1
|
Ambrosini E, Lanciotti A, Brignone MS. Calcium-sensitive protein MLC1 as a possible modulator of the astrocyte functional state. Neural Regen Res 2025; 20:2008-2010. [PMID: 39254561 DOI: 10.4103/nrr.nrr-d-24-00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/04/2024] [Indexed: 09/11/2024] Open
Affiliation(s)
- Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, Rome, Italy
| | | | | |
Collapse
|
2
|
Kumar A, Schrader AW, Aggarwal B, Boroojeny AE, Asadian M, Lee J, Song YJ, Zhao SD, Han HS, Sinha S. Intracellular spatial transcriptomic analysis toolkit (InSTAnT). Nat Commun 2024; 15:7794. [PMID: 39242579 PMCID: PMC11379969 DOI: 10.1038/s41467-024-49457-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/04/2024] [Indexed: 09/09/2024] Open
Abstract
Imaging-based spatial transcriptomics technologies such as Multiplexed error-robust fluorescence in situ hybridization (MERFISH) can capture cellular processes in unparalleled detail. However, rigorous and robust analytical tools are needed to unlock their full potential for discovering subcellular biological patterns. We present Intracellular Spatial Transcriptomic Analysis Toolkit (InSTAnT), a computational toolkit for extracting molecular relationships from spatial transcriptomics data at single molecule resolution. InSTAnT employs specialized statistical tests and algorithms to detect gene pairs and modules exhibiting intriguing patterns of co-localization, both within individual cells and across the cellular landscape. We showcase the toolkit on five different datasets representing two different cell lines, two brain structures, two species, and three different technologies. We perform rigorous statistical assessment of discovered co-localization patterns, find supporting evidence from databases and RNA interactions, and identify associated subcellular domains. We uncover several cell type and region-specific gene co-localizations within the brain. Intra-cellular spatial patterns discovered by InSTAnT mirror diverse molecular relationships, including RNA interactions and shared sub-cellular localization or function, providing a rich compendium of testable hypotheses regarding molecular functions.
Collapse
Affiliation(s)
- Anurendra Kumar
- College of Computing, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Alex W Schrader
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bhavay Aggarwal
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | | | - Marisa Asadian
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - JuYeon Lee
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sihai Dave Zhao
- Department of Statistics, University of Illinois Urbana-Champaign, Urbana, IL, 61820, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Hee-Sun Han
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Saurabh Sinha
- H. Milton Stewart School of Industrial & Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 30318, USA.
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
3
|
Baumann JM, Yarishkin O, Lakk M, De Ieso ML, Rudzitis CN, Kuhn M, Tseng YT, Stamer WD, Križaj D. TRPV4 and chloride channels mediate volume sensing in trabecular meshwork cells. Am J Physiol Cell Physiol 2024; 327:C403-C414. [PMID: 38881423 PMCID: PMC11427009 DOI: 10.1152/ajpcell.00295.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Aqueous humor drainage from the anterior eye determines intraocular pressure (IOP) under homeostatic and pathological conditions. Swelling of the trabecular meshwork (TM) alters its flow resistance but the mechanisms that sense and transduce osmotic gradients remain poorly understood. We investigated TM osmotransduction and its role in calcium and chloride homeostasis using molecular analyses, optical imaging, and electrophysiology. Anisosmotic conditions elicited proportional changes in TM cell volume, with swelling, but not shrinking, evoking elevations in intracellular calcium concentration [Ca2+]TM. Hypotonicity-evoked calcium signals were sensitive to HC067047, a selective blocker of TRPV4 channels, whereas the agonist GSK1016790A promoted swelling under isotonic conditions. TRPV4 inhibition partially suppressed hypotonicity-induced volume increases and reduced the magnitude of the swelling-induced membrane current, with a substantial fraction of the swelling-evoked current abrogated by Cl- channel antagonists 4,4'-diisothiocyanato-2,2'-stilbenedisulfonic acid (DIDS) and niflumic acid. The transcriptome of volume-sensing chloride channel candidates in primary human was dominated by ANO6 transcripts, with moderate expression of ANO3, ANO7, and ANO10 transcripts and low expression of LTTRC genes that encode constituents of the volume-activated anion channel. Imposition of 190 mosM but not 285 mosM hypotonic gradients increased conventional outflow in mouse eyes. TRPV4-mediated cation influx thus works with Cl- efflux to sense and respond to osmotic stress, potentially contributing to pathological swelling, calcium overload, and intracellular signaling that could exacerbate functional disturbances in inflammatory disease and glaucoma.NEW & NOTEWORTHY Intraocular pressure is dynamically regulated by the flow of aqueous humor through paracellular passages within the trabecular meshwork (TM). This study shows hypotonic gradients that expand the TM cell volume and reduce the outflow facility in mouse eyes. The swelling-induced current consists of TRPV4 and chloride components, with TRPV4 as a driver of swelling-induced calcium signaling. TRPV4 inhibition reduced swelling, suggesting a novel treatment for trabeculitis and glaucoma.
Collapse
Affiliation(s)
- Jackson M Baumann
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Oleg Yarishkin
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Monika Lakk
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - Michael L De Ieso
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | | | - Megan Kuhn
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - Yun Ting Tseng
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
| | - W Daniel Stamer
- Duke Eye Center, Duke University, Durham, North Carolina, United States
| | - David Križaj
- Department of Ophthalmology & Visual Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Bioengineering, University of Utah School of Medicine, Salt Lake City, Utah, United States
- Department of Neurobiology, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
4
|
Michelucci A, Catacuzzeno L. Piezo1, the new actor in cell volume regulation. Pflugers Arch 2024; 476:1023-1039. [PMID: 38581527 PMCID: PMC11166825 DOI: 10.1007/s00424-024-02951-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/29/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
All animal cells control their volume through a complex set of mechanisms, both to counteract osmotic perturbations of the environment and to enable numerous vital biological processes, such as proliferation, apoptosis, and migration. The ability of cells to adjust their volume depends on the activity of ion channels and transporters which, by moving K+, Na+, and Cl- ions across the plasma membrane, generate the osmotic gradient that drives water in and out of the cell. In 2010, Patapoutian's group identified a small family of evolutionarily conserved, Ca2+-permeable mechanosensitive channels, Piezo1 and Piezo2, as essential components of the mechanically activated current that mediates mechanotransduction in vertebrates. Piezo1 is expressed in several tissues and its opening is promoted by a wide range of mechanical stimuli, including membrane stretch/deformation and osmotic stress. Piezo1-mediated Ca2+ influx is used by the cell to convert mechanical forces into cytosolic Ca2+ signals that control diverse cellular functions such as migration and cell death, both dependent on changes in cell volume and shape. The crucial role of Piezo1 in the regulation of cell volume was first demonstrated in erythrocytes, which need to reduce their volume to pass through narrow capillaries. In HEK293 cells, increased expression of Piezo1 was found to enhance the regulatory volume decrease (RVD), the process whereby the cell re-establishes its original volume after osmotic shock-induced swelling, and it does so through Ca2+-dependent modulation of the volume-regulated anion channels. More recently we reported that Piezo1 controls the RVD in glioblastoma cells via the modulation of Ca2+-activated K+ channels. To date, however, the mechanisms through which this mechanosensitive channel controls cell volume and maintains its homeostasis have been poorly investigated and are still far from being understood. The present review aims to provide a broad overview of the literature discussing the recent advances on this topic.
Collapse
Affiliation(s)
- A Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| | - L Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123, Perugia, Italy.
| |
Collapse
|
5
|
Passchier EMJ, Bisseling Q, Helman G, van Spaendonk RML, Simons C, Olsthoorn RCL, van der Veen H, Abbink TEM, van der Knaap MS, Min R. Megalencephalic leukoencephalopathy with subcortical cysts: a variant update and review of the literature. Front Genet 2024; 15:1352947. [PMID: 38487253 PMCID: PMC10938252 DOI: 10.3389/fgene.2024.1352947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/29/2024] [Indexed: 03/17/2024] Open
Abstract
The leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC) is characterized by infantile-onset macrocephaly and chronic edema of the brain white matter. With delayed onset, patients typically experience motor problems, epilepsy and slow cognitive decline. No treatment is available. Classic MLC is caused by bi-allelic recessive pathogenic variants in MLC1 or GLIALCAM (also called HEPACAM). Heterozygous dominant pathogenic variants in GLIALCAM lead to remitting MLC, where patients show a similar phenotype in early life, followed by normalization of white matter edema and no clinical regression. Rare patients with heterozygous dominant variants in GPRC5B and classic MLC were recently described. In addition, two siblings with bi-allelic recessive variants in AQP4 and remitting MLC have been identified. The last systematic overview of variants linked to MLC dates back to 2006. We provide an updated overview of published and novel variants. We report on genetic variants from 508 patients with MLC as confirmed by MRI diagnosis (258 from our database and 250 extracted from 64 published reports). We describe 151 unique MLC1 variants, 29 GLIALCAM variants, 2 GPRC5B variants and 1 AQP4 variant observed in these MLC patients. We include experiments confirming pathogenicity for some variants, discuss particularly notable variants, and provide an overview of recent scientific and clinical insight in the pathophysiology of MLC.
Collapse
Affiliation(s)
- Emma M. J. Passchier
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Quinty Bisseling
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Guy Helman
- Translational Bioinformatics, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
| | | | - Cas Simons
- Translational Bioinformatics, Murdoch Children’s Research Institute, The Royal Children’s Hospital, Parkville, VIC, Australia
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Hieke van der Veen
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Truus E. M. Abbink
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam Neuroscience, Amsterdam, Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
6
|
Brignone MS, Lanciotti A, Molinari P, Mallozzi C, De Nuccio C, Caprini ES, Petrucci TC, Visentin S, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1: A new calcium-sensitive protein functionally activated by endoplasmic reticulum calcium release and calmodulin binding in astrocytes. Neurobiol Dis 2024; 190:106388. [PMID: 38141856 DOI: 10.1016/j.nbd.2023.106388] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/04/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023] Open
Abstract
BACKGROUND MLC1 is a membrane protein highly expressed in brain perivascular astrocytes and whose mutations account for the rare leukodystrophy (LD) megalencephalic leukoencephalopathy with subcortical cysts disease (MLC). MLC is characterized by macrocephaly, brain edema and cysts, myelin vacuolation and astrocyte swelling which cause cognitive and motor dysfunctions and epilepsy. In cultured astrocytes, lack of functional MLC1 disturbs cell volume regulation by affecting anion channel (VRAC) currents and the consequent regulatory volume decrease (RVD) occurring in response to osmotic changes. Moreover, MLC1 represses intracellular signaling molecules (EGFR, ERK1/2, NF-kB) inducing astrocyte activation and swelling following brain insults. Nevertheless, to date, MLC1 proper function and MLC molecular pathogenesis are still elusive. We recently reported that in astrocytes MLC1 phosphorylation by the Ca2+/Calmodulin-dependent kinase II (CaMKII) in response to intracellular Ca2+ release potentiates MLC1 activation of VRAC. These results highlighted the importance of Ca2+ signaling in the regulation of MLC1 functions, prompting us to further investigate the relationships between intracellular Ca2+ and MLC1 properties. METHODS We used U251 astrocytoma cells stably expressing wild-type (WT) or mutated MLC1, primary mouse astrocytes and mouse brain tissue, and applied biochemistry, molecular biology, video imaging and electrophysiology techniques. RESULTS We revealed that WT but not mutant MLC1 oligomerization and trafficking to the astrocyte plasma membrane is favored by Ca2+ release from endoplasmic reticulum (ER) but not by capacitive Ca2+ entry in response to ER depletion. We also clarified the molecular events underlining MLC1 response to cytoplasmic Ca2+ increase, demonstrating that, following Ca2+ release, MLC1 binds the Ca2+ effector protein calmodulin (CaM) at the carboxyl terminal where a CaM binding sequence was identified. Using a CaM inhibitor and generating U251 cells expressing MLC1 with CaM binding site mutations, we found that CaM regulates MLC1 assembly, trafficking and function, being RVD and MLC-linked signaling molecules abnormally regulated in these latter cells. CONCLUSION Overall, we qualified MLC1 as a Ca2+ sensitive protein involved in the control of volume changes in response to ER Ca2+ release and astrocyte activation. These findings provide new insights for the comprehension of the molecular mechanisms responsible for the myelin degeneration occurring in MLC and other LD where astrocytes have a primary role in the pathological process.
