1
|
Chen Z, Liu J, Zheng M, Mo M, Hu X, Liu C, Pathak JL, Wang L, Chen L. TRIM24-DTNBP1-ATP7A mediated astrocyte cuproptosis in cognition and memory dysfunction caused by Y 2O 3 NPs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176353. [PMID: 39304169 DOI: 10.1016/j.scitotenv.2024.176353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Yttrium oxide nanoparticles (Y2O3 NPs), extensively utilized rare earth nanoparticles, exhibited a diverse range of applications across various fields, which leading to increased human exposure. Moreover, potential neurotoxic risks have been associated with their use, yet the underlying mechanism remains unclear. The present study aimed to investigate the effects of Y2O3 NPs on cognitive function in rats with a particular focus on elucidating the pivotal role played by astrocytes in this process. The results demonstrated that Y2O3 NPs induced cognitive and memory impairment in rats, copper (Cu) accumulation and cuproptosis of astrocytes as contributing factors. Furthermore, we elucidated that Y2O3 NPs induced astrocytes cuproptosis by inhibiting TRIM24/DTNBP1/ATP7A signaling pathway-mediated cellular Cu efflux. We provide, for the first time, the important involvement of astrocytes in Y2O3 NPs-induced neurotoxicity, elucidating that cuproptosis as the primary mode of cell death. These results offer valuable insights for the future safe application of rare earth nanoparticles in field of neurology.
Collapse
Affiliation(s)
- Ziwei Chen
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jia Liu
- Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Manjia Zheng
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Chang Liu
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Janak Lal Pathak
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liangjiao Chen
- Department of orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Szumlinski KK, Datko MC, Lominac KD, Jentsch JD. Dysbindin-1 Mutation Alters Prefrontal Cortex Extracellular Glutamate and Dopamine In Vivo. Int J Mol Sci 2024; 25:12732. [PMID: 39684450 DOI: 10.3390/ijms252312732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Elevated risk for schizophrenia is associated with a variation in the DTNBP1 gene encoding dysbindin-1, which may underpin cognitive impairments in this prevalent neuropsychiatric disorder. The cognitive symptoms of schizophrenia involve anomalies in glutamate and dopamine signaling, particularly within the prefrontal cortex (PFC). Indeed, mice with Dtnbp1 mutations exhibit spatial and working memory deficits that are associated with deficits in glutamate release and NMDA receptor function as determined by slice electrophysiology. The present study extended the results from ex vivo approaches by examining how the Dtnbp1 mutation impacts high K+- and NMDA receptor-evoked glutamate release within the PFC using in vivo microdialysis procedures. Dntbp1 mutant mice are also reported to exhibit blunted K+-evoked dopamine release within the PFC. Thus, we examined also K+- and NMDA-evoked dopamine release within this region. Perfusion of high-concentration K+ or NMDA solutions increased the PFC levels of both dopamine and glutamate in wild-type (WT) but not in Dtnbp1 mutants (MUT), whereas mice heterozygous for the Dtnbp1 mutation (HET) exhibited blunted K+-evoked dopamine release. No net-flux microdialysis procedures confirmed elevated basal extracellular content of both glutamate and dopamine within the PFC of HET and MUT mice. These in vivo microdialysis results corroborate prior indications that Dtnbp1 mutations perturb evoked dopamine and glutamate release within the PFC, provide in vivo evidence for impaired NMDA receptor function within the PFC, and suggest that these neurochemical anomalies may be related to abnormally elevated basal neurotransmitter content.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michael C Datko
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Kevin D Lominac
- Department of Psychological and Brain Sciences, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - J David Jentsch
- Department of Psychology, Binghampton University-State University of New York, Binghampton, NY 13902, USA
| |
Collapse
|
3
|
Santarriaga S, Gerlovin K, Layadi Y, Karmacharya R. Human stem cell-based models to study synaptic dysfunction and cognition in schizophrenia: A narrative review. Schizophr Res 2024; 273:78-97. [PMID: 36925354 PMCID: PMC10500041 DOI: 10.1016/j.schres.2023.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is the strongest predictor of functional outcomes in schizophrenia and is hypothesized to result from synaptic dysfunction. However, targeting synaptic plasticity and cognitive deficits in patients remains a significant clinical challenge. A comprehensive understanding of synaptic plasticity and the molecular basis of learning and memory in a disease context can provide specific targets for the development of novel therapeutics targeting cognitive impairments in schizophrenia. Here, we describe the role of synaptic plasticity in cognition, summarize evidence for synaptic dysfunction in schizophrenia and demonstrate the use of patient derived induced-pluripotent stem cells for studying synaptic plasticity in vitro. Lastly, we discuss current advances and future technologies for bridging basic science research of synaptic dysfunction with clinical and translational research that can be used to predict treatment response and develop novel therapeutics.
Collapse
Affiliation(s)
- Stephanie Santarriaga
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Kaia Gerlovin
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yasmine Layadi
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chimie ParisTech, Université Paris Sciences et Lettres, Paris, France
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Chemical Biology and Therapeutic Science Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
4
|
Zhang MM, Chen T. Empathic pain: Underlying neural mechanism. Neuroscientist 2024:10738584241283435. [PMID: 39365808 DOI: 10.1177/10738584241283435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
Empathy is usually regarded as the ability to perceive the emotional state of others, which is an altruistic motivation to promote prosocial behavior and thus plays a key role in human life and social development. Empathic pain-the capacity to feel and understand the pain of others-constitutes a significant aspect in the study of empathy behaviors. For an extended duration, investigations into empathic pain have predominantly centered on human neuroimaging studies. Fortunately, recent advancements have witnessed the utilization of animal models in the exploration of the fundamental neural underpinnings of empathic pain. There is substantial evidence implicating multiple brain regions and neural networks in the generation and maintenance of empathic pain. Nevertheless, further elucidation of the neural mechanisms underlying empathic pain is warranted. This review provides a concise overview of prior studies on the neural mechanisms of empathic pain, outlining the pertinent brain regions, neural pathways, synaptic mechanisms, and associated molecules while also delving into future prospects.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| | - Tao Chen
- Department of Anatomy and K. K. Leung Brain Research Centre, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
5
|
Kakuszi B, Szuromi B, Tóth M, Bitter I, Czobor P. Alterations in resting-state gamma-activity is adults with autism spectrum disorder: A High-Density EEG study. Psychiatry Res 2024; 339:116040. [PMID: 38901364 DOI: 10.1016/j.psychres.2024.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/05/2024] [Accepted: 06/13/2024] [Indexed: 06/22/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with a wide range of symptoms that include deficits in social cognition and difficulties with social interactions. Neural oscillations in the EEG gamma band have been proposed as an important candidate neurobiological marker of higher order cognitive processes and social interactions. We investigated resting-state gamma-activity of patients with ASD (n=23) in order to delineate alterations as compared to typically developing (TD) subjects (n=24). EEG absolute power was examined in the gamma (30-100Hz) frequency band. We found significantly reduced spectral power across the entire gamma range in the ASD group. The decrease was most pronounced over the inferior-frontal and temporo-parietal junction areas. We also found a significant decrease in gamma-activity over the dorsolateral prefrontal cortex, especially in the left side. Since these brain areas have been associated with social functioning, the reduced gamma-activity in ASD may represent a cortical dysfunction that could underlie a diminished capacity to interpret socially important information, thereby interfering with social functioning. The alterations we found may lend support for an improved diagnosis. Furthermore, they can lead to focused therapies, by targeting the dysfunctional brain activity to improve social cognitive and interaction abilities that are compromised in ASD.
Collapse
Affiliation(s)
- Brigitta Kakuszi
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary.
| | | | - Máté Tóth
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - István Bitter
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| | - Pál Czobor
- Semmelweis University, Department of Psychiatry and Psychotherapy, Budapest, Hungary
| |
Collapse
|
6
|
Crown LM, Featherstone RE, Sobell JL, Parekh K, Siegel SJ. The Use of Event-Related Potentials in the Study of Schizophrenia: An Overview. ADVANCES IN NEUROBIOLOGY 2024; 40:285-319. [PMID: 39562449 DOI: 10.1007/978-3-031-69491-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Event-related potentials (ERPs) are small voltage changes in the brain that reliably occur in response to auditory or visual stimuli. ERPs have been extensively studied in both humans and animals to identify biomarkers, test pharmacological agents, and generate testable hypotheses about the physiological and genetic basis of schizophrenia. In this chapter, we discuss how ERPs are generated and recorded as well as review canonical ERP components in the context of schizophrenia research in humans. We then discuss what is known about rodent homologs of these components and how they are altered in common pharmacologic and genetic manipulations used in preclinical schizophrenia research. This chapter will also explore the relationship of ERPs to leading hypotheses about the pathophysiology of schizophrenia. We conclude with an evaluation of both the utility and limitations of ERPs in schizophrenia research and offer recommendations of future directions that may be beneficial to the field.
Collapse
Affiliation(s)
- Lindsey M Crown
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert E Featherstone
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Janet L Sobell
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Krishna Parekh
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Steven J Siegel
- Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Li H, Aboudhiaf S, Parrot S, Scote-Blachon C, Benetollo C, Lin JS, Seugnet L. Pallidin function in Drosophila surface glia regulates sleep and is dependent on amino acid availability. Cell Rep 2023; 42:113025. [PMID: 37682712 DOI: 10.1016/j.celrep.2023.113025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 06/16/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023] Open
Abstract
The Pallidin protein is a central subunit of a multimeric complex called biogenesis of lysosome-related organelles complex 1 (BLOC1) that regulates specific endosomal functions and has been linked to schizophrenia. We show here that downregulation of Pallidin and other members of BLOC1 in the surface glia, the Drosophila equivalent of the blood-brain barrier, reduces and delays nighttime sleep in a circadian-clock-dependent manner. In agreement with BLOC1 involvement in amino acid transport, downregulation of the large neutral amino acid transporter 1 (LAT1)-like transporters JhI-21 and mnd, as well as of TOR (target of rapamycin) amino acid signaling, phenocopy Pallidin knockdown. Furthermore, supplementing food with leucine normalizes the sleep/wake phenotypes of Pallidin downregulation, and we identify a role for Pallidin in the subcellular trafficking of JhI-21. Finally, we provide evidence that Pallidin in surface glia is required for GABAergic neuronal activity. These data identify a BLOC1 function linking essential amino acid availability and GABAergic sleep/wake regulation.
Collapse
Affiliation(s)
- Hui Li
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Sami Aboudhiaf
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Sandrine Parrot
- Centre de Recherche en Neurosciences de Lyon, NeuroDialyTics Facility, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Céline Scote-Blachon
- Centre de Recherche en Neurosciences de Lyon, GenCyTi Facility, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Claire Benetollo
- Centre de Recherche en Neurosciences de Lyon, GenCyTi Facility, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Jian-Sheng Lin
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Team WAKING, Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, 69675 Bron, France.
| |
Collapse
|
8
|
Cloutier MÈ, Srivastava LK, Cermakian N. Exposure to Circadian Disruption During Adolescence Interacts With a Genetic Risk Factor to Modify Schizophrenia-relevant Behaviors in a Sex-dependent Manner. J Biol Rhythms 2022; 37:655-672. [PMID: 36168739 PMCID: PMC9749568 DOI: 10.1177/07487304221125363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
DTNBP1 is a gene associated with schizophrenia. Postmortem studies found a reduced expression of DTNBP1 in regions associated with schizophrenia in patients' brains. Sandy (Sdy) mice have a loss-of-function mutation in Dtnbp1 gene, resulting in behavioral deficits and brain changes similar to those seen in patients with schizophrenia. We previously showed that exposing adult Sdy mice to circadian disruption led to an exacerbation of schizophrenia-relevant behaviors. Here we asked whether the interaction between this genetic risk factor and circadian disruption occurs during adolescence, a period when environmental insults can promote schizophrenia symptoms, and whether sex affects this interaction. Starting at postnatal day 21, wild-type (WT) and Sdy males and females were housed for 4 weeks either in a 12 h light:12 h dark (LD 12:12) cycle or under chronic jetlag (CJL). Then, after 2 weeks in LD 12:12, behavioral assessments were conducted, including elevated plus maze (EPM), novel object recognition (NOR), social interaction, and prepulse inhibition (PPI) of acoustic startle. NOR and social novelty tests showed that, surprisingly, CJL during adolescence had opposite effects on WT and Sdy males, that is, behavioral deficits in WT males while rescuing preexisting deficits in Sdy mice. CJL led to decreased sociability in WT and Sdy mice while decreasing PPI only in females. Sdy mice showed decreased anxiety-like behavior compared with wild-type (WT), which was further accentuated by CJL in males. Thus, circadian disruption during adolescence, on its own or in association with Dtnbp1 mutation, can influence cognition, sociability, sensorimotor gating, and anxiety-like behaviors in a sex-dependent manner.
