1
|
Su Z, Hu Q, Li X, Wang Z, Xie Y. The Influence of Circadian Rhythms on DNA Damage Repair in Skin Photoaging. Int J Mol Sci 2024; 25:10926. [PMID: 39456709 PMCID: PMC11507642 DOI: 10.3390/ijms252010926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/29/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Circadian rhythms, the internal timekeeping systems governing physiological processes, significantly influence skin health, particularly in response to ultraviolet radiation (UVR). Disruptions in circadian rhythms can exacerbate UVR-induced skin damage and increase the risk of skin aging and cancer. This review explores how circadian rhythms affect various aspects of skin physiology and pathology, with a special focus on DNA repair. Circadian regulation ensures optimal DNA repair following UVR-induced damage, reducing mutation accumulation, and enhancing genomic stability. The circadian control over cell proliferation and apoptosis further contributes to skin regeneration and response to UVR. Oxidative stress management is another critical area where circadian rhythms exert influence. Key circadian genes like brain and muscle ARNT-like 1 (BMAL1) and circadian locomotor output cycles kaput (CLOCK) modulate the activity of antioxidant enzymes and signaling pathways to protect cells from oxidative stress. Circadian rhythms also affect inflammatory and immune responses by modulating the inflammatory response and the activity of Langerhans cells and other immune cells in the skin. In summary, circadian rhythms form a complex defense network that manages UVR-induced damage through the precise regulation of DNA damage repair, cell proliferation, apoptosis, inflammatory response, oxidative stress, and hormonal signaling. Understanding these mechanisms provides insights into developing targeted skin protection and improving skin cancer prevention.
Collapse
Affiliation(s)
- Zhi Su
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Qianhua Hu
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Xiang Li
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Zirun Wang
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| | - Ying Xie
- Key Laboratory of Molecular Epidemiology of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
2
|
Liu Y, Kwan MP. Mobility-oriented measurements of people's exposure to outdoor artificial light at night (ALAN) and the uncertain geographic context problem (UGCoP). PLoS One 2024; 19:e0298869. [PMID: 38669246 PMCID: PMC11051611 DOI: 10.1371/journal.pone.0298869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 02/01/2024] [Indexed: 04/28/2024] Open
Abstract
Advanced nighttime light (NTL) remote sensing techniques enable the large-scope epidemiological investigations of people's exposure to outdoor artificial light at night (ALAN) and its health effects. However, multiple uncertainties remain in the measurements of people's exposure to outdoor ALAN, including the representations of outdoor ALAN, the contextual settings of exposure measurements, and measurement approaches. Non-exposed but included outdoor ALAN and causally irrelevant outdoor ALAN may manifest as contextual errors, and these uncertain contextual errors may lead to biased measurements and erroneous interpretations when modeling people's health outcomes. In this study, we systematically investigated outdoor ALAN exposure measurements in different geographic contexts using either residence-based or mobility-oriented measurements, different spatial scales, and multiple NTL data sources. Based on the GPS data collected from 208 participants in Hong Kong, outdoor ALAN exposures were measured from NTL imagery at 10 m, 130 m, and 500 m spatial resolutions using in-situ methods or 100 m, 300 m, and 500 m buffer zone averaging. Descriptive analysis, multiple t-tests, and logistic regression were employed to examine the differences between outdoor ALAN exposure measurements using various contextual settings and their effects on modeling people's overall health. Our results confirmed that different contextual settings may lead to significantly different outdoor ALAN exposure measurements. Our results also confirmed that contextual errors may lead to erroneous conclusions when using improper contextual settings to model people's overall health. Consequentially, we suggest measuring people's exposure to outdoor ALAN using the mobility-oriented approach, NTL representation with the high spatial resolution, and a very small buffer zone as a contextual unit to derive outdoor ALAN exposure. This study articulates essential methodological issues induced by uncertainties in outdoor ALAN exposure measurements and can provide essential implications and suggestions for a broad scope of studies that need accurate outdoor ALAN exposure measurements.
Collapse
Affiliation(s)
- Yang Liu
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region of China
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region of China
| | - Mei-Po Kwan
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region of China
- Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region of China
- Institute of Future Cities, The Chinese University of Hong Kong, Hong Kong, Special Administrative Region of China
| |
Collapse
|
3
|
Borisenkov MF, Dorogina OI, Popov SV, Smirnov VV, Pecherkina AA, Symaniuk EE. The Positive Association between Melatonin-Containing Food Consumption and Older Adult Life Satisfaction, Psychoemotional State, and Cognitive Function. Nutrients 2024; 16:1064. [PMID: 38613097 PMCID: PMC11013436 DOI: 10.3390/nu16071064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
The purpose of this study was to test the hypothesis that melatonin-containing food (FMT) consumption is associated with a better sleep schedule and cognitive and psychoemotional state in older adults. A cross-sectional study of 557 (79% females) older adults living in the community with a mean age of 68.9 ± 7.7, ranging from 50 to 90 years, was conducted. The study, conducted in May and September 2023 using a face-to-face interview, collected personal data and assessed FMT intake during the day (FMTday) and for dinner (FMTdinner), life satisfaction, positive and negative affect, depression severity, cognitive functions, and sleep characteristics. Multiple regression and logistic regression analysis, adjusted for co-factors, were used to assess the association between the studied indicators. Multiple regression analysis showed that older adults with higher FMT consumption are more satisfied with life (FMTdinner: β = 0.107; ∆R2 = 0.011; p = 0.020), have a lower level of depression (FMTday: β = -0.124; ∆R2 = 0.015; p = 0.003), and higher scores in positive affect (FMTday: β = 0.169; ∆R2 = 0.016; p = 0.007; FMTdinner: β = 0.136; ∆R2 = 0.019; p = 0.003). Logistic regression analysis showed that older adults with higher FMT consumption are less likely to have depression (FMTday: OR, 0.614; 95% CI, 0.436-0.864; p = 0.005; FMTdinner: OR, 0.671; 95% CI, 0.476-0.945; p = 0.023), and they perform better on logical thinking tests (FMTday: OR, 2.066; 95% CI, 1.131-2.204; p = 0.013; FMTdinner: OR, 1.887; 95% CI, 1.183-2.138; p = 0.033). A greater life satisfaction as well as a decrease in the cognitive impairment and psychoemotional state of older adults is associated with a higher consumption of melatonin-containing foods.
Collapse
Affiliation(s)
- Mikhail F. Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre Komi Science Centre, Urals Branch of the Russian Academy of Sciences, 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia; (S.V.P.); (V.V.S.)
| | - Olga I. Dorogina
- Ural Institute of Humanities, Ural Federal University, 51 Lenina Str., 620000 Yekaterinburg, Russia; (A.A.P.); (E.E.S.)
| | - Sergey V. Popov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre Komi Science Centre, Urals Branch of the Russian Academy of Sciences, 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia; (S.V.P.); (V.V.S.)
| | - Vasily V. Smirnov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of Federal Research Centre Komi Science Centre, Urals Branch of the Russian Academy of Sciences, 50 Pervomaiskaya Str., 167982 Syktyvkar, Russia; (S.V.P.); (V.V.S.)
| | - Anna A. Pecherkina
- Ural Institute of Humanities, Ural Federal University, 51 Lenina Str., 620000 Yekaterinburg, Russia; (A.A.P.); (E.E.S.)
| | - Elvira E. Symaniuk
- Ural Institute of Humanities, Ural Federal University, 51 Lenina Str., 620000 Yekaterinburg, Russia; (A.A.P.); (E.E.S.)
| |
Collapse
|
4
|
Rabiei M, Masoumi SJ, Haghani M, Nematolahi S, Rabiei R, Mortazavi SMJ. Do blue light filter applications improve sleep outcomes? A study of smartphone users' sleep quality in an observational setting. Electromagn Biol Med 2024; 43:107-116. [PMID: 38461462 DOI: 10.1080/15368378.2024.2327432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/03/2024] [Indexed: 03/12/2024]
Abstract
Exposure to blue light at bedtime, suppresses melatonin secretion, postponing the sleep onset and interrupting the sleep process. Some smartphone manufacturers have introduced night-mode functions, which have been claimed to aid in improving sleep quality. In this study, we evaluate the impact of blue light filter application on decreasing blue light emissions and improving sleep quality. Participants in this study recorded the pattern of using their mobile phones through a questionnaire. In order to evaluate sleep quality, we used a PSQI questionnaire. Blue light filters were used by 9.7% of respondents, 9.7% occasionally, and 80% never. The mean score of PSQI was more than 5 in 54.10% of the participants and less than 5 in 45.90%. ANOVA test was performed to assess the relationship between using blue light filter applications and sleep quality (p-value = 0.925). The findings of this study indicate a connection between the use of blue light filter apps and habitual sleep efficiency in the 31-40 age group. However, our results align only to some extent with prior research, as we did not observe sustained positive effects on all parameters of sleep quality from the long-term use of blue light filtering apps. Several studies have found that blue light exposure can suppress melatonin secretion, exacerbating sleep problems. Some studies have reported that physical blue light filters, such as lenses, can affect melatonin secretion and improve sleep quality. However, the impact of blue light filtering applications remains unclear and debatable.
Collapse
Affiliation(s)
- Marziye Rabiei
- Student Research Committee, Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| | - Seyed Jalil Masoumi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Science, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Center for Cohort Study of SUMS Employees' Health, Shiraz University of Medical Science, Shiraz, Iran
| | - Masoud Haghani
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samaneh Nematolahi
- Non-Communicable Diseases Research Center, Bam University of Medical Sciences, Bam, Iran
| | - Reza Rabiei
- Educational science expert, Department of Education, Bushehr, Iran
| | - Seyed Mohammad Javad Mortazavi
- Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Physics and Engineering, School of Medicine, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
5
|
Miller S, Cajochen C, Green A, Hanifin J, Huss A, Karipidis K, Loughran S, Oftedal G, O'Hagan J, Sliney DH, Croft R, van Rongen E, Cridland N, d'Inzeo G, Hirata A, Marino C, Röösli M, Watanabe S. ICNIRP Statement on Short Wavelength Light Exposure from Indoor Artificial Sources and Human Health. HEALTH PHYSICS 2024; 126:241-248. [PMID: 38381972 DOI: 10.1097/hp.0000000000001790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
ABSTRACT Concerns have been raised about the possibility of effects from exposure to short wavelength light (SWL), defined here as 380-550 nm, on human health. The spectral sensitivity of the human circadian timing system peaks at around 480 nm, much shorter than the peak sensitivity of daytime vision (i.e., 555 nm). Some experimental studies have demonstrated effects on the circadian timing system and on sleep from SWL exposure, especially when SWL exposure occurs in the evening or at night. The International Commission on Non-Ionizing Radiation Protection (ICNIRP) has identified a lack of consensus among public health officials regarding whether SWL from artificial sources disrupts circadian rhythm, and if so, whether SWL-disrupted circadian rhythm is associated with adverse health outcomes. Systematic reviews of studies designed to examine the effects of SWL on sleep and human health have shown conflicting results. There are many variables that can affect the outcome of these experimental studies. One of the main problems in earlier studies was the use of photometric quantities as a surrogate for SWL exposure. Additionally, the measurement of ambient light may not be an accurate measure of the amount of light impinging on the intrinsically photosensitive retinal ganglion cells, which are now known to play a major role in the human circadian timing system. Furthermore, epidemiological studies of long-term effects of chronic SWL exposure per se on human health are lacking. ICNIRP recommends that an analysis of data gaps be performed to delineate the types of studies needed, the parameters that should be addressed, and the methodology that should be applied in future studies so that a decision about the need for exposure guidelines can be made. In the meantime, ICNIRP supports some recommendations for how the quality of future studies might be improved.
