1
|
Camps-Vilaró A, Pinsach-Abuin ML, Degano IR, Ramos R, Martí-Lluch R, Elosua R, Subirana I, Solà-Richarte C, Puigmulé M, Pérez A, Vilaró I, Cruz R, Diz-de Almeida S, Nogues X, Masclans JR, Güerri-Fernández R, Marin J, Tizon-Marcos H, Vaquerizo B, Brugada R, Marrugat J. Genetic characteristics involved in COVID-19 severity. The CARGENCORS case-control study and meta-analysis. J Med Virol 2024; 96:e29404. [PMID: 38293834 DOI: 10.1002/jmv.29404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/30/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024]
Abstract
Pre-existing coronary artery disease (CAD), and thrombotic, inflammatory, or virus infectivity response phenomena have been associated with COVID-19 disease severity. However, the association of candidate single nucleotide variants (SNVs) related to mechanisms of COVID-19 complications has been seldom analysed. Our aim was to test and validate the effect of candidate SNVs on COVID-19 severity. CARGENCORS (CARdiovascular GENetic risk score for Risk Stratification of patients positive for SARS-CoV-2 [COVID-19] virus) is an age- and sex-matched case-control study with 818 COVID-19 cases hospitalized with hypoxemia, and 1636 controls with COVID-19 treated at home. The association between severity and SNVs related to CAD (n = 32), inflammation (n = 19), thrombosis (n = 14), virus infectivity (n = 11), and two published to be related to COVID-19 severity was tested with adjusted logistic regression models. Two external independent cohorts were used for meta-analysis (SCOURGE and UK Biobank). After adjustment for potential confounders, 14 new SNVs were associated with COVID-19 severity in the CARGENCORS Study. These SNVs were related to CAD (n = 10), thrombosis (n = 2), and inflammation (n = 2). We also confirmed eight SNVs previously related to severe COVID-19 and virus infectivity. The meta-analysis showed five SNVs associated with severe COVID-19 in adjusted analyses (rs11385942, rs1561198, rs6632704, rs6629110, and rs12329760). We identified 14 novel SNVs and confirmed eight previously related to COVID-19 severity in the CARGENCORS data. In the meta-analysis, five SNVs were significantly associated to COVID-19 severity, one of them previously related to CAD.
Collapse
Affiliation(s)
- Anna Camps-Vilaró
- Registre Gironí del Cor (REGICOR) Study Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Doctoral College, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Mel Lina Pinsach-Abuin
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IdIBGi), Salt, Spain
| | - Irene R Degano
- Registre Gironí del Cor (REGICOR) Study Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Institute for Research and Innovation in Life Sciences and Health in Central Catalonia (IRIS-CC), Vic, Spain
| | - Rafel Ramos
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Vascular Health Research Group, Institut Universitari per a la Recerca en Atenció Primària Jordi Gol i Gurina, Girona, Spain
- Girona Biomedical Research Institute, Girona, Spain
- Primary Care Services, Catalan Institute of Health, Girona, Spain
| | - Ruth Martí-Lluch
- Vascular Health Research Group, Institut Universitari per a la Recerca en Atenció Primària Jordi Gol i Gurina, Girona, Spain
- Girona Biomedical Research Institute, Girona, Spain
| | - Roberto Elosua
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Cardiovascular Epidemiology and Genetics Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Isaac Subirana
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Epidemiology and Genetics Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Clàudia Solà-Richarte
- Registre Gironí del Cor (REGICOR) Study Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Marta Puigmulé
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| | - Alexandra Pérez
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IdIBGi), Salt, Spain
| | | | - Raquel Cruz
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Diz-de Almeida
- Centro Singular de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
| | - Xavier Nogues
- Musculoskeletal Research Unit, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Internal Medicine, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
| | - Joan R Masclans
- Critical Illness Research Group (GREPAC), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Critical Care, Hospital del Mar, Barcelona, Spain
- Medicine and Life Sciences department, Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Roberto Güerri-Fernández
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital del Mar Research Institute, Barcelona, Spain
| | - Judith Marin
- Critical Illness Research Group (GREPAC), Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Critical Care, Hospital del Mar, Barcelona, Spain
| | - Helena Tizon-Marcos
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Biomedical Research in Heart Diseases Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Cardiology, Hospital del Mar, Barcelona, Spain
| | - Beatriz Vaquerizo
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Department of Medicine, Universitat Autònoma de Barcelona (UAB), Bellaterra, Spain
- Biomedical Research in Heart Diseases Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Department of Cardiology, Hospital del Mar, Barcelona, Spain
| | - Ramon Brugada
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
- Cardiovascular Genetics Center, Institut d'Investigació Biomèdica de Girona Dr. Josep Trueta (IdIBGi), Salt, Spain
- Medical Science Department, School of Medicine, University of Girona, Girona, Spain
- Department of Cardiology, Hospital Josep Trueta & University of Girona, Girona, Spain
| | - Jaume Marrugat
- Registre Gironí del Cor (REGICOR) Study Group, Hospital del Mar Research Institute (IMIM), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
2
|
Cheng Y, Li Y, Scherer N, Grundner-Culemann F, Lehtimäki T, Mishra BH, Raitakari OT, Nauck M, Eckardt KU, Sekula P, Schultheiss UT. Genetics of osteopontin in patients with chronic kidney disease: The German Chronic Kidney Disease study. PLoS Genet 2022; 18:e1010139. [PMID: 35385482 PMCID: PMC9015153 DOI: 10.1371/journal.pgen.1010139] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/18/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN), encoded by SPP1, is a phosphorylated glycoprotein predominantly synthesized in kidney tissue. Increased OPN mRNA and protein expression correlates with proteinuria, reduced creatinine clearance, and kidney fibrosis in animal models of kidney disease. But its genetic underpinnings are incompletely understood. We therefore conducted a genome-wide association study (GWAS) of OPN in a European chronic kidney disease (CKD) population. Using data from participants of the German Chronic Kidney Disease (GCKD) study (N = 4,897), a GWAS (minor allele frequency [MAF]≥1%) and aggregated variant testing (AVT, MAF<1%) of ELISA-quantified serum OPN, adjusted for age, sex, estimated glomerular filtration rate (eGFR), and urinary albumin-to-creatinine ratio (UACR) was conducted. In the project, GCKD participants had a mean age of 60 years (SD 12), median eGFR of 46 mL/min/1.73m2 (p25: 37, p75: 57) and median UACR of 50 mg/g (p25: 9, p75: 383). GWAS revealed 3 loci (p<5.0E-08), two of which replicated in the population-based Young Finns Study (YFS) cohort (p<1.67E-03): rs10011284, upstream of SPP1 encoding the OPN protein and related to OPN production, and rs4253311, mapping into KLKB1 encoding prekallikrein (PK), which is processed to kallikrein (KAL) implicated through the kinin-kallikrein system (KKS) in blood pressure control, inflammation, blood coagulation, cancer, and cardiovascular disease. The SPP1 gene was also identified by AVT (p = 2.5E-8), comprising 7 splice-site and missense variants. Among others, downstream analyses revealed colocalization of the OPN association signal at SPP1 with expression in pancreas tissue, and at KLKB1 with various plasma proteins in trans, and with phenotypes (bone disorder, deep venous thrombosis) in human tissue. In summary, this GWAS of OPN levels revealed two replicated associations. The KLKB1 locus connects the function of OPN with PK, suggestive of possible further post-translation processing of OPN. Further studies are needed to elucidate the complex role of OPN within human (patho)physiology.
