1
|
Belloy ME, Le Guen Y, Stewart I, Williams K, Herz J, Sherva R, Zhang R, Merritt V, Panizzon MS, Hauger RL, Gaziano JM, Logue M, Napolioni V, Greicius MD. Role of the X Chromosome in Alzheimer Disease Genetics. JAMA Neurol 2024; 81:1032-1042. [PMID: 39250132 PMCID: PMC11385320 DOI: 10.1001/jamaneurol.2024.2843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/11/2024] [Indexed: 09/10/2024]
Abstract
Importance The X chromosome has remained enigmatic in Alzheimer disease (AD), yet it makes up 5% of the genome and carries a high proportion of genes expressed in the brain, making it particularly appealing as a potential source of unexplored genetic variation in AD. Objectives To perform the first large-scale X chromosome-wide association study (XWAS) of AD. Design, Setting, and Participants This was a meta-analysis of genetic association studies in case-control, family-based, population-based, and longitudinal AD-related cohorts from the US Alzheimer's Disease Genetics Consortium, the Alzheimer's Disease Sequencing Project, the UK Biobank, the Finnish health registry, and the US Million Veterans Program. Risk of AD was evaluated through case-control logistic regression analyses. Data were analyzed between January 2023 and March 2024. Genetic data available from high-density single-nucleotide variant microarrays and whole-genome sequencing and summary statistics for multitissue expression and protein quantitative trait loci available from published studies were included, enabling follow-up genetic colocalization analyses. A total of 1 629 863 eligible participants were selected from referred and volunteer samples, 477 596 of whom were excluded for analysis exclusion criteria. The number of participants who declined to participate in original studies was not available. Main Outcome and Measures Risk of AD, reported as odds ratios (ORs) with 95% CIs. Associations were considered at X chromosome-wide (P < 1 × 10-5) and genome-wide (P < 5 × 10-8) significance. Primary analyses are nonstratified, while secondary analyses evaluate sex-stratified effects. Results Analyses included 1 152 284 participants of non-Hispanic White, European ancestry (664 403 [57.7%] female and 487 881 [42.3%] male), including 138 558 individuals with AD. Six independent genetic loci passed X chromosome-wide significance, with 4 showing support for links between the genetic signal for AD and expression of nearby genes in brain and nonbrain tissues. One of these 4 loci passed conservative genome-wide significance, with its lead variant centered on an intron of SLC9A7 (OR, 1.03; 95% CI, 1.02-1.04) and colocalization analyses prioritizing both the SLC9A7 and nearby CHST7 genes. Of these 6 loci, 4 displayed evidence for escape from X chromosome inactivation with regard to AD risk. Conclusion and Relevance This large-scale XWAS of AD identified the novel SLC9A7 locus. SLC9A7 regulates pH homeostasis in Golgi secretory compartments and is anticipated to have downstream effects on amyloid β accumulation. Overall, this study advances our knowledge of AD genetics and may provide novel biological drug targets. The results further provide initial insights into elucidating the role of the X chromosome in sex-based differences in AD.
Collapse
Affiliation(s)
- Michael E. Belloy
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St Louis, Missouri
- Department of Neurology, Washington University School of Medicine, St Louis, Missouri
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
- Quantitative Sciences Unit, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Ilaria Stewart
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Kennedy Williams
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| | - Joachim Herz
- Center for Translational Neurodegeneration Research, Department of Molecular Genetics University of Texas Southwestern Medical Center at Dallas, Dallas
| | - Richard Sherva
- Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
| | - Rui Zhang
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, Massachusetts
| | - Victoria Merritt
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California San Diego, La Jolla
| | - Matthew S. Panizzon
- Department of Psychiatry, University of California San Diego, La Jolla
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla
| | - Richard L. Hauger
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California
- Department of Psychiatry, University of California San Diego, La Jolla
- Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla
| | - J. Michael Gaziano
- Million Veteran Program (MVP) Coordinating Center, VA Boston Healthcare System, Boston, Massachusetts
- Division of Aging, Brigham & Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Mark Logue
- Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, Massachusetts
- Department of Psychiatry, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, California
| |
Collapse
|
2
|
Marshall AE, Lemire G, Liang Y, Davila J, Couse M, Boycott KM, Kernohan KD. RNA sequencing reveals deep intronic CEP120 variant: A report of the diagnostic odyssey for two siblings with Joubert syndrome type 31. Am J Med Genet A 2024; 194:e63485. [PMID: 38050708 DOI: 10.1002/ajmg.a.63485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 11/16/2023] [Indexed: 12/06/2023]
Affiliation(s)
- Aren E Marshall
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | - Gabrielle Lemire
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Yijing Liang
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jorge Davila
- Department of Medical Imaging, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Madeline Couse
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario, Canada
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Werren EA, Guxholli A, Jones N, Wagner M, Hannibal I, Granadillo JL, Tyndall AV, Moccia A, Kuehl R, Levandoski KM, Day-Salvatore DL, Wheeler M, Chong JX, Bamshad MJ, Innes AM, Pierson TM, Mackay JP, Bielas SL, Martin DM. De novo variants in GATAD2A in individuals with a neurodevelopmental disorder: GATAD2A-related neurodevelopmental disorder. HGG ADVANCES 2023; 4:100198. [PMID: 37181331 PMCID: PMC10172836 DOI: 10.1016/j.xhgg.2023.100198] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
GATA zinc finger domain containing 2A (GATAD2A) is a subunit of the nucleosome remodeling and deacetylase (NuRD) complex. NuRD is known to regulate gene expression during neural development and other processes. The NuRD complex modulates chromatin status through histone deacetylation and ATP-dependent chromatin remodeling activities. Several neurodevelopmental disorders (NDDs) have been previously linked to variants in other components of NuRD's chromatin remodeling subcomplex (NuRDopathies). We identified five individuals with features of an NDD that possessed de novo autosomal dominant variants in GATAD2A. Core features in affected individuals include global developmental delay, structural brain defects, and craniofacial dysmorphology. These GATAD2A variants are predicted to affect protein dosage and/or interactions with other NuRD chromatin remodeling subunits. We provide evidence that a GATAD2A missense variant disrupts interactions of GATAD2A with CHD3, CHD4, and CHD5. Our findings expand the list of NuRDopathies and provide evidence that GATAD2A variants are the genetic basis of a previously uncharacterized developmental disorder.
