1
|
Liu P, Ji T, Zhang Y, Yin W, Pan Z, Jiao X, Gu D. Functional analysis of the CRP and TreR-treBC regulon in trehalose utilization of Vibrio parahaemolyticus. Microbiol Res 2025; 296:128138. [PMID: 40106935 DOI: 10.1016/j.micres.2025.128138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/28/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025]
Abstract
Vibrio parahaemolyticus is an important foodborne pathogen recognized for its adaptability to various environmental conditions. Understanding its metabolic pathways is crucial for elucidating its survival and pathogenicity. This study investigates the metabolism of trehalose as a carbon source in V. parahaemolyticus and explores its effects on bacterial growth and virulence. We found that V. parahaemolyticus can utilize trehalose as a sole carbon source for growth and identified the presence of treBC operon, which is crucial for trehalose degradation. Notably, the ΔtreB and ΔtreC strains exhibited impaired growth when trehalose was used as the sole carbon source in both high and low osmolarity, indicating the essential role of treBC operon in trehalose metabolism. Moreover, our results revealed that the repressor TreR inhibits treBC expression by directly binding to its promoter, with two specific binding sites (T1 and T2). When presence of trehalose, the metabolites trehalose-6-phosphate inhibited the binding of TreR to treBC promoter. Furthermore, we found that the cAMP-CRP complex can directly bind to the promoter of treBC and promote its expression. The competitive EMSA results indicated that TreR has a competitive binding advantage over CRP, allowing it to preferentially bind to the treBC promoter and thereby prevent CRP binding. Together, our findings highlight the complex regulatory mechanisms governing trehalose metabolism in V. parahaemolyticus.
Collapse
Affiliation(s)
- Peng Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ting Ji
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Youkun Zhang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Wenliang Yin
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| | - Dan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225009, China; Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture and Agri-product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China.
| |
Collapse
|
2
|
Khavani M, Mehranfar A, Mofrad MRK. Unravelling the Glycan Code: Molecular Dynamics and Quantum Chemistry Reveal How O-Glycan Functional Groups Govern OgpA Selectivity in Mucin Degradation by Akkermansia muciniphila. Microb Biotechnol 2025; 18:e70091. [PMID: 40181232 PMCID: PMC11968330 DOI: 10.1111/1751-7915.70091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/31/2024] [Accepted: 01/06/2025] [Indexed: 04/05/2025] Open
Abstract
Mucins, heavily O-glycosylated glycoproteins, are a key component of mucus, and certain gut microbiota, including Akkermansia muciniphila, can utilise mucin glycans as a carbon source. Akkermansia muciniphila produces the O-glycopeptidase enzyme OgpA, which cleaves peptide bonds at the N-terminus of serine (Ser) or threonine (Thr) residues carrying O-glycan substitutions, with selectivity influenced by the O-glycan functional groups. Using molecular dynamics (MD) simulations and quantum chemistry calculations, we explored how different O-glycan groups affect OgpA's selectivity. Our results show that peptides bind to the enzyme via hydrogen bonds, π-π interactions, van der Waals forces and electrostatic interactions, with key residues, including Tyr90, Val138, Gly176, Tyr210 and Glu91, playing important roles. The primary determinant of selectivity is the interaction between the peptide's functional group and the enzyme's binding cavity, while peptide-enzyme interface interactions are secondary. Quantum chemistry calculations reveal that OgpA prefers peptides with a lower electrophilic character. This study provides new insights into mucin degradation by gut microbiota enzymes, advancing our understanding of this critical biological process.
Collapse
Affiliation(s)
- Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical EngineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical EngineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
| | - Mohammad R. K. Mofrad
- Molecular Cell Biomechanics Laboratory, Department of Bioengineering and Mechanical EngineeringUniversity of California BerkeleyBerkeleyCaliforniaUSA
- Molecular Biophysics and Integrative Bioimaging DivisionLawrence Berkeley National LabBerkeley, CAUSA
| |
Collapse
|
3
|
Liu J, Gu H, Jia R, Li S, Chen Z, Zheng A, Chang W, Liu G. Effects of Lactobacillus acidophilus on production performance and immunity of broiler chickens and their mechanism. Front Vet Sci 2025; 12:1554502. [PMID: 40196813 PMCID: PMC11974341 DOI: 10.3389/fvets.2025.1554502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Introduction Lactobacillus species have attracted more and more attention as a potential antibiotic substitute for human health and animal production due to their remarkable antibacterial effects. However, the underlying mechanism is unclear. This experiment's goal was to investigate the impacts of lactic acid bacteria (LAB) on the growth performance, carcass characteristics, immune function of broiler chickens and their mechanism. Methods One hundred and eighty 1-day-old AA broilers were used and randomly allocated into 3 treatment groups with 6 replicates of 10 chickens per replicate. The 3 treatment groups were control group (CK), L. acidophilus added group (LAB-E, 1.0 × 108 CFU/kg) for the first 7 days; L. acidophilus added group (LAB-A, 1.0 × 108 CFU/kg) for the whole experimental period. Broilers had free access to water and feed. Results The results showed that addition of L. acidophilus for the whole experimental period significantly decreased ADFI, FCR and the abdominal fat percentage of broilers (p < 0.05), tended to increase the levels of IgG in broiler serum (p = 0.093). The LAB-A group had higher HDL-C content and IL-2, IL-4 content, and lower level of LPS in broiler serum compared to the controls (p < 0.05). Discussion In conclusion, L. acidophilus improved feed efficiency and immune function of broilers by controlling nutrient metabolism and inflammation responses of broilers. L. acidophilus can be used as a potential substitute for antibiotics in broiler production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wenhuan Chang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guohua Liu
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Roe T, Talbot T, Terrington I, Johal J, Kemp I, Saeed K, Webb E, Cusack R, Grocott MPW, Dushianthan A. Physiology and pathophysiology of mucus and mucolytic use in critically ill patients. Crit Care 2025; 29:68. [PMID: 39920835 PMCID: PMC11806889 DOI: 10.1186/s13054-025-05286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 01/18/2025] [Indexed: 02/09/2025] Open
Abstract
Airway mucus is a highly specialised secretory fluid which functions as a physical and immunological barrier to pathogens whilst lubricating the airways and humifying atmospheric air. Dysfunction is common during critical illness and is characterised by changes in production rate, chemical composition, physical properties, and inflammatory phenotype. Mucociliary clearance, which is determined in part by mucus characteristics and in part by ciliary function, is also dysfunctional in critical illness via disease related and iatrogenic mechanisms. The consequences of mucus dysfunction are potentially devastating, contributing to prolonged ventilator dependency, increased risk of secondary pneumonia, and worsened lung injury. Mucolytic therapies are designed to decrease viscosity, improve expectoration/suctioning, and thereby promote mucus removal. Mucolytics, including hypertonic saline, dornase alfa/rhDNase, nebulised heparin, carbocisteine/N-Acetyl cysteine, are commonly used in critically ill patients. This review summarises the physiology and pathophysiology of mucus and the existing evidence for the use of mucolytics in critically ill patients and speculates on journey to individualised mucolytic therapy.
Collapse
Affiliation(s)
- Thomas Roe
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
| | - Thomas Talbot
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Isis Terrington
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
| | - Jayant Johal
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ivan Kemp
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Kordo Saeed
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Elizabeth Webb
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
| | - Rebecca Cusack
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Michael P W Grocott
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ahilanandan Dushianthan
- General Intensive Care Unit, University Hospital Southampton NHS Foundation Trust, Tremona Road, Southampton, SO16 6YD, UK.
- Perioperative and Critical Care Theme, NIHR Southampton Biomedical Research Centre, University Hospital Southampton/University of Southampton, Southampton, SO16 6YD, UK.
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.
| |
Collapse
|
5
|
Xu L, Li X, Han S, Mu C, Zhu W. Galacto-oligosaccharides regulate intestinal mucosal sialylation to counteract antibiotic-induced mucin dysbiosis. Food Funct 2024; 15:12016-12032. [PMID: 39563647 DOI: 10.1039/d4fo04626a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Intestinal mucin offers a physical barrier to maintain host-commensal homeostasis. Glycosylation is essential for the appropriate functioning of mucin. Galacto-oligosaccharides (GOS) have been used as a prebiotic with proven intestinal benefits, while their regulatory mechanism on mucin remains unclear. This study employed an antibiotic-treated rat model to mimic gut dysbiosis and attempted to restore gut dysbiosis using GOS. The gut microbiome and intestinal mucus O-glycosylations (O-glycans) in the small intestine were profiled by high-throughput sequencing and glycomics. The sialic acid phenotype at the end of O-glycans was further validated with lectin staining. Expressions of key enzymes in sialic acid metabolism and epithelial morphology were determined as well. Antibiotics significantly increased the relative abundance of Escherichia/Shigella and decreased the relative abundance of Lactobacillus. This was accompanied by decreased microbial sialidase activity and increased sialic acid in the digesta, as well as an increase in epithelial sialidase activity. Analysis of key sialylation enzymes showed the upregulation of α 2,6 sialylation (e.g. ST6GALNACs) and downregulation of α 2,3 sialylation (e.g. ST3GALs) after antibiotic treatment. The glycomics results revealed that antibiotics increased core 4 and α 2,6 sialylated O-glycans and decreased core 1, core 3 and α 2,3 sialylated O-glycans in the intestinal mucus of rats, which was further confirmed by lectin staining. Intestinal histology results demonstrated that antibiotic treatment led to the dysbiosis of intestinal mucus homeostasis. To further test the role of microbiota in regulating intestinal mucus sialylation, we supplemented GOS with antibiotics. The results showed that GOS reversed the effects of antibiotics on the gut microbiota and intestinal mucus O-glycans (especially sialylated O-glycans), characterized by an increase of Lactobacillus and α 2,3 sialylated O-glycans and a decrease of Escherichia/Shigella and α 2,6 sialylated O-glycans. What's more, GOS reduced the stimulation of the intestinal mucosa by lipopolysaccharide (LPS) by increasing α 2,3 sialylated intestinal alkaline phosphatase (IAP) to enhance IAP activity, thereby restoring intestinal mucus homeostasis. Overall, GOS counteracts antibiotic-induced mucin deficiency by remedying the gut ecology and changing the mucin sialylation pattern, as reflected by the increase of α 2,3 sialylated O-glycans and the decrease of α 2,6 sialylated O-glycans.
Collapse
Affiliation(s)
- Laipeng Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuibing Han
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunlong Mu
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB., Canada.
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Brockhausen I, Falconer D, Sara S. Relationships between bacteria and the mucus layer. Carbohydr Res 2024; 546:109309. [PMID: 39549591 DOI: 10.1016/j.carres.2024.109309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
The mucus layer on epithelial cells is an essential barrier, as well as a nutrient-rich niche for bacteria, forming a dynamic, functional and symbiotic ecosystem and first line of defense against invading pathogens. Particularly bacteria in biofilms are very difficult to eradicate. The extensively O-glycosylated mucins are the main glycoproteins in mucus that interact with microbes. For example, mucins act as adhesion receptors and nutritional substrates for gut bacteria. Mucins also play important roles in immune responses, and they control the composition of the microbiome, primarily due to the abundance of complex O-glycans. In inflammation or infection, the structures of mucin O-glycans can change and thus affect mucin function, impact biofilm formation and the induction of virulence pathways in bacteria. In turn, bacteria can support host cell growth, mucin production and can stimulate changes in the host immune system and responses leading to healthy tissue function. The external polysaccharides of bacteria are critical for controlling adhesion and biofilm formation. It is therefore important to understand the relationships between the mucus layer and microbes, the mechanisms and regulation of the biosynthesis of mucins, of bacterial surface polysaccharides, and adhesins. This knowledge can provide biomarkers, vaccines and help to develop new approaches for improved therapies, including antibiotic treatments.