Collapse
Affiliation(s)
- Yurong Cheng
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Nora Scherer
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Franziska Grundner-Culemann
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Binisha H. Mishra
- Department of Clinical Chemistry, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Finnish Cardiovascular Research Centre, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
| | - Olli T. Raitakari
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku Finland
| | - Matthias Nauck
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité, University-Medicine, Berlin, Germany
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | - Ulla T. Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
- Department of Medicine IV, Nephrology and Primary Care, Faculty of Medicine and Medical Center—University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
3
|
Leskelä J, Toppila I, Härma MA, Palviainen T, Salminen A, Sandholm N, Pietiäinen M, Kopra E, Pais de Barros JP, Lassenius MI, Kumar A, Harjutsalo V, Roslund K, Forsblom C, Loukola A, Havulinna AS, Lagrost L, Salomaa V, Groop PH, Perola M, Kaprio J, Lehto M, Pussinen PJ. Genetic Profile of Endotoxemia Reveals an Association With Thromboembolism and Stroke. J Am Heart Assoc 2021; 10:e022482. [PMID: 34668383 PMCID: PMC8751832 DOI: 10.1161/jaha.121.022482] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background Translocation of lipopolysaccharide from gram-negative bacteria into the systemic circulation results in endotoxemia. In addition to acute infections, endotoxemia is detected in cardiometabolic disorders, such as cardiovascular diseases and obesity. Methods and Results We performed a genome-wide association study of serum lipopolysaccharide activity in 11 296 individuals from 6 different Finnish study cohorts. Endotoxemia was measured by limulus amebocyte lysate assay in the whole population and by 2 other techniques (Endolisa and high-performance liquid chromatography/tandem mass spectrometry) in subpopulations. The associations of the composed genetic risk score of endotoxemia and thrombosis-related clinical end points for 195 170 participants were analyzed in FinnGen. Lipopolysaccharide activity had a genome-wide significant association with 741 single-nucleotide polymorphisms in 5 independent loci, which were mainly located at genes affecting the contact activation of the coagulation cascade and lipoprotein metabolism and explained 1.5% to 9.2% of the variability in lipopolysaccharide activity levels. The closest genes included KNG1, KLKB1, F12, SLC34A1, YPEL4, CLP1, ZDHHC5, SERPING1, CBX5, and LIPC. The genetic risk score of endotoxemia was associated with deep vein thrombosis, pulmonary embolism, pulmonary heart disease, and venous thromboembolism. Conclusions The biological activity of lipopolysaccharide in the circulation (ie, endotoxemia) has a small but highly significant genetic component. Endotoxemia is associated with genetic variation in the contact activation pathway, vasoactivity, and lipoprotein metabolism, which play important roles in host defense, lipopolysaccharide neutralization, and thrombosis, and thereby thromboembolism and stroke.
Collapse
Affiliation(s)
- Jaakko Leskelä
- Oral and Maxillofacial Diseases University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Iiro Toppila
- Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Abdominal Center Nephrology University of Helsinki and Helsinki University Hospital Helsinki Finland.,Diabetes and Obesity Research Program Research Programs Unit University of Helsinki Finland
| | - Mari-Anne Härma
- Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Abdominal Center Nephrology University of Helsinki and Helsinki University Hospital Helsinki Finland.,Diabetes and Obesity Research Program Research Programs Unit University of Helsinki Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland University of Helsinki Finland
| | - Aino Salminen
- Oral and Maxillofacial Diseases University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Niina Sandholm
- Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Abdominal Center Nephrology University of Helsinki and Helsinki University Hospital Helsinki Finland.,Diabetes and Obesity Research Program Research Programs Unit University of Helsinki Finland
| | - Milla Pietiäinen
- Oral and Maxillofacial Diseases University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Elisa Kopra
- Oral and Maxillofacial Diseases University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Jean-Paul Pais de Barros
- INSERM UMR1231 Dijon France.,Lipidomic Analytical Platform, University Bourgogne Franche-Comté Dijon France.,LipSTIC LabEx Dijon France
| | | | - Mariann I Lassenius
- Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Abdominal Center Nephrology University of Helsinki and Helsinki University Hospital Helsinki Finland.,Diabetes and Obesity Research Program Research Programs Unit University of Helsinki Finland
| | - Anmol Kumar
- Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Abdominal Center Nephrology University of Helsinki and Helsinki University Hospital Helsinki Finland.,Diabetes and Obesity Research Program Research Programs Unit University of Helsinki Finland
| | - Valma Harjutsalo
- Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Abdominal Center Nephrology University of Helsinki and Helsinki University Hospital Helsinki Finland.,Diabetes and Obesity Research Program Research Programs Unit University of Helsinki Finland
| | - Kajsa Roslund
- Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Abdominal Center Nephrology University of Helsinki and Helsinki University Hospital Helsinki Finland.,Diabetes and Obesity Research Program Research Programs Unit University of Helsinki Finland
| | - Carol Forsblom
- Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Abdominal Center Nephrology University of Helsinki and Helsinki University Hospital Helsinki Finland.,Diabetes and Obesity Research Program Research Programs Unit University of Helsinki Finland
| | - Anu Loukola
- Institute for Molecular Medicine Finland University of Helsinki Finland.,Department of Public Health Solutions Finnish Institute for Health and Welfare Helsinki Finland.,Department of Public Health University of Helsinki Finland
| | - Aki S Havulinna
- Institute for Molecular Medicine Finland University of Helsinki Finland.,Department of Public Health Solutions Finnish Institute for Health and Welfare Helsinki Finland
| | - Laurent Lagrost
- INSERM UMR1231 Dijon France.,LipSTIC LabEx Dijon France.,University Bourgogne Franche-Comté Dijon France.,University Hospital, Hôpital du Bocage Dijon France
