1
|
Liu X, Dong L, Jiang Z, Song M, Yan P. Identifying the differentially expressed peripheral blood microRNAs in psychiatric disorders: a systematic review and meta-analysis. Front Psychiatry 2024; 15:1390366. [PMID: 38827444 PMCID: PMC11140110 DOI: 10.3389/fpsyt.2024.1390366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/25/2024] [Indexed: 06/04/2024] Open
Abstract
Background Evidence has suggested that microRNAs (miRNAs) may play an important role in the pathogenesis of psychiatric disorders (PDs), but the results remain inconclusive. We aimed to identify specific differentially expressed miRNAs and their overlapping miRNA expression profiles in schizophrenia (SZ), major depression disorder (MDD), and bipolar disorder (BD), the three major PDs. Methods The literatures up to September 30, 2023 related to peripheral blood miRNAs and PDs were searched and screened from multiple databases. The differences in miRNA levels between groups were illustrated by the standardized mean difference (SMD) and 95% confidence interval (95% CI). Results In total, 30 peripheral blood miRNAs were included in the meta-analysis, including 16 for SZ, 12 for MDD, and 2 for BD, each was reported in more than 3 independent studies. Compared with the control group, miR-181b-5p, miR-34a-5p, miR-195-5p, miR-30e-5p, miR-7-5p, miR-132-3p, miR-212-3p, miR-206, miR-92a-3p and miR-137-3p were upregulated in SZ, while miR-134-5p, miR-107 and miR-99b-5p were downregulated. In MDD, miR-124-3p, miR-132-3p, miR-139-5p, miR-182-5p, miR-221-3p, miR-34a-5p and miR-93-5p were upregulated, while miR-144-5p and miR-135a-5p were downregulated. However, we failed to identify statistically differentially expressed miRNAs in BD. Interestingly, miR-132-3p and miR-34a-5p were upregulated in both SZ and MDD. Conclusions Our study identified 13 differentially expressed miRNAs in SZ and 9 in MDD, among which miR-132-3p and miR-34a-5p were upregulated in both SZ and MDD by systematically analyzing qualified studies. These miRNAs may be used as potential biomarkers for the diagnosis of SZ and MDD in the future. Systematic Review Registration http://www.crd.york.ac.uk/PROSPERO, identifier CRD42023486982.
Collapse
Affiliation(s)
- Xiaoyan Liu
- Department of Psychiatry, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liying Dong
- Internal Medicine of Traditional Chinese Medicine, The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaowei Jiang
- Internal Medicine of Traditional Chinese Medicine, The 4th Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Mingfen Song
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Yan
- Molecular Biology Laboratory, Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Karpagavalli M, Sivagurunathan S, Panda TS, Srikakulam N, Arora R, Dohadwala L, Tiwary BK, Sadras SR, Arunachalam JP, Pandi G, Chidambaram S. piRNAs in the human retina and retinal pigment epithelium reveal a potential role in intracellular trafficking and oxidative stress. Mol Omics 2024; 20:248-264. [PMID: 38314503 DOI: 10.1039/d3mo00122a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Long considered active only in the germline, the PIWI/piRNA pathway is now known to play a significant role in somatic cells, especially neurons. In this study, piRNAs were profiled in the human retina and retinal pigment epithelium (RPE). Furthermore, RNA immunoprecipitation with HIWI2 (PIWIL4) in ARPE19 cells yielded 261 piRNAs, and the expression of selective piRNAs in donor eyes was assessed by qRT-PCR. Intriguingly, computational analysis revealed complete and partial seed sequence similarity between piR-hsa-26131 and the sensory organ specific miR-183/96/182 cluster. Furthermore, the expression of retina-enriched piR-hsa-26131 was positively correlated with miR-182 in HIWI2-silenced Y79 cells. In addition, the lnc-ZNF169 sequence matched with two miRNAs of the let-7 family, and piRNAs, piR-hsa-11361 and piR-hsa-11360, which could modulate the regulatory network of retinal differentiation. Interestingly, we annotated four enriched motifs among the piRNAs and found that the piRNAs containing CACAATG and CTCATCAKYG motifs were snoRNA-derived piRNAs, which are significantly associated with developmental functions. However, piRNAs consisting of ACCACTANACCAC and AKCACGYTCSC motifs were mainly tRNA-derived fragments linked to stress response and sensory perception. Additionally, co-expression network analysis revealed cell cycle control, intracellular transport and stress response as the important biological functions regulated by piRNAs in the retina. Moreover, loss of piRNAs in HIWI2 knockdown ARPE19 confirmed altered expression of targets implicated in intracellular transport, circadian clock, and retinal degeneration. Moreover, piRNAs were dysregulated under oxidative stress conditions, indicating their potential role in retinal pathology. Therefore, we postulate that piRNAs, miRNAs, and lncRNAs might have a functional interplay during retinal development and functions to regulate retinal homeostasis.
Collapse
Affiliation(s)
| | - Suganya Sivagurunathan
- RS Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, Chennai, India
| | - T Sayamsmruti Panda
- Department of Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Nagesh Srikakulam
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Reety Arora
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | | | - Basant K Tiwary
- Department of Bioinformatics, Pondicherry University, Puducherry-605014, India
| | - Sudha Rani Sadras
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India.
| | - Jayamuruga Pandian Arunachalam
- Central Inter-Disciplinary Research Facility, Sri Balaji Vidyapeeth (Deemed to be University), Pondicherry-607402, India
| | - Gopal Pandi
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Subbulakshmi Chidambaram
- Department of Biochemistry and Molecular Biology, Pondicherry University, Puducherry-605014, India.
| |
Collapse
|
3
|
Palagini L, Geoffroy PA, Gehrman PR, Miniati M, Gemignani A, Riemann D. Potential genetic and epigenetic mechanisms in insomnia: A systematic review. J Sleep Res 2023; 32:e13868. [PMID: 36918298 DOI: 10.1111/jsr.13868] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 03/16/2023]
Abstract
Insomnia is a stress-related sleep disorder conceptualised within a diathesis-stress framework, which it is thought to result from predisposing factors interacting with precipitating stressful events that trigger the development of insomnia. Among predisposing factors genetics and epigenetics may play a role. A systematic review of the current evidence for the genetic and epigenetic basis of insomnia was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) system. A total of 24 studies were collected for twins and family heritability, 55 for genome-wide association studies, 26 about candidate genes for insomnia, and eight for epigenetics. Data showed that insomnia is a complex polygenic stress-related disorder, and it is likely to be caused by a synergy of genetic and environmental factors, with stress-related sleep reactivity being the important trait. Even if few studies have been conducted to date on insomnia, epigenetics may be the framework to understand long-lasting consequences of the interaction between genetic and environmental factors and effects of stress on the brain in insomnia. Interestingly, polygenic risk for insomnia has been causally linked to different mental and medical disorders. Probably, by treating insomnia it would be possible to intervene on the effect of stress on the brain and prevent some medical and mental conditions.
Collapse
Affiliation(s)
- Laura Palagini
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Pierre A Geoffroy
- Département de Psychiatrie et D'Addictologie, AP-HP, GHU Paris Nord, DMU Neurosciences, Hopital Bichat - Claude Bernard, Paris, France
- GHU Paris - Psychiatry and Neurosciences, Paris, France
- Université de Paris, NeuroDiderot, INSERM, Paris, France
| | - Philip R Gehrman
- Center for Sleep and Circadian Neurobiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Psychiatry, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mario Miniati
- Department of Clinical and Experimental Medicine, Unit of Psychiatry, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Angelo Gemignani
- Unit of Psychology, Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Azienda Ospedaliero Universitaria Pisana AUOP, Pisa, Italy
| | - Dieter Riemann
- Department of Psychiatry and Psychotherapy, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Pei G, Chen L, Wang Y, He C, Fu C, Wei Q. Role of miR-182 in cardiovascular and cerebrovascular diseases. Front Cell Dev Biol 2023; 11:1181515. [PMID: 37228653 PMCID: PMC10203221 DOI: 10.3389/fcell.2023.1181515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
The treatment of cardiovascular and cerebrovascular diseases have undergone major advances in recent decades, allowing for a more effective prevention of cardiovascular and cerebrovascular events. However, cardiac and cerebral atherothrombotic complications still account for substantial morbidity and mortality worldwide. Novel therapeutic strategies are critical to improve patient outcomes following cardiovascular diseases. miRNAs are small non-coding RNAs, that regulate gene expression. Here, we discuss the role of miR-182 in regulating myocardial proliferation, migration, hypoxia, ischemia, apoptosis and hypertrophy in atherosclerosis, CAD, MI, I/R injury, organ transplant, cardiac hypertrophy, hypertension, heart failure, congenital heart disease and cardiotoxicity. Besides, we also summarize the current progress of miR-182 therapeutics in clinical development and discuss challenges that will need to be overcome to enter the clinic for patients with cardiac disease.
Collapse
Affiliation(s)
- Gaiqin Pei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Li Chen
- Department of Rehabilitation, Chengdu Fifth People’s Hospital, Chengdu, Sichuan, China
| | - Yang Wang
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chengqi He
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| | - Chenying Fu
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Aging and Geriatric Mechanism Laboratory, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Quan Wei
- Department of Rehabilitation Medicine and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Kim JY, Kim W, Lee KH. The role of microRNAs in the molecular link between circadian rhythm and autism spectrum disorder. Anim Cells Syst (Seoul) 2023; 27:38-52. [PMID: 36860270 PMCID: PMC9970207 DOI: 10.1080/19768354.2023.2180535] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
Circadian rhythm regulates physiological cycles of awareness and sleepiness. Melatonin production is primarily regulated by circadian regulation of gene expression and is involved in sleep homeostasis. If the circadian rhythm is abnormal, sleep disorders, such as insomnia and several other diseases, can occur. The term 'autism spectrum disorder (ASD)' is used to characterize people who exhibit a certain set of repetitive behaviors, severely constrained interests, social deficits, and/or sensory behaviors that start very early in life. Because many patients with ASD suffer from sleep disorders, sleep disorders and melatonin dysregulation are attracting attention for their potential roles in ASD. ASD is caused by abnormalities during the neurodevelopmental processes owing to various genetic or environmental factors. Recently, the role of microRNAs (miRNAs) in circadian rhythm and ASD have gained attraction. We hypothesized that the relationship between circadian rhythm and ASD could be explained by miRNAs that can regulate or be regulated by either or both. In this study, we introduced a possible molecular link between circadian rhythm and ASD. We performed a thorough literature review to understand their complexity.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea
| | - Wanil Kim
- Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Republic of Korea, Wanil Kim Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do52727, Republic of Korea; Kyung-Ha Lee Department of Molecular Biology, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| | - Kyung-Ha Lee
- Department of Molecular Biology, Pusan National University, Busan, Republic of Korea, Wanil Kim Department of Biochemistry, College of Medicine, Gyeongsang National University, Jinju-si, Gyeongsangnam-do52727, Republic of Korea; Kyung-Ha Lee Department of Molecular Biology, Pusan National University, 2, Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan46241, Republic of Korea
| |
Collapse
|
6
|
Chen C, Xu YJ, Zhang SR, Wang XH, Hu Y, Guo DH, Zhou XJ, Zhu WY, Wen AD, Tan QR, Dong XZ, Liu P. MiR-1281 is involved in depression disorder and the antidepressant effects of Kai-Xin-San by targeting ADCY1 and DVL1. Heliyon 2023; 9:e14265. [PMID: 36938448 PMCID: PMC10020002 DOI: 10.1016/j.heliyon.2023.e14265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Kai-Xin-San (KXS) is a Chinese medicine formulation that is commonly used to treat depression caused by dual deficiencies in the heart and spleen. Recent studies indicated that miRNAs were involved in the pathophysiology of depression. However, there have been few studies on the mechanism underlying the miRNAs directly mediating antidepressant at clinical level, especially in nature drugs and TCM compound. In this study, we identified circulating miRNAs defferentially expressed among the depression patients (DPs), DPs who underwent 8weeks of KXS treatment and health controls (HCs). A total of 45 miRNAs (17 were up-regulated and 28 were down-regulated) were significantly differentially expressed among three groups. Subsequently, qRT-PCR was used to verify 10 differentially expressed candidate miRNAs in more serum samples, and the results showed that 6 miRNAs (miR-1281, miR-365a-3p, miR-2861, miR-16-5p, miR-1202 and miR-451a) were consistent with the results of microarray. Among them, miR-1281, was the novel dynamically altered and appeared to be specifically related to depression and antidepressant effects of KXS. MicroRNA-gene-pathway-net analysis showed that miR-1281-regulated genes are mostly key nodes in the classical signaling pathway related to depression. Additionally, our data suggest that ADCY1 and DVL1 were the targets of miR-1281. Thus, based on the discovery of miRNA expression profiles in vivo, our findings suggest a new role for miR-1281 related to depression and demonstrated in vitro that KXS may activate cAMP/PKA/ERK/CREB and Wnt/β-catenin signal transduction pathways by down-regulating miR-1281 that targets ADCY1 and DVL1 to achieve its role in neuronal cell protection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yuan-jie Xu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Shang-rong Zhang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Xiao-hui Wang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Dai-hong Guo
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xiao-jiang Zhou
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Wei-yu Zhu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, People's Republic of China
- Corresponding author. Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, Beijing 100053, China.
