1
|
Makino Y, Hodgson NW, Doenier E, Serbin AV, Osada K, Artoni P, Dickey M, Sullivan B, Potter-Dickey A, Komanchuk J, Sekhon B, Letourneau N, Ryan ND, Trauth J, Cameron JL, Hensch TK. Sleep-sensitive dopamine receptor expression in male mice underlies attention deficits after a critical period of early adversity. Sci Transl Med 2024; 16:eadh9763. [PMID: 39383245 DOI: 10.1126/scitranslmed.adh9763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/03/2024] [Accepted: 09/13/2024] [Indexed: 10/11/2024]
Abstract
Early life stress (ELS) yields cognitive impairments of unknown molecular and physiological origin. We found that fragmented maternal care of mice during a neonatal critical period from postnatal days P2-9 elevated dopamine receptor D2R and suppressed D4R expression, specifically within the anterior cingulate cortex (ACC) in only the male offspring. This was associated with poor performance on a two-choice visual attention task, which was acutely rescued in adulthood by local or systemic pharmacological rebalancing of D2R/D4R activity. Furthermore, ELS male mice demonstrated heightened hypothalamic orexin and persistently disrupted sleep. Given that acute sleep deprivation in normally reared male mice mimicked the ACC dopamine receptor subtype modulation and disrupted attention of ELS mice, sleep loss likely underlies cognitive deficits in ELS mice. Likewise, sleep impairment mediated the attention deficits associated with early adversity in human children, as demonstrated by path analysis on data collected with multiple questionnaires for a large child cohort. A deeper understanding of the sex-specific cognitive consequences of ELS thus has the potential to reveal therapeutic strategies for overcoming them.
Collapse
Affiliation(s)
- Yuichi Makino
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- International Research Center for Neurointelligence, UTIAS, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Nathaniel W Hodgson
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Emma Doenier
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anna Victoria Serbin
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Koya Osada
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Pietro Artoni
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Matthew Dickey
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Breanna Sullivan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Jelena Komanchuk
- School of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Bikram Sekhon
- School of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Nicole Letourneau
- School of Nursing, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Neal D Ryan
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jeanette Trauth
- Department of Behavioral and Community Health Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Judy L Cameron
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Takao K Hensch
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- International Research Center for Neurointelligence, UTIAS, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
2
|
Parlatini V, Bellato A, Murphy D, Cortese S. From neurons to brain networks, pharmacodynamics of stimulant medication for ADHD. Neurosci Biobehav Rev 2024; 164:105841. [PMID: 39098738 DOI: 10.1016/j.neubiorev.2024.105841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Stimulants represent the first line pharmacological treatment for attention-deficit/hyperactivity disorder (ADHD) and are among the most prescribed psychopharmacological treatments. Their mechanism of action at synaptic level has been extensively studied. However, it is less clear how their mechanism of action determines clinically observed benefits. To help bridge this gap, we provide a comprehensive review of stimulant effects, with an emphasis on nuclear medicine and magnetic resonance imaging (MRI) findings. There is evidence that stimulant-induced modulation of dopamine and norepinephrine neurotransmission optimizes engagement of task-related brain networks, increases perceived saliency, and reduces interference from the default mode network. An acute administration of stimulants may reduce brain alterations observed in untreated individuals in fronto-striato-parieto-cerebellar networks during tasks or at rest. Potential effects of prolonged treatment remain controversial. Overall, neuroimaging has fostered understanding on stimulant mechanism of action. However, studies are often limited by small samples, short or no follow-up, and methodological heterogeneity. Future studies should address age-related and longer-term effects, potential differences among stimulants, and predictors of treatment response.
Collapse
Affiliation(s)
- Valeria Parlatini
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Solent NHS Trust, Southampton, United Kingdom.
| | - Alessio Bellato
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; School of Psychology, University of Nottingham, Semenyih, Malaysia
| | - Declan Murphy
- Institute of Translational Neurodevelopment, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom; Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, United Kingdom
| | - Samuele Cortese
- School of Psychology, University of Southampton, Southampton, United Kingdom; Centre for Innovation in Mental Health, University of Southampton, Southampton, United Kingdom; Institute for Life Sciences, University of Southampton, Southampton, United Kingdom; Solent NHS Trust, Southampton, United Kingdom; Mind and Neurodevelopment (MiND) Research Group, University of Nottingham, Semenyih, Malaysia; Clinical and Experimental Sciences (CNS and Psychiatry), Faculty of Medicine, University of Southampton, Southampton, United Kingdom; Hassenfeld Children's Hospital at NYU Langone, New York University Child Study Center, New York, NY, USA
| |
Collapse
|
3
|
Carter SWD, Fee EL, Usuda H, Oguz G, Ramasamy A, Amin Z, Agnihotri B, Wei Q, Xiawen L, Takahashi T, Takahashi Y, Ikeda H, Kumagai Y, Saito Y, Saito M, Mattar C, Evans MI, Illanes SE, Jobe AH, Choolani M, Kemp MW. Antenatal steroids elicited neurodegenerative-associated transcriptional changes in the hippocampus of preterm fetal sheep independent of lung maturation. BMC Med 2024; 22:338. [PMID: 39183288 PMCID: PMC11346182 DOI: 10.1186/s12916-024-03542-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Antenatal steroid therapy for fetal lung maturation is routinely administered to women at risk of preterm delivery. There is strong evidence to demonstrate benefit from antenatal steroids in terms of survival and respiratory disease, notably in infants delivered at or below 32 weeks' gestation. However, dosing remains unoptimized and lung benefits are highly variable. Current treatment regimens generate high-concentration, pulsatile fetal steroid exposures now associated with increased risk of childhood neurodevelopmental diseases. We hypothesized that damage-associated changes in the fetal hippocampal transcriptome would be independent of preterm lung function. METHODS Date-mated ewes carrying a single fetus at 122 ± 2dGA (term = 150dGA) were randomized into 4 groups: (i) Saline Control Group, 4×2ml maternal saline intramuscular(IM) injections at 12hr intervals (n = 11); or (ii) Dex High Group, 2×12mg maternal IM dexamethasone phosphate injections at 12hr intervals followed by 2×2ml IM saline injections at 12hr intervals (n = 12; representing a clinical regimen used in Singapore); or (iii) Dex Low Group, 4×1.5mg maternal IM dexamethasone phosphate injections 12hr intervals (n = 12); or (iv) Beta-Acetate Group, 1×0.125mg/kg maternal IM betamethasone acetate injection followed by 3×2ml IM sterile normal saline injections 12hr intervals (n = 8). Lambs were surgically delivered 48hr after first maternal injection at 122-125dGA, ventilated for 30min to establish lung function, and euthanised for necropsy and tissue collection. RESULTS Preterm lambs from the Dex Low and Beta-Acetate Groups had statistically and biologically significant lung function improvements (measured by gas exchange, lung compliance). Compared to the Saline Control Group, hippocampal transcriptomic data identified 879 differentially significant expressed genes (at least 1.5-fold change and FDR < 5%) in the steroid-treated groups. Pulsatile dexamethasone-only exposed groups (Dex High and Dex Low) had three common positively enriched differentially expressed pathways related in part to neurodegeneration ("Prion Disease", "Alzheimer's Disease", "Arachidonic Acid metabolism"). Adverse changes were independent of respiratory function during ventilation. CONCLUSIONS Our data suggests that exposure to antenatal steroid therapy is an independent cause of damage- associated transcriptomic changes in the brain of preterm, fetal sheep. These data highlight an urgent need for careful reconsideration and balancing of how antenatal steroids are used, both for patient selection and dosing regimens.
Collapse
Affiliation(s)
- Sean W D Carter
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
| | - Erin L Fee
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
| | - Haruo Usuda
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Gokce Oguz
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Adaikalavan Ramasamy
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, Genome #02-01, Singapore, 138632, Republic of Singapore
| | - Zubair Amin
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Neonatology Khoo Teck Puat, National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Biswas Agnihotri
- Department of Pediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Neonatology Khoo Teck Puat, National University Children's Medical Institute, National University Hospital, Singapore, Singapore
| | - Qin Wei
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Liu Xiawen
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Tsukasa Takahashi
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuki Takahashi
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Hideyuki Ikeda
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yusaku Kumagai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Yuya Saito
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Masatoshi Saito
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - Citra Mattar
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Mark I Evans
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Fetal Medicine Foundation of America, New York, NY, USA
| | - Sebastián E Illanes
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Reproductive Biology Program, Center for Biomedical Research and Innovation, Universidad de los Andes, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
| | - Alan H Jobe
- Centre for Pulmonary Biology, Cincinnati Children's Hospital Medical Centre, Cincinnati, OH, USA
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Matthew W Kemp
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Division of Obstetrics and Gynaecology, University of Western Australia, Perth, Australia
- Centre for Perinatal and Neonatal Medicine, Tohoku University Hospital, Sendai, Japan
- Women and Infants Research Foundation, Perth, WA, Australia
| |
Collapse
|
4
|
Thompson MD, Reiner-Link D, Berghella A, Rana BK, Rovati GE, Capra V, Gorvin CM, Hauser AS. G protein-coupled receptor (GPCR) pharmacogenomics. Crit Rev Clin Lab Sci 2024:1-44. [PMID: 39119983 DOI: 10.1080/10408363.2024.2358304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/03/2023] [Accepted: 05/18/2024] [Indexed: 08/10/2024]
Abstract
The field of pharmacogenetics, the investigation of the influence of one or more sequence variants on drug response phenotypes, is a special case of pharmacogenomics, a discipline that takes a genome-wide approach. Massively parallel, next generation sequencing (NGS), has allowed pharmacogenetics to be subsumed by pharmacogenomics with respect to the identification of variants associated with responders and non-responders, optimal drug response, and adverse drug reactions. A plethora of rare and common naturally-occurring GPCR variants must be considered in the context of signals from across the genome. Many fundamentals of pharmacogenetics were established for G protein-coupled receptor (GPCR) genes because they are primary targets for a large number of therapeutic drugs. Functional studies, demonstrating likely-pathogenic and pathogenic GPCR variants, have been integral to establishing models used for in silico analysis. Variants in GPCR genes include both coding and non-coding single nucleotide variants and insertion or deletions (indels) that affect cell surface expression (trafficking, dimerization, and desensitization/downregulation), ligand binding and G protein coupling, and variants that result in alternate splicing encoding isoforms/variable expression. As the breadth of data on the GPCR genome increases, we may expect an increase in the use of drug labels that note variants that significantly impact the clinical use of GPCR-targeting agents. We discuss the implications of GPCR pharmacogenomic data derived from the genomes available from individuals who have been well-phenotyped for receptor structure and function and receptor-ligand interactions, and the potential benefits to patients of optimized drug selection. Examples discussed include the renin-angiotensin system in SARS-CoV-2 (COVID-19) infection, the probable role of chemokine receptors in the cytokine storm, and potential protease activating receptor (PAR) interventions. Resources dedicated to GPCRs, including publicly available computational tools, are also discussed.
Collapse
Affiliation(s)
- Miles D Thompson
- Krembil Brain Institute, Toronto Western Hospital, Toronto, Ontario, Canada
| | - David Reiner-Link
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Alessandro Berghella
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brinda K Rana
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - G Enrico Rovati
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Valerie Capra
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Caroline M Gorvin
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Birmingham, United Kingdom
| | - Alexander S Hauser
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
5
|
Krieg S, Konrad M, Krieg A, Kostev K. What Is the Link between Attention-Deficit/Hyperactivity Disorder (ADHD) and Dyslipidemia in Adults? A German Retrospective Cohort Study. J Clin Med 2024; 13:4460. [PMID: 39124726 PMCID: PMC11312942 DOI: 10.3390/jcm13154460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Background: Alterations in the serum lipid profile have been suspected in many psychiatric disorders, such as schizophrenia and depression. However, studies on lipid status in attention-deficit/hyperactivity disorder (ADHD) are sparse and inconsistent. Methods: Using the nationwide, population-based IQVIA Disease Analyzer database, this retrospective cohort study included 5367 outpatients from general practices in Germany aged ≥18 years with a documented first diagnosis of ADHD between January 2005 and December 2021 and 26,835 propensity score-matched individuals without ADHD. Study outcomes were the first diagnosis of lipid metabolism disorders as a function of ADHD within up to 10 years of the index date. The cumulative 10-year incidence was analyzed using Kaplan-Meier curves and compared using the log-rank test. In addition, univariate Cox regression analyses were performed. Results: In the regression analysis, there was no significant association between ADHD and subsequent lipid metabolism disorders in the total population (HR: 0.94; 95% CI: 0.83-1.08), among women (HR: 1.04; 95% CI: 0.84-1.28), and among men (HR: 0.89; 95% CI: 0.74-1.06). In addition, no significant association was observed in the disease-stratified analyses. Conclusions: The findings of this study indicate that ADHD does not exert an influence on lipid metabolism. However, further investigation is warranted, particularly with respect to pharmacological interventions.