Collapse
Affiliation(s)
- Elizabeth A. Werren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alba Guxholli
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Natasha Jones
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Matias Wagner
- Institute of Human Genetics, Technical University of Munich, 80333 Munich, Germany
| | - Iris Hannibal
- Institute of Human Genetics, Technical University of Munich, 80333 Munich, Germany
| | - Jorge L. Granadillo
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Amanda V. Tyndall
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Amanda Moccia
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Ryan Kuehl
- Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
| | | | | | - Marsha Wheeler
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - University of Washington Center for Mendelian Genomics
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
- Institute of Human Genetics, Technical University of Munich, 80333 Munich, Germany
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Saint Peter’s University Hospital, New Brunswick, NJ 08901, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Division of Pediatric Neurology, Department of Pediatrics, Guerin Children’s, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for the Undiagnosed Patient, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jessica X. Chong
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
| | - Michael J. Bamshad
- Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
- Brotman Baty Institute, Seattle, WA 98195, USA
| | - A. Micheil Innes
- Department of Medical Genetics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Tyler Mark Pierson
- Division of Pediatric Neurology, Department of Pediatrics, Guerin Children’s, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Center for the Undiagnosed Patient, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW 2006, Australia
| | - Stephanie L. Bielas
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Donna M. Martin
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Mattison KA, Tossing G, Mulroe F, Simmons C, Butler KM, Schreiber A, Alsadah A, Neilson DE, Naess K, Wedell A, Wredenberg A, Sorlin A, McCann E, Burghel GJ, Menendez B, Hoganson GE, Botto LD, Filloux FM, Aledo-Serrano Á, Gil-Nagel A, Tatton-Brown K, Verbeek NE, van der Zwaag B, Aleck KA, Fazenbaker AC, Balciuniene J, Dubbs HA, Marsh ED, Garber K, Ek J, Duno M, Hoei-Hansen CE, Deardorff MA, Raca G, Quindipan C, van Hirtum-Das M, Breckpot J, Hammer TB, Møller RS, Whitney A, Douglas AGL, Kharbanda M, Brunetti-Pierri N, Morleo M, Nigro V, May HJ, Tao JX, Argilli E, Sherr EH, Dobyns WB, Baines RA, Warwicker J, Parker JA, Banka S, Campeau PM, Escayg A. ATP6V0C variants impair V-ATPase function causing a neurodevelopmental disorder often associated with epilepsy. Brain 2023; 146:1357-1372. [PMID: 36074901 PMCID: PMC10319782 DOI: 10.1093/brain/awac330] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/29/2022] [Accepted: 08/14/2022] [Indexed: 11/14/2022] Open
Abstract
The vacuolar H+-ATPase is an enzymatic complex that functions in an ATP-dependent manner to pump protons across membranes and acidify organelles, thereby creating the proton/pH gradient required for membrane trafficking by several different types of transporters. We describe heterozygous point variants in ATP6V0C, encoding the c-subunit in the membrane bound integral domain of the vacuolar H+-ATPase, in 27 patients with neurodevelopmental abnormalities with or without epilepsy. Corpus callosum hypoplasia and cardiac abnormalities were also present in some patients. In silico modelling suggested that the patient variants interfere with the interactions between the ATP6V0C and ATP6V0A subunits during ATP hydrolysis. Consistent with decreased vacuolar H+-ATPase activity, functional analyses conducted in Saccharomyces cerevisiae revealed reduced LysoSensor fluorescence and reduced growth in media containing varying concentrations of CaCl2. Knockdown of ATP6V0C in Drosophila resulted in increased duration of seizure-like behaviour, and the expression of selected patient variants in Caenorhabditis elegans led to reduced growth, motor dysfunction and reduced lifespan. In summary, this study establishes ATP6V0C as an important disease gene, describes the clinical features of the associated neurodevelopmental disorder and provides insight into disease mechanisms.
