1
|
Ganesh D, Corradetti G, Sadda SR. MACULAR NEOVASCULARIZATION IN A CASE OF LATE-ONSET RETINAL DEGENERATION TREATED WITH AFLIBERCEPT. Retin Cases Brief Rep 2024; 18:633-636. [PMID: 37224477 DOI: 10.1097/icb.0000000000001439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
PURPOSE To describe the outcomes from treatment of macular neovascularization in an eye affected by late-onset retinal degeneration. METHODS A 72-year-old female patient presented with a history of decreased vision since several years. The patient was previously diagnosed with age-related macular degeneration and treated with anti-vascular endothelial growth factors. RESULTS Clinical examination of the retina and ultra-widefield color fundus photographs showed extensive atrophy in both eyes. The left eye showed macular neovascularization on fluorescein angiography, subretinal fluid on optical coherence tomography, and correspondent hemorrhages on the color fundus photography. Aflibercept anti-vascular endothelial factor treatment was used to treat the macular neovascularization in the left eye. CONCLUSION We report a case of genetically confirmed late-onset retinal degeneration (heterozygous pathogenic mutation p.Ser163Arg in one C1QTN5 allele) with advanced degeneration of the retina complicated by macular neovascularization, which responded well to treatment with a single aflibercept injection.
Collapse
Affiliation(s)
- Durga Ganesh
- David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
- Doheny Eye Institute, University of California-Los Angeles, Los Angeles, California
| | - Giulia Corradetti
- Doheny Eye Institute, University of California-Los Angeles, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
| | - Srinivas R Sadda
- Doheny Eye Institute, University of California-Los Angeles, Los Angeles, California
- Department of Ophthalmology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, California
| |
Collapse
|
2
|
Pfau K, Lengyel I, Ossewaarde-van Norel J, van Leeuwen R, Risseeuw S, Leftheriotis G, Scholl HPN, Feltgen N, Holz FG, Pfau M. Pseudoxanthoma elasticum - Genetics, pathophysiology, and clinical presentation. Prog Retin Eye Res 2024; 102:101274. [PMID: 38815804 DOI: 10.1016/j.preteyeres.2024.101274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Pseudoxanthoma elasticum (PXE) is an autosomal-recessively inherited multisystem disease. Mutations in the ABCC6-gene are causative, coding for a transmembrane transporter mainly expressed in hepatocytes, which promotes the efflux of adenosine triphosphate (ATP). This results in low levels of plasma inorganic pyrophosphate (PPi), a critical anti-mineralization factor. The clinical phenotype of PXE is characterized by the effects of elastic fiber calcification in the skin, the cardiovascular system, and the eyes. In the eyes, calcification of Bruch's membrane results in clinically visible lesions, including peau d'orange, angioid streaks, and comet tail lesions. Frequently, patients must be treated for secondary macular neovascularization. No effective therapy is available for treating the cause of PXE, but several promising approaches are emerging. Finding appropriate outcome measures remains a significant challenge for clinical trials in this slowly progressive disease. This review article provides an in-depth summary of the current understanding of PXE and its multi-systemic manifestations. The article offers a detailed overview of the ocular manifestations, including their morphological and functional consequences, as well as potential complications. Lastly, previous and future clinical trials of causative treatments for PXE are discussed.
Collapse
Affiliation(s)
- Kristina Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Department of Ophthalmology, University Hospital Bonn, Bonn, Germany.
| | - Imre Lengyel
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom; Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | | | - Redmer van Leeuwen
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Sara Risseeuw
- Department of Ophthalmology, University Medical Center Utrecht, Utrecht University, the Netherlands
| | - Georges Leftheriotis
- University Hospital Nice, Vascular Physiology and Medicine Unit, 06000, Nice, France
| | | | - Nicolas Feltgen
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland
| | - Frank G Holz
- Department of Ophthalmology, University Hospital Bonn, Bonn, Germany
| | - Maximilian Pfau
- Department of Ophthalmology, University Hospital Basel, Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel, Basel, Basel-Stadt, Switzerland
| |
Collapse
|
3
|
Yu L, Liu X, Wei X, Ren J, Wang X, Wu S, Lan K. C1QTNF5 is a novel attachment factor that facilitates the entry of influenza A virus. Virol Sin 2024; 39:277-289. [PMID: 38246238 PMCID: PMC11074642 DOI: 10.1016/j.virs.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Influenza A virus (IAV) binds sialic acid receptors on the cell surface to enter the host cells, which is the key step in initiating infection, transmission and pathogenesis. Understanding the factors that contribute to the highly efficient entry of IAV into human cells will help elucidate the mechanism of viral entry and pathogenicity, and provide new targets for intervention. In the present study, we reported a novel membrane protein, C1QTNF5, which binds to the hemagglutinin protein of IAV and promotes IAV infection in vitro and in vivo. We found that the HA1 region of IAV hemagglutinin is critical for the interaction with C1QTNF5 protein, and C1QTNF5 interacts with hemagglutinin mainly through its N-terminus (1-103 aa). In addition, we further demonstrated that overexpression of C1QTNF5 promotes IAV entry, while blocking the interaction between C1QTNF5 and IAV hemagglutinin greatly inhibits viral entry. However, C1QTNF5 does not function as a receptor to mediate IAV infection in sialic acid-deficient CHO-Lec2 cells, but promotes IAV to attach to these cells, suggesting that C1QTNF5 is an important attachment factor for IAV. This work reveals C1QTNF5 as a novel IAV attachment factor and provides a new perspective for antiviral strategies.
Collapse
Affiliation(s)
- Lei Yu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xinjin Liu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiaoqin Wei
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junrui Ren
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xueyun Wang
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuwen Wu
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| | - Ke Lan
- State Key Laboratory of Virology, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430072, China; Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, 430072, China; Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
4
|
Torrell-Belzach N, Miere A, Bhouri R, Srour M, Souied EH, Zambrowski O. An incipient late-onset retinal degeneration with a C1QTNF5 mutation: a case report with an 11-year follow-up. Doc Ophthalmol 2024; 148:57-64. [PMID: 38129706 DOI: 10.1007/s10633-023-09958-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE The purpose of this study was to describe and diagnose the difficulty in a long-term follow-up (eleven years) patient with a very early presentation of late-onset retinal degeneration (L-ORD) and the significance of electrophysiological examinations and follow-up in assessing undiagnosed inherited retinal diseases. METHODS This is an observational case report of a 56-year-old woman, with scattered multiple yellow-white retinal dots firstly diagnosed as fundus albipunctatus. Ten years after presentation, a deterioration in rod and cone responses in ff-ERG was detected, which allowed us to discard the first diagnostic hypothesis and proceed with a genetic testing. RESULTS Ten years after presentation, she presented a clear progression of the abnormal photoreceptor response with a cone and rod involvement in ff-ERG, which was not compatible with the previous suspicion of fundus albipunctatus. Six months later, genetic testing results together with the typical progression of atrophic patchy lesions in multimodal imaging allowed a certain diagnosis of L-ORD, caused by an already reported pathogenic variant in the C1QTNF5 gene (c.563C > T; p. Pro188 Leu). CONCLUSIONS We demonstrate the importance of the ff-ERG examination and the follow-up (or ERG and imaging repetition) in the differential diagnosis of an incipient L-ORD, which can be easily misdiagnosed in the early stages, before the appearance of the characteristic chorioretinal atrophy seen with the progression of this rare disease.
Collapse
Affiliation(s)
- Nuria Torrell-Belzach
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil (CHIC), 40 Av. de Verdun, 94000, Créteil, France.
- Université Paris-Est Créteil (UPEC), Créteil, France.
| | - Alexandra Miere
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil (CHIC), 40 Av. de Verdun, 94000, Créteil, France
- Université Paris-Est Créteil (UPEC), Créteil, France
| | - Rakia Bhouri
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil (CHIC), 40 Av. de Verdun, 94000, Créteil, France
| | - Mayer Srour
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil (CHIC), 40 Av. de Verdun, 94000, Créteil, France
| | - Eric H Souied
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil (CHIC), 40 Av. de Verdun, 94000, Créteil, France
- Université Paris-Est Créteil (UPEC), Créteil, France
| | - Olivia Zambrowski
- Department of Ophthalmology, Centre Hospitalier Intercommunal de Créteil (CHIC), 40 Av. de Verdun, 94000, Créteil, France
- Necker Enfants Malades APHP, Paris, France
- Centre Ophtalmo Odéon Paris, Paris, France
| |
Collapse
|
5
|
Heath Jeffery RC, Chen FK. Macular neovascularization in inherited retinal diseases: A review. Surv Ophthalmol 2024; 69:1-23. [PMID: 37544613 DOI: 10.1016/j.survophthal.2023.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Inherited retinal diseases (IRDs) are the most common cause of blindness in working-age adults. Macular neovascularization (MNV) may be a presenting feature or occurs as a late-stage complication in several IRDs. We performed an extensive literature review on MNV associated with IRDs. MNV is a well-known complication of Sorsby fundus dystrophy and pseudoxanthoma elasticum. Those with late-onset Stargardt disease may masquerade as exudative age-related macular degeneration (AMD) when MNV is the presenting feature. Peripherinopathies may develop MNV that responds well to a short course of anti-vascular endothelial growth factor (anti-VEGF) therapy, while bestrophinopathies tend to develop MNV in the early stages of the disease without vision loss. Enhanced S-cone syndrome manifests type 3 MNV that typically regresses into a subfoveal fibrotic nodule. MNV is only a rare complication in choroideraemia and rod-cone dystrophies. Most IRD-related MNVs exhibit a favorable visual prognosis requiring less intensive regimens of anti-vascular endothelial growth factor therapy compared to age-related macular degeneration. We discuss the role of key imaging modalities in the diagnosis of MNV across a wide spectrum of IRDs and highlight the gaps in our knowledge with respect to the natural history and prognosis to pave the way for future directions of research.
Collapse
Affiliation(s)
- Rachael C Heath Jeffery
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia; Royal Victorian Eye and Ear Hospital (Centre for Eye Research Australia), East Melbourne, VIC, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science (Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia; Royal Victorian Eye and Ear Hospital (Centre for Eye Research Australia), East Melbourne, VIC, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, East Melbourne, VIC, Australia; Department of Ophthalmology, Royal Perth Hospital, Perth, WA, Australia.
| |
Collapse
|
6
|
Chen F, Sarver DC, Saqib M, Zhou M, Aja S, Seldin MM, Wong GW. CTRP13 ablation improves systemic glucose and lipid metabolism. Mol Metab 2023; 78:101824. [PMID: 37844630 PMCID: PMC10598410 DOI: 10.1016/j.molmet.2023.101824] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023] Open
Abstract
OBJECTIVE Tissue crosstalk mediated by secreted hormones underlies the integrative control of metabolism. We previously showed that CTRP13/C1QL3, a secreted protein of the C1q family, can improve glucose metabolism and insulin action in vitro and reduce food intake and body weight in mice when centrally delivered. A role for CTRP13 in regulating insulin secretion in isolated islets has also been demonstrated. It remains unclear, however, whether the effects of CTRP13 on cultured cells and in mice reflect the physiological function of the protein. Here, we use a loss-of-function mouse model to address whether CTRP13 is required for metabolic homeostasis. METHODS WT and Ctrp13 knockout (KO) mice fed a standard chow or a high-fat diet were subjected to comprehensive metabolic phenotyping. Transcriptomic analyses were carried out on visceral and subcutaneous fat, liver, and skeletal muscle to identify pathways altered by CTRP13 deficiency. RNA-seq data was further integrated with the Metabolic Syndrome in Man (METSIM) cohort data. Adjusted regression analysis was used to demonstrate that genetic variation of CTRP13 expression accounts for a significant proportion of variance between differentially expressed genes (DEGs) in adipose tissue and metabolic traits in humans. RESULTS Contrary to expectation, chow-fed Ctrp13-KO male mice had elevated physical activity, lower body weight, and improved lipid handling. On a high-fat diet (HFD), Ctrp13-KO mice of either sex were consistently more active and leaner. Loss of CTRP13 reduced hepatic glucose output and improved glucose tolerance, insulin sensitivity, and triglyceride clearance, though with notable sex differences. Consistent with the lean phenotype, transcriptomic analyses revealed a lower inflammatory profile in visceral fat and liver. Reduced hepatic steatosis was correlated with the suppression of lipid synthesis and enhanced lipid catabolism gene expression. Visceral fat had the largest number of DEGs and mediation analyses on the human orthologs of the DEGs suggested the potential causal contribution of CTRP13 to human metabolic syndrome. CONCLUSIONS Our results suggest that CTRP13 is a negative metabolic regulator, and its deficiency improves systemic metabolic profiles. Our data also suggest the reduction in circulating human CTRP13 levels seen in obesity and diabetes may reflect a compensatory physiologic response to counteract insulin resistance.