Collapse
Affiliation(s)
- Sarah Krieg
- Department of Inclusive Medicine, University Hospital Ostwestfalen-Lippe, Bielefeld University, 33617 Bielefeld, Germany
| | - Marcel Konrad
- Health & Social, FOM University of Applied Sciences for Economics and Management, 60486 Frankfurt am Main, Germany;
| | - Andreas Krieg
- Department of General and Visceral Surgery, Thoracic Surgery and Proctology, University Hospital Herford, Medical Campus OWL, Ruhr University Bochum, 32049 Herford, Germany;
| | | |
Collapse
|
6
|
Yan Y, Huang X, Yuan L, Tang Y, Zhu W, Du H, Nie J, Zhang L, Liao S, Tang X, Zhang Y. Single-step batch fabrication of microfluidic paper-based analytical devices with a 3D printer and their applications in nanoenzyme-enhanced visual detection of dopamine. Anal Bioanal Chem 2024; 416:4131-4141. [PMID: 38780654 DOI: 10.1007/s00216-024-05337-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/26/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
Wax printing is the most widely used method for fabricating microfluidic paper-based analytical devices (μPADs), but it still suffers from disadvantages like discontinuation of wax printers and need for additional equipment for heating treatment. To address these issues, this work initially describes a new class of wax printing approach for high-precision, batch fabrication of μPADs using a household 3D printer. It only involves a one patterning step of printing polyethylene wax into rice paper body. Under optimized parameters, a fabrication resolution, namely the minimum hydrophilic channel width, down to ~189 ± 30 μm could be achieved. In addition, the analytical applicability of such polyethylene wax-patterned μPADs was demonstrated well with enhanced colorimetric detection of dopamine as a model analyte by combining metal-organic framework (MOF) based nanoenzymes (ZIF-67) with a smartphone (for portable quantitative readout). The developed nanosensor could linearly detect dopamine over a concentration range from 10 to 1000 μM, with a detection limit of ca. 2.75 μM (3σ). The recovery results for analyzing several real samples (i.e., pig feed, chicken feed, pork and human serum) were between 91.82 and 102.79%, further validating its good detection accuracy for potential practical applications in food safety and medical diagnosis.
Collapse
Affiliation(s)
- Yongkang Yan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Xueer Huang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Lili Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Yiyue Tang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Wenli Zhu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Hancong Du
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China.
| | - Lang Zhang
- Institute of Rheumatology and Immunology, Affiliated Hospital of North Sichuan Medical College, 234 Fujiang Road, Nanchong, 637000, People's Republic of China
| | - Shan Liao
- Guilin Zhonghui Technology Development Co., Ltd., 13 Lushan Road, Guilin, 541100, People's Republic of China
| | - Xuehui Tang
- URIT Medical Electronic Co., Ltd., No.D-07 Information Industry District, High-Tech Zone, Guilin, 541100, People's Republic of China
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, People's Republic of China.
| |
Collapse
|
7
|
Maw KJ, Beattie G, Burns EJ. Cognitive strengths in neurodevelopmental disorders, conditions and differences: A critical review. Neuropsychologia 2024; 197:108850. [PMID: 38467371 DOI: 10.1016/j.neuropsychologia.2024.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/13/2024]
Abstract
Neurodevelopmental disorders are traditionally characterised by a range of associated cognitive impairments in, for example, sensory processing, facial recognition, visual imagery, attention, and coordination. In this critical review, we propose a major reframing, highlighting the variety of unique cognitive strengths that people with neurodevelopmental differences can exhibit. These include enhanced visual perception, strong spatial, auditory, and semantic memory, superior empathy and theory of mind, along with higher levels of divergent thinking. Whilst we acknowledge the heterogeneity of cognitive profiles in neurodevelopmental conditions, we present a more encouraging and affirmative perspective of these groups, contrasting with the predominant, deficit-based position prevalent throughout both cognitive and neuropsychological research. In addition, we provide a theoretical basis and rationale for these cognitive strengths, arguing for the critical role of hereditability, behavioural adaptation, neuronal-recycling, and we draw on psychopharmacological and social explanations. We present a table of potential strengths across conditions and invite researchers to systematically investigate these in their future work. This should help reduce the stigma around neurodiversity, instead promoting greater social inclusion and significant societal benefits.
Collapse
|
8
|
Cénat JM, Kokou-Kpolou CK, Blais-Rochette C, Morse C, Vandette MP, Dalexis RD, Darius WP, Noorishad PG, Labelle PR, Kogan CS. Prevalence of ADHD among Black Youth Compared to White, Latino and Asian Youth: A Meta-Analysis. JOURNAL OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY : THE OFFICIAL JOURNAL FOR THE SOCIETY OF CLINICAL CHILD AND ADOLESCENT PSYCHOLOGY, AMERICAN PSYCHOLOGICAL ASSOCIATION, DIVISION 53 2024; 53:373-388. [PMID: 35427201 DOI: 10.1080/15374416.2022.2051524] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To systematically review the prevalence of Attention Deficit Hyperactivity Disorder (ADHD) among Black children and adolescents compared to White, Latino and Asian children and adolescents. METHOD Peer-reviewed articles were identified in seven databases and included if they reported prevalence of ADHD among Black children and adolescents living in a minority context and compared rates to at least one of White, Latino or Asian samples. A total of 7050 articles were retrieved and 155 articles were subjected to full evaluation. Twenty-three studies representing 26 independent samples were included. RESULTS The pooled sample size was n = 218,445 (k = 26), n = 835,505 (k = 25), n = 493,417 (k = 24), and n = 66,413 (k = 7) of Black, White, Latino, and Asian participants, respectively. Pooled prevalence rate of ADHD was 15.9% (95%CI 11.6% - 20.7%) among Black children and adolescents, 16.6% (95%CI 11.6% - 22.2%) among Whites, 10.1% (95%CI 6.9% - 13.8%) among Latinos and 12.4% (95%CI 1.4% - 31.8%) among Asians. There was no significant difference in prevalence between ethnic groups, whereas both Black and White children and adolescents had marginally statistically significant higher prevalence than Asians. The results of a meta-regression analysis showed no moderating effects of the type of sample and the year of publication of studies. A significant publication bias was observed, suggesting that other moderators were not identified in the present systematic review. CONCLUSION In contrast to the assertion in the DSM-5 that clinical identification among Black children and adolescents is lower than among White children and adolescents, the present meta-analysis suggests similar rates of ADHD among these two groups. The importance of considering cultural appropriateness of assessment tools and processes is emphasized.
Collapse
Affiliation(s)
- Jude Mary Cénat
- School of Psychology, University of Ottawa
- Interdisciplinary Centre for Black Health, University of Ottawa
| | | | | | | | | | | | | | | | | | - Cary S Kogan
- School of Psychology, University of Ottawa
- Interdisciplinary Centre for Black Health, University of Ottawa
| |
Collapse
|
9
|
Zhou M, Qiu W, Ohashi N, Sun L, Wronski ML, Kouyama-Suzuki E, Shirai Y, Yanagawa T, Mori T, Tabuchi K. Deep-Learning-Based Analysis Reveals a Social Behavior Deficit in Mice Exposed Prenatally to Nicotine. Cells 2024; 13:275. [PMID: 38334667 PMCID: PMC10855062 DOI: 10.3390/cells13030275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Cigarette smoking during pregnancy is known to be associated with the incidence of attention-deficit/hyperactive disorder (ADHD). Recent developments in deep learning algorithms enable us to assess the behavioral phenotypes of animal models without cognitive bias during manual analysis. In this study, we established prenatal nicotine exposure (PNE) mice and evaluated their behavioral phenotypes using DeepLabCut and SimBA. We optimized the training parameters of DeepLabCut for pose estimation and succeeded in labeling a single-mouse or two-mouse model with high fidelity during free-moving behavior. We applied the trained network to analyze the behavior of the mice and found that PNE mice exhibited impulsivity and a lessened working memory, which are characteristics of ADHD. PNE mice also showed elevated anxiety and deficits in social interaction, reminiscent of autism spectrum disorder (ASD). We further examined PNE mice by evaluating adult neurogenesis in the hippocampus, which is a pathological hallmark of ASD, and demonstrated that newborn neurons were decreased, specifically in the ventral part of the hippocampus, which is reported to be related to emotional and social behaviors. These results support the hypothesis that PNE is a risk factor for comorbidity with ADHD and ASD in mice.
Collapse
Affiliation(s)
- Mengyun Zhou
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Wen Qiu
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Nobuhiko Ohashi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Lihao Sun
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Marie-Louis Wronski
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
- Neuroendocrine Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Translational Developmental Neuroscience Section, Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
| | - Emi Kouyama-Suzuki
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Yoshinori Shirai
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
| | - Toru Yanagawa
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan;
| | - Takuma Mori
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| | - Katsuhiko Tabuchi
- Department of Molecular and Cellular Physiology, Shinshu University School of Medicine, Matsumoto 390-8621, Japan; (M.Z.); (W.Q.); (N.O.); (L.S.); (M.-L.W.); (E.K.-S.); (Y.S.)
- Department of Neuroinnovation, Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, Matsumoto 390-8621, Japan
| |
Collapse
|
10
|
Fenske SJ, Liu J, Chen H, Diniz MA, Stephens RL, Cornea E, Gilmore JH, Gao W. Sex differences in brain-behavior relationships in the first two years of life. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.31.578147. [PMID: 38352542 PMCID: PMC10862872 DOI: 10.1101/2024.01.31.578147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background Evidence for sex differences in cognition in childhood is established, but less is known about the underlying neural mechanisms for these differences. Recent findings suggest the existence of brain-behavior relationship heterogeneities during infancy; however, it remains unclear whether sex underlies these heterogeneities during this critical period when sex-related behavioral differences arise. Methods A sample of 316 infants was included with resting-state functional magnetic resonance imaging scans at neonate (3 weeks), 1, and 2 years of age. We used multiple linear regression to test interactions between sex and resting-state functional connectivity on behavioral scores of working memory, inhibitory self-control, intelligence, and anxiety collected at 4 years of age. Results We found six age-specific, intra-hemispheric connections showing significant and robust sex differences in functional connectivity-behavior relationships. All connections are either with the prefrontal cortex or the temporal pole, which has direct anatomical pathways to the prefrontal cortex. Sex differences in functional connectivity only emerge when associated with behavior, and not in functional connectivity alone. Furthermore, at neonate and 2 years of age, these age-specific connections displayed greater connectivity in males and lower connectivity in females in association with better behavioral scores. Conclusions Taken together, we critically capture robust and conserved brain mechanisms that are distinct to sex and are defined by their relationship to behavioral outcomes. Our results establish brain-behavior mechanisms as an important feature in the search for sex differences during development.
Collapse
Affiliation(s)
- Sonja J Fenske
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Janelle Liu
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Haitao Chen
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| | - Marcio A Diniz
- The Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048
| | - Rebecca L Stephens
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina Chapel Hill, Chapel Hill, 27599
| | - Wei Gao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, CA 90048
- David Geffen School of Medicine, University of California, Los Angeles, CA 90025
| |
Collapse
|
11
|
Homar-Ruano P, Cai NS, Casadó-Anguera V, Casadó V, Ferré S, Moreno E, Canela EI. Significant Functional Differences Between Dopamine D 4 Receptor Polymorphic Variants Upon Heteromerization with α 1A Adrenoreceptors. Mol Neurobiol 2023; 60:6566-6583. [PMID: 37464153 PMCID: PMC10533593 DOI: 10.1007/s12035-023-03476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023]
Abstract
The functional role of the dopamine D4 receptor (D4R) and its main polymorphic variants has become more evident with the demonstration of heteromers of D4R that control the function of frontal cortico-striatal neurons. Those include heteromers with the α2A adrenoceptor (α2AR) and with the D2R, localized in their cortical somato-dendritic region and striatal nerve terminals, respectively. By using biophysical and cell-signaling methods and heteromer-disrupting peptides in mammalian transfected cells and rat brain slice preparations, here we provide evidence for a new functionally relevant D4R heteromer, the α1AR-D4R heteromer, which is also preferentially localized in cortico-striatal glutamatergic terminals. Significant differences in allosteric modulations between heteromers of α1AR with the D4.4R and D4.7R polymorphic variants could be evidenced with the analysis of G protein-dependent and independent signaling. Similar negative allosteric modulations between α1AR and D4R ligands could be demonstrated for both α1AR-D4.4R and α1AR-D4.7R heteromers on G protein-independent signaling, but only for α1AR-D4.4R on G protein-dependent signaling. From these functional differences, it is proposed that the D4.4R variant provides a gain of function of the α1AR-mediated noradrenergic stimulatory control of cortico-striatal glutamatergic neurotransmission, which could result in a decrease in the vulnerability for impulse control-related neuropsychiatric disorders and increase in the vulnerability for posttraumatic stress disorder.
