1
|
Spence-Jones HC, Pein CM, Shama LNS. Intergenerational effects of ocean temperature variation: Early life benefits are short-lived in threespine stickleback. PLoS One 2024; 19:e0307030. [PMID: 39093894 PMCID: PMC11296643 DOI: 10.1371/journal.pone.0307030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Current climate change models predict an increase in temperature variability and extreme events such as heatwaves, and organisms need to cope with consequent changes to environmental variation. Non-genetic inheritance mechanisms can enable parental generations to prime their offspring's abilities to acclimate to environmental change-but they may also be deleterious. When parents are exposed to predictable environments, intergenerational plasticity can lead to better offspring trait performance in matching environments. Alternatively, parents exposed to variable or unpredictable environments may use plastic bet-hedging strategies to adjust the phenotypic variance among offspring. Here, we used a model species, the threespine stickleback (Gasterosteus aculeatus), to test whether putatively adaptive intergenerational effects can occur in response to shifts in environmental variation as well as to shifts in environmental mean, and whether parents employ plastic bet-hedging strategies in response to increasing environmental variation. We used a full-factorial, split-clutch experiment with parents and offspring exposed to three temperature regimes: constant, natural variation, and increased variation. We show that within-generation exposure to increased temperature variation reduces growth of offspring, but having parents that were exposed to natural temperature variation during gametogenesis may offset some early-life negative growth effects. However, these mitigating intergenerational effects do not appear to persist later in life. We found no indication that stickleback mothers plastically altered offspring phenotypic variance (egg size or clutch size) in response to temperature variation. However, lower inter-individual variance of juvenile fish morphology in offspring of increased variation parents may imply the presence of conservative bet-hedging strategies in natural populations. Overall, in our experiment, parental exposure to temperature variation had limited effects on offspring fitness-related traits. Natural levels of environmental variation promoted a potentially adaptive intergenerational response in early life development, but under more challenging conditions associated with increased environmental variation, the effect was lost.
Collapse
Affiliation(s)
- Helen Clare Spence-Jones
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| | - Carla M. Pein
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| | - Lisa N. S. Shama
- Coastal Ecology Section, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, List, Germany
| |
Collapse
|
2
|
Iribarne J, Brachetta V, Kittlein M, Schleich C, Zenuto R. Effects of acute maternal stress induced by predator cues on spatial learning and memory of offspring in the subterranean rodent Ctenomys talarum. Anim Cogn 2023; 26:1997-2008. [PMID: 37632596 DOI: 10.1007/s10071-023-01822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
One of the main selection pressures to which animals are exposed in nature is predation, which affects a wide variety of biological traits. When the mother experiences this stressor during pregnancy and/or lactation, behavioral and physiological responses may be triggered in the offspring as well. Thus, in order to broaden and deepen knowledge on the transgenerational effects of predation stress, we evaluated how maternal stress experienced during pregnancy and/or lactation affects the spatial abilities of progeny at the onset of adulthood in the subterranean rodent Ctenomys talarum. The results showed that, contrary to what was observed in other rodent species, maternal exposure to predator cues during pregnancy and lactation did not negatively affect the spatial abilities of the offspring, even registering some minor positive effects. Concomitantly, no effects of predatory cues on physiological parameters associated with stress were observed in the progeny. This difference in results between the present study and previous works on maternal stress highlights the importance of considering the species to be evaluated (strain, age and origin-wild or captive-) and the type of stressor used (artificial or natural, intensity of exposure) in the evaluation of the possible transgenerational effects of maternal stress.
Collapse
Affiliation(s)
- J Iribarne
- Grupo de Ecologia Fisiologica y del Comportamiento, Departamento Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina.
| | - V Brachetta
- Grupo de Ecologia Fisiologica y del Comportamiento, Departamento Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - M Kittlein
- Grupo de Ecologia y Genetica de Poblacion de Mamiferos, Departamento Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - C Schleich
- Grupo de Ecologia Fisiologica y del Comportamiento, Departamento Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - R Zenuto
- Grupo de Ecologia Fisiologica y del Comportamiento, Departamento Biologia, FCEyN, Instituto de Investigaciones Marinas y Costeras (IIMyC) CONICET - Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
3
|
MacLeod KJ, English S, Ruuskanen SK, Taborsky B. Stress in the social context: a behavioural and eco-evolutionary perspective. J Exp Biol 2023; 226:jeb245829. [PMID: 37529973 PMCID: PMC10445731 DOI: 10.1242/jeb.245829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The social environment is one of the primary sources of challenging stimuli that can induce a stress response in animals. It comprises both short-term and stable interactions among conspecifics (including unrelated individuals, mates, potential mates and kin). Social stress is of unique interest in the field of stress research because (1) the social domain is arguably the most complex and fluctuating component of an animal's environment; (2) stress is socially transmissible; and (3) stress can be buffered by social partners. Thus, social interactions can be both the cause and cure of stress. Here, we review the history of social stress research, and discuss social stressors and their effects on organisms across early life and adulthood. We also consider cross-generational effects. We discuss the physiological mechanisms underpinning social stressors and stress responses, as well as the potential adaptive value of responses to social stressors. Finally, we identify outstanding challenges in social stress research, and propose a framework for addressing these in future work.
Collapse
Affiliation(s)
| | - Sinead English
- School of Biological Sciences, University of Bristol, Bristol, BS8 1TQ, UK
| | - Suvi K. Ruuskanen
- Department of Biological and Environmental Science, University of Jyväskylä, Survontie 9 C, FI-40014, Finland
- Department of Biology, University of Turku, Turku, FI-20014, Finland
| | - Barbara Taborsky
- Division of Behavioural Biology, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Institute for Advanced Study, 14193 Berlin, Germany
| |
Collapse
|
4
|
Magierecka A, Cooper B, Sloman KA, Metcalfe NB. Unpredictability of maternal environment shapes offspring behaviour without affecting stress-induced cortisol in an annual vertebrate. Horm Behav 2023; 154:105396. [PMID: 37399780 DOI: 10.1016/j.yhbeh.2023.105396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 05/23/2023] [Accepted: 06/19/2023] [Indexed: 07/05/2023]
Abstract
Exposure of females to stressful conditions during pregnancy or oogenesis has a profound effect on the phenotype of their offspring. For example, offspring behavioural phenotype may show altered patterns in terms of the consistency of behavioural patterns and their average level of performance. Maternal stress can also affect the development of the stress axis in offspring leading to alterations in their physiological stress response. However, the majority of evidence comes from studies utilising acute stressors or exogenous glucocorticoids, and little is known about the effect of chronic maternal stress, particularly in the context of stress lasting throughout entire reproductive lifespan. To bridge this knowledge gap, we exposed female sticklebacks to stressful and unpredictable environmental conditions throughout the breeding season. We quantified the activity, sheltering and anxiety-like behaviour of offspring from three successive clutches of these females, and calculated Intra-class Correlation Coefficients for these behaviours in siblings and half-siblings. We also exposed offspring to an acute stressor and measured their peak cortisol levels. An unpredictable maternal environment had no modifying effect on inter-clutch acute stress responsivity, but resulted in diversification of offspring behaviour, indicated by an increased between-individual variability within families. This may represent a bet-hedging strategy, whereby females produce offspring differing in behavioural phenotype, to increase the chance that some of these offspring will be better at coping with the anticipated conditions.
Collapse
Affiliation(s)
- Agnieszka Magierecka
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK.
| | - Ben Cooper
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| | - Katherine A Sloman
- Institute for Biomedical and Environmental Health Research, University of the West of Scotland, Lanarkshire, UK
| | - Neil B Metcalfe
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, UK
| |
Collapse
|
5
|
Bhattacharya S, MacCallum PE, Dayma M, McGrath-Janes A, King B, Dawson L, Bambico FR, Berry MD, Yuan Q, Martin GM, Preisser EL, Blundell JJ. A short pre-conception bout of predation risk affects both children and grandchildren. Sci Rep 2023; 13:10886. [PMID: 37407623 PMCID: PMC10322924 DOI: 10.1038/s41598-023-37455-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/22/2023] [Indexed: 07/07/2023] Open
Abstract
Traumatic events that affect physiology and behavior in the current generation may also impact future generations. We demonstrate that an ecologically realistic degree of predation risk prior to conception causes lasting changes in the first filial (F1) and second filial (F2) generations. We exposed male and female mice to a live rat (predator stress) or control (non-predator) condition for 5 min. Ten days later, stressed males and females were bred together as were control males and females. Adult F1 offspring from preconception-stressed parents responded to a mild stressor with more anxiety-like behavior and hyperarousal than offspring from control parents. Exposing these F1 offspring to the mild stressor increased neuronal activity (cFOS) in the hippocampus and altered glucocorticoid system function peripherally (plasma corticosterone levels). Even without the mild stressor, F1 offspring from preconception-stressed parents still exhibited more anxiety-like behaviors than controls. Cross-fostering studies confirmed that preconception stress, not maternal social environment, determined offspring behavioral phenotype. The effects of preconception parental stress were also unexpectedly persistent and produced similar behavioral phenotypes in the F2 offspring. Our data illustrate that a surprisingly small amount of preconception predator stress alters the brain, physiology, and behavior of future generations. A better understanding of the 'long shadow' cast by fearful events is critical for understanding the adaptive costs and benefits of transgenerational plasticity. It also suggests the intriguing possibility that similar risk-induced changes are the rule rather than the exception in free-living organisms, and that such multigenerational impacts are as ubiquitous as they are cryptic.
Collapse
Affiliation(s)
- Sriya Bhattacharya
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
- Northwestern Polytechnic, Grande Prairie, AB, T8V 4C4, Canada
| | - Phillip E MacCallum
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Mrunal Dayma
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Andrea McGrath-Janes
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Brianna King
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Laura Dawson
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Francis R Bambico
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Mark D Berry
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Qi Yuan
- Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Gerard M Martin
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Jacqueline J Blundell
- Department of Psychology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
6
|
Angove J, Willson NL, Barekatain R, Rosenzweig D, Forder R. In ovo corticosterone exposure does not influence yolk steroid hormone relative abundance or skeletal muscle development in the embryonic chicken. Poult Sci 2023; 102:102735. [PMID: 37209653 DOI: 10.1016/j.psj.2023.102735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/22/2023] Open
Abstract
In ovo corticosterone (CORT) exposure reportedly reduces growth and alters body composition traits in meat-type chickens. However, the mechanisms governing alterations in growth and body composition remain unclear but could involve myogenic stem cell commitment, and/or the presence of yolk steroid hormones. This study investigated whether in ovo CORT exposure influenced yolk steroid hormone content, as well as embryonic myogenic development in meat-type chickens. Fertile eggs were randomly divided at embryonic day (ED) 11 and administered either a control (CON; 100 µL of 10 mM PBS) or CORT solution (100 µL of 10 mM PBS containing 1 µg CORT) into the chorioallantoic membrane. Yolk samples were collected at ED 0 and ED 5. At ED 15 and hatch, embryos were humanely killed, and yolk and breast muscle (BM) samples were collected. The relative abundance of 15 steroid hormones, along with total lipid content was measured in yolk samples collected at ED 0, ED 5, ED 15, and ED 21. Muscle fiber number, cross-sectional area, and fascicle area occupied by muscle fibers were measured in BM samples collected at hatch. Relative expression of MyoD, MyoG, Pax7, PPARγ, and CEBP/β, and the sex steroid receptors were measured in BM samples collected at hatch. The administration of CORT had a limited effect on yolk steroid hormones. In ovo CORT significantly reduced fascicle area occupied by muscle fibers and CEBP/β expression was increased in CORT exposed birds at hatch. In addition, the quantity of yolk lipid was significantly reduced in CORT-treated birds. In conclusion, in ovo exposure to CORT does not appear to influence early muscle development through yolk steroid hormones in embryonic meat-type chickens however, the results provide a comprehensive analysis of the composition of yolk steroid hormones in ovo at different developmental time points. The findings may suggest increased mesenchymal stem cell commitment to the adipogenic lineage during differentiation and requires further investigation.