Collapse
Affiliation(s)
- Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.
| | - Dylan Falconer
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Sara Sara
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
7
|
Okumura R, Takeda K. The role of the mucosal barrier system in maintaining gut symbiosis to prevent intestinal inflammation. Semin Immunopathol 2024; 47:2. [PMID: 39589551 PMCID: PMC11599372 DOI: 10.1007/s00281-024-01026-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 09/29/2024] [Indexed: 11/27/2024]
Abstract
In the intestinal tract, where numerous intestinal bacteria reside, intestinal epithelial cells produce and release various antimicrobial molecules that form a complex barrier on the mucosal surface. These barrier molecules can be classified into two groups based on their functions: those that exhibit bactericidal activity through chemical reactions, such as antimicrobial peptides, and those that physically hinder bacterial invasion, like mucins, which lack bactericidal properties. In the small intestine, where Paneth cells specialize in producing antimicrobial peptides, the chemical barrier molecules primarily inhibit bacterial growth. In contrast, in the large intestine, where Paneth cells are absent, allowing bacterial growth, the primary defense mechanism is the physical barrier, mainly composed of mucus, which controls bacterial movement and prevents their invasion of intestinal tissues. The expression of these barrier molecules is regulated by metabolites produced by bacteria in the intestinal lumen and cytokines produced by immune cells in the lamina propria. This regulation establishes a defense mechanism that adapts to changes in the intestinal environment, such as alterations in gut microbial composition and the presence of pathogenic bacterial infections. Consequently, when the integrity of the gut mucosal barrier is compromised, commensal bacteria and pathogenic microorganisms from outside the body can invade intestinal tissues, leading to conditions such as intestinal inflammation, as observed in cases of inflammatory bowel disease.
Collapse
Affiliation(s)
- Ryu Okumura
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
- Institute for Open and Transdisciplinary Research Initiative, Osaka University, Suita, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
8
|
Saleem W, Carpentier N, Hinnekens C, Oh D, Van Vlierberghe S, Braeckmans K, Nauwynck H. Porcine ex-vivo intestinal mucus has age-dependent blocking activity against transmissible gastroenteritis virus. Vet Res 2024; 55:113. [PMID: 39304917 DOI: 10.1186/s13567-024-01374-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024] Open
Abstract
Transmissible gastroenteritis virus (TGEV) causes high mortality in young piglets (< 3 days of age). With aging, the susceptibility/morbidity/mortality rates drop. We previously hypothesized that the age-related changes in the intestinal mucus could be responsible for this resistance. Hence, this study investigated the effect of porcine intestinal mucus from 3-day and 3-week-old pigs on the free mobility of the virulent TGEV Miller strain, and on the infection in swine testicle (ST) cells. Single particle tracking (SPT) revealed that TGEV had significantly higher diffusion coefficients in 3-day mucus compared to 3-week mucus. TGEV and charged and uncharged control nanoparticles diffused freely in 3-day mucus but were hindered by 3-week mucus in the diffusion model; TGEV mimicked the diffusion behavior of negatively charged carboxylated particles. Inoculation of ST cells with TGEV in the presence of 3-week mucus resulted in a significantly lower average number of infected cells (30.9 ± 11.9/5 fields) compared with 3-day mucus (84.6 ± 16.4/5 fields). These results show that 3-week mucus has a significant TGEV-blocking activity compared to 3-day mucus in free diffusion and infection of the underlying susceptible cells. Additionally, a label-free proteomics analysis revealed an increased expression of mucin 13, known for negatively regulating the tight junctions in intestinal epithelium, in 3-day-old pigs. In 3-week-old pigs, a higher expression of mucin 2, a type of secreted mucin which is known for inhibiting coronavirus infection, was observed. Concludingly, this study demonstrated a protective effect of 3-week mucus against viral infections.
Collapse
Affiliation(s)
- Waqar Saleem
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Nathan Carpentier
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Charlotte Hinnekens
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Dayoung Oh
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, 9000, Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory for General Biochemistry and Physical Pharmacy, Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium
| | - Hans Nauwynck
- Laboratory of Virology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| |
Collapse
|
9
|
Hayase E, Hayase T, Mukherjee A, Stinson SC, Jamal MA, Ortega MR, Sanchez CA, Ahmed SS, Karmouch JL, Chang CC, Flores II, McDaniel LK, Brown AN, El-Himri RK, Chapa VA, Tan L, Tran BQ, Xiao Y, Fan C, Pham D, Halsey TM, Jin Y, Tsai WB, Prasad R, Glover IK, Enkhbayar A, Mohammed A, Schmiester M, King KY, Britton RA, Reddy P, Wong MC, Ajami NJ, Wargo JA, Shelburne S, Okhuysen PC, Liu C, Fowler SW, Conner ME, Katsamakis Z, Smith N, Burgos da Silva M, Ponce DM, Peled JU, van den Brink MRM, Peterson CB, Rondon G, Molldrem JJ, Champlin RE, Shpall EJ, Lorenzi PL, Mehta RS, Martens EC, Alousi AM, Jenq RR. Bacteroides ovatus alleviates dysbiotic microbiota-induced graft-versus-host disease. Cell Host Microbe 2024; 32:1621-1636.e6. [PMID: 39214085 PMCID: PMC11441101 DOI: 10.1016/j.chom.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/12/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Acute lower gastrointestinal GVHD (aLGI-GVHD) is a serious complication of allogeneic hematopoietic stem cell transplantation. Although the intestinal microbiota is associated with the incidence of aLGI-GVHD, how the intestinal microbiota impacts treatment responses in aLGI-GVHD has not been thoroughly studied. In a cohort of patients with aLGI-GVHD (n = 37), we found that non-response to standard therapy with corticosteroids was associated with prior treatment with carbapenem antibiotics and a disrupted fecal microbiome characterized by reduced abundances of Bacteroides ovatus. In a murine GVHD model aggravated by carbapenem antibiotics, introducing B. ovatus reduced GVHD severity and improved survival. These beneficial effects of Bacteroides ovatus were linked to its ability to metabolize dietary polysaccharides into monosaccharides, which suppressed the mucus-degrading capabilities of colonic mucus degraders such as Bacteroides thetaiotaomicron and Akkermansia muciniphila, thus reducing GVHD-related mortality. Collectively, these findings reveal the importance of microbiota in aLGI-GVHD and therapeutic potential of B. ovatus.
Collapse
Affiliation(s)
- Eiko Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA.
| | - Tomo Hayase
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Akash Mukherjee
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Stuart C Stinson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mohamed A Jamal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Miriam R Ortega
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Christopher A Sanchez
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Saira S Ahmed
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jennifer L Karmouch
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ivonne I Flores
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lauren K McDaniel
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Alexandria N Brown
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rawan K El-Himri
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Valerie A Chapa
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lin Tan
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Bao Q Tran
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Yao Xiao
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Christopher Fan
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Dung Pham
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Taylor M Halsey
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Yimei Jin
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Wen-Bin Tsai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Rishika Prasad
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Israel K Glover
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Altai Enkhbayar
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Aqsa Mohammed
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Maren Schmiester
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Katherine Y King
- Center for Cell and Gene Therapy and Department of Pediatrics, Division of Infectious Diseases, Baylor College of Medicine, Houston, TX 77030, USA
| | - Robert A Britton
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Pavan Reddy
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew C Wong
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Nadim J Ajami
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jennifer A Wargo
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Samuel Shelburne
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Pablo C Okhuysen
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chen Liu
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Stephanie W Fowler
- Department of Molecular Virology and Microbiology and Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Comparative Medicine and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret E Conner
- Department of Molecular Virology and Microbiology and Department of Education, Innovation, and Technology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zoe Katsamakis
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natalie Smith
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Marina Burgos da Silva
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Doris M Ponce
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan U Peled
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10021, USA
| | - Marcel R M van den Brink
- Adult Bone Marrow Transplantation Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10021, USA
| | - Christine B Peterson
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Gabriela Rondon
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jeffrey J Molldrem
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Hematopoietic Biology & Malignancy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Richard E Champlin
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Philip L Lorenzi
- Metabolomics Core Facility, Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Rohtesh S Mehta
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Eric C Martens
- Department of Microbiology & Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Amin M Alousi
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Robert R Jenq
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; CPRIT Scholar in Cancer Research, Houston, TX, USA.
| |
Collapse
|
10
|
Segui-Perez C, de Jongh R, Jonkergouw RLW, Pelayo P, Balskus EP, Zomer A, Strijbis K. Prevotella timonensis degrades the vaginal epithelial glycocalyx through high fucosidase and sialidase activities. mBio 2024; 15:e0069124. [PMID: 39162399 PMCID: PMC11389373 DOI: 10.1128/mbio.00691-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/19/2024] [Indexed: 08/21/2024] Open
Abstract
Bacterial vaginosis (BV) is a polymicrobial infection of the female reproductive tract. BV is characterized by replacement of health-associated Lactobacillus species by diverse anerobic bacteria, including the well-known Gardnerella vaginalis. Prevotella timonensis, and Prevotella bivia are anerobes that are found in a significant number of BV patients, but their contributions to the disease process remain to be determined. Defining characteristics of anerobic overgrowth in BV are adherence to the mucosal surface and the increased activity of mucin-degrading enzymes such as sialidases in vaginal secretions. We demonstrate that P. timonensis, but not P. bivia, strongly adheres to vaginal and endocervical cells to a similar level as G. vaginalis but did not elicit a comparable proinflammatory epithelial response. The P. timonensis genome uniquely encodes a large set of mucus-degrading enzymes, including four putative fucosidases and two putative sialidases, PtNanH1 and PtNanH2. Enzyme assays demonstrated that fucosidase and sialidase activities in P. timonensis cell-bound and secreted fractions were significantly higher than for other vaginal anerobes. In infection assays, P. timonensis efficiently removed fucose and α2,3- and α2,6-linked sialic acid moieties from the epithelial glycocalyx. Recombinantly expressed P. timonensis NanH1 and NanH2 cleaved α2,3 and α2,6-linked sialic acids from the epithelial surface, and sialic acid removal by P. timonensis could be blocked using inhibitors. This study demonstrates that P. timonensis has distinct virulence-related properties that include initial adhesion and a high capacity for mucin degradation at the vaginal epithelial mucosal surface. Our results underline the importance of understanding the role of different anerobic bacteria in BV. IMPORTANCE Bacterial vaginosis (BV) is a common vaginal infection that affects a significant proportion of women and is associated with reduced fertility and increased risk of secondary infections. Gardnerella vaginalis is the most well-known BV-associated bacterium, but Prevotella species including P. timonensis and P. bivia may also play an important role. We showed that, similar to G. vaginalis, P. timonensis adhered well to the vaginal epithelium, suggesting that both bacteria could be important in the first stage of infection. Compared to the other bacteria, P. timonensis was unique in efficiently removing the protective mucin sugars that cover the vaginal epithelium. These results underscore that vaginal bacteria play different roles in the initiation and development of BV.
Collapse
Affiliation(s)
- Celia Segui-Perez
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Rivka de Jongh
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Robin L. W. Jonkergouw
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Paula Pelayo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Emily P. Balskus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, Massachusetts, USA
| | - Aldert Zomer
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Karin Strijbis
- Department of Biomolecular Health Sciences, Division of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
11
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Petranyi F, Whitton MM, Lobo E, Ramirez S, Radovanović A, Bajagai YS, Stanley D. Precision glycan supplementation: A strategy to improve performance and intestinal health of laying hens in high-stress commercial environments. J Anim Physiol Anim Nutr (Berl) 2024; 108:1498-1509. [PMID: 38812376 DOI: 10.1111/jpn.13996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/28/2024] [Accepted: 05/21/2024] [Indexed: 05/31/2024]
Abstract
In the dynamic world of animal production, many challenges arise in disease control, animal welfare and the need to meet antibiotic-free demands. Emerging diseases have a significant impact on the poultry industry. Managing gut microbiota is an important determinant of poultry health and performance. Introducing precision glycans as feed additives adds another dimension to this complex environment. The glycans play pivotal roles in supporting gut health and immunological processes and are likely to limit antibiotic usage while enhancing intestinal well-being and overall poultry performance. This study explores precision glycan product as a feed additive supplemented at a continuous dose of 900 g per tonne of feed, in a free-range production system on a large commercial farm. Forty thousand 17-week-old pullets were randomly allocated to one of two separated sections of the production shed, with individual silos and egg-collecting belts. The flock performance, gut microbiota and its functionality were analysed throughout the laying cycle until 72 weeks of age. The results demonstrated that introducing precision glycans improved a range of performance indicators, including reduced cumulative mortality, especially during a major smothering event, where the birds pile up until they suffocate. There was also significantly increased hen-housed egg production, reduced gut dysbiosis score and undigested feed, increased number of goblet cells and improved feed conversion ratio. Additionally, microbiota analysis revealed significant changes in the composition of the gizzard, ileum content, ileum mucosa, and caecal and cloacal regions. Overall, the findings suggest that precision glycans have the potential to enhance poultry egg production in challenging farming environments.
