1
|
Bedir Ö, Tavares Pereira M, Rehrauer H, Grazul-Bilska A, Kowalewski MP. Transcriptomic alterations in the ovine caruncular endometrium due to imbalanced nutrition and FSH-induced ovarian hyperstimulation. BMC Genomics 2024; 25:1216. [PMID: 39695382 DOI: 10.1186/s12864-024-10799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/12/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Imbalanced diet and exogenous gonadotrophins affect uterine function and morphology. In sheep, FSH-induced superovulation alters implantation-related gene expression, influenced by both treatment and diet. In this study, we used deep RNA sequencing (NGS, RNA-Seq) to expand our understanding of these effects on the caruncular endometrium. METHODS Ewes (n = 3-5/group) were separated into control fed (CF), overfed (OF), and underfed (UF) groups, with each group subdivided between FSH (superovulated; SOV) or saline (negative controls; CONT) treatment. Caruncular samples were collected on day 10 of diestrus of the subsequent estrous cycle, with samples from CF_CONT also collected on day 5 to assess time-dependent changes. RESULTS The 1484 differentially expressed genes (DEGs, P < 0.01, FDR < 0.05) identified between CF_CONT animals at days 5 and 10 were predominantly associated with increased immune activity and cellular metabolic processes and cellular proliferation. In CONT animals, imbalanced nutrition (i.e., both OF and UF) was associated with enrichment of terms associated with cell adhesion and differentiation, immune response and angiogenesis. The FSH carry-over effects resulted in a higher number of DEGs in CF animals (1374), than in OF (168) or UF (18), mostly associated with dysregulation of cell cycle and hormonal sensitivity. CONCLUSION The absence of genes concurrently affected by superovulation (SOV) in all feeding regimes indicates that the effects of FSH on the caruncular transcriptome are multidirectional and dependent upon body condition. Therefore, the homeostasis of ovine caruncles is influenced by both body condition and superovulation (SOV), potentially affecting uterine receptivity.
Collapse
Affiliation(s)
- Özlem Bedir
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Winterthurerstrasse 260, Zürich, CH-8057, Switzerland
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Harran University, Sanliurfa, Turkey
| | - Miguel Tavares Pereira
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Winterthurerstrasse 260, Zürich, CH-8057, Switzerland
| | - Hubert Rehrauer
- Functional Genomics Center Zurich (FGCZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Anna Grazul-Bilska
- Department of Animal Sciences, North Dakota State University, Fargo, USA
| | - Mariusz P Kowalewski
- Institute of Veterinary Anatomy, Vetsuisse Faculty, University of Zurich (UZH), Winterthurerstrasse 260, Zürich, CH-8057, Switzerland.
- Center for Clinical Studies (ZKS), Vetsuisse Faculty, University of Zurich (UZH), Zurich, Switzerland.
| |
Collapse
|
2
|
Bagchi IC, Bagchi MK. Maternal-fetal mechanisms underlying adaptation to hypoxia during early pregnancy. Trends Endocrinol Metab 2024; 35:1091-1099. [PMID: 39079778 DOI: 10.1016/j.tem.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 12/06/2024]
Abstract
During the process of implantation, the embryo first attaches to the uterine epithelium and then invades the underlying stroma, resulting in the transformation of the stroma into a secretory tissue that surrounds the embryo. An intricate dialogue allows the developing embryo and the maternal tissue to be in constant communication with each other. In many mammals, including humans, embryo implantation and early pregnancy events take place in a low-oxygen environment regulated by hypoxia-inducible transcription factors. The mechanisms by which maternal and embryonic tissue compartments adapt to hypoxia are essential for the success of pregnancy outcomes. In this review we highlight recent work describing signaling pathways that operate in the hypoxic uterus to facilitate embryo implantation and promote the successful establishment of pregnancy.
Collapse
Affiliation(s)
- Indrani C Bagchi
- Departments of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| | - Milan K Bagchi
- Carle R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA; Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Viola I, Accornero P, Manenti I, Miretti S, Baratta M, Toschi P. mTOR is an essential gate in adapting the functional response of ovine trophoblast cells under stress-inducing environments. Placenta 2024; 158:14-22. [PMID: 39341011 DOI: 10.1016/j.placenta.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
INTRODUCTION During the early stage of pregnancy trophoblast cells adapt to adverse uterine environments characterized by oxygen and nutrient deprivation. Autophagy is an intracellular degradation process that aims to promote cell survival in response to stressful conditions. Autophagy activation passes through the mechanistic target of rapamycin (mTOR), also known as a placental nutrient sensor. Here, we tested the hypothesis that ovine trophoblast cells may adapt to a suboptimal environment through an mTOR dependent regulation of cell survival with relevant implications for key placental functionality. METHODS Primary ovine trophoblast cells subjected to mTOR inhibitor and low-nutrient conditions were used to explore how autophagy affects cellular functionality and expression of solute carriers' genes (SLCs). RESULTS Autophagy activation was confirmed both in rapamycin-treated and low-nutrient conditions, through the detection of specific autophagic markers. However, p-mTOR activation seems to be severely modified only following rapamycin treatment whereas 24h of starvation allowed p-mTOR reactivation. Starvation promoted migration compared to normal culture conditions whereas all trophoblast functional activities were decreased in rapamycin treatment. Interestingly in both conditions, the autophagy-activated environment did not affect the progesterone release. mRNA expression of amino acid transporters remains largely undisturbed except for SLC43A2 and SLC38A4 which are downregulated in starved and rapamycin-treated cells, respectively. DISCUSSION The study demonstrates that sheep trophoblast cells can adapt to adverse conditions in the early stage of placentation by balancing, in an mTOR dependent manner, nutrient recycling and transport with relevant effects for in vitro functional properties, which could potentially impact conceptus development and survival.
Collapse
Affiliation(s)
- Irene Viola
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy.
| | - Paolo Accornero
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy.
| | - Isabella Manenti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy.
| | - Silvia Miretti
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy.
| | - Mario Baratta
- Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124, Parma, Italy.
| | - Paola Toschi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, Grugliasco, 10095, Italy.
| |
Collapse
|
4
|
Vornic I, Buciu V, Furau CG, Gaje PN, Ceausu RA, Dumitru CS, Barb AC, Novacescu D, Cumpanas AA, Latcu SC, Cut TG, Zara F. Oxidative Stress and Placental Pathogenesis: A Contemporary Overview of Potential Biomarkers and Emerging Therapeutics. Int J Mol Sci 2024; 25:12195. [PMID: 39596261 PMCID: PMC11594287 DOI: 10.3390/ijms252212195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress (OS) plays a crucial role in placental pathogenesis and pregnancy-related complications. This review explores OS's impact on placental development and function, focusing on novel biomarkers for the early detection of at-risk pregnancies and emerging therapeutic strategies. We analyzed recent research on OS in placental pathophysiology, examining its sources, mechanisms, and effects. While trophoblast invasion under low-oxygen conditions and hypoxia-induced OS regulate physiological placental development, excessive OS can lead to complications like miscarriage, preeclampsia, and intrauterine growth restriction. Promising OS biomarkers, including malondialdehyde, 8-isoprostane, and the sFlt-1/PlGF ratio, show potential for the early detection of pregnancy complications. Therapeutic strategies targeting OS, such as mitochondria-targeted antioxidants, Nrf2 activators, and gasotransmitter therapies, demonstrate encouraging preclinical results. However, clinical translation remains challenging. Future research should focus on validating these biomarkers in large-scale studies and developing personalized therapies to modulate placental OS. Emerging approaches like extracellular vesicle-based therapies and nanomedicine warrant further investigation for both diagnostic and therapeutic applications in pregnancy-related complications. Integrating OS biomarkers with other molecular and cellular markers offers improved potential for the early identification of at-risk pregnancies.
Collapse
Affiliation(s)
- Ioana Vornic
- Doctoral School, Department Medicine, “Vasile Goldiș” Western University of Arad, Liviu Rebreanu Street, No. 86, 310414 Arad, Romania;
- Discipline of Gynecology, Department Medicine, Vasile Goldiş Western University, Liviu Rebreanu Boulevard, No. 86, 310414 Arad, Romania;
| | - Victor Buciu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Cristian George Furau
- Discipline of Gynecology, Department Medicine, Vasile Goldiş Western University, Liviu Rebreanu Boulevard, No. 86, 310414 Arad, Romania;
| | - Pusa Nela Gaje
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Raluca Amalia Ceausu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Cristina-Stefania Dumitru
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Alina Cristina Barb
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Dorin Novacescu
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Alin Adrian Cumpanas
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Silviu Constantin Latcu
- Doctoral School, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Department XV, Discipline of Urology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
| | - Talida Georgiana Cut
- Department XIII, Discipline of Infectious Diseases, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania;
- Center for Ethics in Human Genetic Identifications, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| | - Flavia Zara
- Department II of Microscopic Morphology, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania; (P.N.G.); (R.A.C.); (C.-S.D.); (A.C.B.); (D.N.); (F.Z.)
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy Timisoara, E. Murgu Square, No. 2, 300041 Timisoara, Romania
| |
Collapse
|
5
|
Lai Y, Fu Z, Gao Y, Ma N, Li L. Hypoxia-inducible factors (HIFs) in early pregnancy: implications for miscarriage†. Biol Reprod 2024; 111:987-999. [PMID: 39325972 DOI: 10.1093/biolre/ioae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/07/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024] Open
Abstract
Miscarriage poses a significant threat to both maternal and fetal health. Its etiology remains unknown, and there are no established effective identification or prevention strategies. A low-oxygen environment in early pregnancy is a physiological necessity for embryonic and placental growth. Hypoxia-inducible factors are a family of classic hypoxia signaling molecules whose expression level may fluctuate abnormally because of an imbalance in oxygen levels. Its unusual fluctuations initiate multiple signaling pathways at the maternal womb. Hypoxia-inducible factors are a family of classic hypoxia-signaling molecules and immune tolerance. Notably, aberrant regulation of these processes may lead to miscarriage. This review aims to clarify how the hypoxia-inducible factor-1α mediates the aberrant regulation of biological processes, including autophagy, metabolic reprogramming, et al., and how these effects impact trophoblasts and other cells at the maternal-fetal interface. These findings provide new insights into potential therapeutic and preventive strategies for miscarriage.
Collapse
Affiliation(s)
- Yuxuan Lai
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Zhiyu Fu
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Yaxin Gao
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Ning Ma
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Lu Li
- Department of Social Medicine and Health Care Management, School of Public Health, Hebei Medical University, Shijiazhuang, China
- Hebei Key Laboratory of Environment and Population Health, School of Public Health, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Altoum AA, Oghenemaro EF, Pallathadka H, Sanghvi G, Hjazi A, Abbot V, Kumar MR, Sharma R, Zwamel AH, Taha ZA. lncRNA-mediated immune system dysregulation in RIF; a comprehensive insight into immunological modifications and signaling pathways' dysregulation. Hum Immunol 2024; 85:111170. [PMID: 39549305 DOI: 10.1016/j.humimm.2024.111170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/13/2024] [Accepted: 10/26/2024] [Indexed: 11/18/2024]
Abstract
The initial stage of biological pregnancy is referred to as implantation, during which the interaction between the endometrium and the fetus is crucial for successful implantation. Around 10% of couples undergoing in vitro fertilization and embryo transfer encounter recurrent implantation failure (RIF), a clinical condition characterized by the absence of implantation after multiple embryo transfers. It is believed that implantation failure may be caused by inadequate or excessive endometrial inflammatory responses during the implantation window, as the female immune system plays a complex role in regulating endometrial receptivity and embryo implantation. Recent approaches to enhance the likelihood of pregnancy in RIF patients have focused on modifying the mother's immune response during implantation by regulating inflammation. Long non-coding RNAs (lncRNAs) play a significant role in gene transcription during the inflammatory response. Current research suggests that dysfunctional lncRNAs are linked to various human disorders, such as cancer, diabetes, allergies, asthma, and inflammatory bowel disease. These non-coding RNAs are crucial for immune functions as they control protein interactions or the ability of RNA and DNA to form complexes, which are involved in differentiation, cell migration, and the production of inflammatory mediators. Given the apparent involvement of the immune system in RIF and the modulatory effect of lncRNAs on the immune system, this review aims to delve into the role of lncRNAs in immune system modulation and their potential contribution to RIF.
Collapse
Affiliation(s)
- Abdelgadir Alamin Altoum
- Department of Medical Laboratory Sciences, College of Health Sciences, Gulf Medical University, Ajman, United Arab Emirates
| | - Enwa Felix Oghenemaro
- Delta State University, Department of Pharmaceutical Microbiology, Faculty of Pharmacy, PMB 1, Abraka, Delta State, Nigeria
| | | | - Gaurav Sanghvi
- Marwadi University Research Center, Department of Microbiology, Faculty of Science, Marwadi University, Rajkot 360003, Gujarat, India
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Vikrant Abbot
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali 140307, Punjab, India
| | - M Ravi Kumar
- Department of Basic Science & Humanities, Raghu Engineering College, Visakhapatnam, India
| | - Rajesh Sharma
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University, Jaipur, Rajasthan 302131, India
| | - Ahmed Hussein Zwamel
- Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq; Department of Medical Analysis, Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Zahraa Ahmed Taha
- Medical Laboratory Techniques Department, College of Health and Medical Techniques, Al-Mustaqbal University, 51001 Babylon, Iraq
| |
Collapse
|
7
|
Zarychta J, Kowalczyk A, Słowik K, Przywara D, Petniak A, Kondracka A, Wójtowicz-Marzec M, Słyk-Gulewska P, Kwaśniewska A, Kocki J, Gil-Kulik P. Pilot Study on the Effect of Patient Condition and Clinical Parameters on Hypoxia-Induced Factor Expression: HIF1A, EPAS1 and HIF3A in Human Colostrum Cells. Int J Mol Sci 2024; 25:11042. [PMID: 39456823 PMCID: PMC11507067 DOI: 10.3390/ijms252011042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) may play a role in mammary gland development, milk production and secretion in mammals. Due to the limited number of scientific reports on the expression of HIF genes in colostrum cells, it was decided to examine the expression of HIF1A, HIF3A and EPAS1 in the these cells, collected from 35 patients who voluntarily agreed to provide their biological material for research, were informed about the purpose of the study and signed a consent to participate in it. The expression of HIF genes was assessed using qPCR. Additionally, the influence of clinical parameters (method of delivery, occurrence of stillbirths in previous pregnancies, BMI level before pregnancy and at the moment of delivery, presence of hypertension during pregnancy, presence of Escherichia coli in vaginal culture, iron supplement and heparin intake during pregnancy) on the gene expression was assessed, revealing statistically significant correlations. The expression of HIF1A was 3.5-fold higher in the case of patients with the presence of E. coli in vaginal culture (p = 0.041) and 2.5 times higher (p = 0.031) in samples from women who used heparin during pregnancy. Approximately 1.7-fold higher expression of the EPAS1 was observed in women who did not supplement iron during pregnancy (p = 0.046). To our knowledge, these are the first studies showing the relationship between HIF expression in cells from breast milk and the method of delivery and health condition of women giving birth. The assessment of HIF expression requires deeper examination in a larger study group, and the results of further studies will allow to determine whether HIF can become biomarkers in pregnancy pathology states.