Collapse
Affiliation(s)
- J Angove
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia
| | - N-L Willson
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia
| | - R Barekatain
- South Australian Research and Development Institute, Roseworthy, SA, Australia
| | - D Rosenzweig
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia
| | - R Forder
- School of Animal and Veterinary Sciences, the University of Adelaide, Roseworthy, SA, Australia.
| |
Collapse
|
7
|
Dantzer B. Frank Beach Award Winner: The centrality of the hypothalamic-pituitary-adrenal axis in dealing with environmental change across temporal scales. Horm Behav 2023; 150:105311. [PMID: 36707334 DOI: 10.1016/j.yhbeh.2023.105311] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/02/2023] [Accepted: 01/06/2023] [Indexed: 01/26/2023]
Abstract
Understanding if and how individuals and populations cope with environmental change is an enduring question in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two evolutionary strategies of coping with environmental change may be particularly important in rapidly changing environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to match their phenotypes to the expected environment if there is an accurate cue predicting the selective environment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1-3 generations) before discussing how the implications of GCs on phenotype integration may depend upon the timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental questions in evolutionary ecology.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, MI 48109 Ann Arbor, MI, USA; Department of Ecology and Evolutionary Biology, University of Michigan, MI 48109, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Ziegler TE, Tardif SD, Ross CN, Snowdon CT, Kapoor A, Rutherford JN. Timing of the luteal-placental shift is delayed with additional fetuses in litter-bearing callitrichid monkeys, Saguinus oedipus and Callithrix jacchus. Gen Comp Endocrinol 2023; 333:114195. [PMID: 36563863 PMCID: PMC10089085 DOI: 10.1016/j.ygcen.2022.114195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 11/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The luteal-placental shift is an important milestone of mammalian pregnancy signifying when endocrine control of pregnancy shifts from the corpus luteum of the ovary to the placenta. The corpus luteum is maintained by chorionic gonadotropin (CG). Upon sufficient placental maturation, CG production wanes, the corpus luteum involutes, and control is shifted to the placenta, one consequence of which is a midgestational rise in glucocorticoid production, especially cortisol and cortisone, by both mother and fetus. Glucocorticoids are involved in initiating parturition, prenatal programming of offspring phenotype, and maturing fetal organs. Limited evidence from human pregnancy suggests that the timing of this shift is delayed in twin pregnancies, but little is known about the timing of the luteal-placental shift in litter-bearing monkeys from the primate family Callitrichidae. Here we provide evidence from cotton-top tamarins (Saguinus oedipus) and common marmosets (Callithrix jacchus) of longer duration of elevated CG associated with multiple infant births compared to single births. Urinary profiles from cotton-top tamarins demonstrate that the decline of the extended elevation of CG precedes the onset of the midpregnancy sustained rise in glucocorticoids; this shift occurs later with an increase from one to two fetuses carried to term. In the common marmoset, the onset of the sustained rise of glucocorticoids in maternal urine is also delayed with an increase in infant number. Total urinary glucocorticoid levels during the last half of gestation increase monthly but do not differ by infant number. The significant delay in the luteal-placental shift suggests a longer period of placental maturation is needed to support a greater number of fetuses.
Collapse
Affiliation(s)
- Toni E Ziegler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53715, United States
| | - Suzette D Tardif
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245, United States
| | - Corinna N Ross
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX 78245, United States
| | - Charles T Snowdon
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Amita Kapoor
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, 53715, United States
| | - Julienne N Rutherford
- Division of Biobehavioral Health Sciences, College of Nursing, University of Arizona, Tucson, AZ 85721, United States.
| |
Collapse
|
9
|
Palacios MG, Bronikowski AM, Amer A, Gangloff EJ. Transgenerational effects of maternal corticosterone across early life in a viviparous snake. Gen Comp Endocrinol 2023; 331:114162. [PMID: 36356645 DOI: 10.1016/j.ygcen.2022.114162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Glucocorticoids (GCs) are central mediators of vertebrate responses to intrinsic and extrinsic stimuli. Among the sources of variation in circulating GCs are transgenerational effects mediated by mothers. Here we studied potential maternal effects mediated by GCs on offspring phenotype in a live-bearing reptile, the western terrestrial garter snake (Thamnophis elegans). We evaluated the association between baseline corticosterone (CORT) levels during gestation (i.e., preparturition) in field-captured mothers and 1) reproductive success and offspring sex ratios, 2) birth phenotypic traits of offspring born under common-garden laboratory conditions, and 3) neonate (age 3 months) and juvenile (age 12 months) traits of offspring raised under two thermal regimes ('warm' and 'cool') during their first year of life. Reproductive success and offspring sex ratios were not associated with preparturition maternal CORT, but pregnant snakes with higher CORT levels gave birth to smaller, lighter offspring, which tended to grow faster to age three months. Neonate baseline CORT varied with preparturition maternal CORT in a sex-specific manner (positive trend for females, negative for males). Maternal CORT effects on offspring phenotype were no longer detectable in juveniles at age one year. Instead, juvenile phenotypes were most influenced by rearing environment, with offspring raised under the cool regime showing higher baseline CORT and slower growth than those raised under warmer conditions. Our findings support the notion that offspring phenotype might be continuously adjusted in response to environmental cues -both pre- and post-natal- and that the strength of maternal CORT effects declines as offspring develop and experience unique environmental challenges. Our results contribute to a growing literature on transgenerational effects of hormones and help to fill a gap in our knowledge of these effects in ectothermic amniotes.
Collapse
Affiliation(s)
- Maria G Palacios
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA; Centro Para el Estudio de Sistemas Marinos, CCT CONICET-CENPAT, Blvd. Brown 2915, Puerto Madryn, Chubut, Argentina.
| | - Anne M Bronikowski
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA; Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Ali Amer
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH, USA
| |
Collapse
|
10
|
A quantitative synthesis of and predictive framework for studying winter warming effects in reptiles. Oecologia 2022; 200:259-271. [PMID: 36100724 PMCID: PMC9547783 DOI: 10.1007/s00442-022-05251-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/19/2022] [Indexed: 12/03/2022]
Abstract
Increases in temperature related to global warming have important implications for organismal fitness. For ectotherms inhabiting temperate regions, ‘winter warming’ is likely to be a key source of the thermal variation experienced in future years. Studies focusing on the active season predict largely positive responses to warming in the reptiles; however, overlooking potentially deleterious consequences of warming during the inactive season could lead to biased assessments of climate change vulnerability. Here, we review the overwinter ecology of reptiles, and test specific predictions about the effects of warming winters, by performing a meta-analysis of all studies testing winter warming effects on reptile traits to date. We collated information from observational studies measuring responses to natural variation in temperature in more than one winter season, and experimental studies which manipulated ambient temperature during the winter season. Available evidence supports that most reptiles will advance phenologies with rising winter temperatures, which could positively affect fitness by prolonging the active season although effects of these shifts are poorly understood. Conversely, evidence for shifts in survivorship and body condition in response to warming winters was equivocal, with disruptions to biological rhythms potentially leading to unforeseen fitness ramifications. Our results suggest that the effects of warming winters on reptile species are likely to be important but highlight the need for more data and greater integration of experimental and observational approaches. To improve future understanding, we recap major knowledge gaps in the published literature of winter warming effects in reptiles and outline a framework for future research.
Collapse
|
11
|
Lemonnier C, Bize P, Boonstra R, Dobson FS, Criscuolo F, Viblanc VA. Effects of the social environment on vertebrate fitness and health in nature: Moving beyond the stress axis. Horm Behav 2022; 145:105232. [PMID: 35853411 DOI: 10.1016/j.yhbeh.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Social interactions are a ubiquitous feature of the lives of vertebrate species. These may be cooperative or competitive, and shape the dynamics of social systems, with profound effects on individual behavior, physiology, fitness, and health. On one hand, a wealth of studies on humans, laboratory animal models, and captive species have focused on understanding the relationships between social interactions and individual health within the context of disease and pathology. On the other, ecological studies are attempting an understanding of how social interactions shape individual phenotypes in the wild, and the consequences this entails in terms of adaptation. Whereas numerous studies in wild vertebrates have focused on the relationships between social environments and the stress axis, much remains to be done in understanding how socially-related activation of the stress axis coordinates other key physiological functions related to health. Here, we review the state of our current knowledge on the effects that social interactions may have on other markers of vertebrate fitness and health. Building upon complementary findings from the biomedical and ecological fields, we identify 6 key physiological functions (cellular metabolism, oxidative stress, cellular senescence, immunity, brain function, and the regulation of biological rhythms) which are intimately related to the stress axis, and likely directly affected by social interactions. Our goal is a holistic understanding of how social environments affect vertebrate fitness and health in the wild. Whereas both social interactions and social environments are recognized as important sources of phenotypic variation, their consequences on vertebrate fitness, and the adaptive nature of social-stress-induced phenotypes, remain unclear. Social flexibility, or the ability of an animal to change its social behavior with resulting changes in social systems in response to fluctuating environments, has emerged as a critical underlying factor that may buffer the beneficial and detrimental effects of social environments on vertebrate fitness and health.
Collapse
Affiliation(s)
- Camille Lemonnier
- Ecole Normale Supérieur de Lyon, 69342 Lyon, France; Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France.
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; Swiss Institute of Ornithology, Sempach, Switzerland
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - F Stephen Dobson
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
12
|
Bestion E, Teyssier A, Rangassamy M, Calvez O, Guillaume O, Richard M, Braem A, Zajitschek F, Zajitschek S, Cote J. Adaptive maternal effects shape offspring phenotype and survival in natal environments. Am Nat 2022; 200:773-789. [DOI: 10.1086/721873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
13
|
Gotlieb N, Wilsterman K, Finn SL, Browne MF, Bever SR, Iwakoshi-Ukena E, Ukena K, Bentley GE, Kriegsfeld LJ. Impact of Chronic Prenatal Stress on Maternal Neuroendocrine Function and Embryo and Placenta Development During Early-to-Mid-Pregnancy in Mice. Front Physiol 2022; 13:886298. [PMID: 35770190 PMCID: PMC9234491 DOI: 10.3389/fphys.2022.886298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Psychological stress, both leading up to and during pregnancy, is associated with increased risk for negative pregnancy outcomes. Although the neuroendocrine circuits that link the stress response to reduced sexual motivation and mating are well-described, the specific pathways by which stress negatively impacts gestational outcomes remain unclear. Using a mouse model of chronic psychological stress during pregnancy, we investigated 1) how chronic exposure to stress during gestation impacts maternal reproductive neuroendocrine circuitry, and 2) whether stress alters developmental outcomes for the fetus or placenta by mid-pregnancy. Focusing on the stress-responsive neuropeptide RFRP-3, we identified novel contacts between RFRP-3-immunoreactive (RFRP-3-ir) cells and tuberoinfundibular dopaminergic neurons in the arcuate nucleus, thus providing a potential pathway linking the neuroendocrine stress response directly to pituitary prolactin production and release. However, neither of these cell populations nor circulating levels of pituitary hormones were affected by chronic stress. Conversely, circulating levels of steroid hormones relevant to gestational outcomes (progesterone and corticosterone) were altered in chronically-stressed dams across gestation, and those dams were qualitatively more likely to experience delays in fetal development. Together, these findings suggest that, up until at least mid-pregnancy, mothers appear to be relatively resilient to the effects of elevated glucocorticoids on reproductive neuroendocrine system function. We conclude that understanding how chronic psychological stress impacts reproductive outcomes will require understanding individual susceptibility and identifying reliable neuroendocrine changes resulting from gestational stress.