Collapse
Affiliation(s)
- Fangluo Chen
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muzna Saqib
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mingqi Zhou
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, USA
| | - Susan Aja
- Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcus M Seldin
- Department of Biological Chemistry, University of California, Irvine, Irvine, USA; Center for Epigenetics and Metabolism, University of California, Irvine, Irvine, USA
| | - G William Wong
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Center for Metabolism and Obesity Research, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
7
|
Li RTH, Roman AJ, Sumaroka A, Stanton CM, Swider M, Garafalo AV, Heon E, Vincent A, Wright AF, Megaw R, Aleman TS, Browning AC, Dhillon B, Cideciyan AV. Treatment Strategy With Gene Editing for Late-Onset Retinal Degeneration Caused by a Founder Variant in C1QTNF5. Invest Ophthalmol Vis Sci 2023; 64:33. [PMID: 38133503 PMCID: PMC10746929 DOI: 10.1167/iovs.64.15.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Genome editing is an emerging group of technologies with the potential to ameliorate dominant, monogenic human diseases such as late-onset retinal degeneration (L-ORD). The goal of this study was to identify disease stages and retinal locations optimal for evaluating the efficacy of a future genome editing trial. Methods Twenty five L-ORD patients (age range, 33-77 years; median age, 59 years) harboring the founder variant S163R in C1QTNF5 were enrolled from three centers in the United Kingdom and United States. Patients were examined with widefield optical coherence tomography (OCT) and chromatic perimetry under dark-adapted and light-adapted conditions to derive phenomaps of retinal disease. Results were analyzed with a model of a shared natural history of a single delayed exponential across all subjects and all retinal locations. Results Critical age for the initiation of photoreceptor loss ranged from 48 years at the temporal paramacular retina to 74 years at the inferior midperipheral retina. Subretinal deposits (sRET-Ds) became more prevalent as critical age was approached. Subretinal pigment epithelial deposits (sRPE-Ds) were detectable in the youngest patients showing no other structural or functional abnormalities at the retina. The sRPE-D thickness continuously increased, reaching 25 µm in the extrafoveal retina and 19 µm in the fovea at critical age. Loss of light sensitivity preceded shortening of outer segments and loss of photoreceptors by more than a decade. Conclusions Retinal regions providing an ideal treatment window exist across all severity stages of L-ORD.
Collapse
Affiliation(s)
- Randa T. H. Li
- Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
| | - Alejandro J. Roman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexander Sumaroka
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Chloe M. Stanton
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Malgorzata Swider
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Alexandra V. Garafalo
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Alan F. Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Tomas S. Aleman
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Andrew C. Browning
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, Scotland, United Kingdom
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, United Kingdom
| | - Artur V. Cideciyan
- Center for Hereditary Retinal Degenerations, Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
8
|
Cheloni R, Venkatesh A, Rodriguez-Martinez AC, Moosajee M. Longitudinal Changes of Retinal Structure in Molecularly Confirmed C1QTNF5 Patients With Late-Onset Retinal Degeneration. Transl Vis Sci Technol 2023; 12:14. [PMID: 38085246 PMCID: PMC10720756 DOI: 10.1167/tvst.12.12.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Purpose The purpose of this study was to present our findings on the natural history of late-onset retinal degeneration (LORD) in patients with molecularly confirmed C1QTNF5 heterozygous pathogenic variants and assess suitability of retinal structure parameters for disease monitoring. Methods Sixteen patients with C1QTNF5-LORD were retrospectively identified from Moorfields Eye Hospital, UK. Fundus autofluorescence (FAF), optical coherence tomography (OCT) scans, and best-corrected visual acuity (BCVA) were collected. Area of atrophy (AA) was manually drawn in FAF images. Ellipsoid zone (EZ) width and foveal retinal thickness of the whole retina and outer retina were extracted from OCT scans. Age-related changes were tested with linear-mixed models. Results Patients had median age of 62.3 years (interquartile range [IQR] = 58.8-65.4 years) at baseline, and median follow-up of 5.1 years (IQR = 2.6-7.6 years). AA, EZ width, and retinal thickness parameters remained unchanged until age 50 years, but showed significant change with age thereafter (all P < 0.0001). AA and EZ width progressed rapidly (dynamic range normalized rates = 4.3-4.5%/year) from age 53.9 and 50.8 years (estimated inflection points), respectively. Retinal thickness parameters showed slower progression rates (range = 1.6-2.5%/year) from age 60 to 62.3. BCVA (median = 0.3 LogMAR, IQR = 0.0-1.0 at baseline) showed a rapid decline (3.3%) from age 70 years. Findings from patients with earlier disease showed FAF atrophy manifests in the temporal retina initially, and then progresses nasally. Conclusions Patients with LORD remained asymptomatic until age 50 years, before suffering rapid outer retinal degeneration. EZ width and AA showed rapid progression and high interocular correlation, representing promising outcome metrics. Clinical measures also capturing the temporal retina may be preferable, enabling earlier detection and better disease monitoring. Translational Relevance Area of atrophy in FAF images and OCT-measured EZ width represent promising outcome metrics for disease monitoring in patients with C1QTNF5-LORD.
Collapse
Affiliation(s)
- Riccardo Cheloni
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | | | | | - Mariya Moosajee
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital NHS Foundation Trust, London, UK
- The Francis Crick Institute, London, UK
| |
Collapse
|
9
|
Xu L, Ruddick WN, Bolch SN, Klingeborn M, Dyka FM, Kulkarni MM, Simpson CP, Beltran WA, Bowes Rickman C, Smith WC, Dinculescu A. Distinct Phenotypic Consequences of Pathogenic Mutants Associated with Late-Onset Retinal Degeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1706-1720. [PMID: 36328299 PMCID: PMC10726427 DOI: 10.1016/j.ajpath.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
Abstract
A pathologic feature of late-onset retinal degeneration caused by the S163R mutation in C1q-tumor necrosis factor-5 (C1QTNF5) is the presence of unusually thick deposits between the retinal pigmented epithelium (RPE) and the vascular choroid, considered a hallmark of this disease. Following its specific expression in mouse RPE, the S163R mutant exhibits a reversed polarized distribution relative to the apically secreted wild-type C1QTNF5, and forms widespread, prominent deposits that gradually increase in size with aging. The current study shows that S163R deposits expand to a considerable thickness through a progressive increase in the basolateral RPE membrane, substantially raising the total RPE height, and enabling their clear imaging as a distinct hyporeflective layer by noninvasive optical coherence tomography in advanced age animals. This phenotype bears a striking resemblance to ocular pathology previously documented in patients harboring the S163R mutation. Therefore, a similar viral vector-based gene delivery approach was used to also investigate the behavior of P188T and G216C, two novel pathogenic C1QTNF5 mutants recently reported in patients for which histopathologic data are lacking. Both mutants primarily impacted the RPE/photoreceptor interface and did not generate basal laminar deposits. Distinct distribution patterns and phenotypic consequences of C1QTNF5 mutants were observed in vivo, which suggested that multiple pathobiological mechanisms contribute to RPE dysfunction and vision loss in this disorder.
Collapse
Affiliation(s)
- Lei Xu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - William N Ruddick
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Susan N Bolch
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Mikael Klingeborn
- McLaughlin Research Institute, Great Falls, Montana; Helen Wills Neuroscience Institute, Berkeley, California
| | - Frank M Dyka
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Manoj M Kulkarni
- Division of Experimental Retinal Therapies, Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Chiab P Simpson
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - William A Beltran
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina
| | - Catherine Bowes Rickman
- Helen Wills Neuroscience Institute, Berkeley, California; Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - W Clay Smith
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida
| | - Astra Dinculescu
- Department of Ophthalmology, College of Medicine, University of Florida, Gainesville, Florida.
| |
Collapse
|
10
|
Alex V, Papastavrou V, Walker EH, Browning AC, Dhillon B, Borooah S. MICROPERIMETRY IN FOVEAL-SPARING ATROPHIC LATE-ONSET RETINAL DEGENERATION. Retina 2023; 43:1590-1596. [PMID: 37263185 DOI: 10.1097/iae.0000000000003849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
PURPOSE To understand the baseline and longitudinal microperimetry characteristics in foveal-sparing atrophic late-onset retinal degeneration. METHOD Prospective, cross-sectional, longitudinal study in which patients from the retina clinics of two academic teaching hospitals were included. Mesopic microperimetry was performed using a Nidek MP-1 micro-perimeter. Mean total, foveal, inner ring, and outer ring sensitivities were analyzed. RESULTS A total of 20 eyes from 10 patients had baseline data. The subset of 10 eyes from five patients had follow-up data. The mean baseline macular sensitivity was 10.02 dB (± 5.26) with findings showing symmetry between both eyes. In the follow-up cohort, there was a significant loss of outer ring (0.83 dB per year; P = 0.0001), inner ring (0.67 dB per year; P = 0.034), and foveal sensitivity (0.92 dB loss per year; P = 0.015), whereas the mean sensitivity decreased significantly (0.66 dB per year; P = 0.0008) at 4-year follow-up. The drop in mean sensitivity was associated with significant increases in the number of deep scotoma points (6.20, P = 0.037) and a decrease in the number of normal points (-6.30, P = 0.022). CONCLUSION Microperimetry is a useful tool for macular function follow-up to measure disease progression in late-onset retinal degeneration.
Collapse
Affiliation(s)
- Varsha Alex
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UCSD, La Jolla, California
| | | | - Evan H Walker
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UCSD, La Jolla, California
| | - Andrew C Browning
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle Upon Tyne, United Kingdom
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, School of Clinical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Scotland, United Kingdom; and
- Princess Alexandra Eye Pavilion, Chalmers Street, Edinburgh, Scotland, United Kingdom
| | - Shyamanga Borooah
- Viterbi Family Department of Ophthalmology, Shiley Eye Institute, UCSD, La Jolla, California
- Centre for Clinical Brain Sciences, School of Clinical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Scotland, United Kingdom; and
| |
Collapse
|
11
|
Lando L, Nguyen AXL, Li RTH, Megaw R, Dhillon B, Borooah S. Anterior segment phenotypic changes in late-onset retinal degeneration with Ser163Arg mutation in CTRP5/C1QTNF5. Graefes Arch Clin Exp Ophthalmol 2023; 261:2507-2516. [PMID: 37043002 DOI: 10.1007/s00417-023-06041-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/20/2023] [Accepted: 03/21/2023] [Indexed: 04/13/2023] Open
Abstract
PURPOSE Late-onset retinal degeneration (L-ORD) is a rare retinal dystrophy with anterior segment (AS) abnormalities, including long anterior zonules (LAZ) and iris atrophy. This investigation evaluates AS changes in a L-ORD cohort. METHODS Prospective, longitudinal study including L-ORD individuals (Ser163Arg) with ocular exam and standard slit-lamp photographs between 2011 and 2022. AS images were merged and assessed for LAZ number and zonule-free zone (ZFZ) radius. Further clinical findings such as iris atrophy patterns were reported descriptively. RESULTS Twelve eyes of 6 patients (4 males, median age = 60.5 years) were included, showing a median of 160 (11-372) LAZs, mainly localized superiorly (39%) and inferiorly (24%). There was a high inter-ocular correlation (rs = 0.94, p < 0.01), no difference in LAZ count between eyes (p = 0.82), and an inverse relationship between LAZ and age (r = - 0.82; p < 0.05). The ZFZ had median 2.1 mm (1.3-5.4), with no inter-ocular difference (p = 0.31). Iris transillumination defects occurred in 11/12 eyes, with 4 major patterns identified: pupillary ruff rarefaction (10/12), patchy atrophy (6/12), notched defects (6/12), and radial streaks (2/12). In a short-term follow-up of 5.9 years, 4 eyes showed a reduction in LAZ count to median 139.5 (67-169) (p = 0.50) and a concomitant increase in ZFZ measurement to median 2.2 (1.7-2.6) (p = 0.17). CONCLUSION This study confirms symmetric LAZs count and ZFZ in L-ORD, with ZFZ measurements smaller than in previous cohorts. A reduction in LAZs count and an increase in ZFZ with age were suggested longitudinally, yet findings need further evaluation as follow-up was limited to two cases.
Collapse
Affiliation(s)
- Leonardo Lando
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | | | - Randa Tsz Ha Li
- Centre for Clinical Brain Sciences, School of Clinical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, Scotland, UK
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, UK
| | - Roly Megaw
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, UK
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, Scotland, UK
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, School of Clinical Sciences, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, Scotland, UK
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh, Scotland, UK
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
12
|
Tian X, Zheng Q, Xie J, Zhou Q, Liang L, Xu G, Chen H, Ling C, Lu D. Improved gene therapy for MFRP deficiency-mediated retinal degeneration by knocking down endogenous bicistronic Mfrp and Ctrp5 transcript. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:843-856. [PMID: 37273779 PMCID: PMC10238587 DOI: 10.1016/j.omtn.2023.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
The membrane frizzled-related protein (Mfrp) and C1-tumor necrosis factor related protein 5 (Ctrp5) genes are transcribed as a bicistronic unit and dysregulation of either gene is associated with retinal degeneration in the retinal pigment epithelium (RPE) cells. However, the mechanisms that regulate the expression of the bicistronic transcript remain controversial. Here, we identified a microRNA-based negative feedback loop that helps maintain a normal expression level of the bicistronic Mfrp and Ctrp5 transcript. Specifically, miR-149-3p, a conserved microRNA, binds to the 3'UTR of the Mfrp gene. In MFRP-deficient rd6 mice, the miR-149-3p levels were compromised compared with those in WT mice, resulting in an increase in the bicistronic transcript. We also report a capsid-modified rAAVDJ-3M vector that is capable of robustly and specifically transducing RPE cells following subretinal delivery. Compared with the parental vector, the modified vector elicited similar levels of serum anti-rAAV antibodies, but recruited fewer microglial infiltrations. Most significantly, we also demonstrate that simultaneous overexpressing of MFRP and knockdown of the bicistronic transcript was more effective in rescuing vision than MFRP overexpression alone. Our findings offer new insights into the function of MFRP and provide a promising therapeutic strategy for the treatment of MFRP-associated ocular diseases.