| | - Veikko Salomaa
- Department of Public Health Solutions Finnish Institute for Health and Welfare Helsinki Finland
| | - Per-Henrik Groop
- Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Abdominal Center Nephrology University of Helsinki and Helsinki University Hospital Helsinki Finland.,Diabetes and Obesity Research Program Research Programs Unit University of Helsinki Finland.,Department of Diabetes Central Clinical School Monash University Melbourne Victoria Australia
| | - Markus Perola
- Genomics and Biomarkers Unit Department of Health Finnish Institute for Health and Welfare Helsinki Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland University of Helsinki Finland.,Department of Public Health University of Helsinki Finland
| | - Markku Lehto
- Folkhälsan Institute of GeneticsFolkhälsan Research Center Helsinki Finland.,Abdominal Center Nephrology University of Helsinki and Helsinki University Hospital Helsinki Finland.,Diabetes and Obesity Research Program Research Programs Unit University of Helsinki Finland
| | - Pirkko J Pussinen
- Oral and Maxillofacial Diseases University of Helsinki and Helsinki University Hospital Helsinki Finland
| |
Collapse
|
4
|
Corvillo F, de la Morena-Barrio ME, Marcos-Bravo C, López-Trascasa M, Vicente V, Emsley J, Caballero T, Corral J, López-Lera A. The FXII c.-4T>C Polymorphism as a Disease Modifier in Patients With Hereditary Angioedema Due to the FXII p.Thr328Lys Variant. Front Genet 2020; 11:1033. [PMID: 33133137 PMCID: PMC7549737 DOI: 10.3389/fgene.2020.01033] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/11/2020] [Indexed: 11/30/2022] Open
Abstract
Background Hereditary angioedema due to the Thr328Lys variant in the coagulation factor XII (HAE-FXII) affects mainly women in whom the symptomatology is dependent on high estrogen levels. Clinical variability and incomplete penetrance are challenging features that hinder the diagnosis and management of HAE-FXII. The c.-4T>C Kozak polymorphism is the only common variation accounting for FXII plasma levels and was previously shown to modify the course of HAE due to C1-Inhibitor deficiency. Objectives To assess the influence of the c.-4T>C polymorphism on disease expression in 39 Spanish HAE-FXII index patients. Methods The c.-4T>C polymorphism was sequenced by the standard Sanger method, and HAE severity was calculated according to the score by Cumming et al. (2003) The activation of the contact system was quantified by the kallikrein-like activity of plasma in chromogenic assays upon activation with high-molecular-weight dextran sulfate. Results The c.-4CC genotype was overrepresented in the studied cohort: 82% were CC-homozygous (expected frequency = 59%) and 18% were CT-heterozygous (expected frequency = 39%) (p = 0.001). Patients with a c.-4CC genotype exhibited higher kallikrein-like activity (0.9659 ± 0.1136) than those with a c.-4TC genotype (0.7645 ± 0.1235) (p = 0.024) or healthy donors. Moreover, the polymorphism influenced HAE-FXII severity score (c.-4CC = 4.43 ± 2.28 vs c.-4TC = 2.0 ± 1.15; p = 0.006) but not the degree of estrogen dependence or time until remission. Conclusion The c.-4T>C polymorphism is overrepresented in a Spanish HAE-FXII cohort and significantly influences the degree of contact system activation and the clinical severity of the disease.
Collapse
Affiliation(s)
- Fernando Corvillo
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| | - María Eugenia de la Morena-Barrio
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Hematology and Medical Oncology Department, University Hospital Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Carmen Marcos-Bravo
- Allergy Department, University Hospital Complex of Vigo, Hospital Meixoeiro, Vigo, Spain
| | - Margarita López-Trascasa
- Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain.,Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Vicente Vicente
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Hematology and Medical Oncology Department, University Hospital Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Jonas Emsley
- Centre for Biomolecular Sciences, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Teresa Caballero
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain.,Allergy Department, La Paz University Hospital, Madrid, Spain
| | - Javier Corral
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Hematology and Medical Oncology Department, University Hospital Morales Meseguer, Centro Regional de Hemodonación, University of Murcia, IMIB-Arrixaca, Murcia, Spain
| | - Alberto López-Lera
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain.,Hospital La Paz Institute for Health Research (IdiPaz), Madrid, Spain
| |
Collapse
|
5
|
Wei LK, Griffiths LR, Kooi CW, Irene L. Meta-Analysis of Factor V, Factor VII, Factor XII, and Factor XIII-A Gene Polymorphisms and Ischemic Stroke. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E101. [PMID: 30979054 PMCID: PMC6524011 DOI: 10.3390/medicina55040101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 11/29/2022]
Abstract
Numerous studies examined the association between factors FV, FVII, FXII, and FXIII-A gene polymorphisms and ischemic stroke, but conclusive evidence is yet to be obtained. Thus, this meta-analysis aimed to investigate the novel association of FV rs1800595, FVII rs5742910, FXII rs1801020, and FXIII-A rs5982 and rs3024477 polymorphisms with ischemic stroke risk. A systematic review was performed on articles retrieved before June 2018. Relevant data were extracted from eligible studies and meta-analyzed using RevMan version 5.3. The strength of association between studied polymorphisms and ischemic stroke risk was calculated as odds ratios and 95% confidence intervals, by applying both fixed- and random-effect models. A total of 25 studies involving 6100 ischemic stroke patients and 9249 healthy controls were incorporated in the final meta-analysis model. Specifically, rs1800595, rs5742910, rs1801020, rs5982, and rs3024477 consisted of 673, 3668, 922, 433, and 404 cases, as well as 995, 4331, 1285, 1321, and 1317 controls, respectively. The pooled analysis indicated that there was no significant association of FV rs1800595, FVII rs5742910, FXII rs1801020, FXIII-A rs5982, and FXIII-A rs3024477 polymorphisms with ischemic stroke risk, under any genetic models (dominant, recessive, over-dominant, and allelic). The present meta-analysis concluded that FV rs1800595, FVII rs5742910, FXII rs1801020, and FXIII-A rs5982 and rs3024477 polymorphisms are not associated with ischemic stroke risk.