Collapse
Affiliation(s)
- Julia Zarychta
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (J.Z.); (A.K.); (K.S.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Adrian Kowalczyk
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (J.Z.); (A.K.); (K.S.)
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Karolina Słowik
- Student Scientific Society of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (J.Z.); (A.K.); (K.S.)
| | - Dominika Przywara
- Doctoral School, Medical University of Lublin, 20-093 Lublin, Poland;
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Alicja Petniak
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Adrianna Kondracka
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (P.S.-G.); (A.K.)
| | - Monika Wójtowicz-Marzec
- Chair and Department of Pediatric Nursing, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Patrycja Słyk-Gulewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (P.S.-G.); (A.K.)
| | - Anna Kwaśniewska
- Department of Obstetrics and Pathology of Pregnancy, Medical University of Lublin, 20-081 Lublin, Poland; (A.K.); (P.S.-G.); (A.K.)
| | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| | - Paulina Gil-Kulik
- Department of Clinical Genetics, Medical University of Lublin, 20-080 Lublin, Poland; (A.P.); (J.K.)
| |
Collapse
|
8
|
Shi X, Xi C, Dong B, Yan Z, Liu W, Gao S, Chen D. Maternal infection with SARS-CoV-2 during early pregnancy induces hypoxia at the maternal-fetal interface. Cell Prolif 2024:e13749. [PMID: 39375953 DOI: 10.1111/cpr.13749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/31/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic increases the risk of adverse fetal outcomes during pregnancy. Maternal infection during pregnancy, particularly with cytomegalovirus (CMV), hepatitis B and C virus, and human immunodeficiency virus can have detrimental effects on both mother and fetus, potentially leading to adverse outcomes such as spontaneous abortion or neonatal infection. However, the impact of severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection on the maternal-fetal interface remains poorly understood. In this study, we initially utilised immunofluorescence and immunohistochemical to investigate placental samples from pregnant women who were infected with SARS-CoV-2 during the first trimester. Our data indicate that infection in the first trimester induces an upregulation of hypoxia inducible factor (HIF) levels at the maternal-fetal interface. Subsequently, single-cell RNA sequencing and metabolomics sequencing analyses reveal alterations in maternal-fetal interface. Remarkably, immune cells exhibited low expression levels of HIF possibly associated with immune activation. Furthermore, our findings demonstrate a gradual reduction in transcriptome and metabolic changes as gestation progressed beyond 12-16 weeks compared to samples obtained at 6-8 weeks gestation. Overall, our study suggests that early-stage SARS-CoV-2 infection during the first trimester leads to severe hypoxia and aberrant cell metabolism at the maternal-fetal interface which gradually resolves as pregnancy progresses. Nevertheless, these abnormal changes may have long-term implications for maternal-fetal interface development.
Collapse
Affiliation(s)
- Xiaohui Shi
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chenxiang Xi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Baoxing Dong
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zihui Yan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenqiang Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Di Chen
- Center for Reproductive Medicine of The Second Affiliated Hospital, Center for Regeneration and Cell Therapy of Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
- State Key Laboratory of Biobased Transportation Fuel Technology, Zhejiang University, Haining, Zhejiang, China
| |
Collapse
|
9
|
Zheng Y, Zha X, Zhang B, Elsabagh M, Wang H, Wang M, Zhang H. The interaction of ER stress and autophagy in trophoblasts: navigating pregnancy outcome†. Biol Reprod 2024; 111:292-311. [PMID: 38678504 DOI: 10.1093/biolre/ioae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/01/2024] Open
Abstract
The endoplasmic reticulum is a complex and dynamic organelle that initiates unfolded protein response and endoplasmic reticulum stress in response to the accumulation of unfolded or misfolded proteins within its lumen. Autophagy is a paramount intracellular degradation system that facilitates the transportation of proteins, cytoplasmic components, and organelles to lysosomes for degradation and recycling. Preeclampsia and intrauterine growth retardation are two common complications of pregnancy associated with abnormal trophoblast differentiation and placental dysfunctions and have a major impact on fetal development and maternal health. The intricate interplay between endoplasmic reticulum stress, and autophagy and their impact on pregnancy outcomes, through mediating trophoblast differentiation and placental development, has been highlighted in various reports. Autophagy controls trophoblast regulation through a variety of gene expressions and signaling pathways while excessive endoplasmic reticulum stress triggers downstream apoptotic signaling, culminating in trophoblast apoptosis. This comprehensive review delves into the intricacies of placental development and explores the underlying mechanisms of preeclampsia and intrauterine growth retardation. In addition, this review will elucidate the molecular mechanisms of endoplasmic reticulum stress and autophagy, both individually and in their interplay, in mediating placental development and trophoblast differentiation, particularly highlighting their roles in preeclampsia and intrauterine growth retardation development. This research seeks to the interplay between endoplasmic reticulum stress and impaired autophagy in the placental trophoderm, offering novel insights into their contribution to pregnancy complications.
Collapse
Affiliation(s)
- Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, P. R. China
| | - Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, People's Repubic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, People's Republic of China
| |
Collapse
|
10
|
Einenkel R, Ehrhardt J, Zygmunt M, Muzzio DO. Less is more! Low amount of Fusobacterium nucleatum supports macrophage-mediated trophoblast functions in vitro. Front Immunol 2024; 15:1447190. [PMID: 39176096 PMCID: PMC11338817 DOI: 10.3389/fimmu.2024.1447190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
F. nucleatum, involved in carcinogenesis of colon carcinomas, has been described as part of the commensal flora of the female upper reproductive tract. Although its contribution to destructive inflammatory processes is well described, its role as commensal uterine bacteria has not been thoroughly investigated. Since carcinogenesis shares similar mechanisms with early pregnancy development (including proliferation, invasion, blood supply and the induction of tolerance), these mechanisms induced by F. nucleatum could play a role in early pregnancy. Additionally, implantation and placentation require a well-balanced immune activation, which might be suitably managed by the presence of a limited amount of bacteria or bacterial residues. We assessed the effect of inactivated F. nucleatum on macrophage-trophoblast interactions. Monocytic cells (THP-1) were polarized into M1, M2a or M2c macrophages by IFN-γ, IL-4 or TGF-β, respectively, and subsequently treated with inactivated fusobacteria (bacteria:macrophage ratio of 0.1 and 1). Direct effects on macrophages were assessed by viability assay, flow cytometry (antigen presentation molecules and cytokines), qPCR (cytokine expression), in-cell Western (HIF and P-NF-κB) and ELISA (VEGF secretion). The function of first trimester extravillous trophoblast cells (HTR-8/SVneo) in response to macrophage-conditioned medium was microscopically assessed by migration (scratch assay), invasion (sprouting assay) and tube formation. Underlying molecular changes were investigated by ELISA (VEGF secretion) and qPCR (matrix-degrading factors and regulators). Inflammation-primed macrophages (M1) as well as high bacterial amounts increased pro-inflammatory NF-κB expression and inflammatory responses. Subsequently, trophoblast functions were impaired. In contrast, low bacterial stimulation caused an increased HIF activation and subsequent VEGF-A secretion in M2c macrophages. Accordingly, there was an increase of trophoblast tube formation. Our results suggest that a low-mass endometrial/decidual microbiome can be tolerated and while it supports implantation and further pregnancy processes.
Collapse
Affiliation(s)
| | | | | | - Damián Oscar Muzzio
- Department of Gynecology and Obstetrics, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Prasetyorini N, Erwan NE, Sardjono TW, Nurseta T, Utomo RP, Nugraha RYB, Cahayani WA, Rukmigarsari E, Arinugraha LN, Fitri LE. HIF-1α regulated pathomechanism of low birth weight through angiogenesis factors in placental Plasmodium vivax infection. F1000Res 2024; 11:131. [PMID: 38884107 PMCID: PMC11179053 DOI: 10.12688/f1000research.73820.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Background Malaria in pregnancy leads to placental malaria. The primary pathogenesis of the complex fetal implications in placental malaria is tissue hypoxia due to sequestrations of Plasmodium falciparum-infected erythrocytes in the placenta. However, the pathomechanism of placental Plasmodium vivax infection has not been thoroughly investigated. Hypoxia-inducible factor-1α (HIF-1α) is a key transcriptional mediator of the response to hypoxic conditions, which interacts with the change and imbalances of many chemical mediators, including angiogenic factors, leading to fetal growth abnormality. Methods This study was conducted cross-sectionally in Maumere, Sikka Regency, East Nusa Tenggara Province, previously known as one of the malaria endemic areas with a high incidence of low birth weight (LBW) cases. This study collected peripheral and umbilical blood samples and placental tissues from mothers who delivered their babies with LBW at the TC Hiller Regional Hospital. All of the blood samples were examined for parasites by microscopic and PCR techniques, while the plasma levels of VEGF, PlGF, VEGFR-1, VEGFR-2, and HIF-1α were determined using ELISA. The sequestration of infected erythrocytes and hemozoin was determined from placental histological slides, and the expression of placenta angiogenic factors was observed using the immunofluorescent technique. Results In this study, 33 cases had complete data to be analyzed. Of them, 19 samples were diagnosed as vivax malaria and none of falciparum malaria. There were significant differences in Δ 10th percentile growth curve of baby's body weights and also all angiogenic factors in placental tissues {VEGF, PlGF, and VEGFR-1, VEGFR-2, and HIF-1α} between those infected and not infected cases (p<0.05), but not for VEGF and VEGFR-2 in the plasma. Conclusion This study indicated that Plasmodium vivax sequestration may promote LBW through alterations and imbalances in angiogenic factors led by HIF-1α.
Collapse
Affiliation(s)
- Nugrahanti Prasetyorini
- Doctoral Program in Medical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Obstetrics & Gynecology, Faculty of Medicine Universitas Brawijaya/dr Saiful Anwar Hospital, Malang, Indonesia
| | - Nabila Erina Erwan
- Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Master Program in Biomedical Science, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Teguh Wahju Sardjono
- Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Tatit Nurseta
- Department of Obstetrics & Gynecology, Faculty of Medicine Universitas Brawijaya/dr Saiful Anwar Hospital, Malang, Indonesia
| | - Rudi Priyo Utomo
- Department of Obstetrics & Gynecology, dr T.C. Hillers Regional Hospital, Maumere, Sikka Regency, NTT, Indonesia
| | - Rivo Yudhinata Brian Nugraha
- Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Wike Astrid Cahayani
- Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Anatomy and Histology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| | - Ettie Rukmigarsari
- Mathematics Education Study Program, Faculty of Teacher Training and Education, University of Islam Malang, Malang, Indonesia
| | | | - Loeki Enggar Fitri
- Malaria Research Group, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
- Department of Parasitology, Faculty of Medicine, Universitas Brawijaya, Malang, Indonesia
| |
Collapse
|
12
|
Li Q, Zheng T, Chen J, Li B, Zhang Q, Yang S, Shao J, Guan W, Zhang S. Exploring melatonin's multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J Adv Res 2024:S2090-1232(24)00168-1. [PMID: 38692429 DOI: 10.1016/j.jare.2024.04.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 04/25/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Melatonin is mainly secreted by the pineal gland during darkness and regulates biological rhythms through its receptors in the suprachiasmatic nucleus of the hypothalamus. In addition, it also plays a role in the reproductive system by affecting the function of the hypothalamic-pituitary-gonadal axis, and by acting as a free radical scavenger thus contributing to the maintenance of the optimal physiological state of the gonads. Besides, melatonin can freely cross the placenta to influence fetal development. However, there is still a lack of overall understanding of the role of melatonin in the reproductive cycle of female mammals. AIM OF REVIEW Here we focus the role of melatonin in female reproduction from follicular development to delivery as well as the relationship between melatonin and lactation. We further summarize the potential role of melatonin in the treatment of preeclampsia, polycystic ovary syndrome, endometriosis, and ovarian aging. KEY SCIENTIFIC CONCEPTS OF REVIEW Understanding the physiological role of melatonin in female reproductive processes will contribute to the advancement of human fertility and reproductive medicine research.
