genetically heterogenous disorders such as hearing loss.
Collapse
Affiliation(s)
- Nicholas A Boehler
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Shane D I Seheult
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Muhammad Wahid
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Kazuma Hase
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Sierra F D’Amico
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Shakshi Saini
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Brittany Mascarenhas
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Matthew E Bergman
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Michael A Phillips
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Paul A Faure
- Department of Psychology, Neuroscience & Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Hai-Ying Mary Cheng
- Department of Biology, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
12
|
Liu YF, Li YL, Xing TF, Xue DX, Liu JX. Genetic architecture of long-distance migration and population genomics of the endangered Japanese eel. iScience 2024; 27:110563. [PMID: 39165844 PMCID: PMC11334786 DOI: 10.1016/j.isci.2024.110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
The Japanese eel (Anguilla japonica), a flagship anguillid species for conservation, is known for its long-distance-oriented migration. However, our understanding of the genetic architecture underlying long-distance migration and population genomic characteristics of A. japonica is still limited. Here, we generated a high-quality chromosome-level genome assembly and conducted whole-genome resequencing of 218 individuals to explore these aspects. Strong signals of selection were found on genes involved in long-distance aerobic exercise and navigation, which might be associated with evolutionary adaptation to long-distance migrations. Low genetic diversity was detected, which might result from genetic drift associated with demographic declines. Both mitochondrial and nuclear genomic datasets supported the existence of a single panmictic population for Japanese eel, despite signals of single-generation selection. Candidate genes for local selection involved in functions like development and circadian rhythm. The findings can provide insights to adaptative evolution to long-distance migration and inform conservation efforts for A. japonica.
Collapse
Affiliation(s)
- Yan-Fang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
13
|
Panda A, Suvakov M, Thorvaldsdottir H, Mesirov JP, Robinson JT, Abyzov A. Genome-wide analysis and visualization of copy number with CNVpytor in igv.js. Bioinformatics 2024; 40:btae453. [PMID: 39018173 PMCID: PMC11303504 DOI: 10.1093/bioinformatics/btae453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/27/2024] [Accepted: 07/15/2024] [Indexed: 07/19/2024] Open
Abstract
SUMMARY Copy number variation (CNV) and alteration (CNA) analysis is a crucial component in many genomic studies and its applications span from basic research to clinic diagnostics and personalized medicine. CNVpytor is a tool featuring a read depth-based caller and combined read depth and B-allele frequency (BAF) based 2D caller to find CNVs and CNAs. The tool stores processed intermediate data and CNV/CNA calls in a compact HDF5 file-pytor file. Here, we describe a new track in igv.js that utilizes pytor and whole genome variant files as input for on-the-fly read depth and BAF visualization, CNV/CNA calling and analysis. Embedding into HTML pages and Jupiter Notebooks enables convenient remote data access and visualization simplifying interpretation and analysis of omics data. AVAILABILITY AND IMPLEMENTATION The CNVpytor track is integrated with igv.js and available at https://github.com/igvteam/igv.js. The documentation is available at https://github.com/igvteam/igv.js/wiki/cnvpytor. Usage can be tested in the IGV-Web app at https://igv.org/app and also on https://github.com/abyzovlab/CNVpytor.
Collapse
Affiliation(s)
- Arijit Panda
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | | | - Jill P Mesirov
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92037, United States
| | - James T Robinson
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, United States
| |
Collapse
|
14
|
Holthöfer L, Diederich S, Haug V, Lehmann L, Hewel C, Paul NW, Schweiger S, Gerber S, Linke M. A case of an Angelman-syndrome caused by an intragenic duplication of UBE3A uncovered by adaptive nanopore sequencing. Clin Epigenetics 2024; 16:101. [PMID: 39095842 PMCID: PMC11297752 DOI: 10.1186/s13148-024-01711-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive nanopore sequencing as a diagnostic method for imprinting disorders and episignature analysis revealed an intragenic duplication of Exon 6 and 7 in UBE3A (NM_000462.5) in a patient with relatively mild Angelman-like syndrome. In an all-in-one nanopore sequencing analysis DNA hypomethylation of the SNURF:TSS-DMR, known contributing deletions on the maternal allele and point mutations in UBE3A could be ruled out as disease drivers. In contrast, breakpoints and orientation of the tandem duplication could clearly be defined. Segregation analysis in the family showed that the duplication derived de novo in the maternal grandfather. Our study shows the benefits of an all-in-one nanopore sequencing approach for the diagnostics of Angelman syndrome and other imprinting disorders.
Collapse
Affiliation(s)
- Laura Holthöfer
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Diederich
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Verena Haug
- Neuropediatrics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Lioba Lehmann
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Charlotte Hewel
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Norbert W Paul
- Institute for History, Philosophy, and Ethics of Medicine, Johannes Gutenberg-University Medical Center Mainz, Mainz, Germany
| | - Susann Schweiger
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Susanne Gerber
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Linke
- Institute for Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
15
|
Ormond C, Ryan NM, Byerley W, Heron EA, Corvin A. Investigating copy number variants in schizophrenia pedigrees using a new consensus pipeline called PECAN. Sci Rep 2024; 14:17518. [PMID: 39080331 PMCID: PMC11289470 DOI: 10.1038/s41598-024-66021-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/26/2024] [Indexed: 08/02/2024] Open
Abstract
Copy number variants (CNVs) have been implicated in many human diseases, including psychiatric disorders. Whole genome sequencing offers advantages in CNV calling compared to previous array-based methods. Here we present a robust and transparent CNV calling pipeline, PECAN (PEdigree Copy number vAriaNt calling), for short-read, whole genome sequencing data, comprised of a novel combination of four calling methods and structural variant genotyping. This method is scalable and can incorporate pedigree information to retain lower-confidence CNVs that would otherwise be discarded. We have robustly benchmarked PECAN using gold-standard CNV calls for two well-established evaluation samples, NA12878 and HG002, showing that PECAN performs with high precision and recall on both datasets, outperforming another pedigree-based CNV calling pipeline. As part of this work, we provide a list of high-confidence gold standard CNVs for the NA12878 reference sample, curated from multiple studies. We applied PECAN to a collection of pedigrees multiply affected with schizophrenia and identified a rare deletion that perfectly co-segregates with schizophrenia in one of the pedigrees. The CNV overlaps the gene PITRM1, which has been implicated in a complex phenotype including ataxia, developmental delay, and schizophrenia-like episodes in affected adults.
Collapse
Affiliation(s)
- Cathal Ormond
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity Centre for Health Sciences, Trinity College Dublin, James' Street, Dublin 8, Ireland
| | - Niamh M Ryan
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity Centre for Health Sciences, Trinity College Dublin, James' Street, Dublin 8, Ireland
| | - William Byerley
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, CA, USA
| | - Elizabeth A Heron
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity Centre for Health Sciences, Trinity College Dublin, James' Street, Dublin 8, Ireland
| | - Aiden Corvin
- Neuropsychiatric Genetics Research Group, Department of Psychiatry, Trinity Centre for Health Sciences, Trinity College Dublin, James' Street, Dublin 8, Ireland.
| |
Collapse
|
16
|
Wang C, Liu H, Li XY, Ma J, Gu Z, Feng X, Xie S, Tang BS, Chen S, Wang W, Wang J, Zhang J, Chan P. High-depth whole-genome sequencing identifies structure variants, copy number variants and short tandem repeats associated with Parkinson's disease. NPJ Parkinsons Dis 2024; 10:134. [PMID: 39043730 PMCID: PMC11266557 DOI: 10.1038/s41531-024-00722-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/10/2024] [Indexed: 07/25/2024] Open
Abstract
While numerous single nucleotide variants and small indels have been identified in Parkinson's disease (PD), the contribution of structural variants (SVs), copy number variants (CNVs), and short tandem repeats (STRs) remains poorly understood. Here we investigated the association using the high-depth whole-genome sequencing data from 466 Chinese PD patients and 513 controls. Totally, we identified 29,561 SVs, 32,153 CNVs, and 174,905 STRs, and found that CNV deletions were significantly enriched in the end-proportion of autosomal chromosomes in PD. After genome-wide association analysis and replication in an external cohort of 352 cases and 547 controls, we validated that the 1.6 kb-deletion neighboring MUC19, 12.4kb-deletion near RXFP1 and GGGAAA repeats in SLC2A13 were significantly associated with PD. Moreover, the MUC19 deletion and the SLC2A13 5-copy repeat reduced the penetrance of the LRRK2 G2385R variant. Moreover, genes with these variants were dosage-sensitive. These data provided novel insights into the genetic architecture of PD.
Collapse
Affiliation(s)
- Chaodong Wang
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Hankui Liu
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Xu-Ying Li
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jinghong Ma
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Zhuqin Gu
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Xiuli Feng
- National Human Genome Center in Beijing, Beijing Economic-Technological Development Zone, Beijing, 100176, China
| | - Shu Xie
- National Human Genome Center in Beijing, Beijing Economic-Technological Development Zone, Beijing, 100176, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, State Key Laboratory of Medical Genetics, Changsha, China
| | - Shengdi Chen
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Jian Wang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China
| | - Jianguo Zhang
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, 518083, China.
- Hebei Industrial Technology Research Institute of Genomics in Maternal & Child Health, Shijiazhuang, 050000, China.
| | - Piu Chan
- Department of Neurology & Neurobiology, Xuanwu Hospital of Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
- Clinical Center for Parkinson's Disease, Capital Medical University, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory for Parkinson's Disease, Beijing, China.
- Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
17
|
Wiener E, Cottino L, Botha G, Nyangiri O, Noyes H, McLeod A, Jakubosky D, Adebamowo C, Awadalla P, Landouré G, Matshaba M, Matovu E, Ramsay M, Simo G, Simuunza M, Tiemessen C, Wonkam A, Sahibdeen V, Krause A, Lombard Z, Hazelhurst S. An assessment of the genomic structural variation landscape in Sub-Saharan African populations. RESEARCH SQUARE 2024:rs.3.rs-4485126. [PMID: 39041024 PMCID: PMC11261963 DOI: 10.21203/rs.3.rs-4485126/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Structural variants are responsible for a large part of genomic variation between individuals and play a role in both common and rare diseases. Databases cataloguing structural variants notably do not represent the full spectrum of global diversity, particularly missing information from most African populations. To address this representation gap, we analysed 1,091 high-coverage African genomes, 545 of which are public data sets, and 546 which have been analysed for structural variants for the first time. Variants were called using five different tools and datasets merged and jointly called using SURVIVOR. We identified 67,795 structural variants throughout the genome, with 10,421 genes having at least one variant. Using a conservative overlap in merged data, 6,414 of the structural variants (9.5%) are novel compared to the Database of Genomic Variants. This study contributes to knowledge of the landscape of structural variant diversity in Africa and presents a reliable dataset for potential applications in population genetics and health-related research.
