1
|
Granata P, Zito A, Cocciadiferro D, Novelli A, Pessina C, Mazza T, Ferri M, Piccinelli P, Luoni C, Termine C, Fasano M, Casalone R. Unveiling genetic insights: Array-CGH and WES discoveries in a cohort of 122 children with essential autism spectrum disorder. BMC Genomics 2024; 25:1186. [PMID: 39654053 PMCID: PMC11629504 DOI: 10.1186/s12864-024-11077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND Autistic Spectrum Disorder (ASD) is a neurodevelopmental disorder with a strong genetic component and high heterogeneity. Essential ASD refers to patients who do not have other comorbidities. This study aimed to investigate the genetic basis of essential ASD using whole exome sequencing (WES) and array-comparative genomic hybridization (array-CGH). RESULTS In a cohort of 122 children with essential ASD, WES detected 382 variants across 223 genes, while array-CGH identified 46 copy number variants (CNVs). The combined use of WES and array-CGH revealed pathogenic variants in four patients (3.1% detection rate) and likely pathogenic variants in 34 patients (27.8% detection rate). Only one patient had a pathogenic CNV (0.8% detection rate). Including likely pathogenic variants, the overall detection rate was 31.2%. Additionally, 33 de novo heterozygous sequence variants were identified by WES, with three classified as pathogenic and 13 as likely pathogenic. Sequence variants were found in 85 genes already associated with ASD, and 138 genes not previously included in the SFARI dataset were identified as potential new candidate genes. CONCLUSIONS The study enhances genetic understanding of essential ASD and identifies new candidate genes of interest. The findings suggest that using both array-CGH and WES in patients with essential ASD can improve the detection of pathogenic and likely pathogenic genetic variants, contributing to better diagnosis and potentially guiding future research and treatment strategies.
Collapse
Affiliation(s)
- Paola Granata
- Cytogenetics and Medical Genetics Unit, Department of Services, ASST dei Sette Laghi, Varese, Italy
| | - Alessandra Zito
- School of Medical Genetics, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Dario Cocciadiferro
- Translational Cytogenomics Research Unit, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Chiara Pessina
- Cytogenetics and Medical Genetics Unit, Department of Services, ASST dei Sette Laghi, Varese, Italy
| | - Tommaso Mazza
- Translational Cytogenomics Research Unit, Ospedale Pediatrico Bambino Gesù, Roma, Italy
- Laboratory of Bioinformatics, IRCCS Casa Sollievo della Sofferenza, S. Giovanni, Rotondo, Italy
| | - Matteo Ferri
- Child Neuropsychiatry Unit, Department of Maternal and Child Health, ASST dei Sette Laghi, Varese, Italy
| | - Paolo Piccinelli
- Child Neuropsychiatry Unit, Department of Maternal and Child Health, ASST dei Sette Laghi, Varese, Italy
| | - Chiara Luoni
- Child Neuropsychiatry Unit, Department of Maternal and Child Health, ASST dei Sette Laghi, Varese, Italy
| | - Cristiano Termine
- Child Neuropsychiatry Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Mauro Fasano
- Department of Science and High Technology, University of Insubria, via Manara 7, Busto Arsizio, Italy.
- Center of Neuroscience, University of Insubria, Busto Arsizio, Italy.
| | - Rosario Casalone
- Cytogenetics and Medical Genetics Unit, Department of Services, ASST dei Sette Laghi, Varese, Italy
| |
Collapse
|
2
|
Ham A, Chang AY, Li H, Bain JM, Goldman JE, Sulzer D, Veenstra-VanderWeele J, Tang G. Impaired macroautophagy confers substantial risk for intellectual disability in children with autism spectrum disorders. Mol Psychiatry 2024:10.1038/s41380-024-02741-z. [PMID: 39237724 DOI: 10.1038/s41380-024-02741-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Autism spectrum disorder (ASD) represents a complex of neurological and developmental disabilities characterized by clinical and genetic heterogeneity. While the causes of ASD are still unknown, many ASD risk factors are found to converge on intracellular quality control mechanisms that are essential for cellular homeostasis, including the autophagy-lysosomal degradation pathway. Studies have reported impaired autophagy in ASD human brain and ASD-like synapse pathology and behaviors in mouse models of brain autophagy deficiency, highlighting an essential role for defective autophagy in ASD pathogenesis. To determine whether altered autophagy in the brain may also occur in peripheral cells that might provide useful biomarkers, we assessed activities of autophagy in lympoblasts from ASD and control subjects. We find that lymphoblast autophagy is compromised in a subset of ASD participants due to impaired autophagy induction. Similar changes in autophagy are detected in postmortem human brains from ASD individuals and in brain and peripheral blood mononuclear cells from syndromic ASD mouse models. Remarkably, we find a strong correlation between impaired autophagy and intellectual disability in ASD participants. By depleting the key autophagy gene Atg7 from different brain cells, we provide further evidence that autophagy deficiency causes cognitive impairment in mice. Together, our findings suggest autophagy dysfunction as a convergent mechanism that can be detected in peripheral blood cells from a subset of autistic individuals, and that lymphoblast autophagy may serve as a biomarker to stratify ASD patients for the development of targeted interventions.
Collapse
Affiliation(s)
- Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Audrey Yuen Chang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Jennifer M Bain
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- Department of Pharmacology, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, 10032, USA
- New York State Psychiatric Institute, New York, NY, 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY, 10032, USA.
| |
Collapse
|
3
|
Hanzel M, Fernando K, Maloney SE, Horn Z, Gong S, Mätlik K, Zhao J, Pasolli HA, Heissel S, Dougherty JD, Hull C, Hatten ME. Mice lacking Astn2 have ASD-like behaviors and altered cerebellar circuit properties. Proc Natl Acad Sci U S A 2024; 121:e2405901121. [PMID: 39150780 PMCID: PMC11348334 DOI: 10.1073/pnas.2405901121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/05/2024] [Indexed: 08/18/2024] Open
Abstract
Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. Individuals with ASTN2 mutations exhibit neurodevelopmental disorders, including autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD), learning difficulties, and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity, repetitive behaviors, altered behavior in the three-chamber test, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors are also prominent in Astn2 cKO animals, but they do not show altered behavior in the three-chamber test. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrate a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.
Collapse
Affiliation(s)
- Michalina Hanzel
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - Kayla Fernando
- Neurobiology Department, Duke University, Durham, NC27710
| | - Susan E. Maloney
- Department of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St. Louis, MO63130
| | - Zachi Horn
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
- InVitro Cell Research LLC, Englewood, NJ07631
| | - Shiaoching Gong
- Helen and Robert Appel Alzheimer’s Disease Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY10021
| | - Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - Jiajia Zhao
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY10065
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY10065
| | - Joseph D. Dougherty
- Department of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St. Louis, MO63130
- Department of Genetics, Washington University Medical School, St. Louis, MO63130
| | - Court Hull
- Neurobiology Department, Duke University, Durham, NC27710
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY10065
| |
Collapse
|
4
|
Al-Saoud S, Nichols ES, Brossard-Racine M, Wild CJ, Norton L, Duerden EG. A transdiagnostic examination of cognitive heterogeneity in children and adolescents with neurodevelopmental disorders. Child Neuropsychol 2024:1-19. [PMID: 38863216 DOI: 10.1080/09297049.2024.2364957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/02/2024] [Indexed: 06/13/2024]
Abstract
Children and adolescents with neurodevelopmental disorders demonstrate extensive cognitive heterogeneity that is not adequately captured by traditional diagnostic systems, emphasizing the need for alternative assessment and classification techniques. Using a transdiagnostic approach, a retrospective cohort study of cognitive functioning was conducted using a large heterogenous sample (n = 1529) of children and adolescents 7 to 18 years of age with neurodevelopmental disorders. Measures of short-term memory, verbal ability, and reasoning were administered to participants with attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), comorbid ADHD/ASD, and participants without neurodevelopmental disorders (non-NDD) using a 12-task, web-based neurocognitive testing battery. Unsupervised machine learning techniques were used to create a self-organizing map, an artificial neural network, in conjunction with k-means clustering to identify data-driven subgroups. The study aims were to: 1) identify cognitive profiles in the sample using a data-driven approach, and 2) determine their correspondence with traditional diagnostic statuses. Six clusters representing different cognitive profiles were identified, including participants with varying forms of cognitive impairment. Diagnostic status did not correspond with cluster-membership, providing evidence for the application of transdiagnostic approaches to understanding cognitive heterogeneity in children and adolescents with neurodevelopmental disorders. Additionally, the findings suggest that many typically developing participants may have undiagnosed learning difficulties, emphasizing the need for accessible cognitive assessment tools in school-based settings.
Collapse
Affiliation(s)
- Sarah Al-Saoud
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
| | - Emily S Nichols
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Marie Brossard-Racine
- School of Physical and Occupational Therapy, McGill University, Montreal, Quebec, Canada
| | - Conor J Wild
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Physiology and Pharmacology, Western University, London, Ontario, Canada
| | - Loretta Norton
- Psychology, King's University College, Western University, London, Ontario, Canada
| | - Emma G Duerden
- Applied Psychology, Faculty of Education, Western University, London, Ontario, Canada
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Neuroscience, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| |
Collapse
|
5
|
Hayashi Y, Okumura H, Arioka Y, Kushima I, Mori D, Lo T, Otgonbayar G, Kato H, Nawa Y, Kimura H, Aleksic B, Ozaki N. Analysis of human neuronal cells carrying ASTN2 deletion associated with psychiatric disorders. Transl Psychiatry 2024; 14:236. [PMID: 38830862 PMCID: PMC11148150 DOI: 10.1038/s41398-024-02962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 06/05/2024] Open
Abstract
Recent genetic studies have found common genomic risk variants among psychiatric disorders, strongly suggesting the overlaps in their molecular and cellular mechanism. Our research group identified the variant in ASTN2 as one of the candidate risk factors across these psychiatric disorders by whole-genome copy number variation analysis. However, the alterations in the human neuronal cells resulting from ASTN2 variants identified in patients remain unknown. To address this, we used patient-derived and genome-edited iPS cells with ASTN2 deletion; cells were further differentiated into neuronal cells. A comprehensive gene expression analysis using genome-edited iPS cells with variants on both alleles revealed that the expression level of ZNF558, a gene specifically expressed in human forebrain neural progenitor cells, was greatly reduced in ASTN2-deleted neuronal cells. Furthermore, the expression of the mitophagy-related gene SPATA18, which is repressed by ZNF558, and mitophagy activity were increased in ASTN2-deleted neuronal cells. These phenotypes were also detected in neuronal cells differentiated from patient-derived iPS cells with heterozygous ASTN2 deletion. Our results suggest that ASTN2 deletion is related to the common pathogenic mechanism of psychiatric disorders by regulating mitophagy via ZNF558.
Collapse
Affiliation(s)
- Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Okumura
- Department of Hospital Pharmacy, Nagoya University Hospital, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuko Arioka
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan.
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Pathophysiology of Mental Disorders, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Ranieri A, La Monica I, Di Iorio MR, Lombardo B, Pastore L. Genetic Alterations in a Large Population of Italian Patients Affected by Neurodevelopmental Disorders. Genes (Basel) 2024; 15:427. [PMID: 38674362 PMCID: PMC11050211 DOI: 10.3390/genes15040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Neurodevelopmental disorders are a group of complex multifactorial disorders characterized by cognitive impairment, communication deficits, abnormal behaviour, and/or motor skills resulting from abnormal neural development. Copy number variants (CNVs) are genetic alterations often associated with neurodevelopmental disorders. We evaluated the diagnostic efficacy of the array-comparative genomic hybridization (a-CGH) method and its relevance as a routine diagnostic test in patients with neurodevelopmental disorders for the identification of the molecular alterations underlying or contributing to the clinical manifestations. In the present study, we analysed 1800 subjects with neurodevelopmental disorders using a CGH microarray. We identified 208 (7%) pathogenetic CNVs, 2202 (78%) variants of uncertain significance (VOUS), and 504 (18%) benign CNVs in the 1800 patients analysed. Some alterations contain genes potentially related to neurodevelopmental disorders including CHRNA7, ANKS1B, ANKRD11, RBFOX1, ASTN2, GABRG3, SHANK2, KIF1A SETBP1, SNTG2, CTNNA2, TOP3B, CNTN4, CNTN5, and CNTN6. The identification of interesting significant genes related to neurological disorders with a-CGH is therefore an essential step in the diagnostic procedure, allowing a better understanding of both the pathophysiology of these disorders and the mechanisms underlying their clinical manifestations.
Collapse
Affiliation(s)
- Annaluisa Ranieri
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
| | - Ilaria La Monica
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Rosaria Di Iorio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Barbara Lombardo
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate Franco Salvatore, via G. Salvatore 486, 80145 Naples, Italy; (A.R.); (I.L.M.); (M.R.D.I.); (L.P.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
7
|
Al-Sarraj Y, Taha RZ, Al-Dous E, Ahram D, Abbasi S, Abuazab E, Shaath H, Habbab W, Errafii K, Bejaoui Y, AlMotawa M, Khattab N, Aqel YA, Shalaby KE, Al-Ansari A, Kambouris M, Abouzohri A, Ghazal I, Tolfat M, Alshaban F, El-Shanti H, Albagha OME. The genetic landscape of autism spectrum disorder in the Middle Eastern population. Front Genet 2024; 15:1363849. [PMID: 38572415 PMCID: PMC10987745 DOI: 10.3389/fgene.2024.1363849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 03/04/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction: Autism spectrum disorder (ASD) is characterized by aberrations in social interaction and communication associated with repetitive behaviors and interests, with strong clinical heterogeneity. Genetic factors play an important role in ASD, but about 75% of ASD cases have an undetermined genetic risk. Methods: We extensively investigated an ASD cohort made of 102 families from the Middle Eastern population of Qatar. First, we investigated the copy number variations (CNV) contribution using genome-wide SNP arrays. Next, we employed Next Generation Sequencing (NGS) to identify de novo or inherited variants contributing to the ASD etiology and its associated comorbid conditions in families with complete trios (affected child and the parents). Results: Our analysis revealed 16 CNV regions located in genomic regions implicated in ASD. The analysis of the 88 ASD cases identified 41 genes in 39 ASD subjects with de novo (n = 24) or inherited variants (n = 22). We identified three novel de novo variants in new candidate genes for ASD (DTX4, ARMC6, and B3GNT3). Also, we have identified 15 de novo variants in genes that were previously implicated in ASD or related neurodevelopmental disorders (PHF21A, WASF1, TCF20, DEAF1, MED13, CREBBP, KDM6B, SMURF1, ADNP, CACNA1G, MYT1L, KIF13B, GRIA2, CHM, and KCNK9). Additionally, we defined eight novel recessive variants (RYR2, DNAH3, TSPYL2, UPF3B KDM5C, LYST, and WNK3), four of which were X-linked. Conclusion: Despite the ASD multifactorial etiology that hinders ASD genetic risk discovery, the number of identified novel or known putative ASD genetic variants was appreciable. Nevertheless, this study represents the first comprehensive characterization of ASD genetic risk in Qatar's Middle Eastern population.