Collapse
Affiliation(s)
- Kari A Mattison
- Genetics and Molecular Biology Graduate Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, GA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Gilles Tossing
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Fred Mulroe
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, UK
| | - Callum Simmons
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, UK
| | - Kameryn M Butler
- Department of Human Genetics, Emory University, Atlanta, GA, USA
- Greenwood Genetics Center, Greenwood, SC, USA
| | - Alison Schreiber
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - Adnan Alsadah
- Center for Personalized Genetic Healthcare, Cleveland Clinic, Cleveland, OH, USA
| | - Derek E Neilson
- Division of Genetics and Metabolism, Department of Child Health, The University of Arizona College of Medicine, Phoenix, AZ, USA
- Department of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix Children’s Medical Group, Phoenix, AZ, USA
| | - Karin Naess
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Anna Wedell
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Deparment of Molecular Medicine and Surgery, Karolinska Institute, Stockholm, Sweden
| | - Anna Wredenberg
- Center for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| | - Arthur Sorlin
- National Center of Genetics, Laboratoire National de Santé, Dudelange, Luxembourg
| | - Emma McCann
- Liverpool Center for Genomic Medicine, Liverpool Women’s Hospital, Liverpool, UK
| | - George J Burghel
- Genomic Diagnostic Laboratory, St. Mary’s Hospital, Manchester University NHS Foundation Trust, Manchester, UK
| | | | - George E Hoganson
- Division of Genetics, Department of Pediatrics, University of Illinois College of Medicine, Chicago, IL, USA
| | - Lorenzo D Botto
- Division of Medical Genetics, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Francis M Filloux
- Division of Pediatric Neurology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ángel Aledo-Serrano
- Genetic Epilepsy Program, Department of Neurology, Ruber International Hospital, Madrid, Spain
| | - Antonio Gil-Nagel
- Genetic Epilepsy Program, Department of Neurology, Ruber International Hospital, Madrid, Spain
| | - Katrina Tatton-Brown
- Medical Genetics, St. George’s University Hospitals NHS Foundation Trust and Institute for Molecular and Cell Sciences, St. George’s, University of London, London, UK
| | - Nienke E Verbeek
- Department of Genetics, University Medical Center Utrecht, Member of the ERN EpiCARE, Utrecht, The Netherlands
| | - Bert van der Zwaag
- Department of Genetics, University Medical Center Utrecht, Member of the ERN EpiCARE, Utrecht, The Netherlands
| | - Kyrieckos A Aleck
- Division of Genetics and Metabolism, Department of Child Health, The University of Arizona College of Medicine, Phoenix, AZ, USA
- Department of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix Children’s Medical Group, Phoenix, AZ, USA
| | - Andrew C Fazenbaker
- Department of Genetics and Metabolism, Phoenix Children’s Hospital, Phoenix Children’s Medical Group, Phoenix, AZ, USA
| | - Jorune Balciuniene
- Divison of Genomic Diagnostics, Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- PerkinElmer Genomics, Pittsburgh, PA, USA
| | - Holly A Dubbs
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Eric D Marsh
- Division of Neurology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathryn Garber
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Jakob Ek
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Morten Duno
- Department of Clinical Genetics, University Hospital of Copenhagen, Copenhagen, Denmark
| | - Christina E Hoei-Hansen
- Department of Pediatrics, University Hospital of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Matthew A Deardorff
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Department of Pediatrics, Division of Medical Genetics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Gordana Raca
- Department of Pathology and Laboratory Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Catherine Quindipan
- Center for Personalized Medicine, Children’s Hospital Los Angeles, Los Angeles, CA, USA
| | - Michele van Hirtum-Das
- Department of Pediatrics, Division of Medical Genetics, Children’s Hospital Los Angeles, Los Angeles, CA, USA
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeroen Breckpot
- Center for Human Genetics, University Hospitals Leuven, Leuven, Belgium
| | - Trine Bjørg Hammer
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Fildelfia, Dianalund, Denmark
| | - Rikke S Møller
- Department of Epilepsy Genetics and Personalized Medicine, Danish Epilepsy Center, Fildelfia, Dianalund, Denmark
- Insititue for Regional Health Services Research, University of Southern Denmark, Odense, Denmark
| | - Andrea Whitney
- Pediatric Neurology, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andrew G L Douglas
- Wessex Clinical Genetics Service, University of Southampton, Southampton, UK
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mira Kharbanda
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Nicola Brunetti-Pierri
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Manuela Morleo
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Vincenzo Nigro
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, Naples, Italy
| | - Halie J May
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - James X Tao
- Department of Neurology, University of Chicago, Chicago, IL, USA
| | - Emanuela Argilli
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Pediatrics Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Elliot H Sherr
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
- Pediatrics Institute of Human Genetics and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - William B Dobyns
- Department of Pediatrics, Division of Genetics and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | | | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Center, Manchester, UK
| | - Jim Warwicker
- School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - J Alex Parker
- Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Siddharth Banka
- Division of Evolution, Infection, and Genomics, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | | | - Andrew Escayg
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| |
Collapse
|
5
|
Altered distribution and localization of organellar Na +/H + exchangers in postmortem schizophrenia dorsolateral prefrontal cortex. Transl Psychiatry 2023; 13:34. [PMID: 36732328 PMCID: PMC9895429 DOI: 10.1038/s41398-023-02336-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia is a complex and multifactorial disorder associated with altered neurotransmission as well as numerous signaling pathway and protein trafficking disruptions. The pH of intracellular organelles involved in protein trafficking is tightly regulated and impacts their functioning. The SLC9A family of Na+/H+ exchangers (NHEs) plays a fundamental role in cellular and intracellular pH homeostasis. Four organellar NHE isoforms (NHE6-NHE9) are targeted to intracellular organelles involved in protein trafficking. Increased interactions between organellar NHEs and receptor of activated protein C kinase 1 (RACK1) can lead to redistribution of NHEs to the plasma membrane and hyperacidification of target organelles. Given their role in organelle pH regulation, altered expression and/or localization of organellar NHEs could be an underlying cellular mechanism contributing to abnormal intracellular trafficking and disrupted neurotransmitter systems in schizophrenia. We thus characterized organellar NHE expression, co-immunoprecipitation with RACK1, and Triton X-114 (TX-114) phase partitioning in dorsolateral prefrontal cortex of 25 schizophrenia and 25 comparison subjects by Western blot analysis. In schizophrenia after controlling for subject age at time of death, postmortem interval, tissue pH, and sex, there was significantly decreased total expression of NHE8, decreased co-immunoprecipitation of NHE8 (64%) and NHE9 (56%) with RACK1, and increased TX-114 detergent phase partitioning of NHE6 (283%), NHE9 (75%), and RACK1 (367%). Importantly, none of these dependent measures was significantly impacted when comparing those in the schizophrenia group on antipsychotics to those off of antipsychotics for at least 6 weeks at their time of death and none of these same proteins were affected in rats chronically treated with haloperidol. In summary, we characterized organellar NHE expression and distribution in schizophrenia DLPFC and identified abnormalities that could represent a novel mechanism contributing to disruptions in protein trafficking and neurotransmission in schizophrenia.