Collapse
Affiliation(s)
- Loo Keat Wei
- Department of Biological Science, Faculty of Science, Universiti Tunku Abdul Rahman, Bandar Barat, Kampar 31900, Perak, Malaysia.
| | - Lyn R Griffiths
- Genomics Research Centre, Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology, Musk Avenue, Kelvin Grove QLD 4059, Australia.
| | - Cheah Wee Kooi
- Department of Medicine and Clinical Research Centre, Hospital Taiping, Jalan Tamingsari, Taiping 34000, Perak, Malaysia.
| | - Looi Irene
- Department of Medicine and Clinical Research Centre, Hospital Seberang Jaya, Jalan Tun Hussein Onn, Seberang Jaya 13700, Pulau Pinang, Malaysia.
| |
Collapse
|
6
|
Rohmann JL, de Haan HG, Algra A, Vossen CY, Rosendaal FR, Siegerink B. Genetic determinants of activity and antigen levels of contact system factors. J Thromb Haemost 2019; 17:157-168. [PMID: 30288888 DOI: 10.1111/jth.14307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 09/17/2018] [Indexed: 11/27/2022]
Abstract
Essentials Genetic variation may provide valuable insight into the role of the contact system in thrombosis. Explored associations of genetic variants with activity, antigen, and disease in RATIO study. Two novel loci were identified: KLKB1 rs4253243 for prekallikrein; KNG1 rs5029980 for HMWK levels. Contact system variants and haplotypes were not associated with myocardial infarction or stroke. SUMMARY: Background The complex, interdependent contact activation system has been implicated in thrombotic disease, although few genetic determinants of levels of proteins from this system are known. Objectives Our primary aim was to study the influence of common F11, F12, KLKB1, and KNG1 variants on factor (F) XI activity and FXI, FXII, prekallikrein (PK) and high-molecular-weight kininogen (HMWK) antigen levels, as well as the risk of myocardial infarction and ischemic stroke. Patients/methods We analyzed samples from all 630 healthy participants, 182 ischemic stroke patients and 216 myocardial infarction patients in the RATIO case-control study of women aged < 50 years. Forty-three tagging single nucleotide variants (SNVs) were genotyped to represent common genetic variation in the contact system genes. Antigen and activity levels were measured with sandwich-ELISA-based and one-stage clotting assays. We performed single variant, age-adjusted, linear regression analyses per trait and disease phenotype, assuming additive inheritance and determined conditionally independent associations. Haplotypes based on the lead SNV and all conditionally independent SNVs were tested for association with traits and disease. Results We identified two novel associations of KLKB1 SNV rs4253243 with PK antigen (βconditional = -12.38; 95% CI, -20.07 to -4.69) and KNG1 SNV rs5029980 with HMWK antigen (βconditional = 5.86; 95% CI, 2.40-9.32) and replicated previously reported associations in a single study. Further analyses probed whether the observed associations were indicative of linkage, pleiotropic effects or mediation. No individual SNVs or haplotypes were associated with the disease outcomes. Conclusion This study adds to current knowledge of how genetic variation influences contact system protein levels and clarifies interdependencies.
Collapse
Affiliation(s)
- J L Rohmann
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Institute of Public Health, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - H G de Haan
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - A Algra
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology and Neurosurgery, Brain Center Rudolph Magnus, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - C Y Vossen
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - F R Rosendaal
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - B Siegerink
- Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
7
|
Wu X, Ding Q, Wang X, Dai J, Wu W. The prevalence of heterozygous F12 mutations in Chinese population and its relevance to incidents of thrombosis. BMC MEDICAL GENETICS 2018; 19:50. [PMID: 29587641 PMCID: PMC5870241 DOI: 10.1186/s12881-018-0557-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/08/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND The contribution of moderate coagulation factor XII (FXII) deficiency to development of thromboembolism is still undetermined. We have tried to show the relevance of FXII deficiency to incidences of venous thrombosis by exploring the prevalence of F12 gene mutations in Chinese patients with thrombotic disorders. METHODS One hundred and six patients with venous thromboembolism (VTE) and 220 healthy controls were enrolled in study. The coding region and flanking sequences of F12 gene were amplified and sequenced to identify genetic variances. Patients with F12 mutations were also screened for other thrombotic risk factors. RESULTS Heterozygous F12 gene mutations were identified in 6 individuals with VTE and 10 healthy controls. Q336X and R66W were found in two healthy individuals; D291E was identified in a patient with DVT; and A343P was a recurrent mutation with a prevalence of 4.7% (5/106) in patient group and 3.6%(8/220) in healthy control. The prevalence of heterozygous mutations between the two groups had no significant difference. The association of A343P mutations with VTE was weak with an OR of 1.31 (95% CI 0.42-4.11). No other thrombophilia risk factors screened were positive in patients harboring heterozygous F12 mutations. CONCLUSIONS There were conflicting theories about the relationship between FXII deficiency and thrombosis formation. Heterozygous F12 mutation decreases the plasma FXII activity approximately by half and cause moderate FXII deficiency. Although multiple mutations were identified in both groups, the link between F12 heterozygous mutation and development of thrombotic disorders is weak and further studies are warranted to clarify their relationship.
Collapse
Affiliation(s)
- Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China.