Collapse
Affiliation(s)
| | - Christian Cajochen
- ICNIRP SEG and Centre for Chronobiology at the University of Basel, Switzerland
| | - Adele Green
- ICNIRP SEG and QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | - Anke Huss
- ICNIRP and Institute for Risk Assessment Sciences (IRAS) at Utrecht University, The Netherlands
| | - Ken Karipidis
- ICNIRP and Australian Radiation Protection and Nuclear Safety Authority (ARPANSA)
| | - Sarah Loughran
- ICNIRP SEG and Australian Radiation Protection and Nuclear Safety Authority (ARPANSA)
| | - Gunnhild Oftedal
- ICNIRP and Norwegian University of Science and Technology (NTNU)
| | - John O'Hagan
- ICNIRP SEG and Public Health England, United Kingdom
| | | | - Rodney Croft
- ICNIRP and Australian Centre for Electromagnetic Bioeffects Research, Illawarra Health & Medical Research Institute, University of Wollongong, Australia
| | | | | | | | | | - Carmela Marino
- ICNIRP and formerly Agency for New Technologies, Energy and Sustainable Economic Development (ENEA), Italy
| | - Martin Röösli
- ICNIRP and Swiss Tropical and Public Health Institute, Switzerland
| | - Soichi Watanabe
- ICNIRP and National Institute of Information and Communications Technology (NICT), Japan
| |
Collapse
|
6
|
Stefanopoulou M, Ruhé N, Portengen L, van Wel L, Vrijkotte TGM, Vermeulen R, Huss A. Associations of light exposure patterns with sleep among Dutch children: The ABCD cohort study. J Sleep Res 2024:e14184. [PMID: 38410057 DOI: 10.1111/jsr.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 02/13/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Light exposure affects the circadian system and consequently can affect sleep quality. Only few studies examined this relationship in children. We evaluated associations between light exposure patterns and sleep metrics in children. We measured the sleep parameters of 247 Dutch children, aged between 11 and 13 years and recruited from the ABCD cohort, using actigraphy and sleep records for 7 consecutive nights. Personal light exposures were measured with a light meter during the whole day and night. We applied generalized mixed-effects regression models, adjusted for possible confounders, to evaluate the associations of light exposure patterns on sleep duration, sleep efficiency and sleep-onset delay. In the models mutually adjusted for potential confounders, we found the amount of hours between the first time of bright light in the morning and going to sleep and the duration of bright light to be significantly associated with decreased sleep duration (in min; β: -2.02 [95% confidence interval: -3.84, -0.25], β: -8.39 [95% confidence interval: -16.70, -0.07], respectively) and with shorter sleep-onset delay (odds ratio: 0.88 [95% confidence interval: 0.80, 0.97], odds ratio: 0.40 [95% confidence interval: 0.19, 0.87], respectively). Increased light intensities at night were associated with decreased sleep duration (T2 β: -8.54 [95% confidence interval: -16.88, -0.20], T3 β: -14.83 [95% confidence interval: -28.04, -1.62]), while increased light intensities before going to bed were associated with prolonged sleep onset (odds ratio: 4.02 [95% confidence interval: 2.09, 7.73]). These findings further suggest that children may be able to influence their sleep quality by influencing the light exposure patterns during day and night.
Collapse
Affiliation(s)
| | - Naomi Ruhé
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Luuk van Wel
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Tanja G M Vrijkotte
- Department of Public and Occupational Health, Amsterdam Public Health Research Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- Julius Centre for Health Sciences and Primary Care, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Anke Huss
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
7
|
Grant LK, Gooley JJ, St Hilaire MA, Joffe H, Brainard GC, Van Reen E, Rüger M, Rajaratnam SMW, Lockley SW, Czeisler CA, Rahman SA. A pilot study of light exposure as a countermeasure for menstrual phase-dependent neurobehavioral performance impairment in women. Sleep Health 2024; 10:S34-S40. [PMID: 37748973 PMCID: PMC10959759 DOI: 10.1016/j.sleh.2023.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/15/2023] [Accepted: 08/17/2023] [Indexed: 09/27/2023]
Abstract
OBJECTIVE To examine effects of menstrual phase and nighttime light exposure on subjective sleepiness and auditory Psychomotor Vigilance Task performance. METHODS Twenty-nine premenopausal women (12 =Follicular; 17 =Luteal) completed a 6.5-hour nighttime monochromatic light exposure with varying wavelengths (420-620 nm) and irradiances (1.03-14.12 µW/cm2). Subjective sleepiness, reaction time, and attentional lapses were compared between menstrual phases in women with minimal (<33%) or substantial (≥33%) light-induced melatonin suppression. RESULTS When melatonin was not suppressed, women in the follicular phase had significantly worse reaction time (mean difference=145.1 ms, 95% CI 51.8-238.3, p < .001, Cohen's D=1.9) and lapses (mean difference=12.9 lapses, 95% CI 4.37-21.41, p < .001, Cohen's D=1.7) compared to women in the luteal phase. When melatonin was suppressed, women in the follicular phase had significantly better reaction time (mean difference=152.1 ms, 95% CI 43.88-260.3, p < .001, Cohen's D=1.7) and lapses (mean difference=12.3 lapses, 95% CI 1.14-25.6, p < .01, Cohen's D=1.6) compared to when melatonin was not suppressed, such that their performance was not different (p > .9) from women in the luteal phase. Subjective sleepiness did not differ by menstrual phase (mean difference=0.6, p > .08) or melatonin suppression (mean difference=0.2, p > .4). CONCLUSIONS Nighttime light exposure sufficient to suppress melatonin can also mitigate neurobehavioral performance deficits associated with the follicular phase. Despite the relatively small sample size, these data suggest that nighttime light may be a valuable strategy to help reduce errors and accidents in female shift workers.
Collapse
Affiliation(s)
- Leilah K Grant
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
| | - Joshua J Gooley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Melissa A St Hilaire
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Department of Computer and Data Sciences, School of Science and Engineering, Merrimack College, North Andover, Massachusetts, USA
| | - Hadine Joffe
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA; Mary Horrigan Connors Center for Women's Health and Gender Biology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Women's Hormones and Aging Research Program, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - George C Brainard
- Department of Neurology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Eliza Van Reen
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Melanie Rüger
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Shantha M W Rajaratnam
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Steven W Lockley
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles A Czeisler
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Shadab A Rahman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA; Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Luo Z, Liu Z, Chen H, Liu Y, Tang N, Li H. Light at night exposure and risk of breast cancer: a meta-analysis of observational studies. Front Public Health 2023; 11:1276290. [PMID: 38106885 PMCID: PMC10722424 DOI: 10.3389/fpubh.2023.1276290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 11/01/2023] [Indexed: 12/19/2023] Open
Abstract
Objective The aim of this meta-analysis is to evaluate the impact of light at night (LAN) exposure on the risk of breast cancer across varying factors. Method We conducted a systematic search of literature up to July 15, 2023, including PubMed, Cochrane Library, and Embase databases, using keywords related to breast cancer and LAN exposure. Cohort study and case-control study literature on night light exposure and breast cancer risk were included. Statistical analyses were performed using Stata software version 17.0. To address heterogeneity among different studies, we employed a random-effects model for analysis and assessed publication bias using funnel plots and Egger's test. Results We included 13 case-control and 8 cohort studies with 734,372 participants worldwide. In the Newcastle-Ottawa Scale (NOS) assessments, the average score was 7.43 (ranging from 5 to 9). The overall meta-analysis demonstrated a significant association between exposure to LAN and risk of breast cancer (RR = 1.12; 95% CI: 1.06-1.17; I2 = 31.3%, p < 0.001). In the subgroup analysis, the results of the analysis for study types (case-control studies: RR = 1.16; 95% CI: 1.06-1.27; I2 = 40.4%, p = 0.001; cohort studies: RR = 1.08; 95% CI: 1.04-1.14; I2 = 0.0%, p < 0.001) and the results for light exposure types (outdoor LAN: RR = 1.07; 95% CI: 1.02-1.13; I2 = 30.9%, p = 0.004) are presented. In the analysis conducted for continents, the highest breast cancer risk was observed in the Asian population (Asian: RR = 1.24; 95% CI: 1.15-1.34; I2 = 0.0%, p < 0.001) and in the analysis of estrogen receptor status (ER+: RR = 1.10; 95% CI: 1.03-1.18; I2 = 17.0%, p = 0.005;). We also conducted an analysis on menopausal status and various lifestyles but did not find any statistically significant findings. Conclusion Our study demonstrates that LAN exposure is associated with an increased risk of breast cancer, particularly in the Asian population. Among the existing hypotheses, the idea that LAN exposure leads to a decrease in melatonin is widely accepted. However, until the mechanism of this effect is clearly elucidated, it is not recommended to take melatonin supplements for breast cancer prevention without medical advice. We hope to conduct more high-quality research, especially concerning the investigation of other environmental confounding factors, to further advance this field.
Collapse
Affiliation(s)
| | | | | | - Ying Liu
- *Correspondence: Zhenglong Liu, : Ying Liu,
| | | | | |
Collapse
|
9
|
Ramos E, Egea J, López-Muñoz F, Gil-Martín E, Romero A. Therapeutic Potential of Melatonin Counteracting Chemotherapy-Induced Toxicity in Breast Cancer Patients: A Systematic Review. Pharmaceutics 2023; 15:1616. [PMID: 37376065 DOI: 10.3390/pharmaceutics15061616] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 05/05/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
The purpose of this systematic review is to provide an overview of the existing knowledge on the therapeutic potential of melatonin to counteract the undesirable effects of chemotherapy in breast cancer patients. To this aim, we summarized and critically reviewed preclinical- and clinical-related evidence according to the PRISMA guidelines. Additionally, we developed an extrapolation of melatonin doses in animal studies to the human equivalent doses (HEDs) for randomized clinical trials (RCTs) with breast cancer patients. For the revision, 341 primary records were screened, which were reduced to 8 selected RCTs that met the inclusion criteria. We assembled the evidence drawn from these studies by analyzing the remaining gaps and treatment efficacy and suggested future translational research and clinical trials. Overall, the selected RCTs allow us to conclude that melatonin combined with standard chemotherapy lines would derive, at least, a better quality of life for breast cancer patients. Moreover, regular doses of 20 mg/day seemed to increase partial response and 1-year survival rates. Accordingly, this systematic review leads us to draw attention to the need for more RCTs to provide a comprehensive view of the promising actions of melatonin in breast cancer and, given the safety profile of this molecule, adequate translational doses should be established in further RCTs.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
- Institute Teófilo Hernando for Drug Discovery, Department of Pharmacology, School of Medicine, Autonomous University of Madrid, 28029 Madrid, Spain
| | - Francisco López-Muñoz
- Faculty of Health, Camilo José Cela University of Madrid (UCJC), 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute, 28041 Madrid, Spain
| | - Emilio Gil-Martín
- Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
10
|
Bożejko M, Tarski I, Małodobra-Mazur M. Outdoor artificial light at night and human health: A review of epidemiological studies. ENVIRONMENTAL RESEARCH 2023; 218:115049. [PMID: 36521545 DOI: 10.1016/j.envres.2022.115049] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
We conducted a non-systematic review of epidemiological studies on a potential link between exposure to outdoor artificial light at night (O-ALAN) and disease occurrence in humans published since 2009. In recent years, a number of presses have been published on this issue, but the conclusions have been mixed. We therefore decided to critically analyze the available epidemiological evidence of such a correlation. After a careful search, 51 studies were identified and included in the review. They addressed the potential link between O-ALAN exposure and the incidence of breast cancer, other cancers, sleep and circadian rhythm disorders, obesity and cardiovascular diseases, mental disorders, infectious diseases, and complications during pregnancy and childbirth. The vast majority of papers revealed the existence of such a link. However, the amount of epidemiological evidence supporting the correlation across groups of disorders varied widely. In addition, we found that all papers contained at least one of the following omissions: lack of the temporal and spatial resolution in light at night measurements, measuring only light intensity without considering its wavelength, and not accounting for many important confounding factors in their statistical analyses. Therefore, we believe that the link between O-ALAN exposure and the occurrence of the disorders in question suggested by the authors of the reviewed papers may be in some cases at least to some extent, a coincidence. Further epidemiological studies, free of significant omissions highlighted in this paper, are needed.
Collapse
Affiliation(s)
- Mateusz Bożejko
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345, Wrocław, Poland.
| | - Ignacy Tarski
- Faculty of Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 5, 50-345, Wrocław, Poland.
| | - Małgorzata Małodobra-Mazur
- Department of Forensic Medicine, Division of Molecular Techniques, Wroclaw Medical University, Skłodowskiej-Curie 52, 50-369, Wrocław, Poland.
| |
Collapse
|
11
|
Xu YX, Zhang JH, Tao FB, Sun Y. Association between exposure to light at night (LAN) and sleep problems: A systematic review and meta-analysis of observational studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159303. [PMID: 36228789 DOI: 10.1016/j.scitotenv.2022.159303] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Accumulating evidence have investigated the effects of nighttime light exposure on sleep problems. Nevertheless, the evidence of the relationship between light at night (LAN) and sleep problems remains scarce and inconsistent. OBJECTIVE Conducted a systematic review and meta-analysis based on observational studies to examine the association between LAN exposure and sleep problems among human subjects. METHODS We systematically searched three databases (PubMed, Web of Science, and Embase) to identify potentially eligible studies through May 25, 2022. The risk of bias and the quality of the generated evidence were assessed by two authors using the National Toxicology Program's Office of Health Assessment and Translation (OHAT) risk of bias rating tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guideline. Random-effects model was applied to synthesize the risk estimates across eligible studies. The heterogeneity of included studies was quantified by the statistics of I2. RESULTS A total of 7 cross-sectional studies comprising 577,932 participants were included. Individuals with higher levels of LAN exposure were associated with a 22 % (Summary Odds Ratio, SOR: 1.22, 95 %CI: 1.13-1.33) increased prevalence of sleep problems. The pooled effect size of indoor LAN exposure (SOR: 1.74, 95%CI: 1.27-2.37) associated with sleep problems was significantly higher than outdoor LAN exposure (SOR: 1.19, 95%CI: 1.11-1.29; P = 0.022). Additionally, dose-response analysis demonstrated that LAN intensity threshold exceeding 5.8 nW/cm2/sr (SOR: 1.04, 95%CI: 1.01-1.07) had a significant effect on sleep problems and the prevalence of sleep problems was increasing with increase in LAN intensity. CONCLUSIONS Overall, our findings support the detrimental effects of LAN exposure on sleep. Maintaining bedroom darkness at night may be a feasible measure to reduce the prevalence of sleep problems. Future longitudinal studies with more advanced LAN assessment methods are required to move the field forward.