Collapse
Affiliation(s)
- Yasser Al-Sarraj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Qatar Genome Program, Qatar Foundation Research, Development and Innovation, Qatar Foundation, Doha, Qatar
| | - Rowaida Z. Taha
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Al-Dous
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Dina Ahram
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Quest Diagnostics Nichols Institute, San Juan Capistrano, CA, United States
| | - Somayyeh Abbasi
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Eman Abuazab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hibah Shaath
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Wesal Habbab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Khaoula Errafii
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yosra Bejaoui
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Maryam AlMotawa
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Namat Khattab
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Yasmin Abu Aqel
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Karim E. Shalaby
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Amina Al-Ansari
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Marios Kambouris
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Pathology & Laboratory Medicine Department, Genetics Division, Sidra Medicine, Doha, Qatar
| | - Adel Abouzohri
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Iman Ghazal
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Mohammed Tolfat
- The Shafallah Center for Children with Special Needs, Doha, Qatar
| | - Fouad Alshaban
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| | - Hatem El-Shanti
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
- Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States
| | - Omar M. E. Albagha
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
- Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University, Doha, Qatar
| |
Collapse
|
8
|
Gracia-Diaz C, Perdomo JE, Khan ME, Roule T, Disanza BL, Cajka GG, Lei S, Gagne AL, Maguire JA, Shalem O, Bhoj EJ, Ahrens-Nicklas RC, French DL, Goldberg EM, Wang K, Glessner JT, Akizu N. KOLF2.1J iPSCs carry CNVs associated with neurodevelopmental disorders. Cell Stem Cell 2024; 31:288-289. [PMID: 38458176 DOI: 10.1016/j.stem.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/18/2023] [Accepted: 02/12/2024] [Indexed: 03/10/2024]
Affiliation(s)
- Carolina Gracia-Diaz
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan E Perdomo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Munir E Khan
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Thomas Roule
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brianna L Disanza
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory G Cajka
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sunyimeng Lei
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alyssa L Gagne
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Ann Maguire
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ophir Shalem
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elizabeth J Bhoj
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca C Ahrens-Nicklas
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Deborah L French
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ethan M Goldberg
- Departmen of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Neurology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph T Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Hanzel M, Fernando K, Maloney SE, Gong S, Mätlik K, Zhao J, Pasolli HA, Heissel S, Dougherty JD, Hull C, Hatten ME. Mice lacking Astn2 have ASD-like behaviors and altered cerebellar circuit properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.18.580354. [PMID: 38405978 PMCID: PMC10888872 DOI: 10.1101/2024.02.18.580354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. We recently reported a family with a paternally inherited intragenic ASTN2 duplication with a range of neurodevelopmental disorders, including autism spectrum disorder (ASD), learning difficulties, and speech and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity and repetitive behaviors, altered social behaviors, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors were also prominent in Astn2 cKO animals. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrates a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents (IPSCs) in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.
Collapse
Affiliation(s)
- Michalina Hanzel
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA 10065
| | - Kayla Fernando
- Neurobiology Department, Duke University, Durham, NC, USA
| | - Susan E. Maloney
- Dept of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St Louis, MO, USA
| | | | - Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA 10065
| | - Jiajia Zhao
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA 10065
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA 10065
| | - Søren Heissel
- Proteomics Resource Center, The Rockefeller University, New York, NY, USA 10065
| | - Joseph D. Dougherty
- Dept of Psychiatry and the Intellectual and Developmental Disabilities Research Center, Washington University Medical School, St Louis, MO, USA
- Dept of Genetics, Washington University Medical School, St Louis, MO, USA
| | - Court Hull
- Neurobiology Department, Duke University, Durham, NC, USA
| | - Mary E. Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, USA 10065
| |
Collapse
|
10
|
Scheerer NE, Pourtousi A, Yang C, Ding Z, Stojanoski B, Anagnostou E, Nicolson R, Kelley E, Georgiades S, Crosbie J, Schachar R, Ayub M, Stevenson RA. Transdiagnostic Patterns of Sensory Processing in Autism and ADHD. J Autism Dev Disord 2024; 54:280-292. [PMID: 36306002 DOI: 10.1007/s10803-022-05798-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2022] [Indexed: 11/24/2022]
Abstract
Sensory processing abilities are highly variable within and across people diagnosed with autism and attention-deficit/hyperactivity disorder (ADHD). This study examined the transdiagnostic nature of sensory processing abilities, and their association with features of autism and ADHD, in a large sample of autistic people (n = 495) and people with ADHD (n = 461). Five similar data-driven sensory phenotypes characterized sensory processing abilities, and showed similar patterns of association with features of autism and ADHD, across both diagnostic groups. These results demonstrate the transdiagnostic nature of sensory processing abilities, while contributing to a growing body of literature that suggests the autism and ADHD diagnostic labels have poor explanatory power.
Collapse
Affiliation(s)
- Nichole E Scheerer
- Wilfrid Laurier University, 75 University Ave West, Waterloo, ON, N2L 3C5, Canada.
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada.
| | - Anahid Pourtousi
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Connie Yang
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Zining Ding
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | - Bobby Stojanoski
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
- University of Ontario Institute of Technology, 2000 Simcoe Street North, Oshawa, ON, L1H 7K4, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, 150 Kilgour Rd, East York, ON, M4G 1R8, Canada
| | - Robert Nicolson
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| | | | | | - Jennifer Crosbie
- The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Russell Schachar
- The Hospital for Sick Children, 555 University Ave, Toronto, ON, M5G 1X8, Canada
| | - Muhammad Ayub
- Queens University, 62 Arch St, Kingston, ON, K7L 3N6, Canada
| | - Ryan A Stevenson
- Western University, 1151 Richmond St, London, ON, N6A 3K7, Canada
| |
Collapse
|
11
|
Yudin NS, Larkin DM. Candidate genes for domestication and resistance to cold climate according to whole genome sequencing data of Russian cattle and sheep breeds. Vavilovskii Zhurnal Genet Selektsii 2023; 27:463-470. [PMID: 37867610 PMCID: PMC10587008 DOI: 10.18699/vjgb-23-56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 10/24/2023] Open
Abstract
It is known that different species of animals, when living in the same environmental conditions, can form similar phenotypes. The study of the convergent evolution of several species under the influence of the same environmental factor makes it possible to identify common mechanisms of genetic adaptation. Local cattle and sheep breeds have been formed over thousands of years under the influence of domestication, as well as selection aimed at adaptation to the local environment and meeting human needs. Previously, we identified a number of candidate genes in genome regions potentially selected during domestication and adaptation to the climatic conditions of Russia, in local breeds of cattle and sheep using whole genome genotyping data. However, these data are of low resolution and do not reveal most nucleotide substitutions. The aim of the work was to create, using the whole genome sequencing data, a list of genes associated with domestication, selection and adaptation in Russian cattle and sheep breeds, as well as to identify candidate genes and metabolic pathways for selection for cold adaptation. We used our original data on the search for signatures of selection in the genomes of Russian cattle (Yakut, Kholmogory, Buryat, Wagyu) and sheep (Baikal, Tuva) breeds. We used the HapFLK, DCMS, FST and PBS methods to identify DNA regions with signatures of selection. The number of candidate genes in potentially selective regions was 946 in cattle and 151 in sheep. We showed that the studied Russian cattle and sheep breeds have at least 10 genes in common, apparently involved in the processes of adaptation/selection, including adaptation to a cold climate, including the ASTN2, PM20D1, TMEM176A, and GLIS1 genes. Based on the intersection with the list of selected genes in at least two Arctic/Antarctic mammal species, 20 and 8 genes, have been identified in cattle and sheep, respectively, that are potentially involved in cold adaptation. Among them, the most promising for further research are the ASPH, NCKAP5L, SERPINF1, and SND1 genes. Gene ontology analysis indicated the existence of possible common biochemical pathways for adaptation to cold in domestic and wild mammals associated with cytoskeleton disassembly and apoptosis.
Collapse
Affiliation(s)
- N S Yudin
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - D M Larkin
- Royal Veterinary College, University of London, London, United Kingdom
| |
Collapse
|
12
|
Zarrei M, Burton CL, Engchuan W, Higginbotham EJ, Wei J, Shaikh S, Roslin NM, MacDonald JR, Pellecchia G, Nalpathamkalam T, Lamoureux S, Manshaei R, Howe J, Trost B, Thiruvahindrapuram B, Marshall CR, Yuen RKC, Wintle RF, Strug LJ, Stavropoulos DJ, Vorstman JAS, Arnold P, Merico D, Woodbury-Smith M, Crosbie J, Schachar RJ, Scherer SW. Gene copy number variation and pediatric mental health/neurodevelopment in a general population. Hum Mol Genet 2023; 32:2411-2421. [PMID: 37154571 PMCID: PMC10360394 DOI: 10.1093/hmg/ddad074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/10/2023] Open
Abstract
We assessed the relationship of gene copy number variation (CNV) in mental health/neurodevelopmental traits and diagnoses, physical health and cognition in a community sample of 7100 unrelated children and youth of European or East Asian ancestry (Spit for Science). Clinically significant or susceptibility CNVs were present in 3.9% of participants and were associated with elevated scores on a continuous measure of attention-deficit/hyperactivity disorder (ADHD) traits (P = 5.0 × 10-3), longer response inhibition (a cognitive deficit found in several mental health and neurodevelopmental disorders; P = 1.0 × 10-2) and increased prevalence of mental health diagnoses (P = 1.9 × 10-6, odds ratio: 3.09), specifically ADHD, autism spectrum disorder anxiety and learning problems/learning disorder (P's < 0.01). There was an increased burden of rare deletions in gene-sets related to brain function or expression in brain associated with more ADHD traits. With the current mental health crisis, our data established a baseline for delineating genetic contributors in pediatric-onset conditions.
Collapse
Affiliation(s)
- Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Christie L Burton
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Worrawat Engchuan
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Edward J Higginbotham
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - John Wei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sabah Shaikh
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Nicole M Roslin
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jeffrey R MacDonald
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Giovanna Pellecchia
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Thomas Nalpathamkalam
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Sylvia Lamoureux
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Roozbeh Manshaei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Ted Rogers Centre for Heart Research, Cardiac Genome Clinic, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jennifer Howe
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Brett Trost
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | | | - Christian R Marshall
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ryan K C Yuen
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
| | - Richard F Wintle
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Lisa J Strug
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Departments of Statistical Sciences, Computer Science and Biostatistics, University of Toronto, Toronto, ON M5G 1Z5, Canada
| | - Dimitri J Stavropoulos
- Genome Diagnostics, Department of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Jacob A S Vorstman
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Autism Research Unit, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Paul Arnold
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB T2N 1N4, Canada
- Departments of Psychiatry & Medical Genetics, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Daniele Merico
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Deep Genomics Inc., Toronto, ON M5G 1M1, Canada
| | - Marc Woodbury-Smith
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jennifer Crosbie
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
| | - Russell J Schachar
- Neurosciences and Mental Health Program, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Program in Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, M5G 0A4, Canada
- Department of Molecular Genetics, McLaughlin Centre, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
13
|
Gracia-Diaz C, Perdomo JE, Khan ME, Disanza B, Cajka GG, Lei S, Gagne A, Maguire JA, Roule T, Shalem O, Bhoj EJ, Ahrens-Nicklas RC, French D, Goldberg EM, Wang K, Glessner J, Akizu N. High density SNP array and reanalysis of genome sequencing uncovers CNVs associated with neurodevelopmental disorders in KOLF2.1J iPSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.26.546614. [PMID: 37425875 PMCID: PMC10327134 DOI: 10.1101/2023.06.26.546614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
The KOLF2.1J iPSC line was recently proposed as a reference iPSC to promote the standardization of research studies in the stem cell field. Due to overall good performance differentiating to neural cell lineages, high gene editing efficiency, and absence of genetic variants associated to neurological disorders KOLF2.1J iPSC line was particularly recommended for neurodegenerative disease modeling. However, our work uncovers that KOLF2.1J hPSCs carry heterozygous small copy number variants (CNVs) that cause DTNBP1, JARID2 and ASTN2 haploinsufficiencies, all of which are associated with neurological disorders. We further determine that these CNVs arose in vitro over the course of KOLF2.1J iPSC generation from a healthy donor-derived KOLF2 iPSC line and affect the expression of DNTBP1, JARID2 and ASTN2 proteins in KOLF2.1J iPSCs and neural progenitors. Therefore, our study suggests that KOLF2.1J iPSCs carry genetic variants that may be deleterious for neural cell lineages. This data is essential for a careful interpretation of neural cell studies derived from KOLF2.1J iPSCs and highlights the need for a catalogue of iPSC lines that includes a comprehensive genome characterization analysis.
Collapse
Affiliation(s)
- Carolina Gracia-Diaz
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan E. Perdomo
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- School of Biomedical Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Munir E. Khan
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brianna Disanza
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory G. Cajka
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunyimeng Lei
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alyssa Gagne
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Ann Maguire
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Thomas Roule
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ophir Shalem
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth J. Bhoj
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Rebecca C. Ahrens-Nicklas
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania, Philadelphia, PA, USA
| | - Deborah French
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan M. Goldberg
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Departmen of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph Glessner
- Center for Applied Genomics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Naiara Akizu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lead contact
| |
Collapse
|
14
|
Liu N, Zhang L, Tian T, Cheng J, Zhang B, Qiu S, Geng Z, Cui G, Zhang Q, Liao W, Yu Y, Zhang H, Gao B, Xu X, Han T, Yao Z, Qin W, Liu F, Liang M, Xu Q, Fu J, Xu J, Zhu W, Zhang P, Li W, Shi D, Wang C, Lui S, Yan Z, Chen F, Li J, Zhang J, Wang D, Shen W, Miao Y, Xian J, Gao JH, Zhang X, Li MJ, Xu K, Zuo XN, Wang M, Ye Z, Yu C. Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes. Nat Genet 2023:10.1038/s41588-023-01425-8. [PMID: 37337106 DOI: 10.1038/s41588-023-01425-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2023] [Indexed: 06/21/2023]
Abstract
The hippocampus is critical for memory and cognition and neuropsychiatric disorders, and its subfields differ in architecture and function. Genome-wide association studies on hippocampal and subfield volumes are mainly conducted in European populations; however, other ancestral populations are under-represented. Here we conduct cross-ancestry genome-wide association meta-analyses in 65,791 individuals for hippocampal volume and 38,977 for subfield volumes, including 7,009 individuals of East Asian ancestry. We identify 339 variant-trait associations at P < 1.13 × 10-9 for 44 hippocampal traits, including 23 new associations. Common genetic variants have similar effects on hippocampal traits across ancestries, although ancestry-specific associations exist. Cross-ancestry analysis improves the fine-mapping precision and the prediction performance of polygenic scores in under-represented populations. These genetic variants are enriched for Wnt signaling and neuron differentiation and affect cognition, emotion and neuropsychiatric disorders. These findings may provide insight into the genetic architectures of hippocampal and subfield volumes.
Collapse
Affiliation(s)
- Nana Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bing Zhang
- Department of Radiology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shijun Qiu
- Department of Medical Imaging, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, China
| | - Zuojun Geng
- Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guangbin Cui
- Functional and Molecular Imaging Key Lab of Shaanxi Province & Department of Radiology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Quan Zhang
- Department of Radiology, Characteristic Medical Center of Chinese People's Armed Police Force, Tianjin, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
- Molecular Imaging Research Center of Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hui Zhang
- Department of Radiology, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Gao
- Department of Radiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Xiaojun Xu
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Tong Han
- Department of Radiology, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhenwei Yao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Feng Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Qiang Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jilian Fu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiayuan Xu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Wei Li
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Dapeng Shi
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su Lui
- Department of Radiology, Huaxi MR Research Center (HMRRC), Functional and Molecular lmaging key Laboratory of Sichuan Province, West China Hospital of Sichuan University, Chengdu, China
| | - Zhihan Yan
- Department of Radiology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, Lanzhou University Second Hospital, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Dawei Wang
- Department of Radiology, Qilu Hospital of Shandong University, Jinan, China
| | - Wen Shen
- Department of Radiology, Tianjin First Center Hospital, Tianjin, China
| | - Yanwei Miao
- Department of Radiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jia-Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaochu Zhang
- Division of Life Science and Medicine, University of Science & Technology of China, Hefei, China
| | - Mulin Jun Li
- Department of Bioinformatics, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Kai Xu
- Department of Radiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center at IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital & Zhengzhou University People's Hospital, Zhengzhou, China.