Collapse
Affiliation(s)
- M S Brignone
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - A Lanciotti
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - P Molinari
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - C Mallozzi
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - C De Nuccio
- Istituto Superiore di Sanità, Research Coordination and Support Service, Viale Regina Elena 299, 00161 Rome, Italy
| | - E S Caprini
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - T C Petrucci
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy
| | - S Visentin
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Viale Regina Elena 299, 00161 Rome, Italy
| | - E Ambrosini
- Istituto Superiore di Sanità, Department of Neuroscience, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
7
|
Chen X, Qu H, Yao Q, Cai X, He T, Zhang X. Case report: Analysis of a gene variant and prenatal diagnosis in a family with megalencephalic leukoencephalopathy with subcortical cysts. Front Neurol 2023; 14:1253398. [PMID: 37928140 PMCID: PMC10622957 DOI: 10.3389/fneur.2023.1253398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare inherited cerebral white matter disorder in children. Pathogenic variations in the causative gene MLC1 are found in approximately 76% of patients and are inherited in an autosomal recessive manner. In this study, we identified an IVS2 + 1delG variant in MLC1 in the firstborn girl of a pregnant woman who has the clinical features of MLC, including macrocephaly, motor development delay, progressive functional deterioration, and myelinopathy, whereas no obvious subcortical cysts were observed by magnetic resonance imaging of the brain. The proband is homozygous for the IVS2 + 1delG mutation, which was inherited from the parents. This variant disrupts the donor splice site, causing an abnormal transcript that results in a premature termination codon and produces a truncated protein, which was confirmed to affect splicing by MLC1 cDNA analysis. This variant was also detected in family members, and a prenatal diagnosis for the fetus was undertaken. Eventually, the couple gave birth to an unaffected baby. Furthermore, we conducted a long-term follow-up of the proband's clinical course. This report improves our understanding of the genetic and phenotypic characteristics of MLC and provides a new genetic basis for prenatal diagnosis and genetic counseling.
Collapse
Affiliation(s)
- Xi Chen
- Department of Medical Genetics and Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Haibo Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Radiology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Qiang Yao
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaotang Cai
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
- Department of Rehabilitation, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Tiantian He
- Department of Medical Genetics and Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xuemei Zhang
- Department of Medical Genetics and Prenatal Diagnosis Center, West China Second University Hospital, Sichuan University, Chengdu, China
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
8
|
Michelucci A, Sforna L, Di Battista A, Franciolini F, Catacuzzeno L. Ca 2+ -activated K + channels regulate cell volume in human glioblastoma cells. J Cell Physiol 2023; 238:2120-2134. [PMID: 37431808 DOI: 10.1002/jcp.31072] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 07/12/2023]
Abstract
Glioblastoma (GBM), the most lethal form of brain tumors, bases its malignancy on the strong ability of its cells to migrate and invade the narrow spaces of healthy brain parenchyma. Cell migration and invasion are both critically dependent on changes in cell volume and shape driven by the transmembrane transport of osmotically important ions such as K+ and Cl- . However, while the Cl- channels participating in cell volume regulation have been clearly identified, the precise nature of the K+ channels involved is still uncertain. Using a combination of electrophysiological and imaging approaches in GBM U87-MG cells, we found that hypotonic-induced cell swelling triggered the opening of Ca2+ -activated K+ (KCa ) channels of large and intermediate conductance (BKCa and IKCa , respectively), both highly expressed in GBM cells. The influx of Ca2+ mediated by the hypotonic-induced activation of mechanosensitive channels was found to be a key step for opening both the BKCa and the IKCa channels. Finally, the activation of both KCa channels mediated by mechanosensitive channels was found to be essential for the development of the regulatory volume decrease following hypotonic shock. Taken together, these data indicate that KCa channels are the main K+ channels responsible for the volume regulation in U87-MG cells.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Angela Di Battista
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Fabio Franciolini
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
9
|
Stogsdill JA, Harwell CC, Goldman SA. Astrocytes as master modulators of neural networks: Synaptic functions and disease-associated dysfunction of astrocytes. Ann N Y Acad Sci 2023; 1525:41-60. [PMID: 37219367 DOI: 10.1111/nyas.15004] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Astrocytes are the most abundant glial cell type in the central nervous system and are essential to the development, plasticity, and maintenance of neural circuits. Astrocytes are heterogeneous, with their diversity rooted in developmental programs modulated by the local brain environment. Astrocytes play integral roles in regulating and coordinating neural activity extending far beyond their metabolic support of neurons and other brain cell phenotypes. Both gray and white matter astrocytes occupy critical functional niches capable of modulating brain physiology on time scales slower than synaptic activity but faster than those adaptive responses requiring a structural change or adaptive myelination. Given their many associations and functional roles, it is not surprising that astrocytic dysfunction has been causally implicated in a broad set of neurodegenerative and neuropsychiatric disorders. In this review, we focus on recent discoveries concerning the contributions of astrocytes to the function of neural networks, with a dual focus on the contribution of astrocytes to synaptic development and maturation, and on their role in supporting myelin integrity, and hence conduction and its regulation. We then address the emerging roles of astrocytic dysfunction in disease pathogenesis and on potential strategies for targeting these cells for therapeutic purposes.
Collapse
Affiliation(s)
| | - Corey C Harwell
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Steven A Goldman
- Sana Biotechnology Inc., Cambridge, Massachusetts, USA
- Center for Translational Neuromedicine, University of Rochester, Rochester, New York, USA
- University of Copenhagen Faculty of Health and Medical Sciences, Copenhagen, Denmark
| |
Collapse
|
10
|
Brignone MS, Lanciotti A, Michelucci A, Mallozzi C, Camerini S, Catacuzzeno L, Sforna L, Caramia M, D’Adamo MC, Ceccarini M, Molinari P, Macioce P, Macchia G, Petrucci TC, Pessia M, Visentin S, Ambrosini E. The CaMKII/MLC1 Axis Confers Ca2+-Dependence to Volume-Regulated Anion Channels (VRAC) in Astrocytes. Cells 2022; 11:cells11172656. [PMID: 36078064 PMCID: PMC9454758 DOI: 10.3390/cells11172656] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022] Open
Abstract
Astrocytes, the main glial cells of the central nervous system, play a key role in brain volume control due to their intimate contacts with cerebral blood vessels and the expression of a distinctive equipment of proteins involved in solute/water transport. Among these is MLC1, a protein highly expressed in perivascular astrocytes and whose mutations cause megalencephalic leukoencephalopathy with subcortical cysts (MLC), an incurable leukodystrophy characterized by macrocephaly, chronic brain edema, cysts, myelin vacuolation, and astrocyte swelling. Although, in astrocytes, MLC1 mutations are known to affect the swelling-activated chloride currents (ICl,swell) mediated by the volume-regulated anion channel (VRAC), and the regulatory volume decrease, MLC1′s proper function is still unknown. By combining molecular, biochemical, proteomic, electrophysiological, and imaging techniques, we here show that MLC1 is a Ca2+/Calmodulin-dependent protein kinase II (CaMKII) target protein, whose phosphorylation, occurring in response to intracellular Ca2+ release, potentiates VRAC-mediated ICl,swell. Overall, these findings reveal that MLC1 is a Ca2+-regulated protein, linking volume regulation to Ca2+ signaling in astrocytes. This knowledge provides new insight into the MLC1 protein function and into the mechanisms controlling ion/water exchanges in the brain, which may help identify possible molecular targets for the treatment of MLC and other pathological conditions caused by astrocyte swelling and brain edema.
Collapse
Affiliation(s)
| | - Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Antonio Michelucci
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Cinzia Mallozzi
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Serena Camerini
- Core Facilities (FAST), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Luigi Catacuzzeno
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Luigi Sforna
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Martino Caramia
- Department of Chemistry, Biology and Biotechnology, University of Perugia, 06123 Perugia, Italy
| | - Maria Cristina D’Adamo
- Department of Medicine and Surgery, LUM Giuseppe Degennaro University, 70010 Bari, Italy
| | - Marina Ceccarini
- National Centre for Rare Diseases, Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Paola Molinari
- National Centre for Drug Research and Evaluation (FARVA), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
| | | | | | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, United Arab Emirates
| | - Sergio Visentin
- National Centre for Drug Research and Evaluation (FARVA), Istituto Superiore di Sanità, 00169 Rome, Italy
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy
- Correspondence: ; Tel.: +39-06-4990-2037
| |
Collapse
|
11
|
Nowacki JC, Fields AM, Fu MM. Emerging cellular themes in leukodystrophies. Front Cell Dev Biol 2022; 10:902261. [PMID: 36003149 PMCID: PMC9393611 DOI: 10.3389/fcell.2022.902261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Leukodystrophies are a broad spectrum of neurological disorders that are characterized primarily by deficiencies in myelin formation. Clinical manifestations of leukodystrophies usually appear during childhood and common symptoms include lack of motor coordination, difficulty with or loss of ambulation, issues with vision and/or hearing, cognitive decline, regression in speech skills, and even seizures. Many cases of leukodystrophy can be attributed to genetic mutations, but they have diverse inheritance patterns (e.g., autosomal recessive, autosomal dominant, or X-linked) and some arise from de novo mutations. In this review, we provide an updated overview of 35 types of leukodystrophies and focus on cellular mechanisms that may underlie these disorders. We find common themes in specialized functions in oligodendrocytes, which are specialized producers of membranes and myelin lipids. These mechanisms include myelin protein defects, lipid processing and peroxisome dysfunction, transcriptional and translational dysregulation, disruptions in cytoskeletal organization, and cell junction defects. In addition, non-cell-autonomous factors in astrocytes and microglia, such as autoimmune reactivity, and intercellular communication, may also play a role in leukodystrophy onset. We hope that highlighting these themes in cellular dysfunction in leukodystrophies may yield conceptual insights on future therapeutic approaches.
Collapse
|
12
|
Khalaf-Nazzal R, Dweikat I, Maree M, Alawneh M, Barahmeh M, Doulani RT, Qrareya M, Qadi M, Dudin A. Prevalent MLC1 mutation causing autosomal recessive megalencephalic leukoencephalopathy in consanguineous Palestinian families. Brain Dev 2022; 44:454-461. [PMID: 35440380 DOI: 10.1016/j.braindev.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Recessive forms of megalencephalic leukoencephalopathy with subcortical cysts (MLC, OMIM 604004) is a rare early-onset leukodystrophy that presents with macrocephaly, seizures, slowly progressive gross motor deterioration, and MRI evidence of diffuse symmetric white matter swelling and subcortical cysts in the anterior temporal and frontoparietal regions. Later in the disease course, significant spasticity and ataxia develop, which may be accompanied by intellectual deterioration. This disease is caused mostly by biallelic pathogenic variants in the MLC1 gene. METHODS In this study, we analysed the clinical and molecular architecture of 6 individuals, belonging to 4 unrelated consanguineous Palestinian families, presenting with consistent MLC features. We sequenced the entire coding and flanking intronic regions of the MLC1 gene. RESULTS In all recruited individuals, we detected one recurrent homozygous splice donor mutation NM_015166.4: c.423 + 1G > A. All parents were heterozygous carriers. The mutation abolishes a highly conserved splice site in humans and other species. In silico splice predictors suggested the loss of a canonical splice donor site (CADD score 33.0. SpliceAI: 0.980). The c.423 + 1G > A variant is rare; it was detected in only 4 heterozygous carriers in gnomAD. CONCLUSION In this study, we identified a recurrent MLC1 variant (c.423 + 1G > A) as the cause of MLC among a group of Palestinian patients originating from a particular region of the country. Cost-effective studies should be performed to evaluate the implementation of carrier screening in adults originating from this region. Our findings have the potential to contribute to improved genetic diagnosis and carrier testing for individuals within this population and the wider community.