Collapse
Affiliation(s)
- Friedrich Petranyi
- Institute for Future Farming Systems, Central Queensland Universitty, Rockhampton, Queensland, Australia
- DSM-Firmenich, Singapore, Singapore
| | - Maria M Whitton
- Institute for Future Farming Systems, Central Queensland Universitty, Rockhampton, Queensland, Australia
| | - Edina Lobo
- Institute for Future Farming Systems, Central Queensland Universitty, Rockhampton, Queensland, Australia
| | | | - Anita Radovanović
- Faculty of Veterinary Medicine, University of Belgrade, Belgrade, Serbia
| | - Yadav S Bajagai
- Institute for Future Farming Systems, Central Queensland Universitty, Rockhampton, Queensland, Australia
| | - Dragana Stanley
- Institute for Future Farming Systems, Central Queensland Universitty, Rockhampton, Queensland, Australia
| |
Collapse
|
13
|
Aryal RP, Noel M, Zeng J, Matsumoto Y, Sinard R, Waki H, Erger F, Reusch B, Beck BB, Cummings RD. Cosmc regulates O-glycan extension in murine hepatocytes. Glycobiology 2024; 34:cwae069. [PMID: 39216105 PMCID: PMC11398974 DOI: 10.1093/glycob/cwae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024] Open
Abstract
Hepatocytes synthesize a vast number of glycoproteins found in their membranes and secretions, many of which contain O-glycans linked to Ser/Thr residues. As the functions and distribution of O-glycans on hepatocyte-derived membrane glycoproteins and blood glycoproteins are not well understood, we generated mice with a targeted deletion of Cosmc (C1Galt1c1) in hepatocytes. Liver glycoproteins in WT mice express typical sialylated core 1 O-glycans (T antigen/CD176) (Galβ1-3GalNAcα1-O-Ser/Thr), whereas the Cosmc knockout hepatocytes (HEP-Cosmc-KO) lack extended O-glycans and express the Tn antigen (CD175) (GalNAcα1-O-Ser/Thr). Tn-containing glycoproteins occur in the sera of HEP-Cosmc-KO mice but not in WT mice. The LDL-receptor (LDLR), a well-studied O-glycosylated glycoprotein in hepatocytes, behaves as a ∼145kD glycoprotein in WT liver lysates, whereas it is reduced to ∼120 kDa in lysates from HEP-Cosmc-KO mice. Interestingly, the expression of the LDLR, as well as HMG-CoA reductase, which is typically altered in response to dysregulated cholesterol metabolism, are similar between WT and HEP-Cosmc-KO mice, indicating no significant effect by Cosmc deletion on either LDLR stability or cholesterol metabolism. Consistent with this, we observed no detectable phenotype in the HEP-Cosmc-KO mice regarding development, appearance or aging compared to WT. These results provide surprising, novel information about the pathway of O-glycosylation in the liver.
Collapse
Affiliation(s)
- Rajindra P Aryal
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Maxence Noel
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Junwei Zeng
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Yasuyuki Matsumoto
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Rachael Sinard
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Hannah Waki
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| | - Florian Erger
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Björn Reusch
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Bodo B Beck
- Institute of Human Genetics, University Hospital Cologne, Faculty of Medicine, University of Cologne, Kerpenerstr. 34, Cologne 50931, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Robert-Koch-Str. 21, Cologne 50931, Germany
| | - Richard D Cummings
- Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, CLS 11087 - 3 Blackfan Circle, Boston, MA 02115, United States
| |
Collapse
|
14
|
Ren Y, Sun Y, Liao YY, Wang S, Liu Q, Duan CY, Sun L, Li XY, Yuan JL. Mechanisms of action and applications of Polygonatum sibiricum polysaccharide at the intestinal mucosa barrier: a review. Front Pharmacol 2024; 15:1421607. [PMID: 39224782 PMCID: PMC11366640 DOI: 10.3389/fphar.2024.1421607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
As a medicinal and edible homologous Chinese herb, Polygonatum sibiricum has been used as a primary ingredient in various functional and medicinal products. Damage to the intestinal mucosal barrier can lead to or worsen conditions such as type 2 diabetes and Alzheimer's disease. Traditional Chinese medicine and its bioactive components can help prevent and manage these conditions by restoring the integrity of the intestinal mucosal barrier. This review delves into the mode of action of P. sibiricum polysaccharide in disease prevention and management through the restoration of the intestinal barrier. Polysaccharide from P. sibiricum effectively treats conditions by repairing the intestinal mucosal barrier, offering insights for treating complex diseases and supporting the application of P. sibiricum in clinical settings.
Collapse
Affiliation(s)
- Yu Ren
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yu-Ying Liao
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- First Clinical Medical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Qian Liu
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Chun-Yan Duan
- College of Traditional Chinese Medicine, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Lan Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Xiao-Ya Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jia-Li Yuan
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Diseasein Prevention and Treatment, School of Basic Medical Sciences, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
15
|
Plender EG, Prodanov T, Hsieh P, Nizamis E, Harvey WT, Sulovari A, Munson KM, Kaufman EJ, O'Neal WK, Valdmanis PN, Marschall T, Bloom JD, Eichler EE. Structural and genetic diversity in the secreted mucins MUC5AC and MUC5B. Am J Hum Genet 2024; 111:1700-1716. [PMID: 38991590 PMCID: PMC11344006 DOI: 10.1016/j.ajhg.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024] Open
Abstract
The secreted mucins MUC5AC and MUC5B are large glycoproteins that play critical defensive roles in pathogen entrapment and mucociliary clearance. Their respective genes contain polymorphic and degenerate protein-coding variable number tandem repeats (VNTRs) that make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5,761-5,762 amino acids [aa]); however, seven haplotypes have expanded VNTRs (6,291-7,019 aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5,249-6,325 aa) with cysteine-rich domain and VNTR copy-number variation. We group MUC5AC alleles into three phylogenetic clades: H1 (46%, ∼5,654 aa), H2 (33%, ∼5,742 aa), and H3 (7%, ∼6,325 aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium and Tajima's D analyses reveal that East Asians carry exceptionally large blocks with an excess of rare variation (p < 0.05) at MUC5AC. To validate this result, we use Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observe a signature of positive selection in H1 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium (p < 0.05), consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein-coding VNTRs for improved disease associations.
Collapse
Affiliation(s)
- Elizabeth G Plender
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timofey Prodanov
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany; Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Evangelos Nizamis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Computational Biology, Cajal Neuroscience Inc, Seattle, WA 98102, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Eli J Kaufman
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Paul N Valdmanis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany; Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA; Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
16
|
Shan X, Rathore S, Kniffen D, Gao L, Nitin, Letef CL, Shi H, Ghosh S, Zandberg W, Xia L, Bergstrom KS. Ablation of Intestinal Epithelial Sialylation Predisposes to Acute and Chronic Intestinal Inflammation in Mice. Cell Mol Gastroenterol Hepatol 2024; 18:101378. [PMID: 38992465 PMCID: PMC11459652 DOI: 10.1016/j.jcmgh.2024.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND & AIMS Addition of sialic acids (sialylation) to glycoconjugates is a common capping step of glycosylation. Our study aims to determine the roles of the overall sialylation in intestinal mucosal homeostasis. METHODS Mice with constitutive deletion of intestinal epithelial sialylation (IEC Slc35a1-/- mice) and mice with inducible deletion of sialylation in intestinal epithelium (TM-IEC Slc35a1-/- mice) were generated, which were used to determine the roles of overall sialylation in intestinal mucosal homeostasis by ex vivo and mutiomics studies. RESULTS IEC Slc35a1-/- mice developed mild spontaneous microbiota-dependent colitis. Additionally, 30% of IEC Slc35a1-/- mice had spontaneous tumors in the rectum greater than the age of 12 months. TM-IEC Slc35a1-/- mice were highly susceptible to acute inflammation induced by 1% dextran sulfate sodium versus control animals. Loss of total sialylation was associated with reduced mucus thickness on fecal sections and within colon tissues. TM-IEC Slc35a1-/- mice showed altered microbiota with an increase in Clostridium disporicum, which is associated a global reduction in the abundance of at least 10 unique taxa; however, metabolomic analysis did not show any significant differences in short-chain fatty acid levels. Treatment with 5-fluorouracil led to more severe small intestine mucositis in the IEC Slc35a1-/- mice versus wild-type littermates, which was associated with reduced Lgr5+ cell representation in small intestinal crypts in IEC Slc35a1-/-;Lgr5-GFP mice. CONCLUSIONS Loss of overall sialylation impairs mucus stability and the stem cell niche leading to microbiota-dependent spontaneous colitis and tumorigenesis.
Collapse
Affiliation(s)
- Xindi Shan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Shipra Rathore
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Darrek Kniffen
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Liang Gao
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Nitin
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Clara L Letef
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Huiping Shi
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma
| | - Sanjoy Ghosh
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Wesley Zandberg
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| | - Kirk S Bergstrom
- Department of Biology, University of British Columbia, Okanagan Campus, Kelowna, British Columbia, Canada.
| |
Collapse
|
17
|
Macauslane KL, Pegg CL, Nouwens AS, Kerr ED, Seitanidou J, Schulz BL. Electron-Activated Dissociation and Collision-Induced Dissociation Glycopeptide Fragmentation for Improved Glycoproteomics. Anal Chem 2024; 96:10986-10994. [PMID: 38935274 DOI: 10.1021/acs.analchem.4c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Tandem mass spectrometry coupled with liquid chromatography (LC-MS/MS) has proven a versatile tool for the identification and quantification of proteins and their post-translational modifications (PTMs). Protein glycosylation is a critical PTM for the stability and biological function of many proteins, but full characterization of site-specific glycosylation of proteins remains analytically challenging. Collision-induced dissociation (CID) is the most common fragmentation method used in LC-MS/MS workflows, but the loss of labile modifications renders CID inappropriate for detailed characterization of site-specific glycosylation. Electron-based dissociation methods provide alternatives that retain intact glycopeptide fragments for unambiguous site localization, but these methods often underperform CID due to increased reaction times and reduced efficiency. Electron-activated dissociation (EAD) is another strategy for glycopeptide fragmentation. Here, we use a ZenoTOF 7600 SCIEX instrument to compare the performance of various fragmentation techniques for the analysis of a complex mixture of mammalian O- and N-glycopeptides. We found CID fragmentation identified the most glycopeptides and generally produced higher quality spectra, but EAD provided improved confidence in glycosylation site localization. Supplementing EAD with CID fragmentation (EAciD) further increased the number and quality of glycopeptide identifications, while retaining localization confidence. These methods will be useful for glycoproteomics workflows for either optimal glycopeptide identification or characterization.