Collapse
Affiliation(s)
- Neta Gotlieb
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Kathryn Wilsterman
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Division of Biological Sciences, University of Montana, Missoula, MT, United States
- Biology Department, Colorado State University, Fort Collins, CO, United States
| | - Samantha L. Finn
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Madison F. Browne
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Savannah R. Bever
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Eiko Iwakoshi-Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - Kazuyoshi Ukena
- Laboratory of Neurometabolism, Graduate School of Integrated Sciences for Life, Hiroshima University, Hiroshima, Japan
| | - George E. Bentley
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
| | - Lance J. Kriegsfeld
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, United States
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- *Correspondence: Lance J. Kriegsfeld,
| |
Collapse
|
14
|
A Study on the Dynamic Effects and Ecological Stress of Eco-Environment in the Headwaters of the Yangtze River Based on Improved DeepLab V3+ Network. REMOTE SENSING 2022. [DOI: 10.3390/rs14092225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The headwaters of the Yangtze River are a complicated system composed of different eco-environment elements. The abnormal moisture and energy exchanges between the atmosphere and earth systems caused by global climate change are predicted to produce drastic changes in these eco-environment elements. In order to study the dynamic effect and ecological stress in the eco-environment, we adapted the Double Attention Mechanism (DAM) to improve the performance of the DeepLab V3+ network in large-scale semantic segmentation. We proposed Elements Fragmentation (EF) and Elements Information Content (EIC) to quantitatively analyze the spatial distribution characteristics and spatial relationships of eco-environment elements. In this paper, the following conclusions were drawn: (1) we established sample sets based on “Sentinel-2” remote sensing images using the interpretation signs of eco-environment elements; (2) the mAP, mIoU, and Kappa of the improved DeepLab V3+ method were 0.639, 0.778, and 0.825, respectively, which demonstrates a good ability to distinguish the eco-environment elements; (3) between 2015 and 2021, EF gradually increased from 0.2234 to 0.2394, and EIC increased from 23.80 to 25.32, which shows that the eco-environment is oriented to complex, heterogeneous, and discontinuous processes; (4) the headwaters of the Yangtze River are a community of life, and thus we should build a multifunctional ecological management system with which to implement well-organized and efficient scientific ecological rehabilitation projects.
Collapse
|
15
|
Dantzer B, Boutin S, Lane JE, McAdam AG. Integrative Studies of the Effects of Mothers on Offspring: An Example from Wild North American Red Squirrels. ADVANCES IN NEUROBIOLOGY 2022; 27:269-296. [PMID: 36169819 DOI: 10.1007/978-3-030-97762-7_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Animal species vary in whether they provide parental care or the type of care provided, and this variation in parental care among species has been a common focus of comparative studies. However, the proximate causes and ultimate consequences of within-species variation in parental care have been less studied. Most studies about the impacts of within-species variation in parental care on parental fitness have been in primates, whereas studies in laboratory rodents have been invaluable for understanding what causes inter-individual variation in parental care and its influence on offspring characteristics. We integrated both of these perspectives in our long-term study of North American red squirrels (Tamiasciurus hudsonicus) in the Yukon, Canada, where we have focused on understanding the impacts of mothers on offspring. This includes documenting the impacts that mothers or the maternal environment itself has on their offspring, identifying how changes in maternal physiology impact offspring characteristics, the presence of individual variation in maternal attentiveness toward offspring before weaning and its fitness consequences, and postweaning maternal care and its fitness consequences. We provide an overview of these contributions to understanding the impacts mothers have on their offspring in red squirrels using an integrative framework and contrast them with studies in the laboratory.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew G McAdam
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, USA
| |
Collapse
|
16
|
Sievert T, Bouma K, Haapakoski M, Matson KD, Ylönen H. Pre- and Postnatal Predator Cues Shape Offspring Anti-predatory Behavior Similarly in the Bank Vole. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.709207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Prey animals can assess the risks predators present in different ways. For example, direct cues produced by predators can be used, but also signals produced by prey conspecifics that have engaged in non-lethal predator-prey interactions. These non-lethal interactions can thereby affect the physiology, behavior, and survival of prey individuals, and may affect offspring performance through maternal effects. We investigated how timing of exposure to predation-related cues during early development affects offspring behavior after weaning. Females in the laboratory were exposed during pregnancy or lactation to one of three odor treatments: (1) predator odor (PO) originating from their most common predator, the least weasel, (2) odor produced by predator-exposed conspecifics, which we call conspecific alarm cue (CAC), or (3) control odor (C). We monitored postnatal pup growth, and we quantified foraging and exploratory behaviors of 4-week-old pups following exposure of their mothers to each of the three odour treatments. Exposure to odors associated with predation risk during development affected the offspring behavior, but the timing of exposure, i.e., pre- vs. postnatally, had only a weak effect. The two non-control odors led to different behavioral changes: an attraction to CAC and an avoidance of PO. Additionally, pup growth was affected by an interaction between litter size and maternal treatment, again regardless of timing. Pups from the CAC maternal treatment grew faster in larger litters; pups from the PO maternal treatment tended to grow faster in smaller litters. Thus, in rodents, offspring growth and behavior are seemingly influenced differently by the type of predation risk perceived by their mothers.
Collapse
|
17
|
MacLeod KJ, While GM, Uller T. Viviparous mothers impose stronger glucocorticoid-mediated maternal stress effects on their offspring than oviparous mothers. Ecol Evol 2021; 11:17238-17259. [PMID: 34938505 PMCID: PMC8668768 DOI: 10.1002/ece3.8360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/07/2023] Open
Abstract
Maternal stress during gestation has the potential to affect offspring development via changes in maternal physiology, such as increases in circulating levels of glucocorticoid hormones that are typical after exposure to a stressor. While the effects of elevated maternal glucocorticoids on offspring phenotype (i.e., "glucocorticoid-mediated maternal effects") have been relatively well established in laboratory studies, it remains poorly understood how strong and consistent such effects are in natural populations. Using a meta-analysis of studies of wild mammals, birds, and reptiles, we investigate the evidence for effects of elevated maternal glucocorticoids on offspring phenotype and investigate key moderators that might influence the strength and direction of these effects. In particular, we investigate the potential importance of reproductive mode (viviparity vs. oviparity). We show that glucocorticoid-mediated maternal effects are stronger, and likely more deleterious, in mammals and viviparous squamate reptiles compared with birds, turtles, and oviparous squamates. No other moderators (timing and type of manipulation, age at offspring measurement, or type of trait measured) were significant predictors of the strength or direction of the phenotypic effects on offspring. These results provide evidence that the evolution of a prolonged physiological association between embryo and mother sets the stage for maladaptive, or adaptive, prenatal stress effects in vertebrates driven by glucocorticoid elevation.
Collapse
|
18
|
MacLeod KJ, Langkilde T, Venable CP, Ensminger DC, Sheriff MJ. The influence of maternal glucocorticoids on offspring phenotype in high- and low-risk environments. Behav Ecol 2021; 32:1330-1338. [PMID: 34949960 PMCID: PMC8691550 DOI: 10.1093/beheco/arab099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/12/2022] Open
Abstract
Elevated maternal glucocorticoid levels during gestation can lead to phenotypic changes in offspring via maternal effects. Although such effects have traditionally been considered maladaptive, maternally derived glucocorticoids may adaptively prepare offspring for their future environment depending upon the correlation between maternal and offspring environments. Nevertheless, relatively few studies test the effects of prenatal glucocorticoid exposure across multiple environments. We tested the potential for ecologically relevant increases in maternal glucocorticoids in the eastern fence lizard (Sceloporus undulatus) to induce adaptive phenotypic changes in offspring exposed to high or low densities of an invasive fire ant predator. Maternal treatment had limited effects on offspring morphology and behavior at hatching, but by 10 days of age, we found maternal treatment interacted with offspring environment to alter anti-predator behaviors. We did not detect differences in early-life survival based on maternal treatment or offspring environment. Opposing selection on anti-predator behaviors from historic and novel invasive predators may confound the potential of maternal glucocorticoids to adaptively influence offspring behavior. Our test of the phenotypic outcomes of transgenerational glucocorticoid effects across risk environments provides important insight into the context-specific nature of this phenomenon and the importance of understanding both current and historic evolutionary pressures.
Collapse
Affiliation(s)
- Kirsty J MacLeod
- Department of Ecosystem Science and Management, Pennsylvania State University, Forest Resources Building, University Park, PA, 16802, USA
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA, 16802, USA
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| | - Tracy Langkilde
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA, 16802, USA
- Intercollege Graduate Degree Program in Ecology, The Huck Institute of the Life Sciences, Pennsylvania State University, University Park, PA, 16802, USA
- Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park, PA, 16802, USA
| | - Cameron P Venable
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA, 16802, USA
| | - David C Ensminger
- Department of Ecosystem Science and Management, Pennsylvania State University, Forest Resources Building, University Park, PA, 16802, USA
- Department of Biology, Pennsylvania State University, Mueller Laboratory, University Park, PA, 16802, USA
- Department of Biological Sciences, San Jose State University, One Washington Square, San José, CA, 95192, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA, 02747, USA
| |
Collapse
|
19
|
MacLeod KJ, Kohl KD, Trevelline BK, Langkilde T. Context-dependent effects of glucocorticoids on the lizard gut microbiome. Mol Ecol 2021; 31:185-196. [PMID: 34661319 DOI: 10.1111/mec.16229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/19/2021] [Accepted: 10/11/2021] [Indexed: 12/25/2022]
Abstract
The vertebrate gut microbiota (bacterial, archaeal and fungal communities of the gastrointestinal tract) can have profound effects on the physiological processes of their hosts. Although relatively stable, changes in microbiome structure and composition occur due to changes in the environment, including exposure to stressors and associated increases in glucocorticoid hormones. Although a growing number of studies have linked stressor exposure to microbiome changes, few studies have experimentally explored the specific influence of glucocorticoids on the microbiome in wild animals, or across ecologically important processes (e.g., reproductive stages). Here we tested the response of the gut microbiota of adult female Sceloporus undulatus across gestation to ecologically relevant elevations of a stress-relevant glucocorticoid hormone (CORT) in order to determine (i) how experimentally elevated CORT influenced microbiome characteristics, and (ii) whether this relationship was dependent on reproductive context (i.e., whether females were gravid or not, and, in those that were gravid, gestational stage). We show that the effects of CORT on gut microbiota are complex and depend on both gestational state and stage. CORT treatment altered microbial community membership and resulted in an increase in microbiome diversity in late-gestation females, and microbial community membership varied according to treatment. In nongravid females, CORT treatment decreased interindividual variation in microbial communities, but this effect was not observed in late-gestation females. Our results highlight the need for a more holistic understanding of the downstream physiological effects of glucocorticoids, as well as the importance of context (here, gestational state and stage) in interpreting stress effects in ecology.