Collapse
Affiliation(s)
- Xiao Tian
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qingyun Zheng
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Jinyan Xie
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qinlinglan Zhou
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Letong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Guotong Xu
- Department of Ophthalmology of Tongji Hospital and Laboratory of Clinical and Visual Sciences of Tongji Eye Institute, Tongji University School of Medicine, Shanghai 200092, China
| | - Hongyan Chen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chen Ling
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai 200438, China
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Daru Lu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology (Ministry of Education), School of Life Sciences, Fudan University, Shanghai 200438, China
- NHC Key Laboratory of Birth Defects and Reproductive Health, Chongqing Key Laboratory of Birth Defects and Reproductive Health, Chongqing Population and Family Planning, Science and Technology Research Institute, Chongqing 404100, China
| |
Collapse
|
13
|
Cellular and Molecular Mechanisms of Pathogenesis Underlying Inherited Retinal Dystrophies. Biomolecules 2023; 13:biom13020271. [PMID: 36830640 PMCID: PMC9953031 DOI: 10.3390/biom13020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) are congenital retinal degenerative diseases that have various inheritance patterns, including dominant, recessive, X-linked, and mitochondrial. These diseases are most often the result of defects in rod and/or cone photoreceptor and retinal pigment epithelium function, development, or both. The genes associated with these diseases, when mutated, produce altered protein products that have downstream effects in pathways critical to vision, including phototransduction, the visual cycle, photoreceptor development, cellular respiration, and retinal homeostasis. The aim of this manuscript is to provide a comprehensive review of the underlying molecular mechanisms of pathogenesis of IRDs by delving into many of the genes associated with IRD development, their protein products, and the pathways interrupted by genetic mutation.
Collapse
|
14
|
Borooah S, Chekuri A, Pachauri S, Sahu B, Vorochikhina M, Suk JJ, Bartsch DU, Chavali VRM, Jablonski MM, Ayyagari R. A Novel Mouse Model for Late-Onset Retinal Degeneration (L-ORD) Develops RPE Abnormalities Due to the Loss of C1qtnf5/Ctrp5. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1415:335-340. [PMID: 37440053 DOI: 10.1007/978-3-031-27681-1_48] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Late-onset retinal degeneration (L-ORD) is an autosomal dominant macular dystrophy resulting from mutations in the gene CTRP5/C1QTNF5. A mouse model (Ctrp5+/-) for the most common S163R developed many features of human clinical disease. We generated a novel homozygous Ctrp5 gene knock-out (Ctrp5-/-) mouse model to further study the mechanism of L-ORD. The retinal morphology of these mice was evaluated by retinal imaging, light microscopy, and transmission electron microscopy (TEM) at 6, 11, and 18.5 mo. Expression of Ctrp5 was analyzed using immunostaining and qRT-PCR. The Ctrp5-/- mice showed lack of both Ctrp5 transcript and protein. Presence of a significantly larger number of autofluorescent spots was observed in Ctrp5-/- mice compared to the WT (P < 0.0001) at 19 mo. Increased RPE stress with vacuolization and thinning was observed as early as 6 mo in Ctrp5-/- mice. Further, ultrastructural analyses revealed a progressive accumulation of basal laminar sub-RPE deposits in Ctrp5-/- mice from 11 mo. The Ctrp5-/- mice shared retinal and RPE pathology that matches with that previously described for Ctrp5+/- mice suggesting that pathology in these mice results from the loss of functional CTRP5 and that the presence of CTRP5 is critical for normal RPE and retinal function.
Collapse
Affiliation(s)
- Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Anil Chekuri
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Shikha Pachauri
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Bhubananda Sahu
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | | | - John J Suk
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Dirk-Uwe Bartsch
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | | | - Monica M Jablonski
- Department of Ophthalmology, Hamilton Eye Institute, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Radha Ayyagari
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Lando L, Borooah S. Late-Onset Retinal Degeneration: Clinical Perspectives. Clin Ophthalmol 2022; 16:3225-3246. [PMID: 36204011 PMCID: PMC9531619 DOI: 10.2147/opth.s362691] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/13/2022] [Indexed: 12/03/2022] Open
Abstract
Late-onset retinal degeneration (L-ORD) is a type of retinal dystrophy marked by nyctalopia and subretinal pigment epithelium deposits, which eventually promote retinal atrophy with final visual compromise. L-ORD may also present with changes in the anterior segment, notably long anterior zonules and iris atrophy, distinguishing it from other inherited eye conditions. Although it can clinically simulate age-related macular degeneration, L-ORD has a different course of progression and prognosis, requiring adequate diagnosis for patient counseling. This review summarizes the main clinical, genetic, pathophysiological, diagnostic, and therapeutic aspects of L-ORD to help ophthalmologists identify and manage this rare ocular disease.
Collapse
Affiliation(s)
- Leonardo Lando
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, ON, Canada
| | - Shyamanga Borooah
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Potential participation of CTRP6, a complement regulator, in the pathology of age related macular degeneration. Jpn J Ophthalmol 2022; 66:326-334. [PMID: 35397057 DOI: 10.1007/s10384-022-00913-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE To investigate the localized expression of C1q/tumor necrosis factor related protein (CTRP) 6 in human age-related macular degeneration (AMD) retinal tissues. EXPERIMENTAL STUDY DESIGN 4 AMD and 3 non-AMD whole eyes of Caucasian donors were used. Eyecups were excised at Eye Bank CorneaGen, Inc. METHODS To elucidate the effects of CTRP6, C3b was measured by an enzyme-linked immunosorbent-like assay. CFB versus CTRP6 competitive binding assay was applied to clarify the inhibition by CTRP6 of C3bBb complex formation. The cornea, iris, lens, and vitreous were removed and the eyes were cut into a posterior eye-cup including the retina, choroid, and sclera. Six-µm-thick serial sections of frozen samples underwent hematoxylin-eosin (HE) staining and indirect immunohistochemical staining using primary antibodies, anti-CTRP6, -CTRP5, -CTRP10, -Complement factor H (CFH) and -Clusterin (CLU). Results The two in vitro studies confirmed that CTRP6 has an inhibitory effect on alternative pathways of complement (APC) function and that the molecular target of CTRP6 is the inhibition of the formation of C3bBb. Localized expression for CTRP6 and CFH was found in the drusen of the AMD eyes, both associated with APC inhibition, CLU associated with membrane-attack complex (MAC) inhibition, and CTRP5 associated with retinal degeneration. CONCLUSION The localized expression of CTRP6 in the drusen of AMD eyes may open a new insight into the possible involvement of APC regulatory factors in the pathogenesis of AMD, together with the known CFH so far analyzed solely as an APC inhibitor.
Collapse
|
17
|
A common finding in foveal-sparing extensive macular atrophy with pseudodrusen (EMAP) implicates basal laminar deposits. Retina 2022; 42:1319-1329. [DOI: 10.1097/iae.0000000000003463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Miyagishima KJ, Sharma R, Nimmagadda M, Clore-Gronenborn K, Qureshy Z, Ortolan D, Bose D, Farnoodian M, Zhang C, Fausey A, Sergeev YV, Abu-Asab M, Jun B, Do KV, Kautzman Guerin MA, Calandria J, George A, Guan B, Wan Q, Sharp RC, Cukras C, Sieving PA, Hufnagel RB, Bazan NG, Boesze-Battaglia K, Miller S, Bharti K. AMPK modulation ameliorates dominant disease phenotypes of CTRP5 variant in retinal degeneration. Commun Biol 2021; 4:1360. [PMID: 34887495 PMCID: PMC8660775 DOI: 10.1038/s42003-021-02872-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/09/2021] [Indexed: 12/13/2022] Open
Abstract
Late-onset retinal degeneration (L-ORD) is an autosomal dominant disorder caused by a missense substitution in CTRP5. Distinctive clinical features include sub-retinal pigment epithelium (RPE) deposits, choroidal neovascularization, and RPE atrophy. In induced pluripotent stem cells-derived RPE from L-ORD patients (L-ORD-iRPE), we show that the dominant pathogenic CTRP5 variant leads to reduced CTRP5 secretion. In silico modeling suggests lower binding of mutant CTRP5 to adiponectin receptor 1 (ADIPOR1). Downstream of ADIPOR1 sustained activation of AMPK renders it insensitive to changes in AMP/ATP ratio resulting in defective lipid metabolism, reduced Neuroprotectin D1(NPD1) secretion, lower mitochondrial respiration, and reduced ATP production. These metabolic defects result in accumulation of sub-RPE deposits and leave L-ORD-iRPE susceptible to dedifferentiation. Gene augmentation of L-ORD-iRPE with WT CTRP5 or modulation of AMPK, by metformin, re-sensitize L-ORD-iRPE to changes in cellular energy status alleviating the disease cellular phenotypes. Our data suggests a mechanism for the dominant behavior of CTRP5 mutation and provides potential treatment strategies for L-ORD patients.
Collapse
Affiliation(s)
- Kiyoharu J. Miyagishima
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Ruchi Sharma
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Malika Nimmagadda
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Katharina Clore-Gronenborn
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Zoya Qureshy
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Davide Ortolan
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Devika Bose
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Mitra Farnoodian
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Congxiao Zhang
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Andrew Fausey
- grid.280030.90000 0001 2150 6316Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD 20892 USA
| | - Yuri V. Sergeev
- grid.280030.90000 0001 2150 6316Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD 20892 USA
| | - Mones Abu-Asab
- grid.280030.90000 0001 2150 6316Section of Histopathology, National Eye Institute, NIH, Bethesda, MD 20892 USA
| | - Bokkyoo Jun
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Khanh V. Do
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Marie-Audrey Kautzman Guerin
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Jorgelina Calandria
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Aman George
- grid.280030.90000 0001 2150 6316Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD 20892 USA
| | - Bin Guan
- grid.280030.90000 0001 2150 6316Medical Genetics and Ophthalmic Genomics Unit, NEI, NIH, Bethesda, MD 20892 USA
| | - Qin Wan
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Rachel C. Sharp
- grid.25879.310000 0004 1936 8972Department of Biochemistry University of Pennsylvania, 240 South 40th Street, Levy Building, Room 515, Philadelphia, PA 19104 USA
| | - Catherine Cukras
- grid.280030.90000 0001 2150 6316Division of Epidemiology and Clinical Applications and Ophthalmic Genetics and Visual Function Branch, NEI, NIH, Bethesda, MD 20892 USA
| | - Paul A. Sieving
- grid.280030.90000 0001 2150 6316Section for Translation Research in Retinal and Macular Degeneration, NEI, NIH, Bethesda, MD 20892 USA
| | - Robert B. Hufnagel
- grid.280030.90000 0001 2150 6316Medical Genetics and Ophthalmic Genomics Unit, NEI, NIH, Bethesda, MD 20892 USA
| | - Nicolas G. Bazan
- grid.279863.10000 0000 8954 1233Neuroscience Center of Excellence, Louisiana State University Health, New Orleans, LA 70112 USA
| | - Kathleen Boesze-Battaglia
- grid.25879.310000 0004 1936 8972Department of Biochemistry University of Pennsylvania, 240 South 40th Street, Levy Building, Room 515, Philadelphia, PA 19104 USA
| | - Sheldon Miller
- grid.280030.90000 0001 2150 6316Section on Epithelial and Retinal Physiology and Disease, NEI, NIH, Bethesda, MD 20892 USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, NEI, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
19
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
20
|
Wu Z, Fletcher EL, Kumar H, Greferath U, Guymer RH. Reticular pseudodrusen: A critical phenotype in age-related macular degeneration. Prog Retin Eye Res 2021; 88:101017. [PMID: 34752916 DOI: 10.1016/j.preteyeres.2021.101017] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/07/2021] [Accepted: 10/29/2021] [Indexed: 12/18/2022]
Abstract
Reticular pseudodrusen (RPD), or subretinal drusenoid deposits (SDD), refer to distinct lesions that occur in the subretinal space. Over the past three decades, their presence in association with age-related macular degeneration (AMD) has become increasingly recognized, especially as RPD have become more easily distinguished with newer clinical imaging modalities. There is also an increasing appreciation that RPD appear to be a critical AMD phenotype, where understanding their pathogenesis will provide further insights into the processes driving vision loss in AMD. However, key barriers to understanding the current evidence related to the independent impact of RPD include the heterogeneity in defining their presence, and failure to account for the confounding impact of the concurrent presence and severity of AMD pathology. This review thus critically discusses the current evidence on the prevalence and clinical significance of RPD and proposes a clinical imaging definition of RPD that will help move the field forward in gathering further key knowledge about this critical phenotype. It also proposes a putative mechanism for RPD formation and how they may drive progression to vision loss in AMD, through examining current evidence and presenting novel findings from preclinical and clinical studies.
Collapse
Affiliation(s)
- Zhichao Wu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Himeesh Kumar
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia
| | - Ursula Greferath
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Robyn H Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia; Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
21
|
Keenan TDL, Vanderford EK, de Silva T, Sieving PA, Cukras CA. MASSIVE ADVANCING NONEXUDATIVE TYPE 1 CHOROIDAL NEOVASCULARIZATION IN CTRP5 LATE-ONSET RETINAL DEGENERATION: Longitudinal Findings on Multimodal Imaging and Implications for Age-Related Macular Degeneration. Retina 2021; 41:2236-2245. [PMID: 33990119 PMCID: PMC8542642 DOI: 10.1097/iae.0000000000003205] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To describe longitudinal multimodal imaging findings of nonexudative choroidal neovascularization in CTRP5 late-onset retinal degeneration. METHODS Four patients with CTRP5-positive late-onset retinal degeneration underwent repeated ophthalmoscopic examination and multimodal imaging. All four patients (two siblings and their cousins, from a pedigree described previously) had the heterozygous S163R mutation. RESULTS All four patients demonstrated large subretinal lesions in the mid-peripheral retina of both eyes. The lesions were characterized by confluent hypercyanescence with hypocyanescent borders on indocyanine green angiography, faintly visible branching vascular networks with absent/minimal leakage on fluorescein angiography, Type 1 neovascularization on optical coherence tomography angiography, and absent retinal fluid, consistent with nonexudative choroidal neovascularization. The neovascular membranes enlarged substantially over time and the birth of new membranes was observed, but all lesions remained nonexudative/minimally exudative. Without treatment, all involved retinal areas remained free of atrophy and subretinal fibrosis. CONCLUSION We report the existence of massive advancing nonexudative Type 1 choroidal neovascularization in CTRP5 late-onset retinal degeneration. These findings have implications for age-related macular degeneration. They provide a monogenic model system for studying the mechanisms underlying the distinct events of choroidal neovascularization development, enlargement, progression to exudation, and atrophy in age-related macular degeneration. They suggest that choroidal hypoperfusion precedes neovascularization and that nonexudative neovascularization may protect against atrophy.
