1
|
Goldberg DC, Cloud C, Lee SM, Barnes B, Gruber S, Kim E, Pottekat A, Westphal M, McAuliffe L, Majournie E, KalayilManian M, Zhu Q, Tran C, Hansen M, Parker JB, Kohli RM, Porecha R, Renke N, Zhou W. MSA: scalable DNA methylation screening BeadChip for high-throughput trait association studies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.594606. [PMID: 38826316 PMCID: PMC11142114 DOI: 10.1101/2024.05.17.594606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
The Infinium DNA Methylation BeadChips have significantly contributed to population-scale epigenetics research by enabling epigenome-wide trait association discoveries. Here, we design, describe, and experimentally verify a new iteration of this technology, the Methylation Screening Array (MSA), to focus on human trait screening and discovery. This array utilizes extensive data from previous Infinium platform-based epigenome-wide association studies (EWAS). It incorporates knowledge from the latest single-cell and cell type-resolution whole genome methylome profiles. The MSA is engineered to achieve scalable screening of epigenetics-trait association in an ultra-high sample throughput. Our design encompassed diverse human trait associations, including those with genetic, cellular, environmental, and demographical variables and human diseases such as genetic, neurodegenerative, cardiovascular, infectious, and immune diseases. We comprehensively evaluated this array's reproducibility, accuracy, and capacity for cell-type deconvolution and supporting 5-hydroxymethylation profiling in diverse human tissues. Our first atlas data using this platform uncovered the complex chromatin and tissue contexts of DNA modification variations and genetic variants linked to human phenotypes.
Collapse
Affiliation(s)
- David C Goldberg
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | - Cameron Cloud
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | - Sol Moe Lee
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | | | | | - Elliot Kim
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
| | | | | | | | | | | | | | | | | | - Jared B Parker
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rahul M Kohli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | | | - Wanding Zhou
- Center for Computational and Genomic Medicine, The Children’s Hospital of Philadelphia, PA, 19104, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
2
|
Cevik SE, Skaar DA, Jima DD, Liu AJ, Østbye T, Whitson HE, Jirtle RL, Hoyo C, Planchart A. DNA methylation of imprint control regions associated with Alzheimer's disease in non-Hispanic Blacks and non-Hispanic Whites. Clin Epigenetics 2024; 16:58. [PMID: 38658973 PMCID: PMC11043040 DOI: 10.1186/s13148-024-01672-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/13/2024] [Indexed: 04/26/2024] Open
Abstract
Alzheimer's disease (AD) prevalence is twice as high in non-Hispanic Blacks (NHBs) as in non-Hispanic Whites (NHWs). The objective of this study was to determine whether aberrant methylation at imprint control regions (ICRs) is associated with AD. Differentially methylated regions (DMRs) were bioinformatically identified from whole-genome bisulfite sequenced DNA derived from brain tissue of 9 AD (5 NHBs and 4 NHWs) and 8 controls (4 NHBs and 4 NHWs). We identified DMRs located within 120 regions defined as candidate ICRs in the human imprintome ( https://genome.ucsc.edu/s/imprintome/hg38.AD.Brain_track ). Eighty-one ICRs were differentially methylated in NHB-AD, and 27 ICRs were differentially methylated in NHW-AD, with two regions common to both populations that are proximal to the inflammasome gene, NLRP1, and a known imprinted gene, MEST/MESTIT1. These findings indicate that early developmental alterations in DNA methylation of regions regulating genomic imprinting may contribute to AD risk and that this epigenetic risk differs between NHBs and NHWs.
Collapse
Affiliation(s)
- Sebnem E Cevik
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - David A Skaar
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Andy J Liu
- Department of Neurology, School of Medicine, Duke University, Durham, NC, USA
| | - Truls Østbye
- Department of Family Medicine and Community Health, Duke University, Durham, NC, USA
| | - Heather E Whitson
- Department of Medicine, School of Medicine, Duke University, Durham, NC, USA
- Duke Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke/UNC Alzheimer's Disease Research Center (ADRC), Durham, NC, USA
| | - Randy L Jirtle
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Cathrine Hoyo
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Antonio Planchart
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
3
|
Hubert JN, Iannuccelli N, Cabau C, Jacomet E, Billon Y, Serre RF, Vandecasteele C, Donnadieu C, Demars J. Detection of DNA methylation signatures through the lens of genomic imprinting. Sci Rep 2024; 14:1694. [PMID: 38242932 PMCID: PMC10798973 DOI: 10.1038/s41598-024-52114-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/14/2024] [Indexed: 01/21/2024] Open
Abstract
Genomic imprinting represents an original model of epigenetic regulation resulting in a parent-of-origin expression. Despite the critical role of imprinted genes in mammalian growth, metabolism and neuronal function, there is no molecular tool specifically targeting them for a systematic evaluation. We show here that enzymatic methyl-seq consistently outperforms the bisulfite-based standard in capturing 165 candidate regions for genomic imprinting in the pig. This highlights the potential for a turnkey, fully customizable and reliable capture tool of genomic regions regulated by cytosine methylation in any population of interest. For the field of genomic imprinting, it opens up the possibility of detecting multilocus imprinting variations across the genome, with implications for basic research, agrigenomics and clinical practice.
Collapse
Affiliation(s)
- Jean-Noël Hubert
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | | | - Cédric Cabau
- Sigenae, GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Eva Jacomet
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
- ENVT, 31326, Castanet-Tolosan, France
| | | | - Rémy-Félix Serre
- INRAE, GeT-PlaGe, Genotoul, 31326, Castanet-Tolosan, France
- Qualyse, Le Treuil, INRAE, 19000, Tulle, France
| | | | | | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France.
| |
Collapse
|
4
|
Carreras-Gallo N, Dwaraka VB, Jima DD, Skaar DA, Mendez TL, Planchart A, Zhou W, Jirtle RL, Smith R, Hoyo C. Creation and Validation of the First Infinium DNA Methylation Array for the Human Imprintome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575646. [PMID: 38293193 PMCID: PMC10827131 DOI: 10.1101/2024.01.15.575646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background Differentially methylated imprint control regions (ICRs) regulate the monoallelic expression of imprinted genes. Their epigenetic dysregulation by environmental exposures throughout life results in the formation of common chronic diseases. Unfortunately, existing Infinium methylation arrays lack the ability to profile these regions adequately. Whole genome bisulfite sequencing (WGBS) is the unique method able to profile these regions, but it is very expensive and it requires not only a high coverage but it is also computationally intensive to assess those regions. Findings To address this deficiency, we developed a custom methylation array containing 22,819 probes. Among them, 9,757 probes map to 1,088 out of the 1,488 candidate ICRs recently described. To assess the performance of the array, we created matched samples processed with the Human Imprintome array and WGBS, which is the current standard method for assessing the methylation of the Human Imprintome. We compared the methylation levels from the shared CpG sites and obtained a mean R 2 = 0.569. We also created matched samples processed with the Human Imprintome array and the Infinium Methylation EPIC v2 array and obtained a mean R 2 = 0.796. Furthermore, replication experiments demonstrated high reliability (ICC: 0.799-0.945). Conclusions Our custom array will be useful for replicable and accurate assessment, mechanistic insight, and targeted investigation of ICRs. This tool should accelerate the discovery of ICRs associated with a wide range of diseases and exposures, and advance our understanding of genomic imprinting and its relevance in development and disease formation throughout the life course.