Collapse
Affiliation(s)
- Marie-Ève Cloutier
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada,Douglas Mental Health University Institute, Montreal, QC, Canada
| | - Lalit K. Srivastava
- Douglas Mental Health University Institute, Montreal, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada,Lalit K. Srivastava, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; e-mail:
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montreal, QC, Canada,Department of Psychiatry, McGill University, Montreal, QC, Canada,Nicolas Cermakian, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, QC H4H 1R3, Canada; e-mail:
| |
Collapse
|
9
|
Mastrogiacomo R, Trigilio G, Devroye C, Dautan D, Ferretti V, Losi G, Caffino L, Orso G, Marotta R, Maltese F, Vitali E, Piras G, Forgiarini A, Pacinelli G, Lia A, Rothmond DA, Waddington JL, Drago F, Fumagalli F, Luca MAD, Leggio GM, Carmignoto G, Weickert CS, Managò F, Papaleo F. Dysbindin-1A modulation of astrocytic dopamine and basal ganglia dependent behaviors relevant to schizophrenia. Mol Psychiatry 2022; 27:4201-4217. [PMID: 35821415 DOI: 10.1038/s41380-022-01683-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/21/2022] [Accepted: 06/27/2022] [Indexed: 02/07/2023]
Abstract
The mechanisms underlying the dichotomic cortical/basal ganglia dopaminergic abnormalities in schizophrenia are unclear. Astrocytes are important non-neuronal modulators of brain circuits, but their role in dopaminergic system remains poorly explored. Microarray analyses, immunohistochemistry, and two-photon laser scanning microscopy revealed that Dys1 hypofunction increases the reactivity of astrocytes, which express only the Dys1A isoform. Notably, behavioral and electrochemical assessments in mice selectively lacking the Dys1A isoform unraveled a more prominent impact of Dys1A in behavioral and dopaminergic/D2 alterations related to basal ganglia, but not cortical functioning. Ex vivo electron microscopy and protein expression analyses indicated that selective Dys1A disruption might alter intracellular trafficking in astrocytes, but not in neurons. In agreement, Dys1A disruption only in astrocytes resulted in decreased motivation and sensorimotor gating deficits, increased astrocytic dopamine D2 receptors and decreased dopaminergic tone within basal ganglia. These processes might have clinical relevance because the caudate, but not the cortex, of patients with schizophrenia shows a reduction of the Dys1A isoform. Therefore, we started to show a hitherto unknown role for the Dys1A isoform in astrocytic-related modulation of basal ganglia behavioral and dopaminergic phenotypes, with relevance to schizophrenia.
Collapse
Affiliation(s)
- Rosa Mastrogiacomo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriella Trigilio
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Céline Devroye
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Daniel Dautan
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy
| | - Valentina Ferretti
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gabriele Losi
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Roberto Marotta
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Federica Maltese
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Enrica Vitali
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Gessica Piras
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alessia Forgiarini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Giada Pacinelli
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy
| | - Annamaria Lia
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Debora A Rothmond
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | | | - Gian Marco Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Giorgio Carmignoto
- Neuroscience Institute, CNR, Padova, Italy.,Department of Biomedical Science, University of Padova, Padova, Italy
| | - Cynthia S Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, NSW, Australia
| | - Francesca Managò
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy.
| | - Francesco Papaleo
- Genetics of Cognition laboratory, Neuroscience area, Istituto Italiano di Tecnologia, via Morego, 30, 16163, Genova, Italy. .,Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milano, Italy.
| |
Collapse
|
10
|
El Rawas R, Amaral IM, Hofer A. The Anti-social Brain in Schizophrenia: A Role of CaMKII? Front Psychiatry 2022; 13:868244. [PMID: 35711581 PMCID: PMC9197422 DOI: 10.3389/fpsyt.2022.868244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Current pharmacological therapy has limited effects on the cognitive impairments and negative symptoms associated with schizophrenia. Therefore, understanding the molecular underpinnings of this disorder is essential for the development of effective treatments. It appears that a reduction in calcium/calmodulin-dependent protein kinase II (α-CaMKII) activity is a common mechanism underlying the abnormal social behavior and cognitive deficits associated with schizophrenia. In addition, in a previous study social interaction with a partner of the same sex and weight increased the activity of α-CaMKII in rats. Here, we propose that boosting of CaMKII signaling, in a manner that counteracts this neuropsychiatric disease without disrupting the normal brain function, might ameliorate the abnormalities in social cognition and the negative symptoms of schizophrenia.
Collapse
Affiliation(s)
- Rana El Rawas
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University Innsbruck, Innsbruck, Austria
| | | | | |
Collapse
|
11
|
Fei E, Chen P, Zhang Q, Zhong Y, Zhou T. Protein kinase B/Akt1 phosphorylates dysbindin-1A at serine 10 to regulate neuronal development. Neuroscience 2022; 490:66-78. [DOI: 10.1016/j.neuroscience.2022.01.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 01/05/2023]
|
12
|
Jun R, Zhang W, Beacher NJ, Zhang Y, Li Y, Lin DT. Dysbindin-1, BDNF, and GABAergic Transmission in Schizophrenia. Front Psychiatry 2022; 13:876749. [PMID: 35815020 PMCID: PMC9258742 DOI: 10.3389/fpsyt.2022.876749] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is a psychiatric disorder characterized by hallucinations, anhedonia, disordered thinking, and cognitive impairments. Both genetic and environmental factors contribute to schizophrenia. Dysbindin-1 (DTNBP1) and brain-derived neurotrophic factor (BDNF) are both genetic factors associated with schizophrenia. Mice lacking Dtnbp1 showed behavioral deficits similar to human patients suffering from schizophrenia. DTNBP1 plays important functions in synapse formation and maintenance, receptor trafficking, and neurotransmitter release. DTNBP1 is co-assembled with 7 other proteins into a large protein complex, known as the biogenesis of lysosome-related organelles complex-1 (BLOC-1). Large dense-core vesicles (LDCVs) are involved in the secretion of hormones and neuropeptides, including BDNF. BDNF plays important roles in neuronal development, survival, and synaptic plasticity. BDNF is also critical in maintaining GABAergic inhibitory transmission in the brain. Two studies independently showed that DTNBP1 mediated activity-dependent BDNF secretion to maintain inhibitory transmission. Imbalance of excitatory and inhibitory neural activities is thought to contribute to schizophrenia. In this mini-review, we will discuss a potential pathogenetic mechanism for schizophrenia involving DTNBP1, BDNF, and inhibitory transmission. We will also discuss how these processes are interrelated and associated with a higher risk of schizophrenia development.
Collapse
Affiliation(s)
- Rachel Jun
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Wen Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Nicholas J Beacher
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yan Zhang
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yun Li
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
13
|
Shao X, Liao Y, Gu L, Chen W, Tang J. The Etiology of Auditory Hallucinations in Schizophrenia: From Multidimensional Levels. Front Neurosci 2021; 15:755870. [PMID: 34858129 PMCID: PMC8632545 DOI: 10.3389/fnins.2021.755870] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/14/2021] [Indexed: 11/25/2022] Open
Abstract
Enormous efforts have been made to unveil the etiology of auditory hallucinations (AHs), and multiple genetic and neural factors have already been shown to have their own roles. Previous studies have shown that AHs in schizophrenia vary from those in other disorders, suggesting that they have unique features and possibly distinguishable mechanisms worthy of further investigation. In this review, we intend to offer a comprehensive summary of current findings related to AHs in schizophrenia from aspects of genetics and transcriptome, neurophysiology (neurometabolic and electroencephalogram studies), and neuroimaging (structural and functional magnetic resonance imaging studies and transcriptome–neuroimaging association study). Main findings include gene polymorphisms, glutamate level change, electroencephalographic alterations, and abnormalities of white matter fasciculi, cortical structure, and cerebral activities, especially in multiple regions, including auditory and language networks. More solid and comparable research is needed to replicate and integrate ongoing findings from multidimensional levels.
Collapse
Affiliation(s)
- Xu Shao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanhui Liao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lin Gu
- RIKEN AIP, Tokyo, Japan.,Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinsong Tang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
14
|
Rajani V, Sengar AS, Salter MW. Src and Fyn regulation of NMDA receptors in health and disease. Neuropharmacology 2021; 193:108615. [PMID: 34051267 DOI: 10.1016/j.neuropharm.2021.108615] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
The Src family kinases (SFKs) are cytoplasmic non-receptor tyrosine kinases involved in multiple signalling pathways. In the central nervous system (CNS), SFKs are key regulators of N-methyl-d-aspartate receptor (NMDAR) function and major points of convergence for neuronal transduction pathways. Physiological upregulation of NMDAR activity by members of the SFKs, namely Src and Fyn, is crucial for induction of plasticity at Schaffer collateral-CA1 synapses of the hippocampus. Aberrant SFK regulation of NMDARs is implicated in several pathological conditions in the CNS including schizophrenia and pain hypersensitivity. Here, evidence is presented to highlight the current understanding of the intermolecular interactions of SFKs within the NMDAR macromolecular complex, the upstream regulators of SFK activity on NMDAR function and the role Src and Fyn have in synaptic plasticity and metaplasticity. The targeting of SFK protein-protein interactions is discussed as a potential therapeutic strategy to restore signalling activity underlying glutamatergic dysregulation in CNS disease pathophysiology.