Collapse
Affiliation(s)
- Reham Khalaf-Nazzal
- Faculty of Medicine, Arab American University of Palestine, Jenin, Palestine.
| | - Imad Dweikat
- Faculty of Medicine, Arab American University of Palestine, Jenin, Palestine
| | - Mosab Maree
- Medicine Department, Faculty of Medicine and Health Sciences, An-Najah National University, and An-Najah National University Hospital, Nablus, Palestine
| | - Maysa Alawneh
- Medicine Department, Faculty of Medicine and Health Sciences, An-Najah National University, and An-Najah National University Hospital, Nablus, Palestine
| | - Myassar Barahmeh
- Biomedical Sciences Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Rasha T Doulani
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Qrareya
- Clinical Sciences Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Mohammad Qadi
- Biomedical Sciences Department, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Anwar Dudin
- Pediatric Neurology Outpatient Clinic, Ramallah, Palestine
| |
Collapse
|
13
|
GPR37 Receptors and Megalencephalic Leukoencephalopathy with Subcortical Cysts. Int J Mol Sci 2022; 23:ijms23105528. [PMID: 35628339 PMCID: PMC9144339 DOI: 10.3390/ijms23105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/30/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare type of vacuolating leukodystrophy (white matter disorder), which is mainly caused by defects in MLC1 or glial cell adhesion molecule (GlialCAM) proteins. In addition, autoantibodies to GlialCAM are involved in the pathology of multiple sclerosis. MLC1 and GLIALCAM genes encode for membrane proteins of unknown function, which has been linked to the regulation of different ion channels and transporters, such as the chloride channel VRAC (volume regulated anion channel), ClC-2 (chloride channel 2), and connexin 43 or the Na+/K+-ATPase pump. However, the mechanisms by which MLC proteins regulate these ion channels and transporters, as well as the exact function of MLC proteins remain obscure. It has been suggested that MLC proteins might regulate signalling pathways, but the mechanisms involved are, at present, unknown. With the aim of answering these questions, we have recently described the brain GlialCAM interactome. Within the identified proteins, we could validate the interaction with several G protein-coupled receptors (GPCRs), including the orphan GPRC5B and the proposed prosaposin receptors GPR37L1 and GPR37. In this review, we summarize new aspects of the pathophysiology of MLC disease and key aspects of the interaction between GPR37 receptors and MLC proteins.
Collapse
|
14
|
Lo J, Forst AL, Warth R, Zdebik AA. EAST/SeSAME Syndrome and Beyond: The Spectrum of Kir4.1- and Kir5.1-Associated Channelopathies. Front Physiol 2022; 13:852674. [PMID: 35370765 PMCID: PMC8965613 DOI: 10.3389/fphys.2022.852674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/08/2022] [Indexed: 12/13/2022] Open
Abstract
In 2009, two groups independently linked human mutations in the inwardly rectifying K+ channel Kir4.1 (gene name KCNJ10) to a syndrome affecting the central nervous system (CNS), hearing, and renal tubular salt reabsorption. The autosomal recessive syndrome has been named EAST (epilepsy, ataxia, sensorineural deafness, and renal tubulopathy) or SeSAME syndrome (seizures, sensorineural deafness, ataxia, intellectual disability, and electrolyte imbalance), accordingly. Renal dysfunction in EAST/SeSAME patients results in loss of Na+, K+, and Mg2+ with urine, activation of the renin-angiotensin-aldosterone system, and hypokalemic metabolic alkalosis. Kir4.1 is highly expressed in affected organs: the CNS, inner ear, and kidney. In the kidney, it mostly forms heteromeric channels with Kir5.1 (KCNJ16). Biallelic loss-of-function mutations of Kir5.1 can also have disease significance, but the clinical symptoms differ substantially from those of EAST/SeSAME syndrome: although sensorineural hearing loss and hypokalemia are replicated, there is no alkalosis, but rather acidosis of variable severity; in contrast to EAST/SeSAME syndrome, the CNS is unaffected. This review provides a framework for understanding some of these differences and will guide the reader through the growing literature on Kir4.1 and Kir5.1, discussing the complex disease mechanisms and the variable expression of disease symptoms from a molecular and systems physiology perspective. Knowledge of the pathophysiology of these diseases and their multifaceted clinical spectrum is an important prerequisite for making the correct diagnosis and forms the basis for personalized therapies.
Collapse
Affiliation(s)
- Jacky Lo
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Anna-Lena Forst
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Richard Warth
- Medical Cell Biology, Institute of Physiology, University of Regensburg, Regensburg, Germany
| | - Anselm A. Zdebik
- Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Centre for Nephrology, University College London, London, United Kingdom
| |
Collapse
|
15
|
Wang BB, Xu H, Isenmann S, Huang C, Elorza-Vidal X, Rychkov GY, Estévez R, Schittenhelm RB, Lukacs GL, Apaja PM. Ubr1-induced selective endophagy/autophagy protects against the endosomal and Ca 2+-induced proteostasis disease stress. Cell Mol Life Sci 2022; 79:167. [PMID: 35233680 PMCID: PMC8888484 DOI: 10.1007/s00018-022-04191-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022]
Abstract
The cellular defense mechanisms against cumulative endo-lysosomal stress remain incompletely understood. Here, we identify Ubr1 as a protein quality control (QC) E3 ubiquitin-ligase that counteracts proteostasis stresses by facilitating endosomal cargo-selective autophagy for lysosomal degradation. Astrocyte regulatory cluster membrane protein MLC1 mutations cause endosomal compartment stress by fusion and enlargement. Partial lysosomal clearance of mutant endosomal MLC1 is accomplished by the endosomal QC ubiquitin ligases, CHIP and Ubr1 via ESCRT-dependent route. As a consequence of the endosomal stress, a supportive QC mechanism, dependent on both Ubr1 and SQSTM1/p62 activities, targets ubiquitinated and arginylated MLC1 mutants for selective endosomal autophagy (endophagy). This QC pathway is also activated for arginylated Ubr1-SQSTM1/p62 autophagy cargoes during cytosolic Ca2+-assault. Conversely, the loss of Ubr1 and/or arginylation elicited endosomal compartment stress. These findings underscore the critical housekeeping role of Ubr1 and arginylation-dependent endophagy/autophagy during endo-lysosomal proteostasis perturbations and suggest a link of Ubr1 to Ca2+ homeostasis and proteins implicated in various diseases including cancers and brain disorders.
Collapse
Affiliation(s)
- Ben B Wang
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia.,EMBL Australia, Adelaide, South Australia, 5000, Australia
| | - Haijin Xu
- Department of Physiology and Cell Information Systems, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, H3G 1Y6, Canada
| | - Sandra Isenmann
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia.,EMBL Australia, Adelaide, South Australia, 5000, Australia
| | - Cheng Huang
- Monash Biomedical Proteomics Facility, Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Xabier Elorza-Vidal
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Grigori Y Rychkov
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia.,School of Medicine, University of Adelaide, Adelaide, SA, 5005, Australia
| | - Raúl Estévez
- Unitat de Fisiologia, Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, L'Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| | - Ralf B Schittenhelm
- Monash Biomedical Proteomics Facility, Department of Biochemistry, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Gergely L Lukacs
- Department of Physiology and Cell Information Systems, McGill University, 3655 Promenade Sir-William-Osler, Montréal, QC, H3G 1Y6, Canada. .,Department of Biochemistry, McGill University, Montréal, QC, H3G 1Y6, Canada.
| | - Pirjo M Apaja
- Lifelong Health, Organelle Proteostasis Diseases, South Australian Health and Medical Research Institute (SAHMRI), 5000 North Terrace, Adelaide, SA, 5000, Australia. .,EMBL Australia, Adelaide, South Australia, 5000, Australia. .,Department of Molecular and Biomedical Sciences, University of Adelaide, Adelaide, SA, 5005, Australia. .,College of Public Health and Medicine, Molecular Biosciences Theme, Flinders University, Bedford Park, SA, 5042, Australia.
| |
Collapse
|
16
|
Practical Genetics for the Neuroradiologist: Adding Value in Neurogenetic Disease. Acad Radiol 2022; 29 Suppl 3:S1-S27. [PMID: 33495073 DOI: 10.1016/j.acra.2020.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/19/2020] [Accepted: 12/27/2020] [Indexed: 11/23/2022]
Abstract
Genetic discoveries have transformed our understanding of many neurologic diseases. Identification of specific causal pathogenic variants has improved understanding of pathophysiology and enabled replacement of many confusing eponyms and acronyms with more meaningful and clinically relevant genetics-based terminology. In this era of rapid scientific advancement, multidisciplinary collaboration among pediatricians, neurologists, geneticists, radiologists, and other members of the health care team is increasingly important in the care of patients with genetic neurologic diseases. Radiologists familiar with neurogenetic disease add value by (1) recognizing constellations of characteristic imaging findings that are associated with a genetic disease before one is clinically suspected; (2) predicting the most likely genotypes for a given imaging phenotype in clinically suspected genetic disease; and (3) providing detailed and accurate descriptions of the imaging phenotype in challenging cases with unknown or uncertain genotypes. This review aims to increase awareness and understanding of pathogenic variants relating to neurologic disease by (1) briefly reviewing foundational knowledge of chromosomes, inheritance patterns, and mutagenesis; (2) providing concrete examples of and detailed information about specific neurologic diseases resulting from pathogenic variants; and (3) highlighting clinical and imaging features that are of greatest relevance for the radiologist.
Collapse
|
17
|
Donau J, Luo H, Virta I, Skupin A, Pushina M, Loeffler J, Haertel FV, Das A, Kurth T, Gerlach M, Lindemann D, Reinach PS, Mergler S, Valtink M. TRPV4 Stimulation Level Regulates Ca2+-Dependent Control of Human Corneal Endothelial Cell Viability and Survival. MEMBRANES 2022; 12:membranes12030281. [PMID: 35323756 PMCID: PMC8952823 DOI: 10.3390/membranes12030281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023]
Abstract
The functional contribution of transient receptor potential vanilloid 4 (TRPV4) expression in maintaining human corneal endothelial cells (HCEC) homeostasis is unclear. Accordingly, we determined the effects of TRPV4 gene and protein overexpression on responses modulating the viability and survival of HCEC. Q-PCR, Western blot, FACS analyses and fluorescence single-cell calcium imaging confirmed TRPV4 gene and protein overexpression in lentivirally transduced 12V4 cells derived from their parent HCEC-12 line. Although TRPV4 overexpression did not alter the baseline transendothelial electrical resistance (TEER), its cellular capacitance (Ccl) was larger than that in its parent. Scanning electron microscopy revealed that only the 12V4 cells developed densely packed villus-like protrusions. Stimulation of TRPV4 activity with GSK1016790A (GSK101, 10 µmol/L) induced larger Ca2+ transients in the 12V4 cells than those in the parental HCEC-12. One to ten nmol/L GSK101 decreased 12V4 viability, increased cell death rates and reduced the TEER, whereas 1 µmol/L GSK101 was required to induce similar effects in the HCEC-12. However, the TRPV4 channel blocker RN1734 (1 to 30 µmol/L) failed to alter HCEC-12 and 12V4 morphology, cell viability and metabolic activity. Taken together, TRPV4 overexpression altered both the HCEC morphology and markedly lowered the GSK101 dosages required to stimulate its channel activity.
Collapse
Affiliation(s)
- Jennifer Donau
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Huan Luo
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
| | - Iiris Virta
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
| | - Annett Skupin
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Margarita Pushina
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
| | - Jana Loeffler
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
| | - Frauke V. Haertel
- Institute of Physiology, Faculty of Medicine, University Giessen, 35392 Giessen, Germany;
- Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Anupam Das
- Institute of Physiology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Thomas Kurth
- Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, TU Dresden, 01307 Dresden, Germany;
| | - Michael Gerlach
- Core Facility Cellular Imaging, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Dirk Lindemann
- Institute of Medical Microbiology and Virology, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Peter S. Reinach
- School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, China;
| | - Stefan Mergler
- Klinik für Augenheilkunde, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 13353 Berlin, Germany; (H.L.); (I.V.)