Collapse
Affiliation(s)
- Kirsty J MacLeod
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.,Department of Biology, Lund University, Lund, Sweden
| | - Kevin D Kohl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Brian K Trevelline
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.,Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA.,Cornell Laboratory of Ornithology, Cornell University, Ithaca, New York, USA
| | - Tracy Langkilde
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA.,Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
20
|
Misztal T, Młotkowska P, Marciniak E, Roszkowicz-Ostrowska K, Misztal A. Involvement of neurosteroids in the control of hypothalamic-pituitary-adrenal axis activity in pregnant sheep under basal and stressful conditions. Theriogenology 2021; 174:114-120. [PMID: 34428676 DOI: 10.1016/j.theriogenology.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022]
Abstract
Neurosteroids are synthesized locally in the brain, where they can modify neuronal functionality depending on the physiological state. A high correlation was demonstrated between the increasing activity of the hypothalamic-pituitary-adrenal (HPA) axis and allopregnanolone (AL) concentration in the cerebrospinal fluid in sheep during pregnancy. Therefore, the present study tested the hypothesis that blocking neurosteroid synthesis in the brain of a pregnant sheep would affect HPA axis activity under both basal and stressful conditions. Two groups of sheep in the fourth month of gestation (n = 7 each) were subjected to the following treatments: 1) intracerebroventricular (icv) infusion of vehicle for three days (C) and then icv infusion of finasteride (a total of 100 μg/240 μL/day) for three days (F), one week apart, and 2) icv infusion of vehicle for three days and application of stressful stimuli (isolation and partial movement restriction) on the third day (S), and subsequently icv infusion of finasteride for three days and application of stressful stimuli on the third day (SF), one week apart. On the third days of the experiment, a 4-h push-pull perfusion of the infundibular nucleus/median eminence and blood sampling were performed. Mean perfusate corticotropin-releasing hormone (CRH), plasma adrenocorticotropin (ACTH) and cortisol concentrations were significantly higher in sheep treated with finasteride, stress and finasteride in combination with stress compared to controls. The highest hormone concentrations in Groups F, S and SF, were recorded during the first 60 min; however, significant increases in CRH and ACTH levels were observed in Group SF towards the end of the experiment. It can be concluded that neurosteroids may be an essential component of the mechanism controlling HPA axis activity in pregnant sheep, not only under stress-free conditions, but more importantly, also by inhibiting the neuroendocrine response to stressors.
Collapse
Affiliation(s)
- Tomasz Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland.
| | - Patrycja Młotkowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland
| | - Elżbieta Marciniak
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland
| | - Katarzyna Roszkowicz-Ostrowska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland
| | - Anna Misztal
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3 St, 05-110, Jablonna, Poland
| |
Collapse
|
21
|
Malalaharivony HS, Fichtel C, Heistermann M, Kappeler PM. Maternal stress effects on infant development in wild Verreaux's sifaka (Propithecus verreauxi). Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03085-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Abstract
Maternal effects mediated by nutrients or specific endocrine states of the mother can affect infant development. Specifically, pre- and postnatal maternal stress associated with elevated glucocorticoid (GC) output is known to influence the phenotype of the offspring, including their physical and behavioral development. These developmental processes, however, remain relatively poorly studied in wild vertebrates, including primates with their relatively slow life histories. Here, we investigated the effects of maternal stress, assessed by fecal glucocorticoid output, on infant development in wild Verreaux’s sifakas (Propithecus verreauxi), a group-living Malagasy primate. In a first step, we investigated factors predicting maternal fecal glucocorticoid metabolite (fGCM) concentrations, how they impact infants’ physical and behavioral development during the first 6 months of postnatal life as well as early survival during the first 1.5 years of postnatal life. We collected fecal samples of mothers for hormone assays and behavioral data of 12 infants from two birth cohorts, for which we also assessed growth rates. Maternal fGCM concentrations were higher during the late prenatal but lower during the postnatal period compared to the early/mid prenatal period and were higher during periods of low rainfall. Infants of mothers with higher prenatal fGCM concentrations exhibited faster growth rates and were more explorative in terms of independent foraging and play. Infants of mothers with high pre- and postnatal fGCM concentrations were carried less and spent more time in nipple contact. Time mothers spent carrying infants predicted infant survival: infants that were more carried had lower survival, suggesting that they were likely in poorer condition and had to be cared for longer. Thus, the physical and behavioral development of these young primates were impacted by variation in maternal fGCM concentrations during the first 6 months of their lives, presumably as an adaptive response to living in a highly seasonal, but unpredictable environment.
Significance statement
The early development of infants can be impacted by variation in maternal condition. These maternal effects can be mediated by maternal stress (glucocorticoid hormones) and are known to have downstream consequences for behavior, physiology, survival, and reproductive success well into adulthood. However, the direction of the effects of maternal physiological GC output on offspring development is highly variable, even within the same species. We contribute comparative data on maternal stress effects on infant development in a Critically Endangered primate from Madagascar. We describe variation in maternal glucocorticoid output as a function of ecological and reproductive factors and show that patterns of infant growth, behavioral development, and early survival are predicted by maternal glucocorticoids. Our study demonstrates how mothers can influence offspring fitness in response to challenging environmental conditions.
Collapse
|
22
|
Kraft FLH, Crino OL, Buchanan KL. Developmental conditions have intergenerational effects on corticosterone levels in a passerine. Horm Behav 2021; 134:105023. [PMID: 34224992 DOI: 10.1016/j.yhbeh.2021.105023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/03/2021] [Accepted: 06/18/2021] [Indexed: 01/09/2023]
Abstract
The developmental environment can have powerful, canalizing effects that last throughout an animal's life and even across generations. Intergenerational effects of early-life conditions may affect offspring phenotype through changes in the hypothalamic-pituitary-adrenal axis (HPA). However, such effects remain largely untested in altricial birds. Here, we tested the impact of maternal and paternal developmental conditions on offspring physiology and morphology in the zebra finch (Taeniopygia guttata). Specifically, we exposed one generation (F1) to elevated corticosterone (CORT) during development and quantified the impact on offspring (F2) phenotype. We predicted that intergenerational effects would be apparent through effects of parental developmental treatment on offspring body mass, growth, body condition, body composition, and CORT levels. We found an intergenerational impact on CORT levels, such that F2 birds reared by CORT-treated fathers had higher baseline CORT than F2 birds reared by control fathers. This result shows the potential for intergenerational effects on endocrine function, resulting from developmental conditions. We found no effect of parental treatment on F2 body mass, size, or body condition, but we found that the body mass and tarsus length for offspring and parent were correlated. Our study demonstrates the subtle effects of developmental conditions across generations and highlights the importance of distinguishing between maternal and paternal effects when studying intergenerational effects, especially for species with biparental care.
Collapse
Affiliation(s)
| | - Ondi L Crino
- Department of Biological Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katherine L Buchanan
- School of Life and Environmental Sciences, Deakin University, 3228 Victoria, Australia
| |
Collapse
|
23
|
Stead SM, Bădescu I, Boonstra R. Of mammals and milk: how maternal stress affects nursing offspring. Mamm Rev 2021. [DOI: 10.1111/mam.12267] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Samantha M. Stead
- Department of Anthropology University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| | - Iulia Bădescu
- Département d’Anthropologie Université de Montréal 3150 Rue Jean‐Brillant Montréal QCH3T 1N8Canada
| | - Rudy Boonstra
- Department of Biological Sciences University of Toronto Scarborough 1265 Military Trail Scarborough ONM1C 1A4Canada
| |
Collapse
|
24
|
Westrick SE, van Kesteren F, Boutin S, Lane JE, McAdam AG, Dantzer B. Maternal glucocorticoids have minimal effects on HPA axis activity and behavior of juvenile wild North American red squirrels. J Exp Biol 2021; 224:jeb.236620. [PMID: 33795416 DOI: 10.1242/jeb.236620] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 03/29/2021] [Indexed: 12/27/2022]
Abstract
As a response to environmental cues, maternal glucocorticoids (GCs) may trigger adaptive developmental plasticity in the physiology and behavior of offspring. In North American red squirrels (Tamiasciurus hudsonicus), mothers exhibit increased GCs when conspecific density is elevated, and selection favors more aggressive and perhaps more active mothers under these conditions. We tested the hypothesis that elevated maternal GCs cause shifts in offspring behavior that may prepare them for high-density conditions. We experimentally elevated maternal GCs during gestation or early lactation. We measured two behavioral traits (activity and aggression) in weaned offspring using standardized behavioral assays. Because maternal GCs may influence offspring hypothalamic-pituitary-adrenal (HPA) axis dynamics, which may in turn affect behavior, we also measured the impact of our treatments on offspring HPA axis dynamics (adrenal reactivity and negative feedback), and the association between offspring HPA axis dynamics and behavior. Increased maternal GCs during lactation, but not gestation, slightly elevated activity levels in offspring. Offspring aggression and adrenal reactivity did not differ between treatment groups. Male, but not female, offspring from mothers treated with GCs during pregnancy exhibited stronger negative feedback compared with those from control mothers, but there were no differences in negative feedback between lactation treatment groups. Offspring with higher adrenal reactivity from mothers treated during pregnancy (both controls and GC-treated) exhibited lower aggression and activity. These results suggest that maternal GCs during gestation or early lactation alone may not be a sufficient cue to produce substantial changes in behavioral and physiological stress responses in offspring in natural populations.
Collapse
Affiliation(s)
- Sarah E Westrick
- Department of Psychology, University of Michigan, Ann Arbor, MI48109-1043, USA
| | - Freya van Kesteren
- Department of Psychology, University of Michigan, Ann Arbor, MI48109-1043, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Andrew G McAdam
- Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI48109-1043, USA.,Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| |
Collapse
|
25
|
Ensminger DC, Siegel SR, Owen DAS, Sheriff MJ, Langkilde T. Elevated glucocorticoids during gestation suggest sex-specific effects on offspring telomere lengths in a wild lizard. Comp Biochem Physiol A Mol Integr Physiol 2021; 257:110971. [PMID: 33933630 DOI: 10.1016/j.cbpa.2021.110971] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/30/2022]
Abstract
The effects of maternal glucocorticoids (e.g. corticosterone, CORT) on offspring interest biologists due to increasing environmental perturbations. While little is known about the impact of maternal CORT on offspring fitness, it may modulate telomere length and compromise offspring health. Here, we use a modified real-time quantitative PCR assay to assess telomere length using small DNA quantities (<60 ng). We tested the hypothesis that increased maternal CORT during gestation decreases offspring telomere length. While CORT-driven telomere shortening is well established within individuals, cross-generational effects remain unclear. We treated wild-caught gravid female eastern fence lizards (Sceloporus undulatus) with daily transdermal applications of CORT, at ecologically relevant levels, from capture to laying. Maternal CORT treatment did not alter maternal telomere length, although baseline maternal CORT concentrations had a weak, negative correlation with maternal telomere length. There was no relation between mother and offspring telomere length. There was a trend for maternal CORT treatment to shorten telomeres of sons but not daughters. Our treatment replicated exposure to a single stressor per day, likely underestimating effects seen in the wild where stressors may be more frequent. Future research should further explore fitness consequences of maternal CORT effects.