Collapse
Affiliation(s)
- Vishaal Rajani
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Ameet S Sengar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada
| | - Michael W Salter
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, M5G 1X8, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| |
Collapse
|
15
|
Schoonover KE, Kennedy WM, Roberts RC. Cortical copper transporter expression in schizophrenia: interactions of risk gene dysbindin-1. J Neural Transm (Vienna) 2021; 128:701-709. [PMID: 33890175 PMCID: PMC11000637 DOI: 10.1007/s00702-021-02333-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Schizophrenia susceptibility factor dysbindin-1 is associated with cognitive processes. Downregulated dysbindin-1 expression is associated with lower expression of copper transporters ATP7A and CTR1, required for copper transport to the central nervous system. We measured dysbindin-1 isoforms-1A and -1BC, CTR1, and ATP7A via Western blots of the postmortem dorsolateral prefrontal cortex (DLPFC) of schizophrenia subjects (n = 28) and matched controls (n = 14). In addition, we subdivided the schizophrenia group by treatment status and comorbidity of alcohol use disorder (AUD) and assessed the relationships between proteins. Schizophrenia subjects exhibited similar protein levels to that of controls, with no effect of antipsychotic treatment. We observed a shift towards more dysbindin-1A expression in schizophrenia, as revealed by the ratio of dysbindin-1 isoforms. Dysbindin-1A expression was negatively correlated with ATP7A in schizophrenia, with no correlation present in controls. AUD subjects exhibited less dysbindin-1BC and CTR1 than those without AUD. Our results, taken together with previous data, suggest that alterations in dysbindin-1 and copper transporters are brain-region specific. For example, protein levels of ATP7A, dysbindin 1BC, and CTR1 are lower in the substantia nigra in schizophrenia subjects. AUD in the DLPFC was associated with lower protein levels of dysbindin-1 and CTR1. Changes in dysbindin-1 isoform ratio and relationships appear to be prevalent in the disease, potentially impacting symptomology.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Department of Psychology and Behavioral Neuroscience, The University of Alabama at Birmingham, 3811 O'Hara Street BST W1651, Pittsburgh, PA, 15213, USA.
| | - William M Kennedy
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Pittsburgh, USA
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, The University of Alabama at Birmingham, Pittsburgh, USA
| |
Collapse
|
16
|
Schoonover KE, Roberts RC. Markers of copper transport in the cingulum bundle in schizophrenia. Schizophr Res 2021; 228:124-133. [PMID: 33434726 PMCID: PMC7988290 DOI: 10.1016/j.schres.2020.11.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/16/2020] [Accepted: 11/30/2020] [Indexed: 11/26/2022]
Abstract
Imaging and postmortem studies indicate that schizophrenia subjects exhibit abnormal connectivity in several white matter tracts, including the cingulum bundle. Copper chelators given to experimental animals damage myelin and myelin-producing oligodendrocytes, and the substantia nigra of schizophrenia subjects shows lower levels of copper, copper transporters, and copper-utilizing enzymes. This study aimed to elucidate the potential role of copper homeostasis in white matter pathology in schizophrenia. Protein levels of the copper transporters ATP7A and CTR1, and dysbindin-1, an upstream modulator of copper metabolism and schizophrenia susceptibility factor, were measured using Western blot analyses of the postmortem cingulum bundle of schizophrenia subjects (n=16) and matched controls (n=13). Additionally, the patient group was subdivided by treatment status: off- (n=8) or on-medication (n=8). Relationships between proteins from the current study were correlated among themselves and markers of axonal integrity previously measured in the same cohort. Schizophrenia subjects exhibited similar protein levels to controls, with no effect of antipsychotic treatment. The dysbindin-1A/1BC relationship was positive in controls and schizophrenia subjects; however, antipsychotic treatment appeared to reverse this relationship in a statistically different manner from that of controls and unmedicated subjects. The relationships between dysbindin-1A/neurofilament heavy and ATP7A/α-tubulin were positively correlated in the schizophrenia group that was significantly different from the lack of correlation in controls. Copper transporters and dysbindin-1 appear to be more significantly affected in the grey matter of schizophrenia subjects. However, the relationships among proteins in white matter may be more substantial and dependent on treatment status.
Collapse
Affiliation(s)
- Kirsten E Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| | - Rosalinda C Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States of America.
| |
Collapse
|
17
|
Schoonover KE, Farmer CB, Morgan CJ, Sinha V, Odom L, Roberts RC. Abnormalities in the copper transporter CTR1 in postmortem hippocampus in schizophrenia: A subregion and laminar analysis. Schizophr Res 2021; 228:60-73. [PMID: 33434736 PMCID: PMC7987889 DOI: 10.1016/j.schres.2020.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/16/2020] [Accepted: 12/21/2020] [Indexed: 01/08/2023]
Abstract
Dysbindin-1 modulates copper transport, which is crucial for cellular homeostasis. Several brain regions implicated in schizophrenia exhibit decreased levels of dysbindin-1, which may affect copper homeostasis therein. Our recent study showed decreased levels of dysbindin-1, the copper transporter-1 (CTR1) and copper in the substantia nigra in schizophrenia, providing the first evidence of disrupted copper transport in schizophrenia. In the present study, we hypothesized that there would be lower levels of dysbindin-1 and CTR1 in the hippocampus in schizophrenia versus a comparison group. Using semi-quantitative immunohistochemistry for dysbindin1 and CTR1, we measured the optical density in a layer specific fashion in the hippocampus and entorhinal cortex in ten subjects with schizophrenia and ten comparison subjects. Both regions were richly immunolabeled for CTR1 and dysbindin1 in both groups. In the superficial layers of the entorhinal cortex, CTR1 immunolabeled neuropil and cells showed lower optical density values in patients versus the comparison group. In the molecular layer of the dentate gyrus, patients had higher optical density values of CTR1 versus the comparison group. The density and distribution of dysbindin-1 immunolabeling was similar between groups. These laminar specific alterations of CTR1 in schizophrenia suggest abnormal copper transport in those locations.
Collapse
Affiliation(s)
- Kirsten E. Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham
| | - Charlene B. Farmer
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Charity J Morgan
- Department of Biostatistics, University of Alabama at Birmingham
| | - Vidushi Sinha
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Laura Odom
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
18
|
Dysbindin-1 regulates mitochondrial fission and gamma oscillations. Mol Psychiatry 2021; 26:4633-4651. [PMID: 33589740 PMCID: PMC8364574 DOI: 10.1038/s41380-021-01038-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 01/08/2021] [Accepted: 01/25/2021] [Indexed: 12/11/2022]
Abstract
Mitochondria are cellular ATP generators. They are dynamic structures undergoing fission and fusion. While much is known about the mitochondrial fission machinery, the mechanism of initiating fission and the significance of fission to neurophysiology are largely unclear. Gamma oscillations are synchronized neural activities that impose a great energy challenge to synapses. The cellular mechanism of fueling gamma oscillations has yet to be defined. Here, we show that dysbindin-1, a protein decreased in the brain of individuals with schizophrenia, is required for neural activity-induced fission by promoting Drp1 oligomerization. This process is engaged by gamma-frequency activities and in turn, supports gamma oscillations. Gamma oscillations and novel object recognition are impaired in dysbindin-1 null mice. These defects can be ameliorated by increasing mitochondrial fission. These findings identify a molecular mechanism for activity-induced mitochondrial fission, a role of mitochondrial fission in gamma oscillations, and mitochondrial fission as a potential target for improving cognitive functions.
Collapse
|
19
|
Increased RNA editing in maternal immune activation model of neurodevelopmental disease. Nat Commun 2020; 11:5236. [PMID: 33067431 PMCID: PMC7567798 DOI: 10.1038/s41467-020-19048-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 09/23/2020] [Indexed: 12/19/2022] Open
Abstract
The etiology of major neurodevelopmental disorders such as schizophrenia and autism is unclear, with evidence supporting a combination of genetic factors and environmental insults, including viral infection during pregnancy. Here we utilized a mouse model of maternal immune activation (MIA) with the viral mimic PolyI:C infection during early gestation. We investigated the transcriptional changes in the brains of mouse fetuses following MIA during the prenatal period, and evaluated the behavioral and biochemical changes in the adult brain. The results reveal an increase in RNA editing levels and dysregulation in brain development-related gene pathways in the fetal brains of MIA mice. These MIA-induced brain editing changes are not observed in adulthood, although MIA-induced behavioral deficits are observed. Taken together, our findings suggest that MIA induces transient dysregulation of RNA editing at a critical time in brain development.
Collapse
|
20
|
Abstract
IMPACT STATEMENT Brain development and degeneration are highly complex processes that are regulated by a large number of molecules and signaling pathways the identities of which are being unraveled. Accumulating evidence points to histone deacetylases and epigenetic mechanisms as being important regulators of these processes. In this review, we describe that histone deacetylase-3 (HDAC3) is a particularly crucial regulator of both neurodevelopment and neurodegeneration. In addition, HDAC3 regulates memory formation, synaptic plasticity, and the cognitive impairment associated with normal aging. Understanding how HDAC3 functions contributes to the normal development and functioning of the brain while also promoting neurodegeneration could lead to the development of therapeutic approaches for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders.
Collapse
|
21
|
Delorme TC, Srivastava LK, Cermakian N. Are Circadian Disturbances a Core Pathophysiological Component of Schizophrenia? J Biol Rhythms 2020; 35:325-339. [DOI: 10.1177/0748730420929448] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Schizophrenia is a multifactorial disorder caused by a combination of genetic variations and exposure to environmental insults. Sleep and circadian rhythm disturbances are a prominent and ubiquitous feature of many psychiatric disorders, including schizophrenia. There is growing interest in uncovering the mechanistic link between schizophrenia and circadian rhythms, which may directly affect disorder outcomes. In this review, we explore the interaction between schizophrenia and circadian rhythms from 2 complementary angles. First, we review evidence that sleep and circadian rhythm disturbances constitute a fundamental component of schizophrenia, as supported by both human studies and animal models with genetic mutations related to schizophrenia. Second, we discuss the idea that circadian rhythm disruption interacts with existing risk factors for schizophrenia to promote schizophrenia-relevant behavioral and neurobiological abnormalities. Understanding the mechanistic link between schizophrenia and circadian rhythms will have implications for mitigating risk to the disorder and informing the development of circadian-based therapies.
Collapse
Affiliation(s)
- Tara C. Delorme
- Integrated Program in Neuroscience, McGill University, Montréal, Québec, Canada
- Douglas Mental Health University Institute, Montréal, Québec, Canada
| | - Lalit K. Srivastava
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| | - Nicolas Cermakian
- Douglas Mental Health University Institute, Montréal, Québec, Canada
- Department of Psychiatry, McGill University, Montréal, Québec, Canada
| |
Collapse
|
22
|
Maes MS, Lu JY, Tiwari AK, Freeman N, de Luca V, Müller DJ, Voineskos AN, Potkin SG, Lieberman JA, Meltzer HY, Remington G, Kennedy JL, Zai CC. Schizophrenia-associated gene dysbindin-1 and tardive dyskinesia. Drug Dev Res 2020; 82:678-684. [PMID: 32394511 DOI: 10.1002/ddr.21681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022]
Abstract
Tardive dyskinesia (TD) is a potentially irreversible movement disorder observed following long-term antipsychotic exposure. Its cause is unknown; however, a genetic component has been supported by studies of affected families. Dysbindin-1, encoded by the dystrobrevin-binding protein 1 DTNBP1 gene, has been associated with schizophrenia and is potentially involved in dopamine neurotransmission through its regulation of dopamine release and dopamine D2 receptor recycling, making it a candidate for investigation in TD. We investigated common variants across the DTNBP1 gene in our schizophrenia/patients with schizoaffective disorder of European ancestry. We found a number of DTNBP1 three-marker haplotypes to be associated with TD occurrence and TD severity (p < 0.05). These preliminary findings, if replicated in larger independent samples, would suggest that drugs targeting dysbindin-1 may be an option in the prevention and treatment of TD.
Collapse
Affiliation(s)
- Miriam S Maes
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Justin Y Lu
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Arun K Tiwari
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Natalie Freeman
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Vincenzo de Luca
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Daniel J Müller
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Steven G Potkin
- Department of Psychiatry and Human Behavior, Long Beach Veterans Administration Health Care System, University of California, Irvine, California, USA
| | - Jeffrey A Lieberman
- New York State Psychiatric Institute, Columbia University, New York City, New York, USA
| | - Herbert Y Meltzer
- Psychiatry and Behavioral Sciences, Pharmacology and Physiology, Chemistry of Life Processes Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gary Remington
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - James L Kennedy
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Clement C Zai
- Tanenbaum Centre for Pharmacogenetics, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
23
|
Manduca JD, Thériault RK, Perreault ML. Glycogen synthase kinase-3: The missing link to aberrant circuit function in disorders of cognitive dysfunction? Pharmacol Res 2020; 157:104819. [PMID: 32305493 DOI: 10.1016/j.phrs.2020.104819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 04/07/2020] [Indexed: 12/15/2022]
Abstract
Elevated GSK-3 activity has been implicated in cognitive dysfunction associated with various disorders including Alzheimer's disease, schizophrenia, type 2 diabetes, traumatic brain injury, major depressive disorder and bipolar disorder. Further, aberrant neural oscillatory activity in, and between, cortical regions and the hippocampus is consistently present within these same cognitive disorders. In this review, we will put forth the idea that increased GSK-3 activity serves as a pathological convergence point across cognitive disorders, inducing similar consequent impacts on downstream signaling mechanisms implicated in the maintenance of processes critical to brain systems communication and normal cognitive functioning. In this regard we suggest that increased activation of GSK-3 and neuronal oscillatory dysfunction are early pathological changes that may be functionally linked. Mechanistic commonalities between these disorders of cognitive dysfunction will be discussed and potential downstream targets of GSK-3 that may contribute to neuronal oscillatory dysfunction identified.