- Correspondence: (S.M.); (M.V.)
| | - Monika Valtink
- Institute of Anatomy, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany; (J.D.); (A.S.); (M.P.); (J.L.)
- Equality and Diversity Unit, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany
- Correspondence: (S.M.); (M.V.)
| |
Collapse
|
18
|
Lanciotti A, Brignone MS, Macioce P, Visentin S, Ambrosini E. Human iPSC-Derived Astrocytes: A Powerful Tool to Study Primary Astrocyte Dysfunction in the Pathogenesis of Rare Leukodystrophies. Int J Mol Sci 2021; 23:ijms23010274. [PMID: 35008700 PMCID: PMC8745131 DOI: 10.3390/ijms23010274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are very versatile cells, endowed with multitasking capacities to ensure brain homeostasis maintenance from brain development to adult life. It has become increasingly evident that astrocytes play a central role in many central nervous system pathologies, not only as regulators of defensive responses against brain insults but also as primary culprits of the disease onset and progression. This is particularly evident in some rare leukodystrophies (LDs) where white matter/myelin deterioration is due to primary astrocyte dysfunctions. Understanding the molecular defects causing these LDs may help clarify astrocyte contribution to myelin formation/maintenance and favor the identification of possible therapeutic targets for LDs and other CNS demyelinating diseases. To date, the pathogenic mechanisms of these LDs are poorly known due to the rarity of the pathological tissue and the failure of the animal models to fully recapitulate the human diseases. Thus, the development of human induced pluripotent stem cells (hiPSC) from patient fibroblasts and their differentiation into astrocytes is a promising approach to overcome these issues. In this review, we discuss the primary role of astrocytes in LD pathogenesis, the experimental models currently available and the advantages, future evolutions, perspectives, and limitations of hiPSC to study pathologies implying astrocyte dysfunctions.
Collapse
Affiliation(s)
- Angela Lanciotti
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Maria Stefania Brignone
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Pompeo Macioce
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
| | - Sergio Visentin
- National Center for Research and Preclinical and Clinical Evaluation of Drugs, Istituto Superiore di Sanità, 00169 Rome, Italy;
| | - Elena Ambrosini
- Department of Neuroscience, Istituto Superiore di Sanità, 00169 Rome, Italy; (A.L.); (M.S.B.); (P.M.)
- Correspondence: ; Tel.: +39-064-990-2037
| |
Collapse
|
19
|
Control of membrane protein homeostasis by a chaperone-like glial cell adhesion molecule at multiple subcellular locations. Sci Rep 2021; 11:18435. [PMID: 34531445 PMCID: PMC8446001 DOI: 10.1038/s41598-021-97777-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/24/2021] [Indexed: 01/17/2023] Open
Abstract
The significance of crosstalks among constituents of plasma membrane protein clusters/complexes in cellular proteostasis and protein quality control (PQC) remains incompletely understood. Examining the glial (enriched) cell adhesion molecule (CAM), we demonstrate its chaperone-like role in the biosynthetic processing of the megalencephalic leukoencephalopathy with subcortical cyst 1 (MLC1)-heteromeric regulatory membrane protein complex, as well as the function of the GlialCAM/MLC1 signalling complex. We show that in the absence of GlialCAM, newly synthesized MLC1 molecules remain unfolded and are susceptible to polyubiquitination-dependent proteasomal degradation at the endoplasmic reticulum. At the plasma membrane, GlialCAM regulates the diffusional partitioning and endocytic dynamics of cluster members, including the ClC-2 chloride channel and MLC1. Impaired folding and/or expression of GlialCAM or MLC1 in the presence of diseases causing mutations, as well as plasma membrane tethering compromise the functional expression of the cluster, leading to compromised endo-lysosomal organellar identity. In addition, the enlarged endo-lysosomal compartments display accelerated acidification, ubiquitinated cargo-sorting and impaired endosomal recycling. Jointly, these observations indicate an essential and previously unrecognized role for CAM, where GliaCAM functions as a PQC factor for the MLC1 signalling complex biogenesis and possess a permissive role in the membrane dynamic and cargo sorting functions with implications in modulations of receptor signalling.
Collapse
|
20
|
Mast N, Petrov AM, Prendergast E, Bederman I, Pikuleva IA. Brain Acetyl-CoA Production and Phosphorylation of Cytoskeletal Proteins Are Targets of CYP46A1 Activity Modulation and Altered Sterol Flux. Neurotherapeutics 2021; 18:2040-2060. [PMID: 34235635 PMCID: PMC8609074 DOI: 10.1007/s13311-021-01079-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2021] [Indexed: 02/04/2023] Open
Abstract
Cholesterol and 24-hydroxycholesterol are the most abundant brain sterols and represent the substrate and product, respectively, of cytochrome P450 46A1 (CYP46A1), a CNS-specific enzyme. CYP46A1 controls cholesterol elimination and turnover in the brain, the two processes that determine the rate of brain sterol flux through the plasma membranes and thereby the properties of these membranes. Brain sterol flux is decreased in Cyp46a1-/- mice compared to wild-type mice and increased in 5XFAD mice (a model of Alzheimer's disease) when they are treated with a small dose of efavirenz, a CYP46A1 activator. Herein, we first assessed the brain proteome (synaptosomal fractions) and phospho-proteome (synaptosomal fractions and brain homogenates) of efavirenz-treated and control 5XFAD mice. Then, based on the pattern of protein abundance change, we conducted acetyl-CoA measurements (brain homogenates and mitochondria) and metabolic profiling (brain homogenates). The phospho-proteomics datasets were used for comparative analyses with the datasets obtained by us previously on mice with the same changes (efavirenz-treated and control 5XFAD mice from a different treatment paradigm) or with changes in the opposite direction (Cyp46a1-/- vs wild-type mice) in brain sterol flux. We found that CYP46A1 activity or the rate of brain sterol flux affects acetyl-CoA-related metabolic pathways as well as phosphorylation of cytoskeletal and other proteins. Knowledge of the key roles of acetyl-CoA and cytoskeletal phosphorylation in cell biology expands our understanding of the significance of CYP46A1-mediated cholesterol 24-hydroxylation in the brain and provides an additional explanation for why CYP46A1 activity modulations are beneficial in mouse models of different brain diseases.
Collapse
Affiliation(s)
- Natalia Mast
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Alexey M Petrov
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center, Kazan Scientific Center of RAS", 2/31 Lobachevsky Street, Box 30, 420111, Kazan, Russia
- Institute of Neuroscience, Kazan State Medial University, 49 Butlerova Street, 420012, Kazan, Russia
| | - Erin Prendergast
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Ilya Bederman
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Irina A Pikuleva
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
21
|
Ritter M, Bresgen N, Kerschbaum HH. From Pinocytosis to Methuosis-Fluid Consumption as a Risk Factor for Cell Death. Front Cell Dev Biol 2021; 9:651982. [PMID: 34249909 PMCID: PMC8261248 DOI: 10.3389/fcell.2021.651982] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
The volumes of a cell [cell volume (CV)] and its organelles are adjusted by osmoregulatory processes. During pinocytosis, extracellular fluid volume equivalent to its CV is incorporated within an hour and membrane area equivalent to the cell's surface within 30 min. Since neither fluid uptake nor membrane consumption leads to swelling or shrinkage, cells must be equipped with potent volume regulatory mechanisms. Normally, cells respond to outwardly or inwardly directed osmotic gradients by a volume decrease and increase, respectively, i.e., they shrink or swell but then try to recover their CV. However, when a cell death (CD) pathway is triggered, CV persistently decreases in isotonic conditions in apoptosis and it increases in necrosis. One type of CD associated with cell swelling is due to a dysfunctional pinocytosis. Methuosis, a non-apoptotic CD phenotype, occurs when cells accumulate too much fluid by macropinocytosis. In contrast to functional pinocytosis, in methuosis, macropinosomes neither recycle nor fuse with lysosomes but with each other to form giant vacuoles, which finally cause rupture of the plasma membrane (PM). Understanding methuosis longs for the understanding of the ionic mechanisms of cell volume regulation (CVR) and vesicular volume regulation (VVR). In nascent macropinosomes, ion channels and transporters are derived from the PM. Along trafficking from the PM to the perinuclear area, the equipment of channels and transporters of the vesicle membrane changes by retrieval, addition, and recycling from and back to the PM, causing profound changes in vesicular ion concentrations, acidification, and-most importantly-shrinkage of the macropinosome, which is indispensable for its proper targeting and cargo processing. In this review, we discuss ion and water transport mechanisms with respect to CVR and VVR and with special emphasis on pinocytosis and methuosis. We describe various aspects of the complex mutual interplay between extracellular and intracellular ions and ion gradients, the PM and vesicular membrane, phosphoinositides, monomeric G proteins and their targets, as well as the submembranous cytoskeleton. Our aim is to highlight important cellular mechanisms, components, and processes that may lead to methuotic CD upon their derangement.
Collapse
Affiliation(s)
- Markus Ritter
- Center for Physiology, Pathophysiology and Biophysics, Institute for Physiology and Pathophysiology, Paracelsus Medical University, Salzburg, Austria
- Institute for Physiology and Pathophysiology, Paracelsus Medical University, Nuremberg, Germany
- Gastein Research Institute, Paracelsus Medical University, Salzburg, Austria
- Ludwig Boltzmann Institute for Arthritis und Rehabilitation, Salzburg, Austria
- Kathmandu University School of Medical Sciences, Dhulikhel, Nepal
| | - Nikolaus Bresgen
- Department of Biosciences, University of Salzburg, Salzburg, Austria
| | | |
Collapse
|
22
|
Transient Receptor Potential Vanilloid in the Brain Gliovascular Unit: Prospective Targets in Therapy. Pharmaceutics 2021; 13:pharmaceutics13030334. [PMID: 33806707 PMCID: PMC7999963 DOI: 10.3390/pharmaceutics13030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.
Collapse
|
23
|
Bai H, Zhou R, Barravecchia M, Norman R, Friedman A, Yu D, Lin X, Young JL, Dean DA. The Na+, K+-ATPase β1 subunit regulates epithelial tight junctions via MRCKα. JCI Insight 2021; 6:134881. [PMID: 33507884 PMCID: PMC7934944 DOI: 10.1172/jci.insight.134881] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
An intact lung epithelial barrier is essential for lung homeostasis. The Na+, K+-ATPase (NKA), primarily serving as an ion transporter, also regulates epithelial barrier function via modulation of tight junctions. However, the underlying mechanism is not well understood. Here, we show that overexpression of the NKA β1 subunit upregulates the expression of tight junction proteins, leading to increased alveolar epithelial barrier function by an ion transport–independent mechanism. Using IP and mass spectrometry, we identified a number of unknown protein interactions of the β1 subunit, including a top candidate, myotonic dystrophy kinase–related cdc42-binding kinase α (MRCKα), which is a protein kinase known to regulate peripheral actin formation. Using a doxycycline-inducible gene expression system, we demonstrated that MRCKα and its downstream activation of myosin light chain is required for the regulation of alveolar barrier function by the NKA β1 subunit. Importantly, MRCKα is expressed in both human airways and alveoli and has reduced expression in patients with acute respiratory distress syndrome (ARDS), a lung illness that can be caused by multiple direct and indirect insults, including the infection of influenza virus and SARS-CoV-2. Our results have elucidated a potentially novel mechanism by which NKA regulates epithelial tight junctions and have identified potential drug targets for treating ARDS and other pulmonary diseases that are caused by barrier dysfunction.