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China. .,Faculty of Medical Laboratory Science, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, No.197 Ruijin Second Road, Shanghai, 200025, China.
| |
Collapse
|
8
|
Salloum-Asfar S, de la Morena-Barrio ME, Esteban J, Miñano A, Aroca C, Vicente V, Roldán V, Corral J. Assessment of two contact activation reagents for the diagnosis of congenital factor XI deficiency. Thromb Res 2018; 163:64-70. [DOI: 10.1016/j.thromres.2017.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 12/14/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
|
9
|
Zhang W, Jernerén F, Lehne BC, Chen MH, Luben RN, Johnston C, Elshorbagy A, Eppinga RN, Scott WR, Adeyeye E, Scott J, Böger RH, Khaw KT, van der Harst P, Wareham NJ, Vasan RS, Chambers JC, Refsum H, Kooner JS. Genome-wide association reveals that common genetic variation in the kallikrein-kinin system is associated with serum L-arginine levels. Thromb Haemost 2016; 116:1041-1049. [PMID: 27656708 PMCID: PMC6215702 DOI: 10.1160/th16-02-0151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022]
Abstract
L-arginine is the essential precursor of nitric oxide, and is involved in multiple key physiological processes, including vascular and immune function. The genetic regulation of blood L-arginine levels is largely unknown. We performed a genome-wide association study (GWAS) to identify genetic factors determining serum L-arginine levels, amongst 901 Europeans and 1,394 Indian Asians. We show that common genetic variations at the KLKB1 and F12 loci are strongly associated with serum L-arginine levels. The G allele of single nucleotide polymorphism (SNP) rs71640036 (T/G) in KLKB1 is associated with lower serum L-arginine concentrations (10 µmol/l per allele copy, p=1×10-24), while allele T of rs2545801 (T/C) near the F12 gene is associated with lower serum L-arginine levels (7 µmol/l per allele copy, p=7×10-12). Together these two loci explain 7 % of the total variance in serum L-arginine concentrations. The associations at both loci were replicated in independent cohorts with plasma L-arginine measurements (p<0.004). The two sentinel SNPs are in nearly complete LD with the nonsynonymous SNP rs3733402 at KLKB1 and the 5'-UTR SNP rs1801020 at F12, respectively. SNPs at both loci are associated with blood pressure. Our findings provide new insight into the genetic regulation of L-arginine and its potential relationship with cardiovascular risk.
Collapse
Affiliation(s)
- Weihua Zhang
- Weihua Zhang, PhD, Department of Epidemiology and Biostatistics, School of Public Health, Faculty of Medicine, Imperial College London, Norfolk Place, London W2 1PG, UK, Tel.: +44 20 8242 5926, Fax: +44 20 8967 5007, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Polymorphisms at the F12 and KLKB1 loci have significant trait association with activation of the renin-angiotensin system. BMC MEDICAL GENETICS 2016; 17:21. [PMID: 26969407 PMCID: PMC4788869 DOI: 10.1186/s12881-016-0283-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Accepted: 03/01/2016] [Indexed: 12/30/2022]
Abstract
Background Plasma coagulation Factor XIIa (Hageman factor; encoded by F12) and kallikrein (KAL or Fletcher factor; encoded by KLKB1) are proteases of the kallikerin-kinin system involved in converting the inactive circulating prorenin to renin. Renin is a key enzyme in the formation of angiotensin II, which regulates blood pressure, fluid and electrolyte balance and is a biomarker for cardiovascular, metabolic and renal function. The renin-angiotensin system is implicated in extinction learning in posttraumatic stress disorder. Methods & Results Active plasma renin was measured from two independent cohorts- civilian twins and siblings, as well as U.S. Marines, for a total of 1,180 subjects. Genotyping these subjects revealed that the carriers of the minor alleles at the two loci- F12 and KLKB1 had a significant association with reduced levels of active plasma renin. Meta-analyses confirmed the association across cohorts. In vitro studies verified digestion of human recombinant pro-renin by kallikrein (KAL) to generate active renin. Subsequently, the active renin was able to digest the synthetic substrate angiotensinogen to angiotensin-I. Examination of mouse juxtaglomerular cell line and mouse kidney sections showed co-localization of KAL with renin. Expression of either REN or KLKB1 was regulated in cell line and rodent models of hypertension in response to oxidative stress, interleukin or arterial blood pressure changes. Conclusions The functional variants of KLKB1 (rs3733402) and F12 (rs1801020) disrupted the cascade of enzymatic events, resulting in diminished formation of active renin. Using genetic, cellular and molecular approaches we found that conversion of zymogen prorenin to renin was influenced by these polymorphisms. The study suggests that the variant version of protease factor XIIa due to the amino acid substitution had reduced ability to activate prekallikrein to KAL. As a result KAL has reduced efficacy in converting prorenin to renin and this step of the pathway leading to activation of renin affords a potential therapeutic target.
Collapse
|
11
|
Davydov DM, Zhdanov RI, Dvoenosov VG, Kravtsova OA, Voronina EN, Filipenko ML. Resilience to orthostasis and haemorrhage: A pilot study of common genetic and conditioning mechanisms. Sci Rep 2015; 5:10703. [PMID: 26024428 PMCID: PMC4650686 DOI: 10.1038/srep10703] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/27/2015] [Indexed: 01/15/2023] Open
Abstract
A major challenge presently is not only to identify the genetic polymorphisms increasing risk to diseases, but to also find out factors and mechanisms, which can counteract a risk genotype by developing a resilient phenotype. The objective of this study was to examine acquired and innate vagal mechanisms that protect against physical challenges and haemorrhages in 19 athletes and 61 non-athletes. These include examining change in heart rate variability (HF-HRV; an indicator of vagus activity) in response to orthostatic challenge, platelet count (PLT), mean platelet volume (MPV), and single-nucleotide polymorphisms in genes that encode several coagulation factors, PAI-1, and MTHFR. Individual differences in PLT and MPV were significant predictors, with opposite effects, of the profiles of the HF-HRV changes in response to orthostasis. Regular physical training of athletes indirectly (through MPV) modifies the genetic predisposing effects of some haemostatic factors (PAI-1 and MTHFR) on vagal tone and reactivity. Individual differences in vagal tone were also associated with relationships between Factor 12 C46T and Factor 11 C22771T genes polymorphisms. This study showed that genetic predispositions for coagulation are modifiable. Its potential significance is promoting advanced protection against haemorrhages in a variety of traumas and injuries, especially in individuals with coagulation deficits.