Collapse
Affiliation(s)
- Kyle L Macauslane
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Cassandra L Pegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Amanda S Nouwens
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Edward D Kerr
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joy Seitanidou
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
18
|
Jaramillo AM, Vladar EK, Holguin F, Dickey BF, Evans CM. Emerging cell and molecular targets for treating mucus hypersecretion in asthma. Allergol Int 2024; 73:375-381. [PMID: 38692992 PMCID: PMC11491148 DOI: 10.1016/j.alit.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/03/2024] [Indexed: 05/03/2024] Open
Abstract
Mucus provides a protective barrier that is crucial for host defense in the lungs. However, excessive or abnormal mucus can have pathophysiological consequences in many pulmonary diseases, including asthma. Patients with asthma are treated with agents that relax airway smooth muscle and reduce airway inflammation, but responses are often inadequate. In part, this is due to the inability of existing therapeutic agents to directly target mucus. Accordingly, there is a critical need to better understand how mucus hypersecretion and airway plugging are affected by the epithelial cells that synthesize, secrete, and transport mucus components. This review highlights recent advances in the biology of mucin glycoproteins with a specific focus on MUC5AC and MUC5B, the chief macromolecular components of airway mucus. An improved mechanistic understanding of key steps in mucin production and secretion will help reveal novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Ana M Jaramillo
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Eszter K Vladar
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, Anderson Cancer Center, University of Texas M.D., Houston, TX, USA
| | - Christopher M Evans
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
19
|
Einhorn V, Haase H, Maares M. Interaction and competition for intestinal absorption by zinc, iron, copper, and manganese at the intestinal mucus layer. J Trace Elem Med Biol 2024; 84:127459. [PMID: 38640745 DOI: 10.1016/j.jtemb.2024.127459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Trace elements such as zinc, manganese, copper, or iron are essential for a wide range of physiological functions. It is therefore crucial to ensure an adequate supply of these elements to the body. Many previous investigations have dealt with the role of transport proteins, in particular their selectivity for, and competition between, different ions. Another so far less well investigated major factor influencing the absorption of trace elements seems to be the intestinal mucus layer. This gel-like substance covers the entire gastrointestinal tract and its physiochemical properties can be mainly assigned to the glycoproteins it contains, so-called mucins. Interaction with mucins has already been demonstrated for some metals. However, knowledge about the impact on the respective bioavailability and competition between those metals is still sketchy. This review therefore aims to summarize the findings and knowledge gaps about potential effects regarding the interaction between gastrointestinal mucins and the trace elements iron, zinc, manganese, and copper. Mucins play an indispensable role in the absorption of these trace elements in the neutral to slightly alkaline environment of the intestine, by keeping them in a soluble form that can be absorbed by enterocytes. Furthermore, the studies so far indicate that the competition between these trace elements for uptake already starts at the intestinal mucus layer, yet further research is required to completely understand this interaction.
Collapse
Affiliation(s)
- Vincent Einhorn
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Hajo Haase
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany
| | - Maria Maares
- Technische Universität Berlin, Department of Food Chemistry and Toxicology, Straße des 17. Juni 135, Berlin 10623, Germany; Trace Age-DFG Research Unit on Interactions of Essential Trace Elements in Healthy and Diseased Elderly, Potsdam-Jena-Wuppertal, Berlin, Germany; Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, Nuthetal 14558, Germany.
| |
Collapse
|
20
|
Luo P, Gao D, Zhang Q. Genetic causal relationship between gut microbiota and basal cell carcinoma: A two-sample mendelian randomization study. Skin Res Technol 2024; 30:e13804. [PMID: 38895789 PMCID: PMC11187847 DOI: 10.1111/srt.13804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE Research has previously established connections between the intestinal microbiome and the progression of some cancers. However, there is a noticeable gap in the literature in regard to using Mendelian randomisation (MR) to delve into potential causal relationships between the gut microbiota (GM) and basal cell carcinoma (BCC). Therefore, the purpose of our study was to use MR to explore the causal relationship between four kinds of GM (Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae) and BCC. METHODS We used genome-wide association study (GWAS) data and MR to explore the causal relationship between four kinds of GM and BCC. This study primarily employed the random effect inverse variance weighted (IVW) model for analysis, as complemented by additional methods including the simple mode, weighted median, weighted mode and MR‒Egger methods. We used heterogeneity and horizontal multiplicity to judge the reliability of each analysis. MR-PRESSO was mainly used to detect and correct outliers. RESULTS The random-effects IVW results showed that Bacteroides (OR = 0.936, 95% CI = 0.787-1.113, p = 0.455), Streptococcus (OR = 0.974, 95% CI = 0.875-1.083, p = 0.629), Proteobacteria (OR = 1.113, 95% CI = 0.977-1.267, p = 0.106) and Lachnospiraceae (OR = 1.027, 95% CI = 0.899-1.173, p = 0.688) had no genetic causal relationship with BCC. All analyses revealed no horizontal pleiotropy, heterogeneity or outliers. CONCLUSION We found that Bacteroides, Streptococcus, Proteobacteria and Lachnospiraceae do not increase the incidence of BCC at the genetic level, which provides new insight for the study of GM and BCC.
Collapse
Affiliation(s)
- Pan Luo
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Dejin Gao
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Qingguo Zhang
- Department of Comprehensive Plastic SurgeryPlastic Surgery HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
21
|
Kan L, Zheng Z, Fu W, Ma Y, Wang W, Qian H, Xu L. Recent progress on engineered micro/nanomaterials mediated modulation of gut microbiota for treating inflammatory bowel disease. J Control Release 2024; 370:43-65. [PMID: 38608876 DOI: 10.1016/j.jconrel.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/15/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Inflammatory bowel disease (IBD) is a type of chronic recurrent inflammation disease that mainly includes Crohn's disease and ulcerative colitis. Currently, the treatments for IBD remain highly challenging, with clinical treatment drugs showing limited efficacy and adverse side effects. Thus, developing drug candidates with comprehensive therapeutic effects, high efficiency, and low toxicity is urgently needed. Recently, micro/nanomaterials have attracted considerable interest because of their bioavailability, multitarget and efficient effects on IBD. In addition, gut modulation plays a substantial role in restoring intestinal homeostasis. Therefore, efficient microbiota-based strategies modulating gut microenvironment have great potential in remarkably treating IBD. With the development of micro- and nanomaterials for the treatment of IBD and more in-depth studies of their therapeutic mechanisms, it has been found that these treatments also have a tendency to positively regulate the intestinal flora, resulting in an increase in the beneficial flora and a decrease in the level of pathogenic bacteria, thus regulating the composition of the intestinal flora to a normal state. In this review, we first present the interactions among the immune system, intestinal barrier, and gut microbiome. In addition, recent advances in administration routes and methods that positively arouse the regulation of intestinal flora for IBD using probiotics, prebiotics, and redox-active micro/nanomaterials have been reviewed. Finally, the key challenges and critical perspectives of gut microbiota-based micro/nanomaterial treatment are also discussed.
Collapse
Affiliation(s)
- Lingling Kan
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Ziwen Zheng
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanyue Fu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Yan Ma
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China
| | - Wanni Wang
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| | - Lingling Xu
- School of Biomedical Engineering, Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, Anhui 230032, PR China; Anhui Engineering Research Center for Medical Micro-Nano Devices, Hefei, Anhui 230012, PR China.
| |
Collapse
|
22
|
Li S, Chen M, Wang Z, Abudourexiti W, Zhang L, Ding C, Ding L, Gong J. Ant may well destroy a whole dam: glycans of colonic mucus barrier disintegrated by gut bacteria. Microbiol Res 2024; 281:127599. [PMID: 38219635 DOI: 10.1016/j.micres.2023.127599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/29/2023] [Accepted: 12/30/2023] [Indexed: 01/16/2024]
Abstract
The colonic mucus layer plays a critical role in maintaining the integrity of the colonic mucosal barrier, serving as the primary defense against colonic microorganisms. Predominantly composed of mucin 2 (MUC2), a glycosylation-rich protein, the mucus layer forms a gel-like coating that covers the colonic epithelium surface. This layer provides a habitat for intestinal microorganisms, which can utilize mucin glycans present in the mucus layer as a sustainable source of nutrients. Additionally, metabolites produced by the microbiota during the metabolism of mucus glycans have a profound impact on host health. Under normal conditions, the production and consumption of mucus maintain a dynamic balance. However, several studies have demonstrated that certain factors, such as dietary fiber deficiency, can enhance the metabolism of mucus glycans by gut bacteria, thereby disturbing this balance and weakening the mucus barrier function of the mucus layer. To better understand the occurrence and development of colon-related diseases, it is crucial to investigate the complex metabolic patterns of mucus glycosylation by intestinal microorganisms. Our objective was to comprehensively review these patterns in order to clarify the effects of mucus layer glycan metabolism by intestinal microorganisms on the host.
Collapse
Affiliation(s)
- Song Li
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Mingfei Chen
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Zhongyuan Wang
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Waresi Abudourexiti
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China
| | - Liang Zhang
- Department of Gastrointestinal Surgery, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical College, Jiangsu, China
| | - Chao Ding
- Department of General Surgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China.
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China; Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China.
| | - Jianfeng Gong
- Department of General Surgery, Affiliated Jinling Hospital, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
23
|
Plender EG, Prodanov T, Hsieh P, Nizamis E, Harvey WT, Sulovari A, Munson KM, Kaufman EJ, O'Neal WK, Valdmanis PN, Marschall T, Bloom JD, Eichler EE. Structural and genetic diversity in the secreted mucins, MUC5AC and MUC5B. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585560. [PMID: 38562829 PMCID: PMC10983947 DOI: 10.1101/2024.03.18.585560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The secreted mucins MUC5AC and MUC5B play critical defensive roles in airway pathogen entrapment and mucociliary clearance by encoding large glycoproteins with variable number tandem repeats (VNTRs). These polymorphic and degenerate protein coding VNTRs make the loci difficult to investigate with short reads. We characterize the structural diversity of MUC5AC and MUC5B by long-read sequencing and assembly of 206 human and 20 nonhuman primate (NHP) haplotypes. We find that human MUC5B is largely invariant (5761-5762aa); however, seven haplotypes have expanded VNTRs (6291-7019aa). In contrast, 30 allelic variants of MUC5AC encode 16 distinct proteins (5249-6325aa) with cysteine-rich domain and VNTR copy number variation. We grouped MUC5AC alleles into three phylogenetic clades: H1 (46%, ~5654aa), H2 (33%, ~5742aa), and H3 (7%, ~6325aa). The two most common human MUC5AC variants are smaller than NHP gene models, suggesting a reduction in protein length during recent human evolution. Linkage disequilibrium (LD) and Tajima's D analyses reveal that East Asians carry exceptionally large MUC5AC LD blocks with an excess of rare variation (p<0.05). To validate this result, we used Locityper for genotyping MUC5AC haplogroups in 2,600 unrelated samples from the 1000 Genomes Project. We observed signatures of positive selection in H1 and H2 among East Asians and a depletion of the likely ancestral haplogroup (H3). In Africans and Europeans, H3 alleles show an excess of common variation and deviate from Hardy-Weinberg equilibrium, consistent with heterozygote advantage and balancing selection. This study provides a generalizable strategy to characterize complex protein coding VNTRs for improved disease associations.
Collapse
Affiliation(s)
- Elizabeth G Plender
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Timofey Prodanov
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - PingHsun Hsieh
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Evangelos Nizamis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - William T Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Arvis Sulovari
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Katherine M Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Eli J Kaufman
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Wanda K O'Neal
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, 27599, North Carolina, USA
| | - Paul N Valdmanis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA 98195, USA
| | - Tobias Marschall
- Institute for Medical Biometry and Bioinformatics, Medical Faculty, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
- Center for Digital Medicine, Heinrich Heine University, Moorenstr. 5, 40225 Düsseldorf, Germany
| | - Jesse D Bloom
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
24
|
López-Posadas R, Bagley DC, Pardo-Pastor C, Ortiz-Zapater E. The epithelium takes the stage in asthma and inflammatory bowel diseases. Front Cell Dev Biol 2024; 12:1258859. [PMID: 38529406 PMCID: PMC10961468 DOI: 10.3389/fcell.2024.1258859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 02/22/2024] [Indexed: 03/27/2024] Open
Abstract
The epithelium is a dynamic barrier and the damage to this epithelial layer governs a variety of complex mechanisms involving not only epithelial cells but all resident tissue constituents, including immune and stroma cells. Traditionally, diseases characterized by a damaged epithelium have been considered "immunological diseases," and research efforts aimed at preventing and treating these diseases have primarily focused on immuno-centric therapeutic strategies, that often fail to halt or reverse the natural progression of the disease. In this review, we intend to focus on specific mechanisms driven by the epithelium that ensure barrier function. We will bring asthma and Inflammatory Bowel Diseases into the spotlight, as we believe that these two diseases serve as pertinent examples of epithelium derived pathologies. Finally, we will argue how targeting the epithelium is emerging as a novel therapeutic strategy that holds promise for addressing these chronic diseases.