Collapse
Affiliation(s)
- Emma Wiener
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Laura Cottino
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gerrit Botha
- Computational Biology Unit, University of Cape Town, Cape Town, South Africa
| | - Oscar Nyangiri
- College of Veterinary Medicine, Animal Resources and Biosecurity Makerere University, Kampala, Uganda
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | - Annette McLeod
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - David Jakubosky
- Department of Biomedical Informatics, University of California, San Diego, United States of America
- Institute of Genomic Medicine, University of California, San Diego, United States of America
| | - Clement Adebamowo
- Department of Epidemiology and Public Health and Greenebaum Comprehensive Cancer Center University of Maryland School of Medicine, Baltimore, United States of America
| | - Phillip Awadalla
- Ontario Institute for Cancer Research, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Canada
| | - Guida Landouré
- Faculty of Medicine and Odontostomatology University of Sciences, Techniques and Technology of Bamako, Bamako Mali
- Neurology Department Point ”G” University Hospital, Bamako, Mali
| | - Mogomotsi Matshaba
- Botswana-Baylor Children’s Clinical Center of Excellence, Gaborone, Botswana
- Baylor College of Medicine, Houston, United States
| | - Enock Matovu
- College of Veterinary Medicine, Animal Resources and Biosecurity Makerere University, Kampala, Uganda
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry University of Dschang, Dschang, Cameroon
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine University of Zambia, Lusaka, Zambia
| | - Caroline Tiemessen
- Centre for HIV and STIs, National Institute for Communicable Diseases, National Health Laboratory Services and Faculty of Health Sciences University of the Witwatersrand, Johannesburg, South Africa
| | - Ambroise Wonkam
- McKusick-Nathans Institute and Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, United States of America
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Venesa Sahibdeen
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Amanda Krause
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zané Lombard
- Division of Human Genetics, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| | | |
Collapse
|
18
|
Lakhova TN, Tsygichko AA, Klimenko AI, Ismailov VY, Vasiliev GV, Asaturova AM, Lashin SA. Assembly and Genome Annotation of Different Strains of Apple Fruit Moth Virus ( Cydia pomonella granulovirus). Int J Mol Sci 2024; 25:7146. [PMID: 39000263 PMCID: PMC11240899 DOI: 10.3390/ijms25137146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Cydia pomonella granulovirus is a natural pathogen for Cydia pomonella that is used as a biocontrol agent of insect populations. The study of granulovirus virulence is of particular interest since the development of resistance in natural populations of C. pomonella has been observed during the long-term use of the Mexican isolate CpGV. In our study, we present the genomes of 18 CpGV strains endemic to southern Russia and from Kazakhstan, as well as a strain included in the commercial preparation "Madex Twin", which were sequenced and analyzed. We performed comparative genomic analysis using several tools. From comparisons at the level of genes and protein products that are involved in the infection process of virosis, synonymous and missense substitution variants have been identified. The average nucleotide identity has demonstrated a high similarity with other granulovirus genomes of different geographic origins. Whole-genome alignment of the 18 genomes relative to the reference revealed regions of low similarity. Analysis of gene repertoire variation has shown that BZR GV 4, BZR GV 6, and BZR GV L-7 strains have been the closest in gene content to the commercial "Madex Twin" strain. We have confirmed two deletions using read depth coverage data in regions lacking genes shown by homology analysis for granuloviruses BZR GV L-4 and BZR GV L-6; however, they are not related to the known genes causing viral pathogenicity. Thus, we have isolated novel CpGV strains and analyzed their potential as strains producing highly effective bioinsecticides against C. pomonella.
Collapse
Affiliation(s)
- Tatiana N. Lakhova
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Department of Mathematics and Mechanics, Mathematical Center, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Aleksandra A. Tsygichko
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Alexandra I. Klimenko
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Department of Mathematics and Mechanics, Mathematical Center, Novosibirsk State University, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Vladimir Y. Ismailov
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Gennady V. Vasiliev
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
| | - Anzhela M. Asaturova
- Federal State Budgetary Scientific Institution, Federal Research Center of Biological Plant Protection, 350039 Krasnodar, Russia; (A.A.T.); (A.M.A.)
| | - Sergey A. Lashin
- Kurchatov Genomic Centre of Institute of Cytology and Genetics SB RAS, 630090 Novosibirsk, Russia; (A.I.K.); (S.A.L.)
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
19
|
Maggi J, Koller S, Feil S, Bachmann-Gagescu R, Gerth-Kahlert C, Berger W. Limited Added Diagnostic Value of Whole Genome Sequencing in Genetic Testing of Inherited Retinal Diseases in a Swiss Patient Cohort. Int J Mol Sci 2024; 25:6540. [PMID: 38928247 PMCID: PMC11203445 DOI: 10.3390/ijms25126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
The purpose of this study was to assess the added diagnostic value of whole genome sequencing (WGS) for patients with inherited retinal diseases (IRDs) who remained undiagnosed after whole exome sequencing (WES). WGS was performed for index patients in 66 families. The datasets were analyzed according to GATK's guidelines. Additionally, DeepVariant was complemented by GATK's workflow, and a novel structural variant pipeline was developed. Overall, a molecular diagnosis was established in 19/66 (28.8%) index patients. Pathogenic deletions and one deep-intronic variant contributed to the diagnostic yield in 4/19 and 1/19 index patients, respectively. The remaining diagnoses (14/19) were attributed to exonic variants that were missed during WES analysis due to bioinformatic limitations, newly described loci, or unclear pathogenicity. The added diagnostic value of WGS equals 5/66 (9.6%) for our cohort, which is comparable to previous studies. This figure would decrease further to 1/66 (1.5%) with a standardized and reliable copy number variant workflow during WES analysis. Given the higher costs and limited added value, the implementation of WGS as a first-tier assay for inherited eye disorders in a diagnostic laboratory remains untimely. Instead, progress in bioinformatic tools and communication between diagnostic and clinical teams have the potential to ameliorate diagnostic yields.
Collapse
Affiliation(s)
- Jordi Maggi
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | - Samuel Koller
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | - Silke Feil
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
| | | | - Christina Gerth-Kahlert
- Department of Ophthalmology, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland;
| | - Wolfgang Berger
- Institute of Medical Molecular Genetics, University of Zurich, 8952 Schlieren, Switzerland; (J.M.); (S.K.); (S.F.)
- Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, 8057 Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University and ETH Zurich, 8057 Zurich, Switzerland
| |
Collapse
|
20
|
Li S, Zhao S, Sinson JC, Bajic A, Rosenfeld JA, Neeley MB, Pena M, Worley KC, Burrage LC, Weisz-Hubshman M, Ketkar S, Craigen WJ, Clark GD, Lalani S, Bacino CA, Machol K, Chao HT, Potocki L, Emrick L, Sheppard J, Nguyen MTT, Khoramnia A, Hernandez PP, Nagamani SC, Liu Z, Eng CM, Lee B, Liu P. The clinical utility and diagnostic implementation of human subject cell transdifferentiation followed by RNA sequencing. Am J Hum Genet 2024; 111:841-862. [PMID: 38593811 PMCID: PMC11080285 DOI: 10.1016/j.ajhg.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/08/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
RNA sequencing (RNA-seq) has recently been used in translational research settings to facilitate diagnoses of Mendelian disorders. A significant obstacle for clinical laboratories in adopting RNA-seq is the low or absent expression of a significant number of disease-associated genes/transcripts in clinically accessible samples. As this is especially problematic in neurological diseases, we developed a clinical diagnostic approach that enhanced the detection and evaluation of tissue-specific genes/transcripts through fibroblast-to-neuron cell transdifferentiation. The approach is designed specifically to suit clinical implementation, emphasizing simplicity, cost effectiveness, turnaround time, and reproducibility. For clinical validation, we generated induced neurons (iNeurons) from 71 individuals with primary neurological phenotypes recruited to the Undiagnosed Diseases Network. The overall diagnostic yield was 25.4%. Over a quarter of the diagnostic findings benefited from transdifferentiation and could not be achieved by fibroblast RNA-seq alone. This iNeuron transcriptomic approach can be effectively integrated into diagnostic whole-transcriptome evaluation of individuals with genetic disorders.
Collapse
Affiliation(s)
- Shenglan Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sen Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Jefferson C Sinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Aleksandar Bajic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA
| | - Jill A Rosenfeld
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Matthew B Neeley
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Mezthly Pena
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Kim C Worley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lindsay C Burrage
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Monika Weisz-Hubshman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Shamika Ketkar
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - William J Craigen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Gary D Clark
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Seema Lalani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Keren Machol
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Hsiao-Tuan Chao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Cain Pediatric Research Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; McNair Medical Institute, The Robert and Janice McNair Foundation, Houston, TX, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Lisa Emrick
- Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Jennifer Sheppard
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - My T T Nguyen
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Anahita Khoramnia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | | | - Sandesh Cs Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA; Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA; Department of Pediatrics, Section of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Christine M Eng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA
| | - Brendan Lee
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Texas Children's Hospital, Houston, TX, USA
| | - Pengfei Liu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA; Baylor Genetics, Houston, TX, USA.
| |
Collapse
|
21
|
Wan JN, Wang SW, Leitch AR, Leitch IJ, Jian JB, Wu ZY, Xin HP, Rakotoarinivo M, Onjalalaina GE, Gituru RW, Dai C, Mwachala G, Bai MZ, Zhao CX, Wang HQ, Du SL, Wei N, Hu GW, Chen SC, Chen XY, Wan T, Wang QF. The rise of baobab trees in Madagascar. Nature 2024; 629:1091-1099. [PMID: 38750363 PMCID: PMC11136661 DOI: 10.1038/s41586-024-07447-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 04/19/2024] [Indexed: 05/30/2024]
Abstract
The baobab trees (genus Adansonia) have attracted tremendous attention because of their striking shape and distinctive relationships with fauna1. These spectacular trees have also influenced human culture, inspiring innumerable arts, folklore and traditions. Here we sequenced genomes of all eight extant baobab species and argue that Madagascar should be considered the centre of origin for the extant lineages, a key issue in their evolutionary history2,3. Integrated genomic and ecological analyses revealed the reticulate evolution of baobabs, which eventually led to the species diversity seen today. Past population dynamics of Malagasy baobabs may have been influenced by both interspecific competition and the geological history of the island, especially changes in local sea levels. We propose that further attention should be paid to the conservation status of Malagasy baobabs, especially of Adansonia suarezensis and Adansonia grandidieri, and that intensive monitoring of populations of Adansonia za is required, given its propensity for negatively impacting the critically endangered Adansonia perrieri.