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin Medical University, Ministry of Education, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China.
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
15
|
Genetic association study between Astrotactin-2 (ASTN2) rs10817999 gene polymorphism and attention deficit hyperactivity disorder in Korean children. GENE REPORTS 2023. [DOI: 10.1016/j.genrep.2023.101751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
16
|
Booher WC, Vanderlinden LA, Hall LA, Thomas AL, Evans LM, Saba LM, Ehringer MA. Hippocampal RNA sequencing in mice selectively bred for high and low activity. GENES, BRAIN, AND BEHAVIOR 2023; 22:e12832. [PMID: 36514243 PMCID: PMC10067415 DOI: 10.1111/gbb.12832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
High and Low Activity strains of mice were bidirectionally selected for differences in open-field activity (DeFries et al., 1978, Behavior Genetics, 8: 3-13) and subsequently inbred to use as a genetic model for studying anxiety-like behaviors (Booher et al., 2021, Genes, Brain and Behavior, 20: e12730). Hippocampal RNA-sequencing of the High and Low Activity mice identified 3901 differentially expressed protein-coding genes, with both sex-dependent and sex-independent effects. Functional enrichment analysis (PANTHER) highlighted 15 gene ontology terms, which allowed us to create a narrow list of 264 top candidate genes. Of the top candidate genes, 46 encoded four Complexes (I, II, IV and V) and two electron carriers (cytochrome c and ubiquinone) of the mitochondrial oxidative phosphorylation process. The most striking results were in the female high anxiety, Low Activity mice, where 39/46 genes relating to oxidative phosphorylation were upregulated. In addition, comparison of our top candidate genes with two previously curated High and Low Activity gene lists highlight 24 overlapping genes, where Ndufa13, which encodes the supernumerary subunit A13 of complex I, was the only gene to be included in all three lists. Mitochondrial dysfunction has recently been implicated as both a cause and effect of anxiety-related disorders and thus should be further explored as a possible novel pharmaceutical treatment for anxiety disorders.
Collapse
Affiliation(s)
- Winona C. Booher
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
- Institute for Behavioral GeneticsUniversity of Colorado BoulderBoulderColoradoUSA
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Lauren A. Vanderlinden
- Department of Biostatistics & Informatics, Colorado School of Public HealthUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Lucy A. Hall
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Aimee L. Thomas
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| | - Luke M. Evans
- Institute for Behavioral GeneticsUniversity of Colorado BoulderBoulderColoradoUSA
| | - Laura M. Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical SciencesUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Marissa A. Ehringer
- Institute for Behavioral GeneticsUniversity of Colorado BoulderBoulderColoradoUSA
- Department of Integrative PhysiologyUniversity of Colorado BoulderBoulderColoradoUSA
| |
Collapse
|
17
|
Hsu TW, Bai YM, Tsai SJ, Chen TJ, Liang CS, Chen MH. Risk of parental major psychiatric disorders in patients with comorbid autism spectrum disorder and attention deficit hyperactivity disorder: A population-based family-link study. Aust N Z J Psychiatry 2023; 57:583-593. [PMID: 35787189 DOI: 10.1177/00048674221108897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Few studies have investigated the parental risk of major psychiatric disorders among patients with comorbid autism spectrum disorder and attention deficit hyperactivity disorder. This study examined the differences in such risk among patients with autism spectrum disorder-only, with attention deficit hyperactivity disorder-only and both conditions. METHODS Between 2001 and 2011, we enrolled 132,624 patients with autism spectrum disorder or attention deficit hyperactivity disorder and 1:10 matched controls for age, sex and demographics from the National Health Insurance Database of Taiwan. Poisson regression models were used to examine the risk of five major psychiatric disorders in the patients' parents compared with those of the controls, including schizophrenia, bipolar disorder, major depressive disorder, alcohol use disorder, and substance use disorder. Patients were classified into the autism spectrum disorder-only, attention deficit hyperactivity disorder-only and dual-diagnosis groups. RESULTS The parents of attention deficit hyperactivity disorder-only and dual-diagnosis groups had a higher likelihood to be diagnosed with (odds ratios [95% confidence intervals]) schizophrenia (attention deficit hyperactivity disorder: 1.48 [1.39, 1.57]; dual: 1.79 [1.45, 1.20]), bipolar disorder (attention deficit hyperactivity disorder: 1.91 [1.82, 2.01]; dual: 1.81 [1.51, 2.17]), major depressive disorder (attention deficit hyperactivity disorder: 1.94 [1.89, 2.00]; dual: 1.99 [1.81, 2.20]), alcohol use disorder (attention deficit hyperactivity disorder: 1.39 [1.33, 1.45]; dual: 1.20 [1.01, 1.42]) and substance use disorder (attention deficit hyperactivity disorder: 1.66 [1.59, 1.73]; dual: 1.34 [1.13, 1.58]) than the controls. In contrast, the parents of autism spectrum disorder-only group had a higher likelihood to be diagnosed with schizophrenia (1.77 [1.46, 2.15]) and major depressive disorder (1.45 [1.32, 1.61]) and a lower likelihood to be diagnosed with alcohol use disorder (0.68 [0.55, 0.84]) than the controls. CONCLUSION The autism spectrum disorder-only group had a different parental incidence of major psychiatric disorders than the attention deficit hyperactivity disorder-only and dual-diagnosis groups. Our findings have implications for clinical practice and future genetic research.
Collapse
Affiliation(s)
- Tien-Wei Hsu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Ya-Mei Bai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei
- Department of Psychiatry, School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei
- Institute of Brain Science, National Yang-Ming University, Taipei
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei
- Department of Psychiatry, School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei
- Institute of Brain Science, National Yang-Ming University, Taipei
| | - Tzeng-Ji Chen
- Department of Family Medicine, Taipei Veterans General Hospital, Taipei
- Institute of Hospital and Health Care Administration, National Yang-Ming University, Taipei
| | - Chih-Sung Liang
- Department of Psychiatry, Tri-Service General Hospital, National Defense Medical Center, Taipei
- Department of Psychiatry, National Defense Medical Center, Taipei
| | - Mu-Hong Chen
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei
- Department of Psychiatry, School of Medicine, College of Medicine, National Yang-Ming Chiao Tung University, Taipei
- Institute of Brain Science, National Yang-Ming University, Taipei
| |
Collapse
|
18
|
Ito T, Yoshida M, Aida T, Kushima I, Hiramatsu Y, Ono M, Yoshimi A, Tanaka K, Ozaki N, Noda Y. Astrotactin 2 (ASTN2) regulates emotional and cognitive functions by affecting neuronal morphogenesis and monoaminergic systems. J Neurochem 2023; 165:211-229. [PMID: 36807153 DOI: 10.1111/jnc.15790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/29/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Astrotactin2 (ASTN2) regulates neuronal migration and synaptic strength through the trafficking and degradation of surface proteins. Deletion of ASTN2 in copy number variants has been identified in patients with schizophrenia, bipolar disorder, and autism spectrum disorder in copy number variant (CNV) analysis. Disruption of ASTN2 is a risk factor for these neurodevelopmental disorders, including schizophrenia, bipolar disorder, autism spectrum disorder, and attention deficit hyperactivity disorder. However, the importance of ASTN2 in physiological functions remains poorly understood. To elucidate the physiological functions of ASTN2, we investigated whether deficiency of ASTN2 affects cognitive and/or emotional behaviors and neurotransmissions using ASTN2-deficient mice. Astn2 knockout (KO) mice produced by CRISPR/Cas9 technique showed no obvious differences in physical characteristics and circadian rhythm. Astn2 KO mice showed increased exploratory activity in a novel environment, social behavior and impulsivity, or decreased despair-, anxiety-like behaviors and exploratory preference for the novel object. Some behavioral abnormalities, such as increased exploratory activity and impulsivity, or decreased exploratory preference were specifically attenuated by risperidone, but not by haloperidol. While, the both drugs did not affect any emotion-related behavioral abnormalities in Astn2 KO mice. Dopamine contents were decreased in the striatum, and serotonin or dopamine turnover were increased in the striatum, nucleus accumbens, and amygdala of Astn2 KO mice. In morphological analyses, thinning of neural cell layers in the hippocampus, reduction of neural cell bodies in the prefrontal cortex, and decrease in spine density and PSD95 protein in both tissues were observed in Astn2 KO mice. The present findings suggest that ASTN2 deficiency develops some emotional or cognitive impairments related to monoaminergic dysfunctions and abnormal neuronal morphogenesis with shrinkage of neuronal soma. ASTN2 protein may contribute to the pathogenic mechanism and symptom onset of mental disorders.
Collapse
Affiliation(s)
- Takahiro Ito
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Mikio Yoshida
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Tomomi Aida
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Yuka Hiramatsu
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Maiko Ono
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
| | - Akira Yoshimi
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
- Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan
| | - Kohichi Tanaka
- Laboratory of Molecular Neuroscience, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Yukihiro Noda
- Division of Clinical Sciences and Neuropsychopharmacology, Meijo University Faculty and Graduate School of Pharmacy, Nagoya, Japan
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Clinical OMICs and Translation Research Center, Meijo University, Nagoya, Japan
| |
Collapse
|
19
|
Szalai R, Till A, Szabo A, Melegh B, Hadzsiev K, Czako M. Overlapping Interstitial Deletions of the Region 9q22.33 to 9q33.3 of Three Patients Allow Pinpointing Candidate Genes for Epilepsy and Cleft Lip and Palate. Mol Syndromol 2023; 14:109-122. [PMID: 37064343 PMCID: PMC10090976 DOI: 10.1159/000525976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 07/07/2022] [Indexed: 11/19/2022] Open
Abstract
Introduction Patients carrying interstitial deletions of the long arm of chromosome 9 show similar features. These phenotypes are often characterized by developmental delay, intellectual disability, short stature, and dysmorphism. Previously reported deletions differ in size and location spanning from 9q21 to 9q34 and were mostly detected by conventional cytogenetic techniques. Methods Based on clinical features suggesting primarily chromosomal diseases, aCGH analysis was indicated. We report on de novo overlapping interstitial 9q deletions in 3 unrelated individuals presenting neurodevelopmental disorder and multiple congenital anomalies. Results An 8.03-Mb (90 genes), a 15.71-Mb (193 genes), and a 15.81-Mb (203 genes) deletion were identified in 9q affecting 9q22.33q33.3. The overlapping region was 1.50 Mb, including 2 dosage-sensitive genes, namely EPB41L4B (OMIM #610340) and SVEP1 (OMIM #611691). These genes are thought to be involved in cellular adhesion, migration, and motility. The non-overlapping regions contain 24 dosage-sensitive genes. Conclusion Besides the frequently described symptoms (developmental delay, intellectual disability, skeletal abnormalities, short stature, and dysmorphic facial features) shared by the patients with interstitial deletions of chromosome 9q reported thus far, two of our patients showed distinct forms of epilepsy, which were successfully treated, and one had a bilateral cleft lip and palate. Possible candidate genes for epilepsy and cleft lip and palate are discussed.
Collapse
Affiliation(s)
- Renata Szalai
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Agnes Till
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Andras Szabo
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Bela Melegh
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Kinga Hadzsiev
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| | - Marta Czako
- Department of Medical Genetics, Medical School, University of Pecs, Pecs, Hungary
- Szentagothai Research Center, University of Pecs, Pecs, Hungary
| |
Collapse
|
20
|
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR Signaling Disruption and Its Association with the Development of Autism Spectrum Disorder. Molecules 2023; 28:molecules28041889. [PMID: 36838876 PMCID: PMC9964164 DOI: 10.3390/molecules28041889] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/19/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication along with repetitive stereotypic behaviors. Currently, there are no specific biomarkers for diagnostic screening or treatments available for autistic patients. Numerous genetic disorders are associated with high prevalence of ASD, including tuberous sclerosis complex, phosphatase and tensin homolog, and fragile X syndrome. Preclinical investigations in animal models of these diseases have revealed irregularities in the PI3K/Akt/mTOR signaling pathway as well as ASD-related behavioral defects. Reversal of the downstream molecular irregularities, associated with mTOR hyperactivation, improved the behavioral deficits observed in the preclinical investigations. Plant bioactive molecules have shown beneficial pre-clinical evidence in ASD treatment by modulating the PI3K/Akt/mTOR pathway. In this review, we summarize the involvement of the PI3K/Akt/mTOR pathway as well as the genetic alterations of the pathway components and its critical impact on the development of the autism spectrum disorder. Mutations in negative regulators of mTORC1, such as TSC1, TSC2, and PTEN, result in ASD-like phenotypes through the disruption of the mTORC1-mediated signaling. We further discuss the various naturally occurring phytoconstituents that have been identified to be bioactive and modulate the pathway to prevent its disruption and contribute to beneficial therapeutic effects in ASD.
Collapse
Affiliation(s)
- Shilu Deepa Thomas
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida 201310, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India
- Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Zayed Bin Sultan Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 15551, United Arab Emirates
- Correspondence:
| |
Collapse
|
21
|
Munch TN, Hedley PL, Hagen CM, Bækvad-Hansen M, Geller F, Bybjerg-Grauholm J, Nordentoft M, Børglum AD, Werge TM, Melbye M, Hougaard DM, Larsen LA, Christensen ST, Christiansen M. The genetic background of hydrocephalus in a population-based cohort: implication of ciliary involvement. Brain Commun 2023; 5:fcad004. [PMID: 36694575 PMCID: PMC9866251 DOI: 10.1093/braincomms/fcad004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/04/2022] [Accepted: 01/08/2023] [Indexed: 01/11/2023] Open
Abstract
Hydrocephalus is one of the most common congenital disorders of the central nervous system and often displays psychiatric co-morbidities, in particular autism spectrum disorder. The disease mechanisms behind hydrocephalus are complex and not well understood, but some association with dysfunctional cilia in the brain ventricles and subarachnoid space has been indicated. A better understanding of the genetic aetiology of hydrocephalus, including the role of ciliopathies, may bring insights into a potentially shared genetic aetiology. In this population-based case-cohort study, we, for the first time, investigated variants of postulated hydrocephalus candidate genes. Using these data, we aimed to investigate potential involvement of the ciliome in hydrocephalus and describe genotype-phenotype associations with an autism spectrum disorder. One-hundred and twenty-one hydrocephalus candidate genes were screened in a whole-exome-sequenced sub-cohort of the Lundbeck Foundation Initiative for Integrative Psychiatric Research study, comprising 72 hydrocephalus patients and 4181 background population controls. Candidate genes containing high-impact variants of interest were systematically evaluated for their involvement in ciliary function and an autism spectrum disorder. The median age at diagnosis for the hydrocephalus patients was 0 years (range 0-27 years), the median age at analysis was 22 years (11-35 years), and 70.5% were males. The median age for controls was 18 years (range 11-26 years) and 53.3% were males. Fifty-two putative hydrocephalus-associated variants in 34 genes were identified in 42 patients (58.3%). In hydrocephalus cases, we found increased, but not significant, enrichment of high-impact protein altering variants (odds ratio 1.51, 95% confidence interval 0.92-2.51, P = 0.096), which was driven by a significant enrichment of rare protein truncating variants (odds ratio 2.71, 95% confidence interval 1.17-5.58, P = 0.011). Fourteen of the genes with high-impact variants are part of the ciliome, whereas another six genes affect cilia-dependent processes during neurogenesis. Furthermore, 15 of the 34 genes with high-impact variants and three of eight genes with protein truncating variants were associated with an autism spectrum disorder. Because symptoms of other diseases may be neglected or masked by the hydrocephalus-associated symptoms, we suggest that patients with congenital hydrocephalus undergo clinical genetic assessment with respect to ciliopathies and an autism spectrum disorder. Our results point to the significance of hydrocephalus as a ciliary disease in some cases. Future studies in brain ciliopathies may not only reveal new insights into hydrocephalus but also, brain disease in the broadest sense, given the essential role of cilia in neurodevelopment.