Collapse
|
6
|
Schwartz CE, Louie RJ, Toutain A, Skinner C, Friez MJ, Stevenson RE. X-Linked intellectual disability update 2022. Am J Med Genet A 2023; 191:144-159. [PMID: 36300573 DOI: 10.1002/ajmg.a.63008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 07/28/2022] [Accepted: 09/29/2022] [Indexed: 12/14/2022]
Abstract
Genes that are involved in the transcription process, mitochondrial function, glycoprotein metabolism, and ubiquitination dominate the list of 21 new genes associated with X-linked intellectual disability since the last update in 2017. The new genes were identified by sequencing of candidate genes (2), the entire X-chromosome (2), the whole exome (15), or the whole genome (2). With these additions, 42 (21%) of the 199 named XLID syndromes and 27 (25%) of the 108 numbered nonsyndromic XLID families remain to be resolved at the molecular level. Although the pace of discovery of new XLID genes has slowed during the past 5 years, the density of genes on the X chromosome that cause intellectual disability still appears to be twice the density of intellectual disability genes on the autosomes.
Collapse
Affiliation(s)
| | | | - Annick Toutain
- Department of Medical Genetics, Centre Hospitalier Universitaire, Tours, France
| | - Cindy Skinner
- Greenwood Genetic Center, Greenwood, South Carolina, USA
| | | | | |
Collapse
|
7
|
Gao AYL, Lourdin-De Filippis E, Orlowski J, McKinney RA. Roles of Endomembrane Alkali Cation/Proton Exchangers in Synaptic Function and Neurodevelopmental Disorders. Front Physiol 2022; 13:892196. [PMID: 35547574 PMCID: PMC9081726 DOI: 10.3389/fphys.2022.892196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/30/2022] [Indexed: 12/25/2022] Open
Abstract
Endomembrane alkali cation (Na+, K+)/proton (H+) exchangers (eNHEs) are increasingly associated with neurological disorders. These eNHEs play integral roles in regulating the luminal pH, processing, and trafficking of cargo along the secretory (Golgi and post-Golgi vesicles) and endocytic (early, recycling, and late endosomes) pathways, essential regulatory processes vital for neuronal development and plasticity. Given the complex morphology and compartmentalization of multipolar neurons, the contribution of eNHEs in maintaining optimal pH homeostasis and cargo trafficking is especially significant during periods of structural and functional development and remodeling. While the importance of eNHEs has been demonstrated in a variety of non-neuronal cell types, their involvement in neuronal function is less well understood. In this review, we will discuss their emerging roles in excitatory synaptic function, particularly as it pertains to cellular learning and remodeling. We will also explore their connections to neurodevelopmental conditions, including intellectual disability, autism, and attention deficit hyperactivity disorders.
Collapse
Affiliation(s)
- Andy Y L Gao
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada.,Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| | | | - John Orlowski
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - R Anne McKinney
- Department of Pharmacology & Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
8
|
Cupaioli FA, Fallerini C, Mencarelli MA, Perticaroli V, Filippini V, Mari F, Renieri A, Mezzelani A. Autism Spectrum Disorders: Analysis of Mobile Elements at 7q11.23 Williams-Beuren Region by Comparative Genomics. Genes (Basel) 2021; 12:genes12101605. [PMID: 34680999 PMCID: PMC8535890 DOI: 10.3390/genes12101605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022] Open
Abstract
Autism spectrum disorders (ASD) are a group of complex neurodevelopmental disorders, characterized by a deficit in social interaction and communication. Many genetic variants are associated with ASD, including duplication of 7q11.23 encompassing 26-28 genes. Symmetrically, the hemizygous deletion of 7q11.23 causes Williams-Beuren syndrome (WBS), a multisystem disorder characterized by "hyper-sociability" and communication skills. Interestingly, deletion of four non-exonic mobile elements (MEs) in the "canine WBS locus" were associated with the behavioral divergence between the wolf and the dog and dog sociability and domestication. We hypothesized that indel of these MEs could be involved in ASD, associated with its different phenotypes and useful as biomarkers for patient stratification and therapeutic design. Since these MEs are non-exonic they have never been discovered before. We searched the corresponding MEs and loci in humans by comparative genomics. Interestingly, they mapped on different but ASD related genes. The loci in individuals with phenotypically different autism and neurotypical controls were amplified by PCR. A sub-set of each amplicon was sequenced by Sanger. No variant resulted associated with ASD and neither specific phenotypes were found but novel small-scale insertions and SNPs were discovered. Since MEs are hyper-methylated and epigenetically modulate gene expression, further investigation in ASD is necessary.