Collapse
Affiliation(s)
- Dmitry M Davydov
- 1] Sholokhov Moscow State University for the Humanities, the Russian Institute for Advanced Study and Institute of Neurosciences and Cognitive Research, Verkhnyaya Radishevskaya 16-18, Moscow, 109240 [2] Laboratory of Neuroimmunopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 8 Baltiyskaia ul., Moscow, 125315, Russia
| | - Renad I Zhdanov
- 1] Sholokhov Moscow State University for the Humanities, the Russian Institute for Advanced Study and Institute of Neurosciences and Cognitive Research, Verkhnyaya Radishevskaya 16-18, Moscow, 109240 [2] Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, 18 Kremlin ul., Kazan, 420008, Russia
| | - Vladimir G Dvoenosov
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, 18 Kremlin ul., Kazan, 420008, Russia
| | - Olga A Kravtsova
- Institute of Fundamental Medicine and Biology, Kazan (Volga region) Federal University, 18 Kremlin ul., Kazan, 420008, Russia
| | - Elena N Voronina
- Pharmacogenomics laboratory, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Maxim L Filipenko
- Pharmacogenomics laboratory, Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
12
|
Mannhalter C. Biomarkers for arterial and venous thrombotic disorders. Hamostaseologie 2015; 34:115-20, 122-6, 128-30, passim. [PMID: 24819458 DOI: 10.5482/hamo-13-08-0041] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 03/21/2014] [Indexed: 02/06/2023] Open
Abstract
The haemostatic system maintains the blood in a fluid state, but allows rapid clot formation at sites of vascular injury to prevent excessive bleeding. Unbalances within the haemostatic system can lead to thrombosis. Inspite of successful research our understanding of the disease pathogenesis is still incomplete. There is great hope that genetic, genomic, and epigenetic discoveries will enhance the diagnostic capability, and improve the treatment options. During the preceding 20 years, the identification of polymorphisms and the elucidation of their role in arterial and venous thromboses became an important area of research. Today, a large body of data is available regarding associations of single nucleotide polymorphisms (SNPs) in candidate genes with plasma concentrations and e. g. the risk of ischaemic stroke or myocardial infarction. However, the results for individual polymorphisms and genes are often controversial. It is now well established that besides acquired also hereditary risk factors influence the occurrence of thrombotic events, and environmental factors may add to this risk. Currently available statistical methods are only able to identify combined risk genotypes if very large patient collectives (>10,000 cases) are tested, and appropriate algorithms to evaluate the data have yet to be developed. Further research is needed to understand the functional effects of genetic variants in genes of blood coagulation proteins that are critical to the pathogenesis of arterial and venous thrombotic disorders. In this review genetic variants in selected genes of the haemostatic system and their relevance for arterial and venous thrombosis will be discussed.
Collapse
Affiliation(s)
- C Mannhalter
- Univ.-Prof. Dr. Christine Mannhalter Dept. Laboratory Medicine, Medical University Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria, Tel. +43/1/404 00 20 85, Fax +43/1/404 00 20 97, E-mail:
| |
Collapse
|
13
|
Weng LC, Cushman M, Pankow JS, Basu S, Boerwinkle E, Folsom AR, Tang W. A genetic association study of activated partial thromboplastin time in European Americans and African Americans: the ARIC Study. Hum Mol Genet 2014; 24:2401-8. [PMID: 25552651 DOI: 10.1093/hmg/ddu732] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reduced activated partial thromboplastin time (aPTT) is a risk marker for incident and recurrent venous thromboembolism (VTE). Genetic factors influencing aPTT are not well understood, especially in populations of non-European ancestry. The present study aimed to identify aPTT-related gene variants in both European Americans (EAs) and African Americans (AAs). We conducted a genetic association study for aPTT in 9719 EAs and 2799 AAs from the Atherosclerosis Risk in Communities (ARIC) study. Using the Candidate Gene Association Resource (CARe) consortium candidate gene array, the analyses were based on ∼50 000 SNPs in ∼2000 candidate genes. In EAs, the analyses identified a new independent association for aPTT in F5 (rs2239852, P-value = 1.9 × 10(-8)), which clusters with a coding variant rs6030 (P-value = 7.8 × 10(-7)). The remaining significant signals were located on F5, HRG, KNG1, F11, F12 and ABO and have been previously reported in EA populations. In AAs, significant signals were identified in KNG1, HRG, F12, ABO and VWF, with the leading variants in KNG1, HRG and F12 being the same as in the EAs; the significant variant in VWF (rs2229446, P-value = 1.2 × 10(-6)) was specific to the AA sample (minor allele frequency = 19% in AAs and 0.2% in EAs) and has not been previously reported. This is the first study to report aPTT-related genetic variants in AAs. Our findings in AAs demonstrate transferability of previously reported associations with KNG1, HRG and F12 in EAs. We also identified new associations at F5 in EAs and VWF in AAs that have not been previously reported for aPTT.
Collapse
Affiliation(s)
- Lu-Chen Weng
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Mary Cushman
- Departments of Medicine and Pathology, University of Vermont, Burlington, VT 05405, USA
| | - James S Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Saonli Basu
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA and
| | - Eric Boerwinkle
- Human Genetics Center and Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Aaron R Folsom
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA
| | - Weihong Tang
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN 55454, USA,
| |
Collapse
|
14
|
Freyburger G, Labrouche S, Hubert C, Bauduer F. Haemostaseome-associated SNPs: has the thrombotic phenotype a greater influence than ethnicity? GMT study from Aquitaine including Basque individuals. Thromb Haemost 2014; 113:66-76. [PMID: 25374097 DOI: 10.1160/th14-02-0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 08/15/2014] [Indexed: 11/05/2022]
Abstract
The Genetic Markers for Thrombosis (GMT) study compared the relative influence of ethnicity and thrombotic phenotype regarding the distribution of SNPs implicated in haemostasis pathophysiology ("haemostaseome"). We assessed 384 SNPs in three groups, each of 480 subjects: 1) general population of Aquitaine region (Southwestern France) used as control; 2) patients with venous thromboembolism from the same area; and 3) autochthonous Basques, a genetic isolate, who demonstrate unusual characteristics regarding the coagulation system. This study sought to evaluate i) the value of looking for a large number of genes in order to identify new genetic markers of thrombosis, ii) the value of investigating low risk factors and potential preferential associations, iii) the impact of ethnicity on the characterisation of markers for thrombosis. We did not detect any previously unrecognised SNP significantly associated with thrombosis risk or any preferential associations of low-risk factors in patients with thrombosis. The sum of ϰ² values for our 110 significant SNPs demonstrated a smaller genetic distance between patients and controls (321 cumulated ϰ² value) than between Basques and controls (1,570 cumulated ϰ² value). Hence, our study confirms the genetic particularity of Basques especially regarding a significantly lower expression of the non-O blood group (p< 0.0004). This is mitigated by a higher prevalence of factor II Leiden (p< 0.02) while factor V Leiden prevalence does not differ. Numerous other differences covering a wide range of proteins of the haemostaseome may result in an overall different genetic risk for venous thromboembolism.