Collapse
Affiliation(s)
- David C Ensminger
- Department of Ecosystem Science and Management, The Pennsylvania State University, Forest Resources Building, University Park, PA 16802, United States of America; Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, United States of America.
| | - Sue R Siegel
- Department of Biobehavioral Health, The Pennsylvania State University, Biomarker Core Lab, University Park, PA 16802, United States of America
| | - Dustin A S Owen
- Department of Ecosystem Science and Management, The Pennsylvania State University, Forest Resources Building, University Park, PA 16802, United States of America; Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, United States of America; Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, United States of America
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, United States of America
| | - Tracy Langkilde
- Department of Biology, The Pennsylvania State University, Mueller Laboratory, University Park, PA 16802, United States of America; Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University, University Park, PA 16802, United States of America
| |
Collapse
|
26
|
Winandy L, Di Gesu L, Lemoine M, Jacob S, Martin J, Ducamp C, Huet M, Legrand D, Cote J. Maternal and personal information mediates the use of social cues about predation risk. Behav Ecol 2021. [DOI: 10.1093/beheco/araa151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Abstract
Organisms can gain information about predation risks from their parents, their own personal experience, and their conspecifics and adjust their behavior to alleviate these risks. These different sources of information can, however, provide conflicting information due to spatial and temporal variation of the environment. This raises the question of how these cues are integrated to produce adaptive antipredator behavior. We investigated how common lizards (Zootoca vivipara) adjust the use of conspecific cues about predation risk depending on whether the information is maternally or personally acquired. We experimentally manipulated the presence of predator scent in gestating mothers and their offspring in a full-crossed design. We then tested the consequences for social information use by monitoring offspring social response to conspecifics previously exposed to predator cues or not. Lizards were more attracted to the scent of conspecifics having experienced predation cues when they had themselves no personal information about predation risk. In contrast, they were more repulsed by conspecific scent when they had personally obtained information about predation risk. However, the addition of maternal information about predation risk canceled out this interactive effect between personal and social information: lizards were slightly more attracted to conspecific scent when these two sources of information about predation risk were in agreement. A chemical analysis of lizard scent revealed that exposure to predator cues modified the chemical composition of lizard scents, a change that might underlie lizards’ use of social information. Our results highlight the importance of considering multiple sources of information while studying antipredator defenses.
Collapse
Affiliation(s)
- Laurane Winandy
- CNRS, Université Toulouse III Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution and Diversité Biologique), 118 Route de Narbonne, Toulouse, France
- CNRS, UMR5321, Station d’Écologie Théorique et Expérimentale, 2 route du cnrs, Moulis, France
| | - Lucie Di Gesu
- CNRS, Université Toulouse III Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution and Diversité Biologique), 118 Route de Narbonne, Toulouse, France
| | - Marion Lemoine
- CNRS, Université Toulouse III Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution and Diversité Biologique), 118 Route de Narbonne, Toulouse, France
| | - Staffan Jacob
- CNRS, UMR5321, Station d’Écologie Théorique et Expérimentale, 2 route du cnrs, Moulis, France
| | - José Martin
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, Madrid, Spain
| | - Christine Ducamp
- CNRS, Université Toulouse III Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution and Diversité Biologique), 118 Route de Narbonne, Toulouse, France
| | - Michèle Huet
- CNRS, UMR5321, Station d’Écologie Théorique et Expérimentale, 2 route du cnrs, Moulis, France
| | - Delphine Legrand
- CNRS, UMR5321, Station d’Écologie Théorique et Expérimentale, 2 route du cnrs, Moulis, France
| | - Julien Cote
- CNRS, Université Toulouse III Paul Sabatier, ENFA; UMR5174 EDB (Laboratoire Évolution and Diversité Biologique), 118 Route de Narbonne, Toulouse, France
| |
Collapse
|
27
|
McGhee KE, Barbosa AJ, Bissell K, Darby NA, Foshee S. Maternal stress during pregnancy affects activity, exploration and potential dispersal of daughters in an invasive fish. Anim Behav 2021. [DOI: 10.1016/j.anbehav.2020.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
28
|
Venney CJ, Wellband KW, Heath DD. Rearing environment affects the genetic architecture and plasticity of DNA methylation in Chinook salmon. Heredity (Edinb) 2021; 126:38-49. [PMID: 32699390 PMCID: PMC7852867 DOI: 10.1038/s41437-020-0346-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023] Open
Abstract
Genetic architecture and phenotypic plasticity are important considerations when studying trait variation within and among populations. Since environmental change can induce shifts in the genetic architecture and plasticity of traits, it is important to consider both genetic and environmental sources of phenotypic variation. While there is overwhelming evidence for environmental effects on phenotype, the underlying mechanisms are less clear. Variation in DNA methylation is a potential mechanism mediating environmental effects on phenotype due to its sensitivity to environmental stimuli, transgenerational inheritance, and influences on transcription. To characterize the effect of environment on methylation, we created two 6 × 6 (North Carolina II) Chinook salmon breeding crosses and reared the offspring in two environments: uniform hatchery tanks and seminatural stream channels. We sampled the fish twice during development, at the alevin (larval) and fry (juvenile) stages. We measured DNA methylation at 13 genes using a PCR-based bisulfite sequencing protocol. The genetic architecture of DNA methylation differed between rearing environments, with greater additive and nonadditive genetic variance in hatchery fish and greater maternal effects in seminatural channel fish, though gene-specific variation was evident. We observed plasticity in methylation across all assayed genes, as well as gene-specific effects at two genes in alevin and six genes in fry, indicating developmental stage-specific effects of rearing environment on methylation. Characterizing genetic and environmental influences on methylation is critical for future studies on DNA methylation as a potential mechanism for acclimation and adaptation.
Collapse
Affiliation(s)
- Clare J Venney
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
| | - Kyle W Wellband
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada
- Institut de Biologie Intégrative et des Systèmes, Université Laval, G1V 0A6, Québec City, QC, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, 401 Sunset Ave, Windsor, ON, N9B 3P4, Canada.
| |
Collapse
|
29
|
Angove JL, Willson NL, Cadogan DJ, Forder REA. In ovo corticosterone administration alters body composition irrespective of arginine supplementation in 35-day-old female chicken meat birds. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an20254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Context
Exposure to maternal hormones can permanently alter an embryo’s developmental trajectory. Maternal mediated effects have significant potential in the chicken meat industry, as breeder hens are feed restricted in a bid to improve performance. Evidence suggests breeder hens are chronically stressed, resulting from periods of prolonged hunger. However, evidence linking embryonic exposure to early-life stress and altered offspring phenotype in meat chickens is lacking. Additionally, methods to alleviate the phenotypic consequences of early-life stress have not been comprehensively explored. Nutritional supplementation with amino acids, such as arginine (Arg), may provide one such option, as Arg reportedly enhances performance characteristics in chicken meat birds.
Aims
An in ovo study was conducted to investigate whether exposure to in ovo stress altered offspring performance in meat chickens. Additionally, Arg was supplemented post-hatch to alleviate reductions in performance, hypothesised to occur as a result of exposure to corticosterone.
Method
A total of 400 eggs were divided into two groups and administered a corticosterone (CORT) or control (CON) solution at embryonic Day 11. At hatch, birds were separated into four groups based on in ovo and dietary treatments: CORT-Control, CORT-Arg, CON-Arg and CON-Control. Birds fed supplementary Arg diets received an Arg:lysine inclusion of 125%. Bodyweight (bwt) and feed conversion were recorded weekly. Birds were euthanised at embryonic Day 15, Day 0, 7, 21 (n = 40 birds/time point), 28 and 35 (n = 48 birds/time point) for organ collection. A total of 12 additional female birds were euthanised and subjected to a dual-energy X-ray absorptiometry scan for body composition at Day 35.
Results
Neither in ovo nor diet treatments influenced bwt, bwt gain, feed conversion or plasma corticosterone at any time point, nor did any in ovo by diet interaction exist. Female birds exposed to CORT exhibited significantly greater fat mass (%bwt; P = 0.007) and reduced lean mass (%bwt; P = 0.026) compared with CON females at Day 35. Supplementary Arg did not influence bird body composition.
Conclusions
These findings suggest in ovo exposure to CORT may negatively influence body composition of female birds.
Implications
Understanding the effects of the maternal/in ovo environment may provide a novel approach to further improve carcass quality and flock uniformity.
Collapse
|
30
|
Hellmann JK, Carlson ER, Bell AM. Sex-specific plasticity across generations II: Grandpaternal effects are lineage specific and sex specific. J Anim Ecol 2020; 89:2800-2812. [PMID: 33191513 PMCID: PMC7902365 DOI: 10.1111/1365-2656.13365] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/07/2020] [Indexed: 12/31/2022]
Abstract
Transgenerational plasticity (TGP) occurs when the environment encountered by one generation (F0) alters the phenotypes of one or more future generations (e.g. F1 and F2). Sex selective TGP, via specific lineages or to only male or female descendants, has been underexplored in natural systems, and may be adaptive if it allows past generations to fine-tune the phenotypes of future generations in response to sex-specific life-history strategies. We sought to understand if exposing males to predation risk can influence grandoffspring via sperm in three-spined stickleback Gasterosteus aculeatus. We specifically tested the hypothesis that grandparental effects are transmitted in a sex-specific way down the male lineage, from paternal grandfathers to F2 males. We reared F1 offspring of unexposed and predator-exposed F0 males under 'control' conditions and used them to generate F2s with control grandfathers, a predator-exposed maternal grandfather (i.e. predator-exposed F0 males to F1 daughters to F2s), a predator-exposed paternal grandfather (i.e. predator-exposed F0 males to F1 sons to F2s) or two predator-exposed grandfathers. We then assayed male and female F2s for a variety of traits related to antipredator defence. We found little evidence that transgenerational effects were mediated to only male descendants via the paternal lineage. Instead, grandpaternal effects depended on lineage and were mediated largely across sexes, from F1 males to F2 females and from F1 females to F2 males. When their paternal grandfather was exposed to predation risk, female F2s were heavier and showed a reduced change in behaviour in response to a simulated predator attack relative to grandoffspring of control, unexposed grandparents. In contrast, male F2s showed reduced antipredator behaviour when their maternal grandfather was exposed to predation risk. However, these patterns were only evident when one grandfather, but not both grandfathers, was exposed to predation risk, suggesting the potential for non-additive interactions across lineages. If sex-specific and lineage effects are common, then grandparental effects are likely underestimated in the literature. These results draw attention to the importance of sex-selective inheritance of environmental effects and raise new questions about the proximate and ultimate causes of selective transmission across generations.
Collapse
Affiliation(s)
- Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Erika R Carlson
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| | - Alison M Bell
- Department of Evolution, Ecology and Behavior, School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
- Program in Ecology, Evolution and Conservation, University of Illinois Urbana-Champaign, Urbana, Illinois, USA, 61801
| |
Collapse
|
31
|
Mikovic J, Brightwell C, Lindsay A, Wen Y, Kowalski G, Russell AP, Fry CS, Lamon S. An obesogenic maternal environment impairs mouse growth patterns, satellite cell activation, and markers of postnatal myogenesis. Am J Physiol Endocrinol Metab 2020; 319:E1008-E1018. [PMID: 32954829 DOI: 10.1152/ajpendo.00398.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Skeletal muscle is sensitive to environmental cues that are first present in utero. Maternal overnutrition is a model of impaired muscle development leading to structural and metabolic dysfunction in adult life. In this study, we investigated the effect of an obesogenic maternal environment on growth and postnatal myogenesis in the offspring. Male C57BL/6J mice born to chow- or high-fat-diet-fed mothers were allocated to four different groups at the end of weaning. For the following 10 wk, half of the pups were maintained on the same diet as their mother and half of the pups were switched to the other diet (chow or high-fat). At 12 wk of age, muscle injury was induced using an intramuscular injection of barium chloride. Seven days later, mice were humanely killed and muscle tissue was harvested. A high-fat maternal diet impaired offspring growth patterns and downregulated satellite cell activation and markers of postnatal myogenesis 7 days after injury without altering the number of newly synthetized fibers over the whole 7-day period. Importantly, a healthy postnatal diet could not reverse any of these effects. In addition, we demonstrated that postnatal myogenesis was associated with a diet-independent upregulation of three miRNAs, mmu-miR-31-5p, mmu-miR-136-5p, and mmu-miR-296-5p. Furthermore, in vitro analysis confirmed the role of these miRNAs in myocyte proliferation. Our findings are the first to demonstrate that maternal overnutrition impairs markers of postnatal myogenesis in the offspring and are particularly relevant to today's society where the incidence of overweight/obesity in women of childbearing age is increasing.