Collapse
|
5
|
Sciorio R, Campos G, Tramontano L, Bulletti FM, Baldini GM, Vinciguerra M. Exploring the effect of cryopreservation in assisted reproductive technology and potential epigenetic risk. ZYGOTE 2023; 31:420-432. [PMID: 37409505 DOI: 10.1017/s0967199423000345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Since the birth of the first baby by in vitro fertilization in 1978, more than 9 million children have been born worldwide using medically assisted reproductive treatments. Fertilization naturally takes place in the maternal oviduct where unique physiological conditions enable the early healthy development of the embryo. During this dynamic period of early development major waves of epigenetic reprogramming, crucial for the normal fate of the embryo, take place. Increasingly, over the past 20 years concerns relating to the increased incidence of epigenetic anomalies in general, and genomic-imprinting disorders in particular, have been raised following assisted reproduction technology (ART) treatments. Epigenetic reprogramming is particularly susceptible to environmental conditions during the periconceptional period and non-physiological conditions such as ovarian stimulation, in vitro fertilization and embryo culture, as well as cryopreservation procedure, might have the potential to independently or collectively contribute to epigenetic dysregulation. Therefore, this narrative review offers a critical reappraisal of the evidence relating to the association between embryo cryopreservation and potential epigenetic regulation and the consequences on gene expression together with long-term consequences for offspring health and wellbeing. Current literature suggests that epigenetic and transcriptomic profiles are sensitive to the stress induced by vitrification, in terms of osmotic shock, temperature and pH changes, and toxicity of cryoprotectants, it is therefore, critical to have a more comprehensive understanding and recognition of potential unanticipated iatrogenic-induced perturbations of epigenetic modifications that may or may not be a consequence of vitrification.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, EFREC, Royal Infirmary of Edinburgh, UK
| | | | - Luca Tramontano
- Department of Women, Infants and Adolescents, Division of Obstetrics, Geneve University Hospitals, Boulevard de la Cluse 30, Geneve 14, Switzerland
| | - Francesco M Bulletti
- Department Obstetrics and Gynecology, University Hospital of Vaud, Lausanne, Switzerland
| | | | - Marina Vinciguerra
- Department of Biomedical Sciences and Human Oncology, Obstetrics and Gynaecology Section, University of Bari, Italy
- Clinic of Obstetrics and Gynecology 'Santa Caterina Novella', Galatina Hospital, Italy
| |
Collapse
|
6
|
Sciorio R, Manna C, Fauque P, Rinaudo P. Can Cryopreservation in Assisted Reproductive Technology (ART) Induce Epigenetic Changes to Gametes and Embryos? J Clin Med 2023; 12:4444. [PMID: 37445479 DOI: 10.3390/jcm12134444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Since the birth of Louise Brown in 1978, more than nine million children have been conceived using assisted reproductive technologies (ARTs). While the great majority of children are healthy, there are concerns about the potential epigenetic consequences of gametes and embryo manipulation. In fact, during the preimplantation period, major waves of epigenetic reprogramming occur. Epigenetic reprogramming is susceptible to environmental changes induced by ovarian stimulation, in-vitro fertilization, and embryo culture, as well as cryopreservation procedures. This review summarizes the evidence relating to oocytes and embryo cryopreservation and potential epigenetic regulation. Overall, it appears that the stress induced by vitrification, including osmotic shock, temperature and pH changes, and toxicity of cryoprotectants, might induce epigenetic and transcriptomic changes in oocytes and embryos. It is currently unclear if these changes will have potential consequences for the health of future offspring.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
| | - Claudio Manna
- Biofertility IVF and Infertility Center, 00198 Rome, Italy
| | - Patricia Fauque
- Université Bourgogne Franche-Comté-Equipe Génétique des Anomalies du Development (GAD) INSERM UMR1231, F-21000 Dijon, France
- CHU Dijon Bourgogne, Laboratoire de Biologie de la Reproduction-CECOS, F-21000 Dijon, France
| | - Paolo Rinaudo
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Francisco, CA 92037, USA
| |
Collapse
|
7
|
Krushkal J, Vural S, Jensen TL, Wright G, Zhao Y. Increased copy number of imprinted genes in the chromosomal region 20q11-q13.32 is associated with resistance to antitumor agents in cancer cell lines. Clin Epigenetics 2022; 14:161. [PMID: 36461044 PMCID: PMC9716673 DOI: 10.1186/s13148-022-01368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 10/31/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Parent of origin-specific allelic expression of imprinted genes is epigenetically controlled. In cancer, imprinted genes undergo both genomic and epigenomic alterations, including frequent copy number changes. We investigated whether copy number loss or gain of imprinted genes in cancer cell lines is associated with response to chemotherapy treatment. RESULTS We analyzed 198 human imprinted genes including protein-coding genes and noncoding RNA genes using data from tumor cell lines from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer datasets. We examined whether copy number of the imprinted genes in 35 different genome locations was associated with response to cancer drug treatment. We also analyzed associations of pretreatment expression and DNA methylation of imprinted genes with drug response. Higher copy number of BLCAP, GNAS, NNAT, GNAS-AS1, HM13, MIR296, MIR298, and PSIMCT-1 in the chromosomal region 20q11-q13.32 was associated with resistance to multiple antitumor agents. Increased expression of BLCAP and HM13 was also associated with drug resistance, whereas higher methylation of gene regions of BLCAP, NNAT, SGK2, and GNAS was associated with drug sensitivity. While expression and methylation of imprinted genes in several other chromosomal regions was also associated with drug response and many imprinted genes in different chromosomal locations showed a considerable copy number variation, only imprinted genes at 20q11-q13.32 had a consistent association of their copy number with drug response. Copy number values among the imprinted genes in the 20q11-q13.32 region were strongly correlated. They were also correlated with the copy number of cancer-related non-imprinted genes MYBL2, AURKA, and ZNF217 in that chromosomal region. Expression of genes at 20q11-q13.32 was associated with ex vivo drug response in primary tumor samples from the Beat AML 1.0 acute myeloid leukemia patient cohort. Association of the increased copy number of the 20q11-q13.32 region with drug resistance may be complex and could involve multiple genes. CONCLUSIONS Copy number of imprinted and non-imprinted genes in the chromosomal region 20q11-q13.32 was associated with cancer drug resistance. The genes in this chromosomal region may have a modulating effect on tumor response to chemotherapy.
Collapse
Affiliation(s)
- Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA.
| | - Suleyman Vural
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA.,Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | | | - George Wright
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA
| | - Yingdong Zhao
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr, Rockville, MD, 20850, USA
| |
Collapse
|
8
|
Lloyd DT, Skinner HG, Maguire R, Murphy SK, Motsinger-Reif AA, Hoyo C, House JS. Clomifene and Assisted Reproductive Technology in Humans Are Associated with Sex-Specific Offspring Epigenetic Alterations in Imprinted Control Regions. Int J Mol Sci 2022; 23:10450. [PMID: 36142363 PMCID: PMC9499479 DOI: 10.3390/ijms231810450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/02/2022] [Accepted: 09/07/2022] [Indexed: 12/04/2022] Open
Abstract
Children conceived with assisted reproductive technology (ART) have an increased risk of adverse outcomes, including congenital malformations and imprinted gene disorders. In a retrospective North Carolina-based-birth-cohort, we examined the effect of ovulation drugs and ART on CpG methylation in differentially methylated CpGs in known imprint control regions (ICRs). Nine ICRs containing 48 CpGs were assessed for methylation status by pyrosequencing in mixed leukocytes from cord blood. After restricting to non-smoking, college-educated participants who agreed to follow-up, ART-exposed (n = 27), clomifene-only-exposed (n = 22), and non-exposed (n = 516) groups were defined. Associations of clomifene and ART with ICR CpG methylation were assessed with linear regression and stratifying by offspring sex. In males, ART was associated with hypomethylation of the PEG3 ICR [β(95% CI) = -1.46 (-2.81, -0.12)] and hypermethylation of the MEG3 ICR [3.71 (0.01, 7.40)]; clomifene-only was associated with hypomethylation of the NNAT ICR [-5.25 (-10.12, -0.38)]. In female offspring, ART was associated with hypomethylation of the IGF2 ICR [-3.67 (-6.79, -0.55)]. Aberrant methylation of these ICRs has been associated with cardiovascular disease and metabolic and behavioral outcomes in children. The results suggest that the increased risk of adverse outcomes in offspring conceived through ART may be due in part to altered methylation of ICRs. Larger studies utilizing epigenome-wide interrogation are warranted.
Collapse
Affiliation(s)
- Dillon T. Lloyd
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| | - Harlyn G. Skinner
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Rachel Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Duke University Medical Center, Duke University, Durham, NC 27701, USA
| | - Alison A. Motsinger-Reif
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - John S. House
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27607, USA
| |
Collapse
|
9
|
Vidal AC, Moylan CA, Wilder J, Grant DJ, Murphy SK, Hoyo C. Racial disparities in liver cancer: Evidence for a role of environmental contaminants and the epigenome. Front Oncol 2022; 12:959852. [PMID: 36072796 PMCID: PMC9441658 DOI: 10.3389/fonc.2022.959852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 01/09/2023] Open
Abstract
Liver cancer incidence has tripled since the early 1980s, making this disease one of the fastest rising types of cancer and the third leading cause of cancer-related deaths worldwide. In the US, incidence varies by geographic location and race, with the highest incidence in the southwestern and southeastern states and among racial minorities such as Hispanic and Black individuals. Prognosis is also poorer among these populations. The observed ethnic disparities do not fully reflect differences in the prevalence of risk factors, e.g., for cirrhosis that may progress to liver cancer or from genetic predisposition. Likely substantial contributors to risk are environmental factors, including chemical and non-chemical stressors; yet, the paucity of mechanistic insights impedes prevention efforts. Here, we review the current literature and evaluate challenges to reducing liver cancer disparities. We also discuss the hypothesis that epigenetic mediators may provide biomarkers for early detection to support interventions that reduce disparities.
Collapse
Affiliation(s)
- Adriana C. Vidal
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| | - Cynthia A. Moylan
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Duke University, Durham, NC, United States
| | - Julius Wilder
- Department of Medicine, Division of Gastroenterology and Hepatology, School of Medicine, Duke University, Durham, NC, United States
| | - Delores J. Grant
- Department of Biomedical and Biological Sciences, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC, United States
| | - Susan K. Murphy
- Department of Obstetrics and Gynecology, Division of Research, School of Medicine, Duke University, Durham, NC, United States
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
10
|
Jima DD, Skaar DA, Planchart A, Motsinger-Reif A, Cevik SE, Park SS, Cowley M, Wright F, House J, Liu A, Jirtle RL, Hoyo C. Genomic map of candidate human imprint control regions: the imprintome. Epigenetics 2022; 17:1920-1943. [PMID: 35786392 PMCID: PMC9665137 DOI: 10.1080/15592294.2022.2091815] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Imprinted genes – critical for growth, metabolism, and neuronal function – are expressed from one parental allele. Parent-of-origin-dependent CpG methylation regulates this expression at imprint control regions (ICRs). Since ICRs are established before tissue specification, these methylation marks are similar across cell types. Thus, they are attractive for investigating the developmental origins of adult diseases using accessible tissues, but remain unknown. We determined genome-wide candidate ICRs in humans by performing whole-genome bisulphite sequencing (WGBS) of DNA derived from the three germ layers and from gametes. We identified 1,488 hemi-methylated candidate ICRs, including 19 of 25 previously characterized ICRs (https://humanicr.org/). Gamete methylation approached 0% or 100% in 332 ICRs (178 paternally and 154 maternally methylated), supporting parent-of-origin-specific methylation, and 65% were in well-described CTCF-binding or DNaseI hypersensitive regions. This draft of the human imprintome will allow for the systematic determination of the role of early-acquired imprinting dysregulation in the pathogenesis of human diseases and developmental and behavioural disorders.