Collapse
Affiliation(s)
- Yu-Xiang Xu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jiang-Hui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Ying Sun
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
12
|
Saedpanah K, Ghasemi M, Akbari H, Adibzadeh A, Akbari H. Effects of workload and job stress on the shift work disorders among nurses: PLS SEM modeling. Eur J Transl Myol 2022; 33. [PMID: 36412125 DOI: 10.4081/ejtm.2022.10909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/23/2022] Open
Abstract
Nurses, as the largest forces in the health system, are always challenged with various work responsibilities such as long working hours, lack of manpower and death of patients. This study aimed at providing a model of the relationship between workload and physical and mental health, sleep disorders, and individual and family problems by the mediation role of job stress. The present study is a cross-sectional study that was conducted on 300 nurses in a specialty and sub-specialty hospital in Tehran. For this reason, various questionnaires including demographic, survey of shift workers (SOS) and job stress questionnaires were used to collect the desired data. The proposed model was presented using structural equation modeling method based on Smart-PLS and SPSS-20 software. The results show that workload has an effect on job stress (β=0.747), mental health (β=-0.291), Physical health (β=-0.253), sleep quality (β=-0.234) and personal and family problems (β=-0.206). Also the results of this study show that job stress has an effect on mental health (β=-0.295), Physical health (β=-0.349), sleep quality (β=-0.295) and Personal and family problems (β=-0.441). In conclusion, results showed that the data fitted well with the model and that workload is associated with physical and mental problems, sleep disorders and individual and family problems both directly and indirectly through job stress mediation.
Collapse
|
13
|
Dasari SS, Archer M, Mohamed NE, Tewari AK, Figueiro MG, Kyprianou N. Circadian Rhythm Disruption as a Contributor to Racial Disparities in Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205116. [PMID: 36291899 PMCID: PMC9600368 DOI: 10.3390/cancers14205116] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/08/2022] [Accepted: 10/15/2022] [Indexed: 01/27/2023] Open
Abstract
In the United States, African American (AA) men have a 2.4 times higher mortality rate due to prostate cancer than White men. The multifactorial causes of the racial disparities in prostate cancer involve various social determinants of health, socioeconomic status, and access to healthcare. However, emerging evidence also suggests that circadian rhythm disruption (CRD) contributes to prostate cancer, and AA men may be more susceptible to developing CRDs. Circadian rhythms play a significant role in metabolism, hormone secretion, and sleep/wake cycles. Disruption in these circadian rhythms can be caused by airplane travel/jetlag, night shift work, exposure to light, and neighborhood noise levels, which can contribute to sleep disorders and chronic conditions such as obesity, diabetes, cardiovascular disease, and depression. The drivers of the racial disparities in CRD include night shift work, racial discrimination, elevated stress, and residing in poor neighborhoods characterized by high noise pollution. Given the increased vulnerability of AA men to CRDs, and the role that CRDs play in prostate cancer, elucidating the clock-related prostate cancer pathways and their behavior and environmental covariates may be critical to better understanding and reducing the racial disparities in prostate cancer.
Collapse
Affiliation(s)
- Sonali S. Dasari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Maddison Archer
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nihal E. Mohamed
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
| | - Ashutosh K. Tewari
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mariana G. Figueiro
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
- Light and Health Research Center, Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (M.G.F.); (N.K.)
| | - Natasha Kyprianou
- Department of Urology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Tisch Cancer Institute, Mount Sinai Health, New York, NY 10029, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Correspondence: (M.G.F.); (N.K.)
| |
Collapse
|
14
|
Davoodvandi A, Nikfar B, Reiter RJ, Asemi Z. Melatonin and cancer suppression: insights into its effects on DNA methylation. Cell Mol Biol Lett 2022; 27:73. [PMID: 36064311 PMCID: PMC9446540 DOI: 10.1186/s11658-022-00375-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/17/2022] [Indexed: 11/18/2022] Open
Abstract
Melatonin is an important naturally occurring hormone in mammals. Melatonin-mediated biological effects include the regulation of circadian rhythms, which is important for optimal human health. Also, melatonin has a broad range of immunoenhancing actions. Moreover, its oncostatic properties, especially regarding breast cancer, involve a variety cancer-inhibitory processes and are well documented. Due to their promising effects on the prognosis of cancer patients, anti-cancer drugs with epigenetic actions have attracted a significant amount of attention in recent years. Epigenetic modifications of cancers are categorized into three major processes including non-coding RNAs, histone modification, and DNA methylation. Hence, the modification of the latter epigenetic event is currently considered an effective strategy for treatment of cancer patients. Thereby, this report summarizes the available evidence that investigated melatonin-induced effects in altering the status of DNA methylation in different cancer cells and models, e.g., malignant glioma and breast carcinoma. Also, we discuss the role of artificial light at night (ALAN)-mediated inhibitory effects on melatonin secretion and subsequent impact on global DNA methylation of cancer cells.
Collapse
Affiliation(s)
- Amirhossein Davoodvandi
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran.,Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Russel J Reiter
- Department of Cell Systems and Anatomy, UT Health. Long School of Medicine, San Antonio, TX, USA
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
15
|
Roberts NT, MacDonald CR, Mohammadpour H, Antoch MP, Repasky EA. Circadian Rhythm Disruption Increases Tumor Growth Rate and Accumulation of Myeloid-Derived Suppressor Cells. Adv Biol (Weinh) 2022; 6:e2200031. [PMID: 35652494 PMCID: PMC9474681 DOI: 10.1002/adbi.202200031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/05/2022] [Indexed: 01/28/2023]
Abstract
Circadian rhythm disruption is implicated in the initiation and progression of many diseases, including cancer. External stimuli, such as sunlight, serve to synchronize physiological processes and cellular functions to a 24-h cycle. The immune system is controlled by circadian rhythms, and perturbation of these rhythms can potentially alter the immune response to infections and tumors. The effect of circadian rhythm disruption on the immune response to tumors remains unclear. Specifically, the effects of circadian disruption (CD) on immunosuppressive cell types within the tumor, such as myeloid-derived suppressor cells (MDSCs), are unknown. In this study, a shifting lighting schedule is used to disrupt the circadian rhythm of mice. After acclimation to lighting schedules, mice are inoculated with 4T1 or B16-F10 tumors. Tumor growth is increased in mice housed under circadian disrupting lighting conditions compared to standard lighting conditions. Analysis of immune populations within the spleen and tumor shows an increased accumulation of MDSCs within these tissues, suggesting that MDSC mediated immunosuppression plays a role in the enhanced tumor growth caused by circadian disruption. This paves the way for future studies of the effects of CD on immunosuppression in cancer.
Collapse
Affiliation(s)
- Nathan T. Roberts
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Cameron R. MacDonald
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Hemn Mohammadpour
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| | - Marina P. Antoch
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, 665 Elm St, Buffalo, NY 14203, USA
| | - Elizabeth A. Repasky
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA
| |
Collapse
|
16
|
Fekry B, Ribas-Latre A, Drunen RV, Santos RB, Shivshankar S, Dai Y, Zhao Z, Yoo SH, Chen Z, Sun K, Sladek FM, Younes M, Eckel-Mahan K. Hepatic circadian and differentiation factors control liver susceptibility for fatty liver disease and tumorigenesis. FASEB J 2022; 36:e22482. [PMID: 35947136 PMCID: PMC10062014 DOI: 10.1096/fj.202101398r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 07/06/2022] [Accepted: 07/21/2022] [Indexed: 11/11/2022]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer deaths, and the most common primary liver malignancy to present in the clinic. With the exception of liver transplant, treatment options for advanced HCC are limited, but improved tumor stratification could open the door to new treatment options. Previously, we demonstrated that the circadian regulator Aryl Hydrocarbon-Like Receptor Like 1 (ARNTL, or Bmal1) and the liver-enriched nuclear factor 4 alpha (HNF4α) are robustly co-expressed in healthy liver but incompatible in the context of HCC. Faulty circadian expression of HNF4α- either by isoform switching, or loss of expression- results in an increased risk for HCC, while BMAL1 gain-of-function in HNF4α-positive HCC results in apoptosis and tumor regression. We hypothesize that the transcriptional programs of HNF4α and BMAL1 are antagonistic in liver disease and HCC. Here, we study this antagonism by generating a mouse model with inducible loss of hepatic HNF4α and BMAL1 expression. The results reveal that simultaneous loss of HNF4α and BMAL1 is protective against fatty liver and HCC in carcinogen-induced liver injury and in the "STAM" model of liver disease. Furthermore, our results suggest that targeting Bmal1 expression in the absence of HNF4α inhibits HCC growth and progression. Specifically, pharmacological suppression of Bmal1 in HNF4α-deficient, BMAL1-positive HCC with REV-ERB agonist SR9009 impairs tumor cell proliferation and migration in a REV-ERB-dependent manner, while having no effect on healthy hepatocytes. Collectively, our results suggest that stratification of HCC based on HNF4α and BMAL1 expression may provide a new perspective on HCC properties and potential targeted therapeutics.
Collapse
Affiliation(s)
- Baharan Fekry
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Aleix Ribas-Latre
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rachel Van Drunen
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Rafael Bravo Santos
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Samay Shivshankar
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center, Houston, Texas, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Kai Sun
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| | - Frances M Sladek
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, California, USA
| | - Mamoun Younes
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, District of Columbia, USA
| | - Kristin Eckel-Mahan
- Institute of Molecular Medicine, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA.,Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
17
|
The Combination of Sleep Disorders and Depression Significantly Increases Cancer Risk: A Nationwide Large-Scale Population-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159266. [PMID: 35954622 PMCID: PMC9368707 DOI: 10.3390/ijerph19159266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/23/2022] [Accepted: 07/24/2022] [Indexed: 12/10/2022]
Abstract
Introduction: Sleep disorders, depression, and cancer have become increasingly prevalent worldwide. However, it is unknown whether coexistence of sleep disorders and depression influences the risk of cancer development. Therefore, we conducted a nationwide population-based study to examine this association among patients in Taiwan. Materials and Methods: A total of 105,071 individuals diagnosed with cancer and 420,284 age- and sex-matched patients without a diagnosis of cancer between 2000 and 2015 were identified from Taiwan’s National Health Insurance Research Database. The underlying chronic diseases of patients that may developed cancer were gathered and studied as the predictor. A multivariate Cox proportional odds model was used to estimate the crude and adjusted odds ratios (aORs) with 95% confidence intervals (CIs) to estimate the interaction effect between sleep disorders and depression on the risk of cancer. Results: After adjusting for age, sex, comorbidities, and other covariates, the cancer group was associated with increased exposure to sleep disorders than the non-cancer group (aOR = 1.440, 95% CI = 1.392−1.489, p < 0.001). In addition, patients with both sleep disorders and depression were at an even higher risk for cancer than the general population (aOR = 6.857, p < 0.001). Conclusions: This retrospective cohort study shows that patients with both sleep disorders and depression are at a higher risk of cancer. Clinically, a meticulous cancer risk evaluation is recommended for patients with both sleep disorders and depression.
Collapse
|
18
|
Roy S, Satvaya P. The effects of lamp types and surface reflectance combinations on the subjective perception of a simulated lit hospital ward environment. FACILITIES 2022. [DOI: 10.1108/f-01-2022-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
Good illumination creates an aesthetic environment that may positively influence patients’ well-being and provide comfort to the hospital staff. This study aims to focus on exploring the energy efficiency of lighting and subjective perception of the lit environment in a hospital ward to assess quality indicators of ambient lighting conditions.
Design/methodology/approach
The existing conventional tubular fluorescent lamp–based lighting system in the surveyed patients’ ward was retrofitted with light-emitting diode (LED) luminaires to explore illumination and energy parameters. Thereafter, a software lighting model was created, simulated and analyzed. A Web-based survey with five bipolar adjective pairs in a semantic differential scale was conducted with 48 participants to record and analyze their subjective responses pertaining to the variations in lamp types and surface reflectance combinations.
Findings
The findings imply that the LED tubular lamp–based illumination was deemed more adequate compared to other lamp types and the effects of variations in room surface reflectance combinations on the participants’ responses were statistically significant at α = 0.05 level. The simulated horizontal work plane average illuminance level varied from 131 to 171 lx, mean room surface exitance (MRSE) levels remained between 30 and 90 lm/m2 and overall uniformity of illuminance remained between 0.5 and 0.7.
Originality/value
In a hospital ward illuminated by LED tubular lamps, variations in room surface reflectance combinations for a constant luminous flux package output from the lamps may affect the subjective perception of users and the correlation between horizontal work plane average illuminance and MRSE is found to be highly linear (coefficient of determination > 0.97).