Collapse
Affiliation(s)
- Qihui Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Tenghui Zheng
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiaming Chen
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Baofeng Li
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Qianzi Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Siwang Yang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiayuan Shao
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Wutai Guan
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Shihai Zhang
- Guangdong Province Key Laboratory of Animal Nutrition Control, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; College of Animal Science and National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
13
|
Liu Z, Geng Y, Huang Y, Hu R, Li F, Ding J, Ma W, Dong H, Song K, Xu X, Wu X, Song Y, Zhang M. Bushen Antai recipe alleviates embryo absorption by enhancing immune tolerance and angiogenesis at the maternal-fetal interface via mobilizing MDSCs in abortion-prone mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155164. [PMID: 37952407 DOI: 10.1016/j.phymed.2023.155164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 11/14/2023]
Abstract
BACKGROUND Recurrent pregnancy loss (RPL) is a tricky puzzle that disturbs female reproduction worldwide. According to previous research, Bushen Antai recipe (BAR), a classic Chinese herbal formula widely used in clinic for miscarriage, exhibited multifaceted benefits in improving embryo implantation and attenuating early pregnancy loss. Myeloid-derived suppressor cells (MDSCs), a set of immunoregulatory cells critical in inflammation balance, get growing attention for their indispensable role in successful pregnancy. PURPOSE To investigate the therapeutic efficacy of BAR in abortion-prone mice and explore the potential mechanisms of BAR regarding MDSCs. METHODS RPL mice (CBA/J females paired with DBA/2 males, BALB/c males were used as the control) were administered with BAR1 (5.7 g/kg), BAR2 (11.4 g/kg), progesterone (P4), or distilled water from embryo day (D) 0.5 until D10.5. The rate of embryo absorption on D10.5 and the health status of progeny were measured. The systemic inflammatory states and the placenta-uterus milieu were assessed by serum cytokine levels, placenta-uterus architecture, and related protein expression at the maternal-fetal interface. Flow cytometry analysis was carried out to measure the frequency of MDSCs. Furthermore, we established the MDSCs-depletion mouse model by using C57BL/6 females mated with BALB/c males via intraperitoneal injection of anti-Gr-1 antibody on D6.5, while irrelative LTF antibody was used as the control. Similarly, BAR1, BAR2, P4, or distilled water was separately applied. Embryo absorption rate, systemic inflammatory states, placenta-uterus milieu, and MDSCs frequency were evaluated as mentioned above. RESULTS Significantly, embryo absorption rate was increased with disrupted placenta-uterus milieu and exorbitant proinflammatory cytokines in RPL mice, meanwhile, MDSCs number in the placenta-uterus unit were apparently reduced (⁎⁎⁎p < 0.001). BAR treatment markedly alleviated the poor conditions above and increased MDSCs number (####p < 0.0001). Flow cytometry analysis validated the efficacy of anti-Gr-1 antibody and the raised embryo absorption rate confirmed the essentiality of MDSCs in normal pregnancy (⁎⁎p < 0.01). Besides, the placenta-uterus milieu was destroyed, accompanied by the impaired expression of immune tolerance and angiogenesis related factors in the MDSCs-depletion mice. Even though, BAR treatment reversed the embryo resorption phenotype and optimized the serum cytokine milieu, mobilizing MDSCs and rejuvenating active intercellular communication. Thereby, BAR facilitated the expression of MDSCs-related functional molecules, promoting immune tolerance and vascular remodeling at the placenta-uterus unit. CONCLUSION We unfurled the remarkable therapeutic ability of BAR in abortion-prone mice, and this was achieved by mobilizing MDSCs, thus favoring immune tolerance and angiogenesis at the maternal-fetal interface.
Collapse
Affiliation(s)
- Zhuo Liu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuli Geng
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanjing Huang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runan Hu
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Li
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiahui Ding
- Department of Obstetrics and Gynecology, School of medicine, Wayne state university, Detroit, MI, USA
| | - Wenwen Ma
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haoxu Dong
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kunkun Song
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaohu Xu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Wu
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufan Song
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Mingmin Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
14
|
Ng SW, Lee C, Ng A, Ng SK, Arcuri F, House MD, Norwitz ER. Ferroportin expression and regulation in human placenta/fetal membranes: Implications for ferroptosis and adverse pregnancy outcomes. Reprod Biol 2023; 23:100816. [PMID: 37890398 DOI: 10.1016/j.repbio.2023.100816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 09/21/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023]
Abstract
Iron overload is associated with pregnancy complications. Ferroportin (FPN) is the only known iron exporter in mammalian cells. We hypothesize that FPN is functionally important in ferrotopsis, a process of iron-dependent non-apoptotic programmed cell death, and may have a critical role to play in pregnancy success. We investigated the expression of FPN in placenta/fetal membranes by immunohistochemistry in tissues collected from pregnancies with/without preeclampsia (PE) and spontaneous preterm birth (SPTB). FPN was highly expressed in both trophoblasts and decidual cells found in placenta/fetal membranes. Staining was significantly reduced in fetal membranes from SPTB versus healthy pregnancies (P = 0.046). FPN expression in immortalized human endometrial stromal cells (HESC) increased with in vitro decidualization induction using 1 μM of medroxyprogesterone acetate and 0.5 mM of dibutyryl-cAMP. In addition, both HESC cells and immortalized extravillous trophoblast SW71 cells with FPN knockdown showed significant sensitivity to ferroptosis inducer, erastin (P < 0.001 and P = 0.009, respectively). The survival of both HESC and SW71 cells was not negatively affected by iron supplementation with ferric ammonium citrate in the medium. However, SW71 cells were more sensitive than HESC cells to physiologic iron in the presence of a non-lethal dose of erastin (P < 0.001). Taken together, our data demonstrating increased sensitivity of FPN knockdown HESC and SW71 cells to erastin and increased sensitivity of trophoblasts to iron overload under ferroptotic stress support the hypothesis that FPN protects against ferroptosis during pregnancy.
Collapse
Affiliation(s)
- Shu-Wing Ng
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA.
| | - Chungyan Lee
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Allen Ng
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | - Shu-Kay Ng
- School of Medicine and Dentistry, Menzies Health Institute Queensland, Griffith University, Nathan, Australia
| | - Felice Arcuri
- Department of Molecular & Developmental Medicine, University of Siena, Siena, Italy
| | - Michael D House
- Department of Obstetrics & Gynecology, Tufts University School of Medicine, Boston, MA, USA; Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | | |
Collapse
|
15
|
Turgut AO, Korkmaz Ağaoğlu Ö. Differential expression of angiogenesis-related genes in goat uterus and corpus luteum during pregnancy. Reprod Domest Anim 2023; 58:1672-1684. [PMID: 37776186 DOI: 10.1111/rda.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Vascularization and the control of luteal and endometrial development are regulated by hypoxia-inducible factors (HIFs) and vascular endothelial growth factor (VEGF) during pregnancy. In this study, the mRNA and protein expression levels of HIFs (HIF1A, HIF2A and HIF3A) and VEGF in goat uterine and ovarian tissues during various stages of pregnancy were evaluated. A total of 42 Hair goats were used and were allocated into six groups, namely embryo-positive (G1), early pregnancy (G2), mid-term pregnancy (G3), late pregnancy (G4), oocyte-positive group (G5) and diestrus group (G6). The mRNA expression of the examined genes was evaluated by RT-qPCR, and protein expression was evaluated by immunohistochemistry (IHC). In caruncles, HIF1A mRNA expression was greater in G1, G2 and G4 than in G3 (p < .05). HIF1A and HIF2A expression was greater in G1 than in G5 (p < .05). In cotyledons, HIF1A, HIF2A and HIF3A mRNA expression was greater in G2 and G3 compared to G4 (p < .05). In luteal tissue, HIF1A mRNA expression was greater in G1 and G2 than in G3 and G4 (p < .05). In the immunohistochemical examination, HIF1A, HIF2A, HIF3A and VEGF immunoreactions were detected in uterine and luteal tissues. Findings suggest that HIFs and VEGF are involved in the regulation of ovarian functions as well as the processes of implantation and placentation.
Collapse
Affiliation(s)
- Ali Osman Turgut
- Department of Animal Science, Faculty of Veterinary Medicine, Siirt University, Siirt, Turkey
| | - Özgecan Korkmaz Ağaoğlu
- Department of Genetics, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| |
Collapse
|
16
|
Hu M, Zhang Y, Zhang X, Zhang X, Huang X, Lu Y, Li Y, Brännström M, Sferruzzi-Perri AN, Shao LR, Billig H. Defective Uterine Spiral Artery Remodeling and Placental Senescence in a Pregnant Rat Model of Polycystic Ovary Syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1916-1935. [PMID: 37689383 DOI: 10.1016/j.ajpath.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 08/23/2023] [Indexed: 09/11/2023]
Abstract
Pregnancy-related problems have been linked to impairments in maternal uterine spiral artery (SpA) remodeling. The mechanisms underlying this association are still unclear. It is also unclear whether hyperandrogenism and insulin resistance, the two common manifestations of polycystic ovary syndrome, affect uterine SpA remodeling. We verified previous work in which exposure to 5-dihydrotestosterone (DHT) and insulin (INS) in rats during pregnancy resulted in hyperandrogenism, insulin intolerance, and higher fetal mortality. Exposure to DHT and INS dysregulated the expression of angiogenesis-related genes in the uterus and placenta and also decreased expression of endothelial nitric oxide synthase and matrix metallopeptidases 2 and 9, increased fibrotic collagen deposits in the uterus, and reduced expression of marker genes for SpA-associated trophoblast giant cells. These changes were related to a greater proportion of unremodeled uterine SpAs and a smaller proportion of highly remodeled arteries in DHT + INS-exposed rats. Placentas from DHT + INS-exposed rats exhibited decreased basal and labyrinth zone regions, reduced maternal blood spaces, diminished labyrinth vascularity, and an imbalance in the abundance of vascular and smooth muscle proteins. Furthermore, placentas from DHT + INS-exposed rats showed expression of placental insufficiency markers and a significant increase in cell senescence-associated protein levels. Altogether, this work demonstrates that increased pregnancy complications in polycystic ovary syndrome may be mediated by problems with uterine SpA remodeling, placental functionality, and placental senescence.
Collapse
Affiliation(s)
- Min Hu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yuehui Zhang
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xu Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - XiuYing Zhang
- Department of Obstetrics and Gynecology, Key Laboratory and Unit of Infertility in Chinese Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xinyue Huang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yaxing Lu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yijia Li
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Institute of Integrated Traditional Chinese Medicine and Western Medicine, Guangzhou Medical University, Guangzhou, China
| | - Mats Brännström
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
| | - Linus R Shao
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Håkan Billig
- Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Yokouchi-Konishi T, Liu Y, Feng L. Progesterone receptor membrane component 2 is critical for human placental extravillous trophoblast invasion. Biol Reprod 2023; 109:759-771. [PMID: 37665239 DOI: 10.1093/biolre/ioad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/14/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
Proper extravillous trophoblast invasion is essential for normal placentation and pregnancy. However, the molecular mechanisms by which cytotrophoblasts differentiate into extravillous trophoblast are unclear. We discovered that in the first-trimester placenta, progesterone receptor membrane component 2 was highly expressed in syncytiotrophoblast but significantly lower in extravillous trophoblast and cytotrophoblasts, indicating a divergent role for progesterone receptor membrane component 2 in trophoblast functions. We aim to examine the role of progesterone receptor membrane component 2 in extravillous trophoblasts invasion mediated by both intracellular and extracellular signals. Progesterone receptor membrane component 2 knockdown and overexpression cells were established in HTR8/SVneo cells, a first-trimester extravillous trophoblast-derived cell model, by transfection with small-interfering RNA or progesterone receptor membrane component 2 plasmids, respectively. Progesterone receptor membrane component 2 knockdown led to cellular morphological changes , enhanced trophoblast proliferation,invasion, and promoted tube formation. These effects were mediated by the activation of hypoxia-inducible factor 1alpha and an increased expression of vascular endothelial growth factor A. The culture supernatant collected from progesterone receptor membrane component 2 knockdown cells did not significantly affect extravillous trophoblast invasion compared to the controls, indicating that extracellular signaling did not robustly regulate extravillous trophoblast invasion in this study. In conclusion, attenuation of progesterone receptor membrane component 2 plays a role in placentation by promoting cell proliferation, invasion, and angiogenesis in extravillous trophoblasts via activation of hypoxia-inducible factor 1 alpha signaling. We thus identified a new function of progesterone receptor membrane component 2 and provide insights on understanding the mechanisms of trophoblast invasion.
Collapse
Affiliation(s)
- Tae Yokouchi-Konishi
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
- Department of Obstetrics and Gynecology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yongjie Liu
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liping Feng
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
18
|
Sugimoto J, Schust DJ, Sugimoto M, Jinno Y, Kudo Y. Controlling Trophoblast Cell Fusion in the Human Placenta-Transcriptional Regulation of Suppressyn, an Endogenous Inhibitor of Syncytin-1. Biomolecules 2023; 13:1627. [PMID: 38002309 PMCID: PMC10668956 DOI: 10.3390/biom13111627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/24/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cell fusion in the placenta is tightly regulated. Suppressyn is a human placental endogenous retroviral protein that inhibits the profusogenic activities of another well-described endogenous retroviral protein, syncytin-1. In this study, we aimed to elucidate the mechanisms underlying suppressyn's placenta-specific expression. We identified the promoter region and a novel enhancer region for the gene encoding suppressyn, ERVH48-1, and examined their regulation via DNA methylation and their responses to changes in the oxygen concentration. Like other endogenous retroviral genes, the ERVH48-1 promoter sequence is found within a characteristic retroviral 5' LTR sequence. The novel enhancer sequence we describe here is downstream of this LTR sequence (designated EIEs: ERV internal enhancer sequence) and governs placental expression. The placenta-specific expression of ERVH48-1 is tightly controlled by DNA methylation and further regulated by oxygen concentration-dependent, hypoxia-induced transcription factors (HIF1α and HIF2α). Our findings highlight the involvement of (1) tissue specificity through DNA methylation, (2) expression specificity through placenta-specific enhancer regions, and (3) the regulation of suppressyn expression in differing oxygen conditions by HIF1α and HIF2α. We suggest that these regulatory mechanisms are central to normal and abnormal placental development, including the development of disorders of pregnancy involving altered oxygenation, such as preeclampsia, pregnancy-induced hypertension, and fetal growth restriction.
Collapse
Affiliation(s)
- Jun Sugimoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Hiroshima University, Hiroshima 734-8551, Japan (Y.K.)
| | - Danny J. Schust
- Department of Obstetrics and Gynecology, Duke University, Durham, NC 27710, USA
| | - Makiko Sugimoto
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Hiroshima University, Hiroshima 734-8551, Japan (Y.K.)
| | - Yoshihiro Jinno
- Department of Molecular Biology, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yoshiki Kudo
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Hiroshima University, Hiroshima 734-8551, Japan (Y.K.)
| |
Collapse
|
19
|
Barak O, Lovelace T, Chu T, Cao Z, Sadovsky E, Mouillet JF, Ouyang Y, Benos PV, Sadovsky Y. Defining trophoblast injury patterns in the transcriptomes of dysfunctional placentas. Placenta 2023; 143:87-90. [PMID: 37866321 PMCID: PMC10842313 DOI: 10.1016/j.placenta.2023.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Trophoblast injury is central to clinically relevant placenta dysfunction. We hypothesized that the mRNA of primary human trophoblasts, exposed to distinct injuries in vitro, capture transcriptome patterns of placental biopsies obtained from common obstetrical syndromes. We deployed a CIBERSORTx deconvolution method to correlate trophoblastic RNAseq-based expression matrices with the transcriptome of omics-defined placental dysfunction patterns in vivo. We found distinct trophoblast injury patterns in placental biopsies from women with fetal growth restriction and a hypertensive disorder, or in biopsies clustered by their omics analysis. Our RNAseq data are useful for defining the contribution of trophoblast injuries to placental dysfunction syndromes.