Collapse
Affiliation(s)
- Dereje D Jima
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - David A Skaar
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Antonio Planchart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Alison Motsinger-Reif
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sebnem E Cevik
- Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Sarah S Park
- Toxicology Program, North Carolina State University, Raleigh, NC, USA.,Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michael Cowley
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Fred Wright
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - John House
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA.,National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Andy Liu
- Department of Neurology, Duke University, School of Medicine, Durham, NC, USA
| | - Randy L Jirtle
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA.,Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA.,Toxicology Program, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
11
|
Sciorio R, El Hajj N. Epigenetic Risks of Medically Assisted Reproduction. J Clin Med 2022; 11:jcm11082151. [PMID: 35456243 PMCID: PMC9027760 DOI: 10.3390/jcm11082151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/14/2022] Open
Abstract
Since the birth of Louise Joy Brown, the first baby conceived via in vitro fertilization, more than 9 million children have been born worldwide using assisted reproductive technologies (ART). In vivo fertilization takes place in the maternal oviduct, where the unique physiological conditions guarantee the healthy development of the embryo. During early embryogenesis, a major wave of epigenetic reprogramming takes place that is crucial for the correct development of the embryo. Epigenetic reprogramming is susceptible to environmental changes and non-physiological conditions such as those applied during in vitro culture, including shift in pH and temperature, oxygen tension, controlled ovarian stimulation, intracytoplasmic sperm injection, as well as preimplantation embryo manipulations for genetic testing. In the last decade, concerns were raised of a possible link between ART and increased incidence of imprinting disorders, as well as epigenetic alterations in the germ cells of infertile parents that are transmitted to the offspring following ART. The aim of this review was to present evidence from the literature regarding epigenetic errors linked to assisted reproduction treatments and their consequences on the conceived children. Furthermore, we provide an overview of disease risk associated with epigenetic or imprinting alterations in children born via ART.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Correspondence:
| | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar;
| |
Collapse
|
12
|
Sciorio R, Esteves SC. Contemporary Use of ICSI and Epigenetic Risks to Future Generations. J Clin Med 2022; 11:jcm11082135. [PMID: 35456226 PMCID: PMC9031244 DOI: 10.3390/jcm11082135] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Since the birth of Louise Brown in 1978 via IVF, reproductive specialists have acquired enormous knowledge and refined several procedures, which are nowadays applied in assisted reproductive technology (ART). One of the most critical steps in this practice is the fertilization process. In the early days of IVF, a remarkable concern was the unpleasant outcomes of failed fertilization, overtaken by introducing intracytoplasmic sperm injection (ICSI), delineating a real breakthrough in modern ART. ICSI became standard practice and was soon used as the most common method to fertilize oocytes. It has been used for severe male factor infertility and non-male factors, such as unexplained infertility or advanced maternal age, without robust scientific evidence. However, applying ICSI blindly is not free of potential detrimental consequences since novel studies report possible health consequences to offspring. DNA methylation and epigenetic alterations in sperm cells of infertile men might help explain some of the adverse effects reported in ICSI studies on reproductive health in future generations. Collected data concerning the health of ICSI children over the past thirty years seems to support the notion that there might be an increased risk of epigenetic disorders, congenital malformations, chromosomal alterations, and subfertility in babies born following ICSI compared to naturally conceived children. However, it is still to be elucidated to what level these data are associated with the cause of infertility or the ICSI technique. This review provides an overview of epigenetic mechanisms and possible imprinting alterations following the use of ART, in particular ICSI. It also highlights the sperm contribution to embryo epigenetic regulation and the risks of in vitro culture conditions on epigenetic dysregulation. Lastly, it summarizes the literature concerning the possible epigenetic disorders in children born after ART.
Collapse
Affiliation(s)
- Romualdo Sciorio
- Edinburgh Assisted Conception Programme, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, UK
- Correspondence:
| | - Sandro C. Esteves
- Androfert, Andrology and Human Reproduction Clinic, Campinas 13075-460, Brazil;
- Department of Surgery, Division of Urology, University of Campinas, Campinas 13083-970, Brazil
- Faculty of Health, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
13
|
Abstract
In this interview, Professor Randy L Jirtle speaks with Storm Johnson, Commissioning Editor for Epigenomics, on his work on genomic imprinting, environmental epigenomics and the fetal origins of disease susceptibility. Professor Randy Jirtle joined the Duke University Department of Radiology in 1977 and headed the Epigenetics and Imprinting Laboratory until 2012. He is now Professor of Epigenetics in the Department of Biological Sciences at North Carolina State University, Raleigh, NC, USA. Jirtle's research interests are in epigenetics, genomic imprinting and the fetal origins of disease susceptibility. He is known for his groundbreaking studies linking environmental exposures early in life to the development of adult diseases through changes in the epigenome and for determining the evolutionary origin of genomic imprinting in mammals. He has published over 200 peer-reviewed articles as well as the books Liver Regeneration and Carcinogenesis: Molecular and Cellular Mechanisms, Environmental Epigenomics in Health and Disease: Epigenetics and Disease Origins and Environmental Epigenomics in Health and Disease: Epigenetics and Complex Diseases. He was honored in 2006 with the Distinguished Achievement Award from the College of Engineering at the University of Wisconsin-Madison. In 2007, he was a featured scientist on the NOVA television program on epigenetics titled 'Ghost in Your Genes' and was nominated for Time Magazine's 'Person of the Year'. He was the inaugural recipient of the Epigenetic Medicine Award in 2008 and received the STARS Lecture Award in Nutrition and Cancer from the National Cancer Institute in 2009. Jirtle was presented the Linus Pauling Award from the Institute of Functional Medicine in 2014. In 2017, ShortCutsTV produced the English documentary 'Are You What Your Mother Ate? The Agouti Mouse Study' based on his pioneering epigenetic research. He received the 2018 Northern Communities Health Foundation Visiting Professorship Award at the University of Adelaide, Australia. The Personalized Lifestyle Medicine Institute presented Jirtle with the Research and Innovation Leadership Award in 2019. Dr Jirtle was also given the Alexander Hollaender Award in 2019 at the 50th annual meeting of the Environmental Mutagenesis and Genomics Society.
Collapse
Affiliation(s)
- Randy L Jirtle
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
14
|
Xu J, Shu Y, Yao G, Zhang Y, Niu W, Zhang Y, Ma X, Jin H, Zhang F, Shi S, Wang Y, Song W, Dai S, Cheng L, Zhang X, Xie W, Hsueh AJ, Sun Y. Parental methylome reprogramming in human uniparental blastocysts reveals germline memory transition. Genome Res 2021; 31:1519-1530. [PMID: 34330789 PMCID: PMC8415376 DOI: 10.1101/gr.273318.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
Uniparental embryos derived from only the mother (gynogenetic [GG]) or the father (androgenetic [AG]) are unique models for studying genomic imprinting and parental contributions to embryonic development. Human parthenogenetic embryos can be obtained following artificial activation of unfertilized oocytes, but the production of AG embryos by injection of two sperm into one denucleated oocyte leads to an extra centriole, resulting in multipolar spindles, abnormal cell division, and developmental defects. Here, we improved androgenote production by transferring the male pronucleus from one zygote into another haploid androgenote to prevent extra centrioles and successfully generated human diploid AG embryos capable of developing into blastocysts with an identifiable inner cell mass (ICM) and trophectoderm (TE). The GG embryos were also generated. The zygotic genome was successfully activated in both the AG and GG embryos. DNA methylome analysis showed that the GG blastocysts partially retain the oocyte transcription-dependent methylation pattern, whereas the AG blastocyst methylome showed more extensive demethylation. The methylation states of most known imprinted differentially methylated regions (DMRs) were recapitulated in the AG and GG blastocysts. Novel candidate imprinted DMRs were also identified. The production of uniparental human embryos followed by transcriptome and methylome analysis is valuable for identifying parental contributions and epigenome memory transitions during early human development.
Collapse
Affiliation(s)
- Jiawei Xu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yimin Shu
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Guidong Yao
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenbin Niu
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yile Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Xueshan Ma
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Haixia Jin
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Fuli Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Senlin Shi
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Yang Wang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Wenyan Song
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Shanjun Dai
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Luyao Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Xiangyang Zhang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Aaron J Hsueh
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Yingpu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000 China
| |
Collapse
|
15
|
Bland JS. A Discovery that Reframes the Whole of Global Healthcare in the 21st Century: The Importance of the Imprintome. Integr Med (Encinitas) 2021; 20:18-22. [PMID: 34602872 PMCID: PMC8483255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Within the genome exists a specific subset of genes whose expression is controlled by epigenetic marks. These tags can be modified by lifestyle factors including diet, behavior, environment and social interactions. Differences in genetic expression, despite identical genes, is explained in part through metastable epialleles-alleles that, while genetically indistinguishable, are variably expressed as a function of epigenetic modification. As a group, these metastable epialleles have been given a unique descriptive name: the imprintome. This breakthrough in understanding genetic expression has led to a wider recognition that our genes are fundamentally controlled at two levels. One is the hardware of the genetic code, which is modified slowly by natural selection through mutational changes in the genome over centuries of time. The other is the software that controls the expression of our genetic code, converting nucleotide sequences into phenotype in response to the imprinting of our epigenome. Acting as a rapid translator for real time changes, the imprintome responds to environmental and lifestyle inputs by genomic methylation and histone modifications that affect promoter accessibility and transcription factor activity. In application, this understanding of the plasticity of the imprintome necessitates a rethinking of both health and disease states. It's a concept that cuts across all forms of healthcare: physical, metabolic, and cognitive-behavioral interventions. But at the same time, it is an aggregating concept-one that brings disciplines together to collaborate on the personalization of health and the delivery of truly individualized care. This article reviews the development of the concept of the imprintome, as well as clinical studies supporting its importance as a potential driver of change in global health care.