Collapse
Affiliation(s)
- Jun-Nan Wan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Sheng-Wei Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Andrew R Leitch
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
| | | | - Jian-Bo Jian
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | - Hai-Ping Xin
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | | | | | - Robert Wahiti Gituru
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Department of Botany, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Can Dai
- School of Resources and Environmental Science, Hubei University, Wuhan, China
| | | | - Ming-Zhou Bai
- BGI Genomics, BGI-Shenzhen, Shenzhen, China
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Sheng-Lan Du
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
| | - Neng Wei
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Guang-Wan Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Si-Chong Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Ya Chen
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China
- Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Tao Wan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China.
| | - Qing-Feng Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, China.
| |
Collapse
|
22
|
Pokrovac I, Rohner N, Pezer Ž. The prevalence of copy number increase at multiallelic copy number variants associated with cave colonization. Mol Ecol 2024; 33:e17339. [PMID: 38556927 DOI: 10.1111/mec.17339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/16/2024] [Accepted: 03/22/2024] [Indexed: 04/02/2024]
Abstract
Copy number variation is a common contributor to phenotypic diversity, yet its involvement in ecological adaptation is not easily discerned. Instances of parallelly evolving populations of the same species in a similar environment marked by strong selective pressures present opportunities to study the role of copy number variants (CNVs) in adaptation. By identifying CNVs that repeatedly occur in multiple populations of the derived ecotype and are not (or are rarely) present in the populations of the ancestral ecotype, the association of such CNVs with adaptation to the novel environment can be inferred. We used this paradigm to identify CNVs associated with recurrent adaptation of the Mexican tetra (Astyanax mexicanus) to cave environment. Using a read-depth approach, we detected CNVs from previously re-sequenced genomes of 44 individuals belonging to two ancestral surfaces and three derived cave populations. We identified 102 genes and 292 genomic regions that repeatedly diverge in copy number between the two ecotypes and occupy 0.8% of the reference genome. Functional analysis revealed their association with processes previously recognized to be relevant for adaptation, such as vision, immunity, oxygen consumption, metabolism, and neural function and we propose that these variants have been selected for in the cave or surface waters. The majority of the ecotype-divergent CNVs are multiallelic and display copy number increases in cavefish compared to surface fish. Our findings suggest that multiallelic CNVs - including gene duplications - and divergence in copy number provide a fast route to produce novel phenotypes associated with adaptation to subterranean life.
Collapse
Affiliation(s)
| | - Nicolas Rohner
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | |
Collapse
|
23
|
Bilgrav Saether K, Eisfeldt J, Bengtsson J, Lun MY, Grochowski CM, Mahmoud M, Chao HT, Rosenfeld JA, Liu P, Schuy J, Ameur A, Hwang JP, Sedlazeck FJ, Bi W, Marom R, Nordgren A, Carvalho CMB, Lindstrand A. Mind the gap: the relevance of the genome reference to resolve rare and pathogenic inversions. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.22.24305780. [PMID: 38712270 PMCID: PMC11071548 DOI: 10.1101/2024.04.22.24305780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Both long-read genome sequencing (lrGS) and the recently published Telomere to Telomere (T2T) reference genome provide increased coverage and resolution across repetitive regions promising heightened structural variant detection and improved mapping. Inversions (INV), intrachromosomal segments which are rotated 180° and inserted back into the same chromosome, are a class of structural variants particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage sensitive genes in cis . Here we remapped the genome data from six individuals carrying unsolved cytogenetically detected inversions. An INV6 and INV10 were resolved using GRCh38 and T2T-CHM13. Finally, an INV9 required optical genome mapping, de novo assembly of lrGS data and T2T-CHM13. This inversion disrupted intron 25 of EHMT1, confirming a diagnosis of Kleefstra syndrome 1 (MIM#610253). These three inversions, only mappable in specific references, prompted us to investigate the presence and population frequencies of differential reference regions (DRRs) between T2T-CHM13, GRCh37, GRCh38, the chimpanzee and bonobo, and hundreds of megabases of DRRs were identified. Our results emphasize the significance of the chosen reference genome and the added benefits of lrGS and optical genome mapping in solving rearrangements in challenging regions of the genome. This is particularly important for inversions and may impact clinical diagnostics.
Collapse
|
24
|
Wang H, Chang TS, Dombroski BA, Cheng PL, Si YQ, Tucci A, Patil V, Valiente-Banuet L, Farrell K, Mclean C, Molina-Porcel L, Alex R, Paul De Deyn P, Le Bastard N, Gearing M, Donker Kaat L, Van Swieten JC, Dopper E, Ghetti BF, Newell KL, Troakes C, G de Yébenes J, Rábano-Gutierrez A, Meller T, Oertel WH, Respondek G, Stamelou M, Arzberger T, Roeber S, Müller U, Hopfner F, Pastor P, Brice A, Durr A, Ber IL, Beach TG, Serrano GE, Hazrati LN, Litvan I, Rademakers R, Ross OA, Galasko D, Boxer AL, Miller BL, Seeley WW, Van Deerlin VM, Lee EB, White CL, Morris HR, de Silva R, Crary JF, Goate AM, Friedman JS, Leung YY, Coppola G, Naj AC, Wang LS, Dickson DW, Höglinger GU, Tzeng JY, Geschwind DH, Schellenberg GD, Lee WP. Association of Structural Forms of 17q21.31 with the Risk of Progressive Supranuclear Palsy and MAPT Sub-haplotypes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.26.24303379. [PMID: 38464214 PMCID: PMC10925353 DOI: 10.1101/2024.02.26.24303379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Importance The chromosome 17q21.31 region, containing a 900 Kb inversion that defines H1 and H2 haplotypes, represents the strongest genetic risk locus in progressive supranuclear palsy (PSP). In addition to H1 and H2, various structural forms of 17q21.31, characterized by the copy number of α, β, and γ duplications, have been identified. However, the specific effect of each structural form on the risk of PSP has never been evaluated in a large cohort study. Objective To assess the association of different structural forms of 17q.21.31, defined by the copy numbers of α, β, and γ duplications, with the risk of PSP and MAPT sub-haplotypes. Design setting and participants Utilizing whole genome sequencing data of 1,684 (1,386 autopsy confirmed) individuals with PSP and 2,392 control subjects, a case-control study was conducted to investigate the association of copy numbers of α, β, and γ duplications and structural forms of 17q21.31 with the risk of PSP. All study subjects were selected from the Alzheimer's Disease Sequencing Project (ADSP) Umbrella NG00067.v7. Data were analyzed between March 2022 and November 2023. Main outcomes and measures The main outcomes were the risk (odds ratios [ORs]) for PSP with 95% CIs. Risks for PSP were evaluated by logistic regression models. Results The copy numbers of α and β were associated with the risk of PSP only due to their correlation with H1 and H2, while the copy number of γ was independently associated with the increased risk of PSP. Each additional duplication of γ was associated with 1.10 (95% CI, 1.04-1.17; P = 0.0018) fold of increased risk of PSP when conditioning H1 and H2. For the H1 haplotype, addition γ duplications displayed a higher odds ratio for PSP: the odds ratio increases from 1.21 (95%CI 1.10-1.33, P = 5.47 × 10-5) for H1β1γ1 to 1.29 (95%CI 1.16-1.43, P = 1.35 × 10-6) for H1β1γ2, 1.45 (95%CI 1.27-1.65, P = 3.94 × 10-8) for H1β1γ3, and 1.57 (95%CI 1.10-2.26, P = 1.35 × 10-2) for H1β1γ4. Moreover, H1β1γ3 is in linkage disequilibrium with H1c (R2 = 0.31), a widely recognized MAPT sub-haplotype associated with increased risk of PSP. The proportion of MAPT sub-haplotypes associated with increased risk of PSP (i.e., H1c, H1d, H1g, H1o, and H1h) increased from 34% in H1β1γ1 to 77% in H1β1γ4. Conclusions and relevance This study revealed that the copy number of γ was associated with the risk of PSP independently from H1 and H2. The H1 haplotype with more γ duplications showed a higher odds ratio for PSP and were associated with MAPT sub-haplotypes with increased risk of PSP. These findings expand our understanding of how the complex structure at 17q21.31 affect the risk of PSP.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy S Chang
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ya-Qin Si
- Bioinformatics Research Center, North Carolina State University, NC, USA
| | - Albert Tucci
- Bioinformatics Research Center, North Carolina State University, NC, USA
| | - Vishakha Patil
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leopoldo Valiente-Banuet
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kurt Farrell
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer’s Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Catriona Mclean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Laura Molina-Porcel
- Alzheimer’s disease and other cognitive disorders unit. Neurology Service, Hospital Clínic, Fundació Recerca Clínic Barcelona (FRCB). Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Biobanc-Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Rajput Alex
- Movement Disorders Program, Division of Neurology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Peter Paul De Deyn
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Unit, University of Antwerp, Wilrijk (Antwerp), Belgium
- Department of Neurology, University Medical Center Groningen, NL-9713 AV Groningen, Netherlands
| | | | - Marla Gearing
- Department of Pathology and Laboratory Medicine and Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | | | | | - Elise Dopper
- Netherlands Brain Bank and Erasmus University, Netherlands
| | - Bernardino F Ghetti
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claire Troakes
- London Neurodegenerative Diseases Brain Bank, King’s College London, London, UK
| | | | - Alberto Rábano-Gutierrez
- Fundación CIEN (Centro de Investigación de Enfermedades Neurológicas) - Centro Alzheimer Fundación Reina Sofía, Madrid, Spain
| | - Tina Meller
- Department of Neurology, Philipps-Universität, Marburg, Germany
| | | | - Gesine Respondek
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Maria Stamelou
- Parkinson’s disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
- European University of Cyprus, Nicosia, Cyprus
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, University Hospital Munich, Ludwig-Maximilians-University Munich, Germany
- Center for Neuropathology and Prion Research, Ludwig-Maximilians-University Munich, Germany
| | | | | | - Franziska Hopfner
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Pau Pastor
- Unit of Neurodegenerative diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain
- Neurosciences, The Germans Trias i Pujol Research Institute (IGTP) Badalona, Badalona, Spain
| | - Alexis Brice
- Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, APHP - Hôpital Pitié-Salpêtrière, Paris, France
| | | | | | | | - Irene Litvan
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Belgium
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic Jacksonville, FL, USA
| | - Douglas Galasko
- Department of Neuroscience, University of California, San Diego, CA, USA
| | - Adam L Boxer
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Bruce L Miller
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Willian W Seeley
- Memory and Aging Center, University of California, San Francisco, CA, USA
| | - Vivianna M Van Deerlin
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Huw R Morris
- Departmento of Clinical and Movement Neuroscience, University College of London, London, UK
| | - Rohan de Silva
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK
| | - John F Crary
- Department of Pathology, Department of Artificial Intelligence & Human Health, Nash Family, Department of Neuroscience, Ronald M. Loeb Center for Alzheimer’s Disease, Friedman Brain, Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomic Sciences, New York, NY, USA; Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey S Friedman
- Friedman Bioventure, Inc., Del Mar, CA, USA: Department of Genetics and Genomic Sciences, New York, NY, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Giovanni Coppola
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, CA, USA
| | - Adam C Naj
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Günter U Höglinger
- Department of Neurology, LMU University Hospital, Ludwig-Maximilians-Universität (LMU) München; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany; and Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Jung-Ying Tzeng
- Bioinformatics Research Center, North Carolina State University, NC, USA
- Department of Statistics, North Carolina State University, NC, USA
| | - Daniel H Geschwind
- Movement Disorders Programs, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Institute of Precision Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
25
|
Raj N, Saini S. Increased privatization of a public resource leads to spread of cooperation in a microbial population. Microbiol Spectr 2024; 12:e0235823. [PMID: 38206031 PMCID: PMC10846273 DOI: 10.1128/spectrum.02358-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/09/2023] [Indexed: 01/12/2024] Open
Abstract
The phenomenon of cooperation is prevalent at all levels of life. In one such manifestation of cooperation in microbial communities, some cells produce costly extracellular resources that are freely available to others. These resources are referred to as public goods. Saccharomyces cerevisiae secretes invertase (public good) in the periplasm to hydrolyze sucrose into glucose and fructose, which are then imported by the cells. After hydrolysis of sucrose, a cooperator retains only 1% of the monosaccharides, while 99% of the monosaccharides diffuse into the environment and can be utilized by any cell. The non-producers of invertase (cheaters) exploit the invertase-producing cells (cooperators) by utilizing the monosaccharides and not paying the metabolic cost of producing the invertase. In this work, we investigate the evolutionary dynamics of this cheater-cooperator system. In a co-culture, if cheaters are selected for their higher fitness, the population will collapse. On the other hand, for cooperators to survive in the population, a strategy to increase fitness would likely be required. To understand the adaptation of cooperators in sucrose, we performed a coevolution experiment in sucrose. Our results show that cooperators increase in fitness as the experiment progresses. This phenomenon was not observed in environments which involved a non-public good system. Genome sequencing reveals duplication of several HXT transporters in the evolved cooperators. Based on these results, we hypothesize that increased privatization of the monosaccharides is the most likely explanation of spread of cooperators in the population.IMPORTANCEHow is cooperation, as a trait, maintained in a population? In order to answer this question, we perform a coevolution experiment between two strains of yeast-one which produces a public good to release glucose and fructose in the media, thus generating a public resource, and the other which does not produce public resource and merely benefits from the presence of the cooperator strain. What is the outcome of this coevolution experiment? We demonstrate that after ~200 generations of coevolution, cooperators increase in frequency in the co-culture. Remarkably, in all parallel lines of our experiment, this is obtained via duplication of regions which likely allow greater privatization of glucose and fructose. Thus, increased privatization, which is intuitively thought to be a strategy against cooperation, enables spread of cooperation.