Collapse
Affiliation(s)
- Patricia Homar-Ruano
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain
| | - Ning-Sheng Cai
- National Institute On Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain
| | - Sergi Ferré
- National Institute On Drug Abuse, Intramural Research Program, National Institutes of Health, Department of Health and Human Services, Baltimore, MD, 21224, USA
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain.
| | - Enric I Canela
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, University of Barcelona, Barcelona, Spain
- Institute of Biomedicine of the University of Barcelona (IBUB), Barcelona, 08028, Spain
| |
Collapse
|
12
|
Thanos PK, Hanna C, Mihalkovic A, Hoffman AB, Posner AR, Busch J, Smith C, Badgaiyan RD, Blum K, Baron D, Mastrandrea LD, Quattrin T. The First Exploratory Personalized Medicine Approach to Improve Bariatric Surgery Outcomes Utilizing Psychosocial and Genetic Risk Assessments: Encouraging Clinical Research. J Pers Med 2023; 13:1164. [PMID: 37511777 PMCID: PMC10381606 DOI: 10.3390/jpm13071164] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
It is predicted that by 2030, globally, an estimated 2.16 billion adults will be overweight, and 1.12 billion will be obese. This study examined genetic data regarding Reward Deficiency Syndrome (RDS) to evaluate their usefulness in counselling patients undergoing bariatric surgery and gathered preliminary data on the potential use in predicting short term (6-month) weight loss outcomes. Methods: Patients undergoing bariatric surgery (n = 34) were examined for Genetic Addiction Risk Severity (GARS) [measures the presence of risk alleles associated with RDS]; as well as their psychosocial traits (questionnaires). BMI changes and sociodemographic data were abstracted from Electronic Health Records. Results: Subjects showed ∆BMI (M = 10.0 ± 1.05 kg/m2) and a mean % excess weight loss (56 ± 13.8%). In addition, 76% of subjects had GARS scores above seven. The homozygote risk alleles for MAO (rs768062321) and DRD1 (rs4532) showed a 38% and 47% prevalence among the subjects. Of the 11 risk alleles identified by GARS, the DRD4 risk allele (rs1800955), was significantly correlated with change in weight and BMI six months post-surgery. We identified correlations with individual risk alleles and psychosocial trait scores. The COMT risk allele (rs4680) showed a negative correlation with EEI scores (r = -0.4983, p < 0.05) and PSQI scores (r = -0.5482, p < 0.05). The GABRB3 risk allele (rs764926719) correlated positively with EEI (r = 0.6161, p < 0.01) and FCQ scores (r = 0.6373, p < 0.01). The OPRM1 risk allele showed a positive correlation with the DERS score (r = 0.5228, p < 0.05). We also identified correlations between DERS and BMI change (r = 0.61; p < 0.01). Conclusions: These data support the potential benefit of a personalized medicinal approach inclusive of genetic testing and psychosocial trait questionnaires when counselling patients with obesity considering bariatric surgery. Future research will explore epigenetic factors that contribute to outcomes of bariatric surgery.
Collapse
Affiliation(s)
- Panayotis K. Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (A.M.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Colin Hanna
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (A.M.)
| | - Abrianna Mihalkovic
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (C.H.); (A.M.)
- Department of Psychology, University at Buffalo, Buffalo, NY 14203, USA
| | - Aaron B. Hoffman
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75001, USA; (A.B.H.); (L.D.M.)
| | - Alan R. Posner
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (A.R.P.); (J.B.)
| | - John Busch
- Department of Surgery, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA; (A.R.P.); (J.B.)
| | - Caroline Smith
- UBMD Pediatrics, JR Oishei Children’s Hospital, University at Buffalo, Buffalo, NY 14203, USA;
| | - Rajendra D. Badgaiyan
- Department of Psychiatry, South Texas Veteran Health Care System, Audie L. Murphy Memorial VA Hospital, Long School of Medicine, University of Texas Health Science Center, San Antonio, TX 78229, USA;
| | - Kenneth Blum
- Division of Nutrigenomics, SpliceGen, Therapeutics, Inc., Austin, TX 78701, USA;
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA;
- Division of Addiction Research & Education, Center for Exercise Sports & Global Mental Health, Western University Health Sciences, Pomona, CA 91766, USA
- The Kenneth Blum Behavioral & Neurogenetic Institute, LLC., Austin, TX 78701, USA
- Institute of Psychology, ELTE Eötvös Loránd University, 23-27, 1075 Budapest, Hungary
- Centre for Genomics and Applied Gene Technology, Institute of Integrative Omics and Applied Biotechnology (IIOAB), Nonakuri, Purba Medinipur 721172, West Bengal, India
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel 40700, Israel
| | - David Baron
- Department of Psychiatry, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA;
| | - Lucy D. Mastrandrea
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75001, USA; (A.B.H.); (L.D.M.)
| | - Teresa Quattrin
- Department of Surgery, Methodist Hospital Medical Center, Dallas, TX 75001, USA; (A.B.H.); (L.D.M.)
| |
Collapse
|
13
|
Lawn T, Martins D, O'Daly O, Williams S, Howard M, Dipasquale O. The effects of propofol anaesthesia on molecular-enriched networks during resting-state and naturalistic listening. Neuroimage 2023; 271:120018. [PMID: 36935083 PMCID: PMC10410200 DOI: 10.1016/j.neuroimage.2023.120018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/09/2023] [Indexed: 03/19/2023] Open
Abstract
Placing a patient in a state of anaesthesia is crucial for modern surgical practice. However, the mechanisms by which anaesthetic drugs, such as propofol, impart their effects on consciousness remain poorly understood. Propofol potentiates GABAergic transmission, which purportedly has direct actions on cortex as well as indirect actions via ascending neuromodulatory systems. Functional imaging studies to date have been limited in their ability to unravel how these effects on neurotransmission impact the system-level dynamics of the brain. Here, we leveraged advances in multi-modal imaging, Receptor-Enriched Analysis of functional Connectivity by Targets (REACT), to investigate how different levels of propofol-induced sedation alter neurotransmission-related functional connectivity (FC), both at rest and when individuals are exposed to naturalistic auditory stimulation. Propofol increased GABA-A- and noradrenaline transporter-enriched FC within occipital and somatosensory regions respectively. Additionally, during auditory stimulation, the network related to the dopamine transporter showed reduced FC within bilateral regions of temporal and mid/posterior cingulate cortices, with the right temporal cluster showing an interaction between auditory stimulation and level of consciousness. In bringing together these micro- and macro-scale systems, we provide support for both direct GABAergic and indirect noradrenergic and dopaminergic-related network changes under propofol sedation. Further, we delineate a cognition-related reconfiguration of the dopaminergic network, highlighting the utility of REACT to explore the molecular substrates of consciousness and cognition.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Steve Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Matthew Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's college London, London, UK
| |
Collapse
|
14
|
Gillies D, Leach MJ, Perez Algorta G. Polyunsaturated fatty acids (PUFA) for attention deficit hyperactivity disorder (ADHD) in children and adolescents. Cochrane Database Syst Rev 2023; 4:CD007986. [PMID: 37058600 PMCID: PMC10103546 DOI: 10.1002/14651858.cd007986.pub3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
BACKGROUND Attention deficit hyperactivity disorder (ADHD) is a major problem in children and adolescents, characterised by age-inappropriate levels of inattention, hyperactivity, and impulsivity, and is associated with long-term social, academic, and mental health problems. The stimulant medications methylphenidate and amphetamine are the most frequently used treatments for ADHD, but these are not always effective and can be associated with side effects. Clinical and biochemical evidence suggests that deficiencies of polyunsaturated fatty acids (PUFA) could be related to ADHD. Research has shown that children and adolescents with ADHD have significantly lower plasma and blood concentrations of PUFA and, in particular, lower levels of omega-3 PUFA. These findings suggest that PUFA supplementation may reduce the attention and behaviour problems associated with ADHD. This review is an update of a previously published Cochrane Review. Overall, there was little evidence that PUFA supplementation improved symptoms of ADHD in children and adolescents. OBJECTIVES To compare the efficacy of PUFA to other forms of treatment or placebo in treating the symptoms of ADHD in children and adolescents. SEARCH METHODS We searched 13 databases and two trials registers up to October 2021. We also checked the reference lists of relevant studies and reviews for additional references. SELECTION CRITERIA We included randomised and quasi-randomised controlled trials that compared PUFA with placebo or PUFA plus alternative therapy (medication, behavioural therapy, or psychotherapy) with the same alternative therapy alone in children and adolescents (aged 18 years and under) diagnosed with ADHD. DATA COLLECTION AND ANALYSIS We used standard Cochrane methods. Our primary outcome was severity or improvement of ADHD symptoms. Our secondary outcomes were severity or incidence of behavioural problems; quality of life; severity or incidence of depressive symptoms; severity or incidence of anxiety symptoms; side effects; loss to follow-up; and cost. We used GRADE to assess the certainty of evidence for each outcome. MAIN RESULTS We included 37 trials with more than 2374 participants, of which 24 trials were new to this update. Five trials (seven reports) used a cross-over design, while the remaining 32 trials (52 reports) used a parallel design. Seven trials were conducted in Iran, four each in the USA and Israel, and two each in Australia, Canada, New Zealand, Sweden, and the UK. Single studies were conducted in Brazil, France, Germany, India, Italy, Japan, Mexico, the Netherlands, Singapore, Spain, Sri Lanka, and Taiwan. Of the 36 trials that compared a PUFA to placebo, 19 used an omega-3 PUFA, six used a combined omega-3/omega-6 supplement, and two used an omega-6 PUFA. The nine remaining trials were included in the comparison of PUFA to placebo, but also had the same co-intervention in the PUFA and placebo groups. Of these, four trials compared a combination of omega-3 PUFA plus methylphenidate to methylphenidate. One trial each compared omega-3 PUFA plus atomoxetine to atomoxetine; omega-3 PUFA plus physical training to physical training; and an omega-3 or omega-6 supplement plus methylphenidate to methylphenidate; and two trials compared omega-3 PUFA plus dietary supplement to dietary supplement. Supplements were given for a period of between two weeks and six months. Although we found low-certainty evidence that PUFA compared to placebo may improve ADHD symptoms in the medium term (risk ratio (RR) 1.95, 95% confidence interval (CI) 1.47 to 2.60; 3 studies, 191 participants), there was high-certainty evidence that PUFA had no effect on parent-rated total ADHD symptoms compared to placebo in the medium term (standardised mean difference (SMD) -0.08, 95% CI -0.24 to 0.07; 16 studies, 1166 participants). There was also high-certainty evidence that parent-rated inattention (medium-term: SMD -0.01, 95% CI -0.20 to 0.17; 12 studies, 960 participants) and hyperactivity/impulsivity (medium-term: SMD 0.09, 95% CI -0.04 to 0.23; 10 studies, 869 participants) scores were no different compared to placebo. There was moderate-certainty evidence that overall side effects likely did not differ between PUFA and placebo groups (RR 1.02, 95% CI 0.69 to 1.52; 8 studies, 591 participants). There was also moderate-certainty evidence that medium-term loss to follow-up was likely similar between groups (RR 1.03, 95% CI 0.77 to 1.37; 13 studies, 1121 participants). AUTHORS' CONCLUSIONS Although we found low-certainty evidence that children and adolescents receiving PUFA may be more likely to improve compared to those receiving placebo, there was high-certainty evidence that PUFA had no effect on total parent-rated ADHD symptoms. There was also high-certainty evidence that inattention and hyperactivity/impulsivity did not differ between PUFA and placebo groups. We found moderate-certainty evidence that overall side effects likely did not differ between PUFA and placebo groups. There was also moderate-certainty evidence that follow-up was similar between groups. It is important that future research addresses the current weaknesses in this area, which include small sample sizes, variability of selection criteria, variability of the type and dosage of supplementation, and short follow-up times.
Collapse
Affiliation(s)
- Donna Gillies
- Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Matthew J Leach
- School of Nursing & Midwifery, University of South Australia, Adelaide, Australia
| | | |
Collapse
|
15
|
Burström V, Ågren R, Betari N, Valle-León M, Garro-Martínez E, Ciruela F, Sahlholm K. Dopamine-induced arrestin recruitment and desensitization of the dopamine D4 receptor is regulated by G protein-coupled receptor kinase-2. Front Pharmacol 2023; 14:1087171. [PMID: 36778010 PMCID: PMC9911804 DOI: 10.3389/fphar.2023.1087171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
The dopamine D4 receptor (D4R) is expressed in the retina, prefrontal cortex, and autonomic nervous system and has been implicated in attention deficit hyperactivity disorder (ADHD), substance use disorders, and erectile dysfunction. D4R has also been investigated as a target for antipsychotics due to its high affinity for clozapine. As opposed to the closely related dopamine D2 receptor (D2R), dopamine-induced arrestin recruitment and desensitization at the D4R have not been studied in detail. Indeed, some earlier investigations could not detect arrestin recruitment and desensitization of this receptor upon its activation by agonist. Here, we used a novel nanoluciferase complementation assay to study dopamine-induced recruitment of β-arrestin2 (βarr2; also known as arrestin3) and G protein-coupled receptor kinase-2 (GRK2) to the D4R in HEK293T cells. We also studied desensitization of D4R-evoked G protein-coupled inward rectifier potassium (GIRK; also known as Kir3) current responses in Xenopus oocytes. Furthermore, the effect of coexpression of GRK2 on βarr2 recruitment and GIRK response desensitization was examined. The results suggest that coexpression of GRK2 enhanced the potency of dopamine to induce βarr2 recruitment to the D4R and accelerated the rate of desensitization of D4R-evoked GIRK responses. The present study reveals new details about the regulation of arrestin recruitment to the D4R and thus increases our understanding of the signaling and desensitization of this receptor.