Collapse
Affiliation(s)
- Haiqing Bai
- Department of Pediatrics and.,Department of Pathology, School of Medicine and Dentistry, University of Rochester, Rochester, New York, USA
| | | | | | | | - Alan Friedman
- Department of Pediatrics and.,Department of Materials Design and Innovation, School of Engineering and Applied Sciences, University at Buffalo, Buffalo, New York, USA
| | | | - Xin Lin
- Department of Pediatrics and
| | | | | |
Collapse
|
24
|
Bosch A, Estévez R. Megalencephalic Leukoencephalopathy: Insights Into Pathophysiology and Perspectives for Therapy. Front Cell Neurosci 2021; 14:627887. [PMID: 33551753 PMCID: PMC7862579 DOI: 10.3389/fncel.2020.627887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 01/13/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. It is mainly caused by recessive mutations in MLC1 and HEPACAM (also called GLIALCAM) genes. These disease variants are called MLC1 and MLC2A with both types of patients sharing the same clinical phenotype. Besides, dominant mutations in HEPACAM were also identified in a subtype of MLC patients (MLC2B) with a remitting phenotype. MLC1 and GlialCAM proteins form a complex mainly expressed in brain astrocytes at the gliovascular interface and in Bergmann glia at the cerebellum. Both proteins regulate several ion channels and transporters involved in the control of ion and water fluxes in glial cells, either directly influencing their location and function, or indirectly regulating associated signal transduction pathways. However, the MLC1/GLIALCAM complex function and the related pathological mechanisms leading to MLC are still unknown. It has been hypothesized that, in MLC, the role of glial cells in brain ion homeostasis is altered in both physiological and inflammatory conditions. There is no therapy for MLC patients, only supportive treatment. As MLC2B patients show an MLC reversible phenotype, we speculated that the phenotype of MLC1 and MLC2A patients could also be mitigated by the re-introduction of the correct gene even at later stages. To prove this hypothesis, we injected in the cerebellar subarachnoid space of Mlc1 knockout mice an adeno-associated virus (AAV) coding for human MLC1 under the control of the glial-fibrillary acidic protein promoter. MLC1 expression in the cerebellum extremely reduced myelin vacuolation at all ages in a dose-dependent manner. This study could be considered as the first preclinical approach for MLC. We also suggest other potential therapeutic strategies in this review.
Collapse
Affiliation(s)
- Assumpció Bosch
- Department of Biochemistry and Molecular Biology, Institute of Neurosciences, Univ. Autònoma de Barcelona, Barcelona, Spain.,Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raúl Estévez
- Departament de Ciències Fisiològiques, IDIBELL-Institute of Neurosciences, Universitat de Barcelona, Barcelona, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
25
|
Lattier JM, De A, Chen Z, Morales JE, Lang FF, Huse JT, McCarty JH. Megalencephalic leukoencephalopathy with subcortical cysts 1 (MLC1) promotes glioblastoma cell invasion in the brain microenvironment. Oncogene 2020; 39:7253-7264. [PMID: 33040087 PMCID: PMC7736299 DOI: 10.1038/s41388-020-01503-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/17/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022]
Abstract
Glioblastoma (GBM), or grade IV astrocytoma, is a malignant brain cancer that contains subpopulations of proliferative and invasive cells that coordinately drive primary tumor growth, progression, and recurrence after therapy. Here, we have analyzed functions for megalencephalic leukoencephalopathy with subcortical cysts 1 (Mlc1), an eight-transmembrane protein normally expressed in perivascular brain astrocyte end feet that is essential for neurovascular development and physiology, in the pathogenesis of GBM. We show that Mlc1 is expressed in human stem-like GBM cells (GSCs) and is linked to the development of primary and recurrent GBM. Genetically inhibiting MLC1 in GSCs using RNAi-mediated gene silencing results in diminished growth and invasion in vitro as well as impaired tumor initiation and progression in vivo. Biochemical assays identify the receptor tyrosine kinase Axl and its intracellular signaling effectors as important for MLC1 control of GSC invasive growth. Collectively, these data reveal key functions for MLC1 in promoting GSC growth and invasion, and suggest that targeting the Mlc1 protein or its associated signaling effectors may be a useful therapy for blocking tumor progression in patients with primary or recurrent GBM.
Collapse
Affiliation(s)
- John M Lattier
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Arpan De
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Zhihua Chen
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - John E Morales
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Frederick F Lang
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Jason T Huse
- Translational Molecular Pathology, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA
| | - Joseph H McCarty
- Departments of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
26
|
Wang MX, Ray L, Tanaka KF, Iliff JJ, Heys J. Varying perivascular astroglial endfoot dimensions along the vascular tree maintain perivascular-interstitial flux through the cortical mantle. Glia 2020; 69:715-728. [PMID: 33075175 DOI: 10.1002/glia.23923] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/17/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
The glymphatic system is a recently defined brain-wide network of perivascular spaces along which cerebrospinal fluid (CSF) and interstitial solutes exchange. Astrocyte endfeet encircling the perivascular space form a physical barrier in between these two compartments, and fluid and solutes that are not taken up by astrocytes move out of the perivascular space through the junctions in between astrocyte endfeet. However, little is known about the anatomical structure and the physiological roles of the astrocyte endfeet in regulating the local perivascular exchange. Here, visualizing astrocyte endfoot-endfoot junctions with immunofluorescent labeling against the protein megalencephalic leukoencephalopathy with subcortical cysts-1 (MLC1), we characterized endfoot dimensions along the mouse cerebrovascular tree. We observed marked heterogeneity in endfoot dimensions along vessels of different sizes, and of different types. Specifically, endfoot size was positively correlated with the vessel diameters, with large vessel segments surrounded by large endfeet and small vessel segments surrounded by small endfeet. This association was most pronounced along arterial, rather than venous segments. Computational modeling simulating vascular trees with uniform or varying endfeet dimensions demonstrates that varying endfoot dimensions maintain near constant perivascular-interstitial flux despite correspondingly declining perivascular pressures along the cerebrovascular tree through the cortical depth. These results describe a novel anatomical feature of perivascular astroglial endfeet and suggest that endfoot heterogeneity may be an evolutionary adaptation to maintain perivascular CSF-interstitial fluid exchange through deep brain structures.
Collapse
Affiliation(s)
- Marie Xun Wang
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Lori Ray
- Department of Chemical and Biological Engineering, Montana State University-Bozeman, Bozeman, Montana, USA
| | - Kenji F Tanaka
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Jeffrey J Iliff
- VISN 20 Mental Illness Research, Education and Clinical Center (MIRECC), VA Puget Sound Health Care System, Seattle, Washington, USA.,Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Neurology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jeffrey Heys
- Department of Chemical and Biological Engineering, Montana State University-Bozeman, Bozeman, Montana, USA
| |
Collapse
|
27
|
Sánchez A, García-Lareu B, Puig M, Prat E, Ruberte J, Chillón M, Nunes V, Estévez R, Bosch A. Cerebellar Astrocyte Transduction as Gene Therapy for Megalencephalic Leukoencephalopathy. Neurotherapeutics 2020; 17:2041-2053. [PMID: 32372403 PMCID: PMC7851290 DOI: 10.1007/s13311-020-00865-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare genetic disorder belonging to the group of vacuolating leukodystrophies. It is characterized by megalencephaly, loss of motor functions, epilepsy, and mild mental decline. In brain biopsies of MLC patients, vacuoles were observed in myelin and in astrocytes surrounding blood vessels. There is no therapy for MLC patients, only supportive treatment. We show here a preclinical gene therapy approach for MLC using the Mlc1 knock-out mouse. An adeno-associated virus coding for human MLC1 under the control of the glial fibrillary acidic protein promoter was injected in the cerebellar subarachnoid space of Mlc1 knock-out and wild-type animals at 2 months of age, before the onset of the disease, as a preventive approach. We also tested a therapeutic strategy by injecting the animals at 5 months, once the histopathological abnormalities are starting, or at 15 months, when they have progressed to a more severe pathology. MLC1 expression in the cerebellum restored the adhesion molecule GlialCAM and the chloride channel ClC-2 localization in Bergmann glia, which both are mislocalized in Mlc1 knock-out model. More importantly, myelin vacuolation was extremely reduced in treated mice at all ages and correlated with the amount of expressed MLC1 in Bergmann glia, indicating not only the preventive potential of this strategy but also its therapeutic capacity. In summary, here we provide the first therapeutic approach for patients affected with MLC. This work may have also implications to treat other diseases affecting motor function such as ataxias.
Collapse
Affiliation(s)
- Angela Sánchez
- Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Edifici H, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Belén García-Lareu
- Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Edifici H, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
| | - Meritxell Puig
- Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Edifici H, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
| | - Esther Prat
- Laboratori de Genètica Molecular, Programa de Genes, Malaltia i Teràpia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Unitat de Genètica, Departament de Ciències Fisiològiques, Facultad de Medicina i Ciències de la Salut, Univ. de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Ruberte
- Department of Animal Health and Anatomy and Center of Animal Biotechnology and Gene Therapy (CBATEG), Univ. Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Chillón
- Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Edifici H, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain
- Institut Català de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Virginia Nunes
- Laboratori de Genètica Molecular, Programa de Genes, Malaltia i Teràpia, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Unitat de Genètica, Departament de Ciències Fisiològiques, Facultad de Medicina i Ciències de la Salut, Univ. de Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Raul Estévez
- Centro de Investigación Biomédica en Red sobre Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain.
- Departament de Ciències Fisiològiques, IDIBELL - Institute of Neurosciences, Universitat de Barcelona, E-08907, Barcelona, Spain.
| | - Assumpció Bosch
- Department of Biochemistry and Molecular Biology and Institute of Neurosciences, Edifici H, Universitat Autònoma de Barcelona, E-08193, Bellaterra, Spain.
- Unitat Mixta UAB-VHIR, Vall d'Hebron Institut de Recerca (VHIR), Barcelona, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
28
|
Megalencephalic Leukoencephalopathy with Subcortical Cysts Disease-Linked MLC1 Protein Favors Gap-Junction Intercellular Communication by Regulating Connexin 43 Trafficking in Astrocytes. Cells 2020; 9:cells9061425. [PMID: 32521795 PMCID: PMC7348769 DOI: 10.3390/cells9061425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/29/2020] [Accepted: 06/03/2020] [Indexed: 01/06/2023] Open
Abstract
Astrocytes, the most numerous cells of the central nervous system, exert critical functions for brain homeostasis. To this purpose, astrocytes generate a highly interconnected intercellular network allowing rapid exchange of ions and metabolites through gap junctions, adjoined channels composed of hexamers of connexin (Cx) proteins, mainly Cx43. Functional alterations of Cxs and gap junctions have been observed in several neuroinflammatory/neurodegenerative diseases. In the rare leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts (MLC), astrocytes show defective control of ion/fluid exchanges causing brain edema, fluid cysts, and astrocyte/myelin vacuolation. MLC is caused by mutations in MLC1, an astrocyte-specific protein of elusive function, and in GlialCAM, a MLC1 chaperon. Both proteins are highly expressed at perivascular astrocyte end-feet and astrocyte-astrocyte contacts where they interact with zonula occludens-1 (ZO-1) and Cx43 junctional proteins. To investigate the possible role of Cx43 in MLC pathogenesis, we studied Cx43 properties in astrocytoma cells overexpressing wild type (WT) MLC1 or MLC1 carrying pathological mutations. Using biochemical and electrophysiological techniques, we found that WT, but not mutated, MLC1 expression favors intercellular communication by inhibiting extracellular-signal-regulated kinase 1/2 (ERK1/2)-mediated Cx43 phosphorylation and increasing Cx43 gap-junction stability. These data indicate MLC1 regulation of Cx43 in astrocytes and Cx43 involvement in MLC pathogenesis, suggesting potential target pathways for therapeutic interventions.