Collapse
Affiliation(s)
- Rocío López-Posadas
- Department of Medicine 1, University Hospital of Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-Universtiy Eralngen-Nürnberg, Erlangen, Germany
| | - Dustin C. Bagley
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Carlos Pardo-Pastor
- Randall Centre for Cell and Molecular Biophysics, New Hunt’s House, School of Basic and Medical Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, Universitat de Valencia, Valencia, Spain
- Instituto Investigación Hospital Clínico-INCLIVA, Valencia, Spain
| |
Collapse
|
25
|
Acosta JE, Burns JL, Hillyer LM, Van K, Brendel EBK, Law C, Ma DWL, Monk JM. Effect of Lifelong Exposure to Dietary Plant and Marine Sources of n-3 Polyunsaturated Fatty Acids on Morphologic and Gene Expression Biomarkers of Intestinal Health in Early Life. Nutrients 2024; 16:719. [PMID: 38474847 DOI: 10.3390/nu16050719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Altered intestinal health is also associated with the incidence and severity of many chronic inflammatory conditions, which could be attenuated via dietary n-3 PUFA interventions. However, little is known about the effect of lifelong exposure to n-3 PUFA from plant and marine sources (beginning in utero via the maternal diet) on early life biomarkers of intestinal health. Harems of C57Bl/6 mice were randomly assigned to one of three isocaloric AIN-93G modified diets differing in their fat sources consisting of the following: (i) 10% safflower oil (SO, enriched in n-6 PUFA), (ii) 3% flaxseed oil + 7% safflower oil (FX, plant-based n-3 PUFA-enriched diet), or (iii) 3% menhaden fish oil + 7% safflower oil (MO, marine-based n-3 PUFA-enriched diet). Mothers remained on these diets throughout pregnancy and offspring (n = 14/diet) continued on the same parental diet until termination at 3 weeks of age. In ileum, villi:crypt length ratios were increased in both the FX and MO dietary groups compared to SO (p < 0.05). Ileum mRNA expression of critical intestinal health biomarkers was increased by both n-3 PUFA-enriched diets including Relmβ and REG3γ compared to SO (p < 0.05), whereas only the FX diet increased mRNA expression of TFF3 and Muc2 (p < 0.05) and only the MO diet increased mRNA expression of ZO-1 (p < 0.05). In the proximal colon, both the FX and MO diets increased crypt lengths compared to SO (p < 0.05), whereas only the MO diet increased goblet cell numbers compared to SO (p < 0.05). Further, the MO diet increased proximal colon mRNA expression of Relmβ and REG3γ (p < 0.05) and both MO and FX increased mRNA expression of Muc2 compared to SO (p < 0.05). Collectively, these results demonstrate that lifelong exposure to dietary n-3 PUFA, beginning in utero, from both plant and marine sources, can support intestinal health development in early life. The differential effects between plant and marine sources warrants further investigation for optimizing health.
Collapse
Affiliation(s)
- Julianna E Acosta
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jessie L Burns
- Department of Health Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Lyn M Hillyer
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Kelsey Van
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Elaina B K Brendel
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Camille Law
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - David W L Ma
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Jennifer M Monk
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
26
|
Alghazali R, Nugud A, El-Serafi A. Glycan Modifications as Regulators of Stem Cell Fate. BIOLOGY 2024; 13:76. [PMID: 38392295 PMCID: PMC10886185 DOI: 10.3390/biology13020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Glycosylation is a process where proteins or lipids are modified with glycans. The presence of glycans determines the structure, stability, and localization of glycoproteins, thereby impacting various biological processes, including embryogenesis, intercellular communication, and disease progression. Glycans can influence stem cell behavior by modulating signaling molecules that govern the critical aspects of self-renewal and differentiation. Furthermore, being located at the cell surface, glycans are utilized as markers for stem cell pluripotency and differentiation state determination. This review aims to provide a comprehensive overview of the current literature, focusing on the effect of glycans on stem cells with a reflection on the application of synthetic glycans in directing stem cell differentiation. Additionally, this review will serve as a primer for researchers seeking a deeper understanding of how synthetic glycans can be used to control stem cell differentiation, which may help establish new approaches to guide stem cell differentiation into specific lineages. Ultimately, this knowledge can facilitate the identification of efficient strategies for advancing stem cell-based therapeutic interventions.
Collapse
Affiliation(s)
- Raghad Alghazali
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
| | - Ahmed Nugud
- Clinical Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
- Gastroenterology, Hepatology & Nutrition, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Ahmed El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
27
|
Che S, Huang M, Ma H, Wan Z, Feng J, Ding S, Li X. Toxic effects of nanopolystyrene and cadmium on the intestinal tract of the Chinese mitten crab (Eriocheir sinensis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115936. [PMID: 38183751 DOI: 10.1016/j.ecoenv.2024.115936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
Nanopolystyrene (NP) and cadmium (Cd) are ubiquitous contaminants in aquatic systems. The present study aimed to investigate the toxic effects of exposure to ambient concentrations of NP and/or Cd on the intestinal tract of the Chinese mitten crab (Eriocheir sinensis). Exposure to NP and/or Cd induced oxidative stress, as evidenced by a significant increase in lipid peroxide content (LPO), total antioxidant capacity (T-AOC), and peroxidase activity (POD), and significant decreases in superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities in E. sinensis. In addition, exposure to NP and/or Cd imbalanced the homeostasis of the intestinal microbiota, as demonstrated by the significantly increased abundance of Spiroplasma. Transcriptomic and metabolomic analyses were performed to investigate the mechanisms underlying intestinal toxicity. Our results showed that ferroptosis, ABC transporters, phosphotransferase system, apoptosis, and leukocyte transendothelial migration were disturbed after exposure to NP and/or Cd. In particular, Cd exposure affected mucin type O-glycan biosynthesis, purine metabolism, and neuroactive ligand-receptor interaction. Intriguingly, co-exposure to NP and Cd might mitigate intestinal toxicity by decreasing oxidative stress and affecting these pathways. Taken together, our study clearly demonstrates that exposure to NP and/or Cd at environmentally relevant concentrations causes intestinal toxicity in E. sinensis.
Collapse
Affiliation(s)
- Shunli Che
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mengting Huang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Huiying Ma
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhicheng Wan
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Jianbin Feng
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China
| | - Shuquan Ding
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Xilei Li
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
28
|
Zhang H, Cone JW, Kies AK, Dijkstra J, Hendriks WH, van der Wielen N. In vitro fermentation potential of gut endogenous protein losses of growing pigs. J Anim Sci 2024; 102:skae181. [PMID: 38995038 PMCID: PMC11253212 DOI: 10.1093/jas/skae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/11/2024] [Indexed: 07/13/2024] Open
Abstract
Fermentation of dietary and endogenous protein in the hindgut is generally considered detrimental to the health of pigs. We investigated the in vitro fermentation potential of porcine endogenous protein in ileal digesta and colonic mucus, using a N-free buffer with an excess of fermentable carbohydrates. Urea, whey protein isolate (WPI, positive control), WPI hydrolysate (WPIH), and combinations of the latter two were used to validate the assay. A new biphasic model, including a linear end simulation, fitted to the gas production data over a 48-h period identified the time point when substrate fermentation ended. A higher degree of hydrolysis of WPI resulted in a higher maximum gas production rate (Rmax, P < 0.01). Differences in Rmax and the time required to reach Rmax were observed among ileal digesta samples, with Rmax increasing with the insoluble protein content, and the highest Rmax occurring with colonic mucus samples (P < 0.05). The endogenous proteins entering the large intestine of pigs can ferment more rapidly compared to highly soluble and digestible protein sources, with Rmax positively correlated with decreasing solubility of endogenous nitrogenous components.
Collapse
Affiliation(s)
- Hanlu Zhang
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - John W Cone
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Jan Dijkstra
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Wouter H Hendriks
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
| | - Nikkie van der Wielen
- Animal Nutrition Group, Department of Animal Sciences, Wageningen University & Research, Wageningen, the Netherlands
- Department of Agrotechnology and Food Sciences, Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
29
|
Zhou C, Tuersong W, Liu L, Di W, He L, Li F, Wang C, Hu M. Non-coding RNA in the gut of the blood-feeding parasitic worm, Haemonchus contortus. Vet Res 2024; 55:1. [PMID: 38172997 PMCID: PMC10763314 DOI: 10.1186/s13567-023-01254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/05/2023] [Indexed: 01/05/2024] Open
Abstract
The intestine of Haemonchus contortus is an essential tissue that has been indicated to be a major target for the prevention of haemonchosis caused by this parasitic nematode of small ruminants. Biological peculiarities of the intestine warrant in-depth exploitation, which can be leveraged for future disease control efforts. Here, we determined the intestinal ncRNA (lncRNA, circRNA and miRNA) atlas using whole-transcriptome sequencing and bioinformatics approaches. In total, 4846 novel lncRNA, 982 circRNA, 96 miRNA (65 known and 31 novel) and 8821 mRNA were identified from the H. contortus intestine. The features of lncRNA, circRNA and miRNA were fully characterized. Comparison of miRNA from the intestines and extracellular vesicles supported the speculation that the miRNA from the latter were of intestinal origin in H. contortus. Further function analysis suggests that the cis-lncRNA targeted genes were involved in protein binding, intracellular anatomical structure, organelle and cellular process, whereas the circRNA parental genes were mainly enriched in molecular function categories, such as ribonucleotide binding, nucleotide binding, ATP binding and carbohydrate derivative binding. The miRNA target genes were related to the cellular process, cellular response to stimulus, cellular protein modification process and signal transduction. Moreover, competing endogenous RNA network analysis revealed that the majority of lncRNA, circRNA and mRNA only have one or two binding sites with specific miRNA. Lastly, randomly selected circRNA, lncRNA and miRNA were verified successfully using RT-PCR. Collectively, these data provide the most comprehensive compilation of intestinal transcripts and their functions, and it will be helpful to decipher the biological and molecular complexity of the intestine and lay the foundation for further functional research.
Collapse
Affiliation(s)
- Caixian Zhou
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Waresi Tuersong
- College of Veterinary Medicine, Xinjiang Agricultural University, Wulumuqi, 830052, Xinjiang, China
| | - Lu Liu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, 530004, Guangxi, China
| | - Li He
- School of Basic Medical Sciences, Hubei University of Medicine, Hubei, 442000, Shiyan, China
| | - Fangfang Li
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, 402020, China
| | - Chunqun Wang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Min Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
30
|
Wang J, Onigbinde S, Purba W, Nwaiwu J, Mechref Y. O-Glycoproteomics Sample Preparation and Analysis Using NanoHPLC and Tandem MS. Methods Mol Biol 2024; 2762:281-290. [PMID: 38315372 PMCID: PMC11770557 DOI: 10.1007/978-1-0716-3666-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Glycosylation refers to the biological processes that covalently attach carbohydrates to the peptide backbone after the synthesis of proteins. As one of the most common post-translational modifications (PTMs), glycosylation can greatly affect proteins' features and functions. Moreover, aberrant glycosylation has been linked to various diseases. There are two major types of glycosylation, known as N-linked and O-linked glycosylation. Here, we focus on O-linked glycosylation and thoroughly describe a bottom-up strategy to perform O-linked glycoproteomics studies. The experimental section involves enzymatic digestions using trypsin and O-glycoprotease at 37 °C. The prepared samples containing O-glycopeptides are analyzed using nanoHPLC coupled with tandem mass spectrometry (MS) for accurate identification and quantification.
Collapse
Affiliation(s)
- Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Waziha Purba
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Judith Nwaiwu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
31
|
Fekete E, Allain T, Sosnowski O, Anderson S, Lewis IA, Buret AG. Giardia spp.-induced microbiota dysbiosis disrupts intestinal mucin glycosylation. Gut Microbes 2024; 16:2412676. [PMID: 39412866 PMCID: PMC11485787 DOI: 10.1080/19490976.2024.2412676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/18/2024] Open
Abstract
Infection with the protozoan parasite Giardia duodenalis (syn. intestinalis, lamblia) has been associated with intestinal mucus disruptions and microbiota dysbiosis. The mechanisms remain incompletely understood. Mucus consists primarily of densely glycosylated mucin glycoproteins. Mucin O-glycans influence mucus barrier properties and mucin-microbe interactions and are frequently altered during disease. In this study, we observed time-dependent and regiospecific alterations to intestinal mucin glycosylation patterns and the expression of mucin-associated glycosyltransferase genes during Giardia infection. Glycosylation alterations were observed in Giardia-infected mice in the upper small intestine, the site of parasite colonization, and in the distal colon, where active trophozoites were absent. Alterations occurred as early as day 2 post-infection and persisted in mice after parasite clearance. We also observed small intestinal goblet cell hyperplasia and thinning of the distal colon mucus barrier during early infection, and microbiota alterations and altered production of cecal SCFAs. Giardia-induced alterations to mucin glycosylation were at least in part dependent on microbiota dysbiosis, as transplantation of a dysbiotic mucosal microbiota collected from Giardia-infected mice recapitulated some alterations. This study describes a novel mechanism by which Giardia alters intestinal mucin glycosylation, and implicates the small intestinal microbiota in regulation of mucin glycosylation patterns throughout the gastrointestinal tract.