Collapse
Affiliation(s)
- Viktor Burström
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Richard Ågren
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Nibal Betari
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Marta Valle-León
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain
| | - Emilio Garro-Martínez
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain
| | - Kristoffer Sahlholm
- Department of Integrative Medical Biology, Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden,Department of Neuroscience, Karolinska Institutet, Solna, Sweden,Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain,Neuropharmacology and Pain Group, Neuroscience Program, Institut d'Investigació Biomèdica de Bellvitge, IDIBELL, Barcelona, Spain,*Correspondence: Kristoffer Sahlholm,
| |
Collapse
|
16
|
Dopamine Receptor Expression and the Pathogenesis of Attention-Deficit Hyperactivity Disorder: a Scoping Review of the Literature. CURRENT DEVELOPMENTAL DISORDERS REPORTS 2022. [DOI: 10.1007/s40474-022-00253-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Véronneau-Veilleux F, Robaey P, Ursino M, Nekka F. A mechanistic model of ADHD as resulting from dopamine phasic/tonic imbalance during reinforcement learning. Front Comput Neurosci 2022; 16:849323. [PMID: 35923915 PMCID: PMC9342605 DOI: 10.3389/fncom.2022.849323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 06/28/2022] [Indexed: 11/25/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is the most common neurodevelopmental disorder in children. Although the involvement of dopamine in this disorder seems to be established, the nature of dopaminergic dysfunction remains controversial. The purpose of this study was to test whether the key response characteristics of ADHD could be simulated by a mechanistic model that combines a decrease in tonic dopaminergic activity with an increase in phasic responses in cortical-striatal loops during learning reinforcement. To this end, we combined a dynamic model of dopamine with a neurocomputational model of the basal ganglia with multiple action channels. We also included a dynamic model of tonic and phasic dopamine release and control, and a learning procedure driven by tonic and phasic dopamine levels. In the model, the dopamine imbalance is the result of impaired presynaptic regulation of dopamine at the terminal level. Using this model, virtual individuals from a dopamine imbalance group and a control group were trained to associate four stimuli with four actions with fully informative reinforcement feedback. In a second phase, they were tested without feedback. Subjects in the dopamine imbalance group showed poorer performance with more variable reaction times due to the presence of fast and very slow responses, difficulty in choosing between stimuli even when they were of high intensity, and greater sensitivity to noise. Learning history was also significantly more variable in the dopamine imbalance group, explaining 75% of the variability in reaction time using quadratic regression. The response profile of the virtual subjects varied as a function of the learning history variability index to produce increasingly severe impairment, beginning with an increase in response variability alone, then accumulating a decrease in performance and finally a learning deficit. Although ADHD is certainly a heterogeneous disorder, these results suggest that typical features of ADHD can be explained by a phasic/tonic imbalance in dopaminergic activity alone.
Collapse
Affiliation(s)
- Florence Véronneau-Veilleux
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
- *Correspondence: Florence Véronneau-Veilleux
| | - Philippe Robaey
- Children's Hospital of Eastern Ontario, University of Ottawa, Ottawa, ON, Canada
| | - Mauro Ursino
- Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi,” University of Bologna, Bologna, Italy
| | - Fahima Nekka
- Faculté de Pharmacie, Université de Montréal, Montreal, QC, Canada
- Centre de Recherches Mathématiques, Université de Montréal, Montreal, QC, Canada
- Centre for Applied Mathematics in Bioscience and Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
18
|
Kanarik M, Grimm O, Mota NR, Reif A, Harro J. ADHD co-morbidities: A review of implication of gene × environment effects with dopamine-related genes. Neurosci Biobehav Rev 2022; 139:104757. [PMID: 35777579 DOI: 10.1016/j.neubiorev.2022.104757] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 06/25/2022] [Accepted: 06/26/2022] [Indexed: 02/07/2023]
Abstract
ADHD is a major burden in adulthood, where co-morbid conditions such as depression, substance use disorder and obesity often dominate the clinical picture. ADHD has substantial shared heritability with other mental disorders, contributing to comorbidity. However, environmental risk factors exist but their interaction with genetic makeup, especially in relation to comorbid disorders, remains elusive. This review for the first time summarizes present knowledge on gene x environment (GxE) interactions regarding the dopamine system. Hitherto, mainly candidate (GxE) studies were performed, focusing on the genes DRD4, DAT1 and MAOA. Some evidence suggest that the variable number tandem repeats in DRD4 and MAOA may mediate GxE interactions in ADHD generally, and comorbid conditions specifically. Nevertheless, even for these genes, common variants are bound to suggest risk only in the context of gender and specific environments. For other polymorphisms, evidence is contradictory and less convincing. Particularly lacking are longitudinal studies testing the interaction of well-defined environmental with polygenic risk scores reflecting the dopamine system in its entirety.
Collapse
Affiliation(s)
- Margus Kanarik
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia
| | - Oliver Grimm
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Nina Roth Mota
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital, Goethe University, Frankfurt, Germany
| | - Jaanus Harro
- Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Ravila 14A Chemicum, 50411 Tartu, Estonia; Psychiatry Clinic, North Estonia Medical Centre, Paldiski Road 52, 10614 Tallinn, Estonia.
| |
Collapse
|
19
|
Sasaki H, Jono T, Fukuhara R, Honda K, Ishikawa T, Boku S, Takebayashi M. Late-manifestation of attention-deficit/hyperactivity disorder in older adults: an observational study. BMC Psychiatry 2022; 22:354. [PMID: 35610630 PMCID: PMC9128193 DOI: 10.1186/s12888-022-03978-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The age of attention-deficit/hyperactivity disorder onset is usually during the first 12 years of life; however, there have been recent reports of late-onset attention-deficit/hyperactivity disorder. These reports have been limited to that of young adults, and details in older adults remain unknown. As such, we had previously presented the first case report of "very" late-onset attention-deficit/hyperactivity disorder, wherein the symptoms presented in senile age. In this observational study, we aimed to investigate the prevalence and clinical features of such attention-deficit/hyperactivity disorders in older adults visiting our dementia clinic. METHODS Four hundred forty-six consecutive patients visiting our specialty outpatient clinic for dementia during the 2-year period from April 1, 2015 to March 31, 2017 were included in this study. First, the patients were examined for the presence or absence of dementia in our specialty outpatient clinic for dementia. Those not diagnosed with dementia were examined for the presence or absence of attention-deficit/hyperactivity disorder in our specialty outpatient clinic for developmental disorders. Finally, these patients who were diagnosed with attention-deficit/hyperactivity disorder were investigated in detail to clarify their clinical characteristics. RESULTS Of 446 patients (246 women and 200 men), 7 patients were finally diagnosed with attention-deficit/hyperactivity disorder. Although these 7 patients were initially suspected to have Alzheimer's disease (considering their age, 6 of these 7 patients were suspected to have early onset Alzheimer's disease), it was found that these symptoms were due to attention-deficit/hyperactivity disorder. These patients had four characteristics in common: (1) they were significantly younger than the complete study population; (2) they predominantly showed inattention-related symptoms; (3) they showed latent manifestation; and (4) they experienced a stressful life event before manifestation. CONCLUSIONS Our previous case report suggested that very late-onset attention-deficit/hyperactivity disorder patients could be incorrectly diagnosed with dementia. In this observational study, 1.6% of patients who were initially suspected of having dementia were actually diagnosed with attention-deficit/hyperactivity disorder. This study also showed that the "late-onset" described in our previous report would be better described as "late-manifestation." A clinician should consider late-manifestation of attention-deficit/hyperactivity disorder in the differential diagnosis when encountering dementia patients, especially early onset Alzheimer's disease.
Collapse
Affiliation(s)
- Hiroyuki Sasaki
- grid.411152.20000 0004 0407 1295Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556 Japan ,grid.411152.20000 0004 0407 1295Medical Center for Developmental Disorders, Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Tadashi Jono
- grid.411152.20000 0004 0407 1295Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556 Japan ,grid.411152.20000 0004 0407 1295Medical Center for Developmental Disorders, Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Ryuji Fukuhara
- grid.411152.20000 0004 0407 1295Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556 Japan ,grid.411152.20000 0004 0407 1295Medical Center for Dementia-related Disease, Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Kazuki Honda
- grid.411152.20000 0004 0407 1295Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556 Japan ,grid.411152.20000 0004 0407 1295Medical Center for Dementia-related Disease, Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Tomohisa Ishikawa
- grid.411152.20000 0004 0407 1295Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556 Japan ,grid.411152.20000 0004 0407 1295Medical Center for Dementia-related Disease, Department of Neuropsychiatry, Kumamoto University Hospital, Kumamoto, Japan
| | - Shuken Boku
- grid.411152.20000 0004 0407 1295Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556 Japan
| | - Minoru Takebayashi
- Department of Neuropsychiatry, Faculty of Life Science, Kumamoto University Hospital, 1-1-1 Honjo, Chuo-ku, Kumamoto-shi, Kumamoto, 860-8556, Japan. .,Institute for Clinical Research, National Hospital Organization Kure Medical Center Chugoku Cancer Center, Hiroshima, Japan.
| |
Collapse
|
20
|
Hohmann S, Häge A, Millenet S, Banaschewski T. [The Genetic Basis of ADHD - An Update]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2022; 50:203-217. [PMID: 35514173 DOI: 10.1024/1422-4917/a000868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Genetic Basis of ADHD - An Update Abstract. Genetic risks play an important role in the etiology of attention-deficit/hyperactivity disorder (ADHD). This review presents the current state of knowledge concerning the genetic basis of the disorder. It discusses the results of twin- and family-based studies, linkage and association studies as well as recent findings resulting from Genome Wide Association Studies (GWAS). Furthermore, it elaborates on the relevance of polygenic risk scores, rare variants, and epigenetic alterations, especially in light of findings on genetic pleiotropy in the context of frequent psychiatric comorbidities in patients with ADHD.
Collapse
Affiliation(s)
- Sarah Hohmann
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Alexander Häge
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Sabina Millenet
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| | - Tobias Banaschewski
- Klinik für Psychiatrie und Psychotherapie des Kindes- und Jugendalters, Zentralinstitut für Seelische Gesundheit, Medizinische Fakultät Mannheim der Universität Heidelberg, Mannheim, Deutschland
| |
Collapse
|
21
|
Jung M, Apostolova LG, Moser DK, Gradus‐Pizlo I, Gao S, Rogers JL, Pressler SJ. Virtual reality cognitive intervention for heart failure: CORE study protocol. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12230. [PMID: 35317082 PMCID: PMC8923344 DOI: 10.1002/trc2.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 11/12/2022]
Abstract
Introduction Heart failure (HF) is a prevalent, serious chronic illness that affects 6.5 million adults in the United States. Among patients with HF, the prevalence of attention impairment is reported to range from 15% to 27%. Although attention is fundamental to human activities including HF self-care, cognitive interventions for patients with HF that target improvement in attention are scarce. The COgnitive intervention to Restore attention using nature Environment (CORE) study aims to test the preliminary efficacy of the newly developed Nature-VR, a virtual reality-based cognitive intervention that is based on the restorative effects of nature. Nature-VR development was guided by Attention Restoration Theory. The target outcomes are attention, HF self-care, and health-related quality of life (HRQoL). Our exploratory aims examine the associations between attention and several putative/established HF biomarkers (eg, oxygen saturation, brain-derived neurotrophic factor, apolipoprotein E, dopamine receptor, and dopamine transporter genes) as well as the effect of Nature-VR on cognitive performance in other domains (ie, global cognition, memory, visuospatial, executive function, and language), cardiac and neurological events, and mortality. Methods This single-blinded, two-group randomized-controlled pilot study will enroll 74 participants with HF. The Nature-VR intervention group will view three-dimensional nature pictures using a virtual reality headset for 10 minutes per day, 5 days per week for 4 weeks (a total of 200 minutes). The active comparison group, Urban-VR, will view three-dimensional urban pictures using a virtual reality headset to match the Nature-VR intervention in intervention dose and delivery mode, but not in content. After baseline interviews, four follow-up interviews will be conducted to assess sustained effects of Nature-VR at 4, 8, 26, and 52 weeks. Discussion The importance and novelty of this study consists of using a first-of-its kind, immersive virtual reality technology to target attention and in investigating the health outcomes of the Nature-VR cognitive intervention among patients with HF.
Collapse
Affiliation(s)
- Miyeon Jung
- Indiana University School of NursingIndianapolisIndianaUSA
| | - Liana G. Apostolova
- Indiana University School of Medicine, Department of Neurology, Radiology, and Medical and Molecular GeneticsIndianapolisIndianaUSA
| | - Debra K. Moser
- University of Kentucky College of NursingLexingtonKentuckyUSA
| | - Irmina Gradus‐Pizlo
- Department of MedicineUniversity of California Irvine School of MedicineOrangeCaliforniaUSA
| | - Sujuan Gao
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Jeff L. Rogers
- Indiana University UITS Advanced Visualization LabIndianapolisIndianaUSA
| | | |
Collapse
|
22
|
Yang JJ, Wang Z, Trucco EM, Buu A, Lin HC. Chronic pain and delinquency partially explain the effect of the DRD4 gene polymorphism on adult substance use. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2022; 48:235-244. [PMID: 34710332 DOI: 10.1080/00952990.2021.1977311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
Background: The dopamine receptor D4 [DRD4] has been reported to be associated with substance use. Yet, the roles that health conditions and behaviors may play in such association are understudied.Objective: This longitudinal study investigated the potential mediation effects of chronic pain and delinquency in adolescence on the association between the DRD4 2-repeat allele and substance use in adulthood. Sex, witnessing violence, and experiencing violence were also examined as potential moderators for the mediation pathways.Methods: We used the restricted and candidate gene data from the National Longitudinal Study of Adolescent to Adult Health (Waves I-IV) to conduct secondary analysis (N = 8,671; 47% male). A two-step approach was adopted to examine the mediation effects regarding four substance use outcomes in adulthood: number of lifetime alcohol use disorder symptoms, lifetime regular smoker status, past-month smoking, and lifetime "pain killer" misuse. The moderation effects were investigated using stratification and permutation.Results: The DRD4 2-repeat allele was associated with all adulthood substance use outcomes through adolescent chronic pain and delinquency (AORs/IRR range 1.08-3.78; all ps<0.01). The association between delinquency and smoking was higher among females. The association between delinquency and substance use was lower among the participants who witnessed violence in adolescence.Conclusions: This study identified modifiable mediators underlying the association between the DRD4 2-repeat allele and substance use behaviors, concluding that chronic pain and delinquency partially explain the effect of the DRD4 gene polymorphism on adult substance use.