Collapse
Affiliation(s)
- Francesca Anna Cupaioli
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy;
| | - Chiara Fallerini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
| | | | - Valentina Perticaroli
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Virginia Filippini
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Francesca Mari
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Alessandra Renieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy; (C.F.); (V.P.); (V.F.); (F.M.); (A.R.)
- Medical Genetics, University of Siena, 53100 Siena, Italy
- Genetica Medica, Azienda Ospedaliero Universitaria Senese, 53100 Siena, Italy;
| | - Alessandra Mezzelani
- Institute of Biomedical Technologies, Italian National Research Council, Via Fratelli Cervi 93, 20090 Segrate, Italy;
- Correspondence:
| |
Collapse
|
9
|
A mutation in SLC37A4 causes a dominantly inherited congenital disorder of glycosylation characterized by liver dysfunction. Am J Hum Genet 2021; 108:1040-1052. [PMID: 33964207 DOI: 10.1016/j.ajhg.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/20/2021] [Indexed: 02/08/2023] Open
Abstract
SLC37A4 encodes an endoplasmic reticulum (ER)-localized multitransmembrane protein required for transporting glucose-6-phosphate (Glc-6P) into the ER. Once transported into the ER, Glc-6P is subsequently hydrolyzed by tissue-specific phosphatases to glucose and inorganic phosphate during times of glucose depletion. Pathogenic variants in SLC37A4 cause an established recessive disorder known as glycogen storage disorder 1b characterized by liver and kidney dysfunction with neutropenia. We report seven individuals who presented with liver dysfunction multifactorial coagulation deficiency and cardiac issues and were heterozygous for the same variant, c.1267C>T (p.Arg423∗), in SLC37A4; the affected individuals were from four unrelated families. Serum samples from affected individuals showed profound accumulation of both high mannose and hybrid type N-glycans, while N-glycans in fibroblasts and undifferentiated iPSC were normal. Due to the liver-specific nature of this disorder, we generated a CRISPR base-edited hepatoma cell line harboring the c.1267C>T (p.Arg423∗) variant. These cells replicated the secreted abnormalities seen in serum N-glycosylation, and a portion of the mutant protein appears to relocate to a distinct, non-Golgi compartment, possibly ER exit sites. These cells also show a gene dosage-dependent alteration in the Golgi morphology and reduced intraluminal pH that may account for the altered glycosylation. In summary, we identify a recurrent mutation in SLC37A4 that causes a dominantly inherited congenital disorder of glycosylation characterized by coagulopathy and liver dysfunction with abnormal serum N-glycans.
Collapse
|
10
|
Galenkamp KMO, Commisso C. The Golgi as a "Proton Sink" in Cancer. Front Cell Dev Biol 2021; 9:664295. [PMID: 34055797 PMCID: PMC8155353 DOI: 10.3389/fcell.2021.664295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/21/2021] [Indexed: 12/19/2022] Open
Abstract
Cancer cells exhibit increased glycolytic flux and adenosine triphosphate (ATP) hydrolysis. These processes increase the acidic burden on the cells through the production of lactate and protons. Nonetheless, cancer cells can maintain an alkaline intracellular pH (pHi) relative to untransformed cells, which sets the stage for optimal functioning of glycolytic enzymes, evasion of cell death, and increased proliferation and motility. Upregulation of plasma membrane transporters allows for H+ and lactate efflux; however, recent evidence suggests that the acidification of organelles can contribute to maintenance of an alkaline cytosol in cancer cells by siphoning off protons, thereby supporting tumor growth. The Golgi is such an acidic organelle, with resting pH ranging from 6.0 to 6.7. Here, we posit that the Golgi represents a "proton sink" in cancer and delineate the proton channels involved in Golgi acidification and the ion channels that influence this process. Furthermore, we discuss ion channel regulators that can affect Golgi pH and Golgi-dependent processes that may contribute to pHi homeostasis in cancer.
Collapse
Affiliation(s)
- Koen M. O. Galenkamp
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Cosimo Commisso
- Cell and Molecular Biology of Cancer Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| |
Collapse
|
11
|
Castiglioni C, Feillet F, Barnerias C, Wiedemann A, Muchart J, Cortes F, Hernando-Davalillo C, Montero R, Dupré T, Bruneel A, Seta N, Vuillaumier-Barrot S, Serrano M. Expanding the phenotype of X-linked SSR4-CDG: Connective tissue implications. Hum Mutat 2020; 42:142-149. [PMID: 33300232 DOI: 10.1002/humu.24151] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/07/2020] [Accepted: 12/04/2020] [Indexed: 02/01/2023]
Abstract
Signal sequence receptor protein 4 (SSR4) is a subunit of the translocon-associated protein complex, which participates in the translocation of proteins across the endoplasmic reticulum membrane, enhancing the efficiency of N-linked glycosylation. Pathogenic variants in SSR4 cause a congenital disorder of glycosylation: SSR4-congenital disorders of glycosylation (CDG). We describe three SSR4-CDG boys and review the previously reported. All subjects presented with hypotonia, failure to thrive, developmental delay, and dysmorphic traits and showed a type 1 serum sialotransferrin profile, facilitating the diagnosis. Genetic confirmation of this X-linked CDG revealed one de novo hemizygous deletion, one maternally inherited deletion, and one de novo nonsense mutation of SSR4. The present subjects highlight the similarities with a connective tissue disorder (redundant skin, joint laxity, blue sclerae, and vascular tortuosity). The connective tissue problems are relevant, and require preventive rehabilitation measures. As an X-linked disorder, genetic counseling is essential.