Collapse
Affiliation(s)
- Tiarnan D L Keenan
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Elliott K Vanderford
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Tharindu de Silva
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland; and
| | - Paul A Sieving
- Center for Ocular Regenerative Therapy, UC Davis Eye Center, University of California Davis, Sacramento, California
| | - Catherine A Cukras
- Division of Epidemiology and Clinical Applications, National Eye Institute, National Institutes of Health, Bethesda, Maryland; and
| |
Collapse
|
22
|
Borooah S, Papastavrou V, Lando L, Han J, Lin JH, Ayyagari R, Dhillon B, Browning AC. Reticular Pseudodrusen in Late-Onset Retinal Degeneration. Ophthalmol Retina 2021; 5:1043-1051. [PMID: 33352318 PMCID: PMC8217414 DOI: 10.1016/j.oret.2020.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 02/05/2023]
Abstract
PURPOSE To characterize the association of reticular pseudodrusen (RPD) with late-onset retinal degeneration (L-ORD) using multimodal imaging. DESIGN Prospective, 2-center, longitudinal case series. PARTICIPANTS Twenty-nine patients with L-ORD. METHODS All patients were evaluated within a 3-year interval with near-infrared reflectance, fundus autofluorescence, and spectral-domain OCT. In addition, a subset of patients also underwent indocyanine green angiography, fundus fluorescein angiography, mesopic microperimetry, and multifocal electroretinography. MAIN OUTCOME MEASURES Prevalence, topographic distribution, and temporal phenotypic changes of RPD in L-ORD. RESULTS A total of 29 patients with molecularly confirmed L-ORD were included in this prospective study. Reticular pseudodrusen was detected in 18 patients (62%) at baseline, 10 of whom were men. The prevalence of RPD varied with age. The mean age of RPD patients was 57.3 ± 7.2 years. Reticular pseudodrusen was not seen in patients younger than the fifth decade of life (n = 3 patients) or in the eighth decade of life (n = 5 patients). Reticular pseudodrusen were found commonly in the macula with relative sparing of the fovea and also were identified in the peripheral retina. The morphologic features of RPD changed with follow-up. Two patients (3 eyes) demonstrated RPD regression. CONCLUSIONS Reticular pseudodrusen is found frequently in patients with L-ORD and at a younger age than in individuals with age-related macular degeneration (AMD). Reticular pseudodrusen exhibits quick formation and collapse, change in type and morphologic features with time, and relative foveal sparing and also has a peripheral retinal location in L-ORD.
Collapse
Affiliation(s)
- Shyamanga Borooah
- Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom; Shiley Eye Institute, University of California, San Diego, La Jolla, California.
| | | | - Leonardo Lando
- Shiley Eye Institute, University of California, San Diego, La Jolla, California; Department of Ophthalmology, Federal University of Goias, Goiania, Brazil
| | - Jonathan Han
- Shiley Eye Institute, University of California, San Diego, La Jolla, California
| | - Jonathan H Lin
- Shiley Eye Institute, University of California, San Diego, La Jolla, California; Departments of Ophthalmology and Pathology, Stanford University, Stanford, California; Veterans Affairs, Palo Alto Healthcare System, Palo Alto, California
| | - Radha Ayyagari
- Shiley Eye Institute, University of California, San Diego, La Jolla, California
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew C Browning
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
23
|
Roman AJ, Cideciyan AV, Wu V, Garafalo AV, Jacobson SG. Full-field stimulus testing: Role in the clinic and as an outcome measure in clinical trials of severe childhood retinal disease. Prog Retin Eye Res 2021; 87:101000. [PMID: 34464742 DOI: 10.1016/j.preteyeres.2021.101000] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 12/27/2022]
Abstract
Disease mechanisms have become better understood in previously incurable forms of early-onset severe retinal dystrophy, such as Leber congenital amaurosis (LCA). This has led to novel treatments and clinical trials that have shown some success. Standard methods to measure vision were difficult if not impossible to perform in severely affected patients with low vision and nystagmus. To meet the need for visual assays, we devised a psychophysical method, which we named full-field stimulus testing (FST). From early versions based on an automated perimeter, we advanced FST to a more available light-emitting diode platform. The journey from invention to use of such a technique in our inherited retinal degeneration clinic is reviewed and many of the lessons learned over the 15 years of application of FST are explained. Although the original purpose and application of FST was to quantify visual thresholds in LCA, there are rare opportunities for FST also to be used beyond LCA to measure aspects of vision in other inherited retinal degenerations; examples are given. The main goal of the current review, however, remains to enable investigators studying and treating LCA to understand how to best use FST and how to reduce artefact and confounding complexities so the test results become more valuable to the understanding of LCA diseases and results of novel interventions.
Collapse
Affiliation(s)
- Alejandro J Roman
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Vivian Wu
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Alexandra V Garafalo
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
24
|
Borooah S, Papastavrou VT, Lando L, Moghimi S, Lin T, Dans K, Motevasseli T, Cameron JR, Freeman WR, Dhillon B, Browning AC. CHARACTERIZING THE NATURAL HISTORY OF FOVEAL-SPARING ATROPHIC LATE-ONSET RETINAL DEGENERATION. Retina 2021; 41:1329-1337. [PMID: 33149097 DOI: 10.1097/iae.0000000000003017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE To identify quantifiable markers of disease progression in patients with foveal-sparing atrophic late-onset retinal degeneration using fundus autofluorescence and spectral-domain optical coherence tomography imaging. METHODS Natural history study evaluating patients within a 3-year interval. Disease progression was assessed based on the area of retinal atrophy, macular topographic distribution of lesions, retinal and choroidal thickness and volume, and choroidal vascularity index. RESULTS Twenty-four eyes (12 individuals) were included for fundus autofluorescence, and 31 eyes (16 individuals) for spectral-domain optical coherence tomography studies. Measurements were symmetrical between eyes of the same patient. The area of atrophy significantly enlarged (P = 0.002), with a growth rate of 2.67 mm2/year (SD: 2.13; square rooted: 0.57 mm/year, SD = 0.34). Baseline area of atrophy and progression both correlated with age. Most atrophic lesions were found in the temporal macula and progressed nasally at follow-up. Central choroidal and retinal thicknesses and volume in late-onset retinal degeneration cases were significantly reduced compared with controls, but only central retinal thickness decreased significantly at follow-up. CONCLUSION This study identifies the area of atrophy and central retinal thickness, but not chorioretinal volume or choroidal thickness, as markers of short-term progression in late-onset retinal degeneration. These findings may be useful for disease monitoring and late-onset retinal degeneration interventional studies.
Collapse
Affiliation(s)
- Shyamanga Borooah
- Jacobs Retina Center, University of California San Diego, La Jolla, California
- Princess Alexandra Eye Pavilion, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Leonardo Lando
- Shiley Eye Institute, University of California San Diego, La Jolla, California; and
- Department of Ophthalmology, Federal University of Goias, Goiania, Brazil
| | - Sasan Moghimi
- Shiley Eye Institute, University of California San Diego, La Jolla, California; and
| | - Tiezhu Lin
- Jacobs Retina Center, University of California San Diego, La Jolla, California
| | - Kunny Dans
- Jacobs Retina Center, University of California San Diego, La Jolla, California
| | | | - James R Cameron
- Princess Alexandra Eye Pavilion, University of Edinburgh, Edinburgh, United Kingdom
| | - William R Freeman
- Jacobs Retina Center, University of California San Diego, La Jolla, California
| | - Baljean Dhillon
- Princess Alexandra Eye Pavilion, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew C Browning
- Newcastle Eye Centre, Royal Victoria Infirmary, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
25
|
Liu J, Zhang R, Sun L, Zheng Y, Chen S, Chen SL, Xu Y, Pang CP, Zhang M, Ng TK. Genotype-phenotype correlation and interaction of 4q25, 15q14 and MIPEP variants with myopia in southern Chinese population. Br J Ophthalmol 2021; 105:869-877. [PMID: 31604699 DOI: 10.1136/bjophthalmol-2019-314782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND/AIMS To determine the association and interaction of genome-wide association study-reported variants for Asian populations with myopia and ocular biometric parameters in southern Chinese population. METHODS Totally, 1462 unrelated Han Chinese subjects were recruited with complete ophthalmic examinations, including 1196 myopia and 266 control subjects. A total of nine variants were selected for TaqMan genotyping. The genetic association, joint additive effect and genotype-phenotype correlation were investigated. RESULTS The 4q25 variant rs10034228 (p=0.002, OR=0.56) and MIPEP variant rs9318086 (p=0.004, OR=1.62) were found to be significantly associated with myopia as well as different severity of myopia. Moreover, 15q14 variant rs524952 (p=0.015, OR=1.49) also showed mild association with myopia and high myopia. However, there was no significant association of CTNND2, vasoactive intestinal peptide receptor 2 and syntrophin beta 1 variants with myopia. Joint additive analysis revealed that the subjects carrying 6 risk alleles of the 3 associated variants were 10-fold higher risk predisposed to high myopia. Genotype-phenotype correlation analysis revealed that high myopia subjects carrying 4q25 rs10034228 T allele showed thicker central corneal thickness, whereas high myopia subjects carrying 15q14 rs524952 A allele were associated with longer axial length and larger curvature ratio. CONCLUSION This study revealed significant association of 4q25, 15q14 and MIPEP variants with myopia and different severity of myopia in southern Chinese population, joint additively enhancing 10-fold of risk predisposing to high myopia. The correlation of these associated variants with axial length and corneal parameters suggests their contribution to the refractive status in high myopia subjects.
Collapse
Affiliation(s)
- Junbin Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Riping Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Lixia Sun
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yuqian Zheng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shaowan Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Shao-Lang Chen
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Yanxuan Xu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Chi-Pui Pang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
| | - Tsz Kin Ng
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou, Guangdong, China
- Department of Ophthalmology and Visual Sciences, The Chinese University of Hong Kong, Kowloon, Hong Kong
- Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
26
|
Sura AA, Chen L, Messinger JD, Swain TA, McGwin G, Freund KB, Curcio CA. Measuring the Contributions of Basal Laminar Deposit and Bruch's Membrane in Age-Related Macular Degeneration. Invest Ophthalmol Vis Sci 2021; 61:19. [PMID: 33186466 PMCID: PMC7671869 DOI: 10.1167/iovs.61.13.19] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose Basal laminar deposit (BLamD) is a consistent finding in age-related macular degeneration (AMD). We quantified BLamD thickness, appearance, and topography in eyes of aged donors with and without AMD and evaluated its relationship to other components of the retinal pigment epithelium-basal lamina/Bruch's membrane (RPE-BL-BrM) complex. Methods Donor eyes (n = 132) were classified as normal (n = 54), early to intermediate AMD (n = 24), geographic atrophy (GA; n = 13), and neovascular AMD (NV; n = 41). In high-resolution histology, we assessed RPE, BLamD, and BrM thicknesses and phenotypes at 3309 predefined locations in the central (foveal and perifovea) and superior (perifoveal) sections. Pre-mortem optical coherence tomography (OCT) imaging of a 90-year-old woman was compared to postmortem histopathology. Results In non-atrophic areas of AMD eyes, the RPE-BLamD is thick (normal = 13.7 µm, early-intermediate = 16.8 µm, GA = 17.4 µm, NV = 18.7 µm), because the BLamD is thick (normal = 0.3 µm, early-intermediate = 5.5 µm, GA = 4.1 µm, NV = 5.3 µm). RPE layer thickness is similar across these stages. Disease-associated variants of BLamD (thick, late, basal mounds) cluster subfoveally. A thick BLamD is visible on OCT as a hyporeflective split in the RPE-BL-BrM complex. BrM is thin (3.5 µm) in NV (normal = 4.2 µm, early to intermediate = 4.4 µm, and GA = 4.2 µm). Conclusions The RPE-BL-BrM complex is thick in AMD, driven by the accumulation and expansion of BLamD rather than expansion of either three-layer BrM, RPE-BL, or RPE. BLamD is clinically appreciable by OCT in some patients as a non-neovascular "split RPE-BL-BrM complex" or "double-layer sign." BLamD may contribute toward the formation and progression of high-risk drusen yet also exhibit protective properties.