Collapse
|
19
|
Das NK, Samanta S. The potential anti-cancer effects of melatonin on breast cancer. EXPLORATION OF MEDICINE 2022. [DOI: 10.37349/emed.2022.00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Melatonin is the primary hormone of the pineal gland that is secreted at night. It regulates many physiological functions, including the sleep-wake cycle, gonadal activity, free radical scavenging, immunomodulation, neuro-protection, and cancer progression. The precise functions of melatonin are mediated by guanosine triphosphate (GTP)-binding protein (G-protein) coupled melatonin receptor 1 (MT1) and MT2 receptors. However, nuclear receptors are also associated with melatonin activity. Circadian rhythm disruption, shift work, and light exposure at night hamper melatonin production. Impaired melatonin level promotes various pathophysiological changes, including cancer. In our modern society, breast cancer is a serious problem throughout the world. Several studies have been indicated the link between low levels of melatonin and breast cancer development. Melatonin has oncostatic properties in breast cancer cells. This indolamine advances apoptosis, which arrests the cell cycle and regulates metabolic activity. Moreover, melatonin increases the treatment efficacy of cancer and can be used as an adjuvant with chemotherapeutic agents.
Collapse
Affiliation(s)
- Naba Kumar Das
- Department of Physiology, Midnapore College, Midnapore 721101, Paschim Medinipur, West Bengal, India
| | - Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore 721101, Paschim Medinipur, West Bengal, India
| |
Collapse
|
20
|
Almaida-Pagan PF, Torrente M, Campos M, Provencio M, Madrid JA, Franco F, Morilla BR, Cantos B, Sousa PA, Madrid MJM, Pimentao J, Rol MÁ. Chronodisruption and Ambulatory Circadian Monitoring in Cancer Patients: Beyond the Body Clock. Curr Oncol Rep 2022; 24:135-149. [PMID: 35061192 PMCID: PMC8857092 DOI: 10.1007/s11912-021-01158-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2021] [Indexed: 02/01/2023]
Abstract
Purpose of Review Circadian rhythms impose daily rhythms a remarkable variety of metabolic and physiological functions, such as cell proliferation, inflammation, and DNA damage response. Accumulating epidemiological and genetic evidence indicates that circadian rhythms’ disruption may be linked to cancer. The integration of circadian biology into cancer research may offer new options for increasing cancer treatment effectiveness and would encompass the prevention, diagnosis, and treatment of this disease. Recent Findings In recent years, there has been a significant development and use of multi-modal sensors to monitor physical activity, sleep, and circadian rhythms, allowing, for the very first time, scaling accurate sleep monitoring to epidemiological research linking sleep patterns to disease, and wellness applications providing new potential applications. Summary This review highlights the role of circadian clock in tumorigenesis, cancer hallmarks and introduces the state-of-the-art in sleep-monitoring technologies, discussing the eventual application of insights in clinical settings and cancer research.
Collapse
Affiliation(s)
- Pedro F Almaida-Pagan
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - María Torrente
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain.
- Medical Oncology Department, Puerta de Hierro-Majadahonda University Hospital, Calle Manuel de Falla, 1, 28222, Madrid, Spain.
- Faculty of Health Sciences, Francisco de Vitoria University, Madrid, Spain.
| | - Manuel Campos
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Mariano Provencio
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Juan Antonio Madrid
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Fabio Franco
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Beatriz Rodríguez Morilla
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Blanca Cantos
- Servicio de Oncología Médica, Hospital Universitario Puerta de Hierro-Majadahonda, Madrid, Spain
| | - Pedro A Sousa
- Department of Electrical Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - María José Martínez Madrid
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Joao Pimentao
- Department of Electrical Engineering, Faculty of Science and Technology, Universidade Nova de Lisboa, Lisbon, Portugal
| | - María Ángeles Rol
- Kronohealth SL, Murcia, Spain
- Chronobiology Lab, Department of Physiology, College of Biology, University of Murcia, Mare Nostrum Campus, IUIE, IMIB-Arrixaca, Murcia, Spain
- Ciber Fragilidad Y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Choi Y, Nakamura Y, Akazawa N, Park I, Kwak HB, Tokuyama K, Maeda S. Effects of nocturnal light exposure on circadian rhythm and energy metabolism in healthy adults: A randomized crossover trial. Chronobiol Int 2021; 39:602-612. [PMID: 34903129 DOI: 10.1080/07420528.2021.2014517] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Exposure to continuous light at night, including night-shift work or a nocturnal lifestyle, is emerging as a novel deleterious factor for weight gain and obesity. Here, we examined whether a single bout of bright light (BL) exposure at night affects energy metabolism via changes in circadian rhythm and nocturnal melatonin production. Ten healthy young men were randomized to a two-way crossover experimental design protocol: control (< 50 lux) and BL (approximately 10000 lux) conditions, with at least seven days of interval. The participants were exposed to each condition for 3 h (21:00-24:00) before sleep (0 lux, 00:00-07:00) in a room-type metabolic chamber. On each experimental night (21:00-07:00), energy expenditure, respiratory quotient (RQ), and substrate oxidation were measured to determine the energy metabolism. BL exposure prior to bedtime altered biological rhythms, disrupted the nocturnal decline in body temperature, and suppressed the melatonin level before sleeping, resulting in an increase in sleep latency. Indirect calorimetry data revealed that BL exposure significantly decreased the fat oxidation and increased the RQ, an indicator of the carbohydrate-to-fat oxidation ratio, throughout the whole period (light exposure and sleep). We revealed that acute BL exposure prior to bedtime exacerbated circadian rhythms and substrate oxidations, suggesting that chronic BL exposure at night may lead to obesity risk due to disturbances in circadian rhythms and macronutrient metabolism.
Collapse
Affiliation(s)
- Youngju Choi
- Faculty of Health and Sport Science, University of Tsukuba, Tsukuba, Japan.,Institute of Sports & Arts Convergence, Inha University, Incheon, South Korea
| | - Yuki Nakamura
- Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Nobuhiko Akazawa
- Faculty of Health and Sport Science, University of Tsukuba, Tsukuba, Japan.,Department of Sports Research, Japan Institute of Sports Sciences, Tokyo, Japan
| | - Insung Park
- International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hyo-Bum Kwak
- Institute of Sports & Arts Convergence, Inha University, Incheon, South Korea.,Department of Biomedical Science, Program in Biomedical Science & Engineering, Inha University, Incheon, South Korea
| | - Kumpei Tokuyama
- Faculty of Health and Sport Science, University of Tsukuba, Tsukuba, Japan.,International Institute for Integrative Sleep Medicine, University of Tsukuba, Tsukuba, Japan
| | - Seiji Maeda
- Faculty of Health and Sport Science, University of Tsukuba, Tsukuba, Japan.,Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan
| |
Collapse
|
22
|
Walker WH, Kaper AL, Meléndez-Fernández OH, Bumgarner JR, Liu JA, Walton JC, DeVries AC, Nelson RJ. Time-restricted feeding alters the efficiency of mammary tumor growth. Chronobiol Int 2021; 39:535-546. [PMID: 34894935 DOI: 10.1080/07420528.2021.2011306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disruption of circadian rhythms has detrimental host consequences. Indeed, both clinical and foundational science demonstrate a clear relationship between disruption of circadian rhythms and cancer initiation and progression. Because timing of food intake can act as a zeitgeber (i.e., entrainment signal) for the circadian clock, and most individuals in the developed world have access to food at all times of the day in a "24/7" society, we sought to determine the effects of timing of food intake on mammary tumor growth. We hypothesized that restricting access to food to during the inactive phase would accelerate tumor growth. Adult female Balb/C mice received a unilateral orthotopic injection of murine mammary carcinoma 4T1 cells into the ninth inguinal mammary gland. Beginning on the day of tumor injection and continuing until the end of the experiment, mice were food restricted to their active phase (ZT12 (lights off)- ZT0 (lights on), inactive phase (ZT0 - ZT12), or had ad libitum access to food. Mice that were food restricted to their inactive phase displayed a significant increase in body mass on days 7 and 14 of tumor growth relative to active phase or ad libitum fed mice. Additionally, mice fed during their inactive phase demonstrated a 20% reduction in food consumption relative to mice fed during their active phase and a 17% reduction in food consumption relative to ab libitum fed mice. Tumor volume was not significantly different between groups. However, food restricting mice to their inactive phase increased mammary tumor growth efficiency (i.e., mg of tumor mass per gram of food intake) relative to mice fed during the active phase and approached significance (p = .06) relative to ad libitum fed mice. To determine a potential explanation for the increased tumor growth efficiency, we examined rhythms of activity and body temperature. Mice fed during the inactive phase displayed significantly disrupted daily activity and body temperature rhythms relative to both other feeding regimens. Together, these data demonstrate that improperly timed food intake can have detrimental consequences on mammary tumor growth likely via disrupted circadian rhythms.
Collapse
Affiliation(s)
- William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - Alexis L Kaper
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | | | - Jacob R Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - Jennifer A Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA.,Department of Medicine, Division of Oncology/Hematology, West Virginia, USA.,WVU Cancer Institute, West Virginia University, Morgantown, West Virginia, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia, USA
| |
Collapse
|
23
|
Liu HP, Wei JCC, Yip HT, Yeh MH. Association of Insomnia, Depressive Disorders, and Mood Disorders as Risk Factors With Breast Cancer: A Nationwide Population-Based Cohort Study of 232,108 Women in Taiwan. Front Oncol 2021; 11:757626. [PMID: 34707998 PMCID: PMC8542844 DOI: 10.3389/fonc.2021.757626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/20/2021] [Indexed: 11/13/2022] Open
Abstract
Background Insomnia, depressive disorders, and to a more general view, mood disorders are raising people’s concerns and causing disability of life. Herein, we try to seek the association of such illnesses with subsequent breast cancer. Methods This population-based, retrospective cohort study used data from the Taiwan National Health Insurance Research Database. This study included 232,108 women diagnosed with insomnia, depressive disorders, and mood disorders from January 1, 2000 to December 31, 2013. Physician diagnosed insomnia, depressive disorders, or mood disorders using outpatient and inpatient records before diagnosis of breast cancer. Cox proportional hazards regression analysis is adjusted for women with insomnia, depressive disorders, mood disorders, and other factors like insured amount, urbanization, and comorbidities such as having subsequent breast cancer. Results Sleep medication was associated with a significantly increased incidence rate of breast cancer (aHR = 1.23 (95% CI = 1.13, 1.35), p < 0.001). Insomnia was associated with significant increased hazard of breast cancer (aHR = 1.16 (95% CI = 1.07, 1.27), p < 0.001). Annual insured amount >20,000 (TWD), high urbanization area, and hyperlipidemia were associated with increased hazard of breast cancer (aHR = 1.13 (95% CI = 1.01, 1.27), p = 0.04; aHR = 1.41 (95% CI = 1.17, 1.71), p < 0.001; aHR = 1.14 995% CI = 1.02, 1.29), p = 0.02, respectively). There was a positive correlation between depressive disorders and increased incidence rate of breast cancer but not statistically significant (aHR = 1.11 (95% CI = 0.99, 1.25), p = 0.08). Mood disorders were not associated with increased hazard (aHR = 1.11 (95% CI = 0.91, 1.34), p = 0.31). Conclusion In this study, women with insomnia had increased risk of breast cancer, particularly those in high urbanization or with high insured amounts. Sleep medication (benzodiazepine (BZD) or non-BZD) and hyperlipidemia were independently associated with a higher hazard ratio of breast cancer. Insomnia along with sleep medication did not yield more hazards than each alone. Mood disorders appeared to be not associated with subsequent breast cancer. However, depressive disorders, the subgroups of mood disorders, could possibly increase the incidence rate of breast cancer though not statistically significant.
Collapse
Affiliation(s)
- Hui-Pu Liu
- Department of General Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - James Cheng-Chung Wei
- Department of Allergy, Immunology & Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.,Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Hei-Tung Yip
- Management Office for Health Data, Clinical Trial Research Center, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Hsin Yeh
- Institute of Medicine, College of Medicine, Chung Shan Medical University, Taichung, Taiwan.,Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
24
|
Gica Ş, Selvı Y. Sleep Interventions in the Treatment of Schizophrenia and Bipolar Disorder. Noro Psikiyatr Ars 2021; 58:S53-S60. [PMID: 34658636 PMCID: PMC8498809 DOI: 10.29399/npa.27467] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 05/25/2021] [Indexed: 11/07/2022] Open
Abstract
Due to the effects of sleep on the central nervous system, it is thought that sleep disorders have a special importance in the onset, course and treatment of psychiatric diseases. Although the negative effects of sleep problems on the occurrence, recurrence and clinical course of psychiatric disorders are well known, it is reported that clinicians do not spend enough time for sleep problems in practice. This may be related to the fact that patients underreport their complaints for various reasons, insufficient examination time, and clinicians' lack of knowledge about the importance of the subject. Pharmacotherapy, psychological and behavioral interventions are options among the therapeutic approaches to sleep problems. But, it seems that clinicians tend to prefer pharmacological approaches for the treatment of sleep problems. However, it is important to choose the appropriate treatment option with considering the method preferred by the patients, who already use many and high doses of pharmacological agents, the nature of the psychiatric disorder and the sleep problem. In this context, chronotherapeutic approaches such as bright light, sleep deprivation, interpersonal relations and social rhythm therapy, and cognitive behavioral therapy techniques adapted for patients with bipolar disorder can be used in the treatment of suitable patients. In this article, the current literature about sleep-related problems observed in patients with schizophrenia and bipolar disorder is reviewed comprehensively with presenting clinical phenotypes and treatment approaches.