Collapse
Affiliation(s)
- Joshua D Manduca
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada
| | | | - Melissa L Perreault
- Department of Molecular and Cellular Biology, University of Guelph, ON, Canada.
| |
Collapse
|
24
|
Berdenis van Berlekom A, Muflihah CH, Snijders GJLJ, MacGillavry HD, Middeldorp J, Hol EM, Kahn RS, de Witte LD. Synapse Pathology in Schizophrenia: A Meta-analysis of Postsynaptic Elements in Postmortem Brain Studies. Schizophr Bull 2020; 46:374-386. [PMID: 31192350 PMCID: PMC7442385 DOI: 10.1093/schbul/sbz060] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Changed synapse density has been suggested to be involved in the altered brain connectivity underlying schizophrenia (SCZ) pathology. However, postmortem studies addressing this topic are heterogeneous and it is not known whether changes are restricted to specific brain regions. Using meta-analysis, we systematically and quantitatively reviewed literature on the density of postsynaptic elements in postmortem brain tissue of patients with SCZ compared to healthy controls. We included 3 outcome measurements for postsynaptic elements: dendritic spine density (DSD), postsynaptic density (PSD) number, and PSD protein expression levels. Random-effects meta-analysis (31 studies) revealed an overall decrease in density of postsynaptic elements in SCZ (Hedges's g: -0.33; 95% CI: -0.60 to -0.05; P = .020). Subgroup analyses showed reduction of postsynaptic elements in cortical but not subcortical tissues (Hedges's g: -0.44; 95% CI: -0.76 to -0.12; P = .008, Hedges's g: -0.11; 95% CI: -0.54 to 0.35; P = .671) and specifically a decrease for the outcome measure DSD (Hedges's g: -0.81; 95% CI: -1.37 to -0.26; P = .004). Further exploratory analyses showed a significant decrease of postsynaptic elements in the prefrontal cortex and cortical layer 3. In all analyses, substantial heterogeneity was present. Meta-regression analyses showed no influence of age, sex, postmortem interval, or brain bank on the effect size. This meta-analysis shows a region-specific decrease in the density of postsynaptic elements in SCZ. This phenotype provides an important cellular hallmark for future preclinical and neuropathological research in order to increase our understanding of brain dysconnectivity in SCZ.
Collapse
Affiliation(s)
- Amber Berdenis van Berlekom
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands,To whom correspondence should be addressed; tel: +31-88-75-68811, fax: +31(0)887569032, e-mail:
| | - Cita H Muflihah
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands,Faculty of Pharmacy, Universitas Muhammadiyah Surakarta, Sukoharjo, Indonesia
| | - Gijsje J L J Snijders
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands,Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Harold D MacGillavry
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Jinte Middeldorp
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY,Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY
| | - Lot D de Witte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York City, NY,Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY
| |
Collapse
|
25
|
Waddington JL, Zhen X, O'Tuathaigh CMP. Developmental Genes and Regulatory Proteins, Domains of Cognitive Impairment in Schizophrenia Spectrum Psychosis and Implications for Antipsychotic Drug Discovery: The Example of Dysbindin-1 Isoforms and Beyond. Front Pharmacol 2020; 10:1638. [PMID: 32063853 PMCID: PMC7000454 DOI: 10.3389/fphar.2019.01638] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/16/2019] [Indexed: 12/19/2022] Open
Abstract
Alongside positive and negative symptomatology, deficits in working memory, attention, selective learning processes, and executive function have been widely documented in schizophrenia spectrum psychosis. These cognitive abnormalities are strongly associated with impairment across multiple function domains and are generally treatment-resistant. The DTNBP1 (dystrobrevin-binding protein-1) gene, encoding dysbindin, is considered a risk factor for schizophrenia and is associated with variation in cognitive function in both clinical and nonclinical samples. Downregulation of DTNBP1 expression in dorsolateral prefrontal cortex and hippocampal formation of patients with schizophrenia has been suggested to serve as a primary pathophysiological process. Described as a "hub," dysbindin is an important regulatory protein that is linked with multiple complexes in the brain and is involved in a wide variety of functions implicated in neurodevelopment and neuroplasticity. The expression pattern of the various dysbindin isoforms (-1A, -1B, -1C) changes depending upon stage of brain development, tissue areas and subcellular localizations, and can involve interaction with different protein partners. We review evidence describing how sequence variation in DTNBP1 isoforms has been differentially associated with schizophrenia-associated symptoms. We discuss results linking these isoform proteins, and their interacting molecular partners, with cognitive dysfunction in schizophrenia, including evidence from drosophila through to genetic mouse models of dysbindin function. Finally, we discuss preclinical evidence investigating the antipsychotic potential of molecules that influence dysbindin expression and functionality. These studies, and other recent work that has extended this approach to other developmental regulators, may facilitate identification of novel molecular pathways leading to improved antipsychotic treatments.
Collapse
Affiliation(s)
- John L Waddington
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Xuechu Zhen
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Colm M P O'Tuathaigh
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland.,Medical Education Unit, School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| |
Collapse
|
26
|
Desbonnet L, O'Tuathaigh CM, O'Leary C, Cox R, Tighe O, Petit EI, Wilson S, Waddington JL. Acute stress in adolescence vs early adulthood following selective deletion of dysbindin-1A: Effects on anxiety, cognition and other schizophrenia-related phenotypes. J Psychopharmacol 2019; 33:1610-1619. [PMID: 31556815 DOI: 10.1177/0269881119875465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND As exposure to stress has been linked to the onset and maintenance of psychotic illness, its pathogenesis may involve environmental stressors interacting with genetic vulnerability. AIM To establish whether acute stress interacts with a targeted mutation of the gene encoding the neurodevelopmental factor dystrobrevin-binding protein 1 (DTNBP1), resulting in a specific loss of the isoform dysbindin-1A, to influence schizophrenia-relevant phenotypes in mice during adolescence and adulthood. METHODS Male and female mice with a heterozygous or homozygous deletion of DTNBP1 were assessed in the open field test following acute restraint stress in adolescence (Day 35) and young adulthood (Day 60-70). Effects of acute restraint stress on memory retention in the novel object recognition test was also assessed in adulthood. Baseline corticosterone was measured in serum samples and, brain-derived neurotrophic factor (BDNF), glucocorticoid and mineralocorticoid receptor gene expression levels were measured in the hippocampus of adult mice. RESULTS In the open field, deletion of dysbindin-1A induced hyperactivity and attenuated the action of stress to reduce hyperactivity in adolescence but not in adulthood; in females deletion of dysbindin-1A attenuated the effect of acute stress to increase anxiety-related behaviour in adolescence but not in adulthood. In the novel object recognition test, deletion of dysbindin-1A impaired memory and also revealed an increase in anxiety-related behaviour and a decrease in hippocampal BDNF gene expression in males. CONCLUSIONS These data suggest that deletion of dysbindin-1A influences behaviours related to schizophrenia and anxiety more robustly in adolescence than in adulthood and that dysbindin-1A influences stress-related responses in a sex-dependent manner.
Collapse
Affiliation(s)
- Lieve Desbonnet
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Psychology, National University of Ireland, Galway, Ireland
| | - Colm Mp O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,School of Medicine, Brookfield Health Sciences Complex, University College Cork, Cork, Ireland
| | - Clare O'Leary
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Emilie I Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Steve Wilson
- In Vivo Science and Delivery, GlaxoSmithKline, Stevenage, UK
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland.,Jiangsu Key Laboratory of Translational Research and Therapy for Neuro-Psychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
27
|
Trantham-Davidson H, Lavin A. Loss of dysbindin-1 affects GABAergic transmission in the PFC. Psychopharmacology (Berl) 2019; 236:3291-3300. [PMID: 31201475 PMCID: PMC6832803 DOI: 10.1007/s00213-019-05285-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/24/2019] [Indexed: 10/26/2022]
Abstract
It has been shown that dystrobrevin-binding protein 1 gene that encodes the protein dysbindin-1 is associated with risk for cognitive deficits, and studies have shown decreases in glutamate and correlated decreases in dysbindin-1 protein in the prefrontal cortex (PFC) and hippocampus of post-mortem tissue from schizophrenia patients. The PFC and the hippocampus have been shown to play a fundamental role in cognition, and studies in dysbindin-1 null mice have shown alterations in NMDAR located in pyramidal neurons as well as perturbation in LTP and cognitive deficits. The balance between excitatory and inhibitory transmission is crucial for normal cognitive functions; however, there is a dearth of information regarding the effects of loss of dysbindin-1 in GABAergic transmission. Using in vitro whole-cell clamp recordings, Western blots, and immunohistochemistry, we report here that dysbindin-1-deficient mice exhibit a significant decrease in the frequency of sIPSCs and in the amplitude of mIPSCs and significant decreases in PV staining and protein level. These results suggest that loss of dysbindin-1 affects GABAergic transmission at pre- and postsynaptic level and decreases parvalbumin markers.
Collapse
Affiliation(s)
| | - A Lavin
- Department of Neuroscience, MUSC, Charleston, SC, 29425, USA.
| |
Collapse
|
28
|
Huang CCY, Muszynski KJ, Bolshakov VY, Balu DT. Deletion of Dtnbp1 in mice impairs threat memory consolidation and is associated with enhanced inhibitory drive in the amygdala. Transl Psychiatry 2019; 9:132. [PMID: 30967545 PMCID: PMC6456574 DOI: 10.1038/s41398-019-0465-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/23/2019] [Indexed: 11/19/2022] Open
Abstract
Schizophrenia is a severe and highly heritable disorder. Dystrobrevin-binding protein 1 (DTNBP1), also known as dysbindin-1, has been implicated in the pathophysiology of schizophrenia. Specifically, dysbindin-1 mRNA and protein expression are decreased in the brains of subjects with this disorder. Mice lacking dysbinidn-1 also display behavioral phenotypes similar to those observed in schizophrenic patients. However, it remains unknown whether deletion of dysbindin-1 impacts functions of the amygdala, a brain region that is critical for emotional processing, which is disrupted in patients with schizophrenia. Here, we show that dysbindin-1 is expressed in both excitatory and inhibitory neurons of the basolateral amygdala (BLA). Deletion of dysbindin-1 in male mice (Dys-/-) impaired cued and context-dependent threat memory, without changes in measures of anxiety. The behavioral deficits observed in Dys-/- mice were associated with perturbations in the BLA, including the enhancement of GABAergic inhibition of pyramidal neurons, increased numbers of parvalbumin interneurons, and morphological abnormalities of dendritic spines on pyramidal neurons. Our findings highlight an important role for dysbindin-1 in the regulation of amygdalar function and indicate that enhanced inhibition of BLA pyramidal neuron activity may contribute to the weakened threat memory expression observed in Dys-/- mice.
Collapse
Affiliation(s)
- Cathy C Y Huang
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Translational Psychiatry laboratory, McLean Hospital, Belmont, MA, USA.