Collapse
Affiliation(s)
- Oren Barak
- Magee-Womens Research Institute, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tyler Lovelace
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA; Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - Tianjiao Chu
- Magee-Womens Research Institute, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Zhishen Cao
- Magee-Womens Research Institute, Pittsburgh, PA, USA
| | | | - Jean-Francois Mouillet
- Magee-Womens Research Institute, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yingshi Ouyang
- Magee-Womens Research Institute, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA; Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA; Department of Epidemiology, College of Public Health and Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Pittsburgh, PA, USA; Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
20
|
Karner E, Muin DA, Klebermass-Schrehof K, Waldhoer T, Yang L. Altitude Modifies the Effect of Parity on Birth Weight/Length Ratio: A Study Comprising 2,057,702 Newborns between 1984 and 2020 in Austria. Life (Basel) 2023; 13:1718. [PMID: 37629575 PMCID: PMC10455113 DOI: 10.3390/life13081718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
(1) Background: Lower birth weight among newborns in higher altitudes has been well documented in previous literature. Several possible causes for this phenomenon have been investigated, including biophysiological adaptation, epigenetic or genetic mechanisms or lifestyle changes. This is the first study to show the effect modification of altitude and parity on the birth weight length ratio (BWLR) in women resident in moderate altitudes compared to a low sea level.; (2) Methods: This population-based study obtained data on altitude (0-300, 300-500, 500-700,700-900, >900 m), parity (1, 2, …, 7, 8/9), birth weight and length on all births in Austria between 1984 and 2020 from birth certificates provided by Statistics Austria. The BWLR was calculated, and the effect of moderate altitude and parity was estimated using multivariable linear mixed models adjusting for predefined variables. Sub-group regression analyses were conducted by altitude group. (3) Results: Data on 2,057,702 newborns from 1,280,272 mothers were analyzed. The effect of parity on BWLR, as indicated by the difference of BWLR between the first- and second-born infants, ranged between 1.87 to 2.09 g per centimeter across all altitude groups. Our analyses found that the effect of parity on BWLR diminished from parity three onwards at altitude 0-300, whilst the effect of parity on BWLR continued to increase at higher than 300 m and was most notable in the highest altitude group >900 m. (4) Conclusions: Findings from our study indicated that the negative effect of increasing altitude on BWLR was deprived for newborns of higher parity. It shows that the residential altitude can modify the effect of parity on BWLR.
Collapse
Affiliation(s)
- Eva Karner
- Division of Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (E.K.); (D.A.M.)
| | - Dana A. Muin
- Division of Feto-Maternal Medicine, Department of Obstetrics and Gynecology, Medical University of Vienna, 1090 Vienna, Austria; (E.K.); (D.A.M.)
| | - Katrin Klebermass-Schrehof
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Department of Pediatrics, Medical University of Vienna, 1090 Vienna, Austria;
| | - Thomas Waldhoer
- Department of Epidemiology, Center for Public Health, Medical University of Vienna, 1090 Vienna, Austria
| | - Lin Yang
- Department of Cancer Epidemiology and Prevention Research, Alberta Health Services, Calgary, AB T2S 3C3, Canada;
- Departments of Oncology and Community Health Sciences, University of Calgary, Calgary, AB T2S 3C3, Canada
| |
Collapse
|
21
|
Pintye D, Sziva RE, Mastyugin M, Török M, Jacas S, Lo A, Salahuddin S, Zsengellér ZK. Nitroxide-HMP-Protects Human Trophoblast HTR-8/SVneo Cells from H 2O 2-Induced Oxidative Stress by Reducing the HIF1A Signaling Pathway. Antioxidants (Basel) 2023; 12:1578. [PMID: 37627573 PMCID: PMC10451835 DOI: 10.3390/antiox12081578] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Preeclampsia (PE) is a pregnancy-specific syndrome affecting 5-7% of patients. There is no effective treatment available. Early abnormal placental development is associated with oxidative stress (OS) and a release of reactive oxygen species (ROS) in the placenta. This phenomenon leads to downstream signaling, Hypoxia Inducible Factor 1A (HIF1A) stabilization and transcription of the anti-angiogenic factors soluble fms-like tyrosine kinase 1 (sFLT1) and soluble endoglin (sEng), which are known to cause endothelial and trophoblast dysfunction and cardinal features of PE: hypertension, proteinuria and, in severe cases, eclampsia. We tested whether 3-(Hydroxymethyl)-1-oxy-2,2,5,5-tetramethylpyrrolidine (HMP)-a nitroxide-type antioxidant molecule-can reduce placental OS and mitigate PE symptoms in vitro. We induced OS in human trophoblast (HTR-8/SVneo) cells with hydrogen peroxide (H2O2) and assessed whether modulating cell redox function with HMP reduces cell injury, mitochondrial stress and HIF1A and sFLT1 production. Pre-treatment with HMP reduced mitochondrial-derived ROS production, restored LC3B expression and reduced HIF1A and sFLT1 expression in H2O2-exposed HTR-8/SVneo trophoblast cells. HMP improved the mitochondrial electron chain enzyme activity, indicating that a reduction in OS alleviates mitochondrial stress and also reduces anti-angiogenic responses. In reducing placental trophoblast OS, HMP presents a potential novel therapeutic approach for the treatment of PE. Future investigation is warranted regarding the in vivo use of HMP.
Collapse
Affiliation(s)
- Diana Pintye
- Department of Medicine, Beth Israel Lahey Health, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (D.P.); (S.J.); (A.L.)
| | - Réka Eszter Sziva
- Department of Medicine, Beth Israel Lahey Health, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (D.P.); (S.J.); (A.L.)
- Department of Obstetrics and Gynecology, Semmelweis University, 1085 Budapest, Hungary
| | - Maxim Mastyugin
- Department of Chemistry, University of Massachusetts, Boston, MA 02125, USA; (M.M.); (M.T.)
| | - Marianna Török
- Department of Chemistry, University of Massachusetts, Boston, MA 02125, USA; (M.M.); (M.T.)
| | - Sonako Jacas
- Department of Medicine, Beth Israel Lahey Health, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (D.P.); (S.J.); (A.L.)
| | - Agnes Lo
- Department of Medicine, Beth Israel Lahey Health, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (D.P.); (S.J.); (A.L.)
| | - Saira Salahuddin
- Department of Obstetrics and Gynecology, Beth Israel Lahey Health, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Zsuzsanna K. Zsengellér
- Department of Medicine, Beth Israel Lahey Health, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA; (D.P.); (S.J.); (A.L.)
| |
Collapse
|
22
|
Filippi L, Pascarella F, Pini A, Cammalleri M, Bagnoli P, Morganti R, Innocenti F, Castagnini N, Melosi A, Scaramuzzo RT. Fetal Oxygenation from the 23rd to the 36th Week of Gestation Evaluated through the Umbilical Cord Blood Gas Analysis. Int J Mol Sci 2023; 24:12487. [PMID: 37569862 PMCID: PMC10419490 DOI: 10.3390/ijms241512487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
The embryo and fetus grow in a hypoxic environment. Intrauterine oxygen levels fluctuate throughout the pregnancy, allowing the oxygen to modulate apparently contradictory functions, such as the expansion of stemness but also differentiation. We have recently demonstrated that in the last weeks of pregnancy, oxygenation progressively increases, but the trend of oxygen levels during the previous weeks remains to be clarified. In the present retrospective study, umbilical venous and arterial oxygen levels, fetal oxygen extraction, oxygen content, CO2, and lactate were evaluated in a cohort of healthy newborns with gestational age < 37 weeks. A progressive decrease in pO2 levels associated with a concomitant increase in pCO2 and reduction in pH has been observed starting from the 23rd week until approximately the 33-34th week of gestation. Over this period, despite the increased hypoxemia, oxygen content remains stable thanks to increasing hemoglobin concentration, which allows the fetus to become more hypoxemic but not more hypoxic. Starting from the 33-34th week, fetal oxygenation increases and ideally continues following the trend recently described in term fetuses. The present study confirms that oxygenation during intrauterine life continues to vary even after placenta development, showing a clear biphasic trend. Fetuses, in fact, from mid-gestation to near-term, become progressively more hypoxemic. However, starting from the 33-34th week, oxygenation progressively increases until birth. In this regard, our data suggest that the placenta is the hub that ensures this variable oxygen availability to the fetus, and we speculate that this biphasic trend is functional for the promotion, in specific tissues and at specific times, of stemness and intrauterine differentiation.
Collapse
Affiliation(s)
- Luca Filippi
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| | - Francesca Pascarella
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| | - Alessandro Pini
- Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Maurizio Cammalleri
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.)
| | - Paola Bagnoli
- Unit of General Physiology, Department of Biology, University of Pisa, 56126 Pisa, Italy; (M.C.); (P.B.)
| | - Riccardo Morganti
- Section of Statistics, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy;
| | - Francesca Innocenti
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| | - Nicola Castagnini
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| | - Alice Melosi
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| | - Rosa Teresa Scaramuzzo
- Neonatology Unit, Azienda Ospedaliero-Universitaria Pisana, 56126 Pisa, Italy; (F.P.); (F.I.); (N.C.); (A.M.); (R.T.S.)
| |
Collapse
|
23
|
Jaremek A, Shaha S, Jeyarajah MJ, Jaju Bhattad G, Chowdhury D, Riddell M, Renaud SJ. Genome-Wide Analysis of Hypoxia-Inducible Factor Binding Reveals Targets Implicated in Impaired Human Placental Syncytiotrophoblast Formation under Low Oxygen. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:846-865. [PMID: 37028593 DOI: 10.1016/j.ajpath.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 01/31/2023] [Accepted: 03/16/2023] [Indexed: 04/08/2023]
Abstract
Preeclampsia (PE) is a common and serious complication of pregnancy with no cure except premature delivery. The root cause of PE is improper development of the placenta-the temporary organ supporting fetal growth and development. Continuous formation of the multinucleated syncytiotrophoblast (STB) layer via differentiation and fusion of cytotrophoblasts (CTBs) is vital for healthy placentation and is impaired in preeclamptic pregnancies. In PE, there is reduced/intermittent placental perfusion, likely resulting in a persistently low O2 environment. Low O2 inhibits differentiation and fusion of CTBs into STB and may thus contribute to PE pathogenesis; however, the underlying mechanisms are unknown. Because low O2 activates a transcription factor complex in cells known as the hypoxia-inducible factor (HIF), the objective of this study was to investigate whether HIF signaling inhibits STB formation by regulating genes required for this process. Culture of primary CTBs, the CTB-like cell line BeWo, and human trophoblast stem cells under low O2 reduced cell fusion and differentiation into STB. Knockdown of aryl hydrocarbon receptor nuclear translocator (a key component of the HIF complex) in BeWo cells restored syncytialization and expression of STB-associated genes under different O2 levels. Chromatin immunoprecipitation sequencing facilitated the identification of global aryl hydrocarbon receptor nuclear translocator/HIF binding sites, including several near genes implicated in STB development, such as ERVH48-1 and BHLHE40, providing new insights into mechanisms underlying pregnancy diseases linked to poor placental O2 supply.
Collapse
Affiliation(s)
- Adam Jaremek
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sumaiyah Shaha
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada
| | - Mariyan J Jeyarajah
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Gargi Jaju Bhattad
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Diba Chowdhury
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Meghan Riddell
- Department of Physiology, University of Alberta, Edmonton, Alberta, Canada; Department of Obstetrics and Gynecology, University of Alberta, Edmonton, Alberta, Canada
| | - Stephen J Renaud
- Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada; Children's Health Research Institute, Lawson Health Research Institute, London, Ontario, Canada.
| |
Collapse
|
24
|
Bueno-Sánchez JC, Gómez-Gutiérrez AM, Maldonado-Estrada JG, Quintana-Castillo JC. Expression of placental glycans and its role in regulating peripheral blood NK cells during preeclampsia: a perspective. Front Endocrinol (Lausanne) 2023; 14:1087845. [PMID: 37206444 PMCID: PMC10190602 DOI: 10.3389/fendo.2023.1087845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/03/2023] [Indexed: 05/21/2023] Open
Abstract
Preeclampsia is a pregnancy-related multisystem disorder characterized by altered trophoblast invasion, oxidative stress, exacerbation of systemic inflammatory response, and endothelial damage. The pathogenesis includes hypertension and mild-to-severe microangiopathy in the kidney, liver, placenta, and brain. The main mechanisms involved in its pathogenesis have been proposed to limit trophoblast invasion and increase the release of extracellular vesicles from the syncytiotrophoblast into the maternal circulation, exacerbating the systemic inflammatory response. The placenta expresses glycans as part of its development and maternal immune tolerance during gestation. The expression profile of glycans at the maternal-fetal interface may play a fundamental role in physiological pregnancy changes and disorders such as preeclampsia. It is unclear whether glycans and their lectin-like receptors are involved in the mechanisms of maternal-fetal recognition by immune cells during pregnancy homeostasis. The expression profile of glycans appears to be altered in hypertensive disorders of pregnancy, which could lead to alterations in the placental microenvironment and vascular endothelium in pregnancy conditions such as preeclampsia. Glycans with immunomodulatory properties at the maternal-fetal interface are altered in early-onset severe preeclampsia, implying that innate immune system components, such as NK cells, exacerbate the systemic inflammatory response observed in preeclampsia. In this article, we discuss the evidence for the role of glycans in gestational physiology and the perspective of glycobiology on the pathophysiology of hypertensive disorders in gestation.