| | - Ping Liu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
- Corresponding author.Department of Pharmacy, the General Hospital of the People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
7
|
Khavkin AI, Novikova VP, Trapeznikova AY. Intestinal Microbiota and Sleep Inversion. PEDIATRIC PHARMACOLOGY 2022. [DOI: 10.15690/pf.v19i4.2442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Various human lifestyle and environmental factors are known to influence sleep. The number of adults and children suffering from chronic sleep disorders has grown over the past decade. Lack of sleep and impaired circadian rhythms have been proven to be associated with adverse metabolic health effects. Often, such disorders are associated with gastrointestinal tract diseases, and accompanied by dysbiosis. Significant number of studies have been conducted on animal models in recent years. They have shown the correlation between the gut microbiota and brain functions. According to these results scientists have clearly demonstrated the role of gut microbiota in regulating brain function, sleep, and behavior. The number of studies with volunteers is currently limited. The bacteria forming gut microbiota have significant impact on human health by synthesizing and secreting biologically active substances such as vitamins, essential amino acids, lipids, and others. Moreover, they have an indirect effect by modulating metabolic processes and the immune system. Changes in gut microbiota diversity occur due to the lack of sleep and shifting circadian rhythms, and it can lead to changes in the structure and function of microorganisms living in the gut. This can lead to changes in the composition and number of metabolites synthesized by these microorganisms (such as short-chain fatty acids and secondary bile acids) which contributes to the development of chronic inflammation, increased body weight and endocrine changes. This article provides the literature review on issues of interaction between gut microbiota and processes occurring during sleep.
Collapse
Affiliation(s)
- Anatoly I. Khavkin
- Research and Clinical Institute for Children; Veltischev Research and Clinical Institute for Pediatrics of the Pirogov Russian National Research Medical University
| | | | | |
Collapse
|
8
|
Relationship between the expression level of miRNA-4485 and the severity of depressive symptoms in major depressive disorder patients. THE EUROPEAN JOURNAL OF PSYCHIATRY 2022. [DOI: 10.1016/j.ejpsy.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
9
|
Singla R, Mishra A, Cao R. The trilateral interactions between mammalian target of rapamycin (mTOR) signaling, the circadian clock, and psychiatric disorders: an emerging model. Transl Psychiatry 2022; 12:355. [PMID: 36045116 PMCID: PMC9433414 DOI: 10.1038/s41398-022-02120-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 02/07/2023] Open
Abstract
Circadian (~24 h) rhythms in physiology and behavior are evolutionarily conserved and found in almost all living organisms. The rhythms are endogenously driven by daily oscillatory activities of so-called "clock genes/proteins", which are widely distributed throughout the mammalian brain. Mammalian (mechanistic) target of rapamycin (mTOR) signaling is a fundamental intracellular signal transduction cascade that controls important neuronal processes including neurodevelopment, synaptic plasticity, metabolism, and aging. Dysregulation of the mTOR pathway is associated with psychiatric disorders including autism spectrum disorders (ASD) and mood disorders (MD), in which patients often exhibit disrupted daily physiological rhythms and abnormal circadian gene expression in the brain. Recent work has found that the activities of mTOR signaling are temporally controlled by the circadian clock and exhibit robust circadian oscillations in multiple systems. In the meantime, mTOR signaling regulates fundamental properties of the central and peripheral circadian clocks, including period length, entrainment, and synchronization. Whereas the underlying mechanisms remain to be fully elucidated, increasing clinical and preclinical evidence support significant crosstalk between mTOR signaling, the circadian clock, and psychiatric disorders. Here, we review recent progress in understanding the trilateral interactions and propose an "interaction triangle" model between mTOR signaling, the circadian clock, and psychiatric disorders (focusing on ASD and MD).
Collapse
Affiliation(s)
- Rubal Singla
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Abhishek Mishra
- grid.17635.360000000419368657Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN 55812 USA
| | - Ruifeng Cao
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, MN, 55812, USA. .,Department of Neuroscience, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
10
|
A time to heal: microRNA and circadian dynamics in cutaneous wound repair. Clin Sci (Lond) 2022; 136:579-597. [PMID: 35445708 PMCID: PMC9069467 DOI: 10.1042/cs20220011] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/11/2022]
Abstract
Many biological systems have evolved circadian rhythms based on the daily cycles of daylight and darkness on Earth. Such rhythms are synchronised or entrained to 24-h cycles, predominantly by light, and disruption of the normal circadian rhythms has been linked to elevation of multiple health risks. The skin serves as a protective barrier to prevent microbial infection and maintain homoeostasis of the underlying tissue and the whole organism. However, in chronic non-healing wounds such as diabetic foot ulcers (DFUs), pressure sores, venous and arterial ulcers, a variety of factors conspire to prevent wound repair. On the other hand, keloids and hypertrophic scars arise from overactive repair mechanisms that fail to cease in a timely fashion, leading to excessive production of extracellular matrix (ECM) components such as such as collagen. Recent years have seen huge increases in our understanding of the functions of microRNAs (miRNAs) in wound repair. Concomitantly, there has been growing recognition of miRNA roles in circadian processes, either as regulators or targets of clock activity or direct responders to external circadian stimuli. In addition, miRNAs are now known to function as intercellular signalling mediators through extracellular vesicles (EVs). In this review, we explore the intersection of mechanisms by which circadian and miRNA responses interact with each other in relation to wound repair in the skin, using keratinocytes, macrophages and fibroblasts as exemplars. We highlight areas for further investigation to support the development of translational insights to support circadian medicine in the context of these cells.
Collapse
|
11
|
D’Agostino Y, Frigato E, Noviello TM, Toni M, Frabetti F, Cigliano L, Ceccarelli M, Sordino P, Cerulo L, Bertolucci C, D’Aniello S. Loss of circadian rhythmicity in bdnf knockout zebrafish larvae. iScience 2022; 25:104054. [PMID: 35345456 PMCID: PMC8957028 DOI: 10.1016/j.isci.2022.104054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/14/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal growth and differentiation, neuronal plasticity, learning, and memory. Using CRISPR/Cas9 technology, we generated a vital Bdnf null mutant line in zebrafish and carried out its molecular and behavioral characterization. Although no defects are evident on a morphological inspection, 66% of coding genes and 37% of microRNAs turned out to be differentially expressed in bdnf−/− compared with wild type sibling embryos. We deeply investigated the circadian clock pathway and confirmed changes in the rhythmic expression of clock (arntl1a, clock1a and clock2) and clock-controlled (aanat2) genes. The modulatory role of Bdnf on the zebrafish circadian clock was then validated by behavioral tests highlighting the absence of circadian activity rhythms in bdnf−/− larvae. The circadian behavior was partially rescued by pharmacological treatment. The bdnf−/− zebrafish line presented here is the first valuable and stable vertebrate model for the study of BDNF-related neurodevelopmental diseases Generation of a viable bdnf KO line in zebrafish Bdnf deficiency affects locomotor activity and thigmotaxis in larvae Differential RNA-seq analysis shows changes in expression of circadian clock genes Bdnf mutant fails in the generation of the behavioral circadian rhythmicity
Collapse
|
12
|
Biomarkers for primary open-angle glaucoma progression. Exp Eye Res 2022; 219:109025. [DOI: 10.1016/j.exer.2022.109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/16/2021] [Accepted: 03/02/2022] [Indexed: 11/22/2022]
|
13
|
Fishman ES, Han JS, La Torre A. Oscillatory Behaviors of microRNA Networks: Emerging Roles in Retinal Development. Front Cell Dev Biol 2022; 10:831750. [PMID: 35186936 PMCID: PMC8847441 DOI: 10.3389/fcell.2022.831750] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 01/07/2022] [Indexed: 01/02/2023] Open
Abstract
A broad repertoire of transcription factors and other genes display oscillatory patterns of expression, typically ranging from 30 min to 24 h. These oscillations are associated with a variety of biological processes, including the circadian cycle, somite segmentation, cell cycle, and metabolism. These rhythmic behaviors are often prompted by transcriptional feedback loops in which transcriptional activities are inhibited by their corresponding gene target products. Oscillatory transcriptional patterns have been proposed as a mechanism to drive biological clocks, the molecular machinery that transforms temporal information into accurate spatial patterning during development. Notably, several microRNAs (miRNAs) -small non-coding RNA molecules-have been recently shown to both exhibit rhythmic expression patterns and regulate oscillatory activities. Here, we discuss some of these new findings in the context of the developing retina. We propose that miRNA oscillations are a powerful mechanism to coordinate signaling pathways and gene expression, and that addressing the dynamic interplay between miRNA expression and their target genes could be key for a more complete understanding of many developmental processes.