Collapse
Affiliation(s)
- Elena Fekete
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- Host-Parasite Interaction Network, University of Calgary, Calgary, Canada
- Inflammation Research Network, University of Calgary, Calgary, Canada
| | - Thibault Allain
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- Host-Parasite Interaction Network, University of Calgary, Calgary, Canada
- Inflammation Research Network, University of Calgary, Calgary, Canada
| | - Olivia Sosnowski
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- Host-Parasite Interaction Network, University of Calgary, Calgary, Canada
- Inflammation Research Network, University of Calgary, Calgary, Canada
| | - Stephanie Anderson
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- Host-Parasite Interaction Network, University of Calgary, Calgary, Canada
- Inflammation Research Network, University of Calgary, Calgary, Canada
| | - Ian A. Lewis
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - Andre G. Buret
- Department of Biological Sciences, University of Calgary, Calgary, Canada
- Host-Parasite Interaction Network, University of Calgary, Calgary, Canada
- Inflammation Research Network, University of Calgary, Calgary, Canada
| |
Collapse
|
32
|
Kassai S, de Vos P. Gastrointestinal barrier function, immunity, and neurocognition: The role of human milk oligosaccharide (hMO) supplementation in infant formula. Compr Rev Food Sci Food Saf 2024; 23:e13271. [PMID: 38284595 DOI: 10.1111/1541-4337.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/06/2023] [Accepted: 10/27/2023] [Indexed: 01/30/2024]
Abstract
Breastmilk is seen as the gold standard for infant nutrition as it provides nutrients and compounds that stimulate gut barrier, immune, and brain development to the infant. However, there are many instances where it is not possible for an infant to be fed with breastmilk, especially for the full 6 months recommended by the World Health Organization. In such instances, infant formula is seen as the next best approach. However, infant formulas do not contain human milk oligosaccharides (hMOs), which are uniquely present in human milk as the third most abundant solid component. hMOs have been linked to many health benefits, such as the development of the gut microbiome, the immune system, the intestinal barrier, and a healthy brain. This paper reviews the effects of specific hMOs applied in infant formula on the intestinal barrier, including the not-often-recognized intestinal alkaline phosphatase system that prevents inflammation. Additionally, impact on immunity and the current proof for effects in neurocognitive function and the corresponding mechanisms are discussed. Recent studies suggest that hMOs can alter gut microbiota, modulate intestinal immune barrier function, and promote neurocognitive function. The hMOs 2'-fucosyllactose and lacto-N-neotetraose have been found to have positive effects on the development of infants and have been deemed safe for use in formula. However, their use has been limited due to their cost and complexity of synthesis. Thus, although many benefits have been described, complex hMOs and combinations of hMOs with other oligosaccharides are the best approach to stimulate gut barrier, immune, and brain development and for the prevention of disease.
Collapse
Affiliation(s)
- Sonia Kassai
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
33
|
Low KE, Tingley JP, Klassen L, King ML, Xing X, Watt C, Hoover SER, Gorzelak M, Abbott DW. Carbohydrate flow through agricultural ecosystems: Implications for synthesis and microbial conversion of carbohydrates. Biotechnol Adv 2023; 69:108245. [PMID: 37652144 DOI: 10.1016/j.biotechadv.2023.108245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/10/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
Carbohydrates are chemically and structurally diverse biomolecules, serving numerous and varied roles in agricultural ecosystems. Crops and horticulture products are inherent sources of carbohydrates that are consumed by humans and non-human animals alike; however carbohydrates are also present in other agricultural materials, such as soil and compost, human and animal tissues, milk and dairy products, and honey. The biosynthesis, modification, and flow of carbohydrates within and between agricultural ecosystems is intimately related with microbial communities that colonize and thrive within these environments. Recent advances in -omics techniques have ushered in a new era for microbial ecology by illuminating the functional potential for carbohydrate metabolism encoded within microbial genomes, while agricultural glycomics is providing fresh perspective on carbohydrate-microbe interactions and how they influence the flow of functionalized carbon. Indeed, carbohydrates and carbohydrate-active enzymes are interventions with unrealized potential for improving carbon sequestration, soil fertility and stability, developing alternatives to antimicrobials, and circular production systems. In this manner, glycomics represents a new frontier for carbohydrate-based biotechnological solutions for agricultural systems facing escalating challenges, such as the changing climate.
Collapse
Affiliation(s)
- Kristin E Low
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Jeffrey P Tingley
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Leeann Klassen
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Marissa L King
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Caitlin Watt
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Shelley E R Hoover
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Monika Gorzelak
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, Canada.
| |
Collapse
|
34
|
Lv Q, Zhou J, Wang C, Yang X, Han Y, Zhou Q, Yao R, Sui A. A dynamics association study of gut barrier and microbiota in hyperuricemia. Front Microbiol 2023; 14:1287468. [PMID: 38088975 PMCID: PMC10711221 DOI: 10.3389/fmicb.2023.1287468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/09/2023] [Indexed: 02/28/2024] Open
Abstract
Introduction The intricate interplay between gut microbiota and hyperuricemia remains a subject of growing interest. However, existing studies only provided snapshots of the gut microbiome at single time points, the temporal dynamics of gut microbiota alterations during hyperuricemia progression and the intricate interplay between the gut barrier and microbiota remain underexplored. Our investigation revealed compelling insights into the dynamic changes in both gut microbiota and intestinal barrier function throughout the course of hyperuricemia. Methods The hyperuricemia mice (HY) were given intragastric administration of adenine and potassium oxalate. Gut microbiota was analyzed by 16S rRNA sequencing at 3, 7, 14, and 21 days after the start of the modeling process. Intestinal permeability as well as LPS, TNF-α, and IL-1β levels were measured at 3, 7, 14, and 21 days. Results We discovered that shifts in microbial community composition occur prior to the onset of hyperuricemia, key bacterial Bacteroidaceae, Bacteroides, and Blautia exhibited reduced levels, potentially fueling microbial dysbiosis as the disease progresses. During the course of hyperuricemia, the dynamic fluctuations in both uric acid levels and intestinal barrier function was accompanied with the depletion of key beneficial bacteria, including Prevotellaceae, Muribaculum, Parabacteroides, Akkermansia, and Bacteroides, and coincided with an increase in pathogenic bacteria such as Oscillibacter and Ruminiclostridium. This microbial community shift likely contributed to elevated lipopolysaccharide (LPS) and pro-inflammatory cytokine levels, ultimately promoting metabolic inflammation. The decline of Burkholderiaceae and Parasutterella was inversely related to uric acid levels, Conversely, key families Ruminococcaceae, Family_XIII, genera Anaeroplasma exhibited positive correlations with uric acid levels. Akkermansiaceae and Bacteroidaceae demonstrating negative correlations, while LPS-containing microbiota such as Desulfovibrio and Enterorhabdus exhibited positive correlations with intestinal permeability. Conclusion In summary, this study offers a dynamic perspective on the complex interplay between gut microbiota, uric acid levels, and intestinal barrier function during hyperuricemia progression. Our study suggested that Ruminiclostridium, Bacteroides, Akkermansiaceae, Bilophila, Burkholderiaceae and Parasutterella were the key bacteria that play vital rols in the progress of hyperuricemia and compromised intestinal barrier, which provide a potential avenue for therapeutic interventions in hyperuricemia.
Collapse
Affiliation(s)
- Qiulan Lv
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun Zhou
- Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Changyao Wang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaomin Yang
- Laboratory Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yafei Han
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Quan Zhou
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ruyong Yao
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aihua Sui
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
35
|
Clark A, Mach N. The gut mucin-microbiota interactions: a missing key to optimizing endurance performance. Front Physiol 2023; 14:1284423. [PMID: 38074323 PMCID: PMC10703311 DOI: 10.3389/fphys.2023.1284423] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/27/2023] [Indexed: 01/22/2025] Open
Abstract
Endurance athletes offer unique physiology and metabolism compared to sedentary individuals. Athletes training at high intensities for prolonged periods are at risk for gastrointestinal disturbances. An important factor in endurance performance is the integrity and function of the gut barrier, which primarily depends on heavily O-glycosylated mucins. Emerging evidence shows a complex bidirectional dialogue between glycans on mucins and gut microorganisms. This review emphasizes the importance of the crosstalk between the gut microbiome and host mucus mucins and some of the mechanisms underlying this symbiosis. The contribution of mucin glycans to the composition and functionality of the gut microbiome is discussed, as well as the persuasive impact of the gut microbiome on mucin composition, thickness, and immune and metabolic functions. Lastly, we propose natural and synthetic glycans supplements to improve intestinal mucus production and barrier function, offering new opportunities to enhance endurance athletes' performance and gut health.
Collapse
Affiliation(s)
- Allison Clark
- Universitat Oberta de Catalunya, Universitat de Catalunya, Barcelona, Spain
| | - Núria Mach
- Interactions hôtes-agents pathogènes, Université de Toulouse, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, École nationale vétérinaire de Toulouse, Toulouse, France
| |
Collapse
|
36
|
Yang H, Shi P, Li M, Kong L, Liu S, Jiang L, Yang J, Xu B, Yang T, Xi S, Liu W. Mendelian-randomization study reveals causal relationships between nitrogen dioxide and gut microbiota. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 267:115660. [PMID: 37948942 DOI: 10.1016/j.ecoenv.2023.115660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
Exposure to nitrogen dioxide might potentially change the makeup and operation of gut microbes. Nitrogen dioxide data was procured from the IEU Open GWAS (N = 456 380). Subsequently, a two-sample Mendelian randomization study was executed, utilizing summary statistics of gut microbiota sourced from the most expansive available genome-wide association study meta-analysis, conducted by the MiBioGen consortium (N = 13 266). The causal relationship between nitrogen dioxide and gut microbiota was determined using inverse variance weighted, maximum likelihood, MR-Egger, Weighted Median, Weighted Model, Mendelian randomization pleiotropy residual sum and outlier, and constrained maximum likelihood and model averaging and Bayesian information criterion. The level of heterogeneity of instrumental variables was quantified by utilizing Cochran's Q statistic. The colocalization analysis was used to examine whether nitrogen dioxide and the identified gut microbiota shared casual variants. Inverse variance weighted estimate suggested that nitrogen dioxide was causally associated with Akkermansia (β = -1.088, 95% CI: -1.909 to -0.267, P = 0.009). In addition, nitrogen dioxide presented a potential association with Bacteroides (β = -0.938, 95% CI: -1.592 to -0.284, P = 0.005), Barnesiella (β = -0.797, 95% CI: -1.538 to -0.055, P = 0.035), Coprococcus 3 (β = 1.108, 95% CI: 0.048-2.167, P = 0.040), Eubacterium hallii group (E. hallii) (β = 0.776, 95% CI: 0.090-1.463, P = 0.027), Holdemania (β = -1.354, 95% CI: -2.336 to -0.372, P = 0.007), Howardella (β = 1.698, 95% CI: 0.257-3.139, P = 0.021), Olsenella (β = 1.599, 95% CI: 0.151-3.048, P = 0.030) and Sellimonas (β = -1.647, 95% CI: -3.209 to -0.086, P = 0.039). No significant heterogeneity of instrumental variables or horizontal pleiotropy was found. The associations of nitrogen dioxide with Akkermansia (PH4 = 0.836) and E. hallii (PH4 = 0.816) were supported by colocalization analysis. This two-sample Mendelian randomization study found that increased exposure to nitrogen dioxide had the potential to impact the human gut microbiota.