Collapse
Affiliation(s)
- Namratha Raj
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
26
|
Burger BT, Beaton BP, Campbell MA, Brett BT, Rohrer MS, Plummer S, Barnes D, Jiang K, Naswa S, Lange J, Ott A, Alger E, Rincon G, Rounsley S, Betthauser J, Mtango NR, Benne JA, Hammerand J, Durfee CJ, Rotolo ML, Cameron P, Lied AM, Irby MJ, Nyer DB, Fuller CK, Gradia S, Kanner SB, Park KE, Waters J, Simpson S, Telugu BP, Salgado BC, Brandariz-Nuñez A, Rowland RRR, Culbertson M, Rice E, Cigan AM. Generation of a Commercial-Scale Founder Population of Porcine Reproductive and Respiratory Syndrome Virus Resistant Pigs Using CRISPR-Cas. CRISPR J 2024; 7:12-28. [PMID: 38353617 DOI: 10.1089/crispr.2023.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Disease resistance genes in livestock provide health benefits to animals and opportunities for farmers to meet the growing demand for affordable, high-quality protein. Previously, researchers used gene editing to modify the porcine CD163 gene and demonstrated resistance to a harmful virus that causes porcine reproductive and respiratory syndrome (PRRS). To maximize potential benefits, this disease resistance trait needs to be present in commercially relevant breeding populations for multiplication and distribution of pigs. Toward this goal, a first-of-its-kind, scaled gene editing program was established to introduce a single modified CD163 allele into four genetically diverse, elite porcine lines. This effort produced healthy pigs that resisted PRRS virus infection as determined by macrophage and animal challenges. This founder population will be used for additional disease and trait testing, multiplication, and commercial distribution upon regulatory approval. Applying CRISPR-Cas to eliminate a viral disease represents a major step toward improving animal health.
Collapse
Affiliation(s)
- Brian T Burger
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | | | | | | | | | - Sarah Plummer
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Dylan Barnes
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Ke Jiang
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Sudhir Naswa
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Jeremy Lange
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Alina Ott
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Elizabeth Alger
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Gonzalo Rincon
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Steven Rounsley
- Genus plc Research and Development, DeForest, Wisconsin, USA
- Current address: Inari Agriculture, West Lafayette, IN, USA
| | - Jeff Betthauser
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Namdori R Mtango
- Genus plc Research and Development, DeForest, Wisconsin, USA
- Current address: Colossal Biosciences, Dallas, TX, USA
| | - Joshua A Benne
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | | | - Codie J Durfee
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - Marisa L Rotolo
- PIC, Hendersonville, Tennessee, USA
- Current address: National Pork Board, Des Moines, IA, USA
| | - Peter Cameron
- Caribou Biosciences, Berkeley, California, USA
- Current address: Profluent Bio, Berkeley, CA, USA
| | | | - Matthew J Irby
- Caribou Biosciences, Berkeley, California, USA
- Current address: Prime Medicine, Cambridge, MA, USA
| | - David B Nyer
- Caribou Biosciences, Berkeley, California, USA
- Current address: Clade Therapeutics, Boston, MA, USA
| | | | | | | | - Ki-Eun Park
- RenOVAte Biosciences, Reisterstown, Maryland, USA
| | - Jerel Waters
- RenOVAte Biosciences, Reisterstown, Maryland, USA
| | - Sean Simpson
- RenOVAte Biosciences, Reisterstown, Maryland, USA
| | | | - Brianna C Salgado
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alberto Brandariz-Nuñez
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | | | - Elena Rice
- Genus plc Research and Development, DeForest, Wisconsin, USA
| | - A Mark Cigan
- Genus plc Research and Development, DeForest, Wisconsin, USA
- Current address: Cobb-Vantress, Siloam Springs, AR, USA
| |
Collapse
|
27
|
Birnbaum R. Rediscovering tandem repeat variation in schizophrenia: challenges and opportunities. Transl Psychiatry 2023; 13:402. [PMID: 38123544 PMCID: PMC10733427 DOI: 10.1038/s41398-023-02689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Tandem repeats (TRs) are prevalent throughout the genome, constituting at least 3% of the genome, and often highly polymorphic. The high mutation rate of TRs, which can be orders of magnitude higher than single-nucleotide polymorphisms and indels, indicates that they are likely to make significant contributions to phenotypic variation, yet their contribution to schizophrenia has been largely ignored by recent genome-wide association studies (GWAS). Tandem repeat expansions are already known causative factors for over 50 disorders, while common tandem repeat variation is increasingly being identified as significantly associated with complex disease and gene regulation. The current review summarizes key background concepts of tandem repeat variation as pertains to disease risk, elucidating their potential for schizophrenia association. An overview of next-generation sequencing-based methods that may be applied for TR genome-wide identification is provided, and some key methodological challenges in TR analyses are delineated.
Collapse
Affiliation(s)
- Rebecca Birnbaum
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
28
|
Reis ALM, Rapadas M, Hammond JM, Gamaarachchi H, Stevanovski I, Ayuputeri Kumaheri M, Chintalaphani SR, Dissanayake DSB, Siggs OM, Hewitt AW, Llamas B, Brown A, Baynam G, Mann GJ, McMorran BJ, Easteal S, Hermes A, Jenkins MR, Patel HR, Deveson IW. The landscape of genomic structural variation in Indigenous Australians. Nature 2023; 624:602-610. [PMID: 38093003 PMCID: PMC10733147 DOI: 10.1038/s41586-023-06842-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023]
Abstract
Indigenous Australians harbour rich and unique genomic diversity. However, Aboriginal and Torres Strait Islander ancestries are historically under-represented in genomics research and almost completely missing from reference datasets1-3. Addressing this representation gap is critical, both to advance our understanding of global human genomic diversity and as a prerequisite for ensuring equitable outcomes in genomic medicine. Here we apply population-scale whole-genome long-read sequencing4 to profile genomic structural variation across four remote Indigenous communities. We uncover an abundance of large insertion-deletion variants (20-49 bp; n = 136,797), structural variants (50 b-50 kb; n = 159,912) and regions of variable copy number (>50 kb; n = 156). The majority of variants are composed of tandem repeat or interspersed mobile element sequences (up to 90%) and have not been previously annotated (up to 62%). A large fraction of structural variants appear to be exclusive to Indigenous Australians (12% lower-bound estimate) and most of these are found in only a single community, underscoring the need for broad and deep sampling to achieve a comprehensive catalogue of genomic structural variation across the Australian continent. Finally, we explore short tandem repeats throughout the genome to characterize allelic diversity at 50 known disease loci5, uncover hundreds of novel repeat expansion sites within protein-coding genes, and identify unique patterns of diversity and constraint among short tandem repeat sequences. Our study sheds new light on the dimensions and dynamics of genomic structural variation within and beyond Australia.
Collapse
Affiliation(s)
- Andre L M Reis
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Melissa Rapadas
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Jillian M Hammond
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Hasindu Gamaarachchi
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, New South Wales, Australia
| | - Igor Stevanovski
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Meutia Ayuputeri Kumaheri
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
| | - Sanjog R Chintalaphani
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Duminda S B Dissanayake
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - Owen M Siggs
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia
- Department of Ophthalmology, Flinders University, Bedford Park, South Australia, Australia
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Bastien Llamas
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Australian Centre for Ancient DNA, School of Biological Sciences and Environment Institute, University of Adelaide, Adelaide, South Australia, Australia
- ARC Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, South Australia, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, South Australia, Australia
| | - Alex Brown
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, South Australia, Australia
| | - Gareth Baynam
- Telethon Kids Institute and Division of Paediatrics, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
- Genetic Services of Western Australia, Western Australian Department of Health, Perth, Western Australia, Australia
- Western Australian Register of Developmental Anomalies, Western Australian Department of Health, Perth, Western Australia, Australia
| | - Graham J Mann
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Brendan J McMorran
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Simon Easteal
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Azure Hermes
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Misty R Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Hardip R Patel
- National Centre for Indigenous Genomics, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
| | - Ira W Deveson
- Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Garvan Institute of Medical Research and Murdoch Children's Research Institute, Darlinghurst, New South Wales, Australia.
- Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
29
|
Kechin A, Boyarskikh U, Borobova V, Khrapov E, Subbotin S, Filipenko M. BRACNAC: A BRCA1 and BRCA2 Copy Number Alteration Caller from Next-Generation Sequencing Data. Int J Mol Sci 2023; 24:16630. [PMID: 38068953 PMCID: PMC10706169 DOI: 10.3390/ijms242316630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/17/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Detecting copy number variations (CNVs) and alterations (CNAs) in the BRCA1 and BRCA2 genes is essential for testing patients for targeted therapy applicability. However, the available bioinformatics tools were initially designed for identifying CNVs/CNAs in whole-genome or -exome (WES) NGS data or targeted NGS data without adaptation to the BRCA1/2 genes. Most of these tools were tested on sample cohorts of limited size, with their use restricted to specific library preparation kits or sequencing platforms. We developed BRACNAC, a new tool for detecting CNVs and CNAs in the BRCA1 and BRCA2 genes in NGS data of different origin. The underlying mechanism of this tool involves various coverage normalization steps complemented by CNV probability evaluation. We estimated the sensitivity and specificity of our tool to be 100% and 94%, respectively, with an area under the curve (AUC) of 94%. The estimation was performed using the NGS data obtained from 213 ovarian and prostate cancer samples tested with in-house and commercially available library preparation kits and additionally using multiplex ligation-dependent probe amplification (MLPA) (12 CNV-positive samples). Using freely available WES and targeted NGS data from other research groups, we demonstrated that BRACNAC could also be used for these two types of data, with an AUC of up to 99.9%. In addition, we determined the limitations of the tool in terms of the minimum number of samples per NGS run (≥20 samples) and the minimum expected percentage of CNV-negative samples (≥80%). We expect that our findings will improve the efficacy of BRCA1/2 diagnostics. BRACNAC is freely available at the GitHub server.