Collapse
Affiliation(s)
| | | | - Anna La Torre
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, CA, United States
| |
Collapse
|
14
|
Mahmoud AM. An Overview of Epigenetics in Obesity: The Role of Lifestyle and Therapeutic Interventions. Int J Mol Sci 2022; 23:ijms23031341. [PMID: 35163268 PMCID: PMC8836029 DOI: 10.3390/ijms23031341] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity has become a global epidemic that has a negative impact on population health and the economy of nations. Genetic predispositions have been demonstrated to have a substantial role in the unbalanced energy metabolism seen in obesity. However, these genetic variations cannot entirely explain the massive growth in obesity over the last few decades. Accumulating evidence suggests that modern lifestyle characteristics such as the intake of energy-dense foods, adopting sedentary behavior, or exposure to environmental factors such as industrial endocrine disruptors all contribute to the rising obesity epidemic. Recent advances in the study of DNA and its alterations have considerably increased our understanding of the function of epigenetics in regulating energy metabolism and expenditure in obesity and metabolic diseases. These epigenetic modifications influence how DNA is transcribed without altering its sequence. They are dynamic, reflecting the interplay between the body and its surroundings. Notably, these epigenetic changes are reversible, making them appealing targets for therapeutic and corrective interventions. In this review, I discuss how these epigenetic modifications contribute to the disordered energy metabolism in obesity and to what degree lifestyle and weight reduction strategies and pharmacological drugs can restore energy balance by restoring normal epigenetic profiles.
Collapse
Affiliation(s)
- Abeer M Mahmoud
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
15
|
Emerging role of microRNAs as novel targets of antidepressants. Asian J Psychiatr 2021; 66:102906. [PMID: 34740127 DOI: 10.1016/j.ajp.2021.102906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/20/2021] [Indexed: 12/31/2022]
|
16
|
Ortega MA, Alvarez-Mon MA, García-Montero C, Fraile-Martinez O, Lahera G, Monserrat J, Muñoz-Merida L, Mora F, Rodríguez-Jiménez R, Fernandez-Rojo S, Quintero J, Álvarez-Mon M. MicroRNAs as Critical Biomarkers of Major Depressive Disorder: A Comprehensive Perspective. Biomedicines 2021; 9:biomedicines9111659. [PMID: 34829888 PMCID: PMC8615526 DOI: 10.3390/biomedicines9111659] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022] Open
Abstract
Major Depressive Disorder (MDD) represents a major global health concern, a body-mind malady of rising prevalence worldwide nowadays. The complex network of mechanisms involved in MDD pathophysiology is subjected to epigenetic changes modulated by microRNAs (miRNAs). Serum free or vesicles loaded miRNAs have starred numerous publications, denoting a key role in cell-cell communication, systematically and in brain structure and neuronal morphogenesis, activity and plasticity. Upregulated or downregulated expression of these signaling molecules may imply the impairment of genes implicated in pathways of MDD etiopathogenesis (neuroinflammation, brain-derived neurotrophic factor (BDNF), neurotransmitters, hypothalamic-pituitary-adrenal (HPA) axis, oxidative stress, circadian rhythms...). In addition, these miRNAs could serve as potential biomarkers with diagnostic, prognostic and predictive value, allowing to classify severity of the disease or to make decisions in clinical management. They have been considered as promising therapy targets as well and may interfere with available antidepressant treatments. As epigenetic malleable regulators, we also conclude emphasizing lifestyle interventions with physical activity, mindfulness and diet, opening the door to new clinical management considerations.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
| | - Miguel Angel Alvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, 28031 Madrid, Spain
- Correspondence:
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, 28806 Alcalá de Henares, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Luis Muñoz-Merida
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
| | - Fernando Mora
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
- Institute for Health Research Hospital 12 de Octubre (imas 12), CIBERSAM, 28041 Madrid, Spain
| | - Sonia Fernandez-Rojo
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Javier Quintero
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcalá de Henares, Spain; (F.M.); (S.F.-R.); (J.Q.)
- Department of Legal Medicine and Psychiatry, Complutense University, 28040 Madrid, Spain;
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, 28801 Alcalá de Henares, Spain; (M.A.O.); (C.G.-M.); (O.F.-M.); (G.L.); (J.M.); (L.M.-M.); (M.Á.-M.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcalá de Henares, Spain
| |
Collapse
|
17
|
Cui Z, Zhang Z, Amevor FK, Du X, Li L, Tian Y, Kang X, Shu G, Zhu Q, Wang Y, Li D, Zhang Y, Zhao X. Circadian miR-449c-5p regulates uterine Ca 2+ transport during eggshell calcification in chickens. BMC Genomics 2021; 22:764. [PMID: 34702171 PMCID: PMC8547053 DOI: 10.1186/s12864-021-08074-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 10/06/2021] [Indexed: 12/27/2022] Open
Abstract
Background miRNAs regulate circadian patterns by modulating the biological clocks of animals. In our previous study, we found that the clock gene exhibited a cosine expression pattern in the fallopian tube of chicken uterus. Clock-controlled miRNAs are present in mammals and Drosophila; however, whether there are clock-controlled miRNAs in the chicken uterus and, if so, how they regulate egg-laying rhythms is unclear. In this study, we selected 18 layer hens with similar ovipositional rhythmicity (each of three birds were sacrificed for study per 4 h throughout 24 h); their transcriptomes were scanned to identify the circadian miRNAs and to explore regulatory mechanisms within the uterus of chickens. Results We identified six circadian miRNAs that are mainly associated with several biological processes including ion trans-membrane transportation, response to calcium ion, and enrichment of calcium signaling pathways. Verification of the experimental results revealed that miR-449c-5p exhibited a cosine expression pattern in the chicken uterus. Ca2+-transporting ATPase 4 (ATP2B4) in the plasma membrane is the predicted target gene of circadian miR-449c-5p and is highly enriched in the calcium signaling pathway. We speculated that clock-controlled miR-449c-5p regulated Ca2+ transportation during eggshell calcification in the chicken uterus by targeting ATP2B4. ATP2B4 mRNA and protein were rhythmically expressed in the chicken uterus, and dual-luciferase reporter gene assays confirmed that ATP2B4 was directly targeted by miR-449c-5p. The expression of miR-449c-5p showed an opposite trend to that of ATP2B4 within a 24 h cycle in the chicken uterus; it inhibited mRNA and protein expression of ATP2B4 in the uterine tubular gland cells. In addition, overexpression of ATP2B4 significantly decreased intracellular Ca2+ concentration (P < 0.05), while knockdown of ATP2B4 accelerated intracellular Ca2+ concentrations. We found similar results after ATP2B4 knockdown by miR-449c-5p. Taken together, these results indicate that ATP2B4 promotes uterine Ca2+ trans-epithelial transport. Conclusions Clock-controlled miR-449c-5p regulates Ca2+ transport in the chicken uterus by targeting ATP2B4 during eggshell calcification. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08074-3.
Collapse
Affiliation(s)
- Zhifu Cui
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Zhichao Zhang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Felix Kwame Amevor
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaxia Du
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Liang Li
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yaofu Tian
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xincheng Kang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Gang Shu
- Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, People's Republic of China
| | - Qing Zhu
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yan Wang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Diyan Li
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yao Zhang
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaoling Zhao
- Department of Animal Science, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Apt 211, Huimin Road, Wenjiang District, Chengdu, 611130, Sichuan Province, People's Republic of China.
| |
Collapse
|
18
|
Anna G, Kannan NN. Post-transcriptional modulators and mediators of the circadian clock. Chronobiol Int 2021; 38:1244-1261. [PMID: 34056966 PMCID: PMC7611477 DOI: 10.1080/07420528.2021.1928159] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/26/2021] [Accepted: 05/03/2021] [Indexed: 01/04/2023]
Abstract
The endogenous circadian timekeeping system drives ~24-h rhythms in gene expression and rhythmically coordinates the physiology, metabolism and behavior in a wide range of organisms. Regulation at various levels is important for the accurate functioning of this circadian timing system. The core circadian oscillator consists of an interlocked transcriptional-translational negative feedback loop (TTFL) that imposes a substantial delay between the accumulation of clock gene mRNA and its protein to generate 24-h oscillations. This TTFL mediated daily oscillation of clock proteins is further fine-tuned by post-translational modifications that regulate the clock protein stability, interaction with other proteins and subcellular localization. Emerging evidence from various studies indicates that besides TTFL and post-translational modifications, post-transcriptional regulation plays a key role in shaping the rhythmicity of mRNAs and to delay the accumulation of clock proteins in relation to their mRNAs. In this review, we summarize the current knowledge on the importance of post-transcriptional regulatory mechanisms such as splicing, polyadenylation, the role of RNA-binding proteins, RNA methylation and microRNAs in the context of shaping the circadian rhythmicity in Drosophila and mammals. In particular, we discuss microRNAs, an important player in post-transcriptional regulation of core-clock machinery, circadian neural circuit, clock input, and output pathways. Furthermore, we provide an overview of the microRNAs that exhibit diurnal rhythm in expression and their role in mediating rhythmic physiological processes.
Collapse
Affiliation(s)
- Geo Anna
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala 695551, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER), Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
19
|
Saad L, Zwiller J, Kalsbeek A, Anglard P. Epigenetic Regulation of Circadian Clocks and Its Involvement in Drug Addiction. Genes (Basel) 2021; 12:1263. [PMID: 34440437 PMCID: PMC8394526 DOI: 10.3390/genes12081263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/04/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Based on studies describing an increased prevalence of addictive behaviours in several rare sleep disorders and shift workers, a relationship between circadian rhythms and addiction has been hinted for more than a decade. Although circadian rhythm alterations and molecular mechanisms associated with neuropsychiatric conditions are an area of active investigation, success is limited so far, and further investigations are required. Thus, even though compelling evidence connects the circadian clock to addictive behaviour and vice-versa, yet the functional mechanism behind this interaction remains largely unknown. At the molecular level, multiple mechanisms have been proposed to link the circadian timing system to addiction. The molecular mechanism of the circadian clock consists of a transcriptional/translational feedback system, with several regulatory loops, that are also intricately regulated at the epigenetic level. Interestingly, the epigenetic landscape shows profound changes in the addictive brain, with significant alterations in histone modification, DNA methylation, and small regulatory RNAs. The combination of these two observations raises the possibility that epigenetic regulation is a common plot linking the circadian clocks with addiction, though very little evidence has been reported to date. This review provides an elaborate overview of the circadian system and its involvement in addiction, and we hypothesise a possible connection at the epigenetic level that could further link them. Therefore, we think this review may further improve our understanding of the etiology or/and pathology of psychiatric disorders related to drug addiction.
Collapse
Affiliation(s)
- Lamis Saad
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Jean Zwiller
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Centre National de la Recherche Scientifique (CNRS), 75016 Paris, France
| | - Andries Kalsbeek
- The Netherlands Institute for Neuroscience (NIN), Royal Netherlands Academy of Arts and Sciences (KNAW), 1105 BA Amsterdam, The Netherlands;
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Patrick Anglard
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA), UMR 7364 CNRS, Université de Strasbourg, Neuropôle de Strasbourg, 67000 Strasbourg, France; (L.S.); (J.Z.)