Collapse
|
16
|
Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse ESCs. Sci Rep 2021; 11:13802. [PMID: 34226608 PMCID: PMC8257706 DOI: 10.1038/s41598-021-93297-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
ZFP57 is required to maintain the germline-marked differential methylation at imprinting control regions (ICRs) in mouse embryonic stem cells (ESCs). Although DNA methylation has a key role in genomic imprinting, several imprinted genes are controlled by different mechanisms, and a comprehensive study of the relationship between DMR methylation and imprinted gene expression is lacking. To address the latter issue, we differentiated wild-type and Zfp57-/- hybrid mouse ESCs into neural precursor cells (NPCs) and evaluated allelic expression of imprinted genes. In mutant NPCs, we observed a reduction of allelic bias of all the 32 genes that were imprinted in wild-type cells, demonstrating that ZFP57-dependent methylation is required for maintaining or acquiring imprinted gene expression during differentiation. Analysis of expression levels showed that imprinted genes expressed from the non-methylated chromosome were generally up-regulated, and those expressed from the methylated chromosome were down-regulated in mutant cells. However, expression levels of several imprinted genes acquiring biallelic expression were not affected, suggesting the existence of compensatory mechanisms that control their RNA level. Since neural differentiation was partially impaired in Zfp57-mutant cells, this study also indicates that imprinted genes and/or non-imprinted ZFP57-target genes are required for proper neurogenesis in cultured ESCs.
Collapse
|
17
|
Lee S, Kim YN, Im D, Cho SH, Kim J, Kim JH, Kim K. DNA Methylation and gene expression patterns are widely altered in fetal growth restriction and associated with FGR development. Anim Cells Syst (Seoul) 2021; 25:128-135. [PMID: 34262655 PMCID: PMC8253195 DOI: 10.1080/19768354.2021.1925741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is the failure of the fetus toachieve its genetically determined growth potential, which increasesrisks for a variety of genetic diseases, such as type 2 diabetes mellitus, coronary artery disease, and stroke, during the lifetime. The dysregulation of DNA methylationis known to interact with environmental fluctuations, affect gene expressions comprehensively, and be fatal to fetus development in specific cases. Therefore, we set out to find out epigenetic and transcriptomic alterations associated with FGR development. We found a set of differentially expressed genes associated with differentially methylated regions in placentae and cord blood samples. Using dimensional reduction analysis, the expression and methylation variables of the epigenetically altered genes classified the FGR samples from the controls. These genes were also enriched in the biological pathways such as metabolism and developmental processes related to FGR. Furthermore, three genes of INS, MEG3, and ZFP36L2 are implicated in epigenetic imprinting, which has been associated with FGR. These results strongly suggest that DNA methylation is highly dysregulated during FGR development, and abnormal DNA methylation patterns are likely to alter gene expression.
Collapse
Affiliation(s)
- Seoyeong Lee
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Young Nam Kim
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - DoHwa Im
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Su Han Cho
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jiyeon Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Hyun Kim
- Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kwoneel Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
18
|
Svoboda LK, Neier K, Wang K, Cavalcante RG, Rygiel CA, Tsai Z, Jones TR, Liu S, Goodrich JM, Lalancette C, Colacino JA, Sartor MA, Dolinoy DC. Tissue and sex-specific programming of DNA methylation by perinatal lead exposure: implications for environmental epigenetics studies. Epigenetics 2020; 16:1102-1122. [PMID: 33164632 DOI: 10.1080/15592294.2020.1841872] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Early developmental environment can influence long-term health through reprogramming of the epigenome. Human environmental epigenetics studies rely on surrogate tissues, such as blood, to assess the effects of environment on disease-relevant but inaccessible target tissues. However, the extent to which environment-induced epigenetic changes are conserved between these tissues is unclear. A better understanding of this conservation is imperative for effective design and interpretation of human environmental epigenetics studies. The Toxicant Exposures and Responses by Genomic and Epigenomic Regulators of Transcription (TaRGET II) consortium was established by the National Institute of Environmental Health Sciences to address the utility of surrogate tissues as proxies for toxicant-induced epigenetic changes in target tissues. We and others have recently reported that perinatal exposure to lead (Pb) is associated with adverse metabolic outcomes. Here, we investigated the sex-specific effects of perinatal exposure to a human environmentally relevant level of Pb on DNA methylation in paired liver and blood samples from adult mice using enhanced reduced-representation bisulphite sequencing. Although Pb exposure ceased at 3 weeks of age, we observed thousands of sex-specific differentially methylated cytosines in the blood and liver of Pb-exposed animals at 5 months of age, including 44 genomically imprinted loci. We observed significant tissue overlap in the genes mapping to differentially methylated cytosines. A small but significant subset of Pb-altered genes exhibit basal sex differences in gene expression in the mouse liver. Collectively, these data identify potential molecular targets for Pb-induced metabolic diseases, and inform the design of more robust human environmental epigenomics studies.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kari Neier
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Kai Wang
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA
| | | | - Christine A Rygiel
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Zing Tsai
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA
| | - Tamara R Jones
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Siyu Liu
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA
| | - Jaclyn M Goodrich
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Claudia Lalancette
- Epigenomics Core, University of Michigan, Medical School, Ann Arbor, MI, USA
| | - Justin A Colacino
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Maureen A Sartor
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School Palmer Commons, Ann Arbor, MI, USA.,Department of Biostatistics, University of Michigan, School of Public Health, Ann Arbor, MI, USA
| | - Dana C Dolinoy
- Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.,Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Lutsik P, Baude A, Mancarella D, Öz S, Kühn A, Toth R, Hey J, Toprak UH, Lim J, Nguyen VH, Jiang C, Mayakonda A, Hartmann M, Rosemann F, Breuer K, Vonficht D, Grünschläger F, Lee S, Schuhmacher MK, Kusevic D, Jauch A, Weichenhan D, Zustin J, Schlesner M, Haas S, Park JH, Park YJ, Oppermann U, Jeltsch A, Haller F, Fellenberg J, Lindroth AM, Plass C. Globally altered epigenetic landscape and delayed osteogenic differentiation in H3.3-G34W-mutant giant cell tumor of bone. Nat Commun 2020; 11:5414. [PMID: 33110075 PMCID: PMC7591516 DOI: 10.1038/s41467-020-18955-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/16/2020] [Indexed: 12/13/2022] Open
Abstract
The neoplastic stromal cells of giant cell tumor of bone (GCTB) carry a mutation in H3F3A, leading to a mutant histone variant, H3.3-G34W, as a sole recurrent genetic alteration. We show that in patient-derived stromal cells H3.3-G34W is incorporated into the chromatin and associates with massive epigenetic alterations on the DNA methylation, chromatin accessibility and histone modification level, that can be partially recapitulated in an orthogonal cell line system by the introduction of H3.3-G34W. These epigenetic alterations affect mainly heterochromatic and bivalent regions and provide possible explanations for the genomic instability, as well as the osteolytic phenotype of GCTB. The mutation occurs in differentiating mesenchymal stem cells and associates with an impaired osteogenic differentiation. We propose that the observed epigenetic alterations reflect distinct differentiation stages of H3.3 WT and H3.3 MUT stromal cells and add to H3.3-G34W-associated changes. The histone variant mutation H3.3-G34W occurs in the majority of giant cell tumor of bone (GCTB). By profiling patient-derived GCTB tumor cells, the authors show that this mutation associates with epigenetic alterations in heterochromatic and bivalent regions that contribute to an impaired osteogenic differentiation and the osteolytic phenotype of GCTB.