- Department of Life Sciences, National Central University, Taoyuan, Taiwan.
| | - Kevin J Muszynski
- Translational Psychiatry laboratory, McLean Hospital, Belmont, MA, USA
| | - Vadim Y Bolshakov
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Cellular Neurobiology laboratory, McLean Hospital, Belmont, MA, USA
| | - Darrick T Balu
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
- Translational Psychiatry laboratory, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
29
|
Scott MR, Meador-Woodruff JH. Intracellular compartment-specific proteasome dysfunction in postmortem cortex in schizophrenia subjects. Mol Psychiatry 2019; 25:776-790. [PMID: 30683941 PMCID: PMC6658356 DOI: 10.1038/s41380-019-0359-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/19/2018] [Accepted: 01/11/2019] [Indexed: 12/19/2022]
Abstract
Protein homeostasis is an emerging component of schizophrenia (SZ) pathophysiology. Proteomic alterations in SZ are well-documented and changes in transcript expression are frequently not associated with changes in protein expression in SZ brain. The underlying mechanism driving these changes remains unknown, though altered expression of ubiquitin proteasome system (UPS) components have implicated protein degradation. Previous studies have been limited to protein and transcript expression, however, and do not directly test the function of the proteasome. To address this gap in knowledge, we measured enzymatic activity associated with the proteasome (chymotrypsin-, trypsin-, and caspase-like) in the superior temporal gyrus (STG) of 25 SZ and 25 comparison subjects using flourogenic substrates. As localization regulates which cellular processes the proteasome contributes to, we measured proteasome activity and subunit expression in fractions enriched for nucleus, cytosolic, and membrane compartments. SZ subjects had decreased trypsin-like activity in total homogenate. This finding was specific to the nucleus-enriched fraction and was not associated with changes in proteasome subunit expression. Interestingly, both chymotrypsin-like activity and protein expression of 19S RP subunits, which facilitate ubiquitin-dependent degradation, were decreased in the cytosol-enriched fraction of SZ subjects. Intracellular compartment-specific proteasome dysfunction implicates dysregulation of protein expression both through altered ubiquitin-dependent degradation of cytosolic proteins and regulation of protein synthesis due to degradation of transcription factors and transcription machinery in the nucleus. Together, these findings implicate proteasome dysfunction in SZ, which likely has a broad impact on the proteomic landscape and cellular function in the pathophysiology of this illness.
Collapse
Affiliation(s)
- Madeline R. Scott
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - James H. Meador-Woodruff
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
30
|
Winship IR, Dursun SM, Baker GB, Balista PA, Kandratavicius L, Maia-de-Oliveira JP, Hallak J, Howland JG. An Overview of Animal Models Related to Schizophrenia. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2019; 64:5-17. [PMID: 29742910 PMCID: PMC6364139 DOI: 10.1177/0706743718773728] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenia is a heterogeneous psychiatric disorder that is poorly treated with current therapies. In this brief review, we provide an update regarding the use of animal models to study schizophrenia in an attempt to understand its aetiology and develop novel therapeutic strategies. Tremendous progress has been made developing and validating rodent models that replicate the aetiologies, brain pathologies, and behavioural abnormalities associated with schizophrenia in humans. Here, models are grouped into 3 categories-developmental, drug induced, and genetic-to reflect the heterogeneous risk factors associated with schizophrenia. Each of these models is associated with varied but overlapping pathophysiology, endophenotypes, behavioural abnormalities, and cognitive impairments. Studying schizophrenia using multiple models will permit an understanding of the core features of the disease, thereby facilitating preclinical research aimed at the development and validation of better pharmacotherapies to alter the progression of schizophrenia or alleviate its debilitating symptoms.
Collapse
Affiliation(s)
- Ian R Winship
- 1 Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta
| | - Serdar M Dursun
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Glen B Baker
- 2 Department of Psychiatry, Neurochemical Research Unit and Bebensee Schizophrenia Research Unit, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta.,3 National Institute of Science and Technology-Translational Science, Brazil
| | - Priscila A Balista
- 4 Department of Pharmacy, Centro Universitario das Faculdades Metropolitanas Unidas, São Paulo, Brazil
| | - Ludmyla Kandratavicius
- 5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil
| | - Joao Paulo Maia-de-Oliveira
- 3 National Institute of Science and Technology-Translational Science, Brazil.,6 Department of Clinical Medicine, Rio Grande do Norte Federal University, Natal, Brazil
| | - Jaime Hallak
- 3 National Institute of Science and Technology-Translational Science, Brazil.,5 Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirao Preto, University of São Paulo, Ribeirao Preto, Brazil.,7 Department of Psychiatry (NRU), University of Alberta, Edmonton, Alberta
| | - John G Howland
- 8 Department of Physiology, University of Saskatchewan, Saskatoon, Saskatchewan
| |
Collapse
|
31
|
Lee FY, Wang HB, Hitchcock ON, Loh DH, Whittaker DS, Kim YS, Aiken A, Kokikian C, Dell’Angelica EC, Colwell CS, Ghiani CA. Sleep/Wake Disruption in a Mouse Model of BLOC-1 Deficiency. Front Neurosci 2018; 12:759. [PMID: 30498428 PMCID: PMC6249416 DOI: 10.3389/fnins.2018.00759] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Mice lacking a functional Biogenesis of Lysosome-related Organelles Complex 1 (BLOC-1), such as those of the pallid line, display cognitive and behavioural impairments reminiscent of those presented by individuals with intellectual and developmental disabilities. Although disturbances in the sleep/wake cycle are commonly lamented by these individuals, the underlying mechanisms, including the possible role of the circadian timing system, are still unknown. In this paper, we have explored sleep/circadian malfunctions and underlying mechanisms in BLOC-1-deficient pallid mice. These mutants exhibited less sleep behaviour in the beginning of the resting phase than wild-type mice with a more broken sleeping pattern in normal light-dark conditions. Furthermore, the strength of the activity rhythms in the mutants were reduced with significantly more fragmentation and lower precision than in age-matched controls. These symptoms were accompanied by an abnormal preference for the open arm in the elevated plus maze in the day and poor performance in the novel object recognition at night. At the level of the central circadian clock (the suprachiasmatic nucleus, SCN), loss of BLOC-1 caused subtle morphological changes including a larger SCN and increased expression of the relative levels of the clock gene Per2 product during the day but did not affect the neuronal activity rhythms. In the hippocampus, the pallid mice presented with anomalies in the cytoarchitecture of the Dentate Gyrus granule cells, but not in CA1 pyramidal neurones, along with altered PER2 protein levels as well as reduced pCREB/tCREB ratio during the day. Our findings suggest that lack of BLOC-1 in mice disrupts the sleep/wake cycle and performance in behavioural tests associated with specific alterations in cytoarchitecture and protein expression.
Collapse
Affiliation(s)
- Frank Y. Lee
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Huei-Bin Wang
- Molecular, Cellular, & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Olivia N. Hitchcock
- Integrative Biology and Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Dawn Hsiao Loh
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel S. Whittaker
- Molecular, Cellular, & Integrative Physiology Program, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yoon-Sik Kim
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Achilles Aiken
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Collette Kokikian
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Esteban C. Dell’Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Christopher S. Colwell
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cristina A. Ghiani
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
32
|
Dysbindin-1 contributes to prefrontal cortical dendritic arbor pathology in schizophrenia. Schizophr Res 2018; 201:270-277. [PMID: 29759351 PMCID: PMC6230503 DOI: 10.1016/j.schres.2018.04.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/20/2018] [Accepted: 04/29/2018] [Indexed: 01/22/2023]
Abstract
Deep layer III pyramidal cells in the dorsolateral prefrontal cortex (DLPFC) from subjects with schizophrenia and bipolar disorder previously were shown to exhibit dendritic arbor pathology. This study sought to determine whether MARCKS, its regulatory protein dysbindin-1, and two proteins, identified using microarray data, CDC42BPA and ARHGEF6, were associated with dendritic arbor pathology in the DLPFC from schizophrenia and bipolar disorder subjects. Using western blotting, relative protein expression was assessed in the DLPFC (BA 46) grey matter from subjects with schizophrenia (n = 19), bipolar disorder (n = 17) and unaffected control subjects (n = 19). Protein expression data were then correlated with dendritic parameter data obtained previously. MARCKS and dysbindin-1a expression levels did not differ among the three groups. Dysbindin-1b expression was 26% higher in schizophrenia subjects (p = 0.01) and correlated inversely with basilar dendrite length (r = -0.31, p = 0.048) and the number of spines per basilar dendrite (r = -0.31, p = 0.048), but not with dendritic spine density (r = -0.16, p = 0.32). The protein expression of CDC42BPA was 33% higher in schizophrenia subjects (p = 0.03) but, did not correlate with any dendritic parameter (p > 0.05). ARHGEF6 87 kDa isoform expression did not differ among the groups. CDC42BPA expression was not altered in frontal cortex from rats chronically administered haloperidol or clozapine. Dysbindin-1b appears to play a role in dendritic arbor pathology observed previously in the DLPFC in schizophrenia.
Collapse
|
33
|
Jeong YH, Choi JH, Lee D, Kim S, Kim KT. Vaccinia-related kinase 2 modulates role of dysbindin by regulating protein stability. J Neurochem 2018; 147:609-625. [PMID: 30062698 DOI: 10.1111/jnc.14562] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 12/23/2022]
Abstract
Vaccinia-related kinase 2 (VRK2) is a serine/threonine kinase that belongs to the casein kinase 1 family. VRK2 has long been known for its relationship with neurodegenerative disorders such as schizophrenia. However, the role of VRK2 and the substrates associated with it are unknown. Dysbindin is known as one of the strong risk factors for schizophrenia. The expression of dysbindin is indeed significantly reduced in schizophrenia patients. Moreover, dysbindin is involved in neurite outgrowth and regulation of NMDA receptor signaling. Here, we first identified dysbindin as a novel interacting protein of VRK2 through immunoprecipitation. We hypothesized that dysbindin is phosphorylated by VRK2 and further that this phosphorylation plays an important role in the function of dysbindin. We show that VRK2 phosphorylates Ser 297 and Ser 299 of dysbindin using in vitro kinase assay. In addition, we found that VRK2-mediated phosphorylation of dysbindin enhanced ubiquitination of dysbindin and consequently resulted in the decrease in its protein stability through western blotting. Over-expression of VRK2 in human neuroblastoma (SH-SY5Y) cells reduced neurite outgrowth induced by retinoic acid. Furthermore, a phosphomimetic mutant of dysbindin alleviated neurite outgrowth and affected surface expression of N-methyl-d-aspartate 2A, a subunit of NMDA receptor in mouse hippocampal neurons. Together, our work reveals the regulation of dysbindin by VRK2, providing the association of these two proteins, which are commonly implicated in schizophrenia. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Young-Hun Jeong
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Jung-Hyun Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea
| | - Dohyun Lee
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea.,R&D Center, NovMetaPharma Co., Ltd., Pohang, 37668, Korea
| | - Sangjune Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea.,Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Korea.,Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, Pohang, Korea
| |
Collapse
|
34
|
Schoonover KE, Queern SL, Lapi SE, Roberts RC. Impaired copper transport in schizophrenia results in a copper-deficient brain state: A new side to the dysbindin story. World J Biol Psychiatry 2018; 21:13-28. [PMID: 30230404 PMCID: PMC6424639 DOI: 10.1080/15622975.2018.1523562] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objectives: Several schizophrenia brain regions exhibit decreased dysbindin. Dysbindin modulates copper transport crucial for myelination, monoamine metabolism and cellular homeostasis. Schizophrenia patients (SZP) exhibit increased plasma copper, while copper-decreasing agents produce schizophrenia-like behavioural and pathological abnormalities. Therefore, we sought to determine dysbindin and copper transporter protein expression and copper content in SZP.Methods: We studied the copper-rich substantia nigra (SN) using Western blot and inductively-coupled plasma mass spectrometry. We characterised specific protein domains of copper transporters ATP7A, CTR1, ATP7B and dysbindin isoforms 1 A and 1B/C in SZP (n = 15) and matched controls (n = 11), and SN copper content in SZP (n = 14) and matched controls (n = 11). As a preliminary investigation, we compared medicated (ON; n = 11) versus unmedicated SZP (OFF; n = 4).Results: SZP exhibited increased C terminus, but not N terminus, ATP7A. SZP expressed less transmembrane CTR1 and dysbindin 1B/C than controls. ON exhibited increased C terminus ATP7A protein versus controls. OFF exhibited less N terminus ATP7A protein than controls and ON, suggesting medication-induced rescue of the ATP7A N terminus. SZP exhibited less SN copper content than controls.Conclusions: These results provide the first evidence of disrupted copper transport in schizophrenia SN that appears to result in a copper-deficient state. Furthermore, copper homeostasis may be modulated by specific dysbindin isoforms and antipsychotic treatment.