Collapse
Affiliation(s)
- Şakir Gica
- Necmettin Erbakan University, Meram Medical Faculty, Department of Psychiatry, Konya, Turkey
| | - Yavuz Selvı
- Selçuk University, Selçuklu Medical Faculty, Department of Psychiatry, Konya, Turkey
| |
Collapse
|
25
|
Walker WH, Kvadas RM, May LE, Liu JA, Bumgarner JR, Walton JC, DeVries AC, Dauchy RT, Blask DE, Nelson RJ. Artificial Light at Night Reduces Anxiety-like Behavior in Female Mice with Exacerbated Mammary Tumor Growth. Cancers (Basel) 2021; 13:cancers13194860. [PMID: 34638343 PMCID: PMC8508227 DOI: 10.3390/cancers13194860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Artificial light at night, initially assumed to be innocuous, is associated with an increased risk for developing mood disorders, sleep disturbances, and cancer. However, the influence of ALAN on affective behavior in tumor-bearing mice has not been investigated. Here, we demonstrate that ALAN reduces the latency to tumor onset and increases terminal tumor volume. Additionally, tumor-bearing mice housed in dark nights exhibit increased anxiety-like behavior which is prevented via housing in ALAN. Abstract Artificial light at night (ALAN) is a pervasive phenomenon. Although initially assumed to be innocuous, recent research has demonstrated its deleterious effects on physiology and behavior. Exposure to ALAN is associated with disruptions to sleep/wake cycles, development of mood disorders, metabolic disorders, and cancer. However, the influence of ALAN on affective behavior in tumor-bearing mice has not been investigated. We hypothesize that exposure to ALAN accelerates mammary tumor growth and predict that ALAN exacerbates negative affective behaviors in tumor-bearing mice. Adult (>8 weeks) female C3H mice received a unilateral orthotropic injection of FM3A mouse mammary carcinoma cells (1.0 × 105 in 100 μL) into the fourth inguinal mammary gland. Nineteen days after tumor inoculation, mice were tested for sucrose preference (anhedonia-like behavior). The following day, mice were subjected to an open field test (anxiety-like behavior), followed by forced swim testing (depressive-like behavior). Regardless of tumor status, mice housed in ALAN increased body mass through the first ten days. Tumor-bearing ALAN-housed mice demonstrated reduced latency to tumor onset (day 5) and increased terminal tumor volume (day 21). Exposure to ALAN reduced sucrose preference independent of tumor status. Additionally, tumor-bearing mice housed in dark nights demonstrated significantly increased anxiety-like behavior that was normalized via housing in ALAN. Together, these data reaffirm the negative effects of ALAN on tumorigenesis and demonstrate the potential anxiolytic effect of ALAN in the presence of mammary tumors.
Collapse
Affiliation(s)
- William H. Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (R.M.K.); (L.E.M.); (J.A.L.); (J.R.B.); (J.C.W.); (A.C.D.); (R.J.N.)
- Correspondence:
| | - Raegan M. Kvadas
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (R.M.K.); (L.E.M.); (J.A.L.); (J.R.B.); (J.C.W.); (A.C.D.); (R.J.N.)
| | - Laura E. May
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (R.M.K.); (L.E.M.); (J.A.L.); (J.R.B.); (J.C.W.); (A.C.D.); (R.J.N.)
| | - Jennifer A. Liu
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (R.M.K.); (L.E.M.); (J.A.L.); (J.R.B.); (J.C.W.); (A.C.D.); (R.J.N.)
| | - Jacob R. Bumgarner
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (R.M.K.); (L.E.M.); (J.A.L.); (J.R.B.); (J.C.W.); (A.C.D.); (R.J.N.)
| | - James C. Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (R.M.K.); (L.E.M.); (J.A.L.); (J.R.B.); (J.C.W.); (A.C.D.); (R.J.N.)
| | - A. Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (R.M.K.); (L.E.M.); (J.A.L.); (J.R.B.); (J.C.W.); (A.C.D.); (R.J.N.)
- Department of Medicine, Division of Oncology/Hematology, West Virginia University, Morgantown, WV 26505, USA
- Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Robert T. Dauchy
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.T.D.); (D.E.B.)
| | - David E. Blask
- Department of Structural and Cellular Biology, Tulane University School of Medicine, New Orleans, LA 70112, USA; (R.T.D.); (D.E.B.)
| | - Randy J. Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV 26505, USA; (R.M.K.); (L.E.M.); (J.A.L.); (J.R.B.); (J.C.W.); (A.C.D.); (R.J.N.)
| |
Collapse
|
26
|
Aguilar-Carrasco MT, Domínguez-Amarillo S, Acosta I, Sendra JJ. Indoor lighting design for healthier workplaces: natural and electric light assessment for suitable circadian stimulus. OPTICS EXPRESS 2021; 29:29899-29917. [PMID: 34614725 DOI: 10.1364/oe.430747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Light, especially daylight, plays a critical role in human health as the main timer for circadian rhythms. Indoor environments usually lack the correct exposure to daylight and are highly dependent on electric lighting, disrupting the circadian rhythm and compromising the health of occupants. The methodology proposed assesses the combination of natural and electric lighting on circadian rhythms for operational environments. The case study chosen examines a 24/7 laboratory area representing an open-plan shift-work area. Several electric lighting scenarios under different sky conditions have been assessed, considering a variable window size and resulting in a spectrum which establishes the indoor circadian regulation performance according to the amount of light perceived. A set of configurations is presented to determine optimal electric lighting configuration based on natural light conditions in order to ensure a suitable circadian stimulus and the electric lighting flux threshold for different scenarios, benefiting occupants' health while also ensuring energy conservation.
Collapse
|
27
|
Namgyal D, Chandan K, Ali S, Ahmad A, Hashim MJ, Sarwat M. Aberrant Lighting Causes Anxiety-like Behavior in Mice but Curcumin Ameliorates the Symptoms. Animals (Basel) 2021; 11:ani11092590. [PMID: 34573555 PMCID: PMC8466876 DOI: 10.3390/ani11092590] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/20/2021] [Accepted: 08/30/2021] [Indexed: 01/11/2023] Open
Abstract
Simple Summary In the present study, we exposed mice to aberrant lighting system and noticed anxiety-like behavior. These symptoms were ameliorated by oral administration of curcumin. The study was carried out on the animals for three weeks in dim light at night (dLAN) and complete darkness (DD), monitoring the body weight, daily food intake, anxiety-like behavior, and expression of the period (PER1) gene. The exposure to dim light at night was found to significantly enhance the anxiety-like behavior and increased the body weight possibly through altered metabolism in mice. In contrast, exposure to DD caused increased anxiety but no significant difference in the body weight. Moreover, the expression of the PER1 gene involved in sleep was also found to be decreased in the aberrant light conditions (dLAN and DD). Although the treatment of curcumin had no effect on the body weight, it had ameliorated the anxiety-like behavior possibly by modulating the expression of the PER1 gene. Thus, the alteration in the light/dark cycle has negative influences on body weight, affecting even the emotional quotient. This study identifies the risk factors associated with aberrant lighting conditions in laboratory animal and ameliorative effects of curcumin. Abstract In the modern research field, laboratory animals are constantly kept under artificial lighting conditions. However, recent studies have shown the effect of artificial light on animal behavior and metabolism. In the present study on mice, following three weeks of housing in dim light at night (dLAN; 5lux) and complete darkness (DD; 0lux), we monitored the effect on body weight, daily food intake, anxiety-like behavior by employing the open field test, and expression of the period (PER1) gene. We also studied the effect of oral administration of different concentrations of curcumin (50, 100, and 150 mg/kg) for three weeks in the same mice and monitored these parameters. The exposure to dLAN had significantly increased the anxiety-like behavior and body weight possibly through the altered metabolism in mice, whereas exposure to DD caused increased anxiety but no significant difference in weight gain. Moreover, the expression of the PER1 gene involved in sleep was also found to be decreased in the aberrant light conditions (dLAN and DD). Although the treatment of curcumin had no effect on body weight, it ameliorated the anxiety-like behavior possibly by modulating the expression of the PER1 gene. Thus, alteration in the light/dark cycle had a negative effect on laboratory animals on the body weight and emotions of animals. The present study identifies the risk factors associated with artificial lighting systems on the behavior of laboratory animals and the ameliorative effects of curcumin, with a focus on anxiety-like behavior.
Collapse
Affiliation(s)
- Dhondup Namgyal
- Amity Institute of Neuropsychology and Neuroscience, Amity University, Noida 201303, India;
- Amity Institute of Pharmacy, Amity University, Noida 201303, India;
| | - Kumari Chandan
- Amity Institute of Pharmacy, Amity University, Noida 201303, India;
| | - Sher Ali
- School of Basic Sciences and Research, Department of Life Sciences, Sharda University, Greater Noida 201310, India;
| | - Ajaz Ahmad
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Maha J. Hashim
- Department of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK;
| | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida 201303, India;
- Correspondence:
| |
Collapse
|
28
|
Ramos E, López-Muñoz F, Gil-Martín E, Egea J, Álvarez-Merz I, Painuli S, Semwal P, Martins N, Hernández-Guijo JM, Romero A. The Coronavirus Disease 2019 (COVID-19): Key Emphasis on Melatonin Safety and Therapeutic Efficacy. Antioxidants (Basel) 2021; 10:1152. [PMID: 34356384 PMCID: PMC8301107 DOI: 10.3390/antiox10071152] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Viral infections constitute a tectonic convulsion in the normophysiology of the hosts. The current coronavirus disease 2019 (COVID-19) pandemic is not an exception, and therefore the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, like any other invading microbe, enacts a generalized immune response once the virus contacts the body. Melatonin is a systemic dealer that does not overlook any homeostasis disturbance, which consequently brings into play its cooperative triad, antioxidant, anti-inflammatory, and immune-stimulant backbone, to stop the infective cycle of SARS-CoV-2 or any other endogenous or exogenous threat. In COVID-19, the corporal propagation of SARS-CoV-2 involves an exacerbated oxidative activity and therefore the overproduction of great amounts of reactive oxygen and nitrogen species (RONS). The endorsement of melatonin as a possible protective agent against the current pandemic is indirectly supported by its widely demonstrated beneficial role in preclinical and clinical studies of other respiratory diseases. In addition, focusing the therapeutic action on strengthening the host protection responses in critical phases of the infective cycle makes it likely that multi-tasking melatonin will provide multi-protection, maintaining its efficacy against the virus variants that are already emerging and will emerge as long as SARS-CoV-2 continues to circulate among us.
Collapse
Affiliation(s)
- Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Francisco López-Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain;
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
- Portucalense Institute of Neuropsychology and Cognitive and Behavioural Neurosciences (INPP), Portucalense University, R. Dr. António Bernardino de Almeida 541, 4200-072 Porto, Portugal
- Thematic Network for Cooperative Health Research (RETICS), Addictive Disorders Network, Health Institute Carlos III, MICINN and FEDER, 28029 Madrid, Spain
| | - Emilio Gil-Martín
- Nutrition, Food & Plant Science Group NF1, Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, 36310 Vigo, Spain;
| | - Javier Egea
- Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain;
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria-Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Sakshi Painuli
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
| | - Prabhakar Semwal
- Department of Biotechnology, Graphic Era University, Dehradun, Uttarakhand 248002, India; (S.P.); (P.S.)
- Uttarakhand State Council for Science and Technology, Dehradun, Uttarakhand 248007, India
| | - Natália Martins
- Faculty of Medicine, Institute for Research and Innovation in Health (i3S), University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal;
- Institute for Research and Advanced Training in Health Sciences and Technologies, Cooperativa de Ensino Superior Politécnico e Universitário (CESPU), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Jesús M. Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain; (I.Á.-M.); (J.M.H.-G.)
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9100, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| |
Collapse
|
29
|
Pandemic of Childhood Myopia. Could New Indoor LED Lighting Be Part of the Solution? ENERGIES 2021. [DOI: 10.3390/en14133827] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The existence of a growing myopia pandemic is an unquestionable fact for health authorities around the world. Different possible causes have been put forward over the years, such as a possible genetic origin, the current excess of children’s close-up work compared to previous stages in history, insufficient natural light, or a multifactorial cause. Scientists are looking for different possible solutions to alleviate it, such as a reduction of time or a greater distance for children’s work, the use of drugs, optometric correction methods, surgical procedures, and spending more time outdoors. There is a growing number of articles suggesting insufficient natural light as a possible cause of the increasing levels of childhood myopia around the globe. Technological progress in the world of lighting is making it possible to have more monochromatic LED emission peaks, and because of this, it is possible to create spectral distributions of visible light that increasingly resemble natural light in the visible range. The possibility of creating indoor luminaires that emit throughout the visible spectrum from purple to infrared can now be a reality that could offer a new avenue of research to fight this pandemic.