Collapse
Affiliation(s)
- Tina N Munch
- Correspondence to: Tina Nørgaard Munch, MD Associate Professor, Department of Neurosurgery 6031 Copenhagen University Hospital, Inge Lehmanns Vej 6 DK-2100 Copenhagen Ø, Denmark E-mail:
| | - Paula L Hedley
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Brazen Bio, Los Angeles, 90502 CA, USA
| | - Christian M Hagen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Marie Bækvad-Hansen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Frank Geller
- Department of Epidemiology Research, Statens Serum Institut, DK-2300 Copenhagen, Denmark
| | - Jonas Bybjerg-Grauholm
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Merete Nordentoft
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Mental Health Centre, Capital Region of Denmark, 2900 Hellerup, Denmark
| | - Anders D Børglum
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Center for Genomics and Personalized Medicine, Aarhus University, DK-8000 Aarhus, Denmark,Department of Biomedicine, Aarhus University, DK-8000 Aarhus, Denmark
| | - Thomas M Werge
- The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Mental Health Centre, Capital Region of Denmark, 2900 Hellerup, Denmark
| | - Mads Melbye
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark,Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA,Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo 0473, Norway,K.G. Jebsen Center for Genetic Epidemiology, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - David M Hougaard
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark
| | - Lars A Larsen
- Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Søren T Christensen
- Department of Biology, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Michael Christiansen
- Department for Congenital Disorders, Statens Serum Institut, DK-2300 Copenhagen, Denmark,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, DK-8000 Aarhus, Denmark,Department of Biomedical Science, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
22
|
Cai Y, Lv W, Jiang Y, Li Q, Su P, Pang Y. Molecular evolution of the BRINP and ASTN genes and expression profles in response to pathogens and spinal cord injury repair in lamprey (Lethenteron reissneri). FISH & SHELLFISH IMMUNOLOGY 2022; 131:274-282. [PMID: 36228880 DOI: 10.1016/j.fsi.2022.09.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Bone morphogenic protein/retinoic acid inducible neural-specific proteins (BRINPs) and astrotactins (ASTNs) are two members of membrane attack complex/perforin-like (MACPF) superfamily proteins that present high expression in the growing and mature vertebrate neurons. Lamprey has a unique evolutionary status as a representative of the oldest jawless vertebrates, making it an ideal animal model for understanding vertebrate evolution. The evolutionary origins of BRINPs and ASTNs genes in vertebrates, however, have not been shown in lampreys. Here, BRINP and ASTN genes were found in lamprey genomes and the evolutionary relationships of them were investigated by phylogenetic analysis. Protein domains, motifs, genetic structure, and crystal structure analysis revealed that the features of BRINP and ASTN appear to be conserved in vertebrates. Genomic synteny analysis indicated that lamprey BRINP and ASTN neighbor genes differed dramatically from jawed vertebrate. Real-time quantitative results illustrated that the BRINP and ASTN genes family might take part in immune defence and spinal cord injury repair. This study not only enriches a better understanding of the evolution of the BRINP and ASTN genes but also offers a foundation for exploring their roles in the development of the vertebrate central nervous system (CNS).
Collapse
Affiliation(s)
- Yang Cai
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Wanrong Lv
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Ying Jiang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China
| | - Qingwei Li
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Peng Su
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Yue Pang
- College of Life Sciences, Liaoning Normal University, Dalian, 116081, China; Lamprey Research Center, Liaoning Normal University, Dalian, 116081, China; Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
23
|
Whole Exome Sequencing Study Identifies Novel Rare Risk Variants for Habitual Coffee Consumption Involved in Olfactory Receptor and Hyperphagia. Nutrients 2022; 14:nu14204330. [PMID: 36297015 PMCID: PMC9607528 DOI: 10.3390/nu14204330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Habitual coffee consumption is an addictive behavior with unknown genetic variations and has raised public health issues about its potential health-related outcomes. We performed exome-wide association studies to identify rare risk variants contributing to habitual coffee consumption utilizing the newly released UK Biobank exome dataset (n = 200,643). A total of 34,761 qualifying variants were imported into SKAT to conduct gene-based burden and robust tests with minor allele frequency <0.01, adjusting the polygenic risk scores (PRS) of coffee intake to exclude the effect of common coffee-related polygenic risk. The gene-based burden and robust test of the exonic variants found seven exome-wide significant associations, such as OR2G2 (PSKAT = 1.88 × 10−9, PSKAT-Robust = 2.91 × 10−17), VEZT1 (PSKAT = 3.72 × 10−7, PSKAT-Robust = 1.41 × 10−7), and IRGC (PSKAT = 2.92 × 10−5, PSKAT-Robust = 1.07 × 10−7). These candidate genes were verified in the GWAS summary data of coffee intake, such as rs12737801 (p = 0.002) in OR2G2, and rs34439296 (p = 0.008) in IRGC. This study could help to extend genetic insights into the pathogenesis of coffee addiction, and may point to molecular mechanisms underlying health effects of habitual coffee consumption.
Collapse
|
24
|
Liu M, Yu C, Zhang Z, Song M, Sun X, Piálek J, Jacob J, Lu J, Cong L, Zhang H, Wang Y, Li G, Feng Z, Du Z, Wang M, Wan X, Wang D, Wang YL, Li H, Wang Z, Zhang B, Zhang Z. Whole-genome sequencing reveals the genetic mechanisms of domestication in classical inbred mice. Genome Biol 2022; 23:203. [PMID: 36163035 PMCID: PMC9511766 DOI: 10.1186/s13059-022-02772-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/12/2022] [Indexed: 11/10/2022] Open
Abstract
Background The laboratory mouse was domesticated from the wild house mouse. Understanding the genetics underlying domestication in laboratory mice, especially in the widely used classical inbred mice, is vital for studies using mouse models. However, the genetic mechanism of laboratory mouse domestication remains unknown due to lack of adequate genomic sequences of wild mice. Results We analyze the genetic relationships by whole-genome resequencing of 36 wild mice and 36 inbred strains. All classical inbred mice cluster together distinctly from wild and wild-derived inbred mice. Using nucleotide diversity analysis, Fst, and XP-CLR, we identify 339 positively selected genes that are closely associated with nervous system function. Approximately one third of these positively selected genes are highly expressed in brain tissues, and genetic mouse models of 125 genes in the positively selected genes exhibit abnormal behavioral or nervous system phenotypes. These positively selected genes show a higher ratio of differential expression between wild and classical inbred mice compared with all genes, especially in the hippocampus and frontal lobe. Using a mutant mouse model, we find that the SNP rs27900929 (T>C) in gene Astn2 significantly reduces the tameness of mice and modifies the ratio of the two Astn2 (a/b) isoforms. Conclusion Our study indicates that classical inbred mice experienced high selection pressure during domestication under laboratory conditions. The analysis shows the positively selected genes are closely associated with behavior and the nervous system in mice. Tameness may be related to the Astn2 mutation and regulated by the ratio of the two Astn2 (a/b) isoforms. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-022-02772-1.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,International Society of Zoological Sciences, Beijing, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Caixia Yu
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Zhichao Zhang
- Novogene Bioinformatics Institute, Beijing, China.,Glbizzia Biosciences, Beijing, China
| | - Mingjing Song
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiuping Sun
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Jaroslav Piálek
- House Mouse Group, Research Facility Studenec, Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jens Jacob
- Julius Kühn-Institute, Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests / Institute for Epidemiology and Pathogen Diagnostics, Münster, Germany
| | - Jiqi Lu
- School of Life Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Lin Cong
- Institute of Plant Protection, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Hongmao Zhang
- School of Life Sciences, Central China Normal University, Wuhan, Hubei, China
| | - Yong Wang
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China
| | - Guoliang Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Feng
- Plant Protection Research Institute Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zhenglin Du
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.,National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Meng Wang
- Novogene Bioinformatics Institute, Beijing, China
| | - Xinru Wan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dawei Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongjun Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL, 32306, USA
| | - Bing Zhang
- Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China. .,International Society of Zoological Sciences, Beijing, China. .,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
25
|
Kushima I, Nakatochi M, Aleksic B, Okada T, Kimura H, Kato H, Morikawa M, Inada T, Ishizuka K, Torii Y, Nakamura Y, Tanaka S, Imaeda M, Takahashi N, Yamamoto M, Iwamoto K, Nawa Y, Ogawa N, Iritani S, Hayashi Y, Lo T, Otgonbayar G, Furuta S, Iwata N, Ikeda M, Saito T, Ninomiya K, Okochi T, Hashimoto R, Yamamori H, Yasuda Y, Fujimoto M, Miura K, Itokawa M, Arai M, Miyashita M, Toriumi K, Ohi K, Shioiri T, Kitaichi K, Someya T, Watanabe Y, Egawa J, Takahashi T, Suzuki M, Sasaki T, Tochigi M, Nishimura F, Yamasue H, Kuwabara H, Wakuda T, Kato TA, Kanba S, Horikawa H, Usami M, Kodaira M, Watanabe K, Yoshikawa T, Toyota T, Yokoyama S, Munesue T, Kimura R, Funabiki Y, Kosaka H, Jung M, Kasai K, Ikegame T, Jinde S, Numata S, Kinoshita M, Kato T, Kakiuchi C, Yamakawa K, Suzuki T, Hashimoto N, Ishikawa S, Yamagata B, Nio S, Murai T, Son S, Kunii Y, Yabe H, Inagaki M, Goto YI, Okumura Y, Ito T, Arioka Y, Mori D, Ozaki N. Cross-Disorder Analysis of Genic and Regulatory Copy Number Variations in Bipolar Disorder, Schizophrenia, and Autism Spectrum Disorder. Biol Psychiatry 2022; 92:362-374. [PMID: 35667888 DOI: 10.1016/j.biopsych.2022.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND We aimed to determine the similarities and differences in the roles of genic and regulatory copy number variations (CNVs) in bipolar disorder (BD), schizophrenia (SCZ), and autism spectrum disorder (ASD). METHODS Based on high-resolution CNV data from 8708 Japanese samples, we performed to our knowledge the largest cross-disorder analysis of genic and regulatory CNVs in BD, SCZ, and ASD. RESULTS In genic CNVs, we found an increased burden of smaller (<100 kb) exonic deletions in BD, which contrasted with the highest burden of larger (>500 kb) exonic CNVs in SCZ/ASD. Pathogenic CNVs linked to neurodevelopmental disorders were significantly associated with the risk for each disorder, but BD and SCZ/ASD differed in terms of the effect size (smaller in BD) and subtype distribution of CNVs linked to neurodevelopmental disorders. We identified 3 synaptic genes (DLG2, PCDH15, and ASTN2) as risk factors for BD. Whereas gene set analysis showed that BD-associated pathways were restricted to chromatin biology, SCZ and ASD involved more extensive and similar pathways. Nevertheless, a correlation analysis of gene set results indicated weak but significant pathway similarities between BD and SCZ or ASD (r = 0.25-0.31). In SCZ and ASD, but not BD, CNVs were significantly enriched in enhancers and promoters in brain tissue. CONCLUSIONS BD and SCZ/ASD differ in terms of CNV burden, characteristics of CNVs linked to neurodevelopmental disorders, and regulatory CNVs. On the other hand, they have shared molecular mechanisms, including chromatin biology. The BD risk genes identified here could provide insight into the pathogenesis of BD.
Collapse
Affiliation(s)
- Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan.
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Branko Aleksic
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Okada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Developmental Disorders, National Institute of Mental Health National Center of Neurology and Psychiatry, Nagoya, Japan
| | - Hiroki Kimura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hidekazu Kato
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mako Morikawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Toshiya Inada
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kanako Ishizuka
- Health Support Center, Nagoya Institute of Technology, Nagoya, Japan
| | - Youta Torii
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukako Nakamura
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tanaka
- National Hospital Organization Higashi Owari National Hospital, National Hospital Organization Nagoya Medical Center, Nagoya, Japan; Clinical Research Center, National Hospital Organization Nagoya Medical Center, Nagoya, Japan
| | - Miho Imaeda
- Department of Clinical Oncology and Chemotherapy, Nagoya University Hospital, Nagoya, Japan
| | - Nagahide Takahashi
- Department of Integrated Health Sciences, Department of Child and Adolescent Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maeri Yamamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kunihiro Iwamoto
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Nawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nanayo Ogawa
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shuji Iritani
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Okehazama Hospital Brain Research Institute, Fujita Health University School of Medicine, Toyoake, Japan
| | - Yu Hayashi
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tzuyao Lo
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Gantsooj Otgonbayar
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Sho Furuta
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Nakao Iwata
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Masashi Ikeda
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Takeo Saito
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Kohei Ninomiya
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Tomo Okochi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Hidenaga Yamamori
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan; Japan Community Health Care Organization Osaka Hospital, Osaka, Japan
| | - Yuka Yasuda
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Medical Corporation Foster, Osaka, Japan
| | - Michiko Fujimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan; Department of Psychiatry, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Masanari Itokawa
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan
| | - Makoto Arai
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Mitsuhiro Miyashita
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Tokyo, Japan; Department of Psychiatry, Takatsuki Hospital, Tokyo, Japan
| | - Kazuya Toriumi
- Schizophrenia Research Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazutaka Ohi
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan; Department of General Internal Medicine, Kanazawa Medical University, Ishikawa, Japan
| | - Toshiki Shioiri
- Department of Psychiatry, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - Toshiyuki Someya
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Yuichiro Watanabe
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jun Egawa
- Department of Psychiatry, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Michio Suzuki
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan; Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Tsukasa Sasaki
- Laboratory of Health Education, Graduate School of Education, University of Tokyo, Tokyo, Japan
| | - Mamoru Tochigi
- Department of Neuropsychiatry, Teikyo University School of Medicine, Tokyo, Japan
| | - Fumichika Nishimura
- Center for Research on Counseling and Support Services, University of Tokyo, Tokyo, Japan
| | - Hidenori Yamasue
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hitoshi Kuwabara
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tomoyasu Wakuda
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shigenobu Kanba
- Japan Depression Center, Tokyo, Japan; Kyushu University, Fukuoka, Japan
| | - Hideki Horikawa
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan; Horikawa Hospital, Kurume, Japan
| | - Masahide Usami
- Department of Child and Adolescent Psychiatry, Kohnodai Hospital, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Masaki Kodaira
- Department of Child and Adolescent Mental Health, Aiiku Clinic, Tokyo, Japan
| | - Kyota Watanabe
- Hiroshima City Center for Children's Health and Development, Hiroshima, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Tomoko Toyota
- Laboratory for Molecular Psychiatry, RIKEN Center for Brain Science, Wako, Japan
| | - Shigeru Yokoyama
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan
| | - Toshio Munesue
- Research Center for Child Mental Development, Kanazawa University, Ishikawa, Japan
| | - Ryo Kimura
- Department of Anatomy and Developmental Biology, Kyoto University, Kyoto, Japan
| | - Yasuko Funabiki
- Department of Cognitive and Behavioral Science, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan
| | - Hirotaka Kosaka
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan
| | - Minyoung Jung
- Department of Neuropsychiatry, Faculty of Medical Sciences, University of Fukui, Fukui, Japan; Cognitive Science Group, Korea Brain Research Institute, Daegu, South Korea
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan; International Research Center for Neurointelligence at University of Tokyo Institutes for Advanced Study, Tokyo, Japan
| | - Tempei Ikegame
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Seiichiro Jinde
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Shusuke Numata
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Makoto Kinoshita
- Department of Psychiatry, Graduate School of Biomedical Science, Tokushima University, Tokushima, Japan
| | - Tadafumi Kato
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chihiro Kakiuchi
- Department of Psychiatry and Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuhiro Yamakawa
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshimitsu Suzuki
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Shuhei Ishikawa
- Department of Psychiatry, Hokkaido University Hospital, Hokkaido, Japan
| | - Bun Yamagata
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Shintaro Nio
- Department of Psychiatry, Saiseikai Central Hospital, Tokyo, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shuraku Son
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute of Disaster Science, Tohoku University, Sendai, Japan; Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masumi Inagaki
- Department of Pediatrics, Tottori Prefecture Rehabilitation Center, Tottori, Japan
| | - Yu-Ichi Goto
- Department of Mental Retardation and Birth Defect Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Yuto Okumura
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Tomoya Ito
- Public Health Informatics Unit, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yuko Arioka
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Center for Advanced Medicine and Clinical Research, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Mori
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Brain and Mind Research Center, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan; Institute for Glyco-core Research, Nagoya University, Nagoya, Japan.