Collapse
Affiliation(s)
- Andrey Kechin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Ulyana Boyarskikh
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Viktoriya Borobova
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
- Faculty of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Evgeniy Khrapov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Sergey Subbotin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| | - Maxim Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk 630090, Russia
| |
Collapse
|
30
|
Garrison MA, Jang Y, Bae T, Cherskov A, Emery SB, Fasching L, Jones A, Moldovan JB, Molitor C, Pochareddy S, Peters MA, Shin JH, Wang Y, Yang X, Akbarian S, Chess A, Gage FH, Gleeson JG, Kidd JM, McConnell M, Mills RE, Moran JV, Park PJ, Sestan N, Urban AE, Vaccarino FM, Walsh CA, Weinberger DR, Wheelan SJ, Abyzov A. Genomic data resources of the Brain Somatic Mosaicism Network for neuropsychiatric diseases. Sci Data 2023; 10:813. [PMID: 37985666 PMCID: PMC10662356 DOI: 10.1038/s41597-023-02645-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/16/2023] [Indexed: 11/22/2023] Open
Abstract
Somatic mosaicism is defined as an occurrence of two or more populations of cells having genomic sequences differing at given loci in an individual who is derived from a single zygote. It is a characteristic of multicellular organisms that plays a crucial role in normal development and disease. To study the nature and extent of somatic mosaicism in autism spectrum disorder, bipolar disorder, focal cortical dysplasia, schizophrenia, and Tourette syndrome, a multi-institutional consortium called the Brain Somatic Mosaicism Network (BSMN) was formed through the National Institute of Mental Health (NIMH). In addition to genomic data of affected and neurotypical brains, the BSMN also developed and validated a best practices somatic single nucleotide variant calling workflow through the analysis of reference brain tissue. These resources, which include >400 terabytes of data from 1087 subjects, are now available to the research community via the NIMH Data Archive (NDA) and are described here.
Collapse
Affiliation(s)
- McKinzie A Garrison
- Program in Biochemistry, Molecular and Cellular Biology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Adriana Cherskov
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sarah B Emery
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Attila Jones
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - John B Moldovan
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Cindy Molitor
- Sage Bionetworks, 2901 Third Ave., Suite 330, Seattle, WA, 98121, USA
| | - Sirisha Pochareddy
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Mette A Peters
- Sage Bionetworks, 2901 Third Ave., Suite 330, Seattle, WA, 98121, USA
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Yifan Wang
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - Xiaoxu Yang
- Rady Children's Institute for Genomic Medicine, 7910 Frost St., Suite #300, San Diego, CA, 92123, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Schahram Akbarian
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technologies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Chess
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technologies, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fred H Gage
- Laboratory of Genetics LOG-G, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Joseph G Gleeson
- Rady Children's Institute for Genomic Medicine, 7910 Frost St., Suite #300, San Diego, CA, 92123, USA
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | | | - Ryan E Mills
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Alexander E Urban
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California, 94305, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, California, 94305, USA
| | - Flora M Vaccarino
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, 06520, USA
- Child Study Center, Yale University, New Haven, CT, 06520, USA
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- McKusick Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah J Wheelan
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- National Human Genome Research Institute, National Institutes of Health, 6700B Rockledge Dr, Bethesda, MD, 20892, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA.
| |
Collapse
|
31
|
Smela MP, Pepe V, Church GM. SeqVerify: An accessible analysis tool for cell line genomic integrity, contamination, and gene editing outcomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559766. [PMID: 37829615 PMCID: PMC10565884 DOI: 10.1101/2023.09.27.559766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
1Over the last decade, advances in genome editing and pluripotent stem cell (PSC) culture have let researchers generate edited PSC lines to study a wide variety of biological questions. However, abnormalities in cell lines such as aneuploidy, on-target and off-target editing errors, and microbial contamination can arise during PSC culture or due to undesired editing outcomes. Any of these abnormalities can invalidate experiments, so detecting them is crucial. The ongoing decline of next-generation sequencing prices has made whole genome sequencing (WGS) an effective quality control option, since WGS can detect any abnormality involving changes to DNA sequences or presence of unwanted sequences. However, this approach has suffered from a lack of easily usable data analysis software. Here, we present SeqVerify, a computational pipeline designed to take raw WGS data and a list of intended edits, and verify that the edits are present and that there are no abnormalities. We anticipate that SeqVerify will be a useful tool for researchers generating edited PSCs, and more broadly, for cell line quality control in general.
Collapse
Affiliation(s)
- Merrick Pierson Smela
- Wyss Institute at Harvard University, Cambridge, Massachusetts, United States of America
- Equal contributions
| | - Valerio Pepe
- Wyss Institute at Harvard University, Cambridge, Massachusetts, United States of America
- Equal contributions
| | - George M. Church
- Wyss Institute at Harvard University, Cambridge, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Harvard University, Cambridge, Massachusetts, United States of America
- Lead contact
| |
Collapse
|
32
|
Ahmad SF, Chandrababu Shailaja C, Vaishnav S, Kumar A, Gaur GK, Janga SC, Ahmad SM, Malla WA, Dutt T. Read-depth based approach on whole genome resequencing data reveals important insights into the copy number variation (CNV) map of major global buffalo breeds. BMC Genomics 2023; 24:616. [PMID: 37845620 PMCID: PMC10580622 DOI: 10.1186/s12864-023-09720-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/05/2023] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Elucidating genome-wide structural variants including copy number variations (CNVs) have gained increased significance in recent times owing to their contribution to genetic diversity and association with important pathophysiological states. The present study aimed to elucidate the high-resolution CNV map of six different global buffalo breeds using whole genome resequencing data at two coverages (10X and 30X). Post-quality control, the sequence reads were aligned to the latest draft release of the Bubaline genome. The genome-wide CNVs were elucidated using a read-depth approach in CNVnator with different bin sizes. Adjacent CNVs were concatenated into copy number variation regions (CNVRs) in different breeds and their genomic coverage was elucidated. RESULTS Overall, the average size of CNVR was lower at 30X coverage, providing finer details. Most of the CNVRs were either deletion or duplication type while the occurrence of mixed events was lesser in number on a comparative basis in all breeds. The average CNVR size was lower at 30X coverage (0.201 Mb) as compared to 10X (0.013 Mb) with the finest variants in Banni buffaloes. The maximum number of CNVs was observed in Murrah (2627) and Pandharpuri (25,688) at 10X and 30X coverages, respectively. Whereas the minimum number of CNVs were scored in Surti at both coverages (2092 and 17,373). On the other hand, the highest and lowest number of CNVRs were scored in Jaffarabadi (833 and 10,179 events) and Surti (783 and 7553 events) at both coverages. Deletion events overnumbered duplications in all breeds at both coverages. Gene profiling of common overlapped genes and longest CNVRs provided important insights into the evolutionary history of these breeds and indicate the genomic regions under selection in respective breeds. CONCLUSION The present study is the first of its kind to elucidate the high-resolution CNV map in major buffalo populations using a read-depth approach on whole genome resequencing data. The results revealed important insights into the divergence of major global buffalo breeds along the evolutionary timescale.
Collapse
Affiliation(s)
- Sheikh Firdous Ahmad
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India.
| | - Celus Chandrababu Shailaja
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Sakshi Vaishnav
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Amit Kumar
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Gyanendra Kumar Gaur
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Sarath Chandra Janga
- Luddy School of Informatics, Computing & Engineering, Indiana University Indianapolis (IUI), Indianapolis, 46202, USA
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and AH, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu & Kashmir, 190006, India.
| | - Waseem Akram Malla
- Division of Veterinary Biotechnology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| | - Triveni Dutt
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
33
|
Parker D, Meyling NV, De Fine Licht HH. Phenotypic variation and genomic variation in insect virulence traits reveal patterns of intraspecific diversity in a locust-specific fungal pathogen. J Evol Biol 2023; 36:1438-1454. [PMID: 37702110 DOI: 10.1111/jeb.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/03/2023] [Accepted: 04/18/2023] [Indexed: 09/14/2023]
Abstract
Intraspecific pathogen diversity is crucial for understanding the evolution and maintenance of adaptation in host-pathogen interactions. Traits associated with virulence are often a significant source of variation directly impacted by local selection pressures. The specialist fungal entomopathogen, Metarhizium acridum, has been widely implemented as a biological control agent of locust pests in tropical regions of the world. However, few studies have accounted for natural intraspecific phenotypic and genetic variation. Here, we examine the diversity of nine isolates of M. acridum spanning the known geographic distribution, in terms of (1) virulence towards two locust species, (2) growth rates on three diverse nutrient sources, and (3) comparative genomics to uncover genomic variability. Significant variability in patterns of virulence and growth was shown among the isolates, suggesting intraspecific ecological specialization. Different patterns of virulence were shown between the two locust species, indicative of potential host preference. Additionally, a high level of diversity among M. acridum isolates was observed, revealing increased variation in subtilisin-like proteases from the Pr1 family. These results culminate in the first in-depth analysis regarding multiple facets of natural variation in M. acridum, offering opportunities to understand critical evolutionary drivers of intraspecific diversity in pathogens.
Collapse
Affiliation(s)
- Dinah Parker
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai V Meyling
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik H De Fine Licht
- Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
34
|
Jourdon A, Wu F, Mariani J, Capauto D, Norton S, Tomasini L, Amiri A, Suvakov M, Schreiner JD, Jang Y, Panda A, Nguyen CK, Cummings EM, Han G, Powell K, Szekely A, McPartland JC, Pelphrey K, Chawarska K, Ventola P, Abyzov A, Vaccarino FM. Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis. Nat Neurosci 2023; 26:1505-1515. [PMID: 37563294 PMCID: PMC10573709 DOI: 10.1038/s41593-023-01399-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2023] [Indexed: 08/12/2023]
Abstract
Idiopathic autism spectrum disorder (ASD) is highly heterogeneous, and it remains unclear how convergent biological processes in affected individuals may give rise to symptoms. Here, using cortical organoids and single-cell transcriptomics, we modeled alterations in the forebrain development between boys with idiopathic ASD and their unaffected fathers in 13 families. Transcriptomic changes suggest that ASD pathogenesis in macrocephalic and normocephalic probands involves an opposite disruption of the balance between excitatory neurons of the dorsal cortical plate and other lineages such as early-generated neurons from the putative preplate. The imbalance stemmed from divergent expression of transcription factors driving cell fate during early cortical development. While we did not find genomic variants in probands that explained the observed transcriptomic alterations, a significant overlap between altered transcripts and reported ASD risk genes affected by rare variants suggests a degree of gene convergence between rare forms of ASD and the developmental transcriptome in idiopathic ASD.