Collapse
Affiliation(s)
- Huajie Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Peng Shi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Mingzheng Li
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Lingxu Kong
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuailing Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Child and Adolescent Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Liujiangshan Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Jing Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Bin Xu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Tianyao Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China
| | - Shuhua Xi
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Wei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, China; Department of Environmental and Occupational Health, School of Public Health, China Medical University, Shenyang 110122, China.
| |
Collapse
|
37
|
Li J, Guo Y, Ma L, Liu Y, Zou C, Kuang H, Han B, Xiao Y, Wang Y. Synergistic effects of alginate oligosaccharide and cyanidin-3-O-glucoside on the amelioration of intestinal barrier function in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
38
|
Yang WH, Aziz PV, Heithoff DM, Kim Y, Ko JY, Cho JW, Mahan MJ, Sperandio M, Marth JD. Innate mechanism of mucosal barrier erosion in the pathogenesis of acquired colitis. iScience 2023; 26:107883. [PMID: 37752945 PMCID: PMC10518488 DOI: 10.1016/j.isci.2023.107883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
The colonic mucosal barrier protects against infection, inflammation, and tissue ulceration. Composed primarily of Mucin-2, proteolytic erosion of this barrier is an invariant feature of colitis; however, the molecular mechanisms are not well understood. We have applied a recurrent food poisoning model of acquired inflammatory bowel disease using Salmonella enterica Typhimurium to investigate mucosal barrier erosion. Our findings reveal an innate Toll-like receptor 4-dependent mechanism activated by previous infection that induces Neu3 neuraminidase among colonic epithelial cells concurrent with increased Cathepsin-G protease secretion by Paneth cells. These anatomically separated host responses merge with the desialylation of nascent colonic Mucin-2 by Neu3 rendering the mucosal barrier susceptible to increased proteolytic breakdown by Cathepsin-G. Depletion of Cathepsin-G or Neu3 function using pharmacological inhibitors or genetic-null alleles protected against Mucin-2 proteolysis and barrier erosion and reduced the frequency and severity of colitis, revealing approaches to preserve and potentially restore the mucosal barrier.
Collapse
Affiliation(s)
- Won Ho Yang
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases Center; La Jolla, CA 92037, USA
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Peter V. Aziz
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases Center; La Jolla, CA 92037, USA
| | - Douglas M. Heithoff
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Yeolhoe Kim
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jeong Yeon Ko
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Jin Won Cho
- Glycosylation Network Research Center and Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Michael J. Mahan
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Markus Sperandio
- Walter Brendel Center for Experimental Medicine, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig Maximilians University, Munich, Germany
| | - Jamey D. Marth
- Sanford-Burnham-Prebys Medical Discovery Institute, Infectious and Inflammatory Diseases Center; La Jolla, CA 92037, USA
| |
Collapse
|
39
|
Sun L, Zhang Y, Li W, Zhang J, Zhang Y. Mucin Glycans: A Target for Cancer Therapy. Molecules 2023; 28:7033. [PMID: 37894512 PMCID: PMC10609567 DOI: 10.3390/molecules28207033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/08/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Mucin glycans are an important component of the mucus barrier and a vital defence against physical and chemical damage as well as pathogens. There are 20 mucins in the human body, which can be classified into secreted mucins and transmembrane mucins according to their distributions. The major difference between them is that secreted mucins do not have transmembrane structural domains, and the expression of each mucin is organ and cell-specific. Under physiological conditions, mucin glycans are involved in the composition of the mucus barrier and thus protect the body from infection and injury. However, abnormal expression of mucin glycans can lead to the occurrence of diseases, especially cancer, through various mechanisms. Therefore, targeting mucin glycans for the diagnosis and treatment of cancer has always been a promising research direction. Here, we first summarize the main types of glycosylation (O-GalNAc glycosylation and N-glycosylation) on mucins and the mechanisms by which abnormal mucin glycans occur. Next, how abnormal mucin glycans contribute to cancer development is described. Finally, we summarize MUC1-based antibodies, vaccines, radio-pharmaceuticals, and CAR-T therapies using the best characterized MUC1 as an example. In this section, we specifically elaborate on the recent new cancer therapy CAR-M, which may bring new hope to cancer patients.
Collapse
Affiliation(s)
- Lingbo Sun
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuhan Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Wenyan Li
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Jing Zhang
- Medical College of Yan'an University, Yan'an University, Yan'an 716000, China
| | - Yuecheng Zhang
- Key Laboratory of Analytical Technology and Detection of Yan'an, College of Chemistry and Chemical Engineering, Yan'an University, Yan'an 716000, China
| |
Collapse
|
40
|
Tao H, Wang J, Bao Z, Jin Y, Xiao Y. Acute chlorothalonil exposure had the potential to influence the intestinal barrier function and micro-environment in mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:165038. [PMID: 37355131 DOI: 10.1016/j.scitotenv.2023.165038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
The intestinal barrier maintains intestinal homeostasis and metabolism and protects against harmful pollutants. Some environmental pollutants seriously affect intestinal barrier function. However, it remains unclear whether or how chlorothalonil (CTL) impacts the intestinal barrier function in animals. Herein, 6-week-old male mice were acutely exposed to different CTL concentrations (100 and 300 mg/kg BW) via intragastric administration once a day for 7 days. Histopathological examination revealed obvious inflammation in the mice' colon and ileum. Most notably, CTL exposure increased the intestinal permeability, particularly in the CTL-300 group. CTL exposure reduced the secretion of colonic epithelial mucus and changed the transcription levels of genes bound up with ion transport and ileal antimicrobial peptide (AMP) secretion, indicating intestinal chemical barrier damage. The results of terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay and Ki67 staining revealed abnormal apoptosis and increased intestinal epithelial cell proliferation, suggesting that CTL exposure led to cytotoxicity and inflammation. The results of 16S rRNA sequencing revealed that CTL exposure altered the intestinal microbiota composition and reduced its diversity and richness in the colon contents. Thus, acute CTL exposure affected the different intestinal barrier- and gut microenvironment-related endpoints in mice.
Collapse
Affiliation(s)
- Huaping Tao
- Key Laboratory of Organ Development and Regeneration of Zhejiang Province, College of Life and Environmental Sciences, Hangzhou Normal University, 311121 Hangzhou, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Juntao Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Zhiwei Bao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
41
|
Onigbinde S, Reyes CDG, Fowowe M, Daramola O, Atashi M, Bennett AI, Mechref Y. Variations in O-Glycosylation Patterns Influence Viral Pathogenicity, Infectivity, and Transmissibility in SARS-CoV-2 Variants. Biomolecules 2023; 13:1467. [PMID: 37892149 PMCID: PMC10604390 DOI: 10.3390/biom13101467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The highly glycosylated S protein plays a vital role in host cell invasion, making it the principal target for vaccine development. Differences in mutations observed on the spike (S) protein of SARS-CoV-2 variants may result in distinct glycosylation patterns, thus influencing immunological evasion, infectivity, and transmissibility. The glycans can mask key epitopes on the S1 protein and alter its structural conformation, allowing the virus to escape the immune system. Therefore, we comprehensively characterize O-glycosylation in eleven variants of SARS-CoV-2 S1 subunits to understand the differences observed in the biology of the variants. In-depth characterization was performed with a double digestion strategy and an efficient LC-MS/MS approach. We observed that O-glycosylation is highly conserved across all variants in the region between the NTD and RBD, whereas other domains and regions exhibit variation in O-glycosylation. Notably, omicron has the highest number of O-glycosylation sites on the S1 subunit. Also, omicron has the highest level of sialylation in the RBD and RBM functional motifs. Our findings may shed light on how differences in O-glycosylation impact viral pathogenicity in variants of SARS-CoV-2 and facilitate the development of a robust vaccine with high protective efficacy against the variants of concern.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA; (S.O.); (C.D.G.R.); (M.F.); (O.D.); (M.A.); (A.I.B.)
| |
Collapse
|
42
|
Inaba R, Vujakovic S, Bergstrom K. The gut mucus network: A dynamic liaison between microbes and the immune system. Semin Immunol 2023; 69:101807. [PMID: 37478802 DOI: 10.1016/j.smim.2023.101807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 06/24/2023] [Accepted: 07/08/2023] [Indexed: 07/23/2023]
Abstract
A complex mucus network made up of large polymers of the mucin-family glycoprotein MUC2 exists between the large intestinal microbial mass and epithelial and immune cells. This has long been understood as an innate immune defense barrier against the microbiota and other luminal threats that reinforces the barrier function of the epithelium and limits microbiota contact with the tissues. However, past and recent studies have provided new evidence of how critical the mucus network is to act as a 'liaison' between host and microbe to mediate anti-inflammatory, mutualistic interactions with the microbiota and protection from pathogens. This review summarizes historical and recent insights into the formation of the gut mucus network, how the microbes and immune system influence mucus, and in turn, how the mucus influences immune responses to the microbiota.
Collapse
Affiliation(s)
- Rain Inaba
- Department of Biology, University of British Columbia, Okanagan Campus, 3187 University Way, Kelowna V1V 1V7, British Columbia, Canada
| | - Sara Vujakovic
- Department of Biology, University of British Columbia, Okanagan Campus, 3187 University Way, Kelowna V1V 1V7, British Columbia, Canada
| | - Kirk Bergstrom
- Department of Biology, University of British Columbia, Okanagan Campus, 3187 University Way, Kelowna V1V 1V7, British Columbia, Canada.
| |
Collapse
|
43
|
Wang CM, Fernez MT, Woolston BM, Carrier RL. Native gastrointestinal mucus: Critical features and techniques for studying interactions with drugs, drug carriers, and bacteria. Adv Drug Deliv Rev 2023; 200:114966. [PMID: 37329985 PMCID: PMC11184232 DOI: 10.1016/j.addr.2023.114966] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
Gastrointestinal mucus plays essential roles in modulating interactions between intestinal lumen contents, including orally delivered drug carriers and the gut microbiome, and underlying epithelial and immune tissues and cells. This review is focused on the properties of and methods for studying native gastrointestinal mucus and its interactions with intestinal lumen contents, including drug delivery systems, drugs, and bacteria. The properties of gastrointestinal mucus important to consider in its analysis are first presented, followed by a discussion of different experimental setups used to study gastrointestinal mucus. Applications of native intestinal mucus are then described, including experimental methods used to study mucus as a barrier to drug delivery and interactions with intestinal lumen contents that impact barrier properties. Given the significance of the microbiota in health and disease, its impact on drug delivery and drug metabolism, and the use of probiotics and microbe-based delivery systems, analysis of interactions of bacteria with native intestinal mucus is then reviewed. Specifically, bacteria adhesion to, motility within, and degradation of mucus is discussed. Literature noted is focused largely on applications of native intestinal mucus models as opposed to isolated mucins or reconstituted mucin gels.
Collapse
Affiliation(s)
- Chia-Ming Wang
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Matthew T Fernez
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Benjamin M Woolston
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Rebecca L Carrier
- Department of Bioengineering, Northeastern University, Boston, MA, USA; Department of Chemical Engineering, Northeastern University, Boston, MA, USA; Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
44
|
McGuckin MA, Davies JM, Felgner P, Wong KY, Giri R, He Y, Moniruzzaman M, Kryza T, Sajiir H, Hooper JD, Florin TH, Begun J, Oussalah A, Hasnain SZ, Hensel M, Sheng YH. MUC13 Cell Surface Mucin Limits Salmonella Typhimurium Infection by Protecting the Mucosal Epithelial Barrier. Cell Mol Gastroenterol Hepatol 2023; 16:985-1009. [PMID: 37660948 PMCID: PMC10630632 DOI: 10.1016/j.jcmgh.2023.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND & AIMS MUC13 cell surface mucin is highly expressed on the mucosal surface throughout the intestine, yet its role against bacterial infection is unknown. We investigated how MUC13 impacts Salmonella typhimurium (S Tm) infection and elucidated its mechanisms of action. METHODS Muc13-/- and wild-type littermate mice were gavaged with 2 isogenic strains of S Tm after pre-conditioning with streptomycin. We assessed clinical parameters, cecal histology, local and systemic bacterial load, and proinflammatory cytokines after infection. Cecal enteroids and epithelial cell lines were used to evaluate the mechanism of MUC13 activity after infection. The interaction between bacterial SiiE and MUC13 was assessed by using siiE-deficient Salmonella. RESULTS S Tm-infected Muc13-/- mice had increased disease activity, histologic damage, and higher local and systemic bacterial loads. Mechanistically, we found that S Tm binds to MUC13 through its giant SiiE adhesin and that MUC13 acts as a pathogen-binding decoy shed from the epithelial cell surface after pathogen engagement, limiting bacterial invasion. In addition, MUC13 reduces epithelial cell death and intestinal barrier breakdown by enhancing nuclear factor kappa B signaling during infection, independent of its decoy function. CONCLUSIONS We show for the first time that MUC13 plays a critical role in antimicrobial defense against pathogenic S Tm at the intestinal mucosal surface by both acting as a releasable decoy limiting bacterial invasion and reducing pathogen-induced cell death. This further implicates the cell surface mucin family in mucosal defense from bacterial infection.