| |
Collapse
|
26
|
Baccino-Calace M, Schmidt K, Müller M. The E3 ligase Thin controls homeostatic plasticity through neurotransmitter release repression. eLife 2022; 11:71437. [PMID: 35796533 PMCID: PMC9299833 DOI: 10.7554/elife.71437] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/06/2022] [Indexed: 11/13/2022] Open
Abstract
Synaptic proteins and synaptic transmission are under homeostatic control, but the relationship between these two processes remains enigmatic. Here, we systematically investigated the role of E3 ubiquitin ligases, key regulators of protein degradation-mediated proteostasis, in presynaptic homeostatic plasticity (PHP). An electrophysiology-based genetic screen of 157 E3 ligase-encoding genes at the Drosophila neuromuscular junction identified thin, an ortholog of human tripartite motif-containing 32 (TRIM32), a gene implicated in several neurological disorders, including autism spectrum disorder and schizophrenia. We demonstrate that thin functions presynaptically during rapid and sustained PHP. Presynaptic thin negatively regulates neurotransmitter release under baseline conditions by limiting the number of release-ready vesicles, largely independent of gross morphological defects. We provide genetic evidence that thin controls release through dysbindin, a schizophrenia-susceptibility gene required for PHP. Thin and Dysbindin localize in proximity within presynaptic boutons, and Thin degrades Dysbindin in vitro. Thus, the E3 ligase Thin links protein degradation-dependent proteostasis of Dysbindin to homeostatic regulation of neurotransmitter release.
Collapse
Affiliation(s)
| | - Katharina Schmidt
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Martin Müller
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| |
Collapse
|
27
|
Nisar S, Bhat AA, Masoodi T, Hashem S, Akhtar S, Ali TA, Amjad S, Chawla S, Bagga P, Frenneaux MP, Reddy R, Fakhro K, Haris M. Genetics of glutamate and its receptors in autism spectrum disorder. Mol Psychiatry 2022; 27:2380-2392. [PMID: 35296811 PMCID: PMC9135628 DOI: 10.1038/s41380-022-01506-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 12/11/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental impairment characterized by deficits in social interaction skills, impaired communication, and repetitive and restricted behaviors that are thought to be due to altered neurotransmission processes. The amino acid glutamate is an essential excitatory neurotransmitter in the human brain that regulates cognitive functions such as learning and memory, which are usually impaired in ASD. Over the last several years, increasing evidence from genetics, neuroimaging, protein expression, and animal model studies supporting the notion of altered glutamate metabolism has heightened the interest in evaluating glutamatergic dysfunction in ASD. Numerous pharmacological, behavioral, and imaging studies have demonstrated the imbalance in excitatory and inhibitory neurotransmitters, thus revealing the involvement of the glutamatergic system in ASD pathology. Here, we review the effects of genetic alterations on glutamate and its receptors in ASD and the role of non-invasive imaging modalities in detecting these changes. We also highlight the potential therapeutic targets associated with impaired glutamatergic pathways.
Collapse
Affiliation(s)
- Sabah Nisar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Ajaz A Bhat
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tariq Masoodi
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sheema Hashem
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sabah Akhtar
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Tayyiba Akbar Ali
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Sara Amjad
- Shibli National College, Azamgarh, Uttar Pradesh, 276001, India
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Michael P Frenneaux
- Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Khalid Fakhro
- Department of Human Genetics, Sidra Medicine, P.O. Box 26999, Doha, Qatar
- Department of Genetic Medicine, Weill Cornell Medical College, P.O. Box 24144, Doha, Qatar
| | - Mohammad Haris
- Laboratory of Molecular and Metabolic Imaging, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Laboratory of Animal Research, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
28
|
Nakua H, Hawco C, Forde NJ, Jacobs GR, Joseph M, Voineskos AN, Wheeler AL, Lai MC, Szatmari P, Kelley E, Liu X, Georgiades S, Nicolson R, Schachar R, Crosbie J, Anagnostou E, Lerch JP, Arnold PD, Ameis SH. Cortico-amygdalar connectivity and externalizing/internalizing behavior in children with neurodevelopmental disorders. Brain Struct Funct 2022; 227:1963-1979. [PMID: 35469103 PMCID: PMC9232404 DOI: 10.1007/s00429-022-02483-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 03/15/2022] [Indexed: 12/31/2022]
Abstract
Background Externalizing and internalizing behaviors contribute to clinical impairment in children with neurodevelopmental disorders (NDDs). Although associations between externalizing or internalizing behaviors and cortico-amygdalar connectivity have been found in clinical and non-clinical pediatric samples, no previous study has examined whether similar shared associations are present across children with different NDDs. Methods Multi-modal neuroimaging and behavioral data from the Province of Ontario Neurodevelopmental Disorders (POND) Network were used. POND participants aged 6–18 years with a primary diagnosis of autism spectrum disorder (ASD), attention-deficit/hyperactivity disorder (ADHD) or obsessive–compulsive disorder (OCD), as well as typically developing children (TDC) with T1-weighted, resting-state fMRI or diffusion weighted imaging (DWI) and parent-report Child Behavioral Checklist (CBCL) data available, were analyzed (total n = 346). Associations between externalizing or internalizing behavior and cortico-amygdalar structural and functional connectivity indices were examined using linear regressions, controlling for age, gender, and image-modality specific covariates. Behavior-by-diagnosis interaction effects were also examined. Results No significant linear associations (or diagnosis-by-behavior interaction effects) were found between CBCL-measured externalizing or internalizing behaviors and any of the connectivity indices examined. Post-hoc bootstrapping analyses indicated stability and reliability of these null results. Conclusions The current study provides evidence towards an absence of a shared linear relationship between internalizing or externalizing behaviors and cortico-amygdalar connectivity properties across a transdiagnostic sample of children with different primary NDD diagnoses and TDC. Different methodological approaches, including incorporation of multi-dimensional behavioral data (e.g., task-based fMRI) or clustering approaches may be needed to clarify complex brain-behavior relationships relevant to externalizing/internalizing behaviors in heterogeneous clinical NDD populations. Supplementary Information The online version contains supplementary material available at 10.1007/s00429-022-02483-0.
Collapse
Affiliation(s)
- Hajer Nakua
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Colin Hawco
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Natalie J Forde
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Grace R Jacobs
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Michael Joseph
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
| | - Aristotle N Voineskos
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anne L Wheeler
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Peter Szatmari
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Kelley
- Department of Psychology, Department of Psychiatry, Queens University, Kingston, ON, Canada
| | - Xudong Liu
- Department of Psychology, Department of Psychiatry, Queens University, Kingston, ON, Canada
| | | | - Rob Nicolson
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
| | - Russell Schachar
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer Crosbie
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Pediatrics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Toronto, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Stephanie H Ameis
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 80 Workman Way, Toronto, ON, M6J 1H4, Canada.
- Department of Psychiatry, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada.
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
29
|
Joo J, Himes B. Gene-Based Analysis Reveals Sex-Specific Genetic Risk Factors of COPD. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2022; 2021:601-610. [PMID: 35308900 PMCID: PMC8861659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sex-specific differences have been noted among people with chronic obstructive pulmonary disease (COPD), but whether these differences are attributable to genetic variation is poorly understood. The availability of large biobanks with deeply phenotyped subjects such as the UK Biobank enables the investigation of sex-specific genetic associations that may provide new insights into COPD risk factors. We performed sex-stratified genome-wide association studies (GWAS) of COPD (male: 12,958 cases and 95,631 controls; female: 11,311 cases and 123,714 controls) and found that while most associations were shared between sexes, several regions had sex-specific contributions, including respiratory viral infection-related loci in/near C5orf56 and PELI1. Using the newly developed R package 'snpsettest', we performed gene-based association tests and identified gene-level sex-specific associations, including C5orf56 on 5q31.1, CFDP1/TMEM170A/CHST6 on 16q23.1 and ASTN2/TRIM32 on 9q33.1. Our results identified promising genes to pursue in functional studies to better understand sexual dimorphism in COPD.
Collapse
Affiliation(s)
- Jaehyun Joo
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Blanca Himes
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
30
|
Sun YY, Chen WJ, Huang ZP, Yang G, Wu ML, Xu DE, Yang WL, Luo YC, Xiao ZC, Xu RX, Ma QH. TRIM32 Deficiency Impairs the Generation of Pyramidal Neurons in Developing Cerebral Cortex. Cells 2022; 11:cells11030449. [PMID: 35159260 PMCID: PMC8834167 DOI: 10.3390/cells11030449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/20/2022] [Accepted: 01/25/2022] [Indexed: 02/01/2023] Open
Abstract
Excitatory-inhibitory imbalance (E/I) is a fundamental mechanism underlying autism spectrum disorders (ASD). TRIM32 is a risk gene genetically associated with ASD. The absence of TRIM32 causes impaired generation of inhibitory GABAergic interneurons, neural network hyperexcitability, and autism-like behavior in mice, emphasizing the role of TRIM32 in maintaining E/I balance, but despite the description of TRIM32 in regulating proliferation and differentiation of cultured mouse neural progenitor cells (NPCs), the role of TRIM32 in cerebral cortical development, particularly in the production of excitatory pyramidal neurons, remains unknown. The present study observed that TRIM32 deficiency resulted in decreased numbers of distinct layer-specific cortical neurons and decreased radial glial cell (RGC) and intermediate progenitor cell (IPC) pool size. We further demonstrated that TRIM32 deficiency impairs self-renewal of RGCs and IPCs as indicated by decreased proliferation and mitosis. A TRIM32 deficiency also affects or influences the formation of cortical neurons. As a result, TRIM32-deficient mice showed smaller brain size. At the molecular level, RNAseq analysis indicated reduced Notch signalling in TRIM32-deficient mice. Therefore, the present study indicates a role for TRIM32 in pyramidal neuron generation. Impaired generation of excitatory pyramidal neurons may explain the hyperexcitability observed in TRIM32-deficient mice.
Collapse
Affiliation(s)
- Yan-Yun Sun
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China; (Y.-Y.S.); (Z.-P.H.); (M.-L.W.)
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Wen-Jin Chen
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
| | - Ze-Ping Huang
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China; (Y.-Y.S.); (Z.-P.H.); (M.-L.W.)
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - Gang Yang
- Lab Center, Medical College of Soochow University, Suzhou 215123, China;
| | - Ming-Lei Wu
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China; (Y.-Y.S.); (Z.-P.H.); (M.-L.W.)
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
| | - De-En Xu
- Wuxi No. 2 People’s Hospital, Wuxi 214001, China;
| | - Wu-Lin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Yong-Chun Luo
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing 100028, China;
| | - Zhi-Cheng Xiao
- Department of Anatomy and Developmental Biology, Monash University, Clayton 3800, Australia;
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China;
- Correspondence: (Q.-H.M.); (R.-X.X.)
| | - Quan-Hong Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215123, China; (Y.-Y.S.); (Z.-P.H.); (M.-L.W.)
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou 215123, China
- Correspondence: (Q.-H.M.); (R.-X.X.)
| |
Collapse
|
31
|
Genome and transcriptome profiling of spontaneous preterm birth phenotypes. Sci Rep 2022; 12:1003. [PMID: 35046466 PMCID: PMC8770724 DOI: 10.1038/s41598-022-04881-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 12/23/2021] [Indexed: 12/27/2022] Open
Abstract
Preterm birth (PTB) occurs before 37 weeks of gestation. Risk factors include genetics and infection/inflammation. Different mechanisms have been reported for spontaneous preterm birth (SPTB) and preterm birth following preterm premature rupture of membranes (PPROM). This study aimed to identify early pregnancy biomarkers of SPTB and PPROM from the maternal genome and transcriptome. Pregnant women were recruited at the Liverpool Women’s Hospital. Pregnancy outcomes were categorised as SPTB, PPROM (≤ 34 weeks gestation, n = 53), high-risk term (HTERM, ≥ 37 weeks, n = 126) or low-risk (no history of SPTB/PPROM) term (LTERM, ≥ 39 weeks, n = 188). Blood samples were collected at 16 and 20 weeks gestation from which, genome (UK Biobank Axiom array) and transcriptome (Clariom D Human assay) data were acquired. PLINK and R were used to perform genetic association and differential expression analyses and expression quantitative trait loci (eQTL) mapping. Several significant molecular signatures were identified across the analyses in preterm cases. Genome-wide significant SNP rs14675645 (ASTN1) was associated with SPTB whereas microRNA-142 transcript and PPARG1-FOXP3 gene set were associated with PPROM at week 20 of gestation and is related to inflammation and immune response. This study has determined genomic and transcriptomic candidate biomarkers of SPTB and PPROM that require validation in diverse populations.
Collapse
|
32
|
OUP accepted manuscript. Brain 2022; 145:3214-3224. [DOI: 10.1093/brain/awac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 11/15/2022] Open
|
33
|
Polani S, Dean M, Lichter-Peled A, Hendrickson S, Tsang S, Fang X, Feng Y, Qiao W, Avni G, Kahila Bar-Gal G. Sequence Variant in the TRIM39-RPP21 Gene Readthrough is Shared Across a Cohort of Arabian Foals Diagnosed with Juvenile Idiopathic Epilepsy. JOURNAL OF GENETIC MUTATION DISORDERS 2022; 1:103. [PMID: 35465405 PMCID: PMC9031527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Juvenile idiopathic epilepsy (JIE) is a self-limiting neurological disorder with a suspected genetic predisposition affecting young Arabian foals of the Egyptian lineage. The condition is characterized by tonic-clonic seizures with intermittent post-ictal blindness, in which most incidents are sporadic and unrecognized. This study aimed to identify genetic components shared across a local cohort of Arabian foals diagnosed with JIE via a combined whole genome and targeted resequencing approach: Initial whole genome comparisons between a small cohort of nine diagnosed foals (cases) and 27 controls from other horse breeds identified variants uniquely shared amongst the case cohort. Further validation via targeted resequencing of these variants, that pertain to non-intergenic regions, on additional eleven case individuals revealed a single 19bp deletion coupled with a triple-C insertion (Δ19InsCCC) within the TRIM39-RPP21 gene readthrough that was uniquely shared across all case individuals, and absent from three additional Arabian controls. Furthermore, we have confirmed recent findings refuting potential linkage between JIE and other inherited diseases in the Arabian lineage, and refuted the potential linkage between JIE and genes predisposing a similar disorder in human newborns. This is the first study to report a genetic variant to be shared in a sub-population cohort of Arabian foals diagnosed with JIE. Further evaluation of the sensitivity and specificity of the Δ19InsCCC allele within additional cohorts of the Arabian horse is warranted in order to validate its credibility as a marker for JIE, and to ascertain whether it has been introduced into other horse breeds by Arabian ancestry.