Collapse
Affiliation(s)
- Amol A Sura
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Ling Chen
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, and Chongqing Eye Institute, Chongqing, China
| | - Jeffrey D Messinger
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| | - Thomas A Swain
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Gerald McGwin
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States.,Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - K Bailey Freund
- Vitreous Retina Macula Consultants of New York, New York, New York, United States.,Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan.,LuEsther T. Mertz Retinal Research Center, Manhattan Eye Ear and Throat Hospital, New York, New York, United States.,Department of Ophthalmology, NYU Langone School of Medicine, New York, New York, United States.,Columbia University College of Physicians and Surgeons, Harkness Eye Institute, New York, New York, United States
| | - Christine A Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama, United States
| |
Collapse
|
27
|
De Zaeytijd J, Coppieters F, De Bruyne M, Van Royen J, Roels D, Six R, Van Cauwenbergh C, De Baere E, Leroy BP. Longitudinal phenotypic study of late-onset retinal degeneration due to a founder variant c.562C>A p.(Pro188Thr) in the C1QTNF5 gene. Ophthalmic Genet 2021; 42:521-532. [PMID: 33949280 DOI: 10.1080/13816810.2021.1923041] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Background: Late-onset retinal degeneration (L-ORD) is a rare autosomal dominant retinal dystrophy related to C1QTNF5 gene variants.Materials and methods: Twenty-six patients (21-81 years) with L-ORD due to c.562C>A p.(Pro188Thr) with a mean follow-up time of 8 years (range 1-37 years) underwent an extensive ophthalmic work-up.Results: Best-corrected visual acuity (BCVA) and visual fields were maintained up to 50 to 55 years (n = 8), with a gradual decline, but conservation of functional central vision between 55 to 65 years (n = 15), followed by a steep decrease in overall visual function beyond 65 years (n = 9). Classic anterior segment findings in L-ORD of abnormally long, anteriorly inserted lens zonules were absent in most patients (n = 24/26). In contrast, findings of iris transillumination and sphincter pupillae atrophy with poor dilation were novel. Patients presented with three completely different initial fundus phenotypes: adjoining pavingstone-like atrophic patches (type 1) (n = 6/20); tiny yellow-white subretinal dots (type 2) (n = 8/20); or larger yellow, thick, round sub-RPE drusenoid deposits (type 3) (n = 4/20). Two patients had a mixed phenotype. Although different in presentation phenotype, patients eventually all progressed to a common panretinal atrophy with diffuse intraretinal pigment migration beyond the age of 65. Progression pace, and thus visual prognosis, differed depending on presentation phenotype. Specifically, type 2 appears to have a more benign course.Conclusions: Phenotypic analysis showed three distinct presenting phenotypes with a considerable intrafamilial variability both in age of onset of clinical signs and in disease progression, with a fair visual potential (>20/40) until the seventh decade.Abbreviations: L-ORD: Late-onset retinal degeneration; C1QTNF5: complement 1Q tumor necrosis factor 5; OCT: Ocular coherence tomography; BCVA: Best-corrected visual acuity; RPE: Retinal pigment epithelium; ffERG: Full-field electroretinography; IRD: Inherited retinal dystrophy; CNV: Choroidal neovascularization; LAZ: Long anteriorly inserted zonules; AMPK: AMP-activated protein kinase; IOP: Intraocular pressure; cSLO: confocal scanning laser ophthalmoscopy; BAF: Blue light autofluorescence; NIR-AF: Near-infrared autofluorescence; NIR-R: Near-infrared reflectance; RF: Red-free; SD-OCT: Spectral domain ocular coherence tomography; HRR: Hardy-Rand-Rittler pseudo-isochromatic plates; AS: anterior segment; UBM: ultrasound biomicroscopy; PCR: Polymerase chain reaction; SNP: Single nucleotide polymorphism; VEGF: Vascular endothelial growth factor; IZ: Interdigitation zone; EZ: Ellipsoid zone; ELM: External limiting membrane; LP: Light perception; AMD: Age-related macular degeneration; SFD: Sorsby fundus dystrophy.
Collapse
Affiliation(s)
- Julie De Zaeytijd
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Frauke Coppieters
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Marieke De Bruyne
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Van Royen
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Dimitri Roels
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium
| | - Rani Six
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Head & Skin, Ghent University, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital, Ghent, Belgium.,Center for Medical Genetics Ghent, Ghent University Hospital, Ghent, Belgium.,Department of Head & Skin, Ghent University, Ghent, Belgium.,Division of Ophthalmology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA.,Center for Cellular & Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| |
Collapse
|
28
|
Du J, Zhu S, Lim RR, Chao JR. Proline metabolism and transport in retinal health and disease. Amino Acids 2021; 53:1789-1806. [PMID: 33871679 PMCID: PMC8054134 DOI: 10.1007/s00726-021-02981-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
The retina is one of the most energy-demanding tissues in the human body. Photoreceptors in the outer retina rely on nutrient support from the neighboring retinal pigment epithelium (RPE), a monolayer of epithelial cells that separate the retina and choroidal blood supply. RPE dysfunction or cell death can result in photoreceptor degeneration, leading to blindness in retinal degenerative diseases including some inherited retinal degenerations and age-related macular degeneration (AMD). In addition to having ready access to rich nutrients from blood, the RPE is also supplied with lactate from adjacent photoreceptors. Moreover, RPE can phagocytose lipid-rich outer segments for degradation and recycling on a daily basis. Recent studies show RPE cells prefer proline as a major metabolic substrate, and they are highly enriched for the proline transporter, SLC6A20. In contrast, dysfunctional or poorly differentiated RPE fails to utilize proline. RPE uses proline to fuel mitochondrial metabolism, synthesize amino acids, build the extracellular matrix, fight against oxidative stress, and sustain differentiation. Remarkably, the neural retina rarely imports proline directly, but it uptakes and utilizes intermediates and amino acids derived from proline catabolism in the RPE. Mutations of genes in proline metabolism are associated with retinal degenerative diseases, and proline supplementation is reported to improve RPE-initiated vision loss. This review will cover proline metabolism in RPE and highlight the importance of proline transport and utilization in maintaining retinal metabolism and health.
Collapse
Affiliation(s)
- Jianhai Du
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA. .,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA. .,One Medical Center Dr, WVU Eye Institute, PO Box 9193, Morgantown, WV, 26505, USA.
| | - Siyan Zhu
- Department of Ophthalmology and Visual Sciences, West Virginia University, Morgantown, WV, 26506, USA.,Department of Biochemistry, West Virginia University, Morgantown, WV, 26506, USA
| | - Rayne R Lim
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, Seattle, WA, 98109, USA
| |
Collapse
|
29
|
Zeitz C, Nassisi M, Laurent-Coriat C, Andrieu C, Boyard F, Condroyer C, Démontant V, Antonio A, Lancelot ME, Frederiksen H, Kloeckener-Gruissem B, El-Shamieh S, Zanlonghi X, Meunier I, Roux AF, Mohand-Saïd S, Sahel JA, Audo I. CHM mutation spectrum and disease: An update at the time of human therapeutic trials. Hum Mutat 2021; 42:323-341. [PMID: 33538369 DOI: 10.1002/humu.24174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 12/21/2020] [Accepted: 01/20/2021] [Indexed: 12/15/2022]
Abstract
Choroideremia is an X-linked inherited retinal disorder (IRD) characterized by the degeneration of retinal pigment epithelium, photoreceptors, choriocapillaris and choroid affecting males with variable phenotypes in female carriers. Unlike other IRD, characterized by a large clinical and genetic heterogeneity, choroideremia shows a specific phenotype with causative mutations in only one gene, CHM. Ongoing gene replacement trials raise further interests in this disorder. We describe here the clinical and genetic data from a French cohort of 45 families, 25 of which carry novel variants, in the context of 822 previously reported choroideremia families. Most of the variants represent loss-of-function mutations with eleven families having large (i.e. ≥6 kb) genomic deletions, 18 small insertions, deletions or insertion deletions, six showing nonsense variants, eight splice site variants and two missense variants likely to affect splicing. Similarly, 822 previously published families carry mostly loss-of-function variants. Recurrent variants are observed worldwide, some of which linked to a common ancestor, others arisen independently in specific CHM regions prone to mutations. Since all exons of CHM may harbor variants, Sanger sequencing combined with quantitative polymerase chain reaction or multiplex ligation-dependent probe amplification experiments are efficient to achieve the molecular diagnosis in patients with typical choroideremia features.
Collapse
Affiliation(s)
- Christina Zeitz
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Marco Nassisi
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Camille Andrieu
- CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - Fiona Boyard
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Vanessa Démontant
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | | | - Helen Frederiksen
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France
| | - Barbara Kloeckener-Gruissem
- Institute of Medical Molecular Genetics, University of Zurich, Schlieren, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Said El-Shamieh
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Xavier Zanlonghi
- Clinique Pluridisciplinaire Jules Verne, Institut Ophtalmologique de l'Ouest, Nantes, France
| | - Isabelle Meunier
- National Reference Centre for Inherited Sensory Diseases, University of Montpellier, Montpellier University Hospital, Montpellier, France.,Institute for Neurosciences of Montpellier (INM), University of Montpellier, INSERM, Montpellier, France
| | - Anne-Françoise Roux
- Laboratoire de Génétique Moléculaire, CHU de Montpellier, Université de Montpellier, Montpellier, France
| | - Saddek Mohand-Saïd
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Académie des Sciences-Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Isabelle Audo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris, France.,CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris, France.,Department of Genetics, UCL-Institute of Ophthalmology, London, UK
| |
Collapse
|
30
|
Autosomal Dominant Gyrate Atrophy-Like Choroidal Dystrophy Revisited: 45 Years Follow-Up and Association with a Novel C1QTNF5 Missense Variant. Int J Mol Sci 2021; 22:ijms22042089. [PMID: 33669876 PMCID: PMC7923301 DOI: 10.3390/ijms22042089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/17/2021] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
We present a long-term follow-up in autosomal dominant gyrate atrophy-like choroidal dystrophy (adGALCD) and propose a possible genotype/phenotype correlation. Ophthalmic examination of six patients from two families revealed confluent areas of choroidal atrophy resembling gyrate atrophy, starting in the second decade of life. Progression continued centrally, reaching the fovea at about 60 years of age. Subretinal deposits, retinal pigmentation or choroidal neovascularization as seen in late-onset retinal degeneration (LORD) were not observed. Whole genome sequencing revealed a novel missense variant in the C1QTNF5 gene (p.(Q180E)) which was found in heterozygous state in all affected subjects. Haplotype analysis showed that this variant found in both families is identical by descent. Three-dimensional modeling of the possible supramolecular assemblies of C1QTNF5 revealed that the p.(Q180E) variant led to the destabilization of protein tertiary and quaternary structures, affecting both the stability of the single protomer and the entire globular head, thus exerting detrimental effects on the formation of C1QTNF5 trimeric globular domains and their interaction. In conclusion, we propose that the p.(Q180E) variant causes a specific phenotype, adGALCD, that differs in multiple clinical aspects from LORD. Disruption of optimal cell-adhesion mechanisms is expected when analyzing the effects of the point mutation at the protein level.
Collapse
|
31
|
Khan KN, Borooah S, Lando L, Dans K, Mahroo OA, Meshi A, Kalitzeos A, Agorogiannis G, Moghimi S, Freeman WR, Webster AR, Moore AT, McKibbin M, Michaelides M. Quantifying the Separation Between the Retinal Pigment Epithelium and Bruch's Membrane using Optical Coherence Tomography in Patients with Inherited Macular Degeneration. Transl Vis Sci Technol 2020; 9:26. [PMID: 32821523 PMCID: PMC7409156 DOI: 10.1167/tvst.9.6.26] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 03/12/2020] [Indexed: 12/17/2022] Open
Abstract
Purpose To describe and quantify Bruch's membrane (BM) and retinal pigment epithelium (RPE) separation using spectral-domain (SD) optical coherence tomography (OCT) in patients affected by inherited macular degenerations associated with BM thickening. Methods Patients with molecularly confirmed Sorsby fundus dystrophy (SFD), dominant drusen (DD), and late-onset retinal degeneration (L-ORD) were included in this retrospective study. Each disease was classed as early stage if subjects were asymptomatic, intermediate stage if they had nyctalopia alone, and late stage if they described loss of central vision. The main outcome was measurement of BM-RPE separation on SD-OCT. The BM-RPE separation measurements were compared against those in normal age-matched controls. Results Seventeen patients with SFD, 22 with DD, and eight with L-ORD were included. BM-RPE separation on SD-OCT demonstrated a high test-retest and interobserver reproducibility (intraclass correlation coefficients >0.9). BM-RPE separation was not identified in normal subjects. In SFD, there was greater BM-RPE separation in late-stage disease compared with intermediate-stage patients both at subfoveal (P < 0.05) and juxtafoveal (P < 0.01) locations. In DD, there was increased BM-RPE separation in late-stage disease compared with early stage at subfoveal (P < 0.001) and juxtafoveal (P < 0.05) topographies. There was no significant difference in BM-RPE separation between disease stages in L-ORD. Conclusions BM-RPE separation is a novel, quantifiable phenotype in the three monogenic macular dystrophies studied, and may be an optical correlate of the histopathological thickening in BM that is known to occur. BM-RPE separation, as measured by OCT, varies with stage of disease in SFD and DD, but not in L-ORD. Translational Relevance SFD, DD, and L-ORD are associated with BM thickening. In this group of patients, OCT assessment of macular structure identifies a separation of the usually single, hyperreflective line thought to represent BM and the overlying RPE. This separation is a novel and quantifiable feature of disease staging in SFD and DD.