Collapse
Affiliation(s)
- Michael A McGuckin
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, Australia.
| | - Julie M Davies
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Pascal Felgner
- CellNanOs, Center for Cellular Nanoanalytics, Osnabrueck, Germany; Division Microbiology, Universitaet Osnabrueck, Osnabrueck, Germany
| | - Kuan Yau Wong
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Rabina Giri
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Yaowu He
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Md Moniruzzaman
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, Queensland, Australia
| | - Thomas Kryza
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Haressh Sajiir
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - John D Hooper
- Cancer Biology Group, Mater Research Institute-University of Queensland, Woolloongabba, Queensland, Australia
| | - Timothy H Florin
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jakob Begun
- Inflammatory Bowel Diseases Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Abderrahim Oussalah
- Department of Molecular Medicine, Division of Biochemistry, Molecular Biology, Nutrition, and Metabolism, University Hospital of Nancy, Nancy, France; University of Lorraine, INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, Nancy, France; Reference Center for Inborn Errors of Metabolism (ORPHA67872), University Hospital of Nancy, Nancy, France
| | - Sumaira Z Hasnain
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Michael Hensel
- CellNanOs, Center for Cellular Nanoanalytics, Osnabrueck, Germany; Division Microbiology, Universitaet Osnabrueck, Osnabrueck, Germany
| | - Yong H Sheng
- Inflammatory Disease Biology and Therapeutics Group, Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba, Queensland, Australia; Laboratory of B-Lymphocytes in Autoimmunity and Malignancies, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia.
| |
Collapse
|
45
|
Coletto E, Savva GM, Latousakis D, Pontifex M, Crost EH, Vaux L, Telatin A, Bergstrom K, Vauzour D, Juge N. Role of mucin glycosylation in the gut microbiota-brain axis of core 3 O-glycan deficient mice. Sci Rep 2023; 13:13982. [PMID: 37634035 PMCID: PMC10460388 DOI: 10.1038/s41598-023-40497-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 08/11/2023] [Indexed: 08/28/2023] Open
Abstract
Alterations in intestinal mucin glycosylation have been associated with increased intestinal permeability and sensitivity to inflammation and infection. Here, we used mice lacking core 3-derived O-glycans (C3GnT-/-) to investigate the effect of impaired mucin glycosylation in the gut-brain axis. C3GnT-/- mice showed altered microbial metabolites in the caecum associated with brain function such as dimethylglycine and N-acetyl-L-tyrosine profiles as compared to C3GnT+/+ littermates. In the brain, polysialylated-neural cell adhesion molecule (PSA-NCAM)-positive granule cells showed an aberrant phenotype in the dentate gyrus of C3GnT-/- mice. This was accompanied by a trend towards decreased expression levels of PSA as well as ZO-1 and occludin as compared to C3GnT+/+. Behavioural studies showed a decrease in the recognition memory of C3GnT-/- mice as compared to C3GnT+/+ mice. Combined, these results support the role of mucin O-glycosylation in the gut in potentially influencing brain function which may be facilitated by the passage of microbial metabolites through an impaired gut barrier.
Collapse
Affiliation(s)
- Erika Coletto
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - George M Savva
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Dimitrios Latousakis
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Matthew Pontifex
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Emmanuelle H Crost
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Laura Vaux
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Andrea Telatin
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK
| | - Kirk Bergstrom
- Department of Biology, University of British Columbia, Okanagan Campus, 3333 University Way, Kelowna, BC, V1V 1V7, Canada
| | - David Vauzour
- Norwich Medical School, Biomedical Research Centre, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Nathalie Juge
- Gut Microbes and Health Institute Strategic Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ, UK.
| |
Collapse
|
46
|
Yuan E, Zhou M, Liang Z, Amakye WK, Hou C, Ren J. Effect of sturgeon protein in promoting the adhesion of Lactobacillus plantarum and Lactobacillus rhamnosus. FOOD BIOSCI 2023; 54:102863. [DOI: 10.1016/j.fbio.2023.102863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
|
47
|
Yamaguchi M, Yamamoto K. Mucin glycans and their degradation by gut microbiota. Glycoconj J 2023; 40:493-512. [PMID: 37318672 DOI: 10.1007/s10719-023-10124-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
The human intestinal tract is inhabited by a tremendous number of microorganisms, which are collectively termed "the gut microbiota". The intestinal epithelium is covered with a dense layer of mucus that prevents penetration of the gut microbiota into underlying tissues of the host. Recent studies have shown that the maturation and function of the mucus layer are strongly influenced by the gut microbiota, and alteration in the structure and function of the gut microbiota is implicated in several diseases. Because the intestinal mucus layer is at a crucial interface between microbes and their host, its breakdown leads to gut bacterial invasion that can eventually cause inflammation and infection. The mucus is composed of mucin, which is rich in glycans, and the various structures of the complex carbohydrates of mucins can select for distinct mucosa-associated bacteria that are able to bind mucin glycans, and sometimes degrade them as a nutrient source. Mucin glycans are diverse molecules, and thus mucin glycan degradation is a complex process that requires a broad range of glycan-degrading enzymes. Because of the increased recognition of the role of mucus-associated microbes in human health, how commensal bacteria degrade and use host mucin glycans has become of increased interest. This review provides an overview of the relationships between the mucin glycan of the host and gut commensal bacteria, with a focus on mucin degradation.
Collapse
Affiliation(s)
- Masanori Yamaguchi
- Department of Organic Bio Chemistry, Faculty of Education, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan.
| | - Kenji Yamamoto
- Center for Innovative and Joint Research, Wakayama University, 930, Sakaedani, Wakayama, 640-8510, Japan
| |
Collapse
|
48
|
Zhang B, Li J, Fu J, Shao L, Yang L, Shi J. Interaction between mucus layer and gut microbiota in non-alcoholic fatty liver disease: Soil and seeds. Chin Med J (Engl) 2023; 136:1390-1400. [PMID: 37200041 PMCID: PMC10278733 DOI: 10.1097/cm9.0000000000002711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Indexed: 05/19/2023] Open
Abstract
ABSTRACT The intestinal mucus layer is a barrier that separates intestinal contents and epithelial cells, as well as acts as the "mucus layer-soil" for intestinal flora adhesion and colonization. Its structural and functional integrity is crucial to human health. Intestinal mucus is regulated by factors such as diet, living habits, hormones, neurotransmitters, cytokines, and intestinal flora. The mucus layer's thickness, viscosity, porosity, growth rate, and glycosylation status affect the structure of the gut flora colonized on it. The interaction between "mucus layer-soil" and "gut bacteria-seed" is an important factor leading to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Probiotics, prebiotics, fecal microbiota transplantation (FMT), and wash microbial transplantation are efficient methods for managing NAFLD, but their long-term efficacy is poor. FMT is focused on achieving the goal of treating diseases by enhancing the "gut bacteria-seed". However, a lack of effective repair and management of the "mucus layer-soil" may be a reason why "seeds" cannot be well colonized and grow in the host gut, as the thinning and destruction of the "mucus layer-soil" is an early symptom of NAFLD. This review summarizes the existing correlation between intestinal mucus and gut microbiota, as well as the pathogenesis of NAFLD, and proposes a new perspective that "mucus layer-soil" restoration combined with "gut bacteria-seed" FMT may be one of the most effective future strategies for enhancing the long-term efficacy of NAFLD treatment.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of School of Life Sciences, Zhejiang University of Traditional Chinese Medicine, Hangzhou, Zhejiang 310053, China
| | - Jie Li
- Department of Infectious Disease, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu 210008, China
| | - Jinlong Fu
- Department of School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Li Shao
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Luping Yang
- Department of Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Junping Shi
- Department of Translational Medicine Platform, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
- Department of Infectious & Hepatology Diseases, Metabolic Disease Center, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang 310015, China
| |
Collapse
|
49
|
Gorman H, Moreau F, Dufour A, Chadee K. IgGFc-binding protein and MUC2 mucin produced by colonic goblet-like cells spatially interact non-covalently and regulate wound healing. Front Immunol 2023; 14:1211336. [PMID: 37359538 PMCID: PMC10285406 DOI: 10.3389/fimmu.2023.1211336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The colonic mucus bilayer is the first line of innate host defense that at the same time houses and nourishes the commensal microbiota. The major components of mucus secreted by goblet cells are MUC2 mucin and the mucus-associated protein, FCGBP (IgGFc-binding protein). In this study, we determine if FCGBP and MUC2 mucin were biosynthesized and interacted together to spatially enhance the structural integrity of secreted mucus and its role in epithelial barrier function. MUC2 and FCGBP were coordinately regulated temporally in goblet-like cells and in response to a mucus secretagogue but not in CRISPR-Cas9 gene-edited MUC2 KO cells. Whereas ~85% of MUC2 was colocalized with FCGBP in mucin granules, ~50% of FCGBP was diffusely distributed in the cytoplasm of goblet-like cells. STRING-db v11 analysis of the mucin granule proteome revealed no protein-protein interaction between MUC2 and FCGBP. However, FCGBP interacted with other mucus-associated proteins. FCGBP and MUC2 interacted via N-linked glycans and were non-covalently bound in secreted mucus with cleaved low molecular weight FCGBP fragments. In MUC2 KO, cytoplasmic FCGBP was significantly increased and diffusely distributed in wounded cells that healed by enhanced proliferation and migration within 2 days, whereas, in WT cells, MUC2 and FCGBP were highly polarized at the wound margin which impeded wound closure by 6 days. In DSS colitis, restitution and healed lesions in Muc2+/+ but not Muc2-/- littermates, were accompanied by a rapid increase in Fcgbp mRNA and delayed protein expression at 12- and 15-days post DSS, implicating a potential novel endogenous protective role for FCGBP in wound healing to maintain epithelial barrier function.
Collapse
Affiliation(s)
- Hayley Gorman
- Department of Microbiology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - France Moreau
- Department of Microbiology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Kris Chadee
- Department of Microbiology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
50
|
Masloh S, Culot M, Gosselet F, Chevrel A, Scapozza L, Zeisser Labouebe M. Challenges and Opportunities in the Oral Delivery of Recombinant Biologics. Pharmaceutics 2023; 15:pharmaceutics15051415. [PMID: 37242657 DOI: 10.3390/pharmaceutics15051415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Recombinant biological molecules are at the cutting-edge of biomedical research thanks to the significant progress made in biotechnology and a better understanding of subcellular processes implicated in several diseases. Given their ability to induce a potent response, these molecules are becoming the drugs of choice for multiple pathologies. However, unlike conventional drugs which are mostly ingested, the majority of biologics are currently administered parenterally. Therefore, to improve their limited bioavailability when delivered orally, the scientific community has devoted tremendous efforts to develop accurate cell- and tissue-based models that allow for the determination of their capacity to cross the intestinal mucosa. Furthermore, several promising approaches have been imagined to enhance the intestinal permeability and stability of recombinant biological molecules. This review summarizes the main physiological barriers to the oral delivery of biologics. Several preclinical in vitro and ex vivo models currently used to assess permeability are also presented. Finally, the multiple strategies explored to address the challenges of administering biotherapeutics orally are described.
Collapse
Affiliation(s)
- Solene Masloh
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|