Collapse
Affiliation(s)
- James J Yang
- Department of Biostatistics and Data Science, School of Public Health, University of Texas, Houston, TX, USA
| | - Zhi Wang
- Department of Applied Health Science, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Elisa M Trucco
- Department of Psychology, Florida International University, Miami, FL, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Anne Buu
- Department of Health Promotion and Behavioral Sciences, School of Public Health, University of Texas, Houston, TX, USA
| | - Hsien-Chang Lin
- Department of Applied Health Science, School of Public Health, Indiana University, Bloomington, IN, USA
| |
Collapse
|
23
|
Systematic identification of candidate genes associated with aggressive behavior: A neurogenetic approach. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Philyaw TJ, Rothenfluh A, Titos I. The Use of Drosophila to Understand Psychostimulant Responses. Biomedicines 2022; 10:119. [PMID: 35052798 PMCID: PMC8773124 DOI: 10.3390/biomedicines10010119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/31/2021] [Accepted: 12/31/2021] [Indexed: 01/27/2023] Open
Abstract
The addictive properties of psychostimulants such as cocaine, amphetamine, methamphetamine, and methylphenidate are based on their ability to increase dopaminergic neurotransmission in the reward system. While cocaine and methamphetamine are predominately used recreationally, amphetamine and methylphenidate also work as effective therapeutics to treat symptoms of disorders including attention deficit and hyperactivity disorder (ADHD) and autism spectrum disorder (ASD). Although both the addictive properties of psychostimulant drugs and their therapeutic efficacy are influenced by genetic variation, very few genes that regulate these processes in humans have been identified. This is largely due to population heterogeneity which entails a requirement for large samples. Drosophila melanogaster exhibits similar psychostimulant responses to humans, a high degree of gene conservation, and allow performance of behavioral assays in a large population. Additionally, amphetamine and methylphenidate reduce impairments in fly models of ADHD-like behavior. Therefore, Drosophila represents an ideal translational model organism to tackle the genetic components underlying the effects of psychostimulants. Here, we break down the many assays that reliably quantify the effects of cocaine, amphetamine, methamphetamine, and methylphenidate in Drosophila. We also discuss how Drosophila is an efficient and cost-effective model organism for identifying novel candidate genes and molecular mechanisms involved in the behavioral responses to psychostimulant drugs.
Collapse
Affiliation(s)
- Travis James Philyaw
- Molecular Biology Graduate Program, University of Utah, Salt Lake City, UT 84112, USA;
| | - Adrian Rothenfluh
- Department of Psychiatry, Huntsman Mental Health Institute, University of Utah, Salt Lake City, UT 84108, USA
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84132, USA
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Iris Titos
- Molecular Medicine Program, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
25
|
Abstract
The use of multiple species to model complex human psychiatric disorders, such as ADHD, can give important insights into conserved evolutionary patterns underlying multidomain behaviors (e.g., locomotion, attention, and impulsivity). Here we discuss the advantages and challenges in modelling ADHD-like phenotypes in zebrafish (Danio rerio), a vertebrate species that has been widely used in neuroscience and behavior research. Moreover, multiple behavioral tasks can be used to model the core symptoms of ADHD and its comorbidities. We present a critical review of current ADHD studies in zebrafish, and how this species might be used to accelerate the discovery of new drug treatments for this disorder.
Collapse
Affiliation(s)
- Barbara D Fontana
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - William H J Norton
- Department of Neuroscience, Psychology and Behaviour, College of Medicine, Biological Sciences and Psychology, University of Leicester, Leicester, UK.
- Department of Genetics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Matthew O Parker
- Brain and Behaviour Laboratory, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.
| |
Collapse
|
26
|
Yde Ohki CM, McNeill RV, Nieberler M, Radtke F, Kittel-Schneider S, Grünblatt E. Promising Developments in the Use of Induced Pluripotent Stem Cells in Research of ADHD. Curr Top Behav Neurosci 2022; 57:483-501. [PMID: 35543866 DOI: 10.1007/7854_2022_346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although research using animal models, peripheral and clinical biomarkers, multimodal neuroimaging techniques and (epi)genetic information has advanced our understanding of Attention-Deficit Hyperactivity Disorder (ADHD), the aetiopathology of this neurodevelopmental disorder has still not been elucidated. Moreover, as the primary affected tissue is the brain, access to samples is problematic. Alternative models are therefore required, facilitating cellular and molecular analysis. Recent developments in stem cell research have introduced the possibility to reprogram somatic cells from patients, in this case ADHD, and healthy controls back into their pluripotent state, meaning that they can then be differentiated into any cell or tissue type. The potential to translate patients' somatic cells into stem cells, and thereafter to use 2- and 3-dimensional (2D and 3D) neuronal cells to model neurodevelopmental disorders and/or test novel drug therapeutics, is discussed in this chapter.
Collapse
Affiliation(s)
- Cristine Marie Yde Ohki
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland
| | - Rhiannon V McNeill
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Matthias Nieberler
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Franziska Radtke
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Wuerzburg, Würzburg, Germany
| | - Sarah Kittel-Schneider
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich (PUK), University of Zurich, Zürich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and the ETH Zurich, Zürich, Switzerland.
- Zurich Center for Integrative Human Physiology, University of Zurich, Zürich, Switzerland.
| |
Collapse
|
27
|
Ferré S, Belcher AM, Bonaventura J, Quiroz C, Sánchez-Soto M, Casadó-Anguera V, Cai NS, Moreno E, Boateng CA, Keck TM, Florán B, Earley CJ, Ciruela F, Casadó V, Rubinstein M, Volkow ND. Functional and pharmacological role of the dopamine D 4 receptor and its polymorphic variants. Front Endocrinol (Lausanne) 2022; 13:1014678. [PMID: 36267569 PMCID: PMC9578002 DOI: 10.3389/fendo.2022.1014678] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
The functional and pharmacological significance of the dopamine D4 receptor (D4R) has remained the least well understood of all the dopamine receptor subtypes. Even more enigmatic has been the role of the very prevalent human DRD4 gene polymorphisms in the region that encodes the third intracellular loop of the receptor. The most common polymorphisms encode a D4R with 4 or 7 repeats of a proline-rich sequence of 16 amino acids (D4.4R and D4.7R). DRD4 polymorphisms have been associated with individual differences linked to impulse control-related neuropsychiatric disorders, with the most consistent associations established between the gene encoding D4.7R and attention-deficit hyperactivity disorder (ADHD) and substance use disorders. The function of D4R and its polymorphic variants is being revealed by addressing the role of receptor heteromerization and the relatively avidity of norepinephrine for D4R. We review the evidence conveying a significant and differential role of D4.4R and D4.7R in the dopaminergic and noradrenergic modulation of the frontal cortico-striatal pyramidal neuron, with implications for the moderation of constructs of impulsivity as personality traits. This differential role depends on their ability to confer different properties to adrenergic α2A receptor (α2AR)-D4R heteromers and dopamine D2 receptor (D2R)-D4R heteromers, preferentially localized in the perisomatic region of the frontal cortical pyramidal neuron and its striatal terminals, respectively. We also review the evidence to support the D4R as a therapeutic target for ADHD and other impulse-control disorders, as well as for restless legs syndrome.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
- *Correspondence: Sergi Ferré,
| | - Annabelle M. Belcher
- Division of Addiction Research and Treatment, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Jordi Bonaventura
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
| | - Marta Sánchez-Soto
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
| | - Verònica Casadó-Anguera
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes on Drug Abuse, Baltimore, MD, United States
| | - Estefanía Moreno
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Comfort A. Boateng
- Department of Basic Pharmaceutical Sciences, Fred Wilson School of Pharmacy, High Point, NC, United States
| | - Thomas M. Keck
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ, United States
| | - Benjamín Florán
- Departament of Physiology, Biophysics and Neurosciences, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Christopher J. Earley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Francisco Ciruela
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Spain
- Neuropharmacology & Pain Group, Neuroscience Program, Bellvitge Institute for Biomedical Research, L'Hospitalet de Llobregat, Spain
| | - Vicent Casadó
- Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain
| | - Marcelo Rubinstein
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas and, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora D. Volkow
- National Institute on Drug Abuse, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
28
|
Brikell I, Burton C, Mota NR, Martin J. Insights into attention-deficit/hyperactivity disorder from recent genetic studies. Psychol Med 2021; 51:2274-2286. [PMID: 33814023 DOI: 10.1017/s0033291721000982] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder (NDD). In this narrative review, we summarize recent advances in quantitative and molecular genetic research from the past 5-10 years. Combined with large-scale international collaboration, these advances have resulted in fast-paced progress in understanding the etiology of ADHD and how genetic risk factors map on to clinical heterogeneity. Studies are converging on a number of key insights. First, ADHD is a highly polygenic NDD with a complex genetic architecture encompassing risk variants across the spectrum of allelic frequencies, which are implicated in neurobiological processes. Second, genetic studies strongly suggest that ADHD diagnosis shares a large proportion of genetic risks with continuously distributed traits of ADHD in the population, with shared genetic risks also seen across development and sex. Third, ADHD genetic risks are shared with those implicated in many other neurodevelopmental, psychiatric and somatic phenotypes. As sample sizes and the diversity of genetic studies continue to increase through international collaborative efforts, we anticipate further success with gene discovery, characterization of how the ADHD phenotype relates to other human traits and growing potential to use genomic risk factors for understanding clinical trajectories and for precision medicine approaches.
Collapse
Affiliation(s)
- Isabell Brikell
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- National Centre for Register-based Research, Department of Economics and Business Economics, Aarhus University, Aarhus, Denmark
| | - Christie Burton
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Nina Roth Mota
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Joanna Martin
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| |
Collapse
|
29
|
Chatterjee SK, Yadav S, Saraswathy KN, Mondal PR. Genetic polymorphism of dopamine receptor D4 (DRD4) gene in ten Indian rhesus macaques (Macaca mulatta mulatta). Meta Gene 2021. [DOI: 10.1016/j.mgene.2021.100891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
30
|
Different effects of the DRD4 genotype on intrinsic brain network connectivity strength in drug-naïve children with ADHD and healthy controls. Brain Imaging Behav 2021; 16:464-475. [PMID: 34406637 PMCID: PMC8825637 DOI: 10.1007/s11682-021-00521-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/20/2021] [Indexed: 02/05/2023]
Abstract
The dopamine D4 receptor gene (DRD4) has been consistently reported to be associated with attention-deficit/hyperactivity disorder (ADHD). Recent studies have linked DRD4 to functional connectivity among specific brain regions. The current study aimed to compare the effects of the DRD4 genotype on functional integrity in drug-naïve ADHD children and healthy children. Resting-state functional MRI images were acquired from 49 children with ADHD and 37 healthy controls (HCs). We investigated the effects of the 2-repeat allele of DRD4 on brain network connectivity in both groups using a parameter called the degree of centrality (DC), which indexes local functional relationships across the entire brain connectome. A voxel-wise two-way ANCOVA was performed to examine the diagnosis-by-genotype interactions on DC maps. Significant diagnosis-by-genotype interactions with DC were found in the temporal lobe, including the left inferior temporal gyrus (ITG) and bilateral middle temporal gyrus (MTG) (GRF corrected at voxel level p < 0.001 and cluster level p < 0.05, two-tailed). With the further subdivision of the DC network according to anatomical distance, additional brain regions with significant interactions were found in the long-range DC network, including the left superior parietal gyrus (SPG) and right middle frontal gyrus (MFG). The post-hoc pairwise analysis found that altered network centrality related to DRD4 differed according to diagnostic status (p < 0.05). This genetic imaging study suggests that the DRD4 genotype regulates the functional integration of brain networks in children with ADHD and HCs differently. This may have important implications for our understanding of the role of DRD4 in altering functional connectivity in ADHD subjects.
Collapse
|
31
|
Fan HC, Chang YK, Tsai JD, Chiang KL, Shih JH, Yeh KY, Ma KH, Li IH. The Association Between Parkinson's Disease and Attention-Deficit Hyperactivity Disorder. Cell Transplant 2021; 29:963689720947416. [PMID: 33028106 PMCID: PMC7784516 DOI: 10.1177/0963689720947416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
While Parkinson’s disease (PD) and attention-deficit hyperactivity disorder (ADHD) are two distinct conditions, it has been hypothesized that they share several overlapping anatomical and neurochemical changes. In order to investigate that hypothesis, this study used claims data from Taiwan’s Longitudinal Health Insurance Database 2000 to provide the significant nationwide population-based evidence of an increased risk of PD among ADHD patients, and the connection between the two conditions was not the result of other comorbidities. Moreover, this study showed that the patients with PD were 2.8 times more likely to have a prior ADHD diagnosis compared with those without a prior history of ADHD. Furthermore, an animal model of ADHD was generated by neonatally injecting rats with 6-hydroxydopamine (6-OHDA). These rats were subjected to behavior tests and the 99mTc-TRODAT-1 brain imaging at the juvenile stage. Compared to control group rats, the 6-OHDA rats showed a significantly reduced specific uptake ratio in the striatum, indicating an underlying PD-linked pathology in the brains of these ADHD phenotype-expressing rats. Overall, these results support that ADHD shares a number of anatomical and neurochemical changes with PD. As such, improved knowledge of the neurochemical mechanisms underlying ADHD could result in improved treatments for various debilitating neurological disorders, including PD.