Collapse
Affiliation(s)
- Alexandre Jourdon
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Feinan Wu
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Jessica Mariani
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Davide Capauto
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Scott Norton
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Livia Tomasini
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Anahita Amiri
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jeremy D Schreiner
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Arijit Panda
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Cindy Khanh Nguyen
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Elise M Cummings
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Gloria Han
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kelly Powell
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Anna Szekely
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - James C McPartland
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Kevin Pelphrey
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Brain Institute, Department of Neurology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | - Pamela Ventola
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Flora M Vaccarino
- Child Study Center, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
35
|
Damayanti NP, Saadatzadeh MR, Dobrota E, Ordaz JD, Bailey BJ, Pandya PH, Bijangi-Vishehsaraei K, Shannon HE, Alfonso A, Coy K, Trowbridge M, Sinn AL, Zhang ZY, Gallagher RI, Wulfkuhle J, Petricoin E, Richardson AM, Marshall MS, Lion A, Ferguson MJ, Balsara KE, Pollok KE. Establishment and characterization of patient-derived xenograft of a rare pediatric anaplastic pleomorphic xanthoastrocytoma (PXA) bearing a CDC42SE2-BRAF fusion. Sci Rep 2023; 13:9163. [PMID: 37280243 PMCID: PMC10244396 DOI: 10.1038/s41598-023-36107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Pleomorphic xanthoastrocytoma (PXA) is a rare subset of primary pediatric glioma with 70% 5-year disease free survival. However, up to 20% of cases present with local recurrence and malignant transformation into more aggressive type anaplastic PXA (AXPA) or glioblastoma. The understanding of disease etiology and mechanisms driving PXA and APXA are limited, and there is no standard of care. Therefore, development of relevant preclinical models to investigate molecular underpinnings of disease and to guide novel therapeutic approaches are of interest. Here, for the first time we established, and characterized a patient-derived xenograft (PDX) from a leptomeningeal spread of a patient with recurrent APXA bearing a novel CDC42SE2-BRAF fusion. An integrated -omics analysis was conducted to assess model fidelity of the genomic, transcriptomic, and proteomic/phosphoproteomic landscapes. A stable xenoline was derived directly from the patient recurrent tumor and maintained in 2D and 3D culture systems. Conserved histology features between the PDX and matched APXA specimen were maintained through serial passages. Whole exome sequencing (WES) demonstrated a high degree of conservation in the genomic landscape between PDX and matched human tumor, including small variants (Pearson's r = 0.794-0.839) and tumor mutational burden (~ 3 mutations/MB). Large chromosomal variations including chromosomal gains and losses were preserved in PDX. Notably, chromosomal gain in chromosomes 4-9, 17 and 18 and loss in the short arm of chromosome 9 associated with homozygous 9p21.3 deletion involving CDKN2A/B locus were identified in both patient tumor and PDX sample. Moreover, chromosomal rearrangement involving 7q34 fusion; CDC42SE-BRAF t (5;7) (q31.1, q34) (5:130,721,239, 7:140,482,820) was identified in the PDX tumor, xenoline and matched human tumor. Transcriptomic profile of the patient's tumor was retained in PDX (Pearson r = 0.88) and in xenoline (Pearson r = 0.63) as well as preservation of enriched signaling pathways (FDR Adjusted P < 0.05) including MAPK, EGFR and PI3K/AKT pathways. The multi-omics data of (WES, transcriptome, and reverse phase protein array (RPPA) was integrated to deduce potential actionable pathways for treatment (FDR < 0.05) including KEGG01521, KEGG05202, and KEGG05200. Both xenoline and PDX were resistant to the MEK inhibitors trametinib or mirdametinib at clinically relevant doses, recapitulating the patient's resistance to such treatment in the clinic. This set of APXA models will serve as a preclinical resource for developing novel therapeutic regimens for rare anaplastic PXAs and pediatric high-grade gliomas bearing BRAF fusions.
Collapse
Affiliation(s)
- Nur P Damayanti
- Neuro-Oncology Program, Pediatric Neurosurgery, Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - M Reza Saadatzadeh
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Erika Dobrota
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Josue D Ordaz
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
| | - Barbara J Bailey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Pankita H Pandya
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Khadijeh Bijangi-Vishehsaraei
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Translational Research Integrated Biology Laboratory/Indiana Pediatric Biobank, Riley Children Hospital, Indianapolis, IN, 46202, USA
| | - Harlan E Shannon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | | | - Kathy Coy
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Melissa Trowbridge
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Anthony L Sinn
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, IN, 47907, USA
| | - Rosa I Gallagher
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Julia Wulfkuhle
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, Institute for Biomedical Innovation, George Mason University, Manassas, VA, 20110, USA
| | - Angela M Richardson
- Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA
| | - Mark S Marshall
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Alex Lion
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Michael J Ferguson
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Division of Pediatric Hematology-Oncology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Karl E Balsara
- Neuro-Oncology Program, Pediatric Neurosurgery, Department of Neurosurgery, Indiana University, Indianapolis, IN, 46202, USA.
- Department of Neurosurgery, University of Oklahoma School of Medicine, Oklahoma City, OH, 73104, USA.
| | - Karen E Pollok
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana University Simon Comprehensive Cancer Center Preclinical Modeling and Therapeutics Core, Indianapolis, USA.
- Pediatric Cancer Precision Genomics Program, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
36
|
Karam A, Delvallée C, Estrada-Cuzcano A, Geoffroy V, Lamouche JB, Leuvrey AS, Nourisson E, Tarabeux J, Stoetzel C, Scheidecker S, Porter LF, Génin E, Redon R, Sandron F, Boland A, Deleuze JF, Le May N, Dollfus H, Muller J. WGS Revealed Novel BBS5 Pathogenic Variants, Missed by WES, Causing Ciliary Structure and Function Defects. Int J Mol Sci 2023; 24:8729. [PMID: 37240074 PMCID: PMC10218572 DOI: 10.3390/ijms24108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/18/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy that affects multiple organs, leading to retinitis pigmentosa, polydactyly, obesity, renal anomalies, cognitive impairment, and hypogonadism. Until now, biallelic pathogenic variants have been identified in at least 24 genes delineating the genetic heterogeneity of BBS. Among those, BBS5 is a minor contributor to the mutation load and is one of the eight subunits forming the BBSome, a protein complex implied in protein trafficking within the cilia. This study reports on a European BBS5 patient with a severe BBS phenotype. Genetic analysis was performed using multiple next-generation sequencing (NGS) tests (targeted exome, TES and whole exome, WES), and biallelic pathogenic variants could only be identified using whole-genome sequencing (WGS), including a previously missed large deletion of the first exons. Despite the absence of family samples, the biallelic status of the variants was confirmed. The BBS5 protein's impact was confirmed on the patient's cells (presence/absence and size of the cilium) and ciliary function (Sonic Hedgehog pathway). This study highlights the importance of WGS and the challenge of reliable structural variant detection in patients' genetic explorations as well as functional tests to assess a variant's pathogenicity.
Collapse
Affiliation(s)
- Adella Karam
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Clarisse Delvallée
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Alejandro Estrada-Cuzcano
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Jean-Baptiste Lamouche
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Anne-Sophie Leuvrey
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Elsa Nourisson
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Julien Tarabeux
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Corinne Stoetzel
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
| | - Louise Frances Porter
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CARGO), Institut de Génétique Médicale d’Alsace (IGMA), Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
| | - Emmanuelle Génin
- Inserm, Université de Brest, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Richard Redon
- CHU Nantes, CNRS, INSERM, L’institut du Thorax, Nantes Université, 44000 Nantes, France
| | - Florian Sandron
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057 Evry, France
| | - Anne Boland
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057 Evry, France
| | - Jean-François Deleuze
- CEA, Centre National de Recherche en Génomique Humaine, Université Paris-Saclay, 91057 Evry, France
| | - Nicolas Le May
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Centre de Référence Pour les Affections Rares en Génétique Ophtalmologique (CARGO), Institut de Génétique Médicale d’Alsace (IGMA), Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, 67091 Strasbourg, France
- Service de Génétique Médicale, Institut de Génétique Médicale d’Alsace (IGMA), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| | - Jean Muller
- Laboratoire de Génétique Médicale, UMR_S INSERM U1112, Institut de Génétique Médicale d’Alsace (IGMA), Faculté de Médecine FMTS, Université de Strasbourg, 67000 Strasbourg, France
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France (E.N.)
- Unité Fonctionnelle de Bioinformatique Médicale Appliquée au Diagnostic (UF7363), Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
37
|
Panda A, Suvakov M, Mariani J, Drucker KL, Park Y, Jang Y, Kollmeyer TM, Sarkar G, Bae T, Kim JJ, Yoon WH, Jenkins RB, Vaccarino FM, Abyzov A. Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic. CRISPR J 2023; 6:176-182. [PMID: 37071670 PMCID: PMC10123805 DOI: 10.1089/crispr.2022.0050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 02/21/2023] [Indexed: 04/19/2023] Open
Abstract
The CRISPR-Cas9 system has enabled researchers to precisely modify/edit the sequence of a genome. A typical editing experiment consists of two steps: (1) editing cultured cells; (2) cell cloning and selection of clones with and without intended edit, presumed to be isogenic. The application of CRISPR-Cas9 system may result in off-target edits, whereas cloning will reveal culture-acquired mutations. We analyzed the extent of the former and the latter by whole genome sequencing in three experiments involving separate genomic loci and conducted by three independent laboratories. In all experiments we hardly found any off-target edits, whereas detecting hundreds to thousands of single nucleotide mutations unique to each clone after relatively short culture of 10-20 passages. Notably, clones also differed in copy number alterations (CNAs) that were several kb to several mb in size and represented the largest source of genomic divergence among clones. We suggest that screening of clones for mutations and CNAs acquired in culture is a necessary step to allow correct interpretation of DNA editing experiments. Furthermore, since culture associated mutations are inevitable, we propose that experiments involving derivation of clonal lines should compare a mix of multiple unedited lines and a mix of multiple edited lines.
Collapse
Affiliation(s)
- Arijit Panda
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jessica Mariani
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Kristen L. Drucker
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Yohan Park
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Thomas M. Kollmeyer
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Gobinda Sarkar
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Jean J. Kim
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Wan Hee Yoon
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Robert B. Jenkins
- Department of Lab Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, Connecticut, USA
- Department of Neuroscience, Yale University, New Haven, Connecticut, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
38
|
Analysis of Genome Structure and Its Variations in Potato Cultivars Grown in Russia. Int J Mol Sci 2023; 24:ijms24065713. [PMID: 36982787 PMCID: PMC10059000 DOI: 10.3390/ijms24065713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Solanum tuberosum L. (common potato) is one of the most important crops produced almost all over the world. Genomic sequences of potato opens the way for studying the molecular variations related to diversification. We performed a reconstruction of genomic sequences for 15 tetraploid potato cultivars grown in Russia using short reads. Protein-coding genes were identified; conserved and variable parts of pan-genome and the repertoire of the NBS-LRR genes were characterized. For comparison, we used additional genomic sequences for twelve South American potato accessions, performed analysis of genetic diversity, and identified the copy number variations (CNVs) in two these groups of potato. Genomes of Russian potato cultivars were more homogeneous by CNV characteristics and have smaller maximum deletion size in comparison with South American ones. Genes with different CNV occurrences in two these groups of potato accessions were identified. We revealed genes of immune/abiotic stress response, transport and five genes related to tuberization and photoperiod control among them. Four genes related to tuberization and photoperiod were investigated in potatoes previously (phytochrome A among them). A novel gene, homologous to the poly(ADP-ribose) glycohydrolase (PARG) of Arabidopsis, was identified that may be involved in circadian rhythm control and contribute to the acclimatization processes of Russian potato cultivars.