Collapse
Affiliation(s)
- Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Annika Baude
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Daniela Mancarella
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Simin Öz
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Alexander Kühn
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Reka Toth
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Joschka Hey
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Umut H Toprak
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Division of Neuroblastoma Genomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jinyeong Lim
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea, Republic of Korea
| | - Viet Ha Nguyen
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea, Republic of Korea
| | - Chao Jiang
- Botnar Research Centre, Oxford NIHR BRC, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK
| | - Anand Mayakonda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany
| | - Mark Hartmann
- Section Translational Cancer Epigenomics, Division of Translational Medical Oncology, National Center for Tumor Diseases (NCT) & German Cancer Research Center (DKFZ), Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Felix Rosemann
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Kersten Breuer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Dominik Vonficht
- Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine-HI-STEM gGmbH, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Florian Grünschläger
- Faculty of Biosciences, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 234, 69120, Heidelberg, Germany.,Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine-HI-STEM gGmbH, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Suman Lee
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea, Republic of Korea
| | - Maren Kirstin Schuhmacher
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Denis Kusevic
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Anna Jauch
- Institute of Human Genetics, Ruprecht Karl University of Heidelberg, Im Neuenheimer Feld 366, 69120, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Jozef Zustin
- Institute of Pathology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20251, Hamburg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Simon Haas
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.,Heidelberg Institute for Stem Cell Technology and Experimental Medicine-HI-STEM gGmbH, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Joo Hyun Park
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Daehyeon-dong, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, 52 Ewhayeodae-gil, Daehyeon-dong, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Udo Oppermann
- Botnar Research Centre, Oxford NIHR BRC, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD, UK.,FRIAS-Freiburg Institute of Advanced Studies, Albert Ludwig University of Freiburg, Alberstrasse 19, 79104, Freiburg, Germany
| | - Albert Jeltsch
- Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Florian Haller
- Institute of Pathology, University Hospital Erlangen, Friedrich Alexander University Erlangen-Nürnberg, Krankenstrasse 8, 91054, Erlangen, Germany
| | - Jörg Fellenberg
- Department of Experimental Orthopaedics, Orthopaedic University Hospital Heidelberg, Ruprecht Karl University of Heidelberg, Schlierbacher Landstrasse 200a, 69118, Heidelberg, Germany
| | - Anders M Lindroth
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si, Gyeonggi-do, 10408, Republic of Korea, Republic of Korea.
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany. .,German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.
| |
Collapse
|
20
|
Chen X, Lin Q, Wen J, Lin W, Liang J, Huang H, Li L, Huang J, Chen F, Liu D, Chen G. Whole genome bisulfite sequencing of human spermatozoa reveals differentially methylated patterns from type 2 diabetic patients. J Diabetes Investig 2020; 11:856-864. [PMID: 31869513 PMCID: PMC7378413 DOI: 10.1111/jdi.13201] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/15/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
AIMS/INTRODUCTION The incidence of type 2 diabetes mellitus is increasing worldwide, and it might partly cause metabolic disorder and type 2 diabetes mellitus susceptibility in patients' offspring through epigenetic modification. However, the underlying mechanisms remain largely unclear. Recent studies have shown a potential link between deoxyribonucleic acid methylation in paternal sperm and susceptibility to type 2 diabetes mellitus in offspring, so this article focuses on whether the whole-genome methylation profiles of spermatozoa in type 2 diabetes mellitus patients have changed. MATERIALS AND METHODS We investigated the genome-wide deoxyribonucleic acid methylation profiles in spermatozoa by comparing eight individuals with type 2 diabetes mellitus and nine non-diabetic controls using whole-genome bisulfite sequencing method. RESULTS First, we found that the proportion of methylated cytosine in the whole genome of the type 2 diabetes mellitus group was slightly lower than that of the control group. Interestingly, the proportion of methylated cytosines in the CG context decreased, and the proportion of methylated cytosines in the CHG context (H = A, T or C) increased in the type 2 diabetes mellitus group, but the proportion of methylated cytosines in the CHH context (H = A, T or C) barely changed. The methylated cytosines in the CG context were mainly distributed at the high methylated level, whereas methylated cytosines in the CHG context and methylated cytosines in the CHH context were mainly distributed at the low and middle methylated level in both groups. Second, functional enrichment analysis showed that differentially methylated genes played a significant role in nervous system development and cell metabolism. Finally, we identified 10 top type 2 diabetes mellitus-related differentially methylated genes, including IRS1, PRKCE, FTO, PPARGC1A, KCNQ1, ATP10A, GHR, CREB1, PRKAR1A and HNF1B. CONCLUSIONS Our study provides the first evidence for deoxyribonucleic acid methylation reprogramming in spermatozoa of type 2 diabetes mellitus patients, and provides a new basis for explaining the complex mechanism of type 2 diabetes mellitus susceptibility in offspring.
Collapse
Affiliation(s)
- Xiongfeng Chen
- Department of Scientific ResearchFujian Provincial HospitalFuzhouFujianChina
| | - Qinghua Lin
- Department of Scientific ResearchFujian Academy of Medical SciencesFuzhouFujianChina
| | - Junping Wen
- Department of Endocrinology and MetabolismFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Wei Lin
- Department of Endocrinology and MetabolismFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Jixing Liang
- Department of Endocrinology and MetabolismFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Huibin Huang
- Department of Endocrinology and MetabolismFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Liantao Li
- Department of Endocrinology and MetabolismFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| | - Jianxin Huang
- Department of Clinical LaboratoryFujian Provincial HospitalFuzhouFujianChina
| | - Falin Chen
- Department of Clinical LaboratoryFujian Provincial HospitalFuzhouFujianChina
| | - Deli Liu
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational BiomedicineNew York CityNew YorkUSA
| | - Gang Chen
- Department of Scientific ResearchFujian Academy of Medical SciencesFuzhouFujianChina
- Department of Endocrinology and MetabolismFujian Provincial HospitalShengli Clinical Medical College of Fujian Medical UniversityFuzhouFujianChina
| |
Collapse
|
21
|
House JS, Hall J, Park SS, Planchart A, Money E, Maguire RL, Huang Z, Mattingly CJ, Skaar D, Tzeng JY, Darrah TH, Vengosh A, Murphy SK, Jirtle RL, Hoyo C. Cadmium exposure and MEG3 methylation differences between Whites and African Americans in the NEST Cohort. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz014. [PMID: 31528362 PMCID: PMC6736358 DOI: 10.1093/eep/dvz014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/21/2019] [Accepted: 07/19/2019] [Indexed: 05/06/2023]
Abstract
Cadmium (Cd) is a ubiquitous environmental pollutant associated with a wide range of health outcomes including cancer. However, obscure exposure sources often hinder prevention efforts. Further, although epigenetic mechanisms are suspected to link these associations, gene sequence regions targeted by Cd are unclear. Aberrant methylation of a differentially methylated region (DMR) on the MEG3 gene that regulates the expression of a cluster of genes including MEG3, DLK1, MEG8, MEG9 and DIO3 has been associated with multiple cancers. In 287 infant-mother pairs, we used a combination of linear regression and the Getis-Ord Gi* statistic to determine if maternal blood Cd concentrations were associated with offspring CpG methylation of the sequence region regulating a cluster of imprinted genes including MEG3. Correlations were used to examine potential sources and routes. We observed a significant geographic co-clustering of elevated prenatal Cd levels and MEG3 DMR hypermethylation in cord blood (P = 0.01), and these findings were substantiated in our statistical models (β = 1.70, se = 0.80, P = 0.03). These associations were strongest in those born to African American women (β = 3.52, se = 1.32, P = 0.01) compared with those born to White women (β = 1.24, se = 2.11, P = 0.56) or Hispanic women (β = 1.18, se = 1.24, P = 0.34). Consistent with Cd bioaccumulation during the life course, blood Cd levels increased with age (β = 0.015 µg/dl/year, P = 0.003), and Cd concentrations were significantly correlated between blood and urine (ρ > 0.47, P < 0.01), but not hand wipe, soil or house dust concentrations (P > 0.05). Together, these data support that prenatal Cd exposure is associated with aberrant methylation of the imprint regulatory element for the MEG3 gene cluster at birth. However, neither house-dust nor water are likely exposure sources, and ingestion via contaminated hands is also unlikely to be a significant exposure route in this population. Larger studies are required to identify routes and sources of exposure.
Collapse
Affiliation(s)
- John S House
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Jonathan Hall
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Sarah S Park
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Antonio Planchart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Eric Money
- Center for Geospatial Analytics, North Carolina State University, Raleigh, NC, USA
- Department of Natural Resources, North Carolina State University, Raleigh, NC, USA
| | - Rachel L Maguire
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Carolyn J Mattingly
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - David Skaar
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jung Ying Tzeng
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Statistics, North Carolina State University, Raleigh, NC, USA
| | - Thomas H Darrah
- Division of Climate, Water, and Environment, School of Earth Sciences, The Ohio State University, Columbus, OH, USA
| | - Avner Vengosh
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, USA
| | - Randy L Jirtle
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| | - Cathrine Hoyo
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
22
|
Abstract
Understanding the complexity and regular function of the human brain is an unresolved challenge that hampers the identification of disease-contributing components and mechanisms of psychiatric disorders. It is accepted that the majority of psychiatric disorders result from a complex interaction of environmental and heritable factors, and efforts to determine, for example, genetic variants contributing to the pathophysiology of these diseases are becoming increasingly successful. We also continue to discover new molecules with unknown functions that might play a role in brain physiology. One such class of polymeric molecules is noncoding RNAs; though discovered years ago, they have only recently started to receive careful attention. Furthermore, recent technological advances in the field of molecular genetics and high-throughput sequencing have facilitated the discovery of a broad spectrum of RNAs that show no obvious coding potential but may provide additional layers of complexity and regulation to the molecular mechanisms underlying psychiatric disorders. Their exquisite enrichment and expression profiles in the brain may point to important functions of these RNAs in health and disease. This review will therefore aim to provide insight into the expression of noncoding RNAs in the brain, their function, and potential role in psychiatric disorders.