Collapse
Affiliation(s)
- Julio C. Bueno-Sánchez
- Reproduction Group, Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Department of Obstetrics and Gynecology, School of Medicine, Universidad de Antioquia, Medellín, Colombia
- Red Iberoamericana de Alteraciones Vasculares en Trastornos del Embarazo (RIVATREM), Chillan, Chile
| | - Alejandra M. Gómez-Gutiérrez
- Reproduction Group, Department of Physiology and Biochemistry, School of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Juan G. Maldonado-Estrada
- One Health and Veterinary Innovative Research & Development (OHVRI) Research Group, Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Colombia
| | | |
Collapse
|
25
|
Wu S, Liu K, Zhou B, Wu S. N6-methyladenosine modifications in maternal-fetal crosstalk and gestational diseases. Front Cell Dev Biol 2023; 11:1164706. [PMID: 37009476 PMCID: PMC10060529 DOI: 10.3389/fcell.2023.1164706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
As a medium among pregnant women, environment and fetus, placenta owns powerful and delicate epigenetic processes to regulate gene expression and maintain cellular homeostasis. N6-methyladenosine (m6A) is the most prevalent modification that determines the fate of RNA, and its dynamic reversibility indicates that m6A may serve as a sensitive responder to environmental stimuli. Emerging evidence suggests that m6A modifications play an essential role in placental development and maternal-fetal crosstalk, and are closely related to gestational diseases. Herein, we summarized the latest techniques for m6A sequencing and highlighted current advances of m6A modifications in maternal-fetal crosstalk and the underlying mechanisms in gestational diseases. Therefore, proper m6A modifications are important in placental development, but its disturbance mainly caused by various environmental factors can lead to abnormal placentation and function with possible consequences of gestational diseases, fetal growth and disease susceptibility in adulthood.
Collapse
Affiliation(s)
- Suqi Wu
- First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ketong Liu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Bingyan Zhou
- Hubei Clinical Center of Hirschsprung’s Disease and Allied Disorders, Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Bingyan Zhou, ; Suwen Wu,
| | - Suwen Wu
- Department of Obstetrics, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- *Correspondence: Bingyan Zhou, ; Suwen Wu,
| |
Collapse
|
26
|
Supplementation of culture medium with quercetin improves mouse blastocyst quality and increases the expression of HIF-1α protein. ZYGOTE 2023; 31:225-236. [PMID: 36843100 DOI: 10.1017/s0967199423000060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Regarding the low number of embryos that reach the blastocyst stage when cultured in vitro, this study aimed to evaluate the effects of quercetin on pre-implantation mouse (Mus musculus) embryos obtained using in vitro fertilization, especially during the passage from morula to blastocyst. Furthermore, we studied whether quercetin also affected the expression of hypoxia-inducible factor 1α (HIF-1α). The culture medium for the embryos was supplemented with quercetin, for long or short periods of time, and then the development potential, total cell number, apoptosis rates and expression of HIF-1α were studied to determine the effect of quercetin. Embryos failed to develop when cultured for long periods of time with quercetin, implying the possible toxic effects of this, alternatively antioxidant, compound. However, a short culture from morula to blastocyst significantly improved the development potential of in vitro produced embryos, increasing the final total cell number and reducing the apoptosis rate, observing similar results to those embryos cultured in low-oxygen concentrations or developed in utero. Furthermore, in embryos treated with quercetin for 2 or 4 h we found an increase in HIF-1α compared with untreated embryos. This work could imply a way to use quercetin in fertility clinics to improve the production of healthy blastocysts and, consequently, increase the success rates in assisted reproduction techniques.
Collapse
|
27
|
Wang R, Liang L, Matsumoto M, Iwata K, Umemura A, He F. Reactive Oxygen Species and NRF2 Signaling, Friends or Foes in Cancer? Biomolecules 2023; 13:biom13020353. [PMID: 36830722 PMCID: PMC9953152 DOI: 10.3390/biom13020353] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The imbalance between reactive oxygen species (ROS) production and clearance causes oxidative stress and ROS, which play a central role in regulating cell and tissue physiology and pathology. Contingent upon concentration, ROS influence cancer development in contradictory ways, either stimulating cancer survival and growth or causing cell death. Cells developed evolutionarily conserved programs to sense and adapt redox the fluctuations to regulate ROS as either signaling molecules or toxic insults. The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2)-KEAP1 system is the master regulator of cellular redox and metabolic homeostasis. NRF2 has Janus-like roles in carcinogenesis and cancer development. Short-term NRF2 activation suppresses tissue injury, inflammation, and cancer initiation. However, cancer cells often exhibit constitutive NRF2 activation due to genetic mutations or oncogenic signaling, conferring advantages for cancer cells' survival and growth. Emerging evidence suggests that NRF2 hyperactivation, as an adaptive cancer phenotype under stressful tumor environments, regulates all hallmarks of cancer. In this review, we summarized the source of ROS, regulation of ROS signaling, and cellular sensors for ROS and oxygen (O2), we reviewed recent progress on the regulation of ROS generation and NRF2 signaling with a focus on the new functions of NRF2 in cancer development that reach beyond what we originally envisioned, including regulation of cancer metabolism, autophagy, macropinocytosis, unfolded protein response, proteostasis, and circadian rhythm, which, together with anti-oxidant and drug detoxification enzymes, contributes to cancer development, metastasis, and anticancer therapy resistance.
Collapse
Affiliation(s)
- Ruolei Wang
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lirong Liang
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine and Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100020, China
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
- Correspondence: (A.U.); (F.H.); Tel.: +75-251-5332 (A.U.); +86-21-5132-2501 (F.H.)
| | - Feng He
- The Center for Cancer Research, Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- Correspondence: (A.U.); (F.H.); Tel.: +75-251-5332 (A.U.); +86-21-5132-2501 (F.H.)
| |
Collapse
|
28
|
Bao S, Chen Z, Qin D, Xu H, Deng X, Zhang R, Ma J, Lu Z, Jiang S, Zhang X. Single-cell profiling reveals mechanisms of uncontrolled inflammation and glycolysis in decidual stromal cell subtypes in recurrent miscarriage. Hum Reprod 2023; 38:57-74. [PMID: 36355621 DOI: 10.1093/humrep/deac240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 10/08/2022] [Indexed: 11/12/2022] Open
Abstract
STUDY QUESTION Do distinct subpopulations of decidual stromal cells (DSCs) exist and if so, are given subpopulations enriched in recurrent miscarriage (RM)? SUMMARY ANSWER Three subpopulations of DSCs were identified from which inflammatory DSCs (iDSCs) and glycolytic DSCs (glyDSCs) are significantly enriched in RM, with implicated roles in driving decidual inflammation and immune dysregulation. WHAT IS KNOWN ALREADY DSCs play crucial roles in establishing and maintaining a successful pregnancy; dysfunction of DSCs has been considered as one of the key reasons for the development of RM. STUDY DESIGN, SIZE, DURATION We collected 15 early decidual samples from five healthy donors (HDs) and ten RM patients to perform single-cell RNA sequencing (scRNA-seq). A total of 43 RM patients and 37 HDs were enrolled in the validation cohort. PARTICIPANTS/MATERIALS, SETTING, METHODS Non-immune cells and immune cells of decidual tissues were sorted by flow cytometry to perform scRNA-seq. We used tissue microarrays (TMA) to validate three distinct subpopulations of DSCs. The expression of inflammatory and glycolytic proteins by DSCs was validated by immunohistochemistry (IHC) and multiplex immunohistochemistry (mIHC). Different subsets of decidual NK (dNK) cells and macrophages were also validated by multicolor flow cytometry and mIHC. Cell ligand-receptor and spatial analyses between DSCs and immune cells were analyzed by mIHC. MAIN RESULTS AND THE ROLE OF CHANCE We classify the DSCs into three subtypes based on scRNA-seq data: myofibroblastic (myDSCs), inflammatory (iDSCs) and glycolytic (glyDSCs), with the latter two being significantly enriched in RM patients. The distribution patterns of DSC subtypes in the RM and HD groups were validated by mIHC. Single-cell analyses indicate that the differentiation of iDSCs and glyDSCs may be coupled with the degrees of hypoxia. Consequently, we propose a pathological model in which a vicious circle is formed and fueled by hypoxic stress, uncontrolled inflammation and aberrant glycolysis. Furthermore, our results show that the inflammatory SPP1+ macrophages and CD18+ dNK cells are preferentially increased in the decidua of RM patients. Cell ligand-receptor and mIHC spatial analyses uncovered close interactions between pathogenic DSCs and inflammatory SPP1+ macrophages and CD18+ NK cells in RM patients. LARGE SCALE DATA The raw single-cell sequence data reported in this paper were deposited at the National Omics Data Encyclopedia (www.biosino.org), under the accession number OEP002901. LIMITATIONS, REASONS FOR CAUTION The number of decidual samples for scRNA-seq was limited and in-depth functional studies on DSCs are warranted in future studies. WIDER IMPLICATIONS OF THE FINDINGS Identification of three DSC subpopulations opens new avenues for further investigation of their roles in RM patients. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by the Strategic Priority Research Program (No. XDB29030302), Frontier Science Key Research Project (QYZDB-SSW-SMC036), Chinese Academy of Sciences; National Key Research and Development Program of China (2021YFE0200600), National Natural Science Foundation of China (No. 31770960), Shanghai Municipal Science and Technology Major Project (No. 2019SHZDZX02, HS2021SHZX001), and Shanghai Committee of Science and Technology (17411967800). All authors report no conflict of interest.
Collapse
Affiliation(s)
- Shihua Bao
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zechuan Chen
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Dengke Qin
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Huihui Xu
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xujing Deng
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ruixiu Zhang
- Department of Reproductive Immunology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jiaqiang Ma
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Zhouping Lu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.,Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Zhang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences/University of Chinese Academy of Sciences, Shanghai, China.,Shanghai Huashen Institute of Microbes and Infections, Shanghai, China
| |
Collapse
|
29
|
Ma J, Gao W, Li D. Recurrent implantation failure: A comprehensive summary from etiology to treatment. Front Endocrinol (Lausanne) 2023; 13:1061766. [PMID: 36686483 PMCID: PMC9849692 DOI: 10.3389/fendo.2022.1061766] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Implantation is the first step in human reproduction. Successful implantation depends on the crosstalk between embryo and endometrium. Recurrent implantation failure (RIF) is a clinical phenomenon characterized by a lack of implantation after the transfer of several embryos and disturbs approximately 10% couples undergoing in vitro fertilization and embryo transfer. Despite increasing literature on RIF, there is still no widely accepted definition or standard protocol for the diagnosis and treatment of RIF. Progress in predicting and preventing RIF has been hampered by a lack of widely accepted definitions. Most couples with RIF can become pregnant after clinical intervention. The prognosis for couples with RIF is related to maternal age. RIF can be caused by immunology, thrombophilias, endometrial receptivity, microbiome, anatomical abnormalities, male factors, and embryo aneuploidy. It is important to determine the most possible etiologies, and individualized treatment aimed at the primary cause seems to be an effective method for increasing the implantation rate. Couples with RIF require psychological support and appropriate clinical intervention. Further studies are required to evaluate diagnostic method and he effectiveness of each therapy, and guide clinical treatment.
Collapse
Affiliation(s)
- Junying Ma
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, Shenyang, China
- Shengjing Hospital of China Medical University, Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| | - Wenyan Gao
- Department of Obstetrics, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Da Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China
- Key Laboratory of Reproductive and Genetic Medicine, China Medical University, National Health Commission, Shenyang, China
- Shengjing Hospital of China Medical University, Key Laboratory of Reproductive Dysfunction Diseases and Fertility Remodeling of Liaoning Province, Shenyang, China
| |
Collapse
|
30
|
Determination of the Predictive Roles and Potentially Pathogenic Antigen Epitopes of α-Enolase Related to the Development of Miscarriage in Females with Autoimmune Thyroiditis. Int J Mol Sci 2023; 24:ijms24021021. [PMID: 36674531 PMCID: PMC9862122 DOI: 10.3390/ijms24021021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/22/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Autoimmune thyroiditis (AIT) is a common endocrine disease which causes a significantly increased risk of miscarriage. Our recent study has shown that the increased ENO1 autoantibody (ENO1Ab) expression in an experimental AIT mouse model was induced by thyroglobulin (Tg) immunization only. In this study, we explored the potential roles of ENO1Ab in miscarriage occurrence among AIT women, and the specific epitopes of ENO1 targeted by ENO1Ab. A total of 432 euthyroid pregnant participants were selected from the project of Subclinical Hypothyroid during Early Pregnancy, including 48 women with AIT and miscarriage, 96 with miscarriage but no AIT, 96 with AIT but no miscarriage, and 192 without either AIT or miscarriage. The enzyme-linked immunosorbent assay was used to determine the serum levels of total IgG against ENO1 and 18 predicted antigen epitopes of ENO1. The results showed that women with AIT and miscarriage had the highest serum levels of ENO1Ab compared to the other groups. Logistic regression analysis showed that the serum ENO1Ab was an independent risk factor for miscarriage, especially among AIT females. The serum level of total IgG against the predicted epitope peptide 6 (i.e., P6 and aa168-183) of ENO1 was significantly increased in women with AIT and miscarriage when compared with those of both the AIT non-miscarriage group and non-AIT miscarriage group. This pilot study suggests that serum ENO1Ab may have a fair predictive value for AIT-related miscarriage, and the autoantibody specific to P6 epitope may especially be more specifically related to this disorder.
Collapse
|
31
|
Liang L, Chen Y, Wu C, Cao Z, Xia L, Meng J, He L, Yang C, Wang Z. MicroRNAs: key regulators of the trophoblast function in pregnancy disorders. J Assist Reprod Genet 2023; 40:3-17. [PMID: 36508034 PMCID: PMC9742672 DOI: 10.1007/s10815-022-02677-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The placenta is essential for a successful pregnancy and healthy intrauterine development in mammals. During human pregnancy, the growth and development of the placenta are inseparable from the rapid proliferation, invasion, and migration of trophoblast cells. Previous reports have shown that the occurrence of many pregnancy disorders may be closely related to the dysfunction of trophoblasts. However, the function regulation of human trophoblast cells in the placenta is poorly understood. Therefore, studying the factors that regulate the function of trophoblast cells is necessary. MicroRNAs (miRNAs) are small, non-coding, single-stranded RNA molecules. Increasing evidence suggests that miRNAs play a crucial role in regulating trophoblast functions. This review outlines the role of miRNAs in regulating the function of trophoblast cells and several common signaling pathways related to miRNA regulation in pregnancy disorders.