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
| |
Collapse
|
20
|
Motawi TK, Shaker OG, Hassanin SO, Ibrahim SG, Senousy MA. Genetic and epigenetic control on clock genes in multiple sclerosis. J Genet Genomics 2021; 49:74-76. [PMID: 34411713 DOI: 10.1016/j.jgg.2021.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/20/2021] [Accepted: 07/25/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Olfat G Shaker
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Soha O Hassanin
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Shaymaa G Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information (MTI), Cairo, Egypt
| | - Mahmoud A Senousy
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Vega-Tapia F, Bustamante M, Valenzuela RA, Urzua CA, Cuitino L. miRNA Landscape in Pathogenesis and Treatment of Vogt-Koyanagi-Harada Disease. Front Cell Dev Biol 2021; 9:658514. [PMID: 34041239 PMCID: PMC8141569 DOI: 10.3389/fcell.2021.658514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/22/2021] [Indexed: 11/13/2022] Open
Abstract
miRNAs, one of the members of the noncoding RNA family, are regulators of gene expression in inflammatory and autoimmune diseases. Changes in miRNA pool expression have been associated with differentiation of CD4+ T cells toward an inflammatory phenotype and with loss of self-tolerance in autoimmune diseases. Vogt–Koyanagi–Harada (VKH) disease is a chronic multisystemic pathology, affecting the uvea, inner ear, central nervous system, and skin. Several lines of evidence support an autoimmune etiology for VKH, with loss of tolerance against retinal pigmented epithelium-related self-antigens. This deleterious reaction is characterized by exacerbated inflammation, due to an aberrant TH1 and TH17 polarization and secretion of their proinflammatory hallmark cytokines interleukin 6 (IL-6), IL-17, interferon γ, and tumor necrosis factor α, and an impaired CD4+ CD25high FoxP3+ regulatory T cell function. To restrain inflammation, VKH is pharmacologically treated with corticosteroids and immunosuppressive drugs as first and second line of therapy, respectively. Changes in the expression of miRNAs related to immunoregulatory pathways have been associated with VKH development, whereas some genetic variants of miRNAs have been found to be risk modifiers of VKH. Furthermore, the drugs commonly used in VKH treatment have great influence on miRNA expression, including those miRNAs associated to VKH disease. This relationship between response to therapy and miRNA regulation suggests that these small noncoding molecules might be therapeutic targets for the development of more effective and specific pharmacological therapy for VKH. In this review, we discuss the latest evidence regarding regulation and alteration of miRNA associated with VKH disease and its treatment.
Collapse
Affiliation(s)
- Fabian Vega-Tapia
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mario Bustamante
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Núcleo de Ciencias Biológicas, Facultad de Estudios Interdisciplinarios, Universidad Mayor, Santiago, Chile
| | - Rodrigo A Valenzuela
- Department de Health Science, Universidad de Aysén, Coyhaique, Chile.,Department of Chemical and Biological Sciences, Faculty of Health, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Cristhian A Urzua
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Department of Ophthalmology, University of Chile, Santiago, Chile.,Faculty of Medicine, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| | - Loreto Cuitino
- Laboratory of Ocular and Systemic Autoimmune Diseases, Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Servicio de Oftalmología, Hospital Clínico Universidad de Chile, Santiago, Chile
| |
Collapse
|
22
|
Martins HC, Schratt G. MicroRNA-dependent control of neuroplasticity in affective disorders. Transl Psychiatry 2021; 11:263. [PMID: 33941769 PMCID: PMC8093191 DOI: 10.1038/s41398-021-01379-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/17/2021] [Accepted: 04/13/2021] [Indexed: 12/12/2022] Open
Abstract
Affective disorders are a group of neuropsychiatric disorders characterized by severe mood dysregulations accompanied by sleep, eating, cognitive, and attention disturbances, as well as recurring thoughts of suicide. Clinical studies consistently show that affective disorders are associated with reduced size of brain regions critical for mood and cognition, neuronal atrophy, and synaptic loss in these regions. However, the molecular mechanisms that mediate these changes and thereby increase the susceptibility to develop affective disorders remain poorly understood. MicroRNAs (miRNAs or miRs) are small regulatory RNAs that repress gene expression by binding to the 3'UTR of mRNAs. They have the ability to bind to hundreds of target mRNAs and to regulate entire gene networks and cellular pathways implicated in brain function and plasticity, many of them conserved in humans and other animals. In rodents, miRNAs regulate synaptic plasticity by controlling the morphology of dendrites and spines and the expression of neurotransmitter receptors. Furthermore, dysregulated miRNA expression is frequently observed in patients suffering from affective disorders. Together, multiple lines of evidence suggest a link between miRNA dysfunction and affective disorder pathology, providing a rationale to consider miRNAs as therapeutic tools or molecular biomarkers. This review aims to highlight the most recent and functionally relevant studies that contributed to a better understanding of miRNA function in the development and pathogenesis of affective disorders. We focused on in vivo functional studies, which demonstrate that miRNAs control higher brain functions, including mood and cognition, in rodents, and that their dysregulation causes disease-related behaviors.
Collapse
Affiliation(s)
- Helena Caria Martins
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057, Zurich, Switzerland
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, Swiss Federal Institute of Technology ETH, 8057, Zurich, Switzerland.
| |
Collapse
|
23
|
A genome-wide microRNA screen identifies the microRNA-183/96/182 cluster as a modulator of circadian rhythms. Proc Natl Acad Sci U S A 2021; 118:2020454118. [PMID: 33443164 DOI: 10.1073/pnas.2020454118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The regulatory mechanisms of circadian rhythms have been studied primarily at the level of the transcription-translation feedback loops of protein-coding genes. Regulatory modules involving noncoding RNAs are less thoroughly understood. In particular, emerging evidence has revealed the important role of microRNAs (miRNAs) in maintaining the robustness of the circadian system. To identify miRNAs that have the potential to modulate circadian rhythms, we conducted a genome-wide miRNA screen using U2OS luciferase reporter cells. Among 989 miRNAs in the library, 120 changed the period length in a dose-dependent manner. We further validated the circadian regulatory function of an miRNA cluster, miR-183/96/182, both in vitro and in vivo. We found that all three members of this miRNA cluster can modulate circadian rhythms. Particularly, miR-96 directly targeted a core circadian clock gene, PER2. The knockout of the miR-183/96/182 cluster in mice showed tissue-specific effects on circadian parameters and altered circadian rhythms at the behavioral level. This study identified a large number of miRNAs, including the miR-183/96/182 cluster, as circadian modulators. We provide a resource for further understanding the role of miRNAs in the circadian network and highlight the importance of miRNAs as a genome-wide layer of circadian clock regulation.
Collapse
|
24
|
Bin Heyat MB, Akhtar F, Ansari MA, Khan A, Alkahtani F, Khan H, Lai D. Progress in Detection of Insomnia Sleep Disorder: A Comprehensive Review. Curr Drug Targets 2021; 22:672-684. [PMID: 33109045 DOI: 10.2174/1389450121666201027125828] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Lack of adequate sleep is a major source of many harmful diseases related to heart, brain, psychological changes, high blood pressure, diabetes, weight gain, etc. 40 to 50% of the world's population is suffering from poor or inadequate sleep. Insomnia is a sleep disorder in which an individual complaint of difficulties in starting/continuing sleep at least four weeks regularly. It is estimated that 70% of heart diseases are generated during insomnia sleep disorder. The main objective of this study is to determine all work conducted on insomnia detection and to make a database. We used two procedures including network visualization techniques on two databases including PubMed and Web of Science to complete this study. We found 169 and 36 previous publications of insomnia detection in the PubMed and the Web of Science databases, respectively. We analyzed 10 datasets, 2 databases, 21 genes, and 23 publications with 30105 subjects of insomnia detection. This work has revealed the future way and gap so far directed on insomnia detection and has also tried to provide objectives for the future work to be proficient in a scientific and significant manner.
Collapse
Affiliation(s)
- Md Belal Bin Heyat
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Faijan Akhtar
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - M A Ansari
- Department of Electrical Engineering, Gautam Buddha Technical University, Gr. Noida, UP 201312, India
| | - Asif Khan
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China
| | - Fahed Alkahtani
- Department of Electrical Engineering, Najran University, Najran 1988, Saudi Arabia
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, KPK 23200, Pakistan
| | - Dakun Lai
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| |
Collapse
|
25
|
Sun L, Bai D, Lin M, Eerdenidalai, Zhang L, Wang F, Jin S. miR-96 Inhibits SV2C to Promote Depression-Like Behavior and Memory Disorders in Mice. Front Behav Neurosci 2021; 14:575345. [PMID: 33815074 PMCID: PMC8017146 DOI: 10.3389/fnbeh.2020.575345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
Accumulating evidence continues to emphasize the role of microRNAs as significant contributors to depression-like behavior and memory disorders. The current study aimed to investigate the mechanism by which miR-96 influences depression-like behavior and memory deficit in mice. A depression-like behavior and memory disorder mouse model was initially established by means of intraperitoneal injection with lipopolysaccharide. Memory deficits in the mice were evaluated using the Novel Object Recognition Test and Morris water maze experiments, whereas the Sucrose Preference Experiment and forced swimming experiments were performed to identify depression-like behavior in mice. The levels of tumor necrosis factor-α, malondialdehyde, superoxide dismutase, glutathione, and the monoamine transmitters 5-hydroxytryptamine and dopamine were subsequently detected in the serum. Reverse transcription-quantitative polymerase chain reaction and Western blot analysis evaluated the expression of miR-96 and SV2C expression in the CA1 hippocampal region of the mice. Finally, the relationship of miR-96 and SV2C was verified by dual-luciferase reporter gene assay. Our data indicated that the expression of miR-96 was increased, whereas that of SV2C was decreased in the CA1 region of mice exhibiting depression-like behavior and memory impairment. When miR-96 was downregulated or SV2C was overexpressed via intra-cerebroventricular injection with a miR-96 antagonist (miR-96 antagomir) or overexpression of SV2C vector, the Novel Object Recognition Test and sucrose preference index were increased, whereas the escape latency, the number of water maze platform crossings, and the immobility time of the mice were decreased. The serum levels of tumor necrosis factor-α, interleukin-1β, and malondialdehyde in the mouse CA1 region of mice were reduced, whereas the levels of superoxide dismutase and glutathione were elevated after the downregulation of miR-96 or overexpression of SV2C. Collectively, our study demonstrates that miR-96 negatively regulates the expression of SV2C, which consequently leads to depression-like behavior and memory impairment in mice. Our findings highlight the potential of miR-96-targeted therapeutics.