Collapse
Affiliation(s)
- S Polani
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - M Dean
- National Cancer Institute, Division of Cancer Epidemiology & Genetics, Laboratory of Translational Genomics, USA
| | - A Lichter-Peled
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - S Hendrickson
- Department of Biology, Shepherd University, Shepherdstown, USA
| | | | - X Fang
- BGI-Shenzhen, Shenzhen, China
| | - Y Feng
- BGI-Shenzhen, Shenzhen, China
| | - W Qiao
- BGI-Shenzhen, Shenzhen, China
| | - G Avni
- Medisoos Equine Clinic, Kibutz Magal, Israel
| | - G Kahila Bar-Gal
- Koret School of Veterinary Medicine, The Robert H. Smith Faculty of Agriculture, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
34
|
Bauleo A, Montesanto A, Pace V, Brando R, De Stefano L, Puntorieri D, Cento L, Loddo S, Calacci C, Novelli A, Falcone E. Rare copy number variants in ASTN2 gene in patients with neurodevelopmental disorders. Psychiatr Genet 2021; 31:239-245. [PMID: 34412080 DOI: 10.1097/ypg.0000000000000296] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
INTRODUCTION In humans the normal development of cortical regions depends on the complex interactions between a number of proteins that promote the migrations of neuronal precursors from germinal zones and assembly into neuronal laminae. ASTN2 is one of the proteins implicated in such a complex process. Recently it has been observed that ASTN2 also regulates the surface expression of multiple synaptic proteins resulting in a modulation of synaptic activity. Several rare copy number variants (CNVs) in ASTN2 gene were identified in patients with neurodevelopmental disorders (NDDs) including autism spectrum disorders (ASD), attention deficit-hyperactivity disorders and intellectual disability. METHODS By using comparative genomic hybridization array technology, we analyzed the genomic profiles of five patients of three unrelated families with NDDs. Clinical diagnosis of ASD was established according to the Statistical Manual of Mental Disorders, Fifth Edition (APA 2013) criteria. RESULTS We identified new rare CNVs encompassing ASTN2 gene in three unrelated families with different clinical phenotypes of NDDs. In particular, we identified a deletion of about 70 Kb encompassing intron 19, a 186 Kb duplication encompassing the sequence between the 5'-end and the first intron of the gene and a 205 Kb deletion encompassing exons 6-11. CONCLUSION The CNVs reported here involve regions not usually disrupted in patients with NDDs with two of them affecting only the expression of the long isoforms. Further studies will be needed to analyze the impact of these CNVs on gene expression regulation and to better understand their impact on the protein function.
Collapse
Affiliation(s)
- Alessia Bauleo
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, Rende
| | - Vincenza Pace
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza
| | | | | | - Domenica Puntorieri
- Dipartimento Materno Infantile Neuropsichiatria Infanzia e Adolescenza Rossano - Cariati, Azienda Sanitaria Provinciale di Cosenza, Cosenza
| | - Luca Cento
- Translational Cytogenomics Research Unit, Associazione Equilibri Pedagogici, Studio Pedagogico Interdisciplinare, Reggio Calabria
| | - Sara Loddo
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chiara Calacci
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elena Falcone
- BIOGENET, Medical and Forensic Genetics Laboratory, Cosenza
| |
Collapse
|
35
|
Pastore SF, Muhammad T, Harripaul R, Lau R, Khan MTM, Khan MI, Islam O, Kang C, Ayub M, Jelani M, Vincent JB. Biallelic inheritance in a single Pakistani family with intellectual disability implicates new candidate gene RDH14. Sci Rep 2021; 11:23113. [PMID: 34848785 PMCID: PMC8632963 DOI: 10.1038/s41598-021-02599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/12/2021] [Indexed: 11/19/2022] Open
Abstract
In a multi-branch family from Pakistan, individuals presenting with palmoplantar keratoderma segregate in autosomal dominant fashion, and individuals with intellectual disability (ID) segregate in apparent autosomal recessive fashion. Initial attempts to identify the ID locus using homozygosity-by-descent (HBD) mapping were unsuccessful. However, following an assumption of locus heterogeneity, a reiterative HBD approach in concert with whole exome sequencing (WES) was employed. We identified a known disease-linked mutation in the polymicrogyria gene, ADGRG1, in two affected members. In the remaining two (living) affected members, HBD mapping cross-referenced with WES data identified a single biallelic frameshifting variant in the gene encoding retinol dehydrogenase 14 (RDH14). Transcription data indicate that RDH14 is expressed in brain, but not in retina. Magnetic resonance imaging for the individuals with this RDH14 mutation show no signs of polymicrogyria, however cerebellar atrophy was a notable feature. RDH14 in HEK293 cells localized mainly in the nucleoplasm. Co-immunoprecipitation studies confirmed binding to the proton-activated chloride channel 1 (PACC1/TMEM206), which is greatly diminished by the mutation. Our studies suggest RDH14 as a candidate for autosomal recessive ID and cerebellar atrophy, implicating either disrupted retinoic acid signaling, or, through PACC1, disrupted chloride ion homeostasis in the brain as a putative disease mechanism.
Collapse
Affiliation(s)
- Stephen F Pastore
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Tahir Muhammad
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Ricardo Harripaul
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Rebecca Lau
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Muhammad Tariq Masood Khan
- Department of Pathology, North-West School of Medicine, Hayatabad, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Ismail Khan
- Department of Zoology, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Omar Islam
- Department of Diagnostic Radiology, Queen's University, Kingston, ON, Canada
| | - Changsoo Kang
- Department of Biology and Institute of Basic Sciences, Sungshin Women's University, Seoul, Republic of Korea
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University Kingston, Kingston, ON, Canada
| | - Musharraf Jelani
- Centre for Omic Sciences, Islamia College Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - John B Vincent
- Molecular Neuropsychiatry and Development (MiND) Lab, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 250 College Street, Toronto, ON, M5T 1R8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
36
|
Pastore SF, Muhammad T, Harripaul R, Lau R, Khan MTM, Khan MI, Islam O, Kang C, Ayub M, Jelani M, Vincent JB. Biallelic inheritance in a single Pakistani family with intellectual disability implicates new candidate gene RDH14. Sci Rep 2021; 11:23113. [DOI: https:/doi.org/10.1038/s41598-021-02599-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 11/12/2021] [Indexed: 10/10/2023] Open
Abstract
AbstractIn a multi-branch family from Pakistan, individuals presenting with palmoplantar keratoderma segregate in autosomal dominant fashion, and individuals with intellectual disability (ID) segregate in apparent autosomal recessive fashion. Initial attempts to identify the ID locus using homozygosity-by-descent (HBD) mapping were unsuccessful. However, following an assumption of locus heterogeneity, a reiterative HBD approach in concert with whole exome sequencing (WES) was employed. We identified a known disease-linked mutation in the polymicrogyria gene, ADGRG1, in two affected members. In the remaining two (living) affected members, HBD mapping cross-referenced with WES data identified a single biallelic frameshifting variant in the gene encoding retinol dehydrogenase 14 (RDH14). Transcription data indicate that RDH14 is expressed in brain, but not in retina. Magnetic resonance imaging for the individuals with this RDH14 mutation show no signs of polymicrogyria, however cerebellar atrophy was a notable feature. RDH14 in HEK293 cells localized mainly in the nucleoplasm. Co-immunoprecipitation studies confirmed binding to the proton-activated chloride channel 1 (PACC1/TMEM206), which is greatly diminished by the mutation. Our studies suggest RDH14 as a candidate for autosomal recessive ID and cerebellar atrophy, implicating either disrupted retinoic acid signaling, or, through PACC1, disrupted chloride ion homeostasis in the brain as a putative disease mechanism.
Collapse
|
37
|
Mitani T, Isikay S, Gezdirici A, Gulec EY, Punetha J, Fatih JM, Herman I, Akay G, Du H, Calame DG, Ayaz A, Tos T, Yesil G, Aydin H, Geckinli B, Elcioglu N, Candan S, Sezer O, Erdem HB, Gul D, Demiral E, Elmas M, Yesilbas O, Kilic B, Gungor S, Ceylan AC, Bozdogan S, Ozalp O, Cicek S, Aslan H, Yalcintepe S, Topcu V, Bayram Y, Grochowski CM, Jolly A, Dawood M, Duan R, Jhangiani SN, Doddapaneni H, Hu J, Muzny DM, Marafi D, Akdemir ZC, Karaca E, Carvalho CMB, Gibbs RA, Posey JE, Lupski JR, Pehlivan D. High prevalence of multilocus pathogenic variation in neurodevelopmental disorders in the Turkish population. Am J Hum Genet 2021; 108:1981-2005. [PMID: 34582790 PMCID: PMC8546040 DOI: 10.1016/j.ajhg.2021.08.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/20/2021] [Indexed: 02/06/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are clinically and genetically heterogenous; many such disorders are secondary to perturbation in brain development and/or function. The prevalence of NDDs is > 3%, resulting in significant sociocultural and economic challenges to society. With recent advances in family-based genomics, rare-variant analyses, and further exploration of the Clan Genomics hypothesis, there has been a logarithmic explosion in neurogenetic "disease-associated genes" molecular etiology and biology of NDDs; however, the majority of NDDs remain molecularly undiagnosed. We applied genome-wide screening technologies, including exome sequencing (ES) and whole-genome sequencing (WGS), to identify the molecular etiology of 234 newly enrolled subjects and 20 previously unsolved Turkish NDD families. In 176 of the 234 studied families (75.2%), a plausible and genetically parsimonious molecular etiology was identified. Out of 176 solved families, deleterious variants were identified in 218 distinct genes, further documenting the enormous genetic heterogeneity and diverse perturbations in human biology underlying NDDs. We propose 86 candidate disease-trait-associated genes for an NDD phenotype. Importantly, on the basis of objective and internally established variant prioritization criteria, we identified 51 families (51/176 = 28.9%) with multilocus pathogenic variation (MPV), mostly driven by runs of homozygosity (ROHs) - reflecting genomic segments/haplotypes that are identical-by-descent. Furthermore, with the use of additional bioinformatic tools and expansion of ES to additional family members, we established a molecular diagnosis in 5 out of 20 families (25%) who remained undiagnosed in our previously studied NDD cohort emanating from Turkey.
Collapse
Affiliation(s)
- Tadahiro Mitani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sedat Isikay
- Department of Pediatric Neurology, Faculty of Medicine, University of Gaziantep, Gaziantep 27310, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul 34480, Turkey
| | - Elif Yilmaz Gulec
- Department of Medical Genetics, Kanuni Sultan Suleyman Training and Research Hospital, 34303 Istanbul, Turkey
| | - Jaya Punetha
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jawid M Fatih
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Isabella Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gulsen Akay
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Haowei Du
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Daniel G Calame
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akif Ayaz
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey; Departments of Medical Genetics, School of Medicine, Istanbul Medipol University, Istanbul 34810, Turkey
| | - Tulay Tos
- University of Health Sciences Zubeyde Hanim Research and Training Hospital of Women's Health and Diseases, Department of Medical Genetics, Ankara 06080, Turkey
| | - Gozde Yesil
- Istanbul Faculty of Medicine, Department of Medical Genetics, Istanbul University, Istanbul 34093, Turkey
| | - Hatip Aydin
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Private Reyap Istanbul Hospital, Istanbul 34515, Turkey
| | - Bilgen Geckinli
- Centre of Genetics Diagnosis, Zeynep Kamil Maternity and Children's Training and Research Hospital, Istanbul, Turkey; Department of Medical Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey
| | - Nursel Elcioglu
- Department of Pediatric Genetics, School of Medicine, Marmara University, Istanbul 34722, Turkey; Eastern Mediterranean University Medical School, Magosa, Mersin 10, Turkey
| | - Sukru Candan
- Medical Genetics Section, Balikesir Ataturk Public Hospital, Balikesir 10100, Turkey
| | - Ozlem Sezer
- Department of Medical Genetics, Samsun Education and Research Hospital, Samsun 55100, Turkey
| | - Haktan Bagis Erdem
- Department of Medical Genetics, University of Health Sciences, Diskapi Yildirim Beyazit Training and Research Hospital, Ankara 06110, Turkey
| | - Davut Gul
- Department of Medical Genetics, Gulhane Military Medical School, Ankara 06010, Turkey
| | - Emine Demiral
- Department of Medical Genetics, School of Medicine, University of Inonu, Malatya 44280, Turkey
| | - Muhsin Elmas
- Department of Medical Genetics, Afyon Kocatepe University, School of Medicine, Afyon 03218, Turkey
| | - Osman Yesilbas
- Division of Critical Care Medicine, Department of Pediatrics, School of Medicine, Bezmialem Foundation University, Istanbul 34093, Turkey; Department of Pediatrics, Division of Pediatric Critical Care Medicine, Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Betul Kilic
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Serdal Gungor
- Department of Pediatrics and Pediatric Neurology, Faculty of Medicine, Inonu University, Malatya 34218, Turkey
| | - Ahmet C Ceylan
- Department of Medical Genetics, University of Health Sciences, Ankara Training and Research Hospital, Ankara 06110, Turkey
| | - Sevcan Bozdogan
- Department of Medical Genetics, Cukurova University Faculty of Medicine, Adana 01330, Turkey
| | - Ozge Ozalp
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Salih Cicek
- Department of Medical Genetics, Konya Training and Research Hospital, Konya 42250, Turkey
| | - Huseyin Aslan
- Department of Medical Genetics, Adana City Training and Research Hospital, Adana 01170, Turkey
| | - Sinem Yalcintepe
- Department of Medical Genetics, School of Medicine, Trakya University, Edirne 22130, Turkey
| | - Vehap Topcu
- Department of Medical Genetics, Ankara City Hospital, Ankara 06800, Turkey
| | - Yavuz Bayram
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Angad Jolly
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Moez Dawood
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruizhi Duan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Harsha Doddapaneni
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jianhong Hu
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Donna M Muzny
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dana Marafi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep Coban Akdemir
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ender Karaca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudia M B Carvalho
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Richard A Gibbs
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jennifer E Posey
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA.
| | - Davut Pehlivan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Section of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX 77030, USA.
| |
Collapse
|
38
|
Zhang Z, Zhou J, Tan P, Pang Y, Rivkin AC, Kirchgessner MA, Williams E, Lee CT, Liu H, Franklin AD, Miyazaki PA, Bartlett A, Aldridge AI, Vu M, Boggeman L, Fitzpatrick C, Nery JR, Castanon RG, Rashid M, Jacobs MW, Ito-Cole T, O'Connor C, Pinto-Duartec A, Dominguez B, Smith JB, Niu SY, Lee KF, Jin X, Mukamel EA, Behrens MM, Ecker JR, Callaway EM. Epigenomic diversity of cortical projection neurons in the mouse brain. Nature 2021; 598:167-173. [PMID: 34616065 PMCID: PMC8494636 DOI: 10.1038/s41586-021-03223-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/11/2021] [Indexed: 01/02/2023]
Abstract
Neuronal cell types are classically defined by their molecular properties, anatomy and functions. Although recent advances in single-cell genomics have led to high-resolution molecular characterization of cell type diversity in the brain1, neuronal cell types are often studied out of the context of their anatomical properties. To improve our understanding of the relationship between molecular and anatomical features that define cortical neurons, here we combined retrograde labelling with single-nucleus DNA methylation sequencing to link neural epigenomic properties to projections. We examined 11,827 single neocortical neurons from 63 cortico-cortical and cortico-subcortical long-distance projections. Our results showed unique epigenetic signatures of projection neurons that correspond to their laminar and regional location and projection patterns. On the basis of their epigenomes, intra-telencephalic cells that project to different cortical targets could be further distinguished, and some layer 5 neurons that project to extra-telencephalic targets (L5 ET) formed separate clusters that aligned with their axonal projections. Such separation varied between cortical areas, which suggests that there are area-specific differences in L5 ET subtypes, which were further validated by anatomical studies. Notably, a population of cortico-cortical projection neurons clustered with L5 ET rather than intra-telencephalic neurons, which suggests that a population of L5 ET cortical neurons projects to both targets. We verified the existence of these neurons by dual retrograde labelling and anterograde tracing of cortico-cortical projection neurons, which revealed axon terminals in extra-telencephalic targets including the thalamus, superior colliculus and pons. These findings highlight the power of single-cell epigenomic approaches to connect the molecular properties of neurons with their anatomical and projection properties.