Collapse
Affiliation(s)
- Lingli Liang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Yanjun Chen
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Chunyan Wu
- grid.412017.10000 0001 0266 8918Department of Cardiovascular, The Third Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zitong Cao
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Linzhen Xia
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| | - Jun Meng
- grid.461579.8Department of Function, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Lu He
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Chunfen Yang
- grid.461579.8Department of Gynecology, The First Affiliated Hospital of University of South China, Hengyang, 421001 China
| | - Zuo Wang
- grid.412017.10000 0001 0266 8918Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001 China
| |
Collapse
|
32
|
Albogami SM, Al-Kuraishy HM, Al-Maiahy TJ, Al-Buhadily AK, Al-Gareeb AI, Alorabi M, Alotaibi SS, De Waard M, Sabatier JM, Saad HM, Batiha GES. Hypoxia-Inducible Factor 1 and Preeclampsia: A New Perspective. Curr Hypertens Rep 2022; 24:687-692. [PMID: 36342613 DOI: 10.1007/s11906-022-01225-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2022] [Indexed: 11/09/2022]
Abstract
PURPOSE OF REVIEW Preeclampsia (PE) is a serious and distinct type of pregnancy-induced hypertension, with an incidence of 2-8% worldwide. PE is defined as pregnancy-related hypertension with proteinuria and peripheral edema after 20 weeks of gestation. Hypoxic placenta triggers the release of inflammatory and humoral substances into maternal circulation, leading to induction of oxidative stress, lipid peroxidation, endothelial dysfunction, and peripheral vasoconstriction. The objective of the present narrative review was to find the association between PE and hypoxia-inducible factor 1 (HIF-1) in pregnant women from a new perspective. RECENT FINDINGS HIF-1 is the key transcription factor that regulates cellular responses to hypoxia and low oxygen tension. HIF-1α is involved in the differentiation and growth of the placenta mainly in the first and second trimesters. During normal gestation, HIF-1α responds to the alterations in oxygen tension, cytokine, and angiogenic factors release. HIF-1α is considered a key biomarker of placental function and vascularization during pregnancy. HIF-1α plays a crucial role in the pathogenesis of PE through activation of anti-angiogenic and inhibition of proangiogenic factors. As well, HIF-1α increases the expression of the p38MAPK and NLRP3 inflammasomes, which promote placental inflammation and dysfunction. HIF-1α acts as a potential link between inflammatory signaling pathways and the development of PE.
Collapse
Affiliation(s)
- Sarah M Albogami
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hayder M Al-Kuraishy
- Department of Pharmacology, Toxicology and Medicine College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Thabat J Al-Maiahy
- Department of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali K Al-Buhadily
- Department of Clinical Pharmacology, Medicine and Therapeutic, Medical Faculty, College of Medicine, Al Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Pharmacology, Toxicology and Medicine College of Medicine, Al-Mustansiriyah University, P.O. Box 14132, Baghdad, Iraq
| | - Mohammed Alorabi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Saqer S Alotaibi
- Department of Biotechnology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Michel De Waard
- Smartox Biotechnology, 6 rue des Platanes, 38120, Saint-Egrève, France.,L'institut Du Thorax, CNRS, Univ Nantes, 44007, InsermNantes, France.,LabEx Ion Channels, Université de Nice Sophia-Antipolis, Science & Therapeutics, 06560, Valbonne, France
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), UMR 7051, Faculté Des Sciences Médicales Et Paramédicales, Aix-Marseille Université, CNRS, 27 Bd Jean Moulin, 13005, Marseille, France
| | - Hebatallah M Saad
- Department of Pathology, Faculty of Veterinary Medicine, Matrouh University, Marsa Matruh, 51744, Egypt.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, Egypt.
| |
Collapse
|
33
|
Cindrova-Davies T, Sferruzzi-Perri AN. Human placental development and function. Semin Cell Dev Biol 2022; 131:66-77. [PMID: 35393235 DOI: 10.1016/j.semcdb.2022.03.039] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 12/14/2022]
Abstract
The placenta is a transient fetal organ that plays a critical role in the health and wellbeing of both the fetus and its mother. Functionally, the placenta sustains the growth of the fetus as it facilitates delivery of oxygen and nutrients and removal of waste products. Not surprisingly, defective early placental development is the primary cause of common disorders of pregnancy, including recurrent miscarriage, fetal growth restriction, pre-eclampsia and stillbirth. Adverse pregnancy conditions will also affect the life-long health of the fetus via developmental programming[1]. Despite its critical importance in reproductive success and life-long health, our understanding of placental development is not extensive, largely due to ethical limitations to studying early or chronological placental development, lack of long-term in vitro models, or comparative animal models. In this review, we examine current knowledge of early human placental development, discuss the critical role of the maternal endometrium and of the fetal-maternal dialogue in pregnancy success, and we explore the latest models of trophoblast and endometrial stem cells. In addition, we discuss the role of oxygen in placental formation and function, how nutrient delivery is mediated during the periods of histotrophic nutrition (uptake of uterine secretions) and haemotrophic nutrition (exchange between the maternal and fetal circulations), and how placental endocrine function facilitates fetal growth and development.
Collapse
Affiliation(s)
- Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amanda N Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK.
| |
Collapse
|
34
|
Trophoblast Exosomal UCA1 Induces Endothelial Injury through the PFN1-RhoA/ROCK Pathway in Preeclampsia: A Human-Specific Adaptive Pathogenic Mechanism. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2198923. [PMID: 36160709 PMCID: PMC9499815 DOI: 10.1155/2022/2198923] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/11/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Preeclampsia is regarded as an evolution-related disease that has only been observed in humans and our closest relatives, and the important factor contributing to its pathogenesis is endothelial dysregulation secondary to a stressed placenta. Hypoxia-inducible factor 1 subunit alpha (HIF1α), a highly conserved molecule in virtually all mammals, is regarded as a crucial regulator of the hypoxia adaptation and evolution. Persistent high expression of HIF1α in the placenta is one of the pathogenic mechanisms of preeclampsia. Therefore, human-specific molecules should link increased HIF1α to preeclampsia. We reported that urothelial cancer associated 1 (UCA1) is a potential mediator because it is a human-specific long noncoding RNA (lncRNA) that is upregulated in placental tissues and maternal serum from women with preeclampsia and is regulated by HIF1α. The cellular HIF1α-UCA1 pathway promoted the adaptation of trophoblasts to hypoxia by inducing vascular endothelial growth factor (VEGF) secretion and changes in the levels of key enzymes in glycolysis. On the other hand, circulating exosomal UCA1 secreted from stressed trophoblasts induced vascular endothelial dysfunction, especially excess ROS production, as measured by exosome extraction and a coculture system. At the molecular level, UCA1 physically bound to ubiquitin-specific peptidase 14 (USP14), which is a deubiquitinating enzyme, and UCA1 functioned as a scaffold to recruit USP14 to profilin 1 (PFN1), an actin-binding protein contributing to endothelial abnormalities and vascular diseases. This ternary complex inhibited the ubiquitination-dependent degradation of PFN1 and prolonged its half-life, further activating the RhoA/Rho-kinase (ROCK) pathway to induce ROS production in endothelial cells. Taken together, these observations suggest a role for the evolution-related UCA1 in the HIF1α-induced adaptive pathogenic mechanism of preeclampsia, promoting the survival of hypoxic trophoblasts and injuring maternal endothelial cells.
Collapse
|
35
|
Hernández N, Sánchez-Mateos S, López-Morató M, Sánchez-Margallo FM, Álvarez IS. Effect of the addition of 4OHE 2 and quercetin in culture media on ROS levels and gene expression in mouse blastocysts. Reprod Fertil Dev 2022; 34:980-990. [PMID: 36075881 DOI: 10.1071/rd22041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/11/2022] [Indexed: 11/23/2022] Open
Abstract
AIMS The main objective of this work is to elucidate whether Quercetin (Qc) and 4-Hidroxistradiol (4OHE2 ) decrease the level of reactive oxygen species (ROS) in in vitro obtained embryos and to analyse which genes are activated under the treatments that could explain this improvement. METHODS Oxidative stress was induced during embryo culture by H2 O2 treatment and ROS production was measured and compared with embryos treated with Qc or 4OHE2 . Gene expression was analysed by Q-PCR in control embryos obtained in utero (IU) or by IVF and compared with the levels found in embryos cultured with Qc or 4OHE2 to determine the effect of these compounds. KEY RESULTS Qc strongly reduces ROS levels in embryos after a treatment of 4h. On the contrary, 4OHE2 had no effect in reducing ROS levels in embryos. The addition of these molecules to the culture media upregulate several hypoxia-related genes when Qc is added to the culture media, and implantation-related genes when 4OHE2 is used. CONCLUSIONS Qc is a very strong antioxidant molecule that when used for short periods of time during culture can reduce ROS levels and improve embryo quality by activating antioxidant enzymes. 4OHE2 supplementation, despite having no effects in reducing ROS levels, acts directly in the molecular signalling implicated in the implantation process and could be also considered as a supplement for embryo culture during IVF. IMPLICATIONS Proper supplementation of the culture media could greatly improve the quality of embryos cultured in vitro , resulting in better results in IVF clinics.
Collapse
Affiliation(s)
- Nuria Hernández
- Criopreservation Facility, Biomedicine Institute, Seville, Spain; and Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.á
| | - Soledad Sánchez-Mateos
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.á
| | - Marta López-Morató
- Assisted Reproduction Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.á; and Genetics Unit, Hospital HLA Vistahermosa, Alicante, Spain
| | | | - Ignacio S Álvarez
- Department of Cell Biology, University of Extremadura, Badajoz, Spain; and Instituto Extremeño de Reproduccion Asistida (IERA), Badajoz, Spain
| |
Collapse
|
36
|
Thomas KN, Zimmel KN, Basel A, Roach AN, Mehta NA, Thomas KR, Dotson LJ, Bedi YS, Golding MC. Paternal alcohol exposures program intergenerational hormetic effects on offspring fetoplacental growth. Front Cell Dev Biol 2022; 10:930375. [PMID: 36036017 PMCID: PMC9405020 DOI: 10.3389/fcell.2022.930375] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 06/30/2022] [Indexed: 12/03/2022] Open
Abstract
Hormesis refers to graded adaptive responses to harmful environmental stimuli where low-level toxicant exposures stimulate tissue growth and responsiveness while, in contrast, higher-level exposures induce toxicity. Although the intergenerational inheritance of programmed hormetic growth responses is described in plants and insects, researchers have yet to observe this phenomenon in mammals. Using a physiologically relevant mouse model, we demonstrate that chronic preconception paternal alcohol exposures program nonlinear, dose-dependent changes in offspring fetoplacental growth. Our studies identify an inverse j-shaped curve with a threshold of 2.4 g/Kg per day; below this threshold, paternal ethanol exposures induce programmed increases in placental growth, while doses exceeding this point yield comparative decreases in placental growth. In male offspring, higher paternal exposures induce dose-dependent increases in the placental labyrinth layer but do not impact fetal growth. In contrast, the placental hypertrophy induced by low-level paternal ethanol exposures associate with increased offspring crown-rump length, particularly in male offspring. Finally, alterations in placental physiology correlate with disruptions in both mitochondrial-encoded and imprinted gene expression. Understanding the influence of ethanol on the paternally-inherited epigenetic program and downstream hormetic responses in offspring growth may help explain the enormous variation observed in fetal alcohol spectrum disorder (FASD) phenotypes and incidence.
Collapse
|
37
|
Bonasoni MP, Comitini G, Blasi I, Cavazza A, Aguzzoli L. Large Subchorionic Cyst Located at Umbilical Cord Insertion with Vascular Displacing and Intracystic Hemorrhage/Hematoma: A Case Report. Fetal Pediatr Pathol 2022; 41:468-474. [PMID: 33103529 DOI: 10.1080/15513815.2020.1836096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: Large subchorionic cysts usually arise close to the placental cord insertion site (PCIS) inducing traction on the umbilical cord, impairing blood flow and favoring fetal growth restriction (FGR). Intracystic hemorrhage/hematoma is likely due to the prothrombotic properties of X cells secretion (extravillous trophoblast), which line the cyst wall. Case report: We describe a large subchorionic cyst located exactly at the PCIS, displacing the umbilical cord vessel branches running along the cyst surface. The fetus presented with FGR. At 36 weeks of gestational age, the cyst measured 7.7 cm in maximum dimension showing a partially organized hemorrhage and a peripheral laminated thrombohematoma. The patient underwent elective cesarean section as the cyst and its vessels were at high risk of rupture during labor. Conclusion: Recognition of large subchorionic cysts close to or at the PCIS in a growth restricted fetus with subsequent expedited delivery may avoid a fatal event.