Collapse
Affiliation(s)
- Kamron N Khan
- Medical Retina Service, Moorfields Eye Hospital, London, UK.,University College London Institute of Ophthalmology, London, UK.,St. James's University Hospital, Leeds, UK.,Department of Ophthalmology, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Shyamanga Borooah
- Medical Retina Service, Moorfields Eye Hospital, London, UK.,Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Leonardo Lando
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Kunny Dans
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Omar A Mahroo
- Medical Retina Service, Moorfields Eye Hospital, London, UK.,University College London Institute of Ophthalmology, London, UK
| | - Amit Meshi
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Angelos Kalitzeos
- Medical Retina Service, Moorfields Eye Hospital, London, UK.,University College London Institute of Ophthalmology, London, UK
| | | | - Sasan Moghimi
- Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - William R Freeman
- Jacobs Retina Center, Shiley Eye Institute, University of California San Diego, La Jolla, CA, USA
| | - Andrew R Webster
- Medical Retina Service, Moorfields Eye Hospital, London, UK.,University College London Institute of Ophthalmology, London, UK
| | - Anthony T Moore
- University College London Institute of Ophthalmology, London, UK.,Department of Ophthalmology, University of California San Francisco, San Francisco, CA, USA
| | - Martin McKibbin
- St. James's University Hospital, Leeds, UK.,Department of Ophthalmology, Leeds Institute of Biomedical and Clinical Sciences, University of Leeds, Leeds, UK
| | - Michel Michaelides
- Medical Retina Service, Moorfields Eye Hospital, London, UK.,University College London Institute of Ophthalmology, London, UK
| |
Collapse
|
32
|
Paraoan L, Sharif U, Carlsson E, Supharattanasitthi W, Mahmud NM, Kamalden TA, Hiscott P, Jackson M, Grierson I. Secretory proteostasis of the retinal pigmented epithelium: Impairment links to age-related macular degeneration. Prog Retin Eye Res 2020; 79:100859. [PMID: 32278708 DOI: 10.1016/j.preteyeres.2020.100859] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/19/2022]
Abstract
Secretory proteostasis integrates protein synthesis, processing, folding and trafficking pathways that are essential for efficient cellular secretion. For the retinal pigment epithelium (RPE), secretory proteostasis is of vital importance for the maintenance of the structural and functional integrity of apical (photoreceptors) and basal (Bruch's membrane/choroidal blood supply) sides of the environment it resides in. This integrity is achieved through functions governed by RPE secreted proteins, which include extracellular matrix modelling/remodelling, angiogenesis and immune response modulation. Impaired RPE secretory proteostasis affects not only the extracellular environment, but leads to intracellular protein aggregation and ER-stress with subsequent cell death. Ample recent evidence implicates dysregulated proteostasis as a key factor in the development of age-related macular degeneration (AMD), the leading cause of blindness in the developed world, and research aiming to characterise the roles of various proteins implicated in AMD-associated dysregulated proteostasis unveiled unexpected facets of the mechanisms involved in degenerative pathogenesis. This review analyses cellular processes unveiled by the study of the top 200 transcripts most abundantly expressed by the RPE/choroid in the light of the specialised secretory nature of the RPE. Functional roles of these proteins and the mechanisms of their impaired secretion, due to age and genetic-related causes, are analysed in relation to AMD development. Understanding the importance of RPE secretory proteostasis in relation to maintaining retinal health and how it becomes impaired in disease is of paramount importance for the development and assessment of future therapeutic advancements involving gene and cell therapies.
Collapse
Affiliation(s)
- Luminita Paraoan
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom.
| | - Umar Sharif
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Emil Carlsson
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Wasu Supharattanasitthi
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom; Department of Physiology, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Nur Musfirah Mahmud
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Tengku Ain Kamalden
- Eye Research Centre, Department of Ophthalmology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Paul Hiscott
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Malcolm Jackson
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| | - Ian Grierson
- Department of Eye and Vision Science, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
33
|
Cross SH, Mckie L, Hurd TW, Riley S, Wills J, Barnard AR, Young F, MacLaren RE, Jackson IJ. The nanophthalmos protein TMEM98 inhibits MYRF self-cleavage and is required for eye size specification. PLoS Genet 2020; 16:e1008583. [PMID: 32236127 PMCID: PMC7153906 DOI: 10.1371/journal.pgen.1008583] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/13/2020] [Accepted: 03/06/2020] [Indexed: 12/31/2022] Open
Abstract
The precise control of eye size is essential for normal vision. TMEM98 is a highly conserved and widely expressed gene which appears to be involved in eye size regulation. Mutations in human TMEM98 are found in patients with nanophthalmos (very small eyes) and variants near the gene are associated in population studies with myopia and increased eye size. As complete loss of function mutations in mouse Tmem98 result in perinatal lethality, we produced mice deficient for Tmem98 in the retinal pigment epithelium (RPE), where Tmem98 is highly expressed. These mice have greatly enlarged eyes that are very fragile with very thin retinas, compressed choroid and thin sclera. To gain insight into the mechanism of action we used a proximity labelling approach to discover interacting proteins and identified MYRF as an interacting partner. Mutations of MYRF are also associated with nanophthalmos. The protein is an endoplasmic reticulum-tethered transcription factor which undergoes autoproteolytic cleavage to liberate the N-terminal part which then translocates to the nucleus where it acts as a transcription factor. We find that TMEM98 inhibits the self-cleavage of MYRF, in a novel regulatory mechanism. In RPE lacking TMEM98, MYRF is ectopically activated and abnormally localised to the nuclei. Our findings highlight the importance of the interplay between TMEM98 and MYRF in determining the size of the eye.
Collapse
Affiliation(s)
- Sally H. Cross
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Lisa Mckie
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Toby W. Hurd
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Sam Riley
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimi Wills
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alun R. Barnard
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Fiona Young
- Electron Microscopy, Pathology, Western General Hospital, Edinburgh, United Kingdom
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, The John Radcliffe Hospital, Oxford, United Kingdom
| | - Ian J. Jackson
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
- Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| |
Collapse
|
34
|
Rodríguez-Muñoz A, Aller E, Jaijo T, González-García E, Cabrera-Peset A, Gallego-Pinazo R, Udaondo P, Salom D, García-García G, Millán JM. Expanding the Clinical and Molecular Heterogeneity of Nonsyndromic Inherited Retinal Dystrophies. J Mol Diagn 2020; 22:532-543. [PMID: 32036094 DOI: 10.1016/j.jmoldx.2020.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/01/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
A cohort of 172 patients diagnosed clinically with nonsyndromic retinal dystrophies, from 110 families underwent full ophthalmologic examination, including retinal imaging, electrophysiology, and optical coherence tomography, when feasible. Molecular analysis was performed using targeted next-generation sequencing (NGS). Variants were filtered and prioritized according to the minimum allele frequency, and finally classified according to the American College of Medical Genetics and Genomics guidelines. Multiplex ligation-dependent probe amplification and array comparative genomic hybridization were performed to validate copy number variations identified by NGS. The diagnostic yield of this study was 62% of studied families. Thirty novel mutations were identified. The study found phenotypic intra- and interfamilial variability in families with mutations in C1QTNF5, CERKL, and PROM1; biallelic mutations in PDE6B in a unilateral retinitis pigmentosa patient; interocular asymmetry RP in 50% of the symptomatic RPGR-mutated females; the first case with possible digenism between CNGA1 and CNGB1; and a ROM1 duplication in two unrelated retinitis pigmentosa families. Ten unrelated cases were reclassified. This study highlights the clinical utility of targeted NGS for nonsyndromic inherited retinal dystrophy cases and the importance of full ophthalmologic examination, which allows new genotype-phenotype associations and expands the knowledge of this group of disorders. Identifying the cause of disease is essential to improve patient management, provide accurate genetic counseling, and take advantage of gene therapy-based treatments.
Collapse
Affiliation(s)
- Ana Rodríguez-Muñoz
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Elena Aller
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Teresa Jaijo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Genetics Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Emilio González-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Departments of Neurophysiology, Hospital de Manises, Valencia, Spain
| | | | - Roberto Gallego-Pinazo
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Macula Unit, Oftalvist Clinic, Valencia, Spain
| | - Patricia Udaondo
- Ophthalmology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - David Salom
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain; Departments of Ophthalmology, Hospital de Manises, Valencia, Spain
| | - Gema García-García
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| | - José M Millán
- Molecular, Cellular and Genomics Biomedicine Research Group, Instituto de Investigación Sanitaria La Fe, Valencia, Spain; Unidad Mixta de Enfermedades raras IIS La Fe-Centro de Investigación Príncipe Felipe, Valencia, Spain; Biomedical Research Network for Rare Diseases, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| |
Collapse
|
35
|
Chekuri A, Zientara‐Rytter K, Soto‐Hermida A, Borooah S, Voronchikhina M, Biswas P, Kumar V, Goodsell D, Hayward C, Shaw P, Stanton C, Garland D, Subramani S, Ayyagari R. Late-onset retinal degeneration pathology due to mutations in CTRP5 is mediated through HTRA1. Aging Cell 2019; 18:e13011. [PMID: 31385385 PMCID: PMC6826137 DOI: 10.1111/acel.13011] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/13/2019] [Accepted: 06/16/2019] [Indexed: 12/22/2022] Open
Abstract
Late-onset retinal degeneration (L-ORD) is an autosomal dominant macular degeneration characterized by the formation of sub-retinal pigment epithelium (RPE) deposits and neuroretinal atrophy. L-ORD results from mutations in the C1q-tumor necrosis factor-5 protein (CTRP5), encoded by the CTRP5/C1QTNF5 gene. To understand the mechanism underlying L-ORD pathology, we used a human cDNA library yeast two-hybrid screen to identify interacting partners of CTRP5. Additionally, we analyzed the Bruch's membrane/choroid (BM-Ch) from wild-type (Wt), heterozygous S163R Ctrp5 mutation knock-in (Ctrp5S163R/wt ), and homozygous knock-in (Ctrp5S163R/S163R ) mice using mass spectrometry. Both approaches showed an association between CTRP5 and HTRA1 via its C-terminal PDZ-binding motif, stimulation of the HTRA1 protease activity by CTRP5, and CTRP5 serving as an HTRA1 substrate. The S163R-CTRP5 protein also binds to HTRA1 but is resistant to HTRA1-mediated cleavage. Immunohistochemistry and proteomic analysis showed significant accumulation of CTRP5 and HTRA1 in BM-Ch of Ctrp5S163R/S163R and Ctrp5S163R/wt mice compared with Wt. Additional extracellular matrix (ECM) components that are HTRA1 substrates also accumulated in these mice. These results implicate HTRA1 and its interaction with CTRP5 in L-ORD pathology.
Collapse
Affiliation(s)
- Anil Chekuri
- Shiley Eye InstituteUniversity of California San DiegoSan DiegoCAUSA
| | | | | | - Shyamanga Borooah
- Shiley Eye InstituteUniversity of California San DiegoSan DiegoCAUSA
| | | | - Pooja Biswas
- Shiley Eye InstituteUniversity of California San DiegoSan DiegoCAUSA
| | - Virender Kumar
- Shiley Eye InstituteUniversity of California San DiegoSan DiegoCAUSA
| | - David Goodsell
- Integrative Structural and Computational Biology (ISCB)Scripps Research InstituteSan DiegoCAUSA
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Peter Shaw
- Shiley Eye InstituteUniversity of California San DiegoSan DiegoCAUSA
| | - Chloe Stanton
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Donita Garland
- Massachusetts Eye and Ear Infirmary, Department of OphthalmologyHarvard Medical SchoolBostonMAUSA
| | - Suresh Subramani
- Division of Biological SciencesUniversity of California San DiegoSan DiegoCAUSA
| | - Radha Ayyagari
- Shiley Eye InstituteUniversity of California San DiegoSan DiegoCAUSA
| |
Collapse
|
36
|
Kautzmann MAI, Gordon WC, Jun B, Do KV, Matherne BJ, Fang Z, Bazan NG. Membrane-type frizzled-related protein regulates lipidome and transcription for photoreceptor function. FASEB J 2019; 34:912-929. [PMID: 31914617 PMCID: PMC6956729 DOI: 10.1096/fj.201902359r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/27/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Molecular decision‐makers of photoreceptor (PRC) membrane organization and gene regulation are critical to understanding sight and retinal degenerations that lead to blindness. Using Mfrprd6mice, which develop PRC degeneration, we uncovered that membrane‐type frizzled‐related protein (MFRP) participates in docosahexaenoic acid (DHA, 22:6) enrichment in a manner similar to adiponectin receptor 1 (AdipoR1). Untargeted imaging mass spectrometry demonstrates cell‐specific reduction of phospholipids containing 22:6 and very long‐chain polyunsaturated fatty acids (VLC‐PUFAs) in Adipor1−/−and Mfrprd6 retinas. Gene expression of pro‐inflammatory signaling pathways is increased and gene‐encoding proteins for PRC function decrease in both mutants. Thus, we propose that both proteins are necessary for retinal lipidome membrane organization, visual function, and to the understanding of the early pathology of retinal degenerative diseases.