Collapse
Affiliation(s)
- Hueng-Chuen Fan
- Department of Pediatrics, 59084Tungs' Taichung Metroharbor Hospital, Wuchi, Taichung.,Department of Medical research, 68866Tungs' Taichung Metroharbor Hospital, Wuchi, Taichung.,Department of Life Sciences, 59084National Chung Hsing University, Taichung.,Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli
| | - Yu-Kang Chang
- Department of Medical research, 68866Tungs' Taichung Metroharbor Hospital, Wuchi, Taichung.,Department of Life Sciences, 59084National Chung Hsing University, Taichung.,Department of Rehabilitation, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli
| | - Jeng-Dau Tsai
- School of Medicine, 34899Chung Shan Medical University, Taichung.,Department of Pediatrics, 34899Chung Shan Medical University Hospital, Taichung
| | - Kuo-Liang Chiang
- Department of Pediatric Neurology, 38009Kuang-Tien General Hospital, Taichung.,Department of Nutrition, Hungkuang University, Taichung
| | - Jui-Hu Shih
- Department of Pharmacy Practice, 63452Tri-Service General Hospital, Taipei.,School of Pharmacy, 71548National Defense Medical Center, Taipei
| | - Kuan-Yi Yeh
- Department of Biology and Anatomy, 71548National Defense Medical Center, Taipei
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, 71548National Defense Medical Center, Taipei
| | - I-Hsun Li
- Department of Pharmacy Practice, 63452Tri-Service General Hospital, Taipei.,School of Pharmacy, 71548National Defense Medical Center, Taipei
| |
Collapse
|
32
|
Niewczas M, Grzywacz A, Leźnicka K, Chmielowiec K, Chmielowiec J, Maciejewska-Skrendo A, Ruzbarsky P, Masiak J, Czarny W, Cięszczyk P. Association between Polymorphism rs1799732 of DRD2 Dopamine Receptor Gene and Personality Traits among MMA Athletes. Genes (Basel) 2021; 12:genes12081217. [PMID: 34440391 PMCID: PMC8391442 DOI: 10.3390/genes12081217] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/01/2021] [Accepted: 08/04/2021] [Indexed: 12/04/2022] Open
Abstract
Four factors—namely, harm avoidance, novelty seeking, reward addiction and persistence—represent the nature of temperament that is not genetically determined in itself. It was shown in earlier studies that a strong propensity to look for novelty or a tendency to engage in risky behavior is correlated with genetic variants in the area of the genes encoding dopamine receptors. Therefore, the aim of this study is to determine whether there is a relationship between personality traits and genetic variants in the area of the DRD2 dopamine receptor gene in MMA athletes. The participants consisted of 85 mixed martial arts (MMA) athletes and 284 healthy, non-MMA male participants. Their personality traits were measured using the Revised Temperament and Character Inventory. Blood was collected for genetic assays and all samples were genotyped using the real-time PCR method. We observed a statistically significant effect of a complex factor of the DRD2 rs1799732 genotype on MMA participants’ control and reward dependence. Engaging in high-risk sport may be associated with several personality characteristics. The DRD2 rs1799732 polymorphism may be associated with reduced harm avoidance in martial arts athletes, thereby modulating athletes’ predisposition to participate in high-risk sport.
Collapse
Affiliation(s)
- Marta Niewczas
- Faculty of Physical Education, University of Rzeszów, 3 Towarnickiego St., 35-959 Rzeszów, Poland; (M.N.); (W.C.)
| | - Anna Grzywacz
- Independent Laboratory of Health Promotion, Pomeranian Medical University in Szczecin, 11 Chlapowskiego St., 70-204 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-441-47-66
| | - Katarzyna Leźnicka
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 1 K. Górskiego St., 80-336 Gdansk, Poland; (K.L.); (P.C.)
| | - Krzysztof Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | - Jolanta Chmielowiec
- Department of Hygiene and Epidemiology, Collegium Medicum, University of Zielona Góra, 28 Zyty St., 65-046 Zielona Góra, Poland; (K.C.); (J.C.)
| | | | - Pavel Ruzbarsky
- Faculty of Sports, University of Presov, 15, 17. novembra St., 080 01 Prešov, Slovakia;
| | - Jolanta Masiak
- Neurophysiological Independent Unit, Department of Psychiatry, Medical University of Lublin, 1 Aleje Racławickie St., 20-059 Lublin, Poland;
| | - Wojciech Czarny
- Faculty of Physical Education, University of Rzeszów, 3 Towarnickiego St., 35-959 Rzeszów, Poland; (M.N.); (W.C.)
| | - Paweł Cięszczyk
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 1 K. Górskiego St., 80-336 Gdansk, Poland; (K.L.); (P.C.)
| |
Collapse
|
33
|
Heteromerization between α 2A adrenoceptors and different polymorphic variants of the dopamine D 4 receptor determines pharmacological and functional differences. Implications for impulsive-control disorders. Pharmacol Res 2021; 170:105745. [PMID: 34182128 PMCID: PMC9885860 DOI: 10.1016/j.phrs.2021.105745] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/11/2021] [Accepted: 06/23/2021] [Indexed: 02/01/2023]
Abstract
Polymorphic alleles of the human dopamine D4 receptor gene (DRD4) have been consistently associated with individual differences in personality traits and neuropsychiatric disorders, particularly between the gene encoding dopamine D4.7 receptor variant and attention deficit hyperactivity disorder (ADHD). The α2A adrenoceptor gene has also been associated with ADHD. In fact, drugs targeting the α2A adrenoceptor (α2AR), such as guanfacine, are commonly used in ADHD treatment. In view of the involvement of dopamine D4 receptor (D4R) and α2AR in ADHD and impulsivity, their concurrent localization in cortical pyramidal neurons and the demonstrated ability of D4R to form functional heteromers with other G protein-coupled receptors, in this study we evaluate whether the α2AR forms functional heteromers with D4R and weather these heteromers show different properties depending on the D4R variant involved. Using cortical brain slices from hD4.7R knock-in and wild-type mice, here, we demonstrate that α2AR and D4R heteromerize and constitute a significant functional population of cortical α2AR and D4R. Moreover, in cortical slices from wild-type mice and in cells transfected with α2AR and D4.4R, we detect a negative crosstalk within the heteromer. This negative crosstalk is lost in cortex from hD4.7R knock-in mice and in cells expressing the D4.7R polymorphic variant. We also show a lack of efficacy of D4R ligands to promote G protein activation and signaling only within the α2AR-D4.7R heteromer. Taken together, our results suggest that α2AR-D4R heteromers play a pivotal role in catecholaminergic signaling in the brain cortex and are likely targets for ADHD pharmacotherapy.
Collapse
|
34
|
Guo N, Fuermaier ABM, Koerts J, Mueller BW, Diers K, Mroß A, Mette C, Tucha L, Tucha O. Neuropsychological functioning of individuals at clinical evaluation of adult ADHD. J Neural Transm (Vienna) 2021; 128:877-891. [PMID: 33355692 PMCID: PMC8295106 DOI: 10.1007/s00702-020-02281-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Numerous studies showed that adults with attention deficit hyperactivity disorder (ADHD) suffer from impairments in a range of cognitive functions when compared to healthy controls. However, only little is known about the neuropsychological functions when compared to various clinical control groups and whether a distinct neuropsychological profile can be identified for adult ADHD. METHOD This retrospective study examined data of 199 outpatients referred for clinical evaluation of adult ADHD, allocated either to an ADHD group (n = 78) or to one of two clinical comparison groups, depending on whether they show indications (n = 71) or no indications (n = 50) for the presence of psychiatric disorders other than ADHD. All individuals performed a comprehensive neuropsychological test battery. RESULTS Data analysis revealed impairments in a range of cognitive functions in a substantial number of patients of all three groups. However, profiles of neuropsychological impairments were similar between groups. Furthermore, significant small- to medium-sized correlations between basic and higher-order cognitive functions were revealed in the ADHD group and the clinical comparison group with indications for psychiatric disorders other than ADHD. CONCLUSION Neuropsychological impairments are prominent in psychiatric outpatients seeking a clinical evaluation of adult ADHD but are not specific for ADHD. It is concluded that neuropsychological test performance may have limited incremental value to support the psychiatric differential diagnosis. Furthermore, a clinical trajectory may need to take into account that deficits in a range of higher-order cognitive functions can be substantially explained by deficits in basic cognitive functions.
Collapse
Affiliation(s)
- Nana Guo
- Department of Clinical and Developmental Neuropsychology, Faculty of Behavioral and Social Sciences, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands.
| | - Anselm B M Fuermaier
- Department of Clinical and Developmental Neuropsychology, Faculty of Behavioral and Social Sciences, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - Janneke Koerts
- Department of Clinical and Developmental Neuropsychology, Faculty of Behavioral and Social Sciences, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
| | - Bernhard W Mueller
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR Hospital Essen, University of Duisburg-Essen, Essen, Germany
- Department of Psychology, University of Wuppertal, Wuppertal, Germany
| | - Katerina Diers
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Aaron Mroß
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, LVR Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Lara Tucha
- Department of Clinical and Developmental Neuropsychology, Faculty of Behavioral and Social Sciences, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Oliver Tucha
- Department of Clinical and Developmental Neuropsychology, Faculty of Behavioral and Social Sciences, University of Groningen, Grote Kruisstraat 2/1, 9712 TS, Groningen, The Netherlands
- Department of Psychiatry and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
35
|
Cervantes-Henriquez ML, Acosta-López JE, Ahmad M, Sánchez-Rojas M, Jiménez-Figueroa G, Pineda-Alhucema W, Martinez-Banfi ML, Noguera-Machacón LM, Mejía-Segura E, De La Hoz M, Arcos-Holzinger M, Pineda DA, Puentes-Rozo PJ, Arcos-Burgos M, Vélez JI. ADGRL3, FGF1 and DRD4: Linkage and Association with Working Memory and Perceptual Organization Candidate Endophenotypes in ADHD. Brain Sci 2021; 11:854. [PMID: 34206913 PMCID: PMC8301925 DOI: 10.3390/brainsci11070854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/14/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Attention deficit hyperactivity disorder (ADHD) is a highly heritable neurobehavioral disorder that affects children worldwide, with detrimental long-term consequences in affected individuals. ADHD-affected patients display visual-motor and visuospatial abilities and skills that depart from those exhibited by non-affected individuals and struggle with perceptual organization, which might partially explain impulsive responses. Endophenotypes (quantifiable or dimensional constructs that are closely related to the root cause of the disease) might provide a more powerful and objective framework for dissecting the underlying neurobiology of ADHD than that of categories offered by the syndromic classification. In here, we explore the potential presence of the linkage and association of single-nucleotide polymorphisms (SNPs), harbored in genes implicated in the etiology of ADHD (ADGRL3, DRD4, and FGF1), with cognitive endophenotypes related to working memory and perceptual organization in 113 nuclear families. These families were ascertained from a geographical area of the Caribbean coast, in the north of Colombia, where the community is characterized by its ethnic diversity and differential gene pool. We found a significant association and linkage of markers ADGRL3-rs1565902, DRD4-rs916457 and FGF1-rs2282794 to neuropsychological tasks outlining working memory and perceptual organization such as performance in the digits forward and backward, arithmetic, similarities, the completion of figures and the assembly of objects. Our results provide strong support to understand ADHD as a combination of working memory and perceptual organization deficits and highlight the importance of the genetic background shaping the neurobiology, clinical complexity, and physiopathology of ADHD. Further, this study supplements new information regarding an ethnically diverse community with a vast African American contribution, where ADHD studies are scarce.