Collapse
Affiliation(s)
| | - Giuseppina Comitini
- Unit of Obstetrics & Gynecology, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Immacolata Blasi
- Unit of Obstetrics & Gynecology, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alberto Cavazza
- Pathology Unit, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Lorenzo Aguzzoli
- Unit of Obstetrics & Gynecology, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
38
|
He X, Liu Y, Wang H, Sun W, Lu Y, Shan Z, Teng W, Li J. A Predictive Role of Autoantibodies Against the Epitope aa168–183 of ENO1 in the Occurrence of Miscarriage Related to Thyroid Autoimmunity. Front Immunol 2022; 13:890502. [PMID: 35707546 PMCID: PMC9190245 DOI: 10.3389/fimmu.2022.890502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The aim of the research is to study the association between the serum levels of autoantibodies against one important epitope (168FMILPVGAANFREAMR183, designated as P6) of α-enolase (ENO1-P6Abs) and miscarriage among euthyroid females with thyroid autoimmunity (TAI). Methods Anti-ENO1-P6 total IgG was investigated in 432 euthyroid women, and its four subclasses were analyzed in 184 euthyroid women. The serum FT4, TSH, TgAb, and TPOAb levels were determined using an electrochemiluminescence immunoassay. The serum ENO1-P6Ab and anti-protein disulfide isomerase A3 autoantibody (PDIA3Ab) levels were determined using an enzyme-linked immunosorbent assay. Results The serum levels of anti-ENO1-P6 total IgG, IgG2, IgG3, and IgG4 were significantly higher in euthyroid TAI females than in non-TAI controls. Additionally, anti-ENO1-P6 total IgG and its 4 subtypes were all markedly higher in euthyroid TAI females with pregnancy loss than those without miscarriage. Moreover, logistic regression analysis showed that highly expressed anti-ENO1-P6 total IgG, IgG1, IgG2, and IgG3 subtypes in the serum were all independent risk factors for euthyroid TAI-related miscarriage, and its IgG1 was also for non-TAI-related abortion. According to the trend test, the prevalence of miscarriage was increased in a titer-dependent manner with the raised levels of serum anti-ENO1-P6 total IgG and IgG1, IgG2, and IgG3 subtypes among euthyroid TAI females. The receiver operating characteristic curve analysis of anti-ENO1-P6 total IgG and IgG1, IgG2, and IgG3 subclass expressions in the serum for miscarriage prediction in euthyroid TAI females exhibited that the total areas under the curves were 0.773 ± 0.041, 0.761 ± 0.053, 0.827 ± 0.043, and 0.760 ± 0.050, respectively (all P <0.0001). Their corresponding optimal cut-off OD450 values were 0.68 (total IgG), 0.26 (IgG1), 0.97 (IgG2), and 0.48 (IgG3), with sensitivities of 70.8, 87.5, 83.3, and 85.4%, and specificities of 70.8, 59.1, 77.3, and 56.8%, respectively. There was an additive interaction between serum anti-ENO1-P6 and anti-PDIA3 total IgGs on the development of miscarriage (RERI = 23.6, AP = 0.79, SI = 5.37). Conclusion The highly expressed ENO1-P6Abs may be important risk factors for euthyroid TAI-related miscarriage. The serum levels of ENO1-P6Abs may become good predictive markers for pregnancy loss in euthyroid TAI females, especially its IgG2 subclass expression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jing Li
- *Correspondence: Jing Li, ; ; orcid.org/0000-0002-3681-4095
| |
Collapse
|
39
|
Li J, Wang L, Ding J, Cheng Y, Diao L, Li L, Zhang Y, Yin T. Multiomics Studies Investigating Recurrent Pregnancy Loss: An Effective Tool for Mechanism Exploration. Front Immunol 2022; 13:826198. [PMID: 35572542 PMCID: PMC9094436 DOI: 10.3389/fimmu.2022.826198] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/31/2022] [Indexed: 12/18/2022] Open
Abstract
Patients with recurrent pregnancy loss (RPL) account for approximately 1%-5% of women aiming to achieve childbirth. Although studies have shown that RPL is associated with failure of endometrial decidualization, placental dysfunction, and immune microenvironment disorder at the maternal-fetal interface, the exact pathogenesis remains unknown. With the development of high-throughput technology, more studies have focused on the genomics, transcriptomics, proteomics and metabolomics of RPL, and new gene mutations and new biomarkers of RPL have been discovered, providing an opportunity to explore the pathogenesis of RPL from different biological processes. Bioinformatics analyses of these differentially expressed genes, proteins and metabolites also reflect the biological pathways involved in RPL, laying a foundation for further research. In this review, we summarize the findings of omics studies investigating decidual tissue, villous tissue and blood from patients with RPL and identify some possible limitations of current studies.
Collapse
Affiliation(s)
- Jianan Li
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Linlin Wang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.,Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Jinli Ding
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxiang Cheng
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianghui Diao
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Longfei Li
- Shenzhen Key Laboratory of Reproductive Immunology for Peri-implantation, Shenzhen Zhongshan Institute for Reproduction and Genetics, Shenzhen Zhongshan Urology Hospital, Shenzhen, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tailang Yin
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
40
|
Gualdoni GS, Jacobo PV, Barril C, Ventureira MR, Cebral E. Early Abnormal Placentation and Evidence of Vascular Endothelial Growth Factor System Dysregulation at the Feto-Maternal Interface After Periconceptional Alcohol Consumption. Front Physiol 2022; 12:815760. [PMID: 35185604 PMCID: PMC8847216 DOI: 10.3389/fphys.2021.815760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/28/2021] [Indexed: 01/16/2023] Open
Abstract
Adequate placentation, placental tissue remodeling and vascularization is essential for the success of gestation and optimal fetal growth. Recently, it was suggested that abnormal placenta induced by maternal alcohol consumption may participate in fetal growth restriction and relevant clinical manifestations of the Fetal Alcohol Spectrum Disorders (FASD). Particularly, periconceptional alcohol consumption up to early gestation can alter placentation and angiogenesis that persists in pregnancy beyond the exposure period. Experimental evidence suggests that abnormal placenta following maternal alcohol intake is associated with insufficient vascularization and defective trophoblast development, growth and function in early gestation. Accumulated data indicate that impaired vascular endothelial growth factor (VEGF) system, including their downstream effectors, the nitric oxide (NO) and metalloproteinases (MMPs), is a pivotal spatio-temporal altered mechanism underlying the early placental vascular alterations induced by maternal alcohol consumption. In this review we propose that the periconceptional alcohol intake up to early organogenesis (first trimester) alters the VEGF-NO-MMPs system in trophoblastic-decidual tissues, generating imbalances in the trophoblastic proliferation/apoptosis, insufficient trophoblastic development, differentiation and migration, deficient labyrinthine vascularization, and uncompleted remodelation and transformation of decidual spiral arterioles. Consequently, abnormal placenta with insufficiency blood perfusion, vasoconstriction and reduced labyrinthine blood exchange can be generated. Herein, we review emerging knowledge of abnormal placenta linked to pregnancy complications and FASD produced by gestational alcohol ingestion and provide evidence of the early abnormal placental angiogenesis-vascularization and growth associated to decidual-trophoblastic dysregulation of VEGF system after periconceptional alcohol consumption up to mid-gestation, in a mouse model.
Collapse
|
41
|
Yu D, Li B, Yu M, Guo S, Guo Z, Han Y. Cubic multi-ions-doped Na2TiO3 nanorod-like coatings: Structure-stable, highly efficient platform for ions-exchanged release to immunomodulatory promotion on vascularized bone apposition. Bioact Mater 2022; 18:72-90. [PMID: 35387170 PMCID: PMC8961311 DOI: 10.1016/j.bioactmat.2022.01.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/22/2022] [Indexed: 12/11/2022] Open
Abstract
The dissolution-derived release of bioactive ions from ceramic coatings on metallic implants, despite improving osseointegration, renders a concern on the interfacial breakdown of the metal/coating/bone system during long-term service. Consequently, persistent efforts to seek alternative strategies instead of dissolution-derived activation are pressingly carrying out. Inspired by bone mineral containing ions as Ca2+, Mg2+, Sr2+ and Zn2+, here we hydrothermally grew the quadruple ions co-doped Na2TiO3 nanorod-like coatings. The co-doped ions partially substitute Na+ in Na2TiO3, and can be efficiently released from cubic lattice via exchange with Na+ in fluid rather than dissolution, endowing the coatings superior long-term stability of structure and bond strength. Regulated by the coatings-conditioned extracellular ions, TLR4-NFκB signalling is enhanced to act primarily in macrophages (MΦs) at 6 h while CaSR-PI3K-Akt1 signalling is potentiated to act predominately since 24 h, triggering MΦs in a M1 response early and then in a M2 response to sequentially secrete diverse cytokines. Acting on endothelial and mesenchymal stem cells with the released ions and cytokines, the immunomodulatory coatings greatly promote Type-H (CD31hiEmcnhi) angiogenesis and osteogenesis in vitro and in vivo, providing new insights into orchestrating insoluble ceramics-coated implants for early vascularized osseointegration in combination with long-term fixation to bone. Co-doped Ca2+, Mg2+, Sr2+ and Zn2+ in Na2TiO3 efficiently release via ion exchange. QID elevates extracellular concentrations of the ions and MΦ intracellular [Ca2+]. Co-doped Na2TiO3 coatings promote immunomodulatory apposition of vascularized bone.
Collapse
Affiliation(s)
- Dongmei Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Bo Li
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Meng Yu
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
| | - Shuo Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, Shaanxi, China
- Corresponding author.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, Shaanxi, China
- Corresponding author.
| |
Collapse
|
42
|
Ortega MA, Sáez MA, Fraile-Martínez O, Álvarez-Mon MA, García-Montero C, Guijarro LG, Asúnsolo Á, Álvarez-Mon M, Bujan J, García-Honduvilla N, De León-Luis JA, Bravo C. Overexpression of glycolysis markers in placental tissue of pregnant women with chronic venous disease: a histological study. Int J Med Sci 2022; 19:186-194. [PMID: 34975312 PMCID: PMC8692115 DOI: 10.7150/ijms.65419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/24/2021] [Indexed: 12/15/2022] Open
Abstract
Chronic Venous Disease (CVD) refers to a wide variety of venous disorders being the varicose veins its most common manifestation. It is well-established the link between pregnancy and the risk of suffering CVD, due to hormonal or haematological factors, especially during the third trimester. In the same manner, previous studies have demonstrated the detrimental effect of this condition in the placental tissue of pregnant women, including in the normal physiology and the metabolomic profile of this organ. In this context, the aim of this study was to evaluate the glucose homeostasis in the placental tissue of women presenting CVD. Through immunohistochemistry, we studied the protein expression of the glucose transporter 1 (GLUT-1), Phosphoglycerate kinase 1 (PGK1), aldolase (ALD), Glyceraldehyde-3-phosphate dehydrogenase (GA3PDH) and lactate dehydrogenase (LDH). Our results have reported a significative increase in the expression of GLUT-1, PGK1, ALD, GA3PDH and the isoenzyme LDHA in placentas of women with CVD. This work has proven for the first-time an altered glucose metabolism in the placental tissue of women affected by CVD, what may aid to understand the pathophysiological mechanisms of this condition in more distant organs such as placenta. Furthermore, our research also supports the basis for further studies in the metabolic phenotyping of the human placenta due to CVD, which may be considered during the late pregnancy in these women.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, Alcalá de Henares, Spain
| | - Miguel A Sáez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence-UAH Madrid, Spain
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Miguel A Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Luis G Guijarro
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Unit of Biochemistry and Molecular Biology (CIBEREHD), Department of System Biology, University of Alcalá, 28801 Alcalá de Henares, Spain
| | - Ángel Asúnsolo
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology and Oncology Service, University Hospital Príncipe de Asturias, CIBEREHD, Alcalá de Henares, Madrid, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, Madrid, Spain
- Ramón y Cajal Institute of Healthcare Research (IRYCIS), Madrid, Spain
| | - Juan A De León-Luis
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid 28009, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| | - Coral Bravo
- Department of Public and Maternal and Child Health, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
- Department of Obstetrics and Gynecology, University Hospital Gregorio Marañón, Madrid 28009, Spain
- Health Research Institute Gregorio Marañón, 28009 Madrid, Spain
| |
Collapse
|
43
|
Sasagawa T, Nagamatsu T, Yanagisawa M, Fujii T, Shibuya M. Hypoxia-inducible factor-1β is essential for upregulation of the hypoxia-induced FLT1 gene in placental trophoblasts. Mol Hum Reprod 2021; 27:6402014. [PMID: 34665260 PMCID: PMC8633902 DOI: 10.1093/molehr/gaab065] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/17/2021] [Indexed: 12/27/2022] Open
Abstract
Placental hypoxia and increased levels of maternal blood anti-angiogenic protein, soluble fms-like tyrosine kinase-1 (sFLT1), are associated with the pathogenesis of pre-eclampsia. We have demonstrated that hypoxia-inducible factor (HIF)-2α mediates the upregulation of the hypoxia-induced FLT1 gene in trophoblasts and their cell lines. Here, we investigated the involvement of HIF-1β, which acts as a dimerization partner for HIF-α, in the upregulation of the FLT1 gene via hypoxia. We confirmed the interactions between HIF-1β and HIF-2α in the nuclei of BeWo, JAR and JEG-3 cells under hypoxia via co-immunoprecipitation. We found that hypoxia-induced upregulation of the FLT1 gene in BeWo cells and secretion of sFLT1 in human primary trophoblasts were significantly reduced by siRNAs targeting HIF-1β. Moreover, the upregulation of the FLT1 gene in BeWo cells induced by dimethyloxaloylglycine (DMOG) was also inhibited by silencing either HIF-2α or HIF-1β mRNA. It was recently shown that DNA demethylation increases both basal and hypoxia-induced expression levels of the FLT1 gene in three trophoblast-derived cell lines. In the demethylated BeWo cells, siRNAs targeting HIF-2α and HIF-1β suppressed the further increase in the expression levels of the FLT1 gene due to hypoxia or treatment with DMOG. However, luciferase reporter assays and bisulfite sequencing revealed that a hypoxia response element (-966 to -962) of the FLT1 gene is not involved in hypoxia or DMOG-induced upregulation of the FLT1 gene. These findings suggest that HIF-1β is essential for the elevated production of sFLT1 in the hypoxic trophoblasts and that the HIF-2α/HIF-1β complex may be a crucial therapeutic target for pre-eclampsia.
Collapse
Affiliation(s)
- Tadashi Sasagawa
- Institute of Physiology and Medicine, Jobu University, Gunma 370-1393, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Manami Yanagisawa
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, The University of Tokyo, Tokyo 113-8655, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Gunma 370-1393, Japan
| |
Collapse
|
44
|
Dijmărescu AL, Boldeanu L, Radu M, Rotaru I, Siminel MA, Manolea MM, Vrabie SC, Novac MB, Boldeanu MV, Tănase F. The potential value of diagnostic and predictive serum biomarkers for preeclampsia. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:981-989. [PMID: 35673817 PMCID: PMC9289696 DOI: 10.47162/rjme.62.4.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Preeclampsia (PE), one of the classes of hypertensive pregnancy disorders, is one of the three causes of maternal morbidity and mortality worldwide. The angiogenic and anti-angiogenic factors are useful markers in predicting and diagnosing PE. AIM This study aims to detect and measure the serum level of some biomarkers [hypoxia-inducible factor-1 subunit alpha (HIF-1A), vascular endothelial growth factor (VEGF), interferon-gamma-inducible protein of 10 kDa (IP-10), matrix metalloproteinase-13 (MMP-13)] in patients with PE and their correlation with the severity of the disease, to find a good predictor for PE. PATIENTS, MATERIALS AND METHODS This prospective study aims to monitor 48 pregnant women who address obstetric consultation and who present risk factors for PE, and a control group with characteristics similar to the study group. Patients were divided into three groups: Group I (n=15) including normal pregnant (NP) women with blood pressure <140∕90 mmHg, without proteinuria, Group II (n=18) including patients with mild PE (MildPE), Group III (n=15) including patients with severe PE (SeverePE). The analysis of serum biomarkers was based on a quantitative sandwich enzyme-linked immunosorbent assay (ELISA), according to the manufacturer's instructions. RESULTS In our study, we found that all biomarkers investigated have higher concentrations in the serum of patients with SeverePE and MildPE than those in the control subjects (Group I, NP), the concentrations were increasing along with the disease activity. The means concentrations of HIF-1A, VEGF, IP-10, MMP-13, better correlated with indices in SeverePE group than in MildPE group. We found that VEGF was the biomarker that best correlates with indices that assess the severity of PE. The best separation of patients with SeverePE from those with MildPE can be done with the help of MMP-13 (82% accuracy), followed by VEGF (80.40% accuracy) and the least good detection being done by dosing IP-10. CONCLUSIONS We can say that, due to high specificity diagnostic accuracy, determination of serum concentrations of MMP-13 and VEGF, could be useful in the diagnosis and distinguishing of patients with SeverePE and may prove useful in the monitoring of the disease course.