Collapse
Affiliation(s)
- Jasmine Mikovic
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Camille Brightwell
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Angus Lindsay
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Yuan Wen
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Greg Kowalski
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Aaron P Russell
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| | - Christopher S Fry
- Department of Athletic Training and Clinical Nutrition, College of Health Sciences, University of Kentucky, Lexington, Kentucky
| | - Séverine Lamon
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, Australia
| |
Collapse
|
32
|
Warriner TR, Semeniuk CAD, Pitcher TE, Heath DD, Love OP. Mimicking Transgenerational Signals of Future Stress: Thermal Tolerance of Juvenile Chinook Salmon Is More Sensitive to Elevated Rearing Temperature Than Exogenously Increased Egg Cortisol. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.548939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Hsu BY, Sarraude T, Cossin-Sevrin N, Crombecque M, Stier A, Ruuskanen S. Testing for context-dependent effects of prenatal thyroid hormones on offspring survival and physiology: an experimental temperature manipulation. Sci Rep 2020; 10:14563. [PMID: 32884067 PMCID: PMC7471313 DOI: 10.1038/s41598-020-71511-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/17/2020] [Indexed: 12/11/2022] Open
Abstract
Maternal effects via hormonal transfer from the mother to the offspring provide a tool to translate environmental cues to the offspring. Experimental manipulations of maternally transferred hormones have yielded increasingly contradictory results, which may be explained by differential effects of hormones under different environmental contexts. Yet context-dependent effects have rarely been experimentally tested. We therefore studied whether maternally transferred thyroid hormones (THs) exert context-dependent effects on offspring survival and physiology by manipulating both egg TH levels and post-hatching nest temperature in wild pied flycatchers (Ficedula hypoleuca) using a full factorial design. We found no clear evidence for context-dependent effects of prenatal THs related to postnatal temperature on growth, survival and potential underlying physiological responses (plasma TH levels, oxidative stress and mitochondrial density). We conclude that future studies should test for other key environmental conditions, such as food availability, to understand potential context-dependent effects of maternally transmitted hormones on offspring, and their role in adapting to changing environments.
Collapse
Affiliation(s)
- Bin-Yan Hsu
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland.
| | - Tom Sarraude
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
- GELIFES, University of Groningen, Groningen, The Netherlands
| | - Nina Cossin-Sevrin
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Mélanie Crombecque
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| | - Antoine Stier
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Suvi Ruuskanen
- Section of Ecology, Department of Biology, University of Turku, Turku, Finland
| |
Collapse
|
34
|
Giayetto O, Videla EA, Chacana P, Jaime C, Marín RH, Nazar FN. Modulating offspring responses: concerted effects of stress and immunogenic challenge in the parental generation. J Exp Biol 2020; 223:jeb219386. [PMID: 32680897 DOI: 10.1242/jeb.219386] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/10/2020] [Indexed: 12/18/2022]
Abstract
The perception, processing and response to environmental challenges involves the activation of the immuno-neuroendocrine (INE) interplay. Concerted environmental challenges might induce trade-off when resource allocation to one trait occurs at the expense of another, also producing potential transgenerational effects in the offspring. We evaluated whether concerted challenges, in the form of an immune inoculum against inactivated Salmonella enteritidis (immune challenge, ICH) and a chronic heat stress (CHS) exposure on adult Japanese quail, modulate the INE responses of the parental generation and their offspring. Adults were inoculated and later exposed to a CHS along nine consecutive days. For the last 5 days of the CHS, eggs were collected for incubation. Chicks were identified according to their parental treatments and remained undisturbed. Induced inflammatory response, heterophil/lymphocyte (H/L) ratio and specific humoral response against sheep red blood cells (SRBC) were evaluated in both generations. Regardless of the ICH, stressed adults showed a reduced inflammatory response and an elevated H/L ratio compared with controls. In offspring, the inflammatory response was elevated and the specific SRBC antibody titres were diminished in those chicks prenatally exposed to CHS, regardless of the ICH. No differences were found in the H/L ratio of the offspring. Together, our results suggest that CHS exposure influences the INE interplay of adult quail, establishing trade-offs within their immune system. Moreover, CHS not only affected parental INE responses but also modulated their offspring INE responses, probably affecting their potential to respond to future challenges. The adaptability of the developmental programming of offspring would depend on the environment encountered.
Collapse
Affiliation(s)
- Octavio Giayetto
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba (X5016GCA), Argentina
| | - Emiliano A Videla
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba (X5016GCA), Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba (UNC), Córdoba (X5016GCA), Argentina
| | - Pablo Chacana
- Instituto Nacional de Tecnología Agropecuaria (INTA), Buenos Aires (C1033AAE), Argentina
| | - Cristian Jaime
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba (UNC), Córdoba (X5016GCA), Argentina
| | - Raúl H Marín
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba (X5016GCA), Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba (UNC), Córdoba (X5016GCA), Argentina
| | - F Nicolás Nazar
- Instituto de Investigaciones Biológicas y Tecnológicas (IIByT, CONICET-UNC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba (X5016GCA), Argentina
- Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Universidad Nacional de Córdoba (UNC), Córdoba (X5016GCA), Argentina
| |
Collapse
|
35
|
Sachser N, Zimmermann TD, Hennessy MB, Kaiser S. Sensitive phases in the development of rodent social behavior. Curr Opin Behav Sci 2020; 36:63-70. [PMID: 34337112 DOI: 10.1016/j.cobeha.2020.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Here, we summarize recent advances on how environmental influences during sensitive phases alter the social behavioral phenotype of rodents later in life. Current studies support the view that the prenatal, early postnatal and adolescent periods of life can be regarded as sensitive phases. Environmental cues acting on the organism during these phases have a wide variety of effects on adult social behavior. One pattern that emerges across species and sensitive phases is that adversity tends to reduce social interactions and particularly affiliative social behavior. Concerning underlying mechanisms, various hormones can be involved; however, glucocorticoids frequently serve as the signal instigating plasticity. There is also increasing appreciation of non-endocrine mechanisms, specifically epigenetics and the microbiome. Concerning function, some evidence exists that sensitive phase outcomes adjust the individual's social phenotype to the nature of the social environment to be present during adulthood and breeding, though additional empirical support is still needed.
Collapse
Affiliation(s)
- Norbert Sachser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Tobias D Zimmermann
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| | - Michael B Hennessy
- Department of Psychology, Wright State University, Dayton, OH 45435, USA
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Badestr. 13, 48149 Münster, Germany
| |
Collapse
|
36
|
Abstract
Abstract
The critical agenda for mammalian ecologists over this century is to obtain a synthetic and predictive understanding of the factors that limit the distribution and abundance of mammals on Earth. During the last 100 years, a start has been made on this agenda, but only a start. Most mammal species have been described, but there still are tropical areas of undisclosed species richness. We have been measuring changes in distribution and abundance of many common mammals during the last century, and this monitoring agenda has become more critical as climate change has accelerated and habitat destruction has increased with human population growth. There are a small number of factors that can limit the distribution and abundance of mammals: weather, predation, food supplies, disease, and social behavior. Weather limits distribution and abundance mostly in an indirect manner by affecting food supplies, disease, and predation in the short term and habitat composition and structure in the longer term. A good starting point for all studies of mammals is to define them within a well-structured trophic web, and then quantify the major linkages within that web. We still are far from having data on enough model systems to develop a complete theory and understanding of how food webs are structured and constrained as climate shifts and humans disturb habitats. We have many of the bits and pieces for some of our major ecosystems but a poor understanding of the links and the resilience of our mammalian communities to changes in trophic webs driven by climate change and human disturbances.
Collapse
Affiliation(s)
- Charles J Krebs
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
37
|
Cattelan S, Herbert-Read J, Panizzon P, Devigili A, Griggio M, Pilastro A, Morosinotto C. Maternal predation risk increases offspring’s exploration but does not affect schooling behavior. Behav Ecol 2020. [DOI: 10.1093/beheco/araa071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Abstract
The environment that parents experience can influence their reproductive output and their offspring’s fitness via parental effects. Perceived predation risk can affect both parent and offspring phenotype, but it remains unclear to what extent offspring behavioral traits are affected when the mother is exposed to predation risk. This is particularly unclear in live-bearing species where maternal effects could occur during embryogenesis. Here, using a half-sib design to control for paternal effects, we experimentally exposed females of a live-bearing fish, the guppy (Poecilia reticulata), to visual predator cues and conspecific alarm cues during their gestation. Females exposed to predation risk cues increased their antipredator behaviors throughout the entire treatment. Offspring of mothers exposed to the predation stimuli exhibited more pronounced exploratory behavior, but did not show any significant differences in their schooling behavior, compared to controls. Thus, while maternally perceived risk affected offspring’s exploration during early stages of life, offspring’s schooling behavior could be influenced more by direct environmental experience rather than via maternal cues. Our results suggest a rather limited role in predator-induced maternal effects on the behavior of juvenile guppies.
Collapse
Affiliation(s)
| | - James Herbert-Read
- Department of Zoology, University of Cambridge, Downing Street, Cambridge, UK
- Department of Biology, Aquatic Ecology Unit, Lund University, Lund, Sweden
| | - Paolo Panizzon
- Department of Biology, University of Padova, Padova, Italy
| | | | - Matteo Griggio
- Department of Biology, University of Padova, Padova, Italy
| | | | - Chiara Morosinotto
- Department of Biology, University of Padova, Padova, Italy
- Bioeconomy Research Team, Novia University of Applied Sciences, Ekenäs, Finland
| |
Collapse
|
38
|
Carrera SC, Sen S, Heistermann M, Lu A, Beehner JC. Low rank and primiparity increase fecal glucocorticoid metabolites across gestation in wild geladas. Gen Comp Endocrinol 2020; 293:113494. [PMID: 32333913 DOI: 10.1016/j.ygcen.2020.113494] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 03/07/2020] [Accepted: 04/21/2020] [Indexed: 11/20/2022]
Abstract
Integrative behavioral ecology requires accurate and non-invasive measures of hormone mediators for the study of wild animal populations. Biologically sensitive assay systems for the measurement of hormones and their metabolites need to be validated for the species and sample medium (e.g. urine, feces, saliva) of interest. Where more than one assay is available for hormone (metabolite) measurement, antibody selection is useful in identifying the assay that tracks changes in an individuaĺs endocrine activity best, i.e., the most biologically sensitive assay. This is particularly important when measuring how glucocorticoids (GCs) respond to the subtle, additive effects of acute stressors during a predictable metabolic challenge, such as gestation. Here, we validate a group-specific enzyme immunoassay, measuring immunoreactive 11β-hydroxyetiocholanolone, for use in a wild primate, geladas (Theropithecus gelada). This group-specific assay produced values correlated with those from a previously validated double-antibody, corticosterone 125I radioimmunoassay. However, the results with the group-specific assay showed a stronger response to an ACTH challenge and identified greater variation in gelada immunoreactive fecal glucocorticoid metabolites (iGCMs) compared with the corticosterone assay, indicating a higher biological sensitivity for assessing adrenocortical activity. We then used the group-specific assay to: (1) determine the normative pattern of iGCM levels across gelada gestation, and (2) identify the ecological, social, and individual factors that influence GC output for pregnant females. Using a general additive mixed model, we found that higher iGCM levels were associated with low rank (compared to high rank) and first time mothers (compared to multiparous mothers). This study highlights the importance of assay selection and the efficacy of group-specific assays for hormonal research in non-invasively collected samples. Additionally, in geladas, our results identify some of the factors that increase GC output over and above the already-elevated GC concentrations associated with gestation. In the burgeoning field of maternal stress, these factors can be examined to identify the effects that GC elevations may have on offspring development.