Collapse
|
29
|
Hwang J, Vu HM, Kim MS, Lim HH. Plasma membrane localization of MLC1 regulates cellular morphology and motility. Mol Brain 2019; 12:116. [PMID: 31888684 PMCID: PMC6938022 DOI: 10.1186/s13041-019-0540-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 12/18/2019] [Indexed: 01/01/2023] Open
Abstract
Background Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare form of infantile-onset leukodystrophy. The disorder is caused primarily by mutations of MLC1 that leads to a series of phenotypic outcomes including vacuolation of myelin and astrocytes, subcortical cysts, brain edema, and macrocephaly. Recent studies have indicated that functional interactions among MLC1, GlialCAM, and ClC-2 channels play key roles in the regulation of neuronal, glial and vascular homeostasis. However, the physiological role of MLC1 in cellular homeostatic communication remains poorly understood. In the present study, we investigated the cellular function of MLC1 and its effects on cell–cell interactions. Methods MLC1-dependent cellular morphology and motility were analyzed by using confocal and live cell imaging technique. Biochemical approaches such as immunoblotting, co-immunoprecipitation, and surface biotinylation were conducted to support data. Results We found that the altered MLC1 expression and localization led to a great alteration in cellular morphology and motility through actin remodeling. MLC1 overexpression induced filopodia formation and suppressed motility. And, MLC1 proteins expressed in patient-derived MLC1 mutants resulted in trapping in the ER although no changes in morphology or motility were observed. Interestingly knockdown of Mlc1 induced Arp3-Cortactin interaction, lamellipodia formation, and increased the membrane ruffling of the astrocytes. These data indicate that subcellular localization of expressed MLC1 at the plasma membrane is critical for changes in actin dynamics through ARP2/3 complex. Thus, our results suggest that misallocation of pathogenic mutant MLC1 may disturbs the stable cell-cell communication and the homeostatic regulation of astrocytes in patients with MLC.
Collapse
Affiliation(s)
- Junmo Hwang
- Molecular Physiology and Biophysics Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), 41062, Daegu, Republic of Korea
| | - Hung M Vu
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 42988, Daegu, Republic of Korea
| | - Min-Sik Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 42988, Daegu, Republic of Korea
| | - Hyun-Ho Lim
- Molecular Physiology and Biophysics Laboratory, Neurovascular Unit Research Group, Korea Brain Research Institute (KBRI), 41062, Daegu, Republic of Korea. .,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 42988, Daegu, Republic of Korea.
| |
Collapse
|
30
|
Abstract
Leukodystrophies are genetically determined disorders affecting the white matter of the central nervous system. The combination of MRI pattern recognition and next-generation sequencing for the definition of novel disease entities has recently demonstrated that many leukodystrophies are due to the primary involvement and/or mutations in genes selectively expressed by cell types other than the oligodendrocytes, the myelin-forming cells in the brain. This has led to a new definition of leukodystrophies as genetic white matter disorders resulting from the involvement of any white matter structural component. As a result, the research has shifted its main focus from oligodendrocytes to other types of neuroglia. Astrocytes are the housekeeping cells of the nervous system, responsible for maintaining homeostasis and normal brain physiology and to orchestrate repair upon injury. Several lines of evidence show that astrocytic interactions with the other white matter cellular constituents play a primary pathophysiologic role in many leukodystrophies. These are thus now classified as astrocytopathies. This chapter addresses how the crosstalk between astrocytes, other glial cells, axons and non-neural cells are essential for the integrity and maintenance of the white matter in health. It also addresses the current knowledge of the cellular pathomechanisms of astrocytic leukodystrophies, and specifically Alexander disease, vanishing white matter, megalencephalic leukoencephalopathy with subcortical cysts and Aicardi-Goutière Syndrome.
Collapse
Affiliation(s)
- M S Jorge
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Free University Medical Centre, Amsterdam, The Netherlands.
| |
Collapse
|
31
|
Megalencephalic Leukoencephalopathy with Subcortical Cysts Protein-1 (MLC1) Counteracts Astrocyte Activation in Response to Inflammatory Signals. Mol Neurobiol 2019; 56:8237-8254. [DOI: 10.1007/s12035-019-01657-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/20/2019] [Indexed: 01/08/2023]
|
32
|
Bursting at the Seams: Molecular Mechanisms Mediating Astrocyte Swelling. Int J Mol Sci 2019; 20:ijms20020330. [PMID: 30650535 PMCID: PMC6359623 DOI: 10.3390/ijms20020330] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 01/31/2023] Open
Abstract
Brain swelling is one of the most robust predictors of outcome following brain injury, including ischemic, traumatic, hemorrhagic, metabolic or other injury. Depending on the specific type of insult, brain swelling can arise from the combined space-occupying effects of extravasated blood, extracellular edema fluid, cellular swelling, vascular engorgement and hydrocephalus. Of these, arguably the least well appreciated is cellular swelling. Here, we explore current knowledge regarding swelling of astrocytes, the most abundant cell type in the brain, and the one most likely to contribute to pathological brain swelling. We review the major molecular mechanisms identified to date that contribute to or mitigate astrocyte swelling via ion transport, and we touch upon the implications of astrocyte swelling in health and disease.
Collapse
|
33
|
Elorza-Vidal X, Sirisi S, Gaitán-Peñas H, Pérez-Rius C, Alonso-Gardón M, Armand-Ugón M, Lanciotti A, Brignone MS, Prat E, Nunes V, Ambrosini E, Gasull X, Estévez R. GlialCAM/MLC1 modulates LRRC8/VRAC currents in an indirect manner: Implications for megalencephalic leukoencephalopathy. Neurobiol Dis 2018; 119:88-99. [DOI: 10.1016/j.nbd.2018.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/25/2018] [Accepted: 07/28/2018] [Indexed: 01/09/2023] Open
|
34
|
Dubey M, Brouwers E, Hamilton EM, Stiedl O, Bugiani M, Koch H, Kole MH, Boschert U, Wykes RC, Mansvelder HD, van der Knaap MS, Min R. Seizures and disturbed brain potassium dynamics in the leukodystrophy megalencephalic leukoencephalopathy with subcortical cysts. Ann Neurol 2018; 83:636-649. [PMID: 29466841 PMCID: PMC5900999 DOI: 10.1002/ana.25190] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 01/12/2018] [Accepted: 02/18/2018] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Loss of function of the astrocyte-specific protein MLC1 leads to the childhood-onset leukodystrophy "megalencephalic leukoencephalopathy with subcortical cysts" (MLC). Studies on isolated cells show a role for MLC1 in astrocyte volume regulation and suggest that disturbed brain ion and water homeostasis is central to the disease. Excitability of neuronal networks is particularly sensitive to ion and water homeostasis. In line with this, reports of seizures and epilepsy in MLC patients exist. However, systematic assessment and mechanistic understanding of seizures in MLC are lacking. METHODS We analyzed an MLC patient inventory to study occurrence of seizures in MLC. We used two distinct genetic mouse models of MLC to further study epileptiform activity and seizure threshold through wireless extracellular field potential recordings. Whole-cell patch-clamp recordings and K+ -sensitive electrode recordings in mouse brain slices were used to explore the underlying mechanisms of epilepsy in MLC. RESULTS An early onset of seizures is common in MLC. Similarly, in MLC mice, we uncovered spontaneous epileptiform brain activity and a lowered threshold for induced seizures. At the cellular level, we found that although passive and active properties of individual pyramidal neurons are unchanged, extracellular K+ dynamics and neuronal network activity are abnormal in MLC mice. INTERPRETATION Disturbed astrocyte regulation of ion and water homeostasis in MLC causes hyperexcitability of neuronal networks and seizures. These findings suggest a role for defective astrocyte volume regulation in epilepsy. Ann Neurol 2018;83:636-649.
Collapse
Affiliation(s)
- Mohit Dubey
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
- Present address:
Current address for Mohit Dubey: Department of Axonal SignalingNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
| | - Eelke Brouwers
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Eline M.C. Hamilton
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Marianna Bugiani
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of PathologyVU University Medical CenterAmsterdamThe Netherlands
| | - Henner Koch
- Department of NeurologyUniversity of Tübingen, Hertie Institute for Clinical Brain ResearchTübingenGermany
| | - Maarten H.P. Kole
- Department of Axonal SignalingNetherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and SciencesAmsterdamThe Netherlands
- Cell Biology, Faculty of ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Ursula Boschert
- Translational Innovation Platform Immunology/Neurology, EMD Serono Research & Development InstituteBillericaMA
| | - Robert C. Wykes
- Department of Clinical & Experimental Epilepsy, UCL Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Marjo S. van der Knaap
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam NeuroscienceVU University Medical CenterAmsterdamThe Netherlands
- Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Amsterdam NeuroscienceVU UniversityAmsterdamThe Netherlands
| |
Collapse
|
35
|
Estévez R, Elorza-Vidal X, Gaitán-Peñas H, Pérez-Rius C, Armand-Ugón M, Alonso-Gardón M, Xicoy-Espaulella E, Sirisi S, Arnedo T, Capdevila-Nortes X, López-Hernández T, Montolio M, Duarri A, Teijido O, Barrallo-Gimeno A, Palacín M, Nunes V. Megalencephalic leukoencephalopathy with subcortical cysts: A personal biochemical retrospective. Eur J Med Genet 2018; 61:50-60. [DOI: 10.1016/j.ejmg.2017.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/14/2017] [Accepted: 10/22/2017] [Indexed: 12/22/2022]
|
36
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 234] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Dai CL, He WB, Du J, Tan YQ, Lu GX, Li W. A case of megalencephalic leukoencephalopathy with subcortical cysts type 1 was identified with a novel compound heterozygous alteration (c.135delC; c.423+2dupT) in China. Clin Case Rep 2017; 5:961-967. [PMID: 28588848 PMCID: PMC5458048 DOI: 10.1002/ccr3.986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/14/2017] [Accepted: 03/19/2017] [Indexed: 11/08/2022] Open
Abstract
We report a compound heterozygous mutation (c.135delC; c.423+2dupT) of MLC1 gene in a Chinese patient underlying infantile macrocephaly and neurological deterioration in early childhood. Brain MRI revealed diffusion abnormality in swollen white matter and a subcortical cyst. The cDNA sequencing analysis for the c.423+2dupT variant revealed skipping of exon 5.
Collapse
Affiliation(s)
- Cong-Ling Dai
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China
| | - Wen-Bin He
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China.,Reproductive and Genetic Hospital of Citic-Xiangya Hunan 410008 China
| | - Juan Du
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China.,Reproductive and Genetic Hospital of Citic-Xiangya Hunan 410008 China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China.,Reproductive and Genetic Hospital of Citic-Xiangya Hunan 410008 China
| | - Guang-Xiu Lu
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China.,Reproductive and Genetic Hospital of Citic-Xiangya Hunan 410008 China.,National Engineering and Research Center of Human Stem Cells Changsha Hunan 410000 China
| | - Wen Li
- Institute of Reproductive and Stem Cell Engineering Central South University Hunan 410008 China.,Reproductive and Genetic Hospital of Citic-Xiangya Hunan 410008 China
| |
Collapse
|
38
|
Bugiani M, Dubey M, Breur M, Postma NL, Dekker MP, Ter Braak T, Boschert U, Abbink TEM, Mansvelder HD, Min R, van Weering JRT, van der Knaap MS. Megalencephalic leukoencephalopathy with cysts: the Glialcam-null mouse model. Ann Clin Transl Neurol 2017; 4:450-465. [PMID: 28695146 PMCID: PMC5497535 DOI: 10.1002/acn3.405] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 12/23/2022] Open
Abstract
Objective Megalencephalic leukoencephalopathy with cysts (MLC) is a genetic infantile‐onset disease characterized by macrocephaly and white matter edema due to loss of MLC1 function. Recessive mutations in either MLC1 or GLIALCAM cause the disease. MLC1 is involved in astrocytic volume regulation; GlialCAM ensures the correct membrane localization of MLC1. Their exact role in brain ion‐water homeostasis is only partly defined. We characterized Glialcam‐null mice for further studies. Methods We investigated the consequences of loss of GlialCAM in Glialcam‐null mice and compared GlialCAM developmental expression in mice and men. Results Glialcam‐null mice had early‐onset megalencephaly and increased brain water content. From 3 weeks, astrocytes were abnormal with swollen processes abutting blood vessels. Concomitantly, progressive white matter vacuolization developed due to intramyelinic edema. Glialcam‐null astrocytes showed abolished expression of MLC1, reduced expression of the chloride channel ClC‐2 and increased expression and redistribution of the water channel aquaporin4. Expression of other MLC1‐interacting proteins and the volume regulated anion channel LRRC8A was unchanged. In mice, GlialCAM expression increased until 3 weeks and then stabilized. In humans, GlialCAM expression was highest in the first 3 years to then decrease and stabilize from approximately 5 years. Interpretation Glialcam‐null mice replicate the early stages of the human disease with early‐onset intramyelinic edema. The earliest change is astrocytic swelling, further substantiating that a defect in astrocytic volume regulation is the primary cellular defect in MLC. GlialCAM expression affects expression of MLC1, ClC‐2 and aquaporin4, indicating that abnormal interplay between these proteins is a disease mechanism in megalencephalic leukoencephalopathy with cysts.