Collapse
|
30
|
Bonarius J, Papatsimpa C, Linnartz JP. Parameter Estimation in a Model of the Human Circadian Pacemaker Using a Particle Filter. IEEE Trans Biomed Eng 2021; 68:1305-1316. [PMID: 32970591 DOI: 10.1109/tbme.2020.3026538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE In the near future, real-time estimation of peoples unique, precise circadian clock state has the potential to improve the efficacy of medical treatments and improve human performance on a broad scale. Human-centric lighting can bring circadian-rhythm support using biodynamic lighting solutions that sync light with the time of day. We investigate a method to improve the tracking of individual's circadian processes. METHODS In literature, the human circadian physiology has been mathematically modeled using ordinary differential equations, the state of which can be tracked via the signal processing concept of a Particle Filter. We show that substantial improvements can be made if the estimator not only tracks state variables, such as the phase and amplitude of the circadian pacemaker, but also fits specific model parameters to the individual. In particular, we optimize model parameter τx, which reflects the intrinsic period of the circadian pacemaker ( τ). We show that both state and model parameters can be estimated based on minimally-invasive light exposure measurements and sleep-wake state observations. We also quantify the effect of inaccuracies in sensing. RESULTS We demonstrate improved performance by estimating τx for every individual, both with artificially created and human subject data. Prediction accuracy improves with every newly available observation. The estimated τx-s correlate well with the subjects' chronotypes, in a similar way as τ correlates. CONCLUSION Our results show that individualizing the estimation of model parameters can improve circadian state estimation accuracy. SIGNIFICANCE These findings underscore the potential improvements in personalized models over one-size fits all approaches.
Collapse
|
31
|
Xiao Q, Jones RR, James P, Stolzenberg-Solomon RZ. Light at Night and Risk of Pancreatic Cancer in the NIH-AARP Diet and Health Study. Cancer Res 2021; 81:1616-1622. [PMID: 33514513 PMCID: PMC8693799 DOI: 10.1158/0008-5472.can-20-2256] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/07/2020] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Circadian disruption may play a role in carcinogenesis. Recent research suggests that light at night (LAN), a circadian disruptor, may be a risk factor for cancer. Moreover, LAN has been linked to obesity and diabetes, two risk factors for pancreatic ductal adenocarcinoma (PDAC). Here we examine the relationship between LAN and PDAC in an epidemiologic study of 464,371 participants from the NIH-AARP Diet and Health Study. LAN was estimated from satellite imagery at baseline (1996), and incident primary PDAC cases were ascertained from state cancer registries. Cox proportional hazards models were used to estimate HRs and two-sided 95% confidence intervals (CI) for the association between quintiles of LAN and PDAC in the overall population stratified by sex. Over up to 16.2 years of follow-up, a total of 2,502 incident PDAC were identified in the cohort. Higher estimated LAN exposure was associated with an elevated PDAC risk. Compared with those living in areas in the lowest LAN quintile, those in areas in the highest quintile had a 27% increase PDAC risk [HR (95% CI), 1.24 (1.03-1.49)], with similar risk for men [1.21 (0.96-1.53)] and women [1.28 (0.94-1.75)]. In addition, stronger associations were observed in normal and overweight groups compared with the obese group (P interaction = 0.03). Our results support the hypothesis that LAN and circadian disruption may be risk factors for PDAC. SIGNIFICANCE: Our study suggests that higher LAN is a risk factor for pancreatic cancer, contributing to the growing literature that demonstrates the potentially adverse health effects of light pollution.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, Maryland
| | - Peter James
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | | |
Collapse
|
32
|
Patel SA, Kondratov RV. Clock at the Core of Cancer Development. BIOLOGY 2021; 10:150. [PMID: 33672910 PMCID: PMC7918730 DOI: 10.3390/biology10020150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/29/2022]
Abstract
To synchronize various biological processes with the day and night cycle, most organisms have developed circadian clocks. This evolutionarily conserved system is important in the temporal regulation of behavior, physiology and metabolism. Multiple pathological changes associated with circadian disruption support the importance of the clocks in mammals. Emerging links have revealed interplay between circadian clocks and signaling networks in cancer. Understanding the cross-talk between the circadian clock and tumorigenesis is imperative for its prevention, management and development of effective treatment options. In this review, we summarize the role of the circadian clock in regulation of one important metabolic pathway, insulin/IGF1/PI3K/mTOR signaling, and how dysregulation of this metabolic pathway could lead to uncontrolled cancer cell proliferation and growth. Targeting the circadian clock and rhythms either with recently discovered pharmaceutical agents or through environmental cues is a new direction in cancer chronotherapy. Combining the circadian approach with traditional methods, such as radiation, chemotherapy or the recently developed, immunotherapy, may improve tumor response, while simultaneously minimizing the adverse effects commonly associated with cancer therapies.
Collapse
Affiliation(s)
- Sonal A. Patel
- Fusion Pharmaceuticals Inc., Hamilton, ON L8P 0A6, Canada;
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| | - Roman V. Kondratov
- Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
33
|
Wong ATY, Heath AK, Tong TYN, Reeves GK, Floud S, Beral V, Travis RC. Sleep duration and breast cancer incidence: results from the Million Women Study and meta-analysis of published prospective studies. Sleep 2021; 44:zsaa166. [PMID: 32886784 PMCID: PMC7879408 DOI: 10.1093/sleep/zsaa166] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/10/2020] [Indexed: 01/05/2023] Open
Abstract
STUDY OBJECTIVES To investigate the association between sleep duration and breast cancer incidence, we examined the association in a large UK prospective study and conducted a meta-analysis of prospective studies. METHODS In the Million Women Study, usual sleep duration over a 24-h period was collected in 2001 for 713,150 participants without prior cancer, heart problems, stroke, or diabetes (mean age = 60 years). Follow-up for breast cancer was by record linkage to national cancer registry data for 14.3 years on average from the 3-year resurvey. Cox regression models yielded multivariable-adjusted breast cancer relative risks (RR) and 95% confidence intervals (CIs) for sleep duration categories. Published prospective studies of sleep duration and breast cancer risk were included in a meta-analysis, which estimated the inverse-variance weighted average of study-specific log RRs for short and for long versus average duration sleep. RESULTS After excluding the first 5 years to minimize reverse causation bias in the Million Women Study, 24,476 women developed breast cancer. Compared with 7-8 h of sleep, the RRs for <6, 6, 9, and >9 h of sleep were 1.01 (95% CI, 0.95-1.07), 0.99 (0.96-1.03), 1.01 (0.96-1.06), and 1.03 (0.95-1.12), respectively. In a meta-analysis of 14 prospective studies plus the Million Women Study, including 65,410 breast cancer cases, neither short (RR < 7 h = 0.99 [0.98-1.01]) nor long (RR > 8 h = 1.01 [0.98-1.04]) versus average duration sleep was associated with breast cancer risk. CONCLUSIONS The totality of the prospective evidence does not support an association between sleep duration and breast cancer risk.
Collapse
Affiliation(s)
- Angel T Y Wong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Alicia K Heath
- School of Public Health, Faculty of Medicine, Imperial College London, London, UK
| | - Tammy Y N Tong
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Gillian K Reeves
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Sarah Floud
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Valerie Beral
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Hussein AAA, Bloem E, Fodor I, Baz ES, Tadros MM, Soliman MFM, El-Shenawy NS, Koene JM. Slowly seeing the light: an integrative review on ecological light pollution as a potential threat for mollusks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5036-5048. [PMID: 33341922 PMCID: PMC7838132 DOI: 10.1007/s11356-020-11824-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
Seasonal changes in the natural light condition play a pivotal role in the regulation of many biological processes in organisms. Disruption of this natural condition via the growing loss of darkness as a result of anthropogenic light pollution has been linked to species-wide shifts in behavioral and physiological traits. This review starts with a brief overview of the definition of light pollution and the most recent insights into the perception of light. We then go on to review the evidence for some adverse effects of ecological light pollution on different groups of animals and will focus on mollusks. Taken together, the available evidence suggests a critical role for light pollution as a recent, growing threat to the regulation of various biological processes in these animals, with the potential to disrupt ecosystem stability. The latter indicates that ecological light pollution is an environmental threat that needs to be taken seriously and requires further research attention.
Collapse
Affiliation(s)
- Ahmed A A Hussein
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt.
- Theodor Bilharz Research Institute (TBRI), Giza, Egypt.
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands.
| | - Erik Bloem
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands
| | - István Fodor
- NAP Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, Centre for Ecological Research, 8237, Tihany, Hungary
| | - El-Sayed Baz
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | | | - Maha F M Soliman
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Nahla S El-Shenawy
- Zoology Department, Faculty of Science, Suez Canal University, Ismailia, 41522, Egypt
| | - Joris M Koene
- Department of Ecological Science, Faculty of Science, Vrije University, De Boelelaan 1085, 1081, Amsterdam, Netherlands
| |
Collapse
|
35
|
Soltaninejad M, Khammar A, Aminizadeh M, NabiAmjad R, Raei M, Hami M, Poursadeqiyan M. Shift working disorders among nurses of Tehran hospital and its related factors in 2016. Work 2021; 66:213-219. [PMID: 32417828 DOI: 10.3233/wor-203165] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Many adverse effects occur among the nurses due to shift work Hence, the present study aimed to determine the prevalence of shift work-related disorders and its related factor among the nurses at Tehran University Subsidiary Hospital, Iran, and to find solutions for managing the relevant health problems. METHODS In this cross-sectional study, the Survey of Shift workers (SOS) questionnaire and the Personal Information Form were used to collect data related to demographics and working conditions of 1259 randomly selected nurses working at Tehran University Subsidiary Hospital as statistical population. RESULTS According to the results, psychological disorders (95%), digestive problems (85%) and social problems (80%) were the most frequent problems among the subjects. Additionally, the satisfaction rate was higher among the volunteer nurses compared to nurses who were forced to do shift work (P < 0.05). CONCLUSION The nurses volunteered for shift work had higher satisfaction rate compared to nurses forced to shift work system; moreover, they had more job satisfaction and less shift work-related complaints. Therefore, it is important to select the nurses who are volunteer for shift work system. In addition, the shift work schedule in hospitals should be set based on workload and requirements because the shift schedule can adversely influence the social and family issues of the nurses, as well as their sleep quality and body biological process.
Collapse
Affiliation(s)
- Mohammadreza Soltaninejad
- Department of Clinical Psychology and Department of Psychiatry, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Khammar
- Department of Occupational Health Engineering, School of Health, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohsen Aminizadeh
- Health in Emergency and Disaster Research Center, Kerman University of Medical Sciences, Kerman, Iran.,Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza NabiAmjad
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mehdi Raei
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahsa Hami
- Health Management and Economics Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohsen Poursadeqiyan
- Health in Emergency and Disaster Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Department of Occupational Health Engineering, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| |
Collapse
|
36
|
Wu Y, Gui SY, Fang Y, Zhang M, Hu CY. Exposure to outdoor light at night and risk of breast cancer: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116114. [PMID: 33280921 DOI: 10.1016/j.envpol.2020.116114] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Abstract
Recent epidemiological studies have explored effects of light at night (LAN) exposure on breast cancer, but reported inconsistent findings. We performed a systematic review and meta-analysis of available evidence regarding the association of LAN assessed by satellite data with breast cancer. We conducted a systematic PubMed, Web of Science, and EMBASE database literature search until August 2020. Random-effects meta-analysis was applied to synthesis risk estimates. Heterogeneity was measured using statistics of Cochran's Q, I2, and Tau2 (τ2). We assessed publication bias through funnel plot and Egger's test. Moreover, subgroup analyses according to study design and menopausal status were performed. Risk of bias (RoB) of each included study was assessed using a domain-based RoB assessment tool. The confidence in the body of evidence was appraised using the GRADE approach for level-of-evidence translation. A total of 1157 studies were identified referring to LAN and breast cancer, from which 6 were included for quantitative synthesis. We found a significantly higher odds of breast cancer in the highest versus the lowest category of LAN exposure (OR = 1.11, 95% CI: 1.06, 1.16; I2 = 0.0%). In the subgroup analyses stratified by menopausal status and study design, significant association was found in postmenopausal women (OR = 1.07, 95% CI = 1.00, 1.13) and cohort studies (OR = 1.11, 95% CI = 1.05, 1.18), while the summary estimates of premenopausal women and case-control studies showed no significance. The level of evidence for the association of LAN exposure and breast cancer risk was graded as "moderate" with "probably low" RoB according to the NTP/OHAT framework. In conclusion, this study suggests a link of LAN exposure with risk of breast cancer. Further high-quality prospective studies, especially performed in low-to middle-income countries with improvement in the area of LAN exposure assessment are needed to advance this field.