Collapse
Affiliation(s)
- Sofia C Carrera
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Sharmi Sen
- Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael Heistermann
- Endocrinology Laboratory, German Primate Center, Leibniz Institute for Primate Research, 37077 Göttingen, Germany
| | - Amy Lu
- Department of Anthropology, SUNY Stony Brook, Stony Brook, NY 11794, USA
| | - Jacinta C Beehner
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Anthropology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
39
|
Sheriff MJ, Orrock JL, Ferrari MCO, Karban R, Preisser EL, Sih A, Thaler JS. Proportional fitness loss and the timing of defensive investment: a cohesive framework across animals and plants. Oecologia 2020; 193:273-283. [PMID: 32542471 DOI: 10.1007/s00442-020-04681-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/06/2020] [Indexed: 11/25/2022]
Abstract
The risk of consumption is a pervasive aspect of ecology and recent work has focused on synthesis of consumer-resource interactions (e.g., enemy-victim ecology). Despite this, theories pertaining to the timing and magnitude of defenses in animals and plants have largely developed independently. However, both animals and plants share the common dilemma of uncertainty of attack, can gather information from the environment to predict future attacks and alter their defensive investment accordingly. Here, we present a novel, unifying framework based on the way an organism's ability to defend itself during an attack can shape their pre-attack investment in defense. This framework provides a useful perspective on the nature of information use and variation in defensive investment across the sequence of attack-related events, both within and among species. It predicts that organisms with greater proportional fitness loss if attacked will gather and respond to risk information earlier in the attack sequence, while those that have lower proportional fitness loss may wait until attack is underway. This framework offers a common platform to compare and discuss consumer effects and provides novel insights into the way risk information can propagate through populations, communities, and ecosystems.
Collapse
Affiliation(s)
- Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA, USA.
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, Canada
| | - Richard Karban
- Department of Entomology, University of California, Davis, CA, USA
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | | |
Collapse
|
40
|
Spry E, Moreno-Betancur M, Becker D, Romaniuk H, Carlin JB, Molyneaux E, Howard LM, Ryan J, Letcher P, McIntosh J, Macdonald JA, Greenwood CJ, Thomson KC, McAnally H, Hancox R, Hutchinson DM, Youssef GJ, Olsson CA, Patton GC. Maternal mental health and infant emotional reactivity: a 20-year two-cohort study of preconception and perinatal exposures. Psychol Med 2020; 50:827-837. [PMID: 30968786 DOI: 10.1017/s0033291719000709] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Maternal mental health during pregnancy and postpartum predicts later emotional and behavioural problems in children. Even though most perinatal mental health problems begin before pregnancy, the consequences of preconception maternal mental health for children's early emotional development have not been prospectively studied. METHODS We used data from two prospective Australian intergenerational cohorts, with 756 women assessed repeatedly for mental health problems before pregnancy between age 13 and 29 years, and during pregnancy and at 1 year postpartum for 1231 subsequent pregnancies. Offspring infant emotional reactivity, an early indicator of differential sensitivity denoting increased risk of emotional problems under adversity, was assessed at 1 year postpartum. RESULTS Thirty-seven percent of infants born to mothers with persistent preconception mental health problems were categorised as high in emotional reactivity, compared to 23% born to mothers without preconception history (adjusted OR 2.1, 95% CI 1.4-3.1). Ante- and postnatal maternal depressive symptoms were similarly associated with infant emotional reactivity, but these perinatal associations reduced somewhat after adjustment for prior exposure. Causal mediation analysis further showed that 88% of the preconception risk was a direct effect, not mediated by perinatal exposure. CONCLUSIONS Maternal preconception mental health problems predict infant emotional reactivity, independently of maternal perinatal mental health; while associations between perinatal depressive symptoms and infant reactivity are partially explained by prior exposure. Findings suggest that processes shaping early vulnerability for later mental disorders arise well before conception. There is an emerging case for expanding developmental theories and trialling preventive interventions in the years before pregnancy.
Collapse
Affiliation(s)
- Elizabeth Spry
- Deakin University Geelong, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia
- Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia
| | - Margarita Moreno-Betancur
- Murdoch Children's Research Institute, Clinical Epidemiology & Biostatistics Unit; Melbourne, Australia
- The University of Melbourne, Melbourne School of Population and Global Health, Melbourne, Australia
| | - Denise Becker
- Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia
| | - Helena Romaniuk
- Murdoch Children's Research Institute, Clinical Epidemiology & Biostatistics Unit; Melbourne, Australia
- Deakin University Burwood, Biostatistics Unit, Faculty of Health, Melbourne, Australia
| | - John B Carlin
- Murdoch Children's Research Institute, Clinical Epidemiology & Biostatistics Unit; Melbourne, Australia
- The University of Melbourne, Melbourne School of Population and Global Health, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Emma Molyneaux
- Section of Women's Mental Health, Health Service and Population Research Department, Institute of Psychiatry, Psychology & Neuroscience; King's College London, UK & South London and Maudsley NHS Foundation Trust, UK
| | - Louise M Howard
- Section of Women's Mental Health, Health Service and Population Research Department, Institute of Psychiatry, Psychology & Neuroscience; King's College London, UK & South London and Maudsley NHS Foundation Trust, UK
| | - Joanne Ryan
- Monash University, School of Public Health and Preventive Medicine, Melbourne, Australia
| | - Primrose Letcher
- Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Jennifer McIntosh
- Deakin University Geelong, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia
| | - Jacqui A Macdonald
- Deakin University Geelong, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia
- Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Christopher J Greenwood
- Deakin University Geelong, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia
- Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia
| | - Kimberley C Thomson
- Deakin University Geelong, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - Helena McAnally
- Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | - Robert Hancox
- Department of Preventive and Social Medicine, University of Otago, Dunedin, New Zealand
| | - Delyse M Hutchinson
- Deakin University Geelong, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia
- Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Australia
- National Drug and Alcohol Research Centre, Faculty of Medicine, University of New South Wales, Australia
| | - George J Youssef
- Deakin University Geelong, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia
- Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia
| | - Craig A Olsson
- Deakin University Geelong, Centre for Social and Early Emotional Development, School of Psychology, Faculty of Health, Geelong, Australia
- Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Australia
| | - George C Patton
- Murdoch Children's Research Institute, Centre for Adolescent Health, Melbourne, Australia
- Department of Paediatrics, The University of Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Wassink L, Huerta B, Li W, Scribner K. Interaction of egg cortisol and offspring experience influences stress-related behaviour and physiology in lake sturgeon. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
42
|
Warriner TR, Semeniuk CAD, Pitcher TE, Love OP. Exposure to exogenous egg cortisol does not rescue juvenile Chinook salmon body size, condition, or survival from the effects of elevated water temperatures. Ecol Evol 2020; 10:2466-2477. [PMID: 32184994 PMCID: PMC7069292 DOI: 10.1002/ece3.6073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Climate change is leading to altered temperature regimes which are impacting aquatic life, particularly for ectothermic fish. The impacts of environmental stress can be translated across generations through maternally derived glucocorticoids, leading to altered offspring phenotypes. Although these maternal stress effects are often considered negative, recent studies suggest this maternal stress signal may prepare offspring for a similarly stressful environment (environmental match). We applied the environmental match hypothesis to examine whether a prenatal stress signal can dampen the effects of elevated water temperatures on body size, condition, and survival during early development in Chinook salmon Oncorhynchus tshawytscha from Lake Ontario, Canada. We exposed fertilized eggs to prenatal exogenous egg cortisol (1,000 ng/ml cortisol or 0 ng/ml control) and then reared these dosed groups at temperatures indicative of current (+0°C) and future (+3°C) temperature conditions. Offspring reared in elevated temperatures were smaller and had a lower survival at the hatchling developmental stage. Overall, we found that our exogenous cortisol dose did not dampen effects of elevated rearing temperatures (environmental match) on body size or early survival. Instead, our eyed stage survival indicates that our prenatal cortisol dose may be detrimental, as cortisol-dosed offspring raised in elevated temperatures had lower survival than cortisol-dosed and control reared in current temperatures. Our results suggest that a maternal stress signal may not be able to ameliorate the effects of thermal stress during early development. However, we highlight the importance of interpreting the fitness impacts of maternal stress within an environmentally relevant context.
Collapse
Affiliation(s)
- Theresa R. Warriner
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
| | - Christina A. D. Semeniuk
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
| | - Trevor E. Pitcher
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
| | - Oliver P. Love
- Great Lakes Institute for Environmental ResearchUniversity of WindsorWindsorOntarioCanada
- Department of Integrative BiologyUniversity of WindsorWindsorOntarioCanada
| |
Collapse
|
43
|
Harris BN. Stress hypothesis overload: 131 hypotheses exploring the role of stress in tradeoffs, transitions, and health. Gen Comp Endocrinol 2020; 288:113355. [PMID: 31830473 DOI: 10.1016/j.ygcen.2019.113355] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Stress is ubiquitous and thus, not surprisingly, many hypotheses and models have been created to better study the role stress plays in life. Stress spans fields and is found in the literature of biology, psychology, psychophysiology, sociology, economics, and medicine, just to name a few. Stress, and the hypothalamic-pituitaryadrenal/interrenal (HPA/I) axis and sympathetic nervous system (SNS), are involved in a multitude of behaviors and physiological processes, including life-history and ecological tradeoffs, developmental transitions, health, and survival. The goal of this review is to highlight and summarize the large number of available hypotheses and models, to aid in comparative and interdisciplinary thinking, and to increase reproducibility by a) discouraging hypothesizing after results are known (HARKing) and b) encouraging a priori hypothesis testing. For this review I collected 214 published hypotheses or models dealing broadly with stress. In the main paper, I summarized and categorized 131 of those hypotheses and models which made direct connections among stress and/or HPA/I and SNS, tradeoffs, transitions, and health. Of those 131, the majority made predictions about reproduction (n = 43), the transition from health to disease (n = 38), development (n = 23), and stress coping (n = 18). Additional hypotheses were classified as stage-spanning or models (n = 37). The additional 83 hypotheses found during searches were tangentially related, or pertained to immune function or oxidative stress, and these are listed separately. Many of the hypotheses share underlying rationale and suggest similar, if not identical, predictions, and are thus not mutually exclusive; some hypotheses spanned classification categories. Some of the hypotheses have been tested multiple times, whereas others have only been examined a few times. It is the hope that multi-disciplinary stress researchers will begin to harmonize their naming of hypotheses in the literature so as to build a clearer picture of how stress impacts various outcomes across fields. The paper concludes with some considerations and recommendations for robust testing of stress hypotheses.
Collapse
Affiliation(s)
- Breanna N Harris
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States.
| |
Collapse
|
44
|
Bowers EK, Thompson CF, Bowden RM, Sakaluk SK. Posthatching Parental Care and Offspring Growth Vary with Maternal Corticosterone Level in a Wild Bird Population. Physiol Biochem Zool 2020; 92:496-504. [PMID: 31393208 DOI: 10.1086/705123] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Corticosterone is the primary metabolic steroid in birds and is vital for maintaining homeostasis. However, the relationship between baseline corticosterone and reproduction is unclear, and we lack an understanding of how differences in baseline corticosterone at one stage of the breeding cycle influence reproductive effort at later stages. In a wild population of house wrens, we quantified the concentration of corticosterone in yolks of freshly laid eggs as an integrated measure of maternal physiology and related this to a behavioral measure of stress reactivity made during the nestling period, namely, the latency with which females resumed parental activities following a standardized disturbance at their nest (setting up a camera to record provisioning). Females that recently produced eggs containing higher corticosterone concentrations, which were significantly repeatable within females, took longer to resume activity related to parental care (i.e., feeding and brooding young) following the disturbance. Moreover, a female's latency to resume parental activities negatively predicted her provisioning of nestlings with food and the condition of these young at fledging but did not predict the number fledged. We cross-fostered offspring prior to hatching so these effects on maternal behavior are independent of any prenatal maternal effects on nestlings via the egg. These results are consistent with earlier findings, suggesting that females with higher baseline corticosterone during egg laying or early incubation tend to prioritize self-maintenance over reproduction compared with females with lower baseline corticosterone and suggest that a female's latency to return to her nest and resume parental care following a disturbance might represent a simple, functional measure of maternal stress reactivity.