Collapse
Affiliation(s)
- Claudia Castiglioni
- Department of Pediatric Neurology, Rare Disease Center, Clínica Las Condes, Santiago, Chile
| | - François Feillet
- Department of Pediatrics, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| | - Christine Barnerias
- Pediatric Neurology Department, Center de Référence Maladies Neuromusculaires (GNMH), Necker University Hospital, AP-HP, Paris, France
| | - Arnaud Wiedemann
- Department of Pediatrics, Reference Center for Inborn Errors of Metabolism, University Hospital of Nancy, Nancy, France.,INSERM UMR_S 1256, Nutrition, Genetics, and Environmental Risk Exposure (NGERE), Faculty of Medicine of Nancy, University of Lorraine, Nancy, France
| | - Jordi Muchart
- Department of Radiology, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Fanny Cortes
- Pediatric Department. Rare Diseases Center, Clínica Las Condes, Santiago, Chile
| | - Cristina Hernando-Davalillo
- Department of Genetic and Molecular Medicine and Pediatric Institute of Rare Diseases, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Raquel Montero
- Clinical Biochemistry Department, Institut de Recerca Hospital Sant Joan de Déu Barcelona, Barcelona, Spain.,Unit-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain
| | - Thierry Dupré
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France.,INSERM UMR_S 1149, Faculté de Médecine Xavier Bichat, Université de Paris, Paris, France
| | - Arnaud Bruneel
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France.,INSERM UMR1193, "Mécanismes cellulaires et moléculaires de l'adaptation au stress et cancérogenèse", Université Paris-Sud, Châtenay-Malabry, France
| | - Nathalie Seta
- Service de Biochimie Métabolique et Cellulaire, Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | | | - Mercedes Serrano
- Unit-703 Center for Biomedical Research on Rare Diseases (CIBER-ER), Instituto de Salud Carlos III, Madrid, Spain.,Pediatric Neurology Department, Hospital Sant Joan de Déu, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| |
Collapse
|
12
|
Ondruskova N, Cechova A, Hansikova H, Honzik T, Jaeken J. Congenital disorders of glycosylation: Still "hot" in 2020. Biochim Biophys Acta Gen Subj 2020; 1865:129751. [PMID: 32991969 DOI: 10.1016/j.bbagen.2020.129751] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/12/2020] [Accepted: 08/27/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Congenital disorders of glycosylation (CDG) are inherited metabolic diseases caused by defects in the genes important for the process of protein and lipid glycosylation. With the ever growing number of the known subtypes and discoveries regarding the disease mechanisms and therapy development, it remains a very active field of study. SCOPE OF REVIEW This review brings an update on the CDG-related research since 2017, describing the novel gene defects, pathobiomechanisms, biomarkers and the patients' phenotypes. We also summarize the clinical guidelines for the most prevalent disorders and the current therapeutical options for the treatable CDG. MAJOR CONCLUSIONS In the majority of the 23 new CDG, neurological involvement is associated with other organ disease. Increasingly, different aspects of cellular metabolism (e.g., autophagy) are found to be perturbed in multiple CDG. GENERAL SIGNIFICANCE This work highlights the recent trends in the CDG field and comprehensively overviews the up-to-date clinical recommendations.
Collapse
Affiliation(s)
- Nina Ondruskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Anna Cechova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Hana Hansikova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tomas Honzik
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic.
| | - Jaak Jaeken
- Department of Paediatrics and Centre for Metabolic Diseases, KU Leuven and University Hospital Leuven, Leuven, Belgium.
| |
Collapse
|
13
|
Chen X, Geiger JD. Janus sword actions of chloroquine and hydroxychloroquine against COVID-19. Cell Signal 2020; 73:109706. [PMID: 32629149 PMCID: PMC7333634 DOI: 10.1016/j.cellsig.2020.109706] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 02/06/2023]
Abstract
Chloroquine (CQ) and its analogue hydroxychloroquine (HCQ) have been thrust into our everyday vernacular because some believe, based on very limited basic and clinical data, that they might be helpful in preventing and/or lessening the severity of the pandemic coronavirus disease 2019 (COVID-19). However, lacking is a temperance in enthusiasm for their possible use as well as sufficient perspective on their effects and side-effects. CQ and HCQ have well-known properties of being diprotic weak bases that preferentially accumulate in acidic organelles (endolysosomes and Golgi apparatus) and neutralize luminal pH of acidic organelles. These primary actions of CQ and HCQ are responsible for their anti-malarial effects; malaria parasites rely on acidic digestive vacuoles for survival. Similarly, de-acidification of endolysosomes and Golgi by CQ and HCQ may block severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) integration into host cells because SARS-CoV-2 may require an acidic environment for its entry and for its ability to bud and infect bystander cells. Further, de-acidification of endolysosomes and Golgi may underly the immunosuppressive effects of these two drugs. However, modern cell biology studies have shown clearly that de-acidification results in profound changes in the structure, function and cellular positioning of endolysosomes and Golgi, in signaling between these organelles and other subcellular organelles, and in fundamental cellular functions. Thus, studying the possible therapeutic effects of CQ and HCQ against COVID-19 must occur concurrent with studies of the extent to which these drugs affect organellar and cell biology. When comprehensively examined, a better understanding of the Janus sword actions of these and other drugs might yield better decisions and better outcomes.
Collapse
Affiliation(s)
- Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America.