Collapse
|
39
|
Gudkov M, Thibaut L, Khushi M, Blue GM, Winlaw DS, Dunwoodie SL, Giannoulatou E. ConanVarvar: a versatile tool for the detection of large syndromic copy number variation from whole-genome sequencing data. BMC Bioinformatics 2023; 24:49. [PMID: 36792982 PMCID: PMC9930243 DOI: 10.1186/s12859-023-05154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/19/2023] [Indexed: 02/17/2023] Open
Abstract
BACKGROUND A wide range of tools are available for the detection of copy number variants (CNVs) from whole-genome sequencing (WGS) data. However, none of them focus on clinically-relevant CNVs, such as those that are associated with known genetic syndromes. Such variants are often large in size, typically 1-5 Mb, but currently available CNV callers have been developed and benchmarked for the discovery of smaller variants. Thus, the ability of these programs to detect tens of real syndromic CNVs remains largely unknown. RESULTS Here we present ConanVarvar, a tool which implements a complete workflow for the targeted analysis of large germline CNVs from WGS data. ConanVarvar comes with an intuitive R Shiny graphical user interface and annotates identified variants with information about 56 associated syndromic conditions. We benchmarked ConanVarvar and four other programs on a dataset containing real and simulated syndromic CNVs larger than 1 Mb. In comparison to other tools, ConanVarvar reports 10-30 times less false-positive variants without compromising sensitivity and is quicker to run, especially on large batches of samples. CONCLUSIONS ConanVarvar is a useful instrument for primary analysis in disease sequencing studies, where large CNVs could be the cause of disease.
Collapse
Affiliation(s)
- Mikhail Gudkov
- grid.1057.30000 0000 9472 3971Victor Chang Cardiac Research Institute, Sydney, NSW 2010 Australia ,grid.1013.30000 0004 1936 834XSchool of Biomedical Engineering, The University of Sydney, Sydney, NSW 2006 Australia ,grid.1005.40000 0004 4902 0432St Vincent’s Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2010 Australia
| | - Loïc Thibaut
- grid.1057.30000 0000 9472 3971Victor Chang Cardiac Research Institute, Sydney, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432School of Mathematics and Statistics, UNSW Sydney, Sydney, NSW 2052 Australia
| | - Matloob Khushi
- grid.1013.30000 0004 1936 834XSchool of Computer Science, The University of Sydney, Sydney, NSW 2006 Australia
| | - Gillian M. Blue
- grid.1013.30000 0004 1936 834XSydney Medical School, The University of Sydney, Sydney, NSW 2006 Australia ,grid.413973.b0000 0000 9690 854XHeart Centre for Children, The Children’s Hospital at Westmead, Sydney, NSW 2145 Australia
| | - David S. Winlaw
- grid.1013.30000 0004 1936 834XSydney Medical School, The University of Sydney, Sydney, NSW 2006 Australia ,grid.413973.b0000 0000 9690 854XHeart Centre for Children, The Children’s Hospital at Westmead, Sydney, NSW 2145 Australia
| | - Sally L. Dunwoodie
- grid.1057.30000 0000 9472 3971Victor Chang Cardiac Research Institute, Sydney, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432St Vincent’s Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW 2010 Australia ,grid.1005.40000 0004 4902 0432School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW 2052 Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Sydney, NSW, 2010, Australia. .,St Vincent's Clinical Campus, School of Clinical Medicine, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2010, Australia.
| |
Collapse
|
40
|
Yamada M, Okuno H, Okamoto N, Suzuki H, Miya F, Takenouchi T, Kosaki K. Diagnosis of Prader-Willi syndrome and Angelman syndrome by targeted nanopore long-read sequencing. Eur J Med Genet 2023; 66:104690. [PMID: 36587803 DOI: 10.1016/j.ejmg.2022.104690] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
The CpG island flanking the promoter region of SNRPN on chromosome 15q11.2 contains CpG sites that are completely methylated in the maternally derived allele and unmethylated in the paternally derived allele. Both unmethylated and methylated alleles are observed in normal individuals. Only the methylated allele is observed in patients with Prader-Willi syndrome, whereas only the unmethylated allele is observed in those with Angelman syndrome. Hence, detection of aberrant methylation at the differentially methylated region is fundamental to the molecular diagnosis of Prader-Willi syndrome and Angelman syndromes. Traditionally, bisulfite treatment and methylation-sensitive restriction enzyme treatment or methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) have been used. We here developed a long-read sequencing assay that can distinguish methylated and unmethylated CpG sites at 15q11.2 by the difference in current intensity generated from nanopore reads. We successfully diagnosed 4 Prader-Willi syndrome patients and 3 Angelman syndrome patients by targeting differentially methylated regions. Concurrent copy number analysis, homozygosity analysis, and structural variant analysis also allowed us to precisely delineate the underlying pathogenic mechanisms, including gross deletion, uniparental heterodisomy, uniparental isodisomy, or imprinting defect. Furthermore, we showed allele-specific methylation in imprinting-related differentially methylated regions on chromosomes 6, 7, 11, 14, and 20 in a normal individual together with 4 Prader-Willi patients and 3 Angelman syndrome patients. Hence, presently reported method is likely to be applicable to the diagnosis of imprinting disorders other than Prader-Willi syndrome and Angelman syndrome as well.
Collapse
Affiliation(s)
- Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hironobu Okuno
- Department of Physiology, Keio University School of Medicine, Tokyo, Japan
| | - Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Osaka, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Fuyuki Miya
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Takenouchi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
41
|
Sun Z, Behati S, Wang P, Bhagwate A, McDonough S, Wang V, Taylor W, Cunningham J, Kisiel J. Performance comparisons of methylation and structural variants from low-input whole-genome methylation sequencing. Epigenomics 2023; 15:11-19. [PMID: 36919677 PMCID: PMC10072131 DOI: 10.2217/epi-2022-0453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 02/24/2023] [Indexed: 03/16/2023] Open
Abstract
Aim: Whole-genome methylation sequencing carries both DNA methylation and structural variant information (single nucleotide variant [SNV]; copy number variant [CNV]); however, limited data is available on the reliability of obtaining this information simultaneously from low-input DNA using various library preparation and sequencing protocols. Methods: A HapMap NA12878 sample was sequenced with three protocols (EM-sequencing, QIA-sequencing and Swift-sequencing) and their performance was compared on CpG methylation measurement and SNV and CNV detection. Results: At low DNA input (10-25 ng), EM-sequencing was superior in almost all metrics except CNV detection where all protocols were similar. EM-sequencing captured the highest number of CpGs and true SNVs. Conclusion: EM-sequencing is suitable to detect methylation, SNVs and CNVs from single sequencing with low-input DNA.
Collapse
Affiliation(s)
- Zhifu Sun
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Saurabh Behati
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Panwen Wang
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | - Aditya Bhagwate
- Division of Computational Biology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Vivian Wang
- Medical Genome Facility, Mayo Clinic, Rochester, MN 55905, USA
| | - William Taylor
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - John Kisiel
- Division of Gastroenterology & Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
42
|
Cox MP, Guo Y, Winter DJ, Sen D, Cauldron NC, Shiller J, Bradley EL, Ganley AR, Gerth ML, Lacey RF, McDougal RL, Panda P, Williams NM, Grunwald NJ, Mesarich CH, Bradshaw RE. Chromosome-level assembly of the Phytophthora agathidicida genome reveals adaptation in effector gene families. Front Microbiol 2022; 13:1038444. [PMID: 36406440 PMCID: PMC9667082 DOI: 10.3389/fmicb.2022.1038444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 01/25/2023] Open
Abstract
Phytophthora species are notorious plant pathogens, with some causing devastating tree diseases that threaten the survival of their host species. One such example is Phytophthora agathidicida, the causal agent of kauri dieback - a root and trunk rot disease that kills the ancient, iconic and culturally significant tree species, Agathis australis (New Zealand kauri). A deeper understanding of how Phytophthora pathogens infect their hosts and cause disease is critical for the development of effective treatments. Such an understanding can be gained by interrogating pathogen genomes for effector genes, which are involved in virulence or pathogenicity. Although genome sequencing has become more affordable, the complete assembly of Phytophthora genomes has been problematic, particularly for those with a high abundance of repetitive sequences. Therefore, effector genes located in repetitive regions could be truncated or missed in a fragmented genome assembly. Using a combination of long-read PacBio sequences, chromatin conformation capture (Hi-C) and Illumina short reads, we assembled the P. agathidicida genome into ten complete chromosomes, with a genome size of 57 Mb including 34% repeats. This is the first Phytophthora genome assembled to chromosome level and it reveals a high level of syntenic conservation with the complete genome of Peronospora effusa, the only other completely assembled genome sequence of an oomycete. All P. agathidicida chromosomes have clearly defined centromeres and contain candidate effector genes such as RXLRs and CRNs, but in different proportions, reflecting the presence of gene family clusters. Candidate effector genes are predominantly found in gene-poor, repeat-rich regions of the genome, and in some cases showed a high degree of duplication. Analysis of candidate RXLR effector genes that occur in multicopy gene families indicated half of them were not expressed in planta. Candidate CRN effector gene families showed evidence of transposon-mediated recombination leading to new combinations of protein domains, both within and between chromosomes. Further analysis of this complete genome assembly will help inform new methods of disease control against P. agathidicida and other Phytophthora species, ultimately helping decipher how Phytophthora pathogens have evolved to shape their effector repertoires and how they might adapt in the future.
Collapse
Affiliation(s)
- Murray P. Cox
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Yanan Guo
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - David J. Winter
- Institute of Environmental Science and Research (ESR), Porirua, New Zealand
| | | | - Nicholas C. Cauldron
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, United States
| | | | - Ellie L. Bradley
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Austen R. Ganley
- School of Biological Sciences and Digital Life Institute, University of Auckland, Auckland, New Zealand
| | - Monica L. Gerth
- Bioprotection Aotearoa, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Randy F. Lacey
- Bioprotection Aotearoa, School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | - Niklaus J. Grunwald
- Horticultural Crops Disease and Pest Management Research Unit, USDA Agricultural Research Service, Corvallis, OR, United States
| | - Carl H. Mesarich
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Rosie E. Bradshaw
- Laboratory of Molecular Plant Pathology/Bioprotection Aotearoa, School of Natural Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
43
|
Davoudi P, Do DN, Rathgeber B, Colombo SM, Sargolzaei M, Plastow G, Wang Z, Karimi K, Hu G, Valipour S, Miar Y. Genome-wide detection of copy number variation in American mink using whole-genome sequencing. BMC Genomics 2022; 23:649. [PMID: 36096727 PMCID: PMC9468235 DOI: 10.1186/s12864-022-08874-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Copy number variations (CNVs) represent a major source of genetic diversity and contribute to the phenotypic variation of economically important traits in livestock species. In this study, we report the first genome-wide CNV analysis of American mink using whole-genome sequence data from 100 individuals. The analyses were performed by three complementary software programs including CNVpytor, DELLY and Manta. RESULTS A total of 164,733 CNVs (144,517 deletions and 20,216 duplications) were identified representing 5378 CNV regions (CNVR) after merging overlapping CNVs, covering 47.3 Mb (1.9%) of the mink autosomal genome. Gene Ontology and KEGG pathway enrichment analyses of 1391 genes that overlapped CNVR revealed potential role of CNVs in a wide range of biological, molecular and cellular functions, e.g., pathways related to growth (regulation of actin cytoskeleton, and cAMP signaling pathways), behavior (axon guidance, circadian entrainment, and glutamatergic synapse), lipid metabolism (phospholipid binding, sphingolipid metabolism and regulation of lipolysis in adipocytes), and immune response (Wnt signaling, Fc receptor signaling, and GTPase regulator activity pathways). Furthermore, several CNVR-harbored genes associated with fur characteristics and development (MYO5A, RAB27B, FGF12, SLC7A11, EXOC2), and immune system processes (SWAP70, FYN, ORAI1, TRPM2, and FOXO3). CONCLUSIONS This study presents the first genome-wide CNV map of American mink. We identified 5378 CNVR in the mink genome and investigated genes that overlapped with CNVR. The results suggest potential links with mink behaviour as well as their possible impact on fur quality and immune response. Overall, the results provide new resources for mink genome analysis, serving as a guideline for future investigations in which genomic structural variations are present.