Collapse
Affiliation(s)
- Geneviève Freyburger
- Geneviève Freyburger, Laboratory for Hematology, CHU Pellegrin, 33076 Bordeaux cedex, France, Tel.: +335 57 820 206, Fax: +335 56 79 60 20, E-mail:
| | | | | | | |
Collapse
|
15
|
Low intraindividual variability of activated partial thromboplastin time revealed in a population of 10,487 control individuals. Blood Coagul Fibrinolysis 2013; 24:746-8. [PMID: 24064902 DOI: 10.1097/mbc.0b013e3283631e04] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The activated partial thromboplastin time (aPTT) is a routine coagulation test that reflects the activities of multiple coagulation proteins. Given the known genetic elements underlying the different coagulation factor activities, a low intraindividual variability is expected in aPTT values, but has not been demonstrated in a large population. In this regard, we evaluated the intraindividual variability of aPTT by analyzing serial aPTTs from a large population. The study population consisted of control individuals who had three or more consecutive aPTT values at at least 6-month intervals at a single institution. The coefficient of variation of serial aPTT values was determined in each control individual, and the mean value of the coefficient of variations in the control population was calculated. The aPTT values from a total of 10,487 individuals [mean age 57 years (range 21-93 years); male-to-female ratio 1 : 0.9] were included. The mean value of the coefficient of variation of aPTTs in those individuals was 3.75%, which indicates a very low intraindividual variability. This is the first study to demonstrate a low intraindividual variability of aPTT in a large population. The result supports the previous notion that aPTT is a genetically determined parameter and has potential clinical implications.
Collapse
|
16
|
Madsen DE, Sidelmann JJ, Overgaard K, Koch C, Gram JB. ELISA for determination of total coagulation factor XII concentration in human plasma. J Immunol Methods 2013; 394:32-9. [DOI: 10.1016/j.jim.2013.04.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 04/17/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022]
|
17
|
Bors A, Csuka D, Varga L, Farkas H, Tordai A, Füst G, Szilagyi A. Less severe clinical manifestations in patients with hereditary angioedema with missense C1INH gene mutations. J Allergy Clin Immunol 2013; 131:1708-11. [DOI: 10.1016/j.jaci.2012.11.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 10/29/2012] [Accepted: 11/06/2012] [Indexed: 11/15/2022]
|
18
|
Williams FMK, Carter AM, Hysi PG, Surdulescu G, Hodgkiss D, Soranzo N, Traylor M, Bevan S, Dichgans M, Rothwell PMW, Sudlow C, Farrall M, Silander K, Kaunisto M, Wagner P, Saarela O, Kuulasmaa K, Virtamo J, Salomaa V, Amouyel P, Arveiler D, Ferrieres J, Wiklund PG, Ikram MA, Hofman A, Boncoraglio GB, Parati EA, Helgadottir A, Gretarsdottir S, Thorsteinsdottir U, Thorleifsson G, Stefansson K, Seshadri S, DeStefano A, Gschwendtner A, Psaty B, Longstreth W, Mitchell BD, Cheng YC, Clarke R, Ferrario M, Bis JC, Levi C, Attia J, Holliday EG, Scott RJ, Fornage M, Sharma P, Furie KL, Rosand J, Nalls M, Meschia J, Mosely TH, Evans A, Palotie A, Markus HS, Grant PJ, Spector TD. Ischemic stroke is associated with the ABO locus: the EuroCLOT study. Ann Neurol 2013; 73:16-31. [PMID: 23381943 PMCID: PMC3582024 DOI: 10.1002/ana.23838] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/21/2012] [Accepted: 10/29/2012] [Indexed: 11/08/2022]
Abstract
OBJECTIVE End-stage coagulation and the structure/function of fibrin are implicated in the pathogenesis of ischemic stroke. We explored whether genetic variants associated with end-stage coagulation in healthy volunteers account for the genetic predisposition to ischemic stroke and examined their influence on stroke subtype. METHODS Common genetic variants identified through genome-wide association studies of coagulation factors and fibrin structure/function in healthy twins (n = 2,100, Stage 1) were examined in ischemic stroke (n = 4,200 cases) using 2 independent samples of European ancestry (Stage 2). A third clinical collection having stroke subtyping (total 8,900 cases, 55,000 controls) was used for replication (Stage 3). RESULTS Stage 1 identified 524 single nucleotide polymorphisms (SNPs) from 23 linkage disequilibrium blocks having significant association (p < 5 × 10(-8)) with 1 or more coagulation/fibrin phenotypes. The most striking associations included SNP rs5985 with factor XIII activity (p = 2.6 × 10(-186)), rs10665 with FVII (p = 2.4 × 10(-47)), and rs505922 in the ABO gene with both von Willebrand factor (p = 4.7 × 10(-57)) and factor VIII (p = 1.2 × 10(-36)). In Stage 2, the 23 independent SNPs were examined in stroke cases/noncases using MOnica Risk, Genetics, Archiving and Monograph (MORGAM) and Wellcome Trust Case Control Consortium 2 collections. SNP rs505922 was nominally associated with ischemic stroke (odds ratio = 0.94, 95% confidence interval = 0.88-0.99, p = 0.023). Independent replication in Meta-Stroke confirmed the rs505922 association with stroke, beta (standard error, SE) = 0.066 (0.02), p = 0.001, a finding specific to large-vessel and cardioembolic stroke (p = 0.001 and p = < 0.001, respectively) but not seen with small-vessel stroke (p = 0.811). INTERPRETATION ABO gene variants are associated with large-vessel and cardioembolic stroke but not small-vessel disease. This work sheds light on the different pathogenic mechanisms underpinning stroke subtype.