Collapse
Affiliation(s)
- Marianna Bugiani
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Pathology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Mohit Dubey
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Integrative Neurophysiology Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Marjolein Breur
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Nienke L Postma
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Marien P Dekker
- Department of Functional Genomics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Timo Ter Braak
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Ursula Boschert
- Translational Innovation Platform Immunology/Neurology EMD Serono Research & Development Institute Billerica 01821 Massachusetts
| | - Truus E M Abbink
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands
| | - Huibert D Mansvelder
- Department of Integrative Neurophysiology Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Rogier Min
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Integrative Neurophysiology Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Jan R T van Weering
- Department of Functional Genomics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| | - Marjo S van der Knaap
- Department of Pediatrics/Child Neurology Amsterdam Neuroscience VU University Medical Center Amsterdam The Netherlands.,Department of Functional Genomics Center for Neurogenomics and Cognitive Research Amsterdam Neuroscience VU University Amsterdam The Netherlands
| |
Collapse
|
39
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 263] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
40
|
Sirisi S, Elorza-Vidal X, Arnedo T, Armand-Ugón M, Callejo G, Capdevila-Nortes X, López-Hernández T, Schulte U, Barrallo-Gimeno A, Nunes V, Gasull X, Estévez R. Depolarization causes the formation of a ternary complex between GlialCAM, MLC1 and ClC-2 in astrocytes: implications in megalencephalic leukoencephalopathy. Hum Mol Genet 2017; 26:2436-2450. [DOI: 10.1093/hmg/ddx134] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 01/06/2023] Open
|
41
|
Sugio S, Tohyama K, Oku S, Fujiyoshi K, Yoshimura T, Hikishima K, Yano R, Fukuda T, Nakamura M, Okano H, Watanabe M, Fukata M, Ikenaka K, Tanaka KF. Astrocyte-mediated infantile-onset leukoencephalopathy mouse model. Glia 2016; 65:150-168. [DOI: 10.1002/glia.23084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/22/2016] [Accepted: 09/29/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Shouta Sugio
- Division of Neurobiology and Bioinformatics; National Institute for Physiological Sciences; Okazaki 444-8787 Japan
- Department of Physiological Sciences, School of Life Science; SOKENDAI (The Graduate University for Advanced Studies); Okazaki 444-8787 Japan
| | - Koujiro Tohyama
- Department of Physiology School of Dentistry, The Center of EM and Bio-Imaging Research, Nano-Neuroanatomy; Iwate Medical University; Morioka 020-8505 Japan
| | - Shinichiro Oku
- Division of Membrane Physiology, National Institute for Physiological Sciences; Okazaki 444-8787 Japan
| | - Kanehiro Fujiyoshi
- Department of Orthopedic Surgery; Keio University School of Medicine; Tokyo 160-8582 Japan
- Department of Orthopedic Surgery; National Hospital Organization, Murayama Medical Center; Tokyo 208-0011 Japan
| | - Takeshi Yoshimura
- Division of Neurobiology and Bioinformatics; National Institute for Physiological Sciences; Okazaki 444-8787 Japan
- Department of Physiological Sciences, School of Life Science; SOKENDAI (The Graduate University for Advanced Studies); Okazaki 444-8787 Japan
| | - Keigo Hikishima
- Department of Physiology; Keio University School of Medicine; Tokyo 160-8582 Japan
- Central Institute for Experimental Animals; Kawasaki 210-0821 Japan
| | - Ryutaro Yano
- Department of Physiology; Keio University School of Medicine; Tokyo 160-8582 Japan
| | - Takahiro Fukuda
- Division of Neuropathology, Department of Pathology; The Jikei University School of Medicine; Tokyo 105-8461 Japan
| | - Masaya Nakamura
- Department of Orthopedic Surgery; Keio University School of Medicine; Tokyo 160-8582 Japan
| | - Hideyuki Okano
- Department of Physiology; Keio University School of Medicine; Tokyo 160-8582 Japan
| | - Masahiko Watanabe
- Department of Anatomy; Hokkaido University Graduate School of Medicine; Sapporo 060-8638 Japan
| | - Masaki Fukata
- Department of Physiological Sciences, School of Life Science; SOKENDAI (The Graduate University for Advanced Studies); Okazaki 444-8787 Japan
- Division of Membrane Physiology, National Institute for Physiological Sciences; Okazaki 444-8787 Japan
| | - Kazuhiro Ikenaka
- Division of Neurobiology and Bioinformatics; National Institute for Physiological Sciences; Okazaki 444-8787 Japan
- Department of Physiological Sciences, School of Life Science; SOKENDAI (The Graduate University for Advanced Studies); Okazaki 444-8787 Japan
| | - Kenji F. Tanaka
- Division of Neurobiology and Bioinformatics; National Institute for Physiological Sciences; Okazaki 444-8787 Japan
- Department of Neuropsychiatry; Keio University School of Medicine; Tokyo 160-8582 Japan
| |
Collapse
|
42
|
Gain-of-function defects of astrocytic Kir4.1 channels in children with autism spectrum disorders and epilepsy. Sci Rep 2016; 6:34325. [PMID: 27677466 PMCID: PMC5039625 DOI: 10.1038/srep34325] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/07/2016] [Indexed: 12/23/2022] Open
Abstract
Dysfunction of the inwardly-rectifying potassium channels Kir4.1 (KCNJ10) represents a pathogenic mechanism contributing to Autism-Epilepsy comorbidity. To define the role of Kir4.1 variants in the disorder, we sequenced KCNJ10 in a sample of affected individuals, and performed genotype-phenotype correlations. The effects of mutations on channel activity, protein trafficking, and astrocyte function were investigated in Xenopus laevis oocytes, and in human astrocytoma cell lines. An in vivo model of the disorder was also explored through generation of kcnj10a morphant zebrafish overexpressing the mutated human KCNJ10. We detected germline heterozygous KCNJ10 variants in 19/175 affected children. Epileptic spasms with dysregulated sensory processing represented the main disease phenotype. When investigated on astrocyte-like cells, the p.R18Q mutation exerted a gain-of-function effect by enhancing Kir4.1 membrane expression and current density. Similarly, the p.R348H variant led to gain of channel function through hindrance of pH-dependent current inhibition. The frequent polymorphism p.R271C seemed, instead, to have no obvious functional effects. Our results confirm that variants in KCNJ10 deserve attention in autism-epilepsy, and provide insight into the molecular mechanisms of autism and seizures. Similar to neurons, astrocyte dysfunction may result in abnormal synaptic transmission and electrical discharge, and should be regarded as a possible pharmacological target in autism-epilepsy.
Collapse
|
43
|
Boscia F, Begum G, Pignataro G, Sirabella R, Cuomo O, Casamassa A, Sun D, Annunziato L. Glial Na(+) -dependent ion transporters in pathophysiological conditions. Glia 2016; 64:1677-97. [PMID: 27458821 DOI: 10.1002/glia.23030] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/22/2016] [Accepted: 06/29/2016] [Indexed: 12/12/2022]
Abstract
Sodium dynamics are essential for regulating functional processes in glial cells. Indeed, glial Na(+) signaling influences and regulates important glial activities, and plays a role in neuron-glia interaction under physiological conditions or in response to injury of the central nervous system (CNS). Emerging studies indicate that Na(+) pumps and Na(+) -dependent ion transporters in astrocytes, microglia, and oligodendrocytes regulate Na(+) homeostasis and play a fundamental role in modulating glial activities in neurological diseases. In this review, we first briefly introduced the emerging roles of each glial cell type in the pathophysiology of cerebral ischemia, Alzheimer's disease, epilepsy, Parkinson's disease, Amyotrophic Lateral Sclerosis, and myelin diseases. Then, we discussed the current knowledge on the main roles played by the different glial Na(+) -dependent ion transporters, including Na(+) /K(+) ATPase, Na(+) /Ca(2+) exchangers, Na(+) /H(+) exchangers, Na(+) -K(+) -Cl(-) cotransporters, and Na(+) - HCO3- cotransporter in the pathophysiology of the diverse CNS diseases. We highlighted their contributions in cell survival, synaptic pathology, gliotransmission, pH homeostasis, and their role in glial activation, migration, gliosis, inflammation, and tissue repair processes. Therefore, this review summarizes the foundation work for targeting Na(+) -dependent ion transporters in glia as a novel strategy to control important glial activities associated with Na(+) dynamics in different neurological disorders. GLIA 2016;64:1677-1697.
Collapse
Affiliation(s)
- Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Gulnaz Begum
- Department of Neurology, University of Pittsburgh Medical School
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Rossana Sirabella
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| | - Dandan Sun
- Department of Neurology, University of Pittsburgh Medical School.,Veterans Affairs Pittsburgh Health Care System, Geriatric Research, Educational and Clinical Center, Pittsburgh, Pennsylvania, 15213
| | - Lucio Annunziato
- Division of Pharmacology, Department of Neuroscience, Reproductive, and Odontostomatological Sciences, School of Medicine, Federico II University of Naples, Naples, Italy
| |
Collapse
|
44
|
Lanciotti A, Brignone MS, Visentin S, De Nuccio C, Catacuzzeno L, Mallozzi C, Petrini S, Caramia M, Veroni C, Minnone G, Bernardo A, Franciolini F, Pessia M, Bertini E, Petrucci TC, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 regulates epidermal growth factor receptor signaling in astrocytes. Hum Mol Genet 2016; 25:1543-58. [DOI: 10.1093/hmg/ddw032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 02/03/2016] [Indexed: 01/13/2023] Open
|
45
|
Jo AO, Ryskamp DA, Phuong TTT, Verkman AS, Yarishkin O, MacAulay N, Križaj D. TRPV4 and AQP4 Channels Synergistically Regulate Cell Volume and Calcium Homeostasis in Retinal Müller Glia. J Neurosci 2015; 35:13525-37. [PMID: 26424896 PMCID: PMC4588615 DOI: 10.1523/jneurosci.1987-15.2015] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 08/26/2015] [Accepted: 08/27/2015] [Indexed: 11/21/2022] Open
Abstract
Brain edema formation occurs after dysfunctional control of extracellular volume partly through impaired astrocytic ion and water transport. Here, we show that such processes might involve synergistic cooperation between the glial water channel aquaporin 4 (AQP4) and the transient receptor potential isoform 4 (TRPV4), a polymodal swelling-sensitive cation channel. In mouse retinas, TRPV4 colocalized with AQP4 in the end feet and radial processes of Müller astroglia. Genetic ablation of TRPV4 did not affect the distribution of AQP4 and vice versa. However, retinas from Trpv4(-/-) and Aqp4(-/-) mice exhibited suppressed transcription of genes encoding Trpv4, Aqp4, and the Kir4.1 subunit of inwardly rectifying potassium channels. Swelling and [Ca(2+)]i elevations evoked in Müller cells by hypotonic stimulation were antagonized by the selective TRPV4 antagonist HC-067047 (2-methyl-1-[3-(4-morpholinyl)propyl]-5-phenyl-N-[3-(trifluoromethyl)phenyl]-1H-pyrrole-3-carboxamide) or Trpv4 ablation. Elimination of Aqp4 suppressed swelling-induced [Ca(2+)]i elevations but only modestly attenuated the amplitude of Ca(2+) signals evoked by the TRPV4 agonist GSK1016790A [(N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide]. Glial cells lacking TRPV4 but not AQP4 showed deficits in hypotonic swelling and regulatory volume decrease. Functional synergy between TRPV4 and AQP4 during cell swelling was confirmed in the heterologously expressing Xenopus oocyte model. Importantly, when the swelling rate was osmotically matched for AQP4-positive and AQP4-negative oocytes, TRPV4 activation became independent of AQP4. We conclude that AQP4-mediated water fluxes promote the activation of the swelling sensor, whereas Ca(2+) entry through TRPV4 channels reciprocally modulates volume regulation, swelling, and Aqp4 gene expression. Therefore, TRPV4-AQP4 interactions constitute a molecular system that fine-tunes astroglial volume regulation by integrating osmosensing, calcium signaling, and water transport and, when overactivated, triggers pathological swelling. Significance statement: We characterize the physiological features of interactions between the astroglial swelling sensor transient receptor potential isoform 4 (TRPV4) and the aquaporin 4 (AQP4) water channel in retinal Müller cells. Our data reveal an elegant and complex set of mechanisms involving reciprocal interactions at the level of glial gene expression, calcium homeostasis, swelling, and volume regulation. Specifically, water influx through AQP4 drives calcium influx via TRPV4 in the glial end foot, which regulates expression of Aqp4 and Kir4.1 genes and facilitates the time course and amplitude of hypotonicity-induced swelling and regulatory volume decrease. We confirm the crucial facets of the signaling mechanism in heterologously expressing oocytes. These results identify the molecular mechanism that contributes to dynamic regulation of glial volume but also provide new insights into the pathophysiology of glial reactivity and edema formation.