Collapse
Affiliation(s)
- Lidong Sun
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Donghao Bai
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Maoguang Lin
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Eerdenidalai
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Li Zhang
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Fengzhen Wang
- Outpatient Department, Ordos Fourth People's Hospital, Ordos, China
| | - Shangwu Jin
- Clinical Laboratory, Ordos Fourth People's Hospital, Ordos, China
| |
Collapse
|
26
|
Whole blood transcriptome analysis using RNA sequencing in individuals with insomnia disorder and good sleepers: a pilot study. Sleep Med 2021; 80:1-8. [PMID: 33530007 DOI: 10.1016/j.sleep.2021.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Insomnia is a highly prevalent condition that is associated with negative health outcomes, yet little is known about the underlying molecular mechanisms. METHOD RNA sequencing was conducted using blood samples from 15 individuals with primary insomnia and 15 age- and gender-matched good sleeper controls. The RNA library was sequenced with 150 base pair paired-ends on the Illumina NovaSeq-6000 platform. Alignment was performed using human reference genome hg38. Differential gene expression analysis was performed using DESeq2 following alignment, using log fold change ±0.50, and had a false discovery rate p-value <0.05. Pathway analysis was performed using Ingenuity Pathway Analysis. RESULTS We found 288 differentially expressed genes in insomnia patients when compared to controls. Upregulated genes included LINC02224 (Long Intergenic Non-Protein Coding RNA 2224), DUX4L9 (Double Homeobox 4 Like 9), and TUSC3 (Tumor Suppressor Candidate 3) and down regulated genes included CTXN2 (Cortexin 2), CSMD1 (CUB And Sushi Multiple Domains 1), and SLC12A1 (Solute Carrier Family 12 Member 1). Ingenuity® Pathway Analysis (IPA) revealed 3 associated networks (score>40) with genes and hubs related to inflammation (nuclear factor-kB), oxidative stress (Mitochondrial complex 1) and ubiquitination. CONCLUSION Differentially expressed genes in this analysis are functionally associated with inflammation and immune response, mitochondrial and metabolic processes. Further research into the transcriptomic changes in insomnia is needed to understand related pathways to the disorder and provide new avenues for diagnostics and therapeutics.
Collapse
|
27
|
Grinkevich LN. The role of microRNAs in learning and long-term memory. Vavilovskii Zhurnal Genet Selektsii 2020; 24:885-896. [PMID: 35088002 PMCID: PMC8763713 DOI: 10.18699/vj20.687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/11/2020] [Accepted: 10/15/2020] [Indexed: 01/10/2023] Open
Abstract
The mechanisms of long-term memory formation and ways to improve it (in the case of its impairment) remain an extremely difficult problem yet to be solved. Over the recent years, much attention has been
paid to microRNAs in this regard. MicroRNAs are unique endogenous non-coding RNAs about 22 nucleotides in
length; each can regulate translation of hundreds of messenger RNA targets, thereby controlling entire gene networks. MicroRNAs are widely represented in the central nervous system. A large number of studies are currently
being conducted to investigate the role of microRNAs in the brain functioning. A number of microRNAs have
been shown to be involved in the process of synaptic plasticity, as well as in the long-term memory formation.
Disruption of microRNA biogenesis leads to significant cognitive dysfunctions. Moreover, impaired microRNA
biogenesis is one of the causes of the pathogenesis of mental disorders, neurodegenerative illnesses and senile
dementia, which are often accompanied by deterioration in the learning ability and by memory impairment.
Optimistic predictions are made that microRNAs can be used as targets for therapeutic treatment and for diagnosing the above pathologies. The importance of applications related to microRNAs significantly raises interest
in studying their functions in the brain. Thus, this review is focused on the role of microRNAs in cognitive processes. It describes microRNA biogenesis and the role of miRNAs in the regulation of gene expression, as well
as the latest achievements in studying the functional role of microRNAs in learning and in long-term memory
formation, depending on the activation or inhibition of their expression. The review presents summarized data
on the effect of impaired microRNA biogenesis on long-term memory formation, including those associated with
sleep deprivation. In addition, analysis is provided of the current literature related to the prospects of improving
cognitive processes by influencing microRNA biogenesis via the use of CRISPR/Cas9 technologies and active
mental and physical exercises.
Collapse
Affiliation(s)
- L. N. Grinkevich
- Pavlov Institute of Physiology of the Russian Academy of Sciences
| |
Collapse
|
28
|
Xu S, Coku A, Muraleedharan CK, Harajli A, Mishulin E, Dahabra C, Choi J, Garcia WJ, Webb K, Birch D, Goetz K, Li W. Mutation Screening in the miR-183/96/182 Cluster in Patients With Inherited Retinal Dystrophy. Front Cell Dev Biol 2020; 8:619641. [PMID: 33425925 PMCID: PMC7785829 DOI: 10.3389/fcell.2020.619641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal dystrophy (IRD) is a heterogenous blinding eye disease and affects more than 200,000 Americans and millions worldwide. By far, 270 protein-coding genes have been identified to cause IRD when defective. However, only one microRNA (miRNA), miR-204, has been reported to be responsible for IRD when a point-mutation occurs in its seed sequence. Previously, we identified that a conserved, polycistronic, paralogous miRNA cluster, the miR-183/96/182 cluster, is highly specifically expressed in all photoreceptors and other sensory organs; inactivation of this cluster in mice resulted in syndromic IRD with multi-sensory defects. We hypothesized that mutations in the miR-183/96/182 cluster in human cause IRD. To test this hypothesis, we perform mutation screening in the pre-miR-183, -96, -182 in >1000 peripheral blood DNA samples of patients with various forms of IRD. We identified six sequence variants, three in pre-miR-182 and three in pre-miR-96. These variants are in the pre-miRNA-182 or -96, but not in the mature miRNAs, and are unlikely to be the cause of the IRD in these patients. In spite of this, the nature and location of these sequence variants in the pre-miRNAs suggest that some may have impact on the biogenesis and maturation of miR-182 or miR-96 and potential roles in the susceptibility to diseases. Although reporting on negative results so far, our study established a system for mutation screening in the miR-183/96/182 cluster in human for a continued effort to unravel and provides deeper insight into the potential roles of miR-183/96/182 cluster in human diseases.
Collapse
Affiliation(s)
- Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ardian Coku
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Chithra K. Muraleedharan
- Department of Ophthalmology, Visual and Anatomical Sciences, School of Medicine, Wayne State University, Detroit, MI, United States
| | - Ali Harajli
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Eric Mishulin
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, United States
| | - Chafic Dahabra
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Joanne Choi
- Class of 2020, School of Medicine, Wayne State University, Detroit, MI, United States
| | - William J. Garcia
- College of Natural Science, Michigan State University, East Lansing, MI, United States
| | - Kaylie Webb
- Retina Foundation of the Southwest, Dallas, TX, United States
| | - David Birch
- Retina Foundation of the Southwest, Dallas, TX, United States
| | - Kerry Goetz
- National Eye Institute, National Institutes of Health, Bethesda, MD, United States
| | - Weifeng Li
- Peking Union Medical College, Beijing, China
| |
Collapse
|
29
|
Kinoshita C, Okamoto Y, Aoyama K, Nakaki T. MicroRNA: A Key Player for the Interplay of Circadian Rhythm Abnormalities, Sleep Disorders and Neurodegenerative Diseases. Clocks Sleep 2020; 2:282-307. [PMID: 33089205 PMCID: PMC7573810 DOI: 10.3390/clockssleep2030022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Circadian rhythms are endogenous 24-h oscillators that regulate the sleep/wake cycles and the timing of biological systems to optimize physiology and behavior for the environmental day/night cycles. The systems are basically generated by transcription-translation feedback loops combined with post-transcriptional and post-translational modification. Recently, evidence is emerging that additional non-coding RNA-based mechanisms are also required to maintain proper clock function. MicroRNA is an especially important factor that plays critical roles in regulating circadian rhythm as well as many other physiological functions. Circadian misalignment not only disturbs the sleep/wake cycle and rhythmic physiological activity but also contributes to the development of various diseases, such as sleep disorders and neurodegenerative diseases. The patient with neurodegenerative diseases often experiences profound disruptions in their circadian rhythms and/or sleep/wake cycles. In addition, a growing body of recent evidence implicates sleep disorders as an early symptom of neurodegenerative diseases, and also suggests that abnormalities in the circadian system lead to the onset and expression of neurodegenerative diseases. The genetic mutations which cause the pathogenesis of familial neurodegenerative diseases have been well studied; however, with the exception of Huntington's disease, the majority of neurodegenerative diseases are sporadic. Interestingly, the dysfunction of microRNA is increasingly recognized as a cause of sporadic neurodegenerative diseases through the deregulated genes related to the pathogenesis of neurodegenerative disease, some of which are the causative genes of familial neurodegenerative diseases. Here we review the interplay of circadian rhythm disruption, sleep disorders and neurodegenerative disease, and its relation to microRNA, a key regulator of cellular processes.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan; (C.K.); (Y.O.); (K.A.)
| | - Yayoi Okamoto
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan; (C.K.); (Y.O.); (K.A.)
- Teikyo University Support Center for Women Physicians and Researchers, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan; (C.K.); (Y.O.); (K.A.)
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan; (C.K.); (Y.O.); (K.A.)
- Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi, Tokyo 173-8605, Japan
| |
Collapse
|
30
|
Vargas I, Perlis ML. Insomnia and depression: clinical associations and possible mechanistic links. Curr Opin Psychol 2020; 34:95-99. [DOI: 10.1016/j.copsyc.2019.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/06/2019] [Accepted: 11/19/2019] [Indexed: 02/08/2023]
|
31
|
Xia X, Ding M, Xuan JF, Xing JX, Pang H, Yao J, Wu X, Wang BJ. Effects of HTR1B 3' region polymorphisms and functional regions on gene expression regulation. BMC Genet 2020; 21:79. [PMID: 32689951 PMCID: PMC7372893 DOI: 10.1186/s12863-020-00886-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/12/2020] [Indexed: 12/21/2022] Open
Abstract
Background The HTR1B gene encodes the 5-hydroxytryptamine (5-HT1B) receptor, which is involved in a variety of brain activities and mental disorders. The regulatory effects of non-coding regions on genomic DNA are one of many reasons for the cause of genetic-related diseases. Post-transcriptional regulation that depends on the function of 3′ regulatory regions plays a particularly important role. This study investigated the effects, on reporter gene expression, of several haplotypes of the HTR1B gene (rs6297, rs3827804, rs140792648, rs9361234, rs76194807, rs58138557, and rs13212041) and truncated fragments in order to analyze the function of the 3′ region of HTR1B. Results We found that the haplotype, A-G-Del-C-T-Ins-A, enhanced the expression level compared to the main haplotype; A-G-Del-C-G-Ins-A; G-G-Del-C-G-Ins-G decreased the expression level. Two alleles, rs76194807T and rs6297G, exhibited different relative luciferase intensities compared to their counterparts at each locus. We also found that + 2440 ~ + 2769 bp and + 1953 ~ + 2311 bp regions both had negative effects on gene expression. Conclusions The 3′ region of HTR1B has a regulatory effect on gene expression, which is likely closely associated with the interpretation of HTR1B-related disorders. In addition, the HTR1B 3′ region includes several effector binding sites that induce an inhibitory effect on gene expression.