Collapse
Affiliation(s)
- Zhuzhu Zhang
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jingtian Zhou
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, CA, USA
| | - Pengcheng Tan
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Yan Pang
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Angeline C Rivkin
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Megan A Kirchgessner
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Neurosciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Elora Williams
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Cheng-Ta Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Hanqing Liu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Division of Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Alexis D Franklin
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Paula Assakura Miyazaki
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Anna Bartlett
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Andrew I Aldridge
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Minh Vu
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Lara Boggeman
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Conor Fitzpatrick
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Nery
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Rosa G Castanon
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Mohammad Rashid
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Matthew W Jacobs
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Tony Ito-Cole
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- Flow Cytometry Core Facility, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - António Pinto-Duartec
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Bertha Dominguez
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jared B Smith
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sheng-Yong Niu
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Kuo-Fen Lee
- Peptide Biology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Xin Jin
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Eran A Mukamel
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA
| | - M Margarita Behrens
- Computational Neurobiology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Ecker
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Edward M Callaway
- Systems Neurobiology Laboratories, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
39
|
Lo YH, Cheng HC, Hsiung CN, Yang SL, Wang HY, Peng CW, Chen CY, Lin KP, Kang ML, Chen CH, Chu HW, Lin CF, Lee MH, Liu Q, Satta Y, Lin CJ, Lin M, Chaw SM, Loo JH, Shen CY, Ko WY. Detecting Genetic Ancestry and Adaptation in the Taiwanese Han People. Mol Biol Evol 2021; 38:4149-4165. [PMID: 33170928 PMCID: PMC8476137 DOI: 10.1093/molbev/msaa276] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The Taiwanese people are composed of diverse indigenous populations and the Taiwanese Han. About 95% of the Taiwanese identify themselves as Taiwanese Han, but this may not be a homogeneous population because they migrated to the island from various regions of continental East Asia over a period of 400 years. Little is known about the underlying patterns of genetic ancestry, population admixture, and evolutionary adaptation in the Taiwanese Han people. Here, we analyzed the whole-genome single-nucleotide polymorphism genotyping data from 14,401 individuals of Taiwanese Han collected by the Taiwan Biobank and the whole-genome sequencing data for a subset of 772 people. We detected four major genetic ancestries with distinct geographic distributions (i.e., Northern, Southeastern, Japonic, and Island Southeast Asian ancestries) and signatures of population mixture contributing to the genomes of Taiwanese Han. We further scanned for signatures of positive natural selection that caused unusually long-range haplotypes and elevations of hitchhiked variants. As a result, we identified 16 candidate loci in which selection signals can be unambiguously localized at five single genes: CTNNA2, LRP1B, CSNK1G3, ASTN2, and NEO1. Statistical associations were examined in 16 metabolic-related traits to further elucidate the functional effects of each candidate gene. All five genes appear to have pleiotropic connections to various types of disease susceptibility and significant associations with at least one metabolic-related trait. Together, our results provide critical insights for understanding the evolutionary history and adaption of the Taiwanese Han population.
Collapse
Affiliation(s)
- Yun-Hua Lo
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Hsueh-Chien Cheng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Ni Hsiung
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Show-Ling Yang
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Han-Yu Wang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Wei Peng
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chun-Yu Chen
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Kung-Ping Lin
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Mei-Ling Kang
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Hsiun Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Hou-Wei Chu
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | | | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Quintin Liu
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Yoko Satta
- Department of Evolutionary Studies of Biosystems, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Japan
| | - Cheng-Jui Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Marie Lin
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei City, Taiwan
| | - Jun-Hun Loo
- Molecular Anthropology and Transfusion Medicine Research Laboratory, Mackay Memorial Hospital, Taipei, Taiwan
| | - Chen-Yang Shen
- Institute of Biomedical Sciences, Academia Sinica, Taipei City, Taiwan
| | - Wen-Ya Ko
- Faculty of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
40
|
Gharehgazlou A, Vandewouw M, Ziolkowski J, Wong J, Crosbie J, Schachar R, Nicolson R, Georgiades S, Kelley E, Ayub M, Hammill C, Ameis SH, Taylor MJ, Lerch JP, Anagnostou E. Cortical Gyrification Morphology in ASD and ADHD: Implication for Further Similarities or Disorder-Specific Features? Cereb Cortex 2021; 32:2332-2342. [PMID: 34550324 PMCID: PMC9157290 DOI: 10.1093/cercor/bhab326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Shared etiological pathways are suggested in ASD and ADHD given high rates of comorbidity, phenotypic overlap and shared genetic susceptibility. Given the peak of cortical gyrification expansion and emergence of ASD and ADHD symptomology in early development, we investigated gyrification morphology in 539 children and adolescents (6–17 years of age) with ASD (n=197) and ADHD (n=96) compared to typically developing controls (n=246) using the local Gyrification Index (lGI) to provide insight into contributing etiopathological factors in these two disorders. We also examined IQ effects and functional implications of gyrification by exploring the relation between lGI and ASD and ADHD symptomatology beyond diagnosis. General Linear Models yielded no group differences in lGI, and across groups, we identified an age-related decrease of lGI and greater lGI in females compared to males. No diagnosis-by-age interactions were found. Accounting for IQ variability in the model (n=484) yielded similar results. No significant associations were found between lGI and social communication deficits, repetitive and restricted behaviours, inattention or adaptive functioning. By examining both disorders and controls using shared methodology, we found no evidence of atypicality in gyrification as measured by the lGI in these conditions.
Collapse
Affiliation(s)
- Avideh Gharehgazlou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto M4G 1R8, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada
| | - Marlee Vandewouw
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto M5G 0A4, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto M5G 1X8, Canada.,Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto M4G 1R8, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto M5S 3G9, Canada
| | - Justine Ziolkowski
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto M5G 0A4, Canada.,Cerebral Imaging Centre, Douglas Mental Health University Institute, Montreal H4H 1R3, Canada.,Integrated Program in Neuroscience, McGill University, Montreal H3A 1A1, Canada
| | - Jimmy Wong
- Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada.,Psychiatry Research, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Russell Schachar
- Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto M5G 1X8, Canada
| | - Rob Nicolson
- The Children's Health Research Institute and Western University, London N6C 2V5, Canada
| | - Stelios Georgiades
- Offord Centre for Child Studies & Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton L8N 3K7, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen's University, Kingston K7L 3N6, Canada
| | - Muhammad Ayub
- Department of Psychiatry, Queen's University, Kingston K7L7X3, Canada
| | - Christopher Hammill
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto M5G 0A4, Canada.,Mouse Imaging Centre, Hospital for Sick Children, Toronto M5T 3H7, Canada
| | - Stephanie H Ameis
- Program in Brain and Mental Health, The Hospital for Sick Children, Toronto M5G 1X8 , Canada.,The Margaret and Wallace McCain Centre for Child, Youth, & Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto M6J 1H4, Canada.,Department of Psychiatry, University of Toronto, Toronto M5T 1R8, Canada
| | - Margot J Taylor
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada.,Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto M5G 0A4, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto M5G 1X8, Canada.,Department of Medical Imaging, University of Toronto, Toronto M5T 1W7, Canada
| | - Jason P Lerch
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto M5G 0A4, Canada.,Department of Medical Biophysics, University of Toronto, Toronto M5G 1L7, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto M4G 1R8, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto M5S 1A8, Canada.,Department of Pediatrics, University of Toronto, Toronto M5G 1X8, Canada.,Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto M5G 0A4, Canada
| |
Collapse
|
41
|
Yield of clinically reportable genetic variants in unselected cerebral palsy by whole genome sequencing. NPJ Genom Med 2021; 6:74. [PMID: 34531397 PMCID: PMC8445947 DOI: 10.1038/s41525-021-00238-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/26/2021] [Indexed: 12/24/2022] Open
Abstract
Cerebral palsy (CP) is the most common cause of childhood physical disability, with incidence between 1/500 and 1/700 births in the developed world. Despite increasing evidence for a major contribution of genetics to CP aetiology, genetic testing is currently not performed systematically. We assessed the diagnostic rate of genome sequencing (GS) in a clinically unselected cohort of 150 singleton CP patients, with CP confirmed at >4 years of age. Clinical grade GS was performed on the proband and variants were filtered, and classified according to American College of Medical Genetics and Genomics–Association for Molecular Pathology (ACMG-AMP) guidelines. Variants classified as pathogenic or likely pathogenic (P/LP) were further assessed for their contribution to CP. In total, 24.7% of individuals carried a P/LP variant(s) causing or increasing risk of CP, with 4.7% resolved by copy number variant analysis and 20% carrying single nucleotide or indel variants. A further 34.7% carried one or more rare, high impact variants of uncertain significance (VUS) in variation intolerant genes. Variants were identified in a heterogeneous group of genes, including genes associated with hereditary spastic paraplegia, clotting and thrombophilic disorders, small vessel disease, and other neurodevelopmental disorders. Approximately 1/2 of individuals were classified as likely to benefit from changed clinical management as a result of genetic findings. In addition, no significant association between genetic findings and clinical factors was detectable in this cohort, suggesting that systematic sequencing of CP will be required to avoid missed diagnoses.
Collapse
|
42
|
Kim SK, Nguyen C, Jones KB, Tashjian RZ. A genome-wide association study for shoulder impingement and rotator cuff disease. J Shoulder Elbow Surg 2021; 30:2134-2145. [PMID: 33482370 DOI: 10.1016/j.jse.2020.11.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND The purpose of the study was to identify genetic variants associated with rotator cuff disease by performing a genome-wide association study (GWAS) for shoulder impingement using the UK Biobank (UKB) cohort and then combining the GWAS data with a prior GWAS for rotator cuff tears. The loci identified by the GWAS and meta-analysis were examined for changes in expression following rotator cuff tearing using RNA sequencing. METHODS A GWAS was performed using data from UKB with 3864 cases of shoulder impingement. The summary statistics from shoulder impingement and a prior study on rotator cuff tears were combined in a meta-analysis. Also, the previous association of 2 single-nucleotide polymorphisms (SNPs) with shoulder impingement from a published GWAS using the UKB was tested. Rotator cuff tendon biopsies were obtained from 24 patients with full-thickness rotator cuff tears who underwent arthroscopic rotator cuff repair (cases) and 9 patients who underwent open reduction internal fixation for a proximal humeral fracture (controls). Total RNA was extracted and differential gene expression was measured by RNA sequencing for genes with variants associated with rotator cuff tearing. RESULTS The shoulder impingement GWAS identified 4 new loci: LOC100506457, LSP1P3, LOC100506207, and MIS18BP1/LINC00871. Combining data with a prior GWAS for rotator cuff tears in a meta-analysis resulted in the identification of an additional 7 loci: SLC39A8/UBE2D3, C5orf63, ASTN2, STK24, FRMPD4, ACOT9/SAT1, and LINC00890/ALG13. Many of the identified loci have known biologic functions or prior associations with diseases, suggesting possible biologic pathways leading to rotator cuff disease. RNA sequencing experiments show that expression of STK24 increases whereas expression of SAT1 and UBE2D3 decreases following rotator cuff tearing. Two SNPs previously reported to show an association with shoulder impingement from a prior UKB GWAS were not validated in our study. CONCLUSION This is the first GWAS for shoulder impingement in which new data from UKB enabled the identification of 4 loci showing a genetic association. A meta-analysis with a prior GWAS for rotator cuff tearing identified an additional 7 loci. The known biologic roles of many of the 11 loci suggest plausible biologic mechanisms underlying the etiology of rotator cuff disease. The risk alleles from each of the genetic loci can be used to assess the risk for rotator cuff disease in individual patients, enabling preventative or restorative actions via personalized medicine.
Collapse
Affiliation(s)
- Stuart K Kim
- Department of Developmental Biology, Stanford University Medical School, Stanford, CA, USA
| | - Condor Nguyen
- Department of Developmental Biology, Stanford University Medical School, Stanford, CA, USA
| | - Kevin B Jones
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Robert Z Tashjian
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
43
|
Zhu JW, Jia WQ, Zhou H, Li YF, Zou MM, Wang ZT, Wu BS, Xu RX. Deficiency of TRIM32 Impairs Motor Function and Purkinje Cells in Mid-Aged Mice. Front Aging Neurosci 2021; 13:697494. [PMID: 34421574 PMCID: PMC8377415 DOI: 10.3389/fnagi.2021.697494] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
Proper functioning of the cerebellum is crucial to motor balance and coordination in adult mammals. Purkinje cells (PCs), the sole output neurons of the cerebellar cortex, play essential roles in cerebellar motor function. Tripartite motif-containing protein 32 (TRIM32) is an E3 ubiquitin ligase that is involved in balance activities of neurogenesis in the subventricular zone of the mammalian brain and in the development of many nervous system diseases, such as Alzheimer's disease, autism spectrum disorder, attention deficit hyperactivity disorder. However, the role of TRIM32 in cerebellar motor function has never been examined. In this study we found that motor balance and coordination of mid-aged TRIM32 deficient mice were poorer than those of wild-type littermates. Immunohistochemical staining was performed to assess cerebella morphology and TRIM32 expression in PCs. Golgi staining showed that the extent of dendritic arborization and dendritic spine density of PCs were decreased in the absence of TRIM32. The loss of TRIM32 was also associated with a decrease in the number of synapses between parallel fibers and PCs, and in synapses between climbing fibers and PCs. In addition, deficiency of TRIM32 decreased Type I inositol 1,4,5-trisphosphate 5-phosphatase (INPP5A) levels in cerebellum. Overall, this study is the first to elucidate a role of TRIM32 in cerebellar motor function and a possible mechanism, thereby highlighting the importance of TRIM32 in the cerebellum.
Collapse
Affiliation(s)
- Jian-Wei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei-Qiang Jia
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Hui Zhou
- Department of Pediatrics, Chengdu Children Special Hospital, Chengdu, China
| | - Yi-Fei Li
- Department of Neurosurgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Ming-Ming Zou
- Department of Neurosurgery, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Zhao-Tao Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bing-Shan Wu
- Department of Neurosurgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ru-Xiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
44
|
Genetic Variation in the ASTN2 Locus in Cardiovascular, Metabolic and Psychiatric Traits: Evidence for Pleiotropy Rather Than Shared Biology. Genes (Basel) 2021; 12:genes12081194. [PMID: 34440368 PMCID: PMC8391428 DOI: 10.3390/genes12081194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022] Open
Abstract
Background: The link between cardiometabolic and psychiatric illness has long been attributed to human behaviour, however recent research highlights shared biological mechanisms. The ASTN2 locus has been previously implicated in psychiatric and cardiometabolic traits, therefore this study aimed to systematically investigate the genetic architecture of ASTN2 in relation to a wide range of relevant traits. Methods: Baseline questionnaire, assessment and genetic data of 402111 unrelated white British ancestry individuals from the UK Biobank was analysed. Genetic association analyses were conducted using PLINK 1.07, assuming an additive genetic model and adjusting for age, sex, genotyping chip, and population structure. Conditional analyses and linkage disequilibrium assessment were used to determine whether cardiometabolic and psychiatric signals were independent. Results: Associations between genetic variants in the ASTN2 locus and blood pressure, total and central obesity, neuroticism, anhedonia and mood instability were identified. All analyses support the independence of the cardiometabolic traits from the psychiatric traits. In silico analyses provide support for the central obesity signal acting through ASTN2, however most of the other signals are likely acting through other genes in the locus. Conclusions: Our systematic analysis demonstrates that ASTN2 has pleiotropic effects on cardiometabolic and psychiatric traits, rather than contributing to shared pathology.