Collapse
Affiliation(s)
- Kirsten E. Schoonover
- Department of Psychology and Behavioral Neuroscience, University of Alabama at Birmingham
| | - Stacy L. Queern
- Department of Radiology, University of Alabama at Birmingham,Department of Chemistry, Washington University in St. Louis
| | - Suzanne E. Lapi
- Department of Radiology, University of Alabama at Birmingham,Department of Chemistry, Washington University in St. Louis
| | - Rosalinda C. Roberts
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham
| |
Collapse
|
35
|
Al-Shammari AR, Bhardwaj SK, Musaelyan K, Srivastava LK, Szele FG. Schizophrenia-related dysbindin-1 gene is required for innate immune response and homeostasis in the developing subventricular zone. NPJ SCHIZOPHRENIA 2018; 4:15. [PMID: 30038210 PMCID: PMC6056426 DOI: 10.1038/s41537-018-0057-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/22/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022]
Abstract
Schizophrenia is a neurodevelopmental disorder likely caused by environmental and genetic risk factors but functional interactions between the risk factors are unclear. We tested the hypothesis that dysbindin-1 (Dtnbp1) gene mutation combined with postnatal exposure to viral mimetic polyI:C results in schizophrenia-related behavioural changes in adulthood, and mediates polyI:C-induced inflammation in the subventricular zone (SVZ). Adult Sandy (Sdy, Dtnbp1 mutant) mice given early postnatal polyI:C injections displayed reduced prepulse inhibition of startle, reduced locomotion and deficits in novel object recognition. PolyI:C induced a canonical immune response in the SVZ; it increased mRNA expression of its toll-like receptor 3 (Tlr3) and downstream transcription factors RelA and Sp1. PolyI:C also increased SVZ Dtnbp1 mRNA expression, suggesting dysbindin-1 regulates immune responses. Dysbindin-1 loss in Sdy mice blocked the polyI:C-induced increases in mRNA expression of Tlr3, RelA and Sp1 in the SVZ. Dtnbp1 overexpression in SVZ-derived Sdy neurospheres rescued Tlr3, RelA and Sp1 mRNA expression supporting a functional interaction between dysbindin-1 and polyI:C-induced inflammation. Immunohistochemistry showed higher Iba1+ immune cell density in the SVZ of Sdy mice than in WT postnatally. PolyI:C did not alter SVZ Iba1+ cell density but increased CD45+/Iba1− cell numbers in the SVZ of Sdy mice. Finally, polyI:C injections in Sdy, but not WT mice reduced postnatal and adult SVZ proliferation. Together, we show novel functional interactions between the schizophrenia-relevant dysbindin-1 gene and the immune response to polyI:C. This work sheds light on the molecular basis for amplified abnormalities due to combined genetic predisposition and exposure to environmental schizophrenia risk factors.
Collapse
Affiliation(s)
- Abeer R Al-Shammari
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.,Research and Development, Qatar Research Leadership Program, Qatar Foundation, Doha, Qatar.,Neurological Disorders Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Sanjeev K Bhardwaj
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Ksenia Musaelyan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Lalit K Srivastava
- Douglas Mental Health University Institute, McGill University, Montreal, Canada
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
| |
Collapse
|
36
|
Mohammadi A, Rashidi E, Amooeian VG. Brain, blood, cerebrospinal fluid, and serum biomarkers in schizophrenia. Psychiatry Res 2018; 265:25-38. [PMID: 29680514 DOI: 10.1016/j.psychres.2018.04.036] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/20/2018] [Accepted: 04/11/2018] [Indexed: 12/29/2022]
Abstract
Over the last decade, finding a reliable biomarker for the early detection of schizophrenia (Scz) has been a topic of interest. The main goal of the current review is to provide a comprehensive view of the brain, blood, cerebrospinal fluid (CSF), and serum biomarkers of Scz disease. Imaging studies have demonstrated that the volumes of the corpus callosum, thalamus, hippocampal formation, subiculum, parahippocampal gyrus, superior temporal gyrus, prefrontal and orbitofrontal cortices, and amygdala-hippocampal complex were reduced in patients diagnosed with Scz. It has been revealed that the levels of interleukin 1β (IL-1β), IL-6, IL-8, and TNF-α were increased in patients with Scz. Decreased mRNA levels of brain-derived neurotrophic factor (BDNF), tropomyosin receptor kinase B (TrkB), neurotrophin-3 (NT-3), nerve growth factor (NGF), and vascular endothelial growth factor (VEGF) genes have also been reported in Scz patients. Genes with known strong relationships with this disease include BDNF, catechol-O-methyltransferase (COMT), regulator of G-protein signaling 4 (RGS4), dystrobrevin-binding protein 1 (DTNBP1), neuregulin 1 (NRG1), Reelin (RELN), Selenium-binding protein 1 (SELENBP1), glutamic acid decarboxylase 67 (GAD 67), and disrupted in schizophrenia 1 (DISC1). The levels of dopamine, tyrosine hydroxylase (TH), serotonin or 5-hydroxytryptamine (5-HT) receptor 1A and B (5-HTR1A and 5-HTR1B), and 5-HT1B were significantly increased in Scz patients, while the levels of gamma-aminobutyric acid (GABA), 5-HT transporter (5-HTT), and 5-HT receptor 2A (5-HTR2A) were decreased. The increased levels of SELENBP1 and Glycogen synthase kinase 3 subunit α (GSK3α) genes in contrast with reduced levels of B-cell translocation gene 1 (BTG1), human leukocyte antigen DRB1 (HLA-DRB1), heterogeneous nuclear ribonucleoprotein A3 (HNRPA3), and serine/arginine-rich splicing factor 1 (SFRS1) genes have also been reported. This review covers various dysregulation of neurotransmitters and also highlights the strengths and weaknesses of studies attempting to identify candidate biomarkers.
Collapse
Affiliation(s)
- Alireza Mohammadi
- Neuroscience Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Ehsan Rashidi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Ghasem Amooeian
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Chang EH, Fernando K, Yeung LWE, Barbari K, Chandon TSS, Malhotra AK. Single point mutation on the gene encoding dysbindin results in recognition deficits. GENES BRAIN AND BEHAVIOR 2018; 17:e12449. [PMID: 29227583 DOI: 10.1111/gbb.12449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/14/2017] [Accepted: 12/07/2017] [Indexed: 11/30/2022]
Abstract
The dystrobrevin-binding protein 1 (DTNBP1) gene is a candidate risk factor for schizophrenia and has been associated with cognitive ability in both patient populations and healthy controls. DTNBP1 encodes dysbindin protein, which is localized to synaptic sites and is reduced in the prefrontal cortex and hippocampus of patients with schizophrenia, indicating a potential role in schizophrenia etiology. Most studies of dysbindin function have focused on the sandy (sdy) mice that lack dysbindin protein and have a wide range of abnormalities. In this study, we examined dysbindin salt and pepper (spp) mice that possess a single point mutation on the Dtnbp1 gene predicted to reduce, but not eliminate, dysbindin expression. By western blot analysis, we found that spp homozygous (spp -/-) mutants had reduced dysbindin and synaptosomal-associated protein 25 (SNAP-25) in the prefrontal cortex, but unaltered levels in hippocampus. Behaviorally, spp mutants performed comparably to controls on a wide range of tasks assessing locomotion, anxiety, spatial recognition and working memory. However, spp -/- mice had selective deficits in tasks measuring novel object recognition and social novelty recognition. Our results indicate that reduced dysbindin and SNAP-25 protein in the prefrontal cortex of spp -/- is associated with selective impairments in recognition processing. These spp mice may prove useful as a novel mouse model to study cognitive deficits linked to dysbindin alterations. Our findings also suggest that aspects of recognition memory may be specifically influenced by DTNBP1 single nucleotide polymorphisms or risk haplotypes in humans and this connection should be further investigated.
Collapse
Affiliation(s)
- E H Chang
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York.,Department of Psychiatry, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York.,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York
| | - K Fernando
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - L W E Yeung
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - K Barbari
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - T-S S Chandon
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York
| | - A K Malhotra
- Center for Psychiatric Neuroscience, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York.,Division of Psychiatry Research, Zucker Hillside Hospital, Northwell Health, Glen Oaks, New York.,Department of Psychiatry, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York.,Department of Molecular Medicine, Hofstra Northwell School of Medicine, Hofstra University, Hempstead, New York
| |
Collapse
|
38
|
Hartwig C, Monis WJ, Chen X, Dickman DK, Pazour GJ, Faundez V. Neurodevelopmental disease mechanisms, primary cilia, and endosomes converge on the BLOC-1 and BORC complexes. Dev Neurobiol 2017; 78:311-330. [PMID: 28986965 DOI: 10.1002/dneu.22542] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/08/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
The biogenesis of lysosome-related organelles complex-1 (BLOC-1) and the bloc-one-related complex (BORC) are the cytosolic protein complexes required for specialized membrane protein traffic along the endocytic route and the spatial distribution of endosome-derived compartments, respectively. BLOC-1 and BORC complex subunits and components of their interactomes have been associated with the risk and/or pathomechanisms of neurodevelopmental disorders. Thus, cellular processes requiring BLOC-1 and BORC interactomes have the potential to offer novel insight into mechanisms underlying behavioral defects. We focus on interactions between BLOC-1 or BORC subunits with the actin and microtubule cytoskeleton, membrane tethers, and SNAREs. These interactions highlight requirements for BLOC-1 and BORC in membrane movement by motors, control of actin polymerization, and targeting of membrane proteins to specialized cellular domains such as the nerve terminal and the primary cilium. We propose that the endosome-primary cilia pathway is an underappreciated hub in the genesis and mechanisms of neurodevelopmental disorders. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 311-330, 2018.
Collapse
Affiliation(s)
- Cortnie Hartwig
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322
| | - William J Monis
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, 01605
| | - Xun Chen
- Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California, 90089
| | - Dion K Dickman
- Department of Biology, Neurobiology Section, University of Southern California, Los Angeles, California, 90089
| | - Gregory J Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, Massachusetts, 01605
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, Georgia, 30322
| |
Collapse
|
39
|
Dysbindin-1 Involvement in the Etiology of Schizophrenia. Int J Mol Sci 2017; 18:ijms18102044. [PMID: 28937620 PMCID: PMC5666726 DOI: 10.3390/ijms18102044] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 09/16/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Schizophrenia is a major psychiatric disorder that afflicts about 1% of the world’s population, falling into the top 10 medical disorders causing disability. Existing therapeutic strategies have had limited success on cognitive impairment and long-term disability and are burdened by side effects. Although new antipsychotic medications have been launched in the past decades, there has been a general lack of significant innovation. This lack of significant progress in the pharmacotherapy of schizophrenia is a reflection of the complexity and heterogeneity of the disease. To date, many susceptibility genes have been identified to be associated with schizophrenia. DTNBP1 gene, which encodes dysbindin-1, has been linked to schizophrenia in multiple populations. Studies on genetic variations show that DTNBP1 modulate prefrontal brain functions and psychiatric phenotypes. Dysbindin-1 is enriched in the dorsolateral prefrontal cortex and hippocampus, while postmortem brain studies of individuals with schizophrenia show decreased levels of dysbindin-1 mRNA and protein in these brain regions. These studies proposed a strong connection between dysbindin-1 function and the pathogenesis of disease. Dysbindin-1 protein was localized at both pre- and post-synaptic sites, where it regulates neurotransmitter release and receptors signaling. Moreover, dysbindin-1 has also been found to be involved in neuronal development. Reduced expression levels of dysbindin-1 mRNA and protein appear to be common in dysfunctional brain areas of schizophrenic patients. The present review addresses our current knowledge of dysbindin-1 with emphasis on its potential role in the schizophrenia pathology. We propose that dysbindin-1 and its signaling pathways may constitute potential therapeutic targets in the therapy of schizophrenia.