Collapse
Affiliation(s)
- Yue Wu
- Oncology Department of Integrated Traditional and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China; The Integrated Traditional and Western Medicine Cancer Center of Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Si-Yu Gui
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Yuan Fang
- Department of Public health, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Mei Zhang
- Oncology Department of Integrated Traditional and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China; The Integrated Traditional and Western Medicine Cancer Center of Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
37
|
Baeza Moyano D, González Lezcano RA. The Importance of Light in Our Lives. PRACTICE, PROGRESS, AND PROFICIENCY IN SUSTAINABILITY 2021:239-256. [DOI: 10.4018/978-1-7998-7023-4.ch011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The light that enters through our eyes is not only for vision. The human circadian system responds to light differently than the visual system. The timing of each biological function in mammals is directed by the main clock located in the Supraquiasmic Nucleus, which is regulated by light. However, until now, only the interaction of light with our visual system has been taken into account when choosing the parameters of indoor lighting sources, including those in the classroom. In the publications about school lighting, the first concern was the common parameters of indoor lighting such as horizontal workplane illuminance, illuminance uniformity, and avoiding reflections on different surfaces. In this chapter, the authors show publications about new findings on the effects of light on people, studies carried out in different countries aimed at improving classroom lighting, current regulations on lighting related to classroom lighting, and new parameters that are being considered, along with those already used for new and better lighting.
Collapse
|
38
|
Falchi F, Bará S. A linear systems approach to protect the night sky: implications for current and future regulations. ROYAL SOCIETY OPEN SCIENCE 2020; 7:201501. [PMID: 33489286 PMCID: PMC7813237 DOI: 10.1098/rsos.201501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/24/2020] [Indexed: 05/07/2023]
Abstract
The persistent increase of artificial light emissions is causing a progressive brightening of the night sky in most regions of the world. This process is a threat for the long-term sustainability of the scientific and educational activity of ground-based astronomical observatories operating in the optical range. Huge investments in building, scientific and technical workforce, equipment and maintenance can be at risk if the increasing light pollution levels hinder the capability of carrying out the top-level scientific observations for which these key scientific infrastructures were built. Light pollution has other negative consequences, as e.g. biodiversity endangering and the loss of the starry sky for recreational, touristic and preservation of cultural heritage. The traditional light pollution mitigation approach is based on imposing conditions on the photometry of individual sources, but the aggregated effects of all sources in the territory surrounding the observatories are seldom addressed in the regulations. We propose that this approach shall be complemented with a top-down, ambient artificial skyglow immission limits strategy, whereby clear limits are established to the admissible deterioration of the night sky above the observatories. We describe the general form of the indicators that can be employed to this end, and develop linear models relating their values to the artificial emissions across the territory. This approach can be easily applied to other protection needs, like e.g. to protect nocturnal ecosystems, and it is expected to be useful for making informed decisions on public lighting, in the context of wider spatial planning projects.
Collapse
Affiliation(s)
- Fabio Falchi
- Dept. de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
- Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso (Light Pollution Science and Technology Institute), 36016 Thiene, Italy
| | - Salvador Bará
- Dept. de Física Aplicada, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Galicia, Spain
- Author for correspondence: Salvador Bará e-mail:
| |
Collapse
|
39
|
Sorensen TB, Wilson R, Gregson J, Shankar B, Dangour AD, Kinra S. Is night-time light intensity associated with cardiovascular disease risk factors among adults in early-stage urbanisation in South India? A cross-sectional study of the Andhra Pradesh Children and Parents Study. BMJ Open 2020; 10:e036213. [PMID: 33444171 PMCID: PMC7678398 DOI: 10.1136/bmjopen-2019-036213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/16/2020] [Accepted: 10/20/2020] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To explore associations of night-time light intensity (NTLI), a novel proxy for continuous urbanisation levels, with mean systolic blood pressure (SBP), body mass index (BMI), fasting serum low-density lipoprotein (LDL) and fasting plasma glucose (FPG), among adults in early-stage urbanisation in Telangana, South India. DESIGN Cross-sectional analysis of the third wave of the Andhra Pradesh Children and Parents Study cohort. SETTING 28 villages representing a continuum of urbanisation levels, ranging from rural settlement to medium-sized town in Telangana, South India. PARTICIPANTS Data were available from 6944 participants, 6236 of whom were eligible after excluding pregnant women, participants younger than 18 years of age and participants missing data for age. Participants were excluded if they did not provide fasting blood samples, had implausible or missing outcome values, were medicated for hypertension or diabetes or had triglyceride levels invalidating derived LDL. The analysis included 5924 participants for BMI, 5752 participants for SBP, 5287 participants for LDL and 5328 participants for FPG. RESULTS Increasing NTLI was positively associated with mean BMI, SBP and LDL but not FPG. Adjusted mean differences across the range of village-level NTLI were 1.0 kg/m2 (95% CI 0.01 to 1.9) for BMI; 4.2 mm Hg (95% CI 1.0 to 7.4) for SBP; 0.3 mmol/L (95% CI -0.01 to 0.7) for LDL; and -0.01 mmol/L (95% CI -0.4 to 0.4) for FPG. Associations of NTLI with BMI and SBP were stronger in older age groups. CONCLUSION The association of NTLI with cardiovascular disease (CVD) risk factors identify NTLI as a potentially important tool for exploring urbanisation-related health. Consistent associations of moderate increases in urbanisation levels with important CVD risk factors warrant prevention strategies to curb expected large public health impacts from continued and rapid urbanisation in India.
Collapse
Affiliation(s)
- Tina Bonde Sorensen
- Department of Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Robin Wilson
- Department of Geography & Environment, University of Southampton, Southampton, UK
| | - John Gregson
- Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK
| | - Bhavani Shankar
- Department of Geography, The University of Sheffield, Sheffield, UK
| | - Alan D Dangour
- Department of Population Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Sanjay Kinra
- Department of Non-communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
40
|
Abstract
IMPORTANCE Emerging research suggests that factors associated with the built environment, including artificial light, air pollution, and noise, may adversely affect children's mental health, while living near green space may reduce stress. Little is known about the combined roles of these factors on children's stress. OBJECTIVE To investigate associations between components of the built environment with personal and home characteristics in a large cohort of children who were assessed for perceived stress. DESIGN, SETTING, AND PARTICIPANTS In this cohort study, a total of 2290 Southern California Children's Health Study participants residing in 8 densely populated urban communities responded to detailed questionnaires. Exposures of artificial light at night (ALAN) derived from satellite observations, near-roadway air pollution (NRP) determined from a dispersion model, noise estimated from the US Traffic Noise Model, and green space from satellite observations of the enhanced vegetation index were linked to each participant's geocoded residence. MAIN OUTCOMES AND MEASURES Children's stress was assessed at ages 13 to 14 years and 15 to 16 years using the 4-item Perceived Stress Scale (PSS-4), scaled from 0 to 16, with higher scores indicating greater perceived stress. Measurements were conducted in 2010 and 2012, and data were analyzed from February 6 to August 24, 2019. Multivariate mixed-effects models were used to examine multiple exposures; modification and mediation analyses were also conducted. RESULTS Among the 2290 children in this study, 1149 were girls (50%); mean (SD) age was 13.5 (0.6) years. Girls had significantly higher perceived stress measured by PSS-4 (mean [SD] score, 5.7 [3.4]) than boys (4.9 [3.2]). With increasing age (from 13.5 [0.6] to 15.3 [0.6] years), the mean PSS-4 score rose from 5.6 (3.3) to 6.0 (3.4) in girls but decreased for boys from 5.0 (3.2) to 4.7 (3.1). Multivariate mixed-effects models examining multiple exposures indicated that exposure to secondhand smoke in the home was associated with a 0.85 (95% CI, 0.46-1.24) increase in the PSS-4 score. Of the factors related to the physical environment, an interquartile range (IQR) increase in ALAN was associated with a 0.57 (95% CI, 0.05-1.09) unit increase in the PSS-4 score together with a 0.16 score increase per IQR increase of near-roadway air pollution (95% CI, 0.02-0.30) and a -0.24 score decrease per IQR increase of the enhanced vegetation index (95% CI, -0.45 to -0.04). Income modified the ALAN effect size estimate; participants in households earning less than $48 000 per year had significantly greater stress per IQR increase in ALAN. Sleep duration partially mediated the associations between stress and both enhanced vegetation index (17%) and ALAN (18%). CONCLUSIONS AND RELEVANCE In this cohort study, children's exposure to smoke at home in addition to residential exposure to ALAN and near-roadway air pollution were associated with increased perceived stress among young adolescent children. These associations appeared to be partially mitigated by more residential green space. The findings may support the promotion of increased residential green spaces to reduce pollution associated with the built environment, with possible mental health benefits for children.
Collapse
Affiliation(s)
- Meredith Franklin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Xiaozhe Yin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| | - Scott Fruin
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
| |
Collapse
|
41
|
Li E, Li X, Huang J, Xu C, Liang Q, Ren K, Bai A, Lu C, Qian R, Sun N. BMAL1 regulates mitochondrial fission and mitophagy through mitochondrial protein BNIP3 and is critical in the development of dilated cardiomyopathy. Protein Cell 2020; 11:661-679. [PMID: 32277346 PMCID: PMC7452999 DOI: 10.1007/s13238-020-00713-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/18/2020] [Indexed: 12/18/2022] Open
Abstract
Dysregulation of circadian rhythms associates with cardiovascular disorders. It is known that deletion of the core circadian gene Bmal1 in mice causes dilated cardiomyopathy. However, the biological rhythm regulation system in mouse is very different from that of humans. Whether BMAL1 plays a role in regulating human heart function remains unclear. Here we generated a BMAL1 knockout human embryonic stem cell (hESC) model and further derived human BMAL1 deficient cardiomyocytes. We show that BMAL1 deficient hESC-derived cardiomyocytes exhibited typical phenotypes of dilated cardiomyopathy including attenuated contractility, calcium dysregulation, and disorganized myofilaments. In addition, mitochondrial fission and mitophagy were suppressed in BMAL1 deficient hESC-cardiomyocytes, which resulted in significantly attenuated mitochondrial oxidative phosphorylation and compromised cardiomyocyte function. We also found that BMAL1 binds to the E-box element in the promoter region of BNIP3 gene and specifically controls BNIP3 protein expression. BMAL1 knockout directly reduced BNIP3 protein level, causing compromised mitophagy and mitochondria dysfunction and thereby leading to compromised cardiomyocyte function. Our data indicated that the core circadian gene BMAL1 is critical for normal mitochondria activities and cardiac function. Circadian rhythm disruption may directly link to compromised heart function and dilated cardiomyopathy in humans.
Collapse
Affiliation(s)
- Ermin Li
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Xiuya Li
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jie Huang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chen Xu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Qianqian Liang
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Kehan Ren
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Aobing Bai
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Chao Lu
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
| | - Ruizhe Qian
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
| | - Ning Sun
- Department of Physiology and Pathophysiology, State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
- Shanghai Key Lab of Birth Defect, Children's Hospital of Fudan University, Shanghai, 201102, China.
- Shanghai Key Laboratory of Clinical Geriatric Medicine, Fudan University, Shanghai, 200032, China.
- Research Center on Aging and Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Personalized Office Lighting for Circadian Health and Improved Sleep. SENSORS 2020; 20:s20164569. [PMID: 32824032 PMCID: PMC7472178 DOI: 10.3390/s20164569] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 12/20/2022]
Abstract
In modern society, the average person spends more than 90% of their time indoors. However, despite the growing scientific understanding of the impact of light on biological mechanisms, the existing light in the built environment is designed predominantly to meet visual performance requirements only. Lighting can also be exploited as a means to improve occupant health and well-being through the circadian functions that regulate sleep, mood, and alertness. The benefits of well-lit spaces map across other regularly occupied building types, such as residences and schools, as well as patient rooms in healthcare and assisted-living facilities. Presently, Human Centric Lighting is being offered based on generic insights on population average experiences. In this paper, we suggest a personalized bio-adaptive office lighting system, controlled to emit a lighting recipe tailored to the individual employee. We introduce a new mathematical optimization for lighting schedules that align the 24-h circadian cycle. Our algorithm estimates and optimizes parameters in experimentally validated models of the human circadian pacemaker. Moreover, it constrains deviations from the light levels desired and needed to perform daily activities. We further translate these into general principles for circadian lighting. We use experimentally validated models of the human circadian pacemaker to introduce a new algorithm to mathematically optimize lighting schedules to achieve circadian alignment to the 24-h cycle, with constrained deviations from the light levels desired for daily activities. Our suggested optimization algorithm was able to translate our findings into general principles for circadian lighting. In particular, our simulation results reveal: (1) how energy constrains drive the shape of optimal lighting profiles by dimming the light levels in the time window that light is less biologically effective; (2) how inter-individual variations in the characteristic internal duration of the day shift the timing of optimal lighting exposure; (3) how user habits and, in particular, late-evening light exposure result in differentiation in late afternoon office lighting.