Collapse
|
45
|
Pol-Fuster J, Cañellas F, Ruiz-Guerra L, Medina-Dols A, Bisbal-Carrió B, Ortega-Vila B, Llinàs J, Hernandez-Rodriguez J, Lladó J, Olmos G, Strauch K, Heine-Suñer D, Vives-Bauzà C, Flaquer A. The conserved ASTN2/BRINP1 locus at 9q33.1-33.2 is associated with major psychiatric disorders in a large pedigree from Southern Spain. Sci Rep 2021; 11:14529. [PMID: 34267256 PMCID: PMC8282839 DOI: 10.1038/s41598-021-93555-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022] Open
Abstract
We investigated the genetic causes of major mental disorders (MMDs) including schizophrenia, bipolar disorder I, major depressive disorder and attention deficit hyperactive disorder, in a large family pedigree from Alpujarras, South of Spain, a region with high prevalence of psychotic disorders. We applied a systematic genomic approach based on karyotyping (n = 4), genotyping by genome-wide SNP array (n = 34) and whole-genome sequencing (n = 12). We performed genome-wide linkage analysis, family-based association analysis and polygenic risk score estimates. Significant linkage was obtained at chromosome 9 (9q33.1–33.2, LOD score = 4.11), a suggestive region that contains five candidate genes ASTN2, BRINP1, C5, TLR4 and TRIM32, previously associated with MMDs. Comprehensive analysis associated the MMD phenotype with genes of the immune system with dual brain functions. Moreover, the psychotic phenotype was enriched for genes involved in synapsis. These results should be considered once studying the genetics of psychiatric disorders in other families, especially the ones from the same region, since founder effects may be related to the high prevalence.
Collapse
Affiliation(s)
- Josep Pol-Fuster
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Francesca Cañellas
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.,Department of Psychiatry, HUSE, IdISBa, Palma, Spain
| | - Laura Ruiz-Guerra
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Aina Medina-Dols
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Bàrbara Bisbal-Carrió
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Bernat Ortega-Vila
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.,Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jaume Llinàs
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Jessica Hernandez-Rodriguez
- Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jerònia Lladó
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Gabriel Olmos
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, LMU Munich, Munich, Germany
| | - Damià Heine-Suñer
- Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Cristòfol Vives-Bauzà
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain. .,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.
| | - Antònia Flaquer
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, LMU Munich, Munich, Germany
| |
Collapse
|
46
|
Stoychev K, Dilkov D, Naghavi E, Kamburova Z. Genetic Basis of Dual Diagnosis: A Review of Genome-Wide Association Studies (GWAS) Focusing on Patients with Mood or Anxiety Disorders and Co-Occurring Alcohol-Use Disorders. Diagnostics (Basel) 2021; 11:1055. [PMID: 34201295 PMCID: PMC8228390 DOI: 10.3390/diagnostics11061055] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/02/2023] Open
Abstract
(1) Background: Comorbidity between Alcohol Use Disorders (AUD), mood, and anxiety disorders represents a significant health burden, yet its neurobiological underpinnings are elusive. The current paper reviews all genome-wide association studies conducted in the past ten years, sampling patients with AUD and co-occurring mood or anxiety disorder(s). (2) Methods: In keeping with PRISMA guidelines, we searched EMBASE, Medline/PUBMED, and PsycINFO databases (January 2010 to December 2020), including references of enrolled studies. Study selection was based on predefined criteria and data underwent a multistep revision process. (3) Results: 15 studies were included. Some of them explored dual diagnoses phenotypes directly while others employed correlational analysis based on polygenic risk score approach. Their results support the significant overlap of genetic factors involved in AUDs and mood and anxiety disorders. Comorbidity risk seems to be conveyed by genes engaged in neuronal development, connectivity, and signaling although the precise neuronal pathways and mechanisms remain unclear. (4) Conclusion: given that genes associated with complex traits including comorbid clinical presentations are of small effect, and individually responsible for a very low proportion of the total variance, larger samples consisting of multiple refined comorbid combinations and confirmed by re-sequencing approaches will be necessary to disentangle the genetic architecture of dual diagnosis.
Collapse
Affiliation(s)
- Kaloyan Stoychev
- Department of Psychiatry, Medical University Pleven, 5800 Pleven, Bulgaria
| | - Dancho Dilkov
- Department of Psychiatry, Military Medical Academy Sofia, 1606 Sofia, Bulgaria;
| | | | - Zornitsa Kamburova
- Department of Medical Genetics, Medical University Pleven, 5800 Pleven, Bulgaria;
| |
Collapse
|
47
|
Rodrigues R, Lai MC, Beswick A, Gorman DA, Anagnostou E, Szatmari P, Anderson KK, Ameis SH. Practitioner Review: Pharmacological treatment of attention-deficit/hyperactivity disorder symptoms in children and youth with autism spectrum disorder: a systematic review and meta-analysis. J Child Psychol Psychiatry 2021; 62:680-700. [PMID: 32845025 DOI: 10.1111/jcpp.13305] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Clinically significant attention-deficit/hyperactivity disorder (ADHD) symptoms are common and impairing in children and youth with autism spectrum disorder(ASD). The aim of this systematic review and meta-analysis was to (a) evaluate the efficacy and safety of pharmacotherapy for the treatment of ADHD symptoms in ASD and (b) distil findings for clinical translation. METHODS We searched electronic databases and clinical trial registries (1992 onwards). We selected randomized controlled trials conducted in participants <25 years of age, diagnosed with ASD that evaluated ADHD outcomes (hyperactivity/impulsivity and inattention) following treatment with stimulants (methylphenidate or amphetamines), atomoxetine, alpha-2 adrenergic receptor agonists, antipsychotics, tricyclic antidepressants, bupropion, modafinil, venlafaxine, or a combination, in comparison with placebo, any of the listed medications, or behavioral therapies. Data were pooled using a random-effects model. RESULTS Twenty-five studies (4 methylphenidate, 4 atomoxetine, 1 guanfacine, 14 antipsychotic, 1 venlafaxine, and 1 tianeptine) were included. Methylphenidate reduced hyperactivity (parent-rated: standardized mean difference [SMD] = -.63, 95%CI = -.95,-.30; teacher-rated: SMD = -.81, 95%CI = -1.43,-.19) and inattention (parent-rated: SMD = -.36, 95%CI = -.64,-.07; teacher-rated: SMD = -.30, 95%CI = -.49,-.11). Atomoxetine reduced inattention (parent-rated: SMD = -.54, 95%CI = -.98,-.09; teacher/investigator-rated: SMD = -0.38, 95%CI = -0.75, -0.01) and parent-rated hyperactivity (parent-rated: SMD = -.49, 95%CI = -.76,-.23; teacher-rated: SMD = -.43, 95%CI = -.92, .06). Indirect evidence for significant reductions in hyperactivity with second-generation antipsychotics was also found. Quality of evidence for all interventions was low/very low. Methylphenidate was associated with a nonsignificant elevated risk of dropout due to adverse events. CONCLUSIONS Direct pooled evidence supports the efficacy and tolerability of methylphenidate or atomoxetine for treatment of ADHD symptoms in children and youth with ASD. The current review highlights the efficacy of standard ADHD pharmacotherapy for treatment of ADHD symptoms in children and youth with ASD. Consideration of the benefits weighed against the limitations of safety/efficacy data and lack of data evaluating long-term continuation is undertaken to help guide clinical decision-making regarding treatment of co-occurring ADHD symptoms in children and youth with ASD.
Collapse
Affiliation(s)
- Rebecca Rodrigues
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Meng-Chuan Lai
- The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Centre for Brain and Mental Health, Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada.,Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK.,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Adam Beswick
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Daniel A Gorman
- Centre for Brain and Mental Health, Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Bloorview Research Institute, Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Peter Szatmari
- The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Centre for Brain and Mental Health, Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kelly K Anderson
- Department of Epidemiology and Biostatistics, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Psychiatry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Stephanie H Ameis
- The Margaret and Wallace McCain Centre for Child, Youth and Family Mental Health, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Centre for Brain and Mental Health, Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
48
|
Gharehgazlou A, Freitas C, Ameis SH, Taylor MJ, Lerch JP, Radua J, Anagnostou E. Cortical Gyrification Morphology in Individuals with ASD and ADHD across the Lifespan: A Systematic Review and Meta-Analysis. Cereb Cortex 2021; 31:2653-2669. [PMID: 33386405 PMCID: PMC8023842 DOI: 10.1093/cercor/bhaa381] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 10/13/2020] [Accepted: 11/18/2020] [Indexed: 01/01/2023] Open
Abstract
Autism spectrum disorder (ASD) and attention-deficit hyperactivity disorder (ADHD) are common neurodevelopmental disorders (NDDs) that may impact brain maturation. A number of studies have examined cortical gyrification morphology in both NDDs. Here we review and when possible pool their results to better understand the shared and potentially disorder-specific gyrification features. We searched MEDLINE, PsycINFO, and EMBASE databases, and 24 and 10 studies met the criteria to be included in the systematic review and meta-analysis portions, respectively. Meta-analysis of local Gyrification Index (lGI) findings across ASD studies was conducted with SDM software adapted for surface-based morphometry studies. Meta-regressions were used to explore effects of age, sex, and sample size on gyrification differences. There were no significant differences in gyrification across groups. Qualitative synthesis of remaining ASD studies highlighted heterogeneity in findings. Large-scale ADHD studies reported no differences in gyrification between cases and controls suggesting that, similar to ASD, there is currently no evidence of differences in gyrification morphology compared with controls. Larger, longitudinal studies are needed to further clarify the effects of age, sex, and IQ on cortical gyrification in these NDDs.
Collapse
Affiliation(s)
- Avideh Gharehgazlou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Carina Freitas
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Stephanie H Ameis
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,The Margaret and Wallace McCain Centre for Child, Youth, & Family Mental Health, Campbell Family Mental Health Research Institute, The Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Diagnostic Imaging, The Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jason P Lerch
- Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK
| | - Joaquim Radua
- Imaging Mood- and Anxiety-Related Disorders (IMARD) Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain.,Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.,Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Faculty of Medicine, Institute of Medical Science, University of Toronto, Toronto, ON, Canada.,Neuroscience & Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada.,Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
49
|
Inoue R, Nishizawa D, Hasegawa J, Nakayama K, Fukuda KI, Ichinohe T, Mieda T, Tsujita M, Nakagawa H, Kitamura A, Sumikura H, Ikeda K, Hayashida M. Effects of rs958804 and rs7858836 single-nucleotide polymorphisms of the ASTN2 gene on pain-related phenotypes in patients who underwent laparoscopic colectomy and mandibular sagittal split ramus osteotomy. Neuropsychopharmacol Rep 2021; 41:82-90. [PMID: 33476460 PMCID: PMC8182957 DOI: 10.1002/npr2.12159] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/10/2023] Open
Abstract
Background Opioids are widely used as effective analgesics, but opioid sensitivity varies widely among individuals. The underlying genetic and nongenetic factors are not fully understood. Based on the results of our previous genome‐wide association study, we investigated the effects of single nucleotide polymorphisms (SNPs) of the astrotactin 2 (ASTN2) gene on pain‐related phenotypes in surgical patients. Methods We investigated the effects of two SNPs, rs958804 T/C and rs7858836 C/T, of the ASTN2 gene on eight and seven pain‐related phenotypes in 350 patients who underwent laparoscopic colectomy (LAC) and 358 patients who underwent mandibular sagittal split ramus osteotomy (SSRO), respectively. In both surgical groups, intravenous fentanyl patient‐controlled analgesia (PCA) was used for postoperative analgesia, and 24‐hour postoperative PCA fentanyl use was the primary endpoint. Results The association analyses among the two SNPs and pain‐related traits showed that 24‐hour fentanyl use was significantly associated with the two SNP genotypes in both surgical groups. The Mann‐Whitney test showed that 24‐hour fentanyl use was lower in patients with the C allele than in patients with the TT genotype of the rs958804 T/C SNP (P = .0019 and .0200 in LAC and SSRO patients, respectively), and it was lower in patients with the T allele than in patients with the CC genotype of the rs7858836 C/T SNP (P = .0017 and .0098 in LAC and SSRO patients, respectively). Conclusion The two SNPs of the ASTN2 gene were consistently associated with fentanyl requirements after two different types of surgery. These findings may contribute to personalized pain control. We investigated the effects of two SNPs, rs958804 T/C and rs7858836 C/T, which are located in the same LD block of the ASTN2 gene, on pain‐related phenotypes in two groups of patients who underwent laparoscopic colectomy and mandibular sagittal split ramus osteotomy. We found that these SNPs consistently reduced fentanyl requirements for postoperative analgesia, possibly by enhancing the analgesic effect of fentanyl.![]()
Collapse
Affiliation(s)
- Rie Inoue
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Daisuke Nishizawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kyoko Nakayama
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Ken-Ichi Fukuda
- Department of Oral Health and Clinical Science, Tokyo Dental College, Tokyo, Japan
| | - Tatsuya Ichinohe
- Department of Dental Anesthesiology, Tokyo Dental College, Tokyo, Japan
| | - Tsutomu Mieda
- Department of Anesthesiology, Saitama Medical University Hospital, Saitama, Japan
| | - Miki Tsujita
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hideyuki Nakagawa
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Akira Kitamura
- Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroyuki Sumikura
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masakazu Hayashida
- Department of Anesthesiology and Pain Medicine, Graduate School of Medicine, Juntendo University, Tokyo, Japan.,Addictive Substance Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Anesthesiology, Saitama Medical University International Medical Center, Saitama, Japan
| |
Collapse
|
50
|
Vorstman J, Scherer SW. What a finding of gene copy number variation can add to the diagnosis of developmental neuropsychiatric disorders. Curr Opin Genet Dev 2021; 68:18-25. [PMID: 33454514 DOI: 10.1016/j.gde.2020.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/22/2020] [Indexed: 11/26/2022]
Abstract
Among medical disciplines, diagnosis in psychiatry depends highly upon descriptive signs and symptoms, rather than biomarkers. Clear descriptions of specific genetic etiologies have been lacking; genomic technologies, however, are rapidly changing that landscape. Notably, chromosomal microarrays-which detect gene copy number variants (CNVs)-are a recommended standard of care for neurodevelopmental disorders. As a result, an increasing number of patients now receive a clinical diagnosis based on the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and an identified genetic etiological variant. However, psychiatric and genetic diagnoses are frequently communicated and managed as two disconnected diagnostic parameters. Here, we advocate for a transition model, allowing the integration of genetic etiological information-starting with diagnostically proven CNVs-within the DSM-5 classification framework.
Collapse
Affiliation(s)
- Jacob Vorstman
- Department of Psychiatry, Hospital for Sick Children University of Toronto, Toronto, ON, Canada; Program in Genetics and Genome Biology, Hospital for Sick Children, Canada; The Centre for Applied Genomics, Hospital for Sick Children, Canada
| | - Stephen W Scherer
- Program in Genetics and Genome Biology, Hospital for Sick Children, Canada; The Centre for Applied Genomics, Hospital for Sick Children, Canada; McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Canada.
| |
Collapse
|