Collapse
|
40
|
O'Tuathaigh CMP, Moran PM, Zhen XC, Waddington JL. Translating advances in the molecular basis of schizophrenia into novel cognitive treatment strategies. Br J Pharmacol 2017; 174:3173-3190. [PMID: 28667666 DOI: 10.1111/bph.13938] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 06/07/2017] [Accepted: 06/12/2017] [Indexed: 02/06/2023] Open
Abstract
The presence and severity of cognitive symptoms, including working memory, executive dysfunction and attentional impairment, contributes materially to functional impairment in schizophrenia. Cognitive symptoms have proved to be resistant to both first- and second-generation antipsychotic drugs. Efforts to develop a consensus set of cognitive domains that are both disrupted in schizophrenia and are amenable to cross-species validation (e.g. the National Institute of Mental Health Cognitive Neuroscience Treatment Research to Improve Cognition in Schizophrenia and Research Domain Criteria initiatives) are an important step towards standardization of outcome measures that can be used in preclinical testing of new drugs. While causative genetic mutations have not been identified, new technologies have identified novel genes as well as hitherto candidate genes previously implicated in the pathophysiology of schizophrenia and/or mechanisms of antipsychotic efficacy. This review comprises a selective summary of these developments, particularly phenotypic data arising from preclinical genetic models for cognitive dysfunction in schizophrenia, with the aim of indicating potential new directions for pro-cognitive therapeutics. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc.
Collapse
Affiliation(s)
- Colm M P O'Tuathaigh
- School of Medicine, University College Cork, Brookfield Health Sciences Complex, Cork, Ireland
| | - Paula M Moran
- School of Psychology, University of Nottingham, Nottingham, UK
| | - Xuechu C Zhen
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - John L Waddington
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuropsychiatric Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin 2, Ireland
| |
Collapse
|
41
|
The Proteome of BLOC-1 Genetic Defects Identifies the Arp2/3 Actin Polymerization Complex to Function Downstream of the Schizophrenia Susceptibility Factor Dysbindin at the Synapse. J Neurosci 2017; 36:12393-12411. [PMID: 27927957 DOI: 10.1523/jneurosci.1321-16.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 10/01/2016] [Accepted: 10/20/2016] [Indexed: 12/16/2022] Open
Abstract
Proteome modifications downstream of monogenic or polygenic disorders have the potential to uncover novel molecular mechanisms participating in pathogenesis and/or extragenic modification of phenotypic expression. We tested this idea by determining the proteome sensitive to genetic defects in a locus encoding dysbindin, a protein required for synapse biology and implicated in schizophrenia risk. We applied quantitative mass spectrometry to identify proteins expressed in neuronal cells the abundance of which was altered after downregulation of the schizophrenia susceptibility factor dysbindin (Bloc1s8) or two other dysbindin-interacting polypeptides, which assemble into the octameric biogenesis of lysosome-related organelles complex 1 (BLOC-1). We found 491 proteins sensitive to dysbindin and BLOC-1 loss of function. Gene ontology of these 491 proteins singled out the actin cytoskeleton and the actin polymerization factor, the Arp2/3 complex, as top statistical molecular pathways contained within the BLOC-1-sensitive proteome. Subunits of the Arp2/3 complex were downregulated by BLOC-1 loss of function, thus affecting actin dynamics in early endosomes of BLOC-1-deficient cells. Furthermore, we demonstrated that Arp2/3, dysbindin, and subunits of the BLOC-1 complex biochemically and genetically interact, modulating Drosophila melanogaster synapse morphology and homeostatic synaptic plasticity. Our results indicate that ontologically prioritized proteomics identifies novel pathways that modify synaptic phenotypes associated with neurodevelopmental disorder gene defects. SIGNIFICANCE STATEMENT The mechanisms associated with schizophrenia are mostly unknown despite the increasing number of genetic loci identified that increase disease risk. We present an experimental strategy that impartially and comprehensively interrogates the proteome of neurons to identify effects of genetic mutations in a schizophrenia risk factor, dysbindin. We find that the expression of the actin polymerization complex Arp2/3 is reduced in dysbindin-deficient cells, thus affecting actin-dependent phenotypes in two cellular compartments where dysbindin resides, endosomes and presynapses. Our studies indicate that a central cellular structure affected by schizophrenia susceptibility loci is the actin cytoskeleton, an organelle necessary for synaptic function in the presynaptic and postsynaptic compartment.
Collapse
|
42
|
van Liempd SM, Cabrera D, Lee FY, González E, Dell'Angelica EC, Ghiani CA, Falcon-Perez JM. BLOC-1 deficiency causes alterations in amino acid profile and in phospholipid and adenosine metabolism in the postnatal mouse hippocampus. Sci Rep 2017; 7:5231. [PMID: 28701731 PMCID: PMC5507893 DOI: 10.1038/s41598-017-05465-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 05/31/2017] [Indexed: 01/20/2023] Open
Abstract
Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a protein complex involved in the formation of endosomal tubular structures that mediates the sorting of protein cargoes to specialised compartments. In this study, we present insights into the metabolic consequences caused by BLOC-1 deficiency in pallid mice, which carry a null mutation in the Bloc1s6 gene encoding an essential component of this complex. The metabolome of the hippocampus of pallid mice was analysed using an untargeted, liquid chromatography-coupled mass spectrometric approach. After data pre-treatment, statistical analysis and pathway enrichment, we have identified 28 metabolites that showed statistically significant changes between pallid and wild-type control. These metabolites included amino acids, nucleobase-containing compounds and lysophospholipids. Interestingly, pallid mice displayed increased hippocampal levels of the neurotransmitters glutamate and N-acetyl-aspartyl-glutamic acid (NAAG) and their precursor glutamine. Expression of the sodium-coupled neutral amino acid transporter 1 (SNAT1), which transports glutamine into neurons, was also upregulated. Conversely, levels of the neurotransmitter precursors phenylalanine and tryptophan were decreased. Interestingly, many of these changes could be mapped to overlapping metabolic pathways. The observed metabolic alterations are likely to affect neurotransmission and neuronal homeostasis and in turn could mediate the memory and behavioural impairments observed in BLOC-1-deficient mice.
Collapse
Affiliation(s)
- S M van Liempd
- Metabolomics Platform. CIC bioGUNE, CIBER, Derio, 48260, Spain.
| | - D Cabrera
- Metabolomics Platform. CIC bioGUNE, CIBER, Derio, 48260, Spain
| | - F Y Lee
- Departments of Pathology & Laboratory Medicine and Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - E González
- Metabolomics Platform. CIC bioGUNE, CIBER, Derio, 48260, Spain
| | - E C Dell'Angelica
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - C A Ghiani
- Departments of Pathology & Laboratory Medicine and Psychiatry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - J M Falcon-Perez
- Metabolomics Platform. CIC bioGUNE, CIBER, Derio, 48260, Spain. .,IKERBASQUE Research Foundation, Bilbao, Spain.
| |
Collapse
|
43
|
Petit EI, Michalak Z, Cox R, O'Tuathaigh CMP, Clarke N, Tighe O, Talbot K, Blake D, Joel J, Shaw A, Sheardown SA, Morrison AD, Wilson S, Shapland EM, Henshall DC, Kew JN, Kirby BP, Waddington JL. Dysregulation of Specialized Delay/Interference-Dependent Working Memory Following Loss of Dysbindin-1A in Schizophrenia-Related Phenotypes. Neuropsychopharmacology 2017; 42:1349-1360. [PMID: 27986973 PMCID: PMC5437891 DOI: 10.1038/npp.2016.282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 11/28/2016] [Accepted: 12/11/2016] [Indexed: 01/12/2023]
Abstract
Dysbindin-1, a protein that regulates aspects of early and late brain development, has been implicated in the pathobiology of schizophrenia. As the functional roles of the three major isoforms of dysbindin-1, (A, B, and C) remain unknown, we generated a novel mutant mouse, dys-1A-/-, with selective loss of dysbindin-1A and investigated schizophrenia-related phenotypes in both males and females. Loss of dysbindin-1A resulted in heightened initial exploration and disruption in subsequent habituation to a novel environment, together with heightened anxiety-related behavior in a stressful environment. Loss of dysbindin-1A was not associated with disruption of either long-term (olfactory) memory or spontaneous alternation behavior. However, dys-1A-/- showed enhancement in delay-dependent working memory under high levels of interference relative to controls, ie, impairment in sensitivity to the disruptive effect of such interference. These findings in dys-1A-/- provide the first evidence for differential functional roles for dysbindin-1A vs dysbindin-1C isoforms among phenotypes relevant to the pathobiology of schizophrenia. Future studies should investigate putative sex differences in these phenotypic effects.
Collapse
Affiliation(s)
- Emilie I Petit
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zuzanna Michalak
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Clinical and Experimental Epilepsy, University College London Institute of Neurology, London, UK
| | - Rachel Cox
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Colm M P O'Tuathaigh
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- School of Medicine, University College Cork, Cork, Ireland
| | - Niamh Clarke
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Office of Research and Innovation, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Orna Tighe
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Konrad Talbot
- Department of Neurology, University of California at Los Angeles, Los Angeles, CA, USA
| | - Derek Blake
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Josephine Joel
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Horizon Discovery, Cambridge, UK
| | - Alexander Shaw
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Steven A Sheardown
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Takeda Cambridge, Cambridge, UK
| | - Alastair D Morrison
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Worldwide Business Development, GlaxoSmithKline, Stevenage, UK
| | - Stephen Wilson
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
- Laboratory Animal Sciences, GlaxoSmithKline, Stevenage, UK
| | - Ellen M Shapland
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - James N Kew
- Neurology Centre of Excellence for Drug Discovery, GlaxoSmithKline, Harlow, UK
| | - Brian P Kirby
- School of Pharmacy, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - John L Waddington
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Jiangsu Key Laboratory of Translational Research & Therapy for Neuro-Psychiatric-Disorders and Department of Pharmacology, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
44
|
Chen Y, Bang S, McMullen MF, Kazi H, Talbot K, Ho MX, Carlson G, Arnold SE, Ong WY, Kim SF. Neuronal Activity-Induced Sterol Regulatory Element Binding Protein-1 (SREBP1) is Disrupted in Dysbindin-Null Mice-Potential Link to Cognitive Impairment in Schizophrenia. Mol Neurobiol 2017; 54:1699-1709. [PMID: 26873854 PMCID: PMC4982840 DOI: 10.1007/s12035-016-9773-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/02/2016] [Indexed: 12/30/2022]
Abstract
Schizophrenia is a chronic debilitating neuropsychiatric disorder that affects about 1 % of the population. Dystrobrevin-binding protein 1 (DTNBP1 or dysbindin) is one of the Research Domain Constructs (RDoC) associated with cognition and is significantly reduced in the brain of schizophrenia patients. To further understand the molecular underpinnings of pathogenesis of schizophrenia, we have performed microarray analyses of the hippocampi from dysbindin knockout mice, and found that genes involved in the lipogenic pathway are suppressed. Moreover, we discovered that maturation of a master transcriptional regulator for lipid synthesis, sterol regulatory element binding protein-1 (SREBP1) is induced by neuronal activity, and is required for induction of the immediate early gene ARC (activity-regulated cytoskeleton-associated protein), necessary for synaptic plasticity and memory. We found that nuclear SREBP1 is dramatically reduced in dysbindin-1 knockout mice and postmortem brain tissues from human patients with schizophrenia. Furthermore, activity-dependent maturation of SREBP1 as well as ARC expression were attenuated in dysbindin-1 knockout mice, and these deficits were restored by an atypical antipsychotic drug, clozapine. Together, results indicate an important role of dysbindin-1 in neuronal activity induced SREBP1 and ARC, which could be related to cognitive deficits in schizophrenia.