Collapse
Affiliation(s)
- Xi Xia
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jin-Feng Xuan
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jia-Xin Xing
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Hao Pang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China
| | - Bao-Jie Wang
- School of Forensic Medicine, China Medical University, No. 77 Puhe Road, Shenbei New District, Shenyang, 110122, China.
| |
Collapse
|
32
|
Li D, Huang W, Yang F, Li B, Cai S. Study of the modulatory mechanism of the miR-182-Clock axis in circadian rhythm disturbance after hypoxic–ischemic brain damage. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220929159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hypoxic–ischemic encephalopathy (HIE) in neonates can lead to severe chronic neurological deficit, including mental retardation, epilepsy, and sleep–wake cycle (SWC) disorder. Among these defects, little is known about the molecular mechanism of circadian rhythm disorder after HIE. Therefore, further study of sleep problems and its mechanism in HIE children will provide new ideas for clinical treatment of HIE children. For pediatric patients with cerebral ischemia, somnipathy often occurs due to visual and airway abnormalities. From May 2010 to August 2013, 128 newborns with history of HIE were followed up. Meanwhile, 88 normal full-term newborns in the same period were taken as the control group. The clinical data of the patients were collected and the sleep status was assessed by questionnaire. To establish the hypoxic–ischemic brain injury model of neonatal rats and analyze the mechanism of mir-182 in the circadian rhythm disorder caused by pineal function injury. The core clock genes during the regulation of the circadian clock were explored by bioinformatics methods. Patients’ sleep quality was affected by the circadian rhythm and respiratory problems; the pineal gland can regulate the core clock genes in the circadian clock during regulation. miR-182 was highly expressed in the pineal gland after hypoxic–ischemic brain damage (HIBD). Children with mild and moderate HIE showed significant sleep disorders in varying degrees, which provided a clinical basis for improving the long-term prognosis of children with HIE through targeted treatment of sleep disorders. MiR-182 is highly expressed in the pineal gland and is related to the expression of CLOCK protein. CLOCK gene is the target gene of miR-182, which provides a new target for the treatment of rhythm disorder related to the damage of pineal function caused by HIBD.
Collapse
Affiliation(s)
- Dezhan Li
- Department of Anesthesiology, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, P.R. China
| | - Wei Huang
- Department of Neurology, Taihe Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Fang Yang
- Department of Clinical Oncology, Taihe Hospital, Hubei University of Medicine, Shiyan, P.R. China
| | - Bin Li
- Department of Pediatric Surgery, Jingzhou Central Hospital, The Second Clinical Medical College, Yangtze University, Jingzhou, P.R. China
| | - Shanshan Cai
- Department of Cardiovascular, Wuhan Children’s Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, P.R. China
| |
Collapse
|
33
|
Abstract
The risk for major depression is both genetically and environmentally determined. It has been proposed that epigenetic mechanisms could mediate the lasting increases in depression risk following exposure to adverse life events and provide a mechanistic framework within which genetic and environmental factors can be integrated. Epigenetics refers to processes affecting gene expression and translation that do not involve changes in the DNA sequence and include DNA methylation (DNAm) and microRNAs (miRNAs) as well as histone modifications. Here we review evidence for a role of epigenetics in the pathogenesis of depression from studies investigating DNAm, miRNAs, and histone modifications using different tissues and various experimental designs. From these studies, a model emerges where underlying genetic and environmental risk factors, and interactions between the two, could drive aberrant epigenetic mechanisms targeting stress response pathways, neuronal plasticity, and other behaviorally relevant pathways that have been implicated in major depression.
.
Collapse
Affiliation(s)
- Signe Penner-Goeke
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Elisabeth B Binder
- Dept of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
34
|
Moschos MM, Dettoraki M, Karekla A, Lamprinakis I, Damaskos C, Gouliopoulos N, Tibilis M, Gazouli M. Polymorphism analysis of miR182 and CDKN2B genes in Greek patients with primary open angle glaucoma. PLoS One 2020; 15:e0233692. [PMID: 32492046 PMCID: PMC7269255 DOI: 10.1371/journal.pone.0233692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022] Open
Abstract
Glaucoma is a progressive optic neuropathy resulting from retinal ganglion cells death; it represents one of the leading causes of irreversible blindness worldwide. Although, primary open angle glaucoma (POAG) is the most common type of the disease, the pathogenesis of POAG and the genetic factors contributing to disease development remain poorly understood. The aim of this study was to investigate whether the polymorphisms rs76481776 in miR182 gene and rs3217992 in cyclin-dependent kinase inhibitor-2B (CDKN2B) gene are risk factors for POAG in a series of patients of Greek origin. A case-control study was conducted including 120 patients with POAG and 113 unaffected healthy controls of Greek origin, surveyed for polymorphisms with potential correlation to POAG. DNA from each individual was tested for the miR182 rs76481776 and CDKN2B rs3217992 polymorphisms. Regarding the miR182 rs76481776 polymorphism, the T allele occurred with significantly higher frequency in POAG patients compared to controls (OR: 2.62, 95% CI: 1.56-4.39; p = 0.0002). The CDKN2B rs3217992 A allele frequency was found significantly increased in POAG patients compared to healthy individuals (OR: 1.72, 95% CI: 1.18-2.49; p = 0.005). Therefore, both rs76481776 polymorphism in miR182 gene and rs3217992 polymorphism in CDKN2B gene seem to be associated with the development of POAG in a Greek population. The carriers of the T allele of rs76481776 in miR182 and the carriers of the A allele of rs3217992 in CDKN2B have an increased risk of developing POAG.
Collapse
Affiliation(s)
- Marilita M. Moschos
- 1st Department of Ophthalmology, "G. Gennimatas" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- * E-mail:
| | - Maria Dettoraki
- 1st Department of Ophthalmology, "G. Gennimatas" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Aggela Karekla
- Department of Ophthalmology, “Evangelismos” General Hospital, Athens, Greece
| | - Ioannis Lamprinakis
- Department of Ophthalmology, “Evangelismos” General Hospital, Athens, Greece
| | - Christos Damaskos
- Second Department of Propedeutic Surgery, “Laiko” General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Gouliopoulos
- 1st Department of Ophthalmology, "G. Gennimatas" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Marios Tibilis
- 1st Department of Ophthalmology, "G. Gennimatas" General Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Gazouli
- Department of Basic Medical Sciences, Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
35
|
Abstract
Background: Sleep disturbances are a common symptom of major depressive disorder (MDD). Sleep is highly regulated by circadian rhythms, controlled by circadian genes, that act through a series of feedback loops to regulate the sleep-wake cycle.Objectives: To the best of our knowledge, a systematic review regarding the core circadian genes and their role in MDD has not been published recently. Also, a review of these genes and their role in sleep disturbances in depressed individuals appears to have never been done. We decided to integrate both concepts into one comprehensive review.Method: The review was done using the appropriate search terms in the following search engines: OVID Medline, Embase, PsycINFO and Pubmed.Results: Based on the data reviewed, none of the circadian genes appear to be associated with MDD, but some are more promising than others. These genes are: CRY1, CRY2, PER2 and NPAS2. When investigating the role of circadian genes in sleep disturbances among individuals with MDD, the most promising candidate gene is TIMELESS. Although the results in this area are limited.Conclusion: Given the promising leads from this review, future studies should investigate circadian genes in sleep disturbances among the depressed population.
Collapse
Affiliation(s)
- Lindsay Melhuish Beaupre
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Centre for Addiction & Mental Health, Neurogenetics Section, Toronto, Canada
| | - Gregory M Brown
- Centre for Addiction & Mental Health, Neurogenetics Section, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| | - James L Kennedy
- Institute of Medical Sciences, University of Toronto, Toronto, Canada.,Centre for Addiction & Mental Health, Neurogenetics Section, Toronto, Canada.,Department of Psychiatry, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Yang FW, Wang H, Wang C, Chi GN. Upregulation of acetylcholinesterase caused by downregulation of microRNA-132 is responsible for the development of dementia after ischemic stroke. J Cell Biochem 2019; 121:135-141. [PMID: 31578769 DOI: 10.1002/jcb.28985] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/12/2019] [Indexed: 11/11/2022]
Abstract
MicroRNA-132 (miR-132) has been shown to participate in many diseases. This study aimed to understand the correlation between the level of miR-132 and the severity of dementia post-ischemic stroke. An online tool (www.mirdb.org) was used to find the miR-132 binding site in acetylcholinesterase (ACHE) 3'-untranslated region (UTR), followed by a luciferase reporter assay to validate ACHE as a miR-132 target. A similar relationship between miR-132 and ACHE was also established in cerebrospinal fluid samples collected from human subjects. A negative correlation was established between ACHE and miR-132 by measuring the relative luciferase activity. Meanwhile, Western blot analysis and real-time polymerase chain reaction were also conducted to compare the levels of ACHE messenger RNA and protein between two groups (dementia positive, n = 26 and dementia negative, n = 26) or among cells treated with miR-132 mimics, ACHE small interfering RNA, and miR-132 inhibitors. As shown in the results, miR-132 can reduce the expression of ACHE. Further experiments were also carried out to study the effect of miR-132 and ACHE on cell viability and apoptosis, and the results demonstrated that miR-132 enhanced cell viability while suppressing apoptosis. In addition, ACHE reduced cell viability while promoting apoptosis. miR-132 targeted ACHE and suppressed its expression. Additionally, miR-132 and ACHE have been shown to affect the cell viability and apoptosis in the central nervous system.
Collapse
Affiliation(s)
- Fu-Wei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| | - Hao Wang
- Department of Pediatric Hematology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Chen Wang
- Department of Neurosurgery, Weifang People's Hospital, Weifang, Shandong, China
| | - Guo-Nan Chi
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
37
|
Gruzdev SK, Yakovlev AA, Druzhkova TA, Guekht AB, Gulyaeva NV. The Missing Link: How Exosomes and miRNAs can Help in Bridging Psychiatry and Molecular Biology in the Context of Depression, Bipolar Disorder and Schizophrenia. Cell Mol Neurobiol 2019; 39:729-750. [PMID: 31089834 DOI: 10.1007/s10571-019-00684-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/03/2019] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) only recently have been recognized as promising molecules for both fundamental and clinical neuroscience. We provide a literature review of miRNA biomarker studies in three most prominent psychiatric disorders (depression, bipolar disorder and schizophrenia) with the particular focus on depression due to its social and healthcare importance. Our search resulted in 191 unique miRNAs across 35 human studies measuring miRNA levels in blood, serum or plasma. 30 miRNAs replicated in more than one study. Most miRNAs targeted neuroplasticity and neurodevelopment pathways. Various limitations do not allow us to make firm conclusions on clinical potential of studied miRNAs. Based on our results we discuss the rationale for future research investigations of exosomal mechanisms to overcome methodological caveats both in studying etiology and pathogenesis, and providing an objective back-up for clinical decisions.