Collapse
|
23
|
Huntriss J, Balen AH, Sinclair KD, Brison DR, Picton HM. Epigenetics and Reproductive Medicine. BJOG 2018; 125:e43-e54. [DOI: 10.1111/1471-0528.15240] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
24
|
Yakoreva M, Kahre T, Pajusalu S, Ilisson P, Žilina O, Tillmann V, Reimand T, Õunap K. A New Case of a Rare Combination of Temple Syndrome and Mosaic Trisomy 14 and a Literature Review. Mol Syndromol 2018; 9:182-189. [PMID: 30181735 DOI: 10.1159/000489446] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2018] [Indexed: 11/19/2022] Open
Abstract
Temple syndrome (TS14) is a relatively recently discovered imprinting disorder caused by abnormal expression of genes at the locus 14q32. The underlying cause of this syndrome is maternal uniparental disomy of chromosome 14 (UPD(14)mat). Trisomy of chromosome 14 is one of the autosomal trisomies; in humans, it is only compatible with live birth in mosaic form. Although UPD(14)mat and mosaic trisomy 14 can arise from the same cellular mechanism, a combination of both has been currently reported only in 8 live-born cases. Hereby, we describe a patient in whom only UPD(14)mat-associated TS14 was primarily diagnosed. Due to the patient's atypical features (for TS14), additional analyses were performed and low-percent mosaic trisomy 14 was detected. It can be expected that the described combination of 2 etiologically related conditions is actually more prevalent. Additional chromosomal and molecular investigations are indicated for every patient with UPD(14)mat-associated TS14 with atypical clinical presentation.
Collapse
Affiliation(s)
- Maria Yakoreva
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Tiina Kahre
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Sander Pajusalu
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Piret Ilisson
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia
| | - Olga Žilina
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Biotechnology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Vallo Tillmann
- Children's Clinic, Tartu University Hospital, University of Tartu, Tartu, Estonia.,Department of Pediatrics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| | - Tiia Reimand
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia.,Department of Biomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Katrin Õunap
- Department of Clinical Genetics, United Laboratories, University of Tartu, Tartu, Estonia.,Department of Clinical Genetics, Institute of Clinical Medicine, University of Tartu, Tartu, Estonia
| |
Collapse
|
25
|
Gomih A, Smith JS, North KE, Hudgens MG, Brewster WR, Huang Z, Skaar D, Valea F, Bentley RC, Vidal AC, Maguire RL, Jirtle RL, Murphy SK, Hoyo C. DNA methylation of imprinted gene control regions in the regression of low-grade cervical lesions. Int J Cancer 2018; 143:552-560. [PMID: 29490428 DOI: 10.1002/ijc.31350] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 12/15/2022]
Abstract
The role of host epigenetic mechanisms in the natural history of low-grade cervical intraepithelial neoplasia (CIN1) is not well characterized. We explored differential methylation of imprinted gene regulatory regions as predictors of the risk of CIN1 regression. A total of 164 patients with CIN1 were recruited from 10 Duke University clinics for the CIN Cohort Study. Participants had colposcopies at enrollment and up to five follow-up visits over 3 years. DNA was extracted from exfoliated cervical cells for methylation quantitation at CpG (cytosine-phosphate-guanine) sites and human papillomavirus (HPV) genotyping. Hazard ratios (HR) and 95% confidence intervals (CI) were estimated using Cox regression to quantify the effect of methylation on CIN1 regression over two consecutive visits, compared to non-regression (persistent CIN1; progression to CIN2+; or CIN1 regression at a single time-point), adjusting for age, race, high-risk HPV (hrHPV), parity, oral contraceptive and smoking status. Median participant age was 26.6 years (range: 21.0-64.4 years), 39% were African-American, and 11% were current smokers. Most participants were hrHPV-positive at enrollment (80.5%). Over one-third of cases regressed (n = 53, 35.1%). Median time-to-regression was 12.6 months (range: 4.5-24.0 months). Probability of CIN1 regression was negatively correlated with methylation at IGF2AS CpG 5 (HR = 0.41; 95% CI = 0.23-0.77) and PEG10 DMR (HR = 0.80; 95% CI = 0.65-0.98). Altered methylation of imprinted IGF2AS and PEG10 DMRs may play a role in the natural history of CIN1. If confirmed in larger studies, further research on imprinted gene DMR methylation is warranted to determine its efficacy as a biomarker for cervical cancer screening.
Collapse
Affiliation(s)
- Ayodele Gomih
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599
| | - Jennifer S Smith
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599.,Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA, 27599
| | - Kari E North
- Department of Epidemiology, University of North Carolina at Chapel Hill, NC, 27599
| | - Michael G Hudgens
- Department of Biostatistics, University of North Carolina at Chapel Hill, NC, 27599
| | - Wendy R Brewster
- Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA, 27599.,Department of Obstetrics and Gynecology, University of North Carolina at Chapel Hill, NC, 27599
| | - Zhiqing Huang
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, 27710
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| | - Fidel Valea
- Department of Obstetrics and Gynecology, Virginia Tech Carilion School of Medicine, Roanoke, VA, 24101
| | - Rex C Bentley
- Department of Pathology, Duke University School of Medicine, Durham, NC, 27710
| | - Adriana C Vidal
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048
| | - Rachel L Maguire
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| | - Randy L Jirtle
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695.,Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53706
| | - Susan K Murphy
- Department of Obstetrics and Gynecology, Duke University School of Medicine, Durham, NC, 27710
| | - Cathrine Hoyo
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695
| |
Collapse
|
26
|
de Sá Machado Araújo G, da Silva Francisco Junior R, Dos Santos Ferreira C, Mozer Rodrigues PT, Terra Machado D, Louvain de Souza T, Teixeira de Souza J, Figueiredo Osorio da Silva C, Alves da Silva AF, Andrade CCF, da Silva AT, Ramos V, Garcia AB, Machado FB, Medina-Acosta E. Maternal 5 mCpG Imprints at the PARD6G-AS1 and GCSAML Differentially Methylated Regions Are Decoupled From Parent-of-Origin Expression Effects in Multiple Human Tissues. Front Genet 2018; 9:36. [PMID: 29545821 PMCID: PMC5838017 DOI: 10.3389/fgene.2018.00036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/29/2018] [Indexed: 11/13/2022] Open
Abstract
A hallmark of imprinted genes in mammals is the occurrence of parent-of-origin-dependent asymmetry of DNA cytosine methylation (5mC) of alleles at CpG islands (CGIs) in their promoter regions. This 5mCpG asymmetry between the parental alleles creates allele-specific imprinted differentially methylated regions (iDMRs). iDMRs are often coupled to the transcriptional repression of the methylated allele and the activation of the unmethylated allele in a tissue-specific, developmental-stage-specific and/or isoform-specific fashion. iDMRs function as regulatory platforms, built through the recruitment of chemical modifications to histones to achieve differential, parent-of-origin-dependent chromatin segmentation states. Here, we used a comparative computational data mining approach to identify 125 novel constitutive candidate iDMRs that integrate the maximal number of allele-specific methylation region records overlapping CGIs in human methylomes. Twenty-nine candidate iDMRs display gametic 5mCpG asymmetry, and another 96 are candidate secondary iDMRs. We established the maternal origin of the 5mCpG imprints of one gametic (PARD6G-AS1) and one secondary (GCSAML) iDMRs. We also found a constitutively hemimethylated, nonimprinted domain at the PWWP2AP1 promoter CGI with oocyte-derived methylation asymmetry. Given that the 5mCpG level at the iDMRs is not a sufficient criterion to predict active or silent locus states and that iDMRs can regulate genes from a distance of more than 1 Mb, we used RNA-Seq experiments from the Genotype-Tissue Expression project and public archives to assess the transcriptional expression profiles of SNPs across 4.6 Mb spans around the novel maternal iDMRs. We showed that PARD6G-AS1 and GCSAML are expressed biallelically in multiple tissues. We found evidence of tissue-specific monoallelic expression of ZNF124 and OR2L13, located 363 kb upstream and 419 kb downstream, respectively, of the GCSAML iDMR. We hypothesize that the GCSAML iDMR regulates the tissue-specific, monoallelic expression of ZNF124 but not of OR2L13. We annotated the non-coding epigenomic marks in the two maternal iDMRs using data from the Roadmap Epigenomics project and showed that the PARD6G-AS1 and GCSAML iDMRs achieve contrasting activation and repression chromatin segmentations. Lastly, we found that the maternal 5mCpG imprints are perturbed in several hematopoietic cancers. We conclude that the maternal 5mCpG imprints at PARD6G-AS1 and GCSAML iDMRs are decoupled from parent-of-origin transcriptional expression effects in multiple tissues.
Collapse
Affiliation(s)
- Graziela de Sá Machado Araújo
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Ronaldo da Silva Francisco Junior
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Cristina Dos Santos Ferreira
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Pedro Thyago Mozer Rodrigues
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Douglas Terra Machado
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Thais Louvain de Souza
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Faculdade de Medicina de Campos, Campos dos Goytacazes, Brazil
| | - Jozimara Teixeira de Souza
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Cleiton Figueiredo Osorio da Silva
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Antônio Francisco Alves da Silva
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Claudia Caixeta Franco Andrade
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil.,Faculdade Metropolitana São Carlos, Bom Jesus do Itabapoana, Brazil
| | - Alan Tardin da Silva
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Victor Ramos
- Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Ana Beatriz Garcia
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Filipe Brum Machado
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| | - Enrique Medina-Acosta
- Núcleo de Diagnóstico e Investigação Molecular, Laboratório de Biotecnologia, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Brazil
| |
Collapse
|
27
|
Lu L, Claud EC. Intrauterine Inflammation, Epigenetics, and Microbiome Influences on Preterm Infant Health. CURRENT PATHOBIOLOGY REPORTS 2018; 6:15-21. [PMID: 29938128 PMCID: PMC5978889 DOI: 10.1007/s40139-018-0159-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Significant research reveals that the microbiome modulates perinatal and postnatal health. This review aims to examine mechanisms by which intrauterine infection, the epigenome, and microbiome specifically influence preterm infant health outcomes. RECENT FINDINGS Intrauterine infection is a primary cause of preterm birth and can cause alterations in gene expression and epigenetic programming as well as postnatal inflammatory responses in the offspring. Insights from our own studies demonstrate epigenetic modifications of TLRs associated with exposure to intrauterine inflammation, as well as a cross talk between host epigenome and microbiome. Lastly, the gut microbiome modulates maturation of inflammatory pathways, which influences the development of preterm infants. SUMMARY We present a unifying theme that preterm infant outcomes are associated with modulation of host immune and inflammatory responses, which are influenced by acute intrauterine infection, epigenetic, and microbiome factors.