Collapse
Affiliation(s)
- Martha L. Cervantes-Henriquez
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
- Universidad del Norte, Barranquilla 081007, Colombia
| | - Johan E. Acosta-López
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Mostapha Ahmad
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Manuel Sánchez-Rojas
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Giomar Jiménez-Figueroa
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Wilmar Pineda-Alhucema
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Martha L. Martinez-Banfi
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Luz M. Noguera-Machacón
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Elsy Mejía-Segura
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Moisés De La Hoz
- Facultad de Ciencias Jurídicas y Sociales, Universidad Simón Bolívar, Barranquilla 080005, Colombia; (J.E.A.-L.); (M.A.); (M.S.-R.); (G.J.-F.); (W.P.-A.); (M.L.M.-B.); (L.M.N.-M.); (E.M.-S.); (M.D.L.H.)
| | - Mauricio Arcos-Holzinger
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Mxdicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia; (M.A.-H.); (M.A.-B.)
| | - David A. Pineda
- Grupo de Neuropsicología y Conducta, Universidad de San Buenaventura, Medellín 050010, Colombia;
| | - Pedro J. Puentes-Rozo
- Grupo de Neurociencias del Caribe, Universidad del Atlántico, Barranquilla 081001, Colombia;
| | - Mauricio Arcos-Burgos
- Grupo de Investigación en Psiquiatría (GIPSI), Departamento de Psiquiatría, Instituto de Investigaciones Mxdicas, Facultad de Medicina, Universidad de Antioquia, Medellin 050010, Colombia; (M.A.-H.); (M.A.-B.)
| | | |
Collapse
|
36
|
Genetic variations influence brain changes in patients with attention-deficit hyperactivity disorder. Transl Psychiatry 2021; 11:349. [PMID: 34091591 PMCID: PMC8179928 DOI: 10.1038/s41398-021-01473-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 05/04/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurological and neurodevelopmental childhood-onset disorder characterized by a persistent pattern of inattentiveness, impulsiveness, restlessness, and hyperactivity. These symptoms may continue in 55-66% of cases from childhood into adulthood. Even though the precise etiology of ADHD is not fully understood, it is considered as a multifactorial and heterogeneous disorder with several contributing factors such as heritability, auxiliary to neurodevelopmental issues, severe brain injuries, neuroinflammation, consanguineous marriages, premature birth, and exposure to environmental toxins. Neuroimaging and neurodevelopmental assessments may help to explore the possible role of genetic variations on ADHD neuropsychobiology. Multiple genetic studies have observed a strong genetic association with various aspects of neuropsychobiological functions, including neural abnormalities and delayed neurodevelopment in ADHD. The advancement in neuroimaging and molecular genomics offers the opportunity to analyze the impact of genetic variations alongside its dysregulated pathways on structural and functional derived brain imaging phenotypes in various neurological and psychiatric disorders, including ADHD. Recently, neuroimaging genomic studies observed a significant association of brain imaging phenotypes with genetic susceptibility in ADHD. Integrating the neuroimaging-derived phenotypes with genomics deciphers various neurobiological pathways that can be leveraged for the development of novel clinical biomarkers, new treatment modalities as well as therapeutic interventions for ADHD patients. In this review, we discuss the neurobiology of ADHD with particular emphasis on structural and functional changes in the ADHD brain and their interactions with complex genomic variations utilizing imaging genetics methodologies. We also highlight the genetic variants supposedly allied with the development of ADHD and how these, in turn, may affect the brain circuit function and related behaviors. In addition to reviewing imaging genetic studies, we also examine the need for complementary approaches at various levels of biological complexity and emphasize the importance of combining and integrating results to explore biological pathways involved in ADHD disorder. These approaches include animal models, computational biology, bioinformatics analyses, and multimodal imaging genetics studies.
Collapse
|
37
|
Abstract
INTRODUCTION Adult Attention Deficit/Hyperactivity Disorder (ADHD) is prone to misdiagnosis because its symptoms are subjective, share features with a broad range of mental, behavioral and physical disorders, and express themselves heterogeneously. Furthermore, Diagnostic and Statistical Manual of Mental Disorders (DSM) criteria for adult ADHD diagnosis remain underdeveloped, prompting a need for systematic and empirically-informed guidelines. METHOD This article presents a brief history of research on adult ADHD and reviews common sources of false positive and false negative diagnoses. A systematic, stepped diagnostic procedure is described that adheres to DSM guidelines and integrates the latest science on adult ADHD assessment and diagnosis. RESULTS Seven steps are recommended: a structured diagnostic interview with the patient, collection of informant ratings, casting a wide net on symptoms using "or rule" to integrate informant reports, providing checks and balances on the "or rule" by enforcing the impairment criterion, chronicling a symptom timeline, ruling out alternative explanations for symptoms, and finalizing the diagnosis. CONCLUSIONS Based on the extant research, it is expected that the stepped diagnostic procedure will increase detection of malingering, improve diagnostic accuracy, and detect non-ADHD cases with subclinical difficulties or non-ADHD pathologies.
Collapse
Affiliation(s)
- Margaret H Sibley
- Department of Psychiatry & Behavioral Sciences, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
38
|
Mamiya PC, Arnett AB, Stein MA. Precision Medicine Care in ADHD: The Case for Neural Excitation and Inhibition. Brain Sci 2021; 11:brainsci11010091. [PMID: 33450814 PMCID: PMC7828220 DOI: 10.3390/brainsci11010091] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder that has become increasingly prevalent worldwide. Its core symptoms, including difficulties regulating attention, activity level, and impulses, appear in early childhood and can persist throughout the lifespan. Current pharmacological options targeting catecholamine neurotransmissions have effectively alleviated symptoms in some, but not all affected individuals, leaving clinicians to implement trial-and-error approach to treatment. In this review, we discuss recent experimental evidence from both preclinical and human studies that suggest imbalance of excitation/inhibition (E/I) in the fronto-striatal circuitry during early development may lead to enduring neuroanatomical abnormality of the circuitry, causing persistence of ADHD symptoms in adulthood. We propose a model of precision medicine care that includes E/I balance as a candidate biomarker for ADHD, development of GABA-modulating medications, and use of magnetic resonance spectroscopy and scalp electrophysiology methods to monitor the effects of treatments on shifting E/I balance throughout the lifespan.
Collapse
Affiliation(s)
- Ping C. Mamiya
- Institute for Learning and Brain Sciences, University of Washington, Seattle, WA 98195, USA
- Correspondence:
| | - Anne B. Arnett
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; (A.B.A.); (M.A.S.)
| | - Mark A. Stein
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle, WA 98195, USA; (A.B.A.); (M.A.S.)
| |
Collapse
|
39
|
Bluschke A, Zink N, Mückschel M, Roessner V, Beste C. A novel approach to intra-individual performance variability in ADHD. Eur Child Adolesc Psychiatry 2021; 30:733-745. [PMID: 32410131 PMCID: PMC8060200 DOI: 10.1007/s00787-020-01555-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 05/01/2020] [Indexed: 11/26/2022]
Abstract
Patients with attention deficit/(hyperactivity) disorder (AD(H)D) show increased intra-individual variability (IIV) in behavioral performance. This likely reflects dopaminergic deficiencies. However, the precise performance profile across time and the pattern of fluctuations within it have not yet been considered, partly due to insufficient methods. Yet, such an analysis may yield important theory-based implications for clinical practice. Thus, in a case-control cross-sectional study, we introduce a new method to investigate performance fluctuations in patients with ADD (n = 76) and ADHD (n = 67) compared to healthy controls (n = 45) in a time estimation task. In addition, we also evaluate the effects of methylphenidate (MPH) treatment on this performance pattern in 29 patients with AD(H)D. Trial-by-trial differences in performance between healthy controls and patients with AD(H)D do not persist continuously over longer time periods. Periods during which no differences in performance between healthy controls and patients occur alternate with periods in which such differences are present. AD(H)D subtype and surprisingly also medication status does not affect this pattern. The presented findings likely reflect (phasic) deficiencies of the dopaminergic system in patients with AD(H)D which are not sufficiently ameliorated by first-line pharmacological treatment. The presented findings carry important clinical and scientific implications.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
40
|
Kim JI, Kim JW, Shin I, Kim BN. Interaction of DRD4 Methylation and Phthalate Metabolites Affects Continuous Performance Test Performance in ADHD. J Atten Disord 2021; 25:161-170. [PMID: 29781347 DOI: 10.1177/1087054718776466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective: We investigated the interaction effect between the methylation of dopamine receptor D4 (DRD4) and phthalate exposure in ADHD on continuous performance test (CPT) variables. Method: Urine concentrations of mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono-n-butyl phthalate (MBP) were tested. The methylation status was analyzed for CpG sites of DRD4. Multivariable linear regression models were applied to investigate the interaction effects of methylation and phthalate levels. Results: There was a significant interaction effect of the methylation of CpG26 and CpG28 with the MEHHP level on omission errors in ADHD patients, but not in controls. The post hoc analysis revealed a significant correlation between the MEHHP concentration and omission errors in the methylated group, but not in the unmethylated group. Conclusion: The interaction between the methylation status of CpG sites of DRD4, particularly CpG26 and CpG28, and phthalate metabolite levels affects the attention level in ADHD patients.
Collapse
Affiliation(s)
| | - Jae-Won Kim
- Seoul National University College of Medicine, Chongno-gu, Seoul, Republic of Korea
| | - Inkyung Shin
- LabGenomics, Bundang-gu, Seong-nam city, Gyeonggi-do, Republic of Korea
| | - Bung-Nyun Kim
- Seoul National University College of Medicine, Chongno-gu, Seoul, Republic of Korea
| |
Collapse
|
41
|
Giorgioni G, Del Bello F, Pavletić P, Quaglia W, Botticelli L, Cifani C, Micioni Di Bonaventura E, Micioni Di Bonaventura MV, Piergentili A. Recent findings leading to the discovery of selective dopamine D 4 receptor ligands for the treatment of widespread diseases. Eur J Med Chem 2020; 212:113141. [PMID: 33422983 DOI: 10.1016/j.ejmech.2020.113141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Since its discovery, the dopamine D4 receptor (D4R) has been suggested to be an attractive target for the treatment of neuropsychiatric diseases. Novel findings have renewed the interest in such a receptor as an emerging target for the management of different diseases, including cancer, Parkinson's disease, alcohol or substance use disorders, eating disorders, erectile dysfunction and cognitive deficits. The recently resolved crystal structures of D4R in complexes with the potent ligands nemonapride and L-745870 strongly improved the knowledge on the molecular mechanisms involving the D4R functions and may help medicinal chemists in drug design. This review is focused on the recent development of the subtype selective D4R ligands belonging to classical or new chemotypes. Moreover, ligands showing functional selectivity toward G protein activation or β-arrestin recruitment and the effects of selective D4R ligands on the above-mentioned diseases are discussed.
Collapse
Affiliation(s)
- Gianfabio Giorgioni
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Fabio Del Bello
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Pegi Pavletić
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| | - Wilma Quaglia
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy.
| | - Luca Botticelli
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | - Carlo Cifani
- School of Pharmacy, Pharmacology Unit, University of Camerino, Via Madonna Delle Carceri 9, 62032, Camerino, Italy
| | | | | | - Alessandro Piergentili
- School of Pharmacy, Medicinal Chemistry Unit, University of Camerino, Via S. Agostino 1, 62032, Camerino, Italy
| |
Collapse
|
42
|
Olfactory Dysfunction in Neurodevelopmental Disorders: A Meta-analytic Review of Autism Spectrum Disorders, Attention Deficit/Hyperactivity Disorder and Obsessive-Compulsive Disorder. J Autism Dev Disord 2020; 50:2685-2697. [PMID: 31960263 DOI: 10.1007/s10803-020-04376-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Olfactory dysfunction is recognized in neurodevelopmental disorders and may serve as an early indicator of global dysfunction. The present meta-analysis measures olfaction effect sizes in attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and obsessive-compulsive disorder (OCD). Meta-analysis included 320 ADHD, 346 ASD, and 208 OCD individuals as compared to 910 controls. Olfactory performance deficits were small-to-moderate and heterogeneous (d = - 0.42, 95% CI = - 0.59 < δ < - 0.25). Meta-analytic results indicate that olfactory dysfunction is evident in individuals with ASD and OCD, with small-to-negligible effects in ADHD. These findings imply olfactory dysfunction is related to clinical phenotype in ASD and OCD, but not ADHD, and warrant inclusion in clinical assessment and evaluation of certain neurodevelopmental disorders.
Collapse
|
43
|
Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task. Brain Sci 2020; 10:brainsci10100715. [PMID: 33050115 PMCID: PMC7600375 DOI: 10.3390/brainsci10100715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Patients affected by Attention-Deficit/Hyperactivity Disorder (ADHD) are characterized by impaired executive functioning and/or attention deficits. Our study aim is to determine whether the outcomes measured by the Attention Network Task (ANT), i.e., the reaction times (RTs) to specific target and cue conditions and alerting, orienting, and conflict (or executive control) effects are affected by cognitive training with a Dual n-back task. We considered three groups of young adult participants: ADHD patients without medication (ADHD), ADHD with medication (MADHD), and age/education-matched controls. Working memory training consisted of a daily practice of 20 blocks of Dual n-back task (approximately 30 min per day) for 20 days within one month. Participants of each group were randomly assigned into two subgroups, the first one with an adaptive mode of difficulty (adaptive training), while the second was blocked at the level 1 during the whole training phase (1-back task, baseline training). Alerting and orienting effects were not modified by working memory training. The dimensional analysis showed that after baseline training, the lesser the severity of the hyperactive-impulsive symptoms, the larger the improvement of reaction times on trials with high executive control/conflict demand (i.e., what is called Conflict Effect), irrespective of the participants’ group. In the categorical analysis, we observed the improvement in such Conflict Effect after the adaptive training in adult ADHD patients irrespective of their medication, but not in controls. The ex-Gaussian analysis of RT and RT variability showed that the improvement in the Conflict Effect correlated with a decrease in the proportion of extreme slow responses. The Dual n-back task in the adaptive mode offers as a promising candidate for a cognitive remediation of adult ADHD patients without pharmaceutical medication.