Collapse
Affiliation(s)
- Marie-Audrey I Kautzmann
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - William C Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Khanh V Do
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Blake J Matherne
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Zhide Fang
- Biostatistics, School of Public Health, Louisiana State University Health New Orleans, New Orleans, LA, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, LA, USA
| |
Collapse
|
37
|
Tsunoda K, Fujinami K, Yoshitake K, Iwata T. Late-onset night blindness with peripheral flecks accompanied by progressive trickle-like macular degeneration. Doc Ophthalmol 2019; 139:171-184. [PMID: 31286363 DOI: 10.1007/s10633-019-09705-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To report the clinical and genetic characteristics of 6 cases with late-onset night blindness with peripheral flecks accompanied by progressive trickle-like macular degeneration. METHODS Clinical and genetic data were collected from 6 independent patients who complained of night blindness in their fifth to eighth decade of life. The ophthalmological examinations included ophthalmoscopy, fundus autofluorescence (FAF), and full-field electroretinography (ERG). Whole exome sequencing with target gene analysis was performed to determine the causative genes and variants. RESULTS All of the patients first complained of night blindness at the ages of 40-71 years. Funduscopic examinations demonstrated white or atrophic flecks scattered in the posterior pole and peripheral retina bilaterally. FAF showed patchy hypo-autofluorescence spots in the posterior pole similar to that of the trickling type of age-related macular degeneration (AMD). The region of abnormal FAF rapidly expanded with age, and one eye developed a choroidal neovascularization. The full-field scotopic ERGs with 20 min of dark adaptation were severely reduced or extinguished in all cases. There was partial recovery of the ERGs after 180 min of dark adaptation. The cone ERGs were reduced in all cases. Whole exome sequencing revealed no pathogenic variants of 301 retinal disease-associated genes. CONCLUSIONS The six cases had some common features with the flecked retina syndrome, familial drusen, and late-onset retinal degeneration although none had pathogenic variants causative for these disorders. These cases may represent a subset of severe trickling AMD or a new clinical entity of acquired pan-retinal visual cycle deficiency of unknown etiology.
Collapse
Affiliation(s)
- Kazushige Tsunoda
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.
| | - Kaoru Fujinami
- Division of Vision Research, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan.,UCL Institute of Ophthalmology, 11-43 Bath Street, London, EC1V 9EL, UK
| | - Kazutoshi Yoshitake
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| | - Takeshi Iwata
- Division of Molecular and Cellular Biology, National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, 2-5-1, Higashigaoka, Meguro-ku, Tokyo, 152-8902, Japan
| |
Collapse
|
38
|
Jung H, Liu J, Liu T, George A, Smelkinson MG, Cohen S, Sharma R, Schwartz O, Maminishkis A, Bharti K, Cukras C, Huryn LA, Brooks BP, Fariss R, Tam J. Longitudinal adaptive optics fluorescence microscopy reveals cellular mosaicism in patients. JCI Insight 2019; 4:124904. [PMID: 30895942 DOI: 10.1172/jci.insight.124904] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/12/2019] [Indexed: 12/22/2022] Open
Abstract
The heterogeneity of individual cells in a tissue has been well characterized, largely using ex vivo approaches that do not permit longitudinal assessments of the same tissue over long periods of time. We demonstrate a potentially novel application of adaptive optics fluorescence microscopy to visualize and track the in situ mosaicism of retinal pigment epithelial (RPE) cells directly in the human eye. After a short, dynamic period during which RPE cells take up i.v.-administered indocyanine green (ICG) dye, we observed a remarkably stable heterogeneity in the fluorescent pattern that gradually disappeared over a period of days. This pattern could be robustly reproduced with a new injection and follow-up imaging in the same eye out to at least 12 months, which enabled longitudinal tracking of RPE cells. Investigation of ICG uptake in primary human RPE cells and in a mouse model of ICG uptake alongside human imaging corroborated our findings that the observed mosaicism is an intrinsic property of the RPE tissue. We demonstrate a potentially novel application of fluorescence microscopy to detect subclinical changes to the RPE, a technical advance that has direct implications for improving our understanding of diseases such as oculocutaneous albinism, late-onset retinal degeneration, and Bietti crystalline dystrophy.
Collapse
Affiliation(s)
- HaeWon Jung
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Jianfei Liu
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Tao Liu
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Aman George
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Margery G Smelkinson
- National Institute of Allergy and Infectious Disease, Research Technologies Branch, NIH, Bethesda, Maryland, USA
| | - Sarah Cohen
- University of North Carolina - Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ruchi Sharma
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Owen Schwartz
- National Institute of Allergy and Infectious Disease, Research Technologies Branch, NIH, Bethesda, Maryland, USA
| | | | - Kapil Bharti
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | | | | | | | - Robert Fariss
- National Eye Institute, NIH, Bethesda, Maryland, USA
| | - Johnny Tam
- National Eye Institute, NIH, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Song D, Mohammed I, Bhuyan R, Miwa T, Williams AL, Gullipalli D, Sato S, Song Y, Dunaief JL, Song WC. Retinal Basal Laminar Deposits in Complement fH/fP Mouse Model of Dense Deposit Disease. Invest Ophthalmol Vis Sci 2019; 59:3405-3415. [PMID: 30025090 PMCID: PMC6040236 DOI: 10.1167/iovs.18-24133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purpose Dense deposit disease (DDD) is caused by dysregulation of the alternative pathway of the complement cascade and characterized by electron-dense deposits in the kidney glomerular basement membrane (GBM) and drusen in Bruch's membrane (BrM). Complement factor H (fH) and factor properdin (fP) regulate complement activation; fH inhibits alternative pathway (AP) activation, whereas fP promotes it. We report pathologic changes in eyes of an fH and fP double-mutant mouse, which we previously showed have dense deposits in the GBM and early mortality from nephropathy. Methods fHm/m, fP−/−, and fHm/m/fP−/− mice were generated on a C57BL/6–129J background. Fundus imaging at 8 weeks of age was followed by analysis via light and electron microscopy. Retinal function was assessed by electroretinography (ERG). Complement levels and localization were tested by immunohistochemistry and ELISA. Retinas of fHm/m/fP−/− mice treated with intraperitoneal injections of an anti-C5 antibody were compared to those of age- and genotype-matched mice injected with an isotype control antibody. Results fHm/m/fP−/− mice suffered early-onset retinal hypopigmented spots detected using in vivo retinal photography, and histologic examination showed basal laminar deposits (BLamD), degeneration of the photoreceptors, and RPE vacuolization. ERG showed diminished retinal function. The anti-C5 antibody was retina-protective. Conclusions This unique mouse represents a new model of complement-mediated rapid-onset DDD, and could be useful in exploring the pathologic changes associated with BLamD in age-related macular degeneration.
Collapse
Affiliation(s)
- Delu Song
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Imran Mohammed
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Rupak Bhuyan
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Takashi Miwa
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Allison Lesher Williams
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Damodar Gullipalli
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Sayaka Sato
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Ying Song
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Joshua L Dunaief
- Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Wen-Chao Song
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| |
Collapse
|
40
|
Martin-Merida I, Aguilera-Garcia D, Fernandez-San JP, Blanco-Kelly F, Zurita O, Almoguera B, Garcia-Sandoval B, Avila-Fernandez A, Arteche A, Minguez P, Carballo M, Corton M, Ayuso C. Toward the Mutational Landscape of Autosomal Dominant Retinitis Pigmentosa: A Comprehensive Analysis of 258 Spanish Families. Invest Ophthalmol Vis Sci 2019; 59:2345-2354. [PMID: 29847639 DOI: 10.1167/iovs.18-23854] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose To provide a comprehensive overview of the molecular basis of autosomal dominant retinitis pigmentosa (adRP) in Spanish families. Thus, we established the molecular characterization rate, gene prevalence, and mutational spectrum in the largest European cohort reported to date. Methods A total of 258 unrelated Spanish families with a clinical diagnosis of RP and suspected autosomal dominant inheritance were included. Clinical diagnosis was based on complete ophthalmologic examination and family history. Retrospective and prospective analysis of Spanish adRP families was carried out using a combined strategy consisting of classic genetic techniques and next-generation sequencing (NGS) for single-nucleotide variants and copy number variation (CNV) screening. Results Overall, 60% of our families were genetically solved. Interestingly, 3.1% of the cohort carried pathogenic CNVs. Disease-causing variants were found in an autosomal dominant gene in 55% of the families; however, X-linked and autosomal recessive forms were also identified in 3% and 2%, respectively. Four genes (RHO, PRPF31, RP1, and PRPH2) explained up to 62% of the solved families. Missense changes were most frequently found in adRP-associated genes; however, CNVs represented a relevant disease cause in PRPF31- and CRX-associated forms. Conclusions Implementation of NGS technologies in the adRP study clearly increased the diagnostic yield compared with classic approaches. Our study outcome expands the spectrum of disease-causing variants, provides accurate data on mutation gene prevalence, and highlights the implication of CNVs as important contributors to adRP etiology.
Collapse
Affiliation(s)
- Inmaculada Martin-Merida
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Domingo Aguilera-Garcia
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Jose P Fernandez-San
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Fiona Blanco-Kelly
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Olga Zurita
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Berta Almoguera
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Blanca Garcia-Sandoval
- Department of Ophthalmology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Almudena Avila-Fernandez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Ana Arteche
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Pablo Minguez
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
| | - Miguel Carballo
- Molecular Genetics Unit, Hospital de Terrassa, Terrassa, Barcelona, Spain
| | - Marta Corton
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| | - Carmen Ayuso
- Department of Genetics, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital-Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain.,Center for Biomedical Network Research on Rare Diseases (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
41
|
Mandal N, Lotery AJ. Multimodal imaging of late-onset retinal degeneration complicated by bilateral choroidal neovascularization. Eye (Lond) 2019; 33:1020-1027. [PMID: 30692649 DOI: 10.1038/s41433-019-0348-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/15/2019] [Indexed: 11/09/2022] Open
Affiliation(s)
- Nakul Mandal
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, and Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew J Lotery
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, and Eye Unit, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
42
|
Roberts DK, Newman TL, Roberts MF, Teitelbaum BA, Winters JE. Long Anterior Lens Zonules and Intraocular Pressure. Invest Ophthalmol Vis Sci 2019; 59:2015-2023. [PMID: 29677364 PMCID: PMC5907516 DOI: 10.1167/iovs.17-23705] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Purpose To investigate the relation between intraocular pressure (IOP) and the idiopathic long anterior zonule (LAZ) trait. Methods Patients presenting for primary eye care were examined for LAZ, identified as radially oriented zonular fibers with central extension >1.0 mm beyond the normal anterior lens insertion zone (estimated via slit lamp beam length). Ocular, systemic health, and lifestyle data were collected via comprehensive exam and questionnaire. Multivariate regression was used to assess the relationship between IOP (Goldmann) and LAZ. Results There were 2169 non-LAZ and 129 LAZ subjects (mean age: 49.8 ± 15.0 vs. 62.6 ± 10.2 years; 63.6% vs. 76.0% female; 83.2% vs. 91.5% African American). Right eyes with >trace LAZ (n = 59 of 110) had higher unadjusted mean IOP than control eyes (16.4 ± 3.3 vs. 15.0 ± 3.3 mm Hg, P = 0.005), and with control for numerous factors, LAZ eyes had an average IOP of approximately 1.3 ± 0.4 mm Hg higher (P = 0.003) than non-LAZ eyes. Final model covariates included sex (P = 0.001); spherical-equivalent refractive error (D; P < 0.0001); body mass index (kg/m2; P < 0.001); presence of diabetes (P < 0.001); having >high school education (P < 0.001); systolic blood pressure (mm Hg; P < 0.0001); being an ever smoker (P = 0.006); and having history of any site cancer (P = 0.01). Conclusions The LAZ trait, with potential prevalence near 2%, was associated with a higher IOP. This observation is consistent with the hypothesis that the trait is a marker for underlying mechanisms that elevate glaucoma risk.
Collapse
Affiliation(s)
- Daniel K Roberts
- Illinois Eye Institute, Illinois College of Optometry, Department of Clinical Education, Chicago, Illinois, United States.,University of Illinois at Chicago, School of Medicine, Department of Ophthalmology and Visual Sciences, Chicago, Illinois, United States.,University of Illinois at Chicago, School of Public Health, Division of Epidemiology and Biostatistics, Chicago, Illinois, United States
| | - Tricia L Newman
- Illinois Eye Institute, Illinois College of Optometry, Department of Clinical Education, Chicago, Illinois, United States
| | - Mary Flynn Roberts
- Illinois Eye Institute, Illinois College of Optometry, Department of Clinical Education, Chicago, Illinois, United States
| | - Bruce A Teitelbaum
- Illinois Eye Institute, Illinois College of Optometry, Department of Clinical Education, Chicago, Illinois, United States
| | - Janis E Winters
- Illinois Eye Institute, Illinois College of Optometry, Department of Clinical Education, Chicago, Illinois, United States
| |
Collapse
|
43
|
Dalvi S, Galloway CA, Singh R. Pluripotent Stem Cells to Model Degenerative Retinal Diseases: The RPE Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1186:1-31. [PMID: 31654384 DOI: 10.1007/978-3-030-28471-8_1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Pluripotent stem cell technology, including human-induced pluripotent stem cells (hiPSCs) and human embryonic stem cells (hESCs), has provided a suitable platform to investigate molecular and pathological alterations in an individual cell type using patient's own cells. Importantly, hiPSCs/hESCs are amenable to genome editing providing unique access to isogenic controls. Specifically, the ability to introduce disease-causing mutations in control (unaffected) and conversely correct disease-causing mutations in patient-derived hiPSCs has provided a powerful approach to clearly link the disease phenotype with a specific gene mutation. In fact, utilizing hiPSC/hESC and CRISPR technology has provided significant insight into the pathomechanism of several diseases. With regard to the eye, the use of hiPSCs/hESCs to study human retinal diseases is especially relevant to retinal pigment epithelium (RPE)-based disorders. This is because several studies have now consistently shown that hiPSC-RPE in culture displays key physical, gene expression and functional attributes of human RPE in vivo. In this book chapter, we will discuss the current utility, limitations, and plausible future approaches of pluripotent stem cell technology for the study of retinal degenerative diseases. Of note, although we will broadly summarize the significant advances made in modeling and studying several retinal diseases utilizing hiPSCs/hESCs, our specific focus will be on the utility of patient-derived hiPSCs for (1) establishment of human cell models and (2) molecular and pharmacological studies on patient-derived cell models of retinal degenerative diseases where RPE cellular defects play a major pathogenic role in disease development and progression.