Collapse
Affiliation(s)
- Lei Lu
- Department of Pediatrics/Neonatology, University of Chicago, 900 E 57th Street, Chicago, IL 60637 USA
| | - Erika C. Claud
- Department of Pediatrics/Neonatology, University of Chicago, 5143 Maryland Street, Chicago, IL 60637 USA
| |
Collapse
|
28
|
Andersen GB, Tost J. A Summary of the Biological Processes, Disease-Associated Changes, and Clinical Applications of DNA Methylation. Methods Mol Biol 2018; 1708:3-30. [PMID: 29224136 DOI: 10.1007/978-1-4939-7481-8_1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA methylation at cytosines followed by guanines, CpGs, forms one of the multiple layers of epigenetic mechanisms controlling and modulating gene expression through chromatin structure. It closely interacts with histone modifications and chromatin remodeling complexes to form the local genomic and higher-order chromatin landscape. DNA methylation is essential for proper mammalian development, crucial for imprinting and plays a role in maintaining genomic stability. DNA methylation patterns are susceptible to change in response to environmental stimuli such as diet or toxins, whereby the epigenome seems to be most vulnerable during early life. Changes of DNA methylation levels and patterns have been widely studied in several diseases, especially cancer, where interest has focused on biomarkers for early detection of cancer development, accurate diagnosis, and response to treatment, but have also been shown to occur in many other complex diseases. Recent advances in epigenome engineering technologies allow now for the large-scale assessment of the functional relevance of DNA methylation. As a stable nucleic acid-based modification that is technically easy to handle and which can be analyzed with great reproducibility and accuracy by different laboratories, DNA methylation is a promising biomarker for many applications.
Collapse
Affiliation(s)
- Gitte Brinch Andersen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France
| | - Jörg Tost
- Laboratory for Epigenetics & Environment, Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie Francois Jacob, Bâtiment G2, 2 rue Gaston Crémieux, 91000, Evry, France.
| |
Collapse
|
29
|
Makaroun SP, Himes KP. Differential Methylation of Syncytin-1 and 2 Distinguishes Fetal Growth Restriction from Physiologic Small for Gestational Age. AJP Rep 2018; 8:e18-e24. [PMID: 29472990 PMCID: PMC5821508 DOI: 10.1055/s-0038-1627473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/09/2017] [Indexed: 12/26/2022] Open
Abstract
Objective The retroviral genes encoding Syncytin-1 ( SYN1 ) and Syncytin-2 ( SYN2 ) are epigenetically regulated, uniquely expressed in the placenta and critical to placental function. We sought to determine if placental expression and methylation patterns of SYN1 and SYN2 from pregnancies complicated by fetal growth restriction (FGR) differed from physiologic small for gestational age (SGA) and appropriate for gestational age (AGA) controls. Study Design Placental biopsies were obtained from AGA, SGA and FGR neonates delivered at >36 weeks gestation. SGA and FGR were defined as birth weight <10% with FGR additionally requiring abnormal fetal testing. We quantified DNA methylation of SYN1 and SYN2 by EpiTyper and gene expression by RT-qPCR. Results We identified 10 AGA, 9 SGA and 7 FGR placentas. There was decreased methylation in SYN1 and SYN2 in FGR relative to AGA and SGA. When the sum of SYN1 and SYN2 methylation was used for prediction of FGR from SGA, the area under the receiver operator characteristic curve was 0.9048 (0.7602, 1). Conclusion SYN1 and SYN2 methylation marks differ in FGR and SGA. We plan future studies to examine these markers in cell free DNA to determine if these methylation changes could be used as a biomarker for FGR.
Collapse
Affiliation(s)
- Sami P Makaroun
- Division of Maternal Fetal Medicine, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| | - Katherine P Himes
- Division of Maternal Fetal Medicine, Magee-Womens Research Institute, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
30
|
Two approaches reveal a new paradigm of 'switchable or genetics-influenced allele-specific DNA methylation' with potential in human disease. Cell Discov 2017; 3:17038. [PMID: 29387450 PMCID: PMC5787696 DOI: 10.1038/celldisc.2017.38] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 08/29/2017] [Indexed: 12/11/2022] Open
Abstract
Imprinted genes are vulnerable to environmental influences during early embryonic development, thereby contributing to the onset of disease in adulthood. Monoallelic methylation at several germline imprints has been reported as DNMT1-dependent. However, which of these two epigenetic attributes, DNMT1-dependence or allelic methylation, renders imprinted genes susceptible to environmental stressors has not been determined. Herein, we developed a new approach, referred to as NORED, to identify 2468 DNMT1-dependent DNA methylation patterns in the mouse genome. We further developed an algorithm based on a genetic variation-independent approach (referred to as MethylMosaic) to detect 2487 regions with bimodal methylation patterns. Two approaches identified 207 regions, including known imprinted germline allele-specific methylation patterns (ASMs), that were both NORED and MethylMosaic regions. Examination of methylation in four independent mouse embryonic stem cell lines shows that two regions identified by both NORED and MethylMosaic (Hcn2 and Park7) did not display parent-of-origin-dependent allelic methylation. In these four F1 hybrid cell lines, genetic variation in Cast allele at Hcn2 locus introduces a transcription factor binding site for MTF-1 that may predispose Cast allelic hypomethylation in a reciprocal cross with either C57 or 129 strains. In contrast, each allele of Hcn2 ASM in J1 inbred cell line and Park7 ASM in four F1 hybrid cell lines seems to exhibit similar propensity to be either hypo- or hypermethylated, suggesting a ‘random, switchable’ ASM. Together with published results, our data on ASMs prompted us to propose a hypothesis of regional ‘autosomal chromosome inactivation (ACI)’ that may control a subset of autosomal genes. Therefore, our results open a new avenue to understand monoallelic methylation and provide a rich resource of candidate genes to examine in environmental and nutritional exposure models.
Collapse
|
31
|
Provenzi L, Guida E, Montirosso R. Preterm behavioral epigenetics: A systematic review. Neurosci Biobehav Rev 2017; 84:262-271. [PMID: 28867654 DOI: 10.1016/j.neubiorev.2017.08.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/28/2017] [Accepted: 08/30/2017] [Indexed: 12/24/2022]
Abstract
Behavioral epigenetics is revealing new pathways that lead individuals from early adversity exposures to later-in-life detrimental outcomes. Preterm birth constitutes one of the major adverse events in human development. Preterm infants are hospitalized in the Neonatal Intensive Care Unit (NICU) where they are exposed to life-saving yet pain-inducing procedures and to protective care. The application of behavioral epigenetics to the field of preterm studies (i.e., Preterm Behavioral Epigenetics, PBE) is rapidly growing and holds promises to provide valid insights for research and clinical activity. Here, the evidence of the epigenetic correlates of prenatal adversities, NICU-related environment and development of preterm infants is systematically reviewed. The findings suggest that a number of prenatal adverse (e.g., maternal depression and stress) and post-natal (e.g., NICU-related pain-related stress) events affect the developmental trajectories of preterm infants and children via epigenetic alterations of imprinted and stress-related genes. Nonetheless, the potential epigenetic vestiges of early care and protective interventions in NICU have not been investigated yet and this represents a fascinating challenge for future PBE research.