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
14
|
Calò LA, Davis PA. Are the Clinical Presentations (Phenotypes) of Gitelman's and Bartter's Syndromes Gene Mutations Driven by Their Effects on Intracellular pH, Their "pH" Enotype? Int J Mol Sci 2020; 21:E5660. [PMID: 32784543 PMCID: PMC7460608 DOI: 10.3390/ijms21165660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 07/29/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Gitelman's syndrome (GS) and Bartter's syndrome (BS) are rare inherited salt-losing tubulopathies whose variations in genotype do not correlate well with either clinical course or electrolyte requirements. Using GS/BS patients as nature's experiments, we found them to be a human model of endogenous Ang II antagonism with activated Renin-Angiotensin System (RAS), resulting in high Ang II levels with blunted cardiovascular effects. These patients are also characterized by increased and directly correlated levels of both Angiotensin Converting Enzyme 2 (ACE2) and Ang 1-7. Understanding the myriad of distinctive and frequently overlapping clinical presentations of GS/BS arises remains challenging. Efforts to find a treatment for COVID-19 has fueled a recent surge in interest in chloroquine/hydroxychloroquine and its effects. Of specific interest are chloroquine/hydroxychloroquine's ability to inhibit SARS-CoV infection by impairing ACE2, the SARS-CoV2 entry point, through terminal glycosylation via effects on TGN/post-Golgi pH homeostasis. Several different studies with a GS or a BS phenotype, along with a nonsyndromic form of X-linked intellectual disability linked to a mutated SLC9A7, provide additional evidence that specific gene defects can act via misregulation of TGN/post-Golgi pH homeostasis, which leads to a common mechanistic basis resulting in overlapping phenotypes. We suggest that linkage between the specific gene defects identified in GS and BS and the myriad of distinctive and frequently overlapping clinical findings may be the result of aberrant glycosylation of ACE2 driven by altered TGN/endosome system acidification caused by the metabolic alkalosis brought about by these salt-losing tubulopathies in addition to their altered intracellular calcium signaling due to a blunted second messenger induced intracellular calcium release that is, in turn, amplified by the RAS system.
Collapse
Affiliation(s)
- Lorenzo A Calò
- Nephrology, Dialysis and Transplantation Unit, Department of Medicine, University of Padova, 35128 Padova, Italy
| | - Paul A Davis
- Department of Nutrition, University of California at Davis, Davis, CA 95616, USA;
| |
Collapse
|
15
|
Endocytic regulation of cellular ion homeostasis controls lysosome biogenesis. Nat Cell Biol 2020; 22:815-827. [PMID: 32601373 DOI: 10.1038/s41556-020-0535-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 05/21/2020] [Indexed: 12/24/2022]
Abstract
Lysosomes serve as cellular degradation and signalling centres that coordinate metabolism in response to intracellular cues and extracellular signals. Lysosomal capacity is adapted to cellular needs by transcription factors, such as TFEB and TFE3, which activate the expression of lysosomal and autophagy genes. Nuclear translocation and activation of TFEB are induced by a variety of conditions such as starvation, lysosome stress and lysosomal storage disorders. How these various cues are integrated remains incompletely understood. Here, we describe a pathway initiated at the plasma membrane that controls lysosome biogenesis via the endocytic regulation of intracellular ion homeostasis. This pathway is based on the exo-endocytosis of NHE7, a Na+/H+ exchanger mutated in X-linked intellectual disability, and serves to control intracellular ion homeostasis and thereby Ca2+/calcineurin-mediated activation of TFEB and downstream lysosome biogenesis in response to osmotic stress to promote the turnover of toxic proteins and cell survival.
Collapse
|
16
|
Galenkamp KMO, Sosicka P, Jung M, Recouvreux MV, Zhang Y, Moldenhauer MR, Brandi G, Freeze HH, Commisso C. Golgi Acidification by NHE7 Regulates Cytosolic pH Homeostasis in Pancreatic Cancer Cells. Cancer Discov 2020; 10:822-835. [PMID: 32200349 DOI: 10.1158/2159-8290.cd-19-1007] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells reprogram their metabolism to meet elevated energy demands and favor glycolysis for energy production. This boost in glycolytic flux supports proliferation, but also generates acid in the form of hydrogen ions that must be eliminated from the cytoplasm to maintain the alkaline intracellular pH (pHi) associated with transformation. To cope with acid production, tumor cells employ ion transport systems, including the family of sodium-hydrogen exchangers (NHE). Here, we identify NHE7 as a novel regulator of pHi in pancreatic ductal adenocarcinoma (PDAC). We determine that NHE7 suppression causes alkalinization of the Golgi, leading to a buildup of cytosolic acid that diminishes tumor cell fitness mainly through the dysregulation of actin. Importantly, NHE7 knockdown in vivo leads to the abrogation of tumor growth. These results identify Golgi acidification as a mechanism to control pHi and point to the regulation of pHi as a possible therapeutic vulnerability in PDAC. SIGNIFICANCE: NHE7 regulates cytosolic pH through Golgi acidification, which points to the Golgi as a "proton sink" for metabolic acid. Disruption of cytosolic pH homeostasis via NHE7 suppression compromises PDAC cell viability and tumor growth.See related commentary by Ward and DeNicola, p. 768.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
- Koen M O Galenkamp
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Paulina Sosicka
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Michael Jung
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - M Victoria Recouvreux
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Yijuan Zhang
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Matthew R Moldenhauer
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Giovanni Brandi
- Department of Experimental, Diagnostic, and Specialty Medicine, S. Orsola-Malpighi University Hospital, Bologna, Italy
| | - Hudson H Freeze
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California
| | - Cosimo Commisso
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California.