Collapse
Affiliation(s)
- Anda Lorena Dijmărescu
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
| | - Lidia Boldeanu
- Department of Microbiology, University of Medicine and Pharmacy of Craiova, Romania
| | - Mirela Radu
- Department of Emergency Medicine and First Aid, University of Medicine and Pharmacy of Craiova, Romania
| | - Ionela Rotaru
- Department of Hematology, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Maria Magdalena Manolea
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
| | - Sidonia Cătălina Vrabie
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
| | - Marius Bogdan Novac
- Department of Anesthesiology and Intensive Care, University of Medicine and Pharmacy of Craiova, Romania
| | - Mihail Virgil Boldeanu
- Department of Immunology, University of Medicine and Pharmacy of Craiova, Romania
- Medico Science SRL – Stem Cell Bank Unit, Craiova, Romania
| | - Florentina Tănase
- Department of Obstetrics and Gynecology, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
45
|
Huang JY, Cai S, Huang Z, Tint MT, Yuan WL, Aris IM, Godfrey KM, Karnani N, Lee YS, Chan JKY, Chong YS, Eriksson JG, Chan SY. Analyses of child cardiometabolic phenotype following assisted reproductive technologies using a pragmatic trial emulation approach. Nat Commun 2021; 12:5613. [PMID: 34556649 PMCID: PMC8460697 DOI: 10.1038/s41467-021-25899-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/06/2021] [Indexed: 11/08/2022] Open
Abstract
Assisted reproductive technologies (ART) are increasingly used, however little is known about the long-term health of ART-conceived offspring. Weak selection of comparison groups and poorly characterized mechanisms impede current understanding. In a prospective cohort (Growing Up in Singapore Towards healthy Outcomes; GUSTO; Clinical Trials ID: NCT01174875) including 83 ART-conceived and 1095 spontaneously-conceived singletons, we estimate effects of ART on anthropometry, blood pressure, serum metabolic biomarkers, and cord tissue DNA methylation by emulating a pragmatic trial supported by machine learning-based estimators. We find ART-conceived children to be shorter (-0.5 SD [95% CI: -0.7, -0.2]), lighter (-0.6 SD [-0.9, -0.3]) and have lower skinfold thicknesses (e.g. -14% [-24%, -3%] suprailiac), and blood pressure (-3 mmHg [-6, -0.5] systolic) at 6-6.5 years, with no strong differences in metabolic biomarkers. Differences are not explained by parental anthropometry or comorbidities, polygenic risk score, breastfeeding, or illnesses. Our simulations demonstrate ART is strongly associated with lower NECAB3 DNA methylation, with negative control analyses suggesting these estimates are unbiased. However, methylation changes do not appear to mediate observed differences in child phenotype.
Collapse
Affiliation(s)
- Jonathan Yinhao Huang
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore.
| | - Shirong Cai
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhongwei Huang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Mya Thway Tint
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wen Lun Yuan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Université de Paris, CRESS, Inserm, Paris, France
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton, Southampton, UK
| | - Neerja Karnani
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
| | - Yung Seng Lee
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore, Singapore
- Academic Clinical Program in Obstetrics and Gynaecology, Duke-NUS Medical School, Singapore, Singapore
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Johan Gunnar Eriksson
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- University of Helsinki, Department of General Practise and Primary Health Care, Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology, and Research (A*STAR), Singapore, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
46
|
Hu R, Wang Q, Jia Y, Zhang Y, Wu B, Tian S, Wang Y, Wang Y, Ma W. Hypoxia-induced DEC1 mediates trophoblast cell proliferation and migration via HIF1α signaling pathway. Tissue Cell 2021; 73:101616. [PMID: 34481230 DOI: 10.1016/j.tice.2021.101616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/28/2022]
Abstract
In early pregnancy, hypoxia is a typical extrinsic factor that regulates EVT functions including proliferation, migration and invasion which are essential for a successful pregnancy. Human differentiated embryonic chondrocyte-expressed gene 1 (DEC1), a hypoxia-regulated gene, has been reported to be overexpressed in several types of cancers. Given that the placenta and the cancer share several similarities with respect to their capacity to proliferate and invade adjacent tissues, we focused on the role of DEC1 on trophoblast function in a physiologically hypoxic environment, which may be associated with unexplained recurrent spontaneous abortion (URSA).In our study, we measured the expression of HIF-1α and DEC1 in first-trimester villi through real-time-PCR (RT-PCR) and immunohistochemical analysis. in vitro, DEC1 expression was downregulated in trophoblast cells via DEC1-specific shRNA plasmid transfection. The expression of DEC1 and HIF-1α was detected via western blotting and RT-PCR analysis. The proliferation and migration of HTR-8/SVneo cells were assayed using CCK-8 and Transwell migration assays, respectively.Our results indicated that the expression of DEC1 was significantly reduced in villi of URSA compared to that in normal pregnant women. in vitro, hypoxia induced the expression of HIF-1ɑ and DEC1 and upregulated proliferation and migration of the HTR-8/SVneo cells. Knockdown of DEC1 inhibited proliferation and migration of HTR-8/SVneo cells exposure to hypoxia. Furthermore, inhibition of HIF1α expression resulted in a significant decrease in DEC1. These findings illustrate that hypoxia-induced DEC1 expression promotes trophoblast cell proliferation and migration through the HIF1α signaling pathway, which plays an important role during placentation.
Collapse
Affiliation(s)
- Rui Hu
- Center for Reproductive Medicine, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Qi Wang
- Department of Pharmacy, Jinan 5th People' Hospital, Jinan, Shandong, China
| | - Yanfei Jia
- Center for Basic Medical Research, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yingchun Zhang
- Center for Reproductive Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Bin Wu
- Center for Reproductive Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Shan Tian
- Center for Reproductive Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yujie Wang
- Center for Reproductive Medicine, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Yunshan Wang
- Center for Basic Medical Research, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, China.
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
47
|
Oda H, Nagamatsu T, Cabral H, Miyazaki T, Iriyama T, Kawana K, Fujii T, Osuga Y. Thrombomodulin promotes placental function by up-regulating placental growth factor via inhibition of high-mobility-group box 1 and hypoxia-inducible factor 1α. Placenta 2021; 111:1-9. [PMID: 34126415 DOI: 10.1016/j.placenta.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Pregnancy is a state of maternal systemic stress due to inflammation and hypoxic reactions originating from the utero-placental unit. Maternal tolerance to these stresses is a key for successful outcomes. Thrombomodulin (TM), a glycoprotein expressed on cell surface, regulates local inflammatory pathways by inhibiting proinflammatory factor, High-mobility-group box1(HMGB1). Although TM is highly expressed on placental trophoblast cells, biological activities of TM during pregnancy remains unclear. Here, we hypothesized that TM may contribute to the maternal stress coping mechanisms. METHODS By administering recombinant-TM (rTM) to the pregnant mice, we investigated the influence of TM functions on the placenta and fetal growth. We further examined its effect on trophoblast cells, focusing on HMGB1-regulated inflammatory signalings and hypoxia-inducible factor 1α (HIF1α)-dependent regulation of placental angiogenic factors. RESULTS Administration of rTM increased fetal weight and fetal/placental-weight ratios, which implies the improvement of placental function. These features were accompanied by maternal serum HMGB1 reduction and suppressed placental proinflammatory cytokine, IL-6 and TNF-α, expressions. In addition, rTM reduced HIF1α protein accumulation and enhanced placental growth factor (PlGF) expression in the placenta, that explains the improvement of maternal features. DISCUSSION Our study revealed the supportive effect of TM on the placental function in mice. By inhibiting HMGB1, rTM suppresses proinflammatory cytokines, downregulates HIF1α and induces PlFG expression in the placental tissue. Our results have elucidated the novel aspects of TM; the regulation of placental inflammatory cytokines and angiogenic factors, during pregnancy. These findings may reveal potential therapeutic opportunities for the management of maternal complications.
Collapse
Affiliation(s)
- Hiroko Oda
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takeshi Nagamatsu
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takuya Miyazaki
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takayuki Iriyama
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kei Kawana
- Department of Obstetrics and Gynecology, Faculty of Medicine, Nihon University, Tokyo, Japan
| | - Tomoyuki Fujii
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
48
|
Cannabidiol disrupts apoptosis, autophagy and invasion processes of placental trophoblasts. Arch Toxicol 2021; 95:3393-3406. [PMID: 34302491 DOI: 10.1007/s00204-021-03122-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/15/2021] [Indexed: 01/18/2023]
Abstract
Cannabidiol (CBD) is a constituent of Cannabis sativa without psychotropic activity, whose medical benefits have been recognised. However, little is known about the potential toxic effects of CBD on reproductive health. Placental development involves tightly controlled processes of cell proliferation, differentiation, apoptosis, autophagy and migration/invasion of trophoblast cells. Cannabis use by pregnant women has been increasing, mainly for the relief of nausea associated with the first trimester, which raises great concern. Regarding the crucial role of cytotrophoblast cells (CTs) and extravillous trophoblasts (EVTs) in placentation, the effects of CBD (1-10 µM) were studied, using in vitro model systems BeWo and HTR-8/SVneo cell lines, respectively. CBD causes cell viability loss in a dose-dependent manner, disrupts cell cycle progression and induces apoptosis through the mitochondrial pathway, on both cell models. Moreover, CBD induces autophagy only in HTR-8/SVneo cells, being this process a promoter of apoptosis. Hypoxia-responsive genes HIF1A and SPP1 were also increased in CBD-treated HTR-8/SVneo cells suggesting a role for HIF-1α in the apoptotic and autophagic processes. In addition, CBD was able to decrease HTR-8/SVneo cell migration. Therefore, CBD interferes with trophoblast turnover and placental remodelling, which can have a considerable impact on pregnancy outcome. Thus, from an in vitro perspective our study adds new evidence for the potential negative impact of cannabis use by pregnant women.
Collapse
|
49
|
Waker CA, Kaufman MR, Brown TL. Current State of Preeclampsia Mouse Models: Approaches, Relevance, and Standardization. Front Physiol 2021; 12:681632. [PMID: 34276401 PMCID: PMC8284253 DOI: 10.3389/fphys.2021.681632] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022] Open
Abstract
Preeclampsia (PE) is a multisystemic, pregnancy-specific disorder and a leading cause of maternal and fetal death. PE is also associated with an increased risk for chronic morbidities later in life for mother and offspring. Abnormal placentation or placental function has been well-established as central to the genesis of PE; yet much remains to be determined about the factors involved in the development of this condition. Despite decades of investigation and many clinical trials, the only definitive treatment is parturition. To better understand the condition and identify potential targets preclinically, many approaches to simulate PE in mice have been developed and include mixed mouse strain crosses, genetic overexpression and knockout, exogenous agent administration, surgical manipulation, systemic adenoviral infection, and trophoblast-specific gene transfer. These models have been useful to investigate how biological perturbations identified in human PE are involved in the generation of PE-like symptoms and have improved the understanding of the molecular mechanisms underpinning the human condition. However, these approaches were characterized by a wide variety of physiological endpoints, which can make it difficult to compare effects across models and many of these approaches have aspects that lack physiological relevance to this human disorder and may interfere with therapeutic development. This report provides a comprehensive review of mouse models that exhibit PE-like symptoms and a proposed standardization of physiological characteristics for analysis in murine models of PE.
Collapse
Affiliation(s)
- Christopher A Waker
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Melissa R Kaufman
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| | - Thomas L Brown
- Department of Neuroscience, Cell Biology, and Physiology, Boonshoft School of Medicine, Wright State University, Dayton, OH, United States
| |
Collapse
|
50
|
Prater M, Hamilton RS, Wa Yung H, Sharkey AM, Robson P, Abd Hamid NE, Jauniaux E, Charnock-Jones DS, Burton GJ, Cindrova-Davies T. RNA-Seq reveals changes in human placental metabolism, transport and endocrinology across the first-second trimester transition. Biol Open 2021; 10:268993. [PMID: 34100896 PMCID: PMC8214423 DOI: 10.1242/bio.058222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
The human placenta is exposed to major environmental changes towards the end of the first trimester associated with full onset of the maternal arterial placental circulation. Changes include a switch from histotrophic to hemotrophic nutrition, and a threefold rise in the intraplacental oxygen concentration. We evaluated their impact on trophoblast development and function using RNA-sequencing (RNA-Seq) and DNA-methylation analyses performed on the same chorionic villous samples at 7-8 (n=8) and 13-14 (n=6) weeks of gestation. Reads were adjusted for fetal sex. Most DEGs were associated with protein processing in the endoplasmic reticulum (ER), hormone secretion, transport, extracellular matrix, vasculogenesis, and reactive oxygen species metabolism. Transcripts higher in the first trimester were associated with synthesis and ER processing of peptide hormones, and glycolytic pathways. Transcripts encoding proteins mediating transport of oxygen, lipids, protein, glucose, and ions were significantly increased in the second trimester. The motifs of CBX3 and BCL6 were significantly overrepresented, indicating the involvement of these transcription factor networks in the regulation of trophoblast migration, proliferation and fusion. These findings are consistent with a high level of cell proliferation and hormone secretion by the early placenta to secure implantation in a physiological low-oxygen environment.
Collapse
Affiliation(s)
- Malwina Prater
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Russell S Hamilton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | - Hong Wa Yung
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Andrew M Sharkey
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK
| | - Paul Robson
- The Jackson Laboratory, The JAX Center for Genetics of Fertility and Reproduction, 10 Discovery Drive, Farmington, CT 06032, USA.,Genome Institute of Singapore, Singapore 138672, Singapore
| | | | - Eric Jauniaux
- Department of Obstetrics and Gynaecology, EGA Institute for Women's Health, Faculty of Population Health Sciences, University College London, London, WC1E 6BT, UK
| | - D Stephen Charnock-Jones
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK.,Department of Obstetrics and Gynaecology, University of Cambridge, The Rosie Hospital, Cambridge, CB2 0SW, UK.,National Institute for Health Research, Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|