Collapse
Affiliation(s)
- Sonal Dalvi
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Chad A Galloway
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY, USA.,Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Ruchira Singh
- Department of Ophthalmology, Flaum Eye Institute, University of Rochester, Rochester, NY, USA. .,Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA. .,UR Stem Cell and Regenerative Medicine Institute, Rochester, NY, USA. .,Center for Visual Science, University of Rochester, Rochester, NY, USA.
| |
Collapse
|
44
|
Borooah S, Stanton CM, Marsh J, Carss KJ, Waseem N, Biswas P, Agorogiannis G, Raymond L, Arno G, Webster AR. Whole genome sequencing reveals novel mutations causing autosomal dominant inherited macular degeneration. Ophthalmic Genet 2018; 39:763-770. [PMID: 30451557 DOI: 10.1080/13816810.2018.1546406] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Age-related macular degeneration (AMD) is a common sight threatening condition. However, there are a number of monogenic macular dystrophies that are clinically similar to AMD, which can potentially provide pathogenetic insights. METHODS Three siblings from a non-consanguineous Greek-Cypriot family reported central visual disturbance and nyctalopia. The patients had full ophthalmic examinations and color fundus photography, spectral-domain ocular coherence tomography and scanning laser ophthalmoscopy. Targeted polymerase chain reaction (PCR) was performed as a first step to attempt to identify suspected mutations in C1QTNF5 and TIMP3 followed by whole genome sequencing. RESULTS The three patients were noted to have symptoms of nyctalopia, early paracentral visual field loss and, in older patients, central vision loss. Imaging identified pseudodrusen, retinal atrophy and RPE-Bruch's membrane separation. Whole genome sequencing of the proband revealed two novel heterozygous variants in C1QTNF5, c.556C>T, and c.569C>G. The mutation segregated with disease in this family, occurred in cis, and resulted in missense amino acid changes P186S and S190W in C1QTNF5. In silico modeling of the variants revealed that the S190W mutations was likely to have the greatest pathologic effect and that the combination of the mutations was likely to have an additive effect. CONCLUSIONS The novel mutations in C1QTNF5 identified here expand the genotypic spectrum of mutations causing late-onset retinal dystrophy.
Collapse
Affiliation(s)
- Shyamanga Borooah
- a Department of Ophthalmology , Moorfields Eye Hospital , London , UK.,b Centre for Clinical Brain Sciences, School of Clinical Sciences , University of Edinburgh , Edinburgh , UK.,c Shiley Eye Institute , University of California , San Diego, La Jolla , CA , USA
| | - Chloe M Stanton
- d Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine , University of Edinburgh , Edinburgh , UK
| | - Joseph Marsh
- d Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Molecular Medicine , University of Edinburgh , Edinburgh , UK
| | - Keren J Carss
- e Department of Hematology , University of Cambridge , Cambridge , UK.,f NIHR BioResource - rare diseases , Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus , Cambridge , UK
| | - Naushin Waseem
- g Institute of Ophthalmology , University College London , London , UK
| | - Pooja Biswas
- c Shiley Eye Institute , University of California , San Diego, La Jolla , CA , USA
| | | | - Lucy Raymond
- f NIHR BioResource - rare diseases , Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus , Cambridge , UK.,h Department of Medical Genetics , University of Cambridge , Cambridge , UK
| | - Gavin Arno
- a Department of Ophthalmology , Moorfields Eye Hospital , London , UK.,g Institute of Ophthalmology , University College London , London , UK
| | - Andrew R Webster
- a Department of Ophthalmology , Moorfields Eye Hospital , London , UK.,g Institute of Ophthalmology , University College London , London , UK
| |
Collapse
|
45
|
Curcio CA. Soft Drusen in Age-Related Macular Degeneration: Biology and Targeting Via the Oil Spill Strategies. Invest Ophthalmol Vis Sci 2018; 59:AMD160-AMD181. [PMID: 30357336 PMCID: PMC6733535 DOI: 10.1167/iovs.18-24882] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AMD is a major cause of legal blindness in older adults approachable through multidisciplinary research involving human tissues and patients. AMD is a vascular-metabolic-inflammatory disease, in which two sets of extracellular deposits, soft drusen/basal linear deposit (BLinD) and subretinal drusenoid deposit (SDD), confer risk for end-stages of atrophy and neovascularization. Understanding how deposits form can lead to insights for new preventions and therapy. The topographic correspondence of BLinD and SDD with cones and rods, respectively, suggest newly realized exchange pathways among outer retinal cells and across Bruch's membrane and the subretinal space, in service of highly evolved, eye-specific physiology. This review focuses on soft drusen/BLinD, summarizing evidence that a major ultrastructural component is large apolipoprotein B,E-containing, cholesterol-rich lipoproteins secreted by the retinal pigment epithelium (RPE) that offload unneeded lipids of dietary and outer segment origin to create an atherosclerosis-like progression in the subRPE-basal lamina space. Clinical observations and an RPE cell culture system combine to suggest that soft drusen/BLinD form when secretions of functional RPE back up in the subRPE-basal lamina space by impaired egress across aged Bruch's membrane-choriocapillary endothelium. The soft drusen lifecycle includes growth, anterior migration of RPE atop drusen, then collapse, and atrophy. Proof-of-concept studies in humans and animal models suggest that targeting the “Oil Spill in Bruch's membrane” offers promise of treating a process in early AMD that underlies progression to both end-stages. A companion article addresses the antecedents of soft drusen within the biology of the macula.
Collapse
Affiliation(s)
- Christine A Curcio
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|
46
|
CTRP5 promotes transcytosis and oxidative modification of low-density lipoprotein and the development of atherosclerosis. Atherosclerosis 2018; 278:197-209. [PMID: 30300788 DOI: 10.1016/j.atherosclerosis.2018.09.037] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/05/2018] [Accepted: 09/26/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND AIMS Increased transcytosis of low-density lipoprotein (LDL) across the endothelium and oxidation of LDL deposited within the subendothelial space are crucial early events in atherogenesis. C1q/TNF-related protein (CTRP) 5 is a novel secreted glycoprotein and its biological functions are largely undefined. METHODS Expression of CTRP5 was analyzed in sera and atherosclerotic plaques of patients with coronary artery disease (CAD). The role of CTRP5 in atherogenesis was investigated in vitro and in vivo. RESULTS We found CTRP5 serum levels were higher in patients with than without CAD (247.26 ± 61.71 vs. 167.81 ± 68.08 ng/mL, p < 0.001), and were positively correlated with the number of diseased vessels (Spearman's r = 0.611, p < 0.001). Increased expression of CTRP5 was detected in human coronary endarterectomy specimens as compared to non-atherosclerotic arteries. Immunofluorescence further showed that CTRP5 was predominantly localized in the endothelium, infiltrated macrophages and smooth muscle cells in the neointima. In vivo and in vitro experiments demonstrated that CTRP5 promoted transcytosis of LDL across endothelial monolayers, as well as the oxidative modification of LDL in endothelial cells. Mechanistically, we found that CTRP5 up-regulated 12/15-lipoxygenase (LOX), a key enzyme in mediating LDL trafficking and oxidation, through STAT6 signaling. Genetic or pharmacological inhibition of 12/15-LOX dramatically attenuated the deposition of oxidized LDL in the subendothelial space and the development of atherosclerosis. CONCLUSIONS These data indicate that CTRP5 is a novel pro-atherogenic cytokine and promotes transcytosis and oxidation of LDL in endothelial cells via up-regulation of 12/15-LOX.
Collapse
|
47
|
Biswas L, Zhou X, Dhillon B, Graham A, Shu X. Retinal pigment epithelium cholesterol efflux mediated by the 18 kDa translocator protein, TSPO, a potential target for treating age-related macular degeneration. Hum Mol Genet 2018; 26:4327-4339. [PMID: 28973423 DOI: 10.1093/hmg/ddx319] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 08/06/2017] [Indexed: 12/13/2022] Open
Abstract
Cholesterol accumulation beneath the retinal pigment epithelium (RPE) cells is supposed to contribute the pathogenesis of age-related macular degeneration (AMD). Cholesterol efflux genes (APOE and ABCA1) were identified as risk factors for AMD, although how cholesterol efflux influences accumulation of this lipid in sub-RPE deposits remains elusive. The 18 kDa translocator protein, TSPO, is a cholesterol-binding protein implicated in mitochondrial cholesterol transport. Here, we investigate the function of TSPO in cholesterol efflux from the RPE cells. We demonstrate in RPE cells that TSPO specific ligands promoted cholesterol efflux to acceptor (apo)lipoprotein and human serum, while loss of TSPO resulted in impaired cholesterol efflux. TSPO-/- RPE cells also had significantly increased production of reactive oxygen species (ROS) and upregulated expression of proinflammatory cytokines (IL-1β and TNFα). Cholesterol (oxidized LDL) uptake and accumulation were markedly increased in TSPO-/- RPE cells. Finally, in aged RPE cells, TSPO expression was reduced and cholesterol efflux impaired. These findings provide a new pharmacological concept to treat early AMD patients by stimulating cellular cholesterol removal with TSPO specific ligands or by overexpression of TSPO in RPE cells.
Collapse
Affiliation(s)
- Lincoln Biswas
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4?0BA, UK
| | - Xinzhi Zhou
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4?0BA, UK
| | - Baljean Dhillon
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh EH16?4SB, UK
| | - Annette Graham
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4?0BA, UK
| | - Xinhua Shu
- Department of Life Sciences, Glasgow Caledonian University, Glasgow G4?0BA, UK
| |
Collapse
|
48
|
Co-Expression of Wild-Type and Mutant S163R C1QTNF5 in Retinal Pigment Epithelium. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1074:61-66. [PMID: 29721928 DOI: 10.1007/978-3-319-75402-4_8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pathogenic mutation S163R in C1QTNF5 causes a disorder known as autosomal dominant late-onset retinal degeneration (L-ORD), characterized by the presence of thick extracellular sub-RPE deposits, similar histopathologically to those found in AMD patients. We have previously shown that the S163R C1QTNF5 mutant forms globular aggregates within the RPE in vivo following its AAV-mediated expression in the RPE and exhibits a reversely polarized distribution, being routed toward the basal rather than apical RPE. We show here that when both wild-type and mutant S163R C1QTNF5 are simultaneously delivered subretinally to mouse RPE cells, the mutant impairs the wild-type protein secretion from the RPE, and both proteins are dispersed toward the basal and lateral RPE membrane. This result has mechanistic and therapeutic implications for L-ORD disorder.
Collapse
|
49
|
Novel pathogenic mutations in C1QTNF5 support a dominant negative disease mechanism in late-onset retinal degeneration. Sci Rep 2017; 7:12147. [PMID: 28939808 PMCID: PMC5610255 DOI: 10.1038/s41598-017-11898-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 08/31/2017] [Indexed: 11/18/2022] Open
Abstract
Late-onset retinal degeneration (L-ORD) is a rare autosomal dominant retinal dystrophy, characterised by extensive sub-retinal pigment epithelium (RPE) deposits, RPE atrophy, choroidal neovascularisation and photoreceptor cell death associated with severe visual loss. L-ORD shows striking phenotypic similarities to age-related macular degeneration (AMD), a common and genetically complex disorder, which can lead to misdiagnosis in the early stages. To date, a single missense mutation (S163R) in the C1QTNF5 gene, encoding C1q And Tumor Necrosis Factor Related Protein 5 (C1QTNF5) has been shown to cause L-ORD in a subset of affected families. Here, we describe the identification and characterisation of three novel pathogenic mutations in C1QTNF5 in order to elucidate disease mechanisms. In silico and in vitro characterisation show that these mutations perturb protein folding, assembly or polarity of secretion of C1QTNF5 and, importantly, all appear to destabilise the wildtype protein in co-transfection experiments in a human RPE cell line. This suggests that the heterozygous mutations in L-ORD show a dominant negative, rather than a haploinsufficient, disease mechanism. The function of C1QTNF5 remains unclear but this new insight into the pathogenetic basis of L-ORD has implications for future therapeutic strategies such as gene augmentation therapy.
Collapse
|
50
|
Abstract
PURPOSE To characterize longitudinal structural changes in early stages of late-onset retinal degeneration to investigate pathogenic mechanisms. METHODS Two affected siblings, both with a S163R missense mutation in the causative gene C1QTNF5, were followed for 8+ years. Color fundus photos, fundus autofluorescence images, near-infrared reflectance fundus images, and spectral domain optical coherence tomography scans were acquired during follow-up. RESULTS Both patients, aged 45 and 50 years, had good visual acuities (>20/20) in the context of prolonged dark adaptation. Baseline color fundus photography demonstrated yellow-white, punctate lesions in the temporal macula that correlated with a reticular pattern on fundus autofluorescence and near-infrared reflectance imaging. Baseline spectral domain optical coherence tomography imaging revealed subretinal deposits that resemble reticular pseudodrusen described in age-related macular degeneration. During follow-up, these affected areas developed confluent thickening of the retinal pigment epithelial layer and disruption of the ellipsoid zone of photoreceptors before progressing to overt retinal pigment epithelium and outer retinal atrophy. CONCLUSION Structural changes in early stages of late-onset retinal degeneration, revealed by multimodal imaging, resemble those of reticular pseudodrusen observed in age-related macular degeneration and other retinal diseases. Longitudinal follow-up of these lesions helps elucidate their progression to frank atrophy and may lend insight into the pathogenic mechanisms underlying diverse retinal degenerations.
Collapse
|