Collapse
Affiliation(s)
- Yong Chen
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sookhee Bang
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mary F McMullen
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hala Kazi
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Konrad Talbot
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Mei-Xuan Ho
- Department of Anatomy and Neurobiology Research Programme, National University of Singapore, Singapore, 119260, Singapore
| | - Greg Carlson
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Steven E Arnold
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wei-Yi Ong
- Department of Anatomy and Neurobiology Research Programme, National University of Singapore, Singapore, 119260, Singapore.
| | - Sangwon F Kim
- Department of Psychiatry, Center for Neurobiology and Behavior, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
45
|
Larimore J, Zlatic SA, Arnold M, Singleton KS, Cross R, Rudolph H, Bruegge MV, Sweetman A, Garza C, Whisnant E, Faundez V. Dysbindin Deficiency Modifies the Expression of GABA Neuron and Ion Permeation Transcripts in the Developing Hippocampus. Front Genet 2017; 8:28. [PMID: 28344592 PMCID: PMC5344932 DOI: 10.3389/fgene.2017.00028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
The neurodevelopmental factor dysbindin is required for synapse function and GABA interneuron development. Dysbindin protein levels are reduced in the hippocampus of schizophrenia patients. Mouse dysbindin genetic defects and other mouse models of neurodevelopmental disorders share defective GABAergic neurotransmission and, in several instances, a loss of parvalbumin-positive interneuron phenotypes. This suggests that mechanisms downstream of dysbindin deficiency, such as those affecting GABA interneurons, could inform pathways contributing to or ameliorating diverse neurodevelopmental disorders. Here we define the transcriptome of developing wild type and dysbindin null Bloc1s8sdy/sdy mouse hippocampus in order to identify mechanisms downstream dysbindin defects. The dysbindin mutant transcriptome revealed previously reported GABA parvalbumin interneuron defects. However, the Bloc1s8sdy/sdy transcriptome additionally uncovered changes in the expression of molecules controlling cellular excitability such as the cation-chloride cotransporters NKCC1, KCC2, and NCKX2 as well as the potassium channel subunits Kcne2 and Kcnj13. Our results suggest that dysbindin deficiency phenotypes, such as GABAergic defects, are modulated by the expression of molecules controlling the magnitude and cadence of neuronal excitability.
Collapse
Affiliation(s)
| | | | - Miranda Arnold
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | | | - Rebecca Cross
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Hannah Rudolph
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | | | - Andrea Sweetman
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Cecilia Garza
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Eli Whisnant
- Department of Biology, Agnes-Scott College, Decatur, GA, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University, Atlanta, GA, USA
| |
Collapse
|
46
|
Yang W, Zhu C, Shen Y, Xu Q. The pathogenic mechanism of dysbindin-1B toxic aggregation: BLOC-1 and intercellular vesicle trafficking. Neuroscience 2016; 333:78-91. [DOI: 10.1016/j.neuroscience.2016.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/14/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022]
|
47
|
Arnold M, Cross R, Singleton KS, Zlatic S, Chapleau C, Mullin AP, Rolle I, Moore CC, Theibert A, Pozzo-Miller L, Faundez V, Larimore J. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin. Front Cell Neurosci 2016; 10:218. [PMID: 27713690 PMCID: PMC5031601 DOI: 10.3389/fncel.2016.00218] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 09/06/2016] [Indexed: 11/13/2022] Open
Abstract
AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.
Collapse
Affiliation(s)
- Miranda Arnold
- Department of Biology, Agnes-Scott College Decatur, GA, USA
| | - Rebecca Cross
- Department of Biology, Agnes-Scott College Decatur, GA, USA
| | - Kaela S Singleton
- Interdisciplinary Program in Neuroscience, Georgetown University Washington, DC, USA
| | | | - Christopher Chapleau
- Department of Neurobiology, Civitan International Research Center, University of Alabama Birmingham, AL, USA
| | | | - Isaiah Rolle
- Heritage College of Osteopathic Medicine, The Medical School of Ohio University Athens, OH, USA
| | - Carlene C Moore
- Department of Neurobiology, Civitan International Research Center, University of Alabama Birmingham, AL, USA
| | - Anne Theibert
- Department of Neurobiology, Civitan International Research Center, University of Alabama Birmingham, AL, USA
| | - Lucas Pozzo-Miller
- Department of Neurobiology, Civitan International Research Center, University of Alabama Birmingham, AL, USA
| | - Victor Faundez
- Department of Cell Biology, Emory University Atlanta, GA, USA
| | | |
Collapse
|
48
|
Gene × Environment Interactions in Schizophrenia: Evidence from Genetic Mouse Models. Neural Plast 2016; 2016:2173748. [PMID: 27725886 PMCID: PMC5048038 DOI: 10.1155/2016/2173748] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 07/20/2016] [Accepted: 08/21/2016] [Indexed: 02/06/2023] Open
Abstract
The study of gene × environment, as well as epistatic interactions in schizophrenia, has provided important insight into the complex etiopathologic basis of schizophrenia. It has also increased our understanding of the role of susceptibility genes in the disorder and is an important consideration as we seek to translate genetic advances into novel antipsychotic treatment targets. This review summarises data arising from research involving the modelling of gene × environment interactions in schizophrenia using preclinical genetic models. Evidence for synergistic effects on the expression of schizophrenia-relevant endophenotypes will be discussed. It is proposed that valid and multifactorial preclinical models are important tools for identifying critical areas, as well as underlying mechanisms, of convergence of genetic and environmental risk factors, and their interaction in schizophrenia.
Collapse
|
49
|
Yuan Q, Yang F, Xiao Y, Tan S, Husain N, Ren M, Hu Z, Martinowich K, Ng JS, Kim PJ, Han W, Nagata KI, Weinberger DR, Je HS. Regulation of Brain-Derived Neurotrophic Factor Exocytosis and Gamma-Aminobutyric Acidergic Interneuron Synapse by the Schizophrenia Susceptibility Gene Dysbindin-1. Biol Psychiatry 2016; 80:312-322. [PMID: 26386481 DOI: 10.1016/j.biopsych.2015.08.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 08/12/2015] [Accepted: 08/12/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Genetic variations in dystrobrevin binding protein 1 (DTNBP1 or dysbindin-1) have been implicated as risk factors in the pathogenesis of schizophrenia. The encoded protein dysbindin-1 functions in the regulation of synaptic activity and synapse development. Intriguingly, a loss of function mutation in Dtnbp1 in mice disrupted both glutamatergic and gamma-aminobutyric acidergic transmission in the cerebral cortex; pyramidal neurons displayed enhanced excitability due to reductions in inhibitory synaptic inputs. However, the mechanism by which reduced dysbindin-1 activity causes inhibitory synaptic deficits remains unknown. METHODS We investigated the role of dysbindin-1 in the exocytosis of brain-derived neurotrophic factor (BDNF) from cortical excitatory neurons, organotypic brain slices, and acute slices from dysbindin-1 mutant mice and determined how this change in BDNF exocytosis transsynaptically affected the number of inhibitory synapses formed on excitatory neurons via whole-cell recordings, immunohistochemistry, and live-cell imaging using total internal reflection fluorescence microscopy. RESULTS A decrease in dysbindin-1 reduces the exocytosis of BDNF from cortical excitatory neurons, and this reduction in BDNF exocytosis transsynaptically resulted in reduced inhibitory synapse numbers formed on excitatory neurons. Furthermore, application of exogenous BDNF rescued the inhibitory synaptic deficits caused by the reduced dysbindin-1 level in both cultured cortical neurons and slice cultures. CONCLUSIONS Taken together, our results demonstrate that these two genes linked to risk for schizophrenia (BDNF and dysbindin-1) function together to regulate interneuron development and cortical network activity. This evidence supports the investigation of the association between dysbindin-1 and BDNF in humans with schizophrenia.
Collapse
Affiliation(s)
- Qiang Yuan
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Feng Yang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Yixin Xiao
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Shawn Tan
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Nilofer Husain
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Ming Ren
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Zhonghua Hu
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - Julia S Ng
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Paul J Kim
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore
| | - Weiping Han
- Singapore Bioimaging Consortium, Singapore, Singapore
| | - Koh-Ichi Nagata
- Institute for Developmental Research, Aichi Human Service Center, Kasugai, Japan
| | - Daniel R Weinberger
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland
| | - H Shawn Je
- Molecular Neurophysiology Laboratory, Signature Program in Neuroscience and Behavioral Disorders, Duke-National University of Singapore Graduate Medical School, Singapore, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
50
|
Schmieg N, Rocchi C, Romeo S, Maggio R, Millan MJ, Mannoury la Cour C. Dysbindin-1 modifies signaling and cellular localization of recombinant, human D₃ and D₂ receptors. J Neurochem 2016; 136:1037-51. [PMID: 26685100 DOI: 10.1111/jnc.13501] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 01/20/2023]
Abstract
Dystrobrevin binding protein-1 (dysbindin-1), a candidate gene for schizophrenia, modulates cognition, synaptic plasticity and frontocortical circuitry and interacts with glutamatergic and dopaminergic transmission. Loss of dysbindin-1 modifies cellular trafficking of dopamine (DA) D2 receptors to increase cell surface expression, but its influence upon signaling has never been characterized. Further, the effects of dysbindin-1 upon closely related D3 receptors remain unexplored. Hence, we examined the impact of dysbindin-1 (isoform A) co-expression on the localization and coupling of human D2L and D3 receptors stably expressed in Chinese hamster ovary or SH-SY5Y cells lacking endogenous dysbindin-1. Dysbindin-1 co-transfection decreased cell surface expression of both D3 and D2L receptors. Further, while their affinity for DA was unchanged, dysbindin-1 reduced the magnitude and potency of DA-induced adenylate cylase recruitment/cAMP production. Dysbindin-1 also blunted the amplitude of DA-induced phosphorylation of ERK1/2 and Akt at both D2L and D3 receptors without, in contrast to cAMP, affecting the potency of DA. Interference with calveolin/clathrin-mediated processes of internalization prevented the modification by dysbindin-1 of ERK1/2 and adenylyl cyclase stimulation at D2L and D3 receptors. Finally, underpinning the specificity of the influence of dysbindin-1 on D2L and D3 receptors, dysbindin-1 did not modify recruitment of adenylyl cyclase by D1 receptors. These observations demonstrate that dysbindin-1 influences cell surface expression of D3 in addition to D2L receptors, and that it modulates activation of their signaling pathways. Accordingly, both a deficiency and an excess of dysbindin-1 may be disruptive for dopaminergic transmission, supporting its link to schizophrenia and other CNS disorders. Dysbindin-1, a candidate gene for schizophrenia, alters D2 receptors cell surface expression. We demonstrate that dysbindin-1 expression also influences cell surface levels of D3 receptors. Further, Dysbindin-1 reduces DA-induced adenylate cylase recruitment/cAMP production and modifies major signaling pathways (Akt and extracellular signal-regulated kinases1/2 (ERK1/2)) of both D2 and D3 receptors. Dysbindin-1 modulates thus D2 and D3 receptor signaling, supporting a link to schizophrenia.
Collapse
Affiliation(s)
- Nathalie Schmieg
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | - Cristina Rocchi
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Stefania Romeo
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Roberto Maggio
- Biotechnological and Applied Clinical Sciences Department, University of L'Aquila, L'Aquila, Italy
| | - Mark J Millan
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| | - Clotilde Mannoury la Cour
- PIT-Neuropsychiatry, Institut de Recherches Servier, Centre de Recherches de Croissy, Croissy-sur-Seine, France
| |
Collapse
|