| |
Collapse
|
17
|
A new pH sensor localized in the Golgi apparatus of Saccharomyces cerevisiae reveals unexpected roles of Vph1p and Stv1p isoforms. Sci Rep 2020; 10:1881. [PMID: 32024908 PMCID: PMC7002768 DOI: 10.1038/s41598-020-58795-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/22/2022] Open
Abstract
The gradual acidification of the secretory pathway is conserved and extremely important for eukaryotic cells, but until now there was no pH sensor available to monitor the pH of the early Golgi apparatus in Saccharomyces cerevisiae. Therefore, we developed a pHluorin-based sensor for in vivo measurements in the lumen of the Golgi. By using this new tool we show that the cis- and medial-Golgi pH is equal to 6.6–6.7 in wild type cells during exponential phase. As expected, V-ATPase inactivation results in a near neutral Golgi pH. We also uncover that surprisingly Vph1p isoform of the V-ATPase is prevalent to Stv1p for Golgi acidification. Additionally, we observe that during changes of the cytosolic pH, the Golgi pH is kept relatively stable, mainly thanks to the V-ATPase. Eventually, this new probe will allow to better understand the mechanisms involved in the acidification and the pH control within the secretory pathway.
Collapse
|
18
|
Tejada MI, Ibarluzea N. Non-syndromic X linked intellectual disability: Current knowledge in light of the recent advances in molecular and functional studies. Clin Genet 2020; 97:677-687. [PMID: 31898314 DOI: 10.1111/cge.13698] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 12/23/2022]
Abstract
Since the discovery of the FMR1 gene and the clinical and molecular characterization of Fragile X Syndrome in 1991, more than 141 genes have been identified in the X-chromosome in these 28 years thanks to applying continuously evolving molecular techniques to X-linked intellectual disability (XLID) families. In the past decade, array comparative genomic hybridization and next generation sequencing technologies have accelerated gene discovery exponentially. Classically, XLID has been subdivided in syndromic intellectual disability (S-XLID)-where intellectual disability (ID) is always associated with other recognizable physical and/or neurological features-and non-specific or non-syndromic intellectual disability (NS-XLID) where the only common feature is ID. Nevertheless, new advances on the study of these entities have showed that this classification is not always clear-cut because distinct variants in several of these XLID genes can result in S-XLID as well as in NS-XLID. This review focuses on the current knowledge on the XLID genes involved in non-syndromic forms, with the emphasis on their pathogenic mechanism, thus allowing the possibility to elucidate why some of them can give both syndromic and non-syndromic phenotypes.
Collapse
Affiliation(s)
- María Isabel Tejada
- Genetics Service, Cruces University Hospital, Osakidetza Basque Health Service, Barakaldo, Spain.,Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Group, Centre for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain
| | - Nekane Ibarluzea
- Biocruces-Bizkaia Health Research Institute, Barakaldo, Spain.,Clinical Group, Centre for Biomedical Research on Rare Diseases (CIBERER), Valencia, Spain
| |
Collapse
|
19
|
Abstract
Maintenance of the main Golgi functions, glycosylation and sorting, is dependent on the unique Golgi pH microenvironment that is thought to be set by the balance between the rates of V-ATPase-mediated proton pumping and its leakage back to the cytoplasm via an unknown pathway. The concentration of other ions, such as chloride, potassium, calcium, magnesium, and manganese, is also important for Golgi homeostasis and dependent on the transport activity of other ion transporters present in the Golgi membranes. During the last decade, several new disorders have been identified that are caused by, or are associated with, dysregulated Golgi pH and ion homeostasis. Here, we will provide an updated overview on these disorders and the proteins involved. We will also discuss other disorders for which the molecular defects remain currently uncertain but which potentially involve proteins that regulate Golgi pH or ion homeostasis.
Collapse
|
20
|
Kellokumpu S. Golgi pH, Ion and Redox Homeostasis: How Much Do They Really Matter? Front Cell Dev Biol 2019; 7:93. [PMID: 31263697 PMCID: PMC6584808 DOI: 10.3389/fcell.2019.00093] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/16/2019] [Indexed: 02/06/2023] Open
Abstract
Exocytic and endocytic compartments each have their own unique luminal ion and pH environment that is important for their normal functioning. A failure to maintain this environment - the loss of homeostasis - is not uncommon. In the worst case, all the main Golgi functions, including glycosylation, membrane trafficking and protein sorting, can be perturbed. Several factors contribute to Golgi homeostasis. These include not only ions such as H+, Ca2+, Mg2+, Mn2+, but also Golgi redox state and nitric oxide (NO) levels, both of which are dependent on the oxygen levels in the cells. Changes to any one of these factors have consequences on Golgi functions, the nature of which can be dissimilar or similar depending upon the defects themselves. For example, altered Golgi pH homeostasis gives rise to Cutis laxa disease, in which glycosylation and membrane trafficking are both affected, while altered Ca2+ homeostasis due to the mutated SCPA1 gene in Hailey-Hailey disease, perturbs various protein sorting, proteolytic cleavage and membrane trafficking events in the Golgi. This review gives an overview of the molecular machineries involved in the maintenance of Golgi ion, pH and redox homeostasis, followed by a discussion of the organelle dysfunction and disease that frequently result from their breakdown. Congenital disorders of glycosylation (CDGs) are discussed only when they contribute directly to Golgi pH, ion or redox homeostasis. Current evidence emphasizes that, rather than being mere supporting factors, Golgi pH, ion and redox homeostasis are in fact key players that orchestrate and maintain all Golgi functions.
Collapse
Affiliation(s)
- Sakari Kellokumpu
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|