Collapse
Affiliation(s)
- Pourya Davoudi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Duy Ngoc Do
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Bruce Rathgeber
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Stefanie M Colombo
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Mehdi Sargolzaei
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
- Select Sires Inc., Plain City, OH, USA
| | - Graham Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Karim Karimi
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Guoyu Hu
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Shafagh Valipour
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada
| | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS, Canada.
| |
Collapse
|
44
|
Song Y, Fang Q, Mi Y. Prognostic significance of copy number variation in B-cell acute lymphoblastic leukemia. Front Oncol 2022; 12:981036. [PMID: 35992882 PMCID: PMC9386345 DOI: 10.3389/fonc.2022.981036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Copy number variations (CNVs) are widespread in both pediatric and adult cases of B-cell acute lymphoblastic leukemia (B-ALL); however, their clinical significance remains unclear. This review primarily discusses the most prevalent CNVs in B-ALL to elucidate their clinical value and further personalized management of this population. The discovery of the molecular mechanism of gene deletion and the development of targeted drugs will further enhance the clinical prognosis of B-ALL.
Collapse
Affiliation(s)
| | - Qiuyun Fang
- *Correspondence: Qiuyun Fang, ; Yingchang Mi,
| | | |
Collapse
|
45
|
Bae T, Fasching L, Wang Y, Shin JH, Suvakov M, Jang Y, Norton S, Dias C, Mariani J, Jourdon A, Wu F, Panda A, Pattni R, Chahine Y, Yeh R, Roberts RC, Huttner A, Kleinman JE, Hyde TM, Straub RE, Walsh CA, Urban AE, Leckman JF, Weinberger DR, Vaccarino FM, Abyzov A. Analysis of somatic mutations in 131 human brains reveals aging-associated hypermutability. Science 2022; 377:511-517. [PMID: 35901164 PMCID: PMC9420557 DOI: 10.1126/science.abm6222] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We analyzed 131 human brains (44 neurotypical, 19 with Tourette syndrome, 9 with schizophrenia, and 59 with autism) for somatic mutations after whole genome sequencing to a depth of more than 200×. Typically, brains had 20 to 60 detectable single-nucleotide mutations, but ~6% of brains harbored hundreds of somatic mutations. Hypermutability was associated with age and damaging mutations in genes implicated in cancers and, in some brains, reflected in vivo clonal expansions. Somatic duplications, likely arising during development, were found in ~5% of normal and diseased brains, reflecting background mutagenesis. Brains with autism were associated with mutations creating putative transcription factor binding motifs in enhancer-like regions in the developing brain. The top-ranked affected motifs corresponded to MEIS (myeloid ectopic viral integration site) transcription factors, suggesting a potential link between their involvement in gene regulation and autism.
Collapse
Affiliation(s)
- Taejeong Bae
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Liana Fasching
- Child Study Center, Yale University, New Haven, CT 06520
| | - Yifan Wang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Joo Heon Shin
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
| | - Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Yeongjun Jang
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Scott Norton
- Child Study Center, Yale University, New Haven, CT 06520
| | - Caroline Dias
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | | | | | - Feinan Wu
- Child Study Center, Yale University, New Haven, CT 06520
| | - Arijit Panda
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| | - Reenal Pattni
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Yasmine Chahine
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Rebecca Yeh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham Al, 35294
| | - Anita Huttner
- Department of Pathology, Yale University, New Haven, CT 06520
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
| | - Richard E. Straub
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
| | - Christopher A. Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children’s Hospital, Boston, MA, USA
- Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA, USA
| | | | - Alexander E. Urban
- Department of Psychiatry and Behavioral Sciences, Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | | | - Daniel R. Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD
- Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD
| | - Flora M. Vaccarino
- Child Study Center, Yale University, New Haven, CT 06520
- Department of Neuroscience, Yale University, New Haven, CT 06520
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905
| |
Collapse
|
46
|
Gu X, Ross PA, Rodriguez-Andres J, Robinson KL, Yang Q, Lau MJ, Hoffmann AA. A wMel Wolbachia variant in Aedes aegypti from field-collected Drosophila melanogaster with increased phenotypic stability under heat stress. Environ Microbiol 2022; 24:2119-2135. [PMID: 35319146 PMCID: PMC9544352 DOI: 10.1111/1462-2920.15966] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/15/2022] [Accepted: 03/02/2022] [Indexed: 02/03/2023]
Abstract
Mosquito‐borne diseases remain a major cause of morbidity and mortality. Population replacement strategies involving the wMel strain of Wolbachia are being used widely to control mosquito‐borne diseases. However, these strategies may be influenced by temperature because wMel is vulnerable to heat. wMel infections in Drosophila melanogaster are genetically diverse, but few transinfections of wMel variants have been generated in Aedes aegypti. Here, we successfully transferred a wMel variant (termed wMelM) originating from a field‐collected D. melanogaster into Ae. aegypti. The new wMelM variant (clade I) is genetically distinct from the original wMel transinfection (clade III), and there are no genomic differences between wMelM in its original and transinfected host. We compared wMelM with wMel in its effects on host fitness, temperature tolerance, Wolbachia density, vector competence, cytoplasmic incompatibility and maternal transmission under heat stress in a controlled background. wMelM showed a higher heat tolerance than wMel, likely due to higher overall densities within the mosquito. Both wMel variants had minimal host fitness costs, complete cytoplasmic incompatibility and maternal transmission, and dengue virus blocking under laboratory conditions. Our results highlight phenotypic differences between Wolbachia variants and wMelM shows potential as an alternative strain in areas with strong seasonal temperature fluctuations.
Collapse
Affiliation(s)
- Xinyue Gu
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Perran A Ross
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Julio Rodriguez-Andres
- Peter Doherty Institute for Infection and Immunity and Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Vic, 3000, Australia
| | - Katie L Robinson
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Qiong Yang
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Meng-Jia Lau
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| | - Ary A Hoffmann
- Pest and Environmental Adaptation Research Group, Bio21 Institute and the School of BioSciences, The University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
47
|
Wei H, Lian Y, Li J, Li H, Song Q, Wu Y, Lei C, Wang S, Zhang H, Wang J, Lu W. Identification of Candidate Genes Controlling Soybean Cyst Nematode Resistance in "Handou 10" Based on Genome and Transcriptome Analyzes. FRONTIERS IN PLANT SCIENCE 2022; 13:860034. [PMID: 35371127 PMCID: PMC8965568 DOI: 10.3389/fpls.2022.860034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Soybean cyst nematode (SCN; Heterodera glycines Ichinohe) is a highly destructive pathogen for soybean production worldwide. The use of resistant varieties is the most effective way of preventing yield loss. Handou 10 is a commercial soybean variety with desirable agronomic traits and SCN resistance, however genes underlying the SCN resistance in the variety are unknown. An F2:8 recombinant inbred line (RIL) population derived from a cross between Zheng 9525 (susceptible) and Handou 10 was developed and its resistance to SCN HG type 2.5.7 (race 1) and 1.2.5.7 (race 2) was identified. We identified seven quantitative trait loci (QTLs) with additive effects. Among these, three QTLs on Chromosomes 7, 8, and 18 were resistant to both races. These QTLs could explain 1.91-7.73% of the phenotypic variation of SCN's female index. The QTLs on chromosomes 8 and 18 have already been reported and were most likely overlapped with rhg1 and Rhg4 loci, respectively. However, the QTL on chromosome 7 was novel. Candidate genes for the three QTLs were predicted through genes functional analysis and transcriptome analysis of infected roots of Handou 10 vs. Zheng 9525. Transcriptome analysis performed also indicated that the plant-pathogen interaction played an important role in the SCN resistance for Handou 10. The information will facilitate SCN-resistant gene cloning, and the novel resistant gene will be a source for improving soybeans' resistance to SCN.
Collapse
Affiliation(s)
- He Wei
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Yun Lian
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Jinying Li
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Haichao Li
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, USDA-ARS, Beltsville, MD, United States
| | - Yongkang Wu
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Chenfang Lei
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Shiwei Wang
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Hui Zhang
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Jinshe Wang
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| | - Weiguo Lu
- Henan Academy of Crops Molecular Breeding, Henan Academy of Agricultural Sciences/National Centre for Plant Breeding/Zhengzhou Subcenter of National Soybean Improvement Center/Key Laboratory of Oil Crops in Huanghuaihai Plains of Ministry of Agriculture, Zhengzhou, China
| |
Collapse
|
48
|
Suvakov M, Panda A, Diesh C, Holmes I, Abyzov A. CNVpytor: a tool for copy number variation detection and analysis from read depth and allele imbalance in whole-genome sequencing. Gigascience 2021; 10:giab074. [PMID: 34817058 PMCID: PMC8612020 DOI: 10.1093/gigascience/giab074] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 08/21/2021] [Accepted: 10/22/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Detecting copy number variations (CNVs) and copy number alterations (CNAs) based on whole-genome sequencing data is important for personalized genomics and treatment. CNVnator is one of the most popular tools for CNV/CNA discovery and analysis based on read depth. FINDINGS Herein, we present an extension of CNVnator developed in Python-CNVpytor. CNVpytor inherits the reimplemented core engine of its predecessor and extends visualization, modularization, performance, and functionality. Additionally, CNVpytor uses B-allele frequency likelihood information from single-nucleotide polymorphisms and small indels data as additional evidence for CNVs/CNAs and as primary information for copy number-neutral losses of heterozygosity. CONCLUSIONS CNVpytor is significantly faster than CNVnator-particularly for parsing alignment files (2-20 times faster)-and has (20-50 times) smaller intermediate files. CNV calls can be filtered using several criteria, annotated, and merged over multiple samples. Modular architecture allows it to be used in shared and cloud environments such as Google Colab and Jupyter notebook. Data can be exported into JBrowse, while a lightweight plugin version of CNVpytor for JBrowse enables nearly instant and GUI-assisted analysis of CNVs by any user. CNVpytor release and the source code are available on GitHub at https://github.com/abyzovlab/CNVpytor under the MIT license.
Collapse
Affiliation(s)
- Milovan Suvakov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Arijit Panda
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Colin Diesh
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Ian Holmes
- Department of Bioengineering, University of California, Berkeley, CA 94720, USA
| | - Alexej Abyzov
- Department of Quantitative Health Sciences, Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|