Collapse
Affiliation(s)
- Andrew O Jo
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute
| | - Daniel A Ryskamp
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, Interdepartmental Program in Neuroscience, and
| | - Tam T T Phuong
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute
| | - Alan S Verkman
- Department of Medicine, University of California San Francisco, San Francisco, California 94143, and
| | - Oleg Yarishkin
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute
| | - Nanna MacAulay
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - David Križaj
- Department of Ophthalmology and Visual Sciences, Moran Eye Institute, Interdepartmental Program in Neuroscience, and Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, Utah 84132,
| |
Collapse
|
46
|
Capdevila-Nortes X, Jeworutzki E, Elorza-Vidal X, Barrallo-Gimeno A, Pusch M, Estévez R. Structural determinants of interaction, trafficking and function in the ClC-2/MLC1 subunit GlialCAM involved in leukodystrophy. J Physiol 2015; 593:4165-80. [PMID: 26033718 DOI: 10.1113/jp270467] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/22/2015] [Indexed: 02/03/2023] Open
Abstract
KEY POINTS The extracellular domain of GlialCAM is necessary for its targeting to cell junctions, as well as for interactions with itself and MLC1 and ClC-2. The C-terminus of GlialCAM is not necessary for interaction but is required for targeting to cell junctions. The first three residues of the transmembrane segment of GlialCAM are required for GlialCAM-mediated ClC-2 activation. ABSTRACT Mutations in the genes encoding the astrocytic protein MLC1, the cell adhesion molecule GlialCAM or the Cl(-) channel ClC-2 underlie human leukodystrophies. GlialCAM binds to itself, to MLC1 and to ClC-2, and directs these proteins to cell-cell contacts. In addition, GlialCAM dramatically activates ClC-2 mediated currents. In the present study, we used mutagenesis studies combined with functional and biochemical analyses to determine which parts of GlialCAM are required to perform these cellular functions. We found that the extracellular domain of GlialCAM is necessary for cell junction targeting and for mediating interactions with itself or with MLC1 and ClC-2. The C-terminus is also necessary for proper targeting to cell-cell junctions but is not required for the biochemical interaction. Finally, we identified the first three amino acids of the transmembrane segment of GlialCAM as being essential for the activation of ClC-2 currents but not for targeting or biochemical interaction. Our results provide new mechanistic insights concerning the regulation of the cell biology and function of MLC1 and ClC-2 by GlialCAM.
Collapse
Affiliation(s)
- Xavier Capdevila-Nortes
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain
| | - Elena Jeworutzki
- Istituto di Biofisica, CNR, Genoa, Italy.,Present address IfGH-Myocellular Electrophysiology, Department of Cardiovascular Medicine, University Hospital of Münster, Münster, Germany
| | - Xabier Elorza-Vidal
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain.,U-750, Centro de investigación en red de enfermedades raras (CIBERER), ISCIII, Barcelona, Spain
| | - Alejandro Barrallo-Gimeno
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain
| | | | - Raúl Estévez
- Sección de Fisiología, Departamento de Ciencias Fisiológicas II, Universidad de Barcelona, Barcelona, Spain.,U-750, Centro de investigación en red de enfermedades raras (CIBERER), ISCIII, Barcelona, Spain
| |
Collapse
|
47
|
Brignone MS, Lanciotti A, Camerini S, De Nuccio C, Petrucci TC, Visentin S, Ambrosini E. MLC1 protein: a likely link between leukodystrophies and brain channelopathies. Front Cell Neurosci 2015; 9:66. [PMID: 25883547 PMCID: PMC4381631 DOI: 10.3389/fncel.2015.00106] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 03/09/2015] [Indexed: 01/12/2023] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLCs) disease is a rare inherited, autosomal recessive form of childhood-onset spongiform leukodystrophy characterized by macrocephaly, deterioration of motor functions, epileptic seizures and mental decline. Brain edema, subcortical fluid cysts, myelin and astrocyte vacuolation are the histopathological hallmarks of MLC. Mutations in either the MLC1 gene (>75% of patients) or the GlialCAM gene (<20% of patients) are responsible for the disease. Recently, the GlialCAM adhesion protein was found essential for the membrane expression and function of the chloride channel ClC-2 indicating MLC disease caused by mutation in GlialCAM as the first channelopathy among leukodystrophies. On the contrary, the function of MLC1 protein, which binds GlialCAM, its functional relationship with ClC-2 and the molecular mechanisms underlying MLC1 mutation-induced functional defects are not fully understood yet. The human MLC1 gene encodes a 377-amino acid membrane protein with eight predicted transmembrane domains which shows very low homology with voltage-dependent potassium (K+) channel subunits. The high expression of MLC1 in brain astrocytes contacting blood vessels and meninges and brain alterations observed in MLC patients have led to hypothesize a role for MLC1 in the regulation of ion and water homeostasis. Recent studies have shown that MLC1 establishes structural and/or functional interactions with several ion/water channels and transporters and ion channel accessory proteins, and that these interactions are affected by MLC1 mutations causing MLC. Here, we review data on MLC1 functional properties obtained in in vitro and in vivo models and discuss evidence linking the effects of MLC1 mutations to brain channelopathies.
Collapse
Affiliation(s)
- Maria S Brignone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Angela Lanciotti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Serena Camerini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Chiara De Nuccio
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Tamara C Petrucci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Sergio Visentin
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| | - Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità Rome, Italy
| |
Collapse
|
48
|
Dubey M, Bugiani M, Ridder MC, Postma NL, Brouwers E, Polder E, Jacobs JG, Baayen JC, Klooster J, Kamermans M, Aardse R, de Kock CPJ, Dekker MP, van Weering JRT, Heine VM, Abbink TEM, Scheper GC, Boor I, Lodder JC, Mansvelder HD, van der Knaap MS. Mice with megalencephalic leukoencephalopathy with cysts: A developmental angle. Ann Neurol 2014; 77:114-31. [DOI: 10.1002/ana.24307] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Revised: 10/27/2014] [Accepted: 11/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Mohit Dubey
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Pathology; VU University Medical Center
| | - Margreet C. Ridder
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Nienke L. Postma
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Eelke Brouwers
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Emiel Polder
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - J. Gerbren Jacobs
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | | | - Jan Klooster
- Department of Retinal Signal Processing; Netherlands Institute for Neuroscience-KNAW; Amsterdam Netherlands
| | - Maarten Kamermans
- Department of Retinal Signal Processing; Netherlands Institute for Neuroscience-KNAW; Amsterdam Netherlands
| | - Romy Aardse
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Christiaan P. J. de Kock
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Marien P. Dekker
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | - Jan R. T. van Weering
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | - Vivi M. Heine
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| | - Truus E. M. Abbink
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Gert C. Scheper
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Ilja Boor
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
| | - Johannes C. Lodder
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Huibert D. Mansvelder
- Department of Integrative Neurophysiology; Center for Neurogenomics and Cognitive Research, VU University
| | - Marjo S. van der Knaap
- Department of Pediatrics/Child Neurology; Neuroscience Campus Amsterdam, VU University Medical Center
- Department of Functional Genomics; Center for Neurogenomics and Cognitive Research, VU University
| |
Collapse
|
49
|
Brignone MS, Lanciotti A, Visentin S, De Nuccio C, Molinari P, Camerini S, Diociaiuti M, Petrini S, Minnone G, Crescenzi M, Laudiero LB, Bertini E, Petrucci TC, Ambrosini E. Megalencephalic leukoencephalopathy with subcortical cysts protein-1 modulates endosomal pH and protein trafficking in astrocytes: relevance to MLC disease pathogenesis. Neurobiol Dis 2014; 66:1-18. [PMID: 24561067 PMCID: PMC4003525 DOI: 10.1016/j.nbd.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 11/28/2022] Open
Abstract
Megalencephalic leukoencephalopathy with subcortical cysts (MLC) is a rare leukodystrophy caused by mutations in the gene encoding MLC1, a membrane protein mainly expressed in astrocytes in the central nervous system. Although MLC1 function is unknown, evidence is emerging that it may regulate ion fluxes. Using biochemical and proteomic approaches to identify MLC1 interactors and elucidate MLC1 function we found that MLC1 interacts with the vacuolar ATPase (V-ATPase), the proton pump that regulates endosomal acidity. Because we previously showed that in intracellular organelles MLC1 directly binds Na, K-ATPase, which controls endosomal pH, we studied MLC1 endosomal localization and trafficking and MLC1 effects on endosomal acidity and function using human astrocytoma cells overexpressing wild-type (WT) MLC1 or MLC1 carrying pathological mutations. We found that WT MLC1 is abundantly expressed in early (EEA1(+), Rab5(+)) and recycling (Rab11(+)) endosomes and uses the latter compartment to traffic to the plasma membrane during hyposmotic stress. We also showed that WT MLC1 limits early endosomal acidification and influences protein trafficking in astrocytoma cells by stimulating protein recycling, as revealed by FITC-dextran measurement of endosomal pH and transferrin protein recycling assay, respectively. WT MLC1 also favors recycling to the plasma-membrane of the TRPV4 cation channel which cooperates with MLC1 to activate calcium influx in astrocytes during hyposmotic stress. Although MLC disease-causing mutations differentially affect MLC1 localization and trafficking, all the mutated proteins fail to influence endosomal pH and protein recycling. This study demonstrates that MLC1 modulates endosomal pH and protein trafficking suggesting that alteration of these processes contributes to MLC pathogenesis.
Collapse
Affiliation(s)
- Maria S Brignone
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Lanciotti
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Sergio Visentin
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Chiara De Nuccio
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Paola Molinari
- Department of Pharmacology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Serena Camerini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Marco Diociaiuti
- Department of Technology and Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Stefania Petrini
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Gaetana Minnone
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Marco Crescenzi
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Luisa Bracci Laudiero
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy; Institute of Translational Pharmacology, CNR, Via del Fosso Cavaliere 100, 00133 Rome, Italy.
| | - Enrico Bertini
- Unit of Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Pediatric Research Hospital, Piazza S. Onofrio 4, 00165 Rome, Italy.
| | - Tamara C Petrucci
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Elena Ambrosini
- Department of Cell Biology and Neuroscience, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
50
|
Sirisi S, Folgueira M, López-Hernández T, Minieri L, Pérez-Rius C, Gaitán-Peñas H, Zang J, Martínez A, Capdevila-Nortes X, De La Villa P, Roy U, Alia A, Neuhauss S, Ferroni S, Nunes V, Estévez R, Barrallo-Gimeno A. Megalencephalic leukoencephalopathy with subcortical cysts protein 1 regulates glial surface localization of GLIALCAM from fish to humans. Hum Mol Genet 2014; 23:5069-86. [DOI: 10.1093/hmg/ddu231] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|