Collapse
|
45
|
Dantzer B, van Kesteren F, Westrick SE, Boutin S, McAdam AG, Lane JE, Gillespie R, Majer A, Haussmann MF, Monaghan P. Maternal glucocorticoids promote offspring growth without inducing oxidative stress or shortening telomeres in wild red squirrels. J Exp Biol 2020; 223:jeb212373. [PMID: 31796605 PMCID: PMC10668338 DOI: 10.1242/jeb.212373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/26/2019] [Indexed: 12/26/2022]
Abstract
Elevations in glucocorticoid (GC) levels in breeding females may induce adaptive shifts in offspring life histories. Offspring produced by mothers with elevated GCs may be better prepared to face harsh environments, where a faster pace of life is beneficial. We examined how experimentally elevated GCs in pregnant or lactating North American red squirrels (Tamiasciurus hudsonicus) affected offspring postnatal growth, structural size and oxidative stress levels (two antioxidants and oxidative protein damage) in three different tissues (blood, heart and liver) and liver telomere lengths. We predicted that offspring from mothers treated with GCs would grow faster but would also have higher levels of oxidative stress and shorter telomeres, which may predict reduced longevity. Offspring from mothers treated with GCs during pregnancy were 8.3% lighter around birth but grew (in body mass) 17.0% faster than those from controls, whereas offspring from mothers treated with GCs during lactation grew 34.8% slower than those from controls and did not differ in body mass around birth. Treating mothers with GCs during pregnancy or lactation did not alter the oxidative stress levels or telomere lengths of their offspring. Fast-growing offspring from any of the treatment groups did not have higher oxidative stress levels or shorter telomere lengths, indicating that offspring that grew faster early in life did not exhibit oxidative costs after this period of growth. Our results indicate that elevations in maternal GCs may induce plasticity in offspring growth without long-term oxidative costs to the offspring that might result in a shortened lifespan.
Collapse
Affiliation(s)
- Ben Dantzer
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Freya van Kesteren
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah E Westrick
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stan Boutin
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9
| | - Andrew G McAdam
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, Canada, N1G 2W1
| | - Jeffrey E Lane
- Department of Biology, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Robert Gillespie
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - Ariana Majer
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Mark F Haussmann
- Department of Biology, Bucknell University, Lewisburg, PA 17837, USA
| | - Pat Monaghan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
46
|
Öst M, Noreikiene K, Angelier F, Jaatinen K. Sex-specific effects of the in ovo environment on early-life phenotypes in eiders. Oecologia 2019; 192:43-54. [PMID: 31786666 PMCID: PMC6974505 DOI: 10.1007/s00442-019-04569-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Maternal effects affect offspring phenotype and fitness. However, the roles of offspring sex-specific sensitivity to maternal glucocorticoids and sex-biased maternal investment remain unclear. It is also uncertain whether telomere length (a marker associated with lifespan) depends on early growth in a sex-specific manner. We assessed whether maternal traits including corticosterone (CORT; the main avian glucocorticoid) and in ovo growth rate are sex-specifically related to offspring CORT exposure, relative telomere length (RTL) and body condition in eiders (Somateria mollissima). We measured feather CORT (fCORT), RTL and body condition of newly hatched ducklings, and growth rate in ovo was expressed as tarsus length at hatching per incubation duration. Maternal traits included baseline plasma CORT, RTL, body condition and breeding experience. We found that fCORT was negatively associated with growth rate in daughters, while it showed a positive association in sons. Lower offspring fCORT was associated with higher maternal baseline plasma CORT, and fCORT was higher in larger clutches and in those hatching later. The RTL of daughters was negatively associated with maternal RTL, whereas that of males was nearly independent of maternal RTL. Higher fCORT in ovo was associated with longer RTL at hatching in both sexes. Duckling body condition was mainly explained by egg weight, and sons had a slightly lower body condition. Our correlational results suggest that maternal effects may have heterogeneous and even diametrically opposed effects between the sexes during early development. Our findings also challenge the view that prenatal CORT exposure is invariably associated with shorter telomeres.
Collapse
Affiliation(s)
- Markus Öst
- Environmental and Marine Biology, Åbo Akademi University, Turku, Finland. .,Novia University of Applied Sciences, Ekenäs, Finland.
| | - Kristina Noreikiene
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi tn. 46, Tartu, Estonia
| | - Frederic Angelier
- Centre d'Etudes Biologiques de Chizé, CNRS, La Rochelle Université, UMR 7372, Villiers en Bois, France
| | - Kim Jaatinen
- Nature and Game Management Trust Finland, Degerby, Finland
| |
Collapse
|
47
|
Donelan SC, Hellmann JK, Bell AM, Luttbeg B, Orrock JL, Sheriff MJ, Sih A. Transgenerational Plasticity in Human-Altered Environments. Trends Ecol Evol 2019; 35:115-124. [PMID: 31706627 DOI: 10.1016/j.tree.2019.09.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 01/04/2023]
Abstract
Our ability to predict how species will respond to human-induced rapid environmental change (HIREC) may depend upon our understanding of transgenerational plasticity (TGP), which occurs when environments experienced by previous generations influence phenotypes of subsequent generations. TGP evolved to help organisms cope with environmental stressors when parental environments are highly predictive of offspring environments. HIREC can alter conditions that favored TGP in historical environments by reducing parents' ability to detect environmental conditions, disrupting previous correlations between parental and offspring environments, and interfering with the transmission of parental cues to offspring. Because of the propensity to produce errors in these processes, TGP will likely generate negative fitness outcomes in response to HIREC, though beneficial fitness outcomes may occur in some cases.
Collapse
Affiliation(s)
- Sarah C Donelan
- Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA
| | - Jennifer K Hellmann
- Department of Evolution, Ecology and Behavior, Carl R. Woese Institute for Genomic Biology, Program in Neuroscience, Program in Ecology, Evolution and Conservation, University of Illinois, Urbana Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA.
| | - Alison M Bell
- Department of Evolution, Ecology and Behavior, Carl R. Woese Institute for Genomic Biology, Program in Neuroscience, Program in Ecology, Evolution and Conservation, University of Illinois, Urbana Champaign, 505 South Goodwin Avenue, Urbana, IL 61801, USA
| | - Barney Luttbeg
- Department of Integrative Biology, 501 Life Sciences West, Oklahoma State University, Stillwater, OK 74078, USA
| | - John L Orrock
- Department of Integrative Biology, 145 Noland Hall, 250 North Mills Street, University of Wisconsin, Madison, WI 53706, USA
| | - Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA 02747, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
48
|
Lavergne S, Smith K, Kenney A, Krebs C, Palme R, Boonstra R. Physiology and behaviour of juvenile snowshoe hares at the start of the 10-year cycle. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2019.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Owen DAS, Sheriff MJ, Heppner JJ, Gerke H, Ensminger DC, MacLeod KJ, Langkilde T. Maternal corticosterone increases thermal sensitivity of heart rate in lizard embryos. Biol Lett 2019; 15:20180718. [PMID: 30958207 DOI: 10.1098/rsbl.2018.0718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
While it is well established that maternal stress hormones, such as corticosterone (CORT), can induce transgenerational phenotypic plasticity, few studies have addressed the influence of maternal CORT on pre-natal life stages. We tested the hypothesis that experimentally increased CORT levels of gravid female eastern fence lizards ( Sceloporus undulatus) would alter within-egg embryonic phenotype, particularly heart rates. We found that embryos from CORT-treated mothers had heart rates that increased faster with increasing temperature, resulting in higher heart rates at developmentally relevant temperatures but similar heart rates at maintenance relevant temperatures, compared with embryos of control mothers. Thus, maternal CORT appears to alter the physiology of pre-natal offspring. This may speed development and decrease the amount of time spent in eggs, the most vulnerable stage of life.
Collapse
Affiliation(s)
- Dustin A S Owen
- 1 Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University , University Park, PA 16802 , USA.,2 Department of Ecosystem Science and Management, The Pennsylvania State University , University Park, PA 16802 , USA.,3 Department of Biology, The Pennsylvania State University , University Park, PA 16802 , USA
| | - Michael J Sheriff
- 2 Department of Ecosystem Science and Management, The Pennsylvania State University , University Park, PA 16802 , USA
| | - Jennifer J Heppner
- 2 Department of Ecosystem Science and Management, The Pennsylvania State University , University Park, PA 16802 , USA
| | - Hannah Gerke
- 4 Warnell School of Forestry and Natural Resources, University of Georgia , Athens, GA 30602 , USA
| | - David C Ensminger
- 2 Department of Ecosystem Science and Management, The Pennsylvania State University , University Park, PA 16802 , USA.,3 Department of Biology, The Pennsylvania State University , University Park, PA 16802 , USA
| | - Kirsty J MacLeod
- 2 Department of Ecosystem Science and Management, The Pennsylvania State University , University Park, PA 16802 , USA.,3 Department of Biology, The Pennsylvania State University , University Park, PA 16802 , USA
| | - Tracy Langkilde
- 1 Intercollege Graduate Degree Program in Ecology, The Pennsylvania State University , University Park, PA 16802 , USA.,3 Department of Biology, The Pennsylvania State University , University Park, PA 16802 , USA
| |
Collapse
|
50
|
Lu A, Petrullo L, Carrera S, Feder J, Schneider-Crease I, Snyder-Mackler N. Developmental responses to early-life adversity: Evolutionary and mechanistic perspectives. Evol Anthropol 2019; 28:249-266. [PMID: 31498945 DOI: 10.1002/evan.21791] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/28/2019] [Accepted: 06/11/2019] [Indexed: 02/06/2023]
Abstract
Adverse ecological and social conditions during early life are known to influence development, with rippling effects that may explain variation in adult health and fitness. The adaptive function of such developmental plasticity, however, remains relatively untested in long-lived animals, resulting in much debate over which evolutionary models are most applicable. Furthermore, despite the promise of clinical interventions that might alleviate the health consequences of early-life adversity, research on the proximate mechanisms governing phenotypic responses to adversity have been largely limited to studies on glucocorticoids. Here, we synthesize the current state of research on developmental plasticity, discussing both ultimate and proximate mechanisms. First, we evaluate the utility of adaptive models proposed to explain developmental responses to early-life adversity, particularly for long-lived mammals such as humans. In doing so, we highlight how parent-offspring conflict complicates our understanding of whether mothers or offspring benefit from these responses. Second, we discuss the role of glucocorticoids and a second physiological system-the gut microbiome-that has emerged as an additional, clinically relevant mechanism by which early-life adversity can influence development. Finally, we suggest ways in which nonhuman primates can serve as models to study the effects of early-life adversity, both from evolutionary and clinical perspectives.
Collapse
Affiliation(s)
- Amy Lu
- Department of Anthropology, Stony Brook University, Stony Brook, New York
| | - Lauren Petrullo
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - Sofia Carrera
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| | - Jacob Feder
- Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, New York
| | - India Schneider-Crease
- Department of Anthropology, Stony Brook University, Stony Brook, New York.,Department of Psychology, University of Washington, Seattle, Washington
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, Washington.,Center for Studies in Demography and Ecology, University of Washington, Seattle, Washington
| |
Collapse
|