Collapse
|
43
|
Lai KY, Sarkar C, Ni MY, Gallacher J, Webster C. Exposure to light at night (LAN) and risk of obesity: A systematic review and meta-analysis of observational studies. ENVIRONMENTAL RESEARCH 2020; 187:109637. [PMID: 32497902 DOI: 10.1016/j.envres.2020.109637] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/18/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND There is emerging evidence of the association between light at night (LAN) exposure and weight gain. OBJECTIVE We aim to conduct a systematic review and meta-analysis of observational studies on the association between LAN exposure and risk of obesity in human subjects. METHODS Peer-reviewed observational studies were systematically searched from MEDLINE (EBSCO), Academic Search Complete (EBSCO), CINAHL Plus (EBSCO) and PubMed up to December 24, 2019. Random-effects models were developed to estimate the associations between LAN exposure and weight-related outcomes of overweight and obesity as measured by body mass index (BMI), waist circumference, waist-hip-ratio and waist-to-height-ratio. The I2 statistic was used to assess the degree of heterogeneity across studies. The National Toxicology Program's Office of Health Assessment and Translation (OHAT) risk of bias rating tool and the Grading of Recommendations Assessment, Development and Evaluation (GRADE) guideline were respectively employed to assess the risk of bias and to appraise the quality of the generated evidence. RESULTS A total of 12 studies (three with longitudinal and nine of cross-sectional design) published between 2003 and 2019 were included for systematic review, while seven of them fulfilling the inclusion/exclusion criteria were included in the meta-analysis. A higher LAN exposure was significantly associated with 13% higher odds of overweight (BMI≥25 kg/m2) (Summary Odds Ratio; SOR: 1.13, 95% CI: 1.10-1.16) with low heterogeneity (I2 = 27.27%), and 22% higher odds of obesity (BMI≥30 kg/m2) (SOR: 1.22, 95% CI: 1.07-1.38) with substantial heterogeneity (I2 = 85.96%). Stratifying analyses by the levels of measurement of LAN exposures (macro-, meso- and micro-levels) and time of LAN measurement (including before and while sleeping) consistently produced robust estimates, with higher exposure to LAN being positively associated with poorer weight outcomes. Assessment of risk of bias identified substantial detection bias for exposure, with over half of the pooled studies employing subjective LAN measures. The overall evidence of the association between LAN exposure and risk of obesity was rated as 'moderate' as per the GRADE guideline. CONCLUSIONS Exposure to LAN was reported to be a significant risk factor for overweight and obesity. Prospectively designed future studies with objectively measured multi-level LAN exposures and weight outcomes are required.
Collapse
Affiliation(s)
- Ka Yan Lai
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China
| | - Chinmoy Sarkar
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China; School of Public Health, The University of Hong Kong, Patrick Manson Building, Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Michael Y Ni
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China; School of Public Health, The University of Hong Kong, Patrick Manson Building, Sassoon Road, Pokfulam, Hong Kong Special Administrative Region, China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - John Gallacher
- Department of Psychiatry, Oxford University, Warneford Hospital, Oxford, UK
| | - Chris Webster
- Healthy High Density Cities Lab, HKUrbanLab, The University of Hong Kong, Knowles Building, Pokfulam Road, Pokfulam, Hong Kong Special Administrative Region, China
| |
Collapse
|
44
|
Xiao Q, James P, Breheny P, Jia P, Park Y, Zhang D, Fisher JA, Ward MH, Jones RR. Outdoor light at night and postmenopausal breast cancer risk in the NIH-AARP diet and health study. Int J Cancer 2020; 147:2363-2372. [PMID: 32488897 DOI: 10.1002/ijc.33016] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/21/2020] [Accepted: 04/03/2020] [Indexed: 12/24/2022]
Abstract
Circadian disruption may play a role in breast carcinogenesis. Previous studies reported relationships between outdoor light at night (LAN) and the breast cancer risk, but their findings are mixed. There is also a need to examine LAN and breast cancer incidence according to different individual and environmental characteristics to identify subpopulations at greater risk associated with LAN exposure. We studied residential outdoor LAN estimated from satellite imagery at baseline (1996) in relation to postmenopausal breast cancer incidence over ~16 years of follow-up in 186 981 postmenopausal women including 12 318 incident postmenopausal breast cancer cases in the NIH-AARP Diet and Health Study. We used Cox proportional hazards models to estimate hazard ratios (HR) and two-sided 95% confidence intervals (CI) of the relationship between quintiles of LAN and postmenopausal breast cancer risk, overall and by hormone receptor status and cancer stage. We found that when compared to women in the lowest quintile of baseline LAN, those in the highest quintile had a 10% increase in postmenopausal breast cancer risk (HR (95% CI), 1.10 (1.02, 1.18), P-trend, .002). The association appeared to be stronger for estrogen receptor (ER) positive breast cancer (1.12 [1.02, 1.24], .007) than for ER-negative cancer (1.07 [0.85, 1.34], .66). Our findings also suggested that the relationship between LAN and breast cancer risk may differ by individual characteristics, such as smoking, alcohol drinking, sleep duration and BMI, and neighborhood environment. In conclusion, our study suggests that higher outdoor LAN exposure may be a risk factor for postmenopausal breast cancer.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Peter James
- Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, Massachusetts, USA
| | - Patrick Breheny
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Peng Jia
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,International Initiative on Spatial Lifecourse Epidemiology, Hong Kong, China
| | - Yikyung Park
- Division of Public Health Sciences, Department of Surgery, Washington University School of Medicine in St Louis, St. Louis, Missouri, USA
| | - Dong Zhang
- Department of Health and Human physiology, College of Liberal Arts and Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Jared A Fisher
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
45
|
Durrant J, Green MP, Jones TM. Dim artificial light at night reduces the cellular immune response of the black field cricket, Teleogryllus commodus. INSECT SCIENCE 2020; 27:571-582. [PMID: 30720239 PMCID: PMC7277038 DOI: 10.1111/1744-7917.12665] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/16/2019] [Accepted: 01/27/2019] [Indexed: 05/04/2023]
Abstract
A functioning immune system is crucial for protection against disease and illness, yet increasing evidence suggests that species living in urban areas could be suffering from immune suppression, due to the presence of artificial light at night (ALAN). This study examined the effects of ecologically relevant levels of ALAN on three key measures of immune function (haemocyte concentration, lytic activity, and phenoloxidase activity) using a model invertebrate species, the Australian black field cricket, Teleogryllus commodus. We reared crickets under an ecologically relevant daily light-cycle consisting of 12 hr bright daylight (2600 lx) followed by either 12 h darkness (0 lx) or dim environmentally relevant ALAN (1, 10, 100 lx), and then assessed immune function at multiple time points throughout adult life using haemolymph samples. We found that the presence of ALAN had a clear negative effect on haemocytes, while the effects on lytic activity and phenoloxidase activity were more complex or largely unaffected by ALAN. Furthermore, the effects of lifelong exposure to ALAN of 1 lx were comparable to those of 10 and 100 lx. Our data suggest that the effects of ALAN could be large and widespread, and such reductions in the core immune response of individuals will likely have greater consequences for fitness and survival under more malign conditions, such as those of the natural environment.
Collapse
Affiliation(s)
- Joanna Durrant
- The School of BioSciences, Faculty of ScienceUniversity of MelbourneVictoria3010Australia
| | - Mark P. Green
- The School of BioSciences, Faculty of ScienceUniversity of MelbourneVictoria3010Australia
| | - Therésa M. Jones
- The School of BioSciences, Faculty of ScienceUniversity of MelbourneVictoria3010Australia
| |
Collapse
|
46
|
Farshadi E, van der Horst GT, Chaves I. Molecular Links between the Circadian Clock and the Cell Cycle. J Mol Biol 2020; 432:3515-3524. [DOI: 10.1016/j.jmb.2020.04.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
|
47
|
Security Assessment of Urban Areas through a GIS-Based Analysis of Lighting Data Generated by IoT Sensors. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10062174] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The current perspective about urban development expects 70% of energy consumption will be concentrated in the cities in 2050. In addition, a growing density of people in the urban context leads to the need for increased security and safety for citizens, which imply a better lighting infrastructure. Smart solutions are required to optimize the corresponding energy effort. In developing countries, the cities’ lighting is limited and the lighting world map is strongly significant about the urban density of the different areas. Nevertheless, in territories where the illumination level is particularly high, such as urban contexts, the conditions are not homogenous at the microscale level and the perceived security is affected by artificial urban lighting. As an example, 27.2% of the families living in the city of Milan, ombardy Region, Italy, consider critical the conditions of lighting in the city during the night, although the region has diffused infrastructure. The paper aims to provide a local illuminance geographic information system (GIS) mapping at the neighborhood level that can be extended to the urban context. Such an approach could unveil the need to increase lighting to enhance the perceived safety and security for the citizens and promote a higher quality of life in the smart city. Lighting mapping can be matched with car accident mapping of cities and could be extended to perceived security among pedestrians in urban roads and green areas, also related to degradation signs of the built environment. In addition, such an approach could open new scenarios to the adaptive street lighting control used to reduce the energy consumption in a smart city: the perceived security of an area could be used as an additional index to be considered during the modulation of the level of the luminosity of street lighting. An example of a measurement set-up is described and tested at the district level to define how to implement an extensive monitoring campaign based on an extended research schema.
Collapse
|
48
|
Melatonin Relations with Energy Metabolism as Possibly Involved in Fatal Mountain Road Traffic Accidents. Int J Mol Sci 2020; 21:ijms21062184. [PMID: 32235717 PMCID: PMC7139848 DOI: 10.3390/ijms21062184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 12/18/2022] Open
Abstract
Previous results evidenced acute exposure to high altitude (HA) weakening the relation between daily melatonin cycle and the respiratory quotient. This review deals with the threat extreme environments pose on body time order, particularly concerning energy metabolism. Working at HA, at poles, or in space challenge our ancestral inborn body timing system. This conflict may also mark many aspects of our current lifestyle, involving shift work, rapid time zone crossing, and even prolonged office work in closed buildings. Misalignments between external and internal rhythms, in the short term, traduce into risk of mental and physical performance shortfalls, mood changes, quarrels, drug and alcohol abuse, failure to accomplish with the mission and, finally, high rates of fatal accidents. Relations of melatonin with energy metabolism being altered under a condition of hypoxia focused our attention on interactions of the indoleamine with redox state, as well as, with autonomic regulations. Individual tolerance/susceptibility to such interactions may hint at adequately dealing with body timing disorders under extreme conditions.
Collapse
|
49
|
Fasciani I, Petragnano F, Aloisi G, Marampon F, Rossi M, Coppolino MF, Rossi R, Longoni B, Scarselli M, Maggio R. A New Threat to Dopamine Neurons: The Downside of Artificial Light. Neuroscience 2020; 432:216-228. [PMID: 32142863 DOI: 10.1016/j.neuroscience.2020.02.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/26/2020] [Accepted: 02/27/2020] [Indexed: 12/17/2022]
Abstract
Growing awareness of adverse impacts of artificial light on human health has led to recognize light pollution as a significant global environmental issue. Despite, a large number of studies in rodent and monkey models of Parkinson's disease have reported that near infrared light has neuroprotective effects on dopaminergic neurons, recent findings have shown that prolonged exposure of rodents and birds to fluorescent artificial light results in an increase of neuromelanin granules in substantia nigra and loss of dopaminergic neurons. The observed detrimental effect seems to be dependent on a direct effect of light on the substantia nigra rather than a secondary effect of the alterations of circadian rhythms. Moreover, inferences from animal models to human studies have shown a positive correlation between the prevalence of Parkinson's disease and light pollution. The present article discusses experimental evidence supporting a potentially deleterious impact of light on dopaminergic neurons and highlights the mechanisms whereby light might damage neuronal tissue. Moreover, it analyses epidemiological evidence that suggests light pollution to be an environmental risk factor for Parkinson's disease.
Collapse
Affiliation(s)
- Irene Fasciani
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Petragnano
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Gabriella Aloisi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Francesco Marampon
- Department of Radiotherapy, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Mario Rossi
- Institute of Molecular Cell and Systems Biology, University of Glasgow, Glasgow, UK
| | - Maria Francesca Coppolino
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rodolfo Rossi
- Ph D Programme in Neuroscience, University Tor Vergata, Rome, Italy
| | - Biancamaria Longoni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Marco Scarselli
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Roberto Maggio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| |
Collapse
|
50
|
Ritonja J, McIsaac MA, Sanders E, Kyba CCM, Grundy A, Cordina-Duverger E, Spinelli JJ, Aronson KJ. Outdoor light at night at residences and breast cancer risk in Canada. Eur J Epidemiol 2020; 35:579-589. [DOI: 10.1007/s10654-020-00610-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/30/2020] [Indexed: 01/21/2023]
|