Collapse
Affiliation(s)
- S K Gruzdev
- Institute of Medicine, RUDN University, Miklukho-Maklaya Str. 6, Moscow, Russia, 117198.
| | - A A Yakovlev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5A, Moscow, Russia, 117485
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| | - T A Druzhkova
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| | - A B Guekht
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
- Russian National Research Medical University, Ostrovitianov Str. 1, Moscow, Russia, 117997
| | - N V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova Str., 5A, Moscow, Russia, 117485
- Moscow Research & Clinical Center for Neuropsychiatry, Moscow Healthcare Department, Donskaya Str., 43, Moscow, Russia, 115419
| |
Collapse
|
38
|
Banks SA, Pierce ML, Soukup GA. Sensational MicroRNAs: Neurosensory Roles of the MicroRNA-183 Family. Mol Neurobiol 2019; 57:358-371. [DOI: 10.1007/s12035-019-01717-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/19/2019] [Indexed: 12/20/2022]
|
39
|
Ma K, Zhang H, Wei G, Dong Z, Zhao H, Han X, Song X, Zhang H, Zong X, Baloch Z, Wang S. Identification of key genes, pathways, and miRNA/mRNA regulatory networks of CUMS-induced depression in nucleus accumbens by integrated bioinformatics analysis. Neuropsychiatr Dis Treat 2019; 15:685-700. [PMID: 30936699 PMCID: PMC6421879 DOI: 10.2147/ndt.s200264] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Major depressive disorder (MDD) is a recurrent, devastating mental disorder, which affects >350 million people worldwide, and exerts substantial public health and financial costs to society. Thus, there is a significant need to discover innovative therapeutics to treat depression efficiently. Stress-induced dysfunction in the subtype of neuronal cells and the change of synaptic plasticity and structural plasticity of nucleus accumbens (NAc) are implicated in depression symptomology. However, the molecular and epigenetic mechanisms and stresses to the NAc pathological changes in depression remain elusive. MATERIALS AND METHODS In this study, treatment group mice were treated continually with the chronic unpredictable mild stress (CUMS) until expression of depression-like behaviors were found. Depression was confirmed with sucrose preference, novelty-suppressed feeding, forced swimming, and tail suspension tests. We applied high-throughput RNA sequencing to assess microRNA expression and transcriptional profiles in the NAc tissue from depression-like behaviors mice and control mice. The regulatory network of miRNAs/mRNAs was constructed based on the high-throughput RNA sequence and bioinformatics software predictions. RESULTS A total of 17 miRNAs and 10 mRNAs were significantly upregulated in the NAc of CUMS-induced mice with depression-like behaviors, and 12 miRNAs and 29 mRNAs were downregulated. A series of bioinformatics analyses showed that these altered miRNAs predicted target mRNA and differentially expressed mRNAs were significantly enriched in the MAPK signaling pathway, GABAergic synapse, dopaminergic synapse, cytokine-cytokine receptor interaction, axon guidance, regulation of autophagy, and so on. Furthermore, dual luciferase report assay and qRT-PCR results validated the miRNA/mRNA regulatory network. CONCLUSION The deteriorations of GABAergic synapses, dopaminergic synapses, neurotransmitter synthesis, as well as autophagy-associated apoptotic pathway are associated with the molecular pathological mechanism of CUMS-induced depression.
Collapse
Affiliation(s)
- Ke Ma
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Hongxiu Zhang
- Institute of Virology, Jinan Center for Disease Control and Prevention, Jinan 250021, People's Republic of China
| | - Guohui Wei
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Zhenfei Dong
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Haijun Zhao
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Xiaochun Han
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Xiaobin Song
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Huiling Zhang
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Xin Zong
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| | - Zulqarnain Baloch
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China,
| | - Shijun Wang
- Shandong Co-Innovation Center of Classic TCM formula, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, People's Republic of China,
| |
Collapse
|
40
|
CLOCK Polymorphisms in Attention-Deficit/Hyperactivity Disorder (ADHD): Further Evidence Linking Sleep and Circadian Disturbances and ADHD. Genes (Basel) 2019; 10:genes10020088. [PMID: 30696097 PMCID: PMC6410065 DOI: 10.3390/genes10020088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/20/2019] [Accepted: 01/22/2019] [Indexed: 01/14/2023] Open
Abstract
Circadian and sleep disorders, short sleep duration, and evening chronotype are often present in attention-deficit/hyperactivity disorder (ADHD). CLOCK, considered the master gene in the circadian rhythm, has been explored by few studies. Understanding the relationship between ADHD and CLOCK may provide additional information to understand the correlation between ADHD and sleep problems. In this study, we aimed to explore the association between ADHD and CLOCK, using several genetic markers to comprehensively cover the gene extension. A total of 259 ADHD children and their parents from a Brazilian clinical sample were genotyped for eight single nucleotide polymorphisms (SNPs) in the CLOCK locus. We tested the individual markers and the haplotype effects using binary logistic regression. Binary logistic and linear regressions considering ADHD symptoms among ADHD cases were conducted as secondary analysis. As main result, the analysis showed a risk effect of the G-A-T-G-G-C-G-A (rs534654, rs1801260, rs6855837, rs34897046, rs11931061, rs3817444, rs4864548, rs726967) haplotype on ADHD. A suggestive association between ADHD and rs534654 was observed. The results suggest that the genetic susceptibility to circadian rhythm attributed to the CLOCK gene may play an important role on ADHD.
Collapse
|
41
|
Biological Rhythms Advance in Depressive Disorder. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1180:117-133. [DOI: 10.1007/978-981-32-9271-0_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Lian N, Niu Q, Lei Y, Li X, Li Y, Song X. MiR-221 is involved in depression by regulating Wnt2/CREB/BDNF axis in hippocampal neurons. Cell Cycle 2018; 17:2745-2755. [PMID: 30589396 DOI: 10.1080/15384101.2018.1556060] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
OBJECTIVE The aim of this study was to investigate the mechanism of miR-221 in depression. METHODS The molecules expressions were measured by qRT-PCR and western blot. The sucrose preference test (SPT), forced swimming test (FST) and tail suspension test (TST) were used to detect depressive-like symptoms. MTT assay and flow cytometric was used to measure the proliferation and apoptosis of hippocampal neuronal. RESULTS MiR-221 expression in the cerebrospinal fluid and serum of major depressive disorder patients and the hippocampus of chronic unpredictable mild stress (CUMS) mice were increased, while the expression of Wnt2, p-CREB and BDNF were decreased. Additionally, silence of miR-221 increased sucrose preference of CUMS mice and shortened the immobility time of CUMS mice in SPT and FST. MiR-221 could targeted regulate Wnt2, and knockdown of Wnt2 reversed the effect of miR-221 inhibitor on the proliferation and apoptosis of hippocampal neurons and countered the promoting effect of miR-221 inhibitor on the expression of Wnt2, p-CREB and BDNF. CONCLUSION MiR-221 could promote the development of depression by regulating Wnt2/CREB/BDNF axis.
Collapse
Affiliation(s)
- Nan Lian
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Qihui Niu
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Yang Lei
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Xue Li
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Youhui Li
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| | - Xueqin Song
- a Department of Psychiatry , The First Affiliated Hospital of Zhengzhou University , Zhengzhou Henan , China.,b Biological Psychiatry International Joint Laboratory of Henan , Zhengzhou University , Zhengzhou Henan , China.,c Henan Psychiatric Transformation Research Key Laboratory , Zhengzhou University , Zhengzhou Henan , China
| |
Collapse
|
43
|
Nirvani M, Khuu C, Tulek A, Utheim TP, Sand LP, Snead ML, Sehic A. Transcriptomic analysis of MicroRNA expression in enamel-producing cells. Gene 2018; 688:193-203. [PMID: 30529249 DOI: 10.1016/j.gene.2018.11.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/29/2018] [Accepted: 11/23/2018] [Indexed: 01/23/2023]
Abstract
There is little evidence for the involvement of microRNAs (miRNAs) in the regulation of circadian rhythms during enamel development. Few studies have used ameloblast-like cell line LS8 to study the circadian rhythm of gene activities related to enamel formation. However, the transcriptomic analysis of miRNA expression in LS8 cells has not been established yet. In this study, we analyze the oscillations of miRNAs in LS8 cells during one-day cycle of 24 h by next generation deep sequencing. After removal of low quality reads, contaminants, and ligation products, we obtained a high number of clean reads in all 12 samples from four different time points. The length distribution analysis indicated that 77.5% of clean reads were between 21 and 24 nucleotides (nt), of which 35.81% reads exhibited a length of 22 nt. In total, we identified 1471 miRNAs in LS8 cells throughout all four time-points. 1330 (90.41%) miRNAs were identified as known miRNA sequences, whereas 139 (9.59%) were unannotated and classified as novel miRNA sequences. The differential expression analysis showed that 191 known miRNAs exhibited significantly (P-value < 0.01) different levels of expression across three time-points investigated (T6, T12, and T18) compared to T0. Verification of sequencing data using qRT-PCR on six selected miRNAs suggested good correlation between the two methods. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed significant enrichment of predicted target genes of differentially expressed miRNAs. The present study shows that miRNAs are highly expressed in LS8 cells and that a significant number of them oscillate during one-day cycle of 24 h. This is the first transcriptomic analysis of miRNAs in ameloblast-like cell line LS8 that can be potentially used to further characterize the epigenetic regulation of miRNAs during enamel formation.
Collapse
Affiliation(s)
- Minou Nirvani
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway.
| | - Cuong Khuu
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Amela Tulek
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Tor Paaske Utheim
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway; Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Maxillofacial Surgery, Oslo University Hospital, Oslo, Norway
| | - Lars Peter Sand
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Malcolm L Snead
- Center for Craniofacial Molecular Biology, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Amer Sehic
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway; Department of Maxillofacial Surgery, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Regulation of Circadian Behavior by Astroglial MicroRNAs in Drosophila. Genetics 2018; 208:1195-1207. [PMID: 29487148 DOI: 10.1534/genetics.117.300342] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
We describe a genome-wide microRNA (miRNA)-based screen to identify brain glial cell functions required for circadian behavior. To identify glial miRNAs that regulate circadian rhythmicity, we employed a collection of "miR-sponges" to inhibit miRNA function in a glia-specific manner. Our initial screen identified 20 glial miRNAs that regulate circadian behavior. We studied two miRNAs, miR-263b and miR-274, in detail and found that both function in adult astrocytes to regulate behavior. Astrocyte-specific inhibition of miR-263b or miR-274 in adults acutely impairs circadian locomotor activity rhythms with no effect on glial or clock neuronal cell viability. To identify potential RNA targets of miR-263b and miR-274, we screened 35 predicted miRNA targets, employing RNA interference-based approaches. Glial knockdown of two putative miR-274 targets, CG4328 and MESK2, resulted in significantly decreased rhythmicity. Homology of the miR-274 targets to mammalian counterparts suggests mechanisms that might be relevant for the glial regulation of rhythmicity.