Collapse
|
44
|
Horowitz I, Avirame K, Naim-Feil J, Rubinson M, Moses E, Gothelf D, Levit-Binnun N. The interactive effects of test-retest and methylphenidate administration on cognitive performance in youth with ADHD: A double-blind placebo-controlled crossover study. Psychiatry Res 2020; 291:113056. [PMID: 32554183 DOI: 10.1016/j.psychres.2020.113056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/14/2020] [Accepted: 04/30/2020] [Indexed: 11/29/2022]
Abstract
Studies have shown that Methylphenidate (MPH) affects cognitive performance on the neuropsychological tests and clinical symptoms of individuals diagnosed with attention deficit/hyperactivity disorder (ADHD). This study investigated the acute effects of MPH on neuropsychological tests to explore the interaction between MPH and test-retest effects. Twenty youths with ADHD were tested before and after MPH intake in a double-blind placebo-controlled crossover design and compared to twenty matched controls. Participants were tested on a range of standardized tasks including sustained attention to response, N-Back, and Word/Color Stroop. Identical tasks were administered twice each testing day, before and 1 hour after MPH/Placebo administration. Healthy controls were tested similarly with no intervention. Decreases in response time (RT) variability across tasks and in commission errors were found in ADHD after MPH. Conversely, a significant increase in RT variability and increase in omission errors were observed after the placebo. In the control group, RT variability and omission errors increased whereas commission errors decreased, suggesting fatigue and practice effects, respectively. Test-retest reliability was higher in controls than ADHD. It is suggested that cognitive tests are sensitive objective measures for the assessment of responses to MPH in ADHD but are also affected by repetition and fatigue.
Collapse
Affiliation(s)
- Itai Horowitz
- Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| | - Keren Avirame
- Ruth Rappaport Children's Hospital, Rambam Medical Center, Haifa, Israel; Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jodie Naim-Feil
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel; Sagol Center for Brain and Mind, Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel
| | - Mica Rubinson
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| | - Elisha Moses
- Department of Physics of Complex Systems, The Weizmann Institute of Science, Rehovot, Israel
| | - Doron Gothelf
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Child and Adolescent Psychiatry Division, The Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nava Levit-Binnun
- Sagol Center for Brain and Mind, Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel
| |
Collapse
|
45
|
Patte KA, Davis CA, Levitan RD, Kaplan AS, Carter-Major J, Kennedy JL. A Behavioral Genetic Model of the Mechanisms Underlying the Link Between Obesity and Symptoms of ADHD. J Atten Disord 2020; 24:1425-1436. [PMID: 26794671 DOI: 10.1177/1087054715618793] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Objective: The ADHD-obesity link has been suggested to result from a shared underlying basis of suboptimal dopamine (DA); however, this theory conflicts evidence that an amplified DA signal increases the risk for overeating and weight gain. A model was tested in which ADHD symptoms, predicted by hypodopaminergic functioning in the prefrontal cortex, in combination with an enhanced appetitive drive, predict hedonic eating and, in turn, higher body mass index (BMI). Method: DRD2 and DRD4 markers were genotyped. The model was tested using structural equation modeling in a nonclinical sample (N = 421 adults). Results: The model was a good fit to the data. Controlling for education, all parameter estimates were significant, except for the DRD4-ADHD symptom pathway. The significant indirect effect indicates that overeating mediated the ADHD symptoms-BMI association. Conclusion: Results support the hypothesis that overeating and elevated DA in the ventral striatum-representative of a greater reward response-contribute to the ADHD symptom-obesity relationship.
Collapse
Affiliation(s)
| | - Caroline A Davis
- York University, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| | - Robert D Levitan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| | - Allan S Kaplan
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| | | | - James L Kennedy
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,University of Toronto, Ontario, Canada
| |
Collapse
|
46
|
Portella AK, Papantoni A, Paquet C, Moore S, Rosch KS, Mostofsky S, Lee RS, Smith KR, Levitan R, Silveira PP, Carnell S, Dube L. Predicted DRD4 prefrontal gene expression moderates snack intake and stress perception in response to the environment in adolescents. PLoS One 2020; 15:e0234601. [PMID: 32589693 PMCID: PMC7319347 DOI: 10.1371/journal.pone.0234601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
Body weight is substantially determined by eating behaviors, which are themselves driven by biological factors interacting with the environment. Previous studies in young children suggest that genetic influences on dopamine function may confer differential susceptibility to the environment in such a way that increases behavioral obesity risk in a lower socioeconomic status (SES) environment but decreases it in a higher SES environment. We aimed to test if this pattern of effect could also be observed in adolescence, another critical period for development in brain and behavior, using a novel measure of predicted expression of the dopamine receptor 4 (DRD4) gene in prefrontal cortex. In a sample of 76 adolescents (37 boys and 39 girls from Baltimore, Maryland/US, aged 14-18y), we estimated individual levels of DRD4 gene expression (PredDRD4) in prefrontal cortex from individual genomic data using PrediXcan, and tested interactions with a composite SES score derived from their annual household income, maternal education, food insecurity, perceived resource availability, and receipt of public assistance. Primary outcomes were snack intake during a multi-item ad libitum meal test, and food-related impulsivity assessed using a food-adapted go/no-go task. A linear regression model adjusted for sex, BMI z-score, and genetic ethnicity demonstrated a PredDRD4 by composite SES score interaction for snack intake (p = 0.009), such that adolescents who had lower PredDRD4 levels exhibited greater snack intake in the lower SES group, but lesser snack intake in the higher SES group. Exploratory analysis revealed a similar pattern for scores on the Perceived Stress Scale (p = 0.001) such that the low PredDRD4 group reported higher stress in the lower SES group, but less stress in the higher SES group, suggesting that PredDRD4 may act in part by affecting perceptions of the environment. These results are consistent with a differential susceptibility model in which genes influencing environmental responsiveness interact with environments varying in obesogenicity to confer behavioral obesity risk in a less favorable environment, but behavioral obesity protection in a favorable one.
Collapse
Affiliation(s)
- Andre Krumel Portella
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
- Postgraduate Program in Pediatrics, Universidade Federal de Ciencias da Saude de Porto Alegre, Porto Alegre, RS, Brasil
| | - Afroditi Papantoni
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Catherine Paquet
- Australian Centre for Precision Health, School of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Spencer Moore
- Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC, United States of America
| | - Keri Shiels Rosch
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Center for Neurodevelopmental and Imaging Research and Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States of America
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Stewart Mostofsky
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Center for Neurodevelopmental and Imaging Research and Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, United States of America
| | - Richard S. Lee
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Kimberly R. Smith
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Robert Levitan
- Centre for Addition and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, QC, Canada
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Montreal, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Susan Carnell
- Department of Psychiatry and Behavioral Sciences, Division of Child and Adolescent Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| |
Collapse
|
47
|
Glazer J, King A, Yoon C, Liberzon I, Kitayama S. DRD4 polymorphisms modulate reward positivity and P3a in a gambling task: Exploring a genetic basis for cultural learning. Psychophysiology 2020; 57:e13623. [PMID: 32583892 DOI: 10.1111/psyp.13623] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 01/14/2023]
Abstract
Prior work shows that people respond more plastically to environmental influences, including cultural influences, if they carry the 7 or 2-repeat (7/2R) allelic variant of the dopamine D4 receptor gene (DRD4). The 7/2R carriers are thus more likely to endorse the norms and values of their culture. So far, however, mechanisms underlying this moderation of cultural acquisition by DRD4 are unclear. To address this gap in knowledge, we tested the hypothesis that DRD4 modulates the processing of reward cues existing in the environment. About 72 young adults, preselected for their DRD4 status, performed a gambling task, while the electroencephalogram was recorded. Principal components of event-related potentials aligned to the Reward-Positivity (associated with bottom-up processing of reward prediction errors) and frontal-P3 (associated with top-down attention) were both significantly more positive following gains than following losses. As predicted, the gain-loss differences were significantly larger for 7/2R carriers than for noncarriers. Also, as predicted, the cultural backgrounds of the participants (East Asian vs. European American) did not moderate the effects of DRD4. Our findings suggest that the 7/2R variant of DRD4 enhances (a) the detection of reward prediction errors and (b) controlled attention that updates the context for the reward, thereby suggesting one possible mechanism underlying the DRD4 × Culture interactions.
Collapse
Affiliation(s)
- James Glazer
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Anthony King
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Carolyn Yoon
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Israel Liberzon
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Shinobu Kitayama
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
48
|
Tonelli E, Pascale E, Troianiello M, D'Addario C, Adriani W. DAT1 Gene Methylation as an Epigenetic Biomarker in Attention Deficit Hyperactivity Disorder: A Commentary. Front Genet 2020; 11:444. [PMID: 32477403 PMCID: PMC7232962 DOI: 10.3389/fgene.2020.00444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/09/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Erika Tonelli
- Faculty of Psychology, Università Telematica Internazionale “Uninettuno”, Rome, Italy
| | - Esterina Pascale
- Medico-Surgical Sciences and Biotechnologies Department, “Sapienza” University of Rome, Rome, Italy
| | | | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Walter Adriani
- Faculty of Psychology, Università Telematica Internazionale “Uninettuno”, Rome, Italy
- Center for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
49
|
Masarwa R, Platt RW, Filion KB. Acetaminophen use during pregnancy and the risk of attention deficit hyperactivity disorder: A causal association or bias? Paediatr Perinat Epidemiol 2020; 34:309-317. [PMID: 31916282 DOI: 10.1111/ppe.12615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/23/2019] [Accepted: 10/06/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND The association between acetaminophen use during pregnancy and the development of attention deficit hyperactivity disorder (ADHD) in the offspring may be due to bias. OBJECTIVES The primary objective was to assess the role of potential unmeasured confounding in the estimation of the association between acetaminophen use during pregnancy and the risk of ADHD, through bias analysis. The secondary objective was to assess the roles of selection bias and exposure misclassification. DATA SOURCES We searched MEDLINE, Embase, Scopus, and the Cochrane Library up to December 2018. STUDY SELECTION AND DATA EXTRACTION We included observational studies examining the association between acetaminophen use during pregnancy and the risk of ADHD. SYNTHESIS We meta-analysed data across studies, using random-effects model. We conducted a bias analysis to studies that did not adjust for important confounders, to explore systematic errors related to unmeasured confounding, selection bias, and exposure misclassification. RESULTS The search resulted in seven studies included in our meta-analysis. When adjusted estimates were pooled across all studies, the risk ratio (RR) for ADHD was 1.35 (95% confidence interval [CI] 1.25, 1.46; I2 = 48%). Sensitivity analysis for unmeasured confounding in this meta-analysis showed that a confounder of 1.69 on the RR scale would reduce to 10% the proportion of studies with a true effect size of RR >1.10. Unmeasured confounding bias analysis decreased the point estimate in five of the seven studies and increased in two studies, suggesting that the observed association could be confounded by parental ADHD. Unadjusted and bias-corrected risk ratios (bcRRs) were: RR = 1.34, bcRR = 1.13; RR = 1.51, bcRR = 1.17; RR = 1.63, bcRR = 1.38; RR = 1.44, bcRR = 1.17; RR = 1.16, bcRR = 1.18; RR = 1.25, bcRR = 1.05; and RR = 0.99, bcRR = 1.18. CONCLUSIONS Bias analysis suggests that the previously reported association between acetaminophen use during pregnancy and an increased risk of ADHD in the offspring may be due to unmeasured confounding. Our ability to conclude a causal association is limited.
Collapse
Affiliation(s)
- Reem Masarwa
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada
| | - Robert W Platt
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada.,Research Institute of the McGill University Health Centre, McGill University, Montreal, Canada.,Department of Pediatrics, McGill University, Montreal, Canada
| | - Kristian B Filion
- Centre for Clinical Epidemiology, Lady Davis Institute, Jewish General Hospital, Montreal, Canada.,Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Canada.,Department of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
50
|
Stickley A, Koyanagi A, Takahashi H, Ruchkin V, Inoue Y, Kamio Y. Attention-deficit/hyperactivity disorder and physical multimorbidity: A population-based study. Eur Psychiatry 2020; 45:227-234. [DOI: 10.1016/j.eurpsy.2017.07.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 01/09/2023] Open
Abstract
AbstractBackground:There has been little research on the association of attention-deficit/hyperactivity disorder (ADHD) with co-occurring physical diseases. The aim of this study was to examine the association between possible ADHD and physical multimorbidity (i.e. = 2 physical diseases) among adults in the English general population.Methods:Data were analyzed from 7274 individuals aged = 18 years that came from the Adult Psychiatric Morbidity Survey 2007. ADHD symptoms were assessed with the Adult Self-Report Scale (ASRS) Screener. Information was also obtained on 20 self-reported doctor/other health professional diagnosed physical health conditions present in the past 12 months. Multivariable logistic regression and mediation analyses were conducted to assess the associations.Results:There was a monotonic relation between the number of physical diseases and possible ADHD (ASRS score = 14). Compared to those with no diseases, individuals with = 5 diseases had over 3 times higher odds for possible ADHD (odds ratio [OR]: 3.30, 95% confidence interval [CI]: 2.48–4.37). This association was observed in all age groups. Stressful life events (% mediated 10.3–24.3%), disordered eating (6.8%), depression (12.8%), and anxiety (24.8%) were significant mediators in the association between possible ADHD and physical multimorbidity.Conclusion:Adults that screen positive for ADHD are at an increased risk for multimorbidity and several factors are important in this association. As many adults with ADHD remain undiagnosed, the results of this study highlight the importance of detecting adult ADHD as it may confer an increased risk for poorer health outcomes, including physical multimorbidity.
Collapse
|