Collapse
Affiliation(s)
- Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, King's College London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
del Río-Espínola A, Fernández-Cadenas I, Giralt D, Quiroga A, Gutiérrez-Agulló M, Quintana M, Fernández-Álvarez P, Domingues-Montanari S, Mendióroz M, Delgado P, Turck N, Ruíz A, Ribó M, Castellanos M, Obach V, Martínez S, Freijo MM, Jiménez-Conde J, Cuadrado-Godia E, Roquer J, Chacón P, Martí-Fábregas J, Sánchez JC, Montaner J. A predictive clinical-genetic model of tissue plasminogen activator response in acute ischemic stroke. Ann Neurol 2012; 72:716-29. [DOI: 10.1002/ana.23664] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 05/29/2012] [Accepted: 06/01/2012] [Indexed: 11/07/2022]
|
20
|
Wijsman EM. The role of large pedigrees in an era of high-throughput sequencing. Hum Genet 2012; 131:1555-63. [PMID: 22714655 PMCID: PMC3638020 DOI: 10.1007/s00439-012-1190-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/07/2012] [Indexed: 12/13/2022]
Abstract
Rare variation is the current frontier in human genetics. The large pedigree design is practical, efficient, and well-suited for investigating rare variation. In large pedigrees, specific rare variants that co-segregate with a trait will occur in sufficient numbers so that effects can be measured, and evidence for association can be evaluated, by making use of methods that fully use the pedigree information. Evidence from linkage analysis can focus investigation, both reducing the multiple testing burden and expanding the variants that can be evaluated and followed up, as recent studies have shown. The large pedigree design requires only a small fraction of the sample size needed to identify rare variants of interest in population-based designs, and many highly suitable, well-understood, and available statistical and computational tools already exist. Samples consisting of large pedigrees with existing rich phenotype and genome scan data should be prime candidates for high-throughput sequencing in the search of the determinants of complex traits.
Collapse
Affiliation(s)
- Ellen M Wijsman
- Department of Biostatistics, University of Washington, Seattle, WA 98195-7720, USA.
| |
Collapse
|
21
|
Hutz JE, Manning WA, Province MA, McLeod HL. Genomewide analysis of inherited variation associated with phosphorylation of PI3K/AKT/mTOR signaling proteins. PLoS One 2011; 6:e24873. [PMID: 21949775 PMCID: PMC3176272 DOI: 10.1371/journal.pone.0024873] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Accepted: 08/19/2011] [Indexed: 02/03/2023] Open
Abstract
While there exists a wealth of information about genetic influences on gene expression, less is known about how inherited variation influences the expression and post-translational modifications of proteins, especially those involved in intracellular signaling. The PI3K/AKT/mTOR signaling pathway contains several such proteins that have been implicated in a number of diseases, including a variety of cancers and some psychiatric disorders. To assess whether the activation of this pathway is influenced by genetic factors, we measured phosphorylated and total levels of three key proteins in the pathway (AKT1, p70S6K, 4E-BP1) by ELISA in 122 lymphoblastoid cell lines from 14 families. Interestingly, the phenotypes with the highest proportion of genetic influence were the ratios of phosphorylated to total protein for two of the pathway members: AKT1 and p70S6K. Genomewide linkage analysis suggested several loci of interest for these phenotypes, including a linkage peak for the AKT1 phenotype that contained the AKT1 gene on chromosome 14. Linkage peaks for the phosphorylated:total protein ratios of AKT1 and p70S6K also overlapped on chromosome 3. We selected and genotyped candidate genes from under the linkage peaks, and several statistically significant associations were found. One polymorphism in HSP90AA1 was associated with the ratio of phosphorylated to total AKT1, and polymorphisms in RAF1 and GRM7 were associated with the ratio of phosphorylated to total p70S6K. These findings, representing the first genomewide search for variants influencing human protein phosphorylation, provide useful information about the PI3K/AKT/mTOR pathway and serve as a valuable proof of concept for studies integrating human genomics and proteomics.
Collapse
Affiliation(s)
- Janna E. Hutz
- Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Division of Statistical Genomics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - W. Aaron Manning
- Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Michael A. Province
- Division of Statistical Genomics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Howard L. McLeod
- Institute for Pharmacogenomics and Individualized Therapy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
22
|
Johnson CY, Tuite A, Morange PE, Tregouet DA, Gagnon F. The factor XII -4C>T variant and risk of common thrombotic disorders: A HuGE review and meta-analysis of evidence from observational studies. Am J Epidemiol 2011; 173:136-44. [PMID: 21071604 DOI: 10.1093/aje/kwq349] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Coagulation factor XII is involved in thrombus formation and therefore may play a role in the etiology of thrombotic disorders. A common variant in the factor XII (F12) gene (-4C>T, rs1801020) results in decreased plasma levels of this coagulation factor. The existence of associations between low factor XII levels or F12 variants and thrombotic outcomes has been debated for more than a decade. The authors conducted a review and meta-analysis to evaluate the evidence for an association between F12 -4C>T and 2 common thrombotic outcomes: venous thromboembolism and myocardial infarction, which are hypothesized to share some etiologic pathways. MEDLINE, EMBASE, and HuGE Navigator were searched through July 2009 to identify relevant epidemiologic studies, and data were summarized using random-effects meta-analysis. Sixteen candidate gene studies (4,386 cases, 40,089 controls) were analyzed. None of the investigated contrasts reached statistical significance at P < 0.05, apart from a very weak association with myocardial infarction for the TT + CT versus CC contrast (odds ratio = 1.13, 95% confidence interval: 1.00, 1.27). Overall, based on the synthesis of observational studies, the evidence for an association between F12 -4C>T and venous thromboembolism and myocardial infarction is weak.
Collapse
|
23
|
Houlihan LM, Davies G, Tenesa A, Harris SE, Luciano M, Gow AJ, McGhee KA, Liewald DC, Porteous DJ, Starr JM, Lowe GD, Visscher PM, Deary IJ. Common variants of large effect in F12, KNG1, and HRG are associated with activated partial thromboplastin time. Am J Hum Genet 2010; 86:626-31. [PMID: 20303064 DOI: 10.1016/j.ajhg.2010.02.016] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 02/08/2010] [Accepted: 02/16/2010] [Indexed: 10/19/2022] Open
Abstract
Activated partial thromboplastin time (aPTT) is associated with risk of thrombosis and coagulation disorders. We conducted a genome-wide association study for aPTT and identified significant associations with SNPs in three coagulation cascade genes, F12 (rs2731672, combined p = 2.16 x 10(-30)), KNG1 (rs710446, combined p = 9.52 x 10(-22)), and HRG (rs9898, combined p = 1.34 x 10(-11)). These three SNPs explain approximately 18% of phenotypic variance in aPTT in the Lothian Birth Cohorts.
Collapse
|