Collapse
|
45
|
Xi KX, Zhang XW, Yu XY, Wang WD, Xi KX, Chen YQ, Wen YS, Zhang LJ. The role of plasma miRNAs in the diagnosis of pulmonary nodules. J Thorac Dis 2018; 10:4032-4041. [PMID: 30174846 DOI: 10.21037/jtd.2018.06.106] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background In this study, we aimed to assess the clinical utility of detection of plasma microRNAs (miRNAs) in the diagnosis of pulmonary nodules. Methods Fifty-seven patients with pulmonary nodules who had undergone surgery were enrolled in our study from July 2016 to July 2017 at Sun Yat-sen University Cancer Center. We measured the expression levels of 12 miRNAs (miRNA-17, -146a, -200b, -182, -155, -221, -205, -126, -7, -21, -145, and miRNA-210) in plasma samples of 57 patients, including 15 benign pulmonary nodules patients and 42 malignant pulmonary nodules patients. The levels of these miRNAs were detected by Real-time quantitative polymerase chain reaction (RT-PCR). The receiver operating characteristic (ROC) curve was used to assess the diagnostic performance of plasma miRNAs for non-small cell lung cancer (NSCLC). Results The expression levels of plasma miRNA-17, -146a, -200b, -182, -155, -221, -205, -126, -7, -21, -145, and miRNA-210 are not associated with gender, age, pTNM stage, differentiation grade. The levels of miRNA-17, -146a, -200b, -182, -221, -205, -7, -21, -145, and miRNA-210 in NSCLC patients are significantly higher than those in benign pulmonary nodules patients (P<0.05). However, there are no significant differences for the expression levels of miRNA-155 and miRNA-126. For diagnosing NSCLC, the sensitivity and specificity was 66.7% and 80.0% for miRNA-17, 54.8% and 86.7% for miRNA-146a, 64.3% and 86.7% for miRNA-200b, 83.3% and 73.3% for miRNA-182, 54.8% and 80.0% for miRNA-221, 73.8% and 80.0% for miRNA-205, 78.6% and 73.3% for miRNA-7, 78.6% and 60.0% for miRNA-21, 78.6% and 73.3% for miRNA-145, 76.2% and 73.3% for miRNA-210. Conclusions Plasma miRNAs (miRNA-17, -146a, -200b, -182, -221, -205, -7, -21, -145, and miRNA-210) have relatively high sensitivity and specificity for the diagnosis of NSCLC. These plasma miRNAs may be the potential biomarkers for early diagnosis of lung cancer.
Collapse
Affiliation(s)
- Ke-Xing Xi
- Department of Thoracic Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Xue-Wen Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Xiang-Yang Yu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Wei-Dong Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ke-Xiang Xi
- Department of Obstetrics, Jieyang People's Hospital (Jieyang Affiliated Hospital, Sun Yat-sen University), Jieyang 522000, China
| | - Yong-Qiang Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Ying-Sheng Wen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| | - Lan-Jun Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.,Department of Thoracic Surgery, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
46
|
Kinoshita C, Aoyama K, Nakaki T. Neuroprotection afforded by circadian regulation of intracellular glutathione levels: A key role for miRNAs. Free Radic Biol Med 2018; 119:17-33. [PMID: 29198727 DOI: 10.1016/j.freeradbiomed.2017.11.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/21/2017] [Accepted: 11/27/2017] [Indexed: 01/17/2023]
Abstract
Circadian rhythms are approximately 24-h oscillations of physiological and behavioral processes that allow us to adapt to daily environmental cycles. Like many other biological functions, cellular redox status and antioxidative defense systems display circadian rhythmicity. In the central nervous system (CNS), glutathione (GSH) is a critical antioxidant because the CNS is extremely vulnerable to oxidative stress; oxidative stress, in turn, causes several fatal diseases, including neurodegenerative diseases. It has long been known that GSH level shows circadian rhythm, although the mechanism underlying GSH rhythm production has not been well-studied. Several lines of recent evidence indicate that the expression of antioxidant genes involved in GSH homeostasis as well as circadian clock genes are regulated by post-transcriptional regulator microRNA (miRNA), indicating that miRNA plays a key role in generating GSH rhythm. Interestingly, several reports have shown that alterations of miRNA expression as well as circadian rhythm have been known to link with various diseases related to oxidative stress. A growing body of evidence implicates a strong correlation between antioxidative defense, circadian rhythm and miRNA function, therefore, their dysfunctions could cause numerous diseases. It is hoped that continued elucidation of the antioxidative defense systems controlled by novel miRNA regulation under circadian control will advance the development of therapeutics for the diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Chisato Kinoshita
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Koji Aoyama
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Toshio Nakaki
- Department of Pharmacology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan.
| |
Collapse
|
47
|
Schuch JB, Genro JP, Bastos CR, Ghisleni G, Tovo-Rodrigues L. The role of CLOCK gene in psychiatric disorders: Evidence from human and animal research. Am J Med Genet B Neuropsychiatr Genet 2018; 177:181-198. [PMID: 28902457 DOI: 10.1002/ajmg.b.32599] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
The circadian clock system drives daily rhythms in physiology, metabolism, and behavior in mammals. Molecular mechanisms of this system consist of multiple clock genes, with Circadian Locomotor Output Cycles Kaput (CLOCK) as a core member that plays an important role in a wide range of behaviors. Alterations in the CLOCK gene are associated with common psychiatric disorders as well as with circadian disturbances comorbidities. This review addresses animal, molecular, and genetic studies evaluating the role of the CLOCK gene on many psychiatric conditions, namely autism spectrum disorder, schizophrenia, attention-deficit/hyperactivity disorder, major depressive disorder, bipolar disorder, anxiety disorder, and substance use disorder. Many animal experiments focusing on the effects of the Clock gene in behavior related to psychiatric conditions have shown consistent biological plausibility and promising findings. In humans, genetic and gene expression studies regarding disorder susceptibility, sleep disturbances related comorbidities, and response to pharmacological treatment, in general, are in agreement with animal studies. However, the number of controversial results is high. Literature suggests that the CLOCK gene exerts important influence on these conditions, and influences the susceptibility to phenotypes of psychiatric disorders.
Collapse
Affiliation(s)
- Jaqueline B Schuch
- Laboratory of Immunosenescence, Graduate Program in Biomedical Gerontology, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Julia P Genro
- Graduate Program in Bioscience, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clarissa R Bastos
- Laboratory of Clinical Neuroscience, Graduate Program in Health and Behavior, Universidade Católica de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Gabriele Ghisleni
- Laboratory of Clinical Neuroscience, Graduate Program in Health and Behavior, Universidade Católica de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| | - Luciana Tovo-Rodrigues
- Graduate Program in Epidemiology, Universidade Federal de Pelotas, Pelotas, Rio Grande do Sul, Brazil
| |
Collapse
|
48
|
Abstract
Sleep deprivation disrupts the lives of millions of people every day and has a profound impact on the molecular biology of the brain. These effects begin as changes within a neuron, at the DNA and RNA level, and result in alterations in neuronal plasticity and dysregulation of many cognitive functions including learning and memory. The epigenome plays a critical role in regulating gene expression in the context of memory storage. In this review article, we begin by describing the effects of epigenetic alterations on the regulation of gene expression, focusing on the most common epigenetic mechanisms: (i) DNA methylation; (ii) histone modifications; and (iii) non-coding RNAs. We then discuss evidence suggesting that sleep loss impacts the epigenome and that these epigenetic alterations might mediate the changes in cognition seen following disruption of sleep. The link between sleep and the epigenome is only beginning to be elucidated, but clear evidence exists that epigenetic alterations occur following sleep deprivation. In the future, these changes to the epigenome could be utilized as biomarkers of sleep loss or as therapeutic targets for sleep-related disorders.
Collapse
Affiliation(s)
- Marie E Gaine
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Snehajyoti Chatterjee
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Ted Abel
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
49
|
Brown GM, McIntyre RS, Rosenblat J, Hardeland R. Depressive disorders: Processes leading to neurogeneration and potential novel treatments. Prog Neuropsychopharmacol Biol Psychiatry 2018; 80:189-204. [PMID: 28433459 DOI: 10.1016/j.pnpbp.2017.04.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/01/2017] [Indexed: 12/18/2022]
Abstract
Mood disorders are wide spread with estimates that one in seven of the population are affected at some time in their life (Kessler et al., 2012). Many of those affected with severe depressive disorders have cognitive deficits which may progress to frank neurodegeneration. There are several peripheral markers shown by patients who have cognitive deficits that could represent causative factors and could potentially serve as guides to the prevention or even treatment of neurodegeneration. Circadian rhythm misalignment, immune dysfunction and oxidative stress are key pathologic processes implicated in neurodegeneration and cognitive dysfunction in depressive disorders. Novel treatments targeting these pathways may therefore potentially improve patient outcomes whereby the primary mechanism of action is outside of the monoaminergic system. Moreover, targeting immune dysfunction, oxidative stress and circadian rhythm misalignment (rather than primarily the monoaminergic system) may hold promise for truly disease modifying treatments that may prevent neurodegeneration rather than simply alleviating symptoms with no curative intent. Further research is required to more comprehensively understand the contributions of these pathways to the pathophysiology of depressive disorders to allow for disease modifying treatments to be discovered.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, Centre for Addiction and Mental Health, 250 College St. Toronto, ON M5T 1R8, Canada.
| | - Roger S McIntyre
- Psychiatry and Pharmacology, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada.
| | - Joshua Rosenblat
- Resident of Psychiatry, Clinician Scientist Stream, University of Toronto, Mood Disorders Psychopharmacology Unit, University Health Network, 399 Bathurst Street, MP 9-325, Toronto, ON M5T 2S8, Canada
| | - Rüdiger Hardeland
- Johann Friedrich Blumenbach Institut für Zoologie und Anthropologie, Universität Göttingen, Buergerstrasse 50, D-37073 Göttingen, Germany.
| |
Collapse
|
50
|
Wang Q, Zhao G, Yang Z, Liu X, Xie P. Downregulation of microRNA‑124‑3p suppresses the mTOR signaling pathway by targeting DDIT4 in males with major depressive disorder. Int J Mol Med 2018; 41:493-500. [PMID: 29115444 DOI: 10.3892/ijmm.2017.3235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 09/26/2017] [Indexed: 11/06/2022] Open
Abstract
Recent investigations have suggested that microRNAs (miRNAs or miRs) are involved in several pathways that may contribute to the pathomechanism of major depressive disorder (MDD). Sex may not only act as a demographic factor in clinical practive, but may also play a vital role in the molecular heterogeneity of MDD. Although many molecular changes correlated with MDD are found in males, the molecular mechanisms of MDD remain poorly understood. The present study performed bioinformatics analysis to investigate the pathomechanism of MDD in males. The present study identified miR‑124‑3p as one of the most dysregulated miRNAs in MDD, with decreased expression in the post‑mortem BA44 brain area of male patients with MDD. In addition, miR‑124‑3p targets DNA damage‑inducible transcript 4 (DDIT4) and specificity protein 1 (SP1), a DDIT4 transcription factor, in the validated target module of the miRWalk 2.0 database. This is concurrent with an increase in the expression level of DDIT4, which is an inhibitor of the mammalian target of rapamycin (mTOR) signaling pathway. It was also demonstrated that miR‑124‑3p expression was positively associated with mTOR signaling and this relationship was dependent on the tuberous sclerosis proteins 1/2 complex. Taken together, these results provided a novel insight on miR‑124‑3p involvement in the biological alterations of male patients with MDD and suggested that this miRNA may also serve as a male‑specific target for antidepressant treatment.
Collapse
Affiliation(s)
- Qiuling Wang
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Gaofeng Zhao
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Zhenzhen Yang
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Xia Liu
- Department of Psychiatry, Jining Psychiatric Hospital, Jining, Shandong 272051, P.R. China
| | - Ping Xie
- Department of Biochemistry and Molecular Biology, Capital Medical University, Beijing 100069, P.R. China
| |
Collapse
|