Collapse
Affiliation(s)
- Livio Provenzi
- 0-3 Centre for the at-Risk Infant, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy.
| | - Elena Guida
- 0-3 Centre for the at-Risk Infant, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| | - Rosario Montirosso
- 0-3 Centre for the at-Risk Infant, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, LC, Italy
| |
Collapse
|
32
|
Vaiserman AM, Koliada AK, Jirtle RL. Non-genomic transmission of longevity between generations: potential mechanisms and evidence across species. Epigenetics Chromatin 2017; 10:38. [PMID: 28750655 PMCID: PMC5531095 DOI: 10.1186/s13072-017-0145-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023] Open
Abstract
Accumulating animal and human data indicate that environmental exposures experienced during sensitive developmental periods may strongly influence risk of adult disease. Moreover, the effects triggered by developmental environmental cues can be transgenerationally transmitted, potentially affecting offspring health outcomes. Increasing evidence suggests a central role of epigenetic mechanisms (heritable alterations in gene expression occurring without changes in underlying DNA sequence) in mediating these effects. This review summarizes the findings from animal models, including worms, insects, and rodents, and also from human studies, indicating that lifespan and longevity-associated characteristics can be transmitted across generations via non-genetic factors.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- D.F. Chebotarev Institute of Gerontology, NAMS, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine.
| | - Alexander K Koliada
- D.F. Chebotarev Institute of Gerontology, NAMS, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine
| | - Randy L Jirtle
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, 27695, USA.,Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
33
|
McCullough LE, Miller EE, Calderwood LE, Shivappa N, Steck SE, Forman MR, A Mendez M, Maguire R, Fuemmeler BF, Kollins SH, D Bilbo S, Huang Z, Murtha AP, Murphy SK, Hébert JR, Hoyo C. Maternal inflammatory diet and adverse pregnancy outcomes: Circulating cytokines and genomic imprinting as potential regulators? Epigenetics 2017; 12:688-697. [PMID: 28678596 DOI: 10.1080/15592294.2017.1347241] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Excessive inflammation during pregnancy alters homeostatic mechanisms of the developing fetus and has been linked to adverse pregnancy outcomes. An anti-inflammatory diet could be a promising avenue to combat the pro-inflammatory state of pregnancy, particularly in obese women, but we lack mechanistic data linking this dietary pattern during pregnancy to inflammation and birth outcomes. In an ethnically diverse cohort of 1057 mother-child pairs, we estimated the relationships between dietary inflammatory potential [measured via the energy-adjusted dietary inflammatory index (E-DII™)] and birth outcomes overall, as well as by offspring sex and maternal pre-pregnancy body mass index (BMI). In a subset of women, we also explored associations between E-DII, circulating cytokines (n = 105), and offspring methylation (n = 338) as potential modulators of these relationships using linear regression. Adjusted regression models revealed that women with pro-inflammatory diets had elevated rates of preterm birth among female offspring [β = -0.22, standard error (SE) = 0.07, P<0.01], but not male offspring (β=0.09, SE = 0.06, P<0.12) (Pinteraction = 0.003). Similarly, we observed pro-inflammatory diets were associated with higher rates of caesarean delivery among obese women (β = 0.17, SE = 0.08, P = 0.03), but not among women with BMI <25 kg/m2 (Pinteraction = 0.02). We observed consistent inverse associations between maternal inflammatory cytokine concentrations (IL-12, IL-17, IL-4, IL-6, and TNFα) and lower methylation at the MEG3 regulatory sequence (P<0.05); however, results did not support the link between maternal E-DII and circulating cytokines. We replicate work by others on the association between maternal inflammatory diet and adverse pregnancy outcomes and provide the first empirical evidence supporting the inverse association between circulating cytokine concentrations and offspring methylation.
Collapse
Affiliation(s)
| | - Erline E Miller
- b Department of Epidemiology , University of North Carolina Chapel Hill , Chapel Hill , NC , USA
| | | | - Nitin Shivappa
- c Department of Epidemiology and Biostatistics , University of South Carolina , Columbia , SC , USA.,d Cancer Prevention and Control Program, University of South Carolina , Columbia , SC , USA.,e Connecting Health Innovations LLC , Columbia , SC , USA
| | - Susan E Steck
- c Department of Epidemiology and Biostatistics , University of South Carolina , Columbia , SC , USA.,d Cancer Prevention and Control Program, University of South Carolina , Columbia , SC , USA
| | - Michele R Forman
- f Department of Nutritional Sciences , Purdue University , West Lafayette , IN , USA
| | - Michelle A Mendez
- g Department of Nutrition , University of North Carolina Chapel Hill, Chapel Hill , NC , USA
| | - Rachel Maguire
- h Department of Biological Sciences , North Carolina State University, Raleigh , NC , USA
| | - Bernard F Fuemmeler
- i Department of Health Behavior and Policy , Virginia Commonwealth University , Richmond , VA , USA
| | - Scott H Kollins
- j Department of Psychiatry and Behavioral Sciences , Duke University , Durham , NC , USA
| | - Staci D Bilbo
- k Department of Pediatrics , Harvard Medical School, Massachusetts General Hospital , Boston , MA , USA
| | - Zhiqing Huang
- l Department of Obstetrics and Gynecology , Duke University , Durham , NC , USA
| | - Amy P Murtha
- l Department of Obstetrics and Gynecology , Duke University , Durham , NC , USA
| | - Susan K Murphy
- l Department of Obstetrics and Gynecology , Duke University , Durham , NC , USA
| | - James R Hébert
- c Department of Epidemiology and Biostatistics , University of South Carolina , Columbia , SC , USA.,d Cancer Prevention and Control Program, University of South Carolina , Columbia , SC , USA.,e Connecting Health Innovations LLC , Columbia , SC , USA
| | - Cathrine Hoyo
- h Department of Biological Sciences , North Carolina State University, Raleigh , NC , USA
| |
Collapse
|
34
|
Epigenetic modifications at DMRs of placental genes are subjected to variations in normal gestation, pathological conditions and folate supplementation. Sci Rep 2017; 7:40774. [PMID: 28098215 PMCID: PMC5241688 DOI: 10.1038/srep40774] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/01/2016] [Indexed: 01/13/2023] Open
Abstract
Invasive placentation and cancer development shares many similar molecular and epigenetic pathways. Paternally expressed, growth promoting genes (SNRPN, PEG10 and MEST) which are known to play crucial role in tumorogenesis, are not well studied during placentation. This study reports for the first time of the impact of gestational-age, pathological conditions and folic acid supplementation on dynamic nature of DNA and histone methylation present at their differentially methylated regions (DMRs). Here, we reported the association between low DNA methylation/H3K27me3 and higher expression of SNRPN, PEG10 and MEST in highly proliferating normal early gestational placenta. Molar and preeclamptic placental villi, exhibited aberrant changes in methylation levels at DMRs of these genes, leading to higher and lower expression of these genes, respectively, in reference to their respective control groups. Moreover, folate supplementation could induce gene specific changes in mRNA expression in placental cell lines. Further, MEST and SNRPN DMRs were observed to show the potential to act as novel fetal DNA markers in maternal plasma. Thus, variation in methylation levels at these DMRs regulate normal placentation and placental disorders. Additionally, the methylation at these DMRs might also be susceptible to folic acid supplementation and has the potential to be utilized in clinical diagnosis.
Collapse
|
35
|
Cree SL, Fredericks R, Miller A, Pearce FG, Filichev V, Fee C, Kennedy MA. DNA G-quadruplexes show strong interaction with DNA methyltransferases in vitro. FEBS Lett 2016; 590:2870-83. [PMID: 27468168 DOI: 10.1002/1873-3468.12331] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 07/07/2016] [Accepted: 07/21/2016] [Indexed: 12/16/2022]
Abstract
The DNA methyltransferase enzymes (DNMTs) catalyzing cytosine methylation do so at specific locations of the genome, although with some level of redundancy. The de novo methyltransferases DNMT3A and 3B play a vital role in methylating the genome of the developing embryo in regions devoid of methylation marks. The ability of DNMTs to colocalize at sites of DNA damage is suggestive that recognition of mispaired bases and unusual structures is inherent to the function of these proteins. We provide evidence for G-quadruplex formation within imprinted gene promoters, and report high-affinity binding of recombinant human DNMTs to such DNA G-quadruplexes in vitro. These observations suggest a potential interaction of G-quadruplexes with the DNA methylation machinery, which may be of epigenetic and biological significance.
Collapse
Affiliation(s)
- Simone L Cree
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Rayleen Fredericks
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Allison Miller
- Department of Pathology, University of Otago, Christchurch, New Zealand
| | - F Grant Pearce
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Vyacheslav Filichev
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Conan Fee
- Department of Chemical and Process Engineering, University of Canterbury, Christchurch, New Zealand
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| | - Martin A Kennedy
- Department of Pathology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
36
|
Häfner SJ, Lund AH. Great expectations - Epigenetics and the meandering path from bench to bedside. Biomed J 2016; 39:166-76. [PMID: 27621117 PMCID: PMC6159761 DOI: 10.1016/j.bj.2016.01.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/21/2016] [Indexed: 01/12/2023] Open
Abstract
Making quick promises of major biomedical breakthroughs based on exciting discoveries at the bench is tempting. But the meandering path from fundamental science to life-saving clinical applications can be fraught with many hurdles. Epigenetics, the study of potentially heritable changes of gene function without modification of the underlying DNA sequence, has dominated the biological research field during the last decade and encountered a large public success. Driven by the unfolding of molecular biology and recent technological progress, the term has evolved significantly and shifted from a conceptual framework to a mechanistic understanding. This shift was accompanied by much hype and raised high hopes that epigenetics might hold both the key to deciphering the molecular underpinning of complex, non-Mendelian diseases and offer novel therapeutic approaches for a large panel of pathologies. However, while exciting reports of biological phenomena involving DNA methylation and histone modifications fill up the scientific literature, the realistic clinical applications of epigenetic medicines remain somewhat blurry. Here, we discuss the state of the art and speculate how epigenetics might contribute to prognostic and therapy approaches in the future.
Collapse
Affiliation(s)
- Sophia J Häfner
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.
| | - Anders H Lund
- Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Qian YY, Huang XL, Liang H, Zhang ZF, Xu JH, Chen JP, Yuan W, He L, Wang L, Miao MH, Du J, Li DK. Effects of maternal folic acid supplementation on gene methylation and being small for gestational age. J Hum Nutr Diet 2016; 29:643-51. [PMID: 27230729 DOI: 10.1111/jhn.12369] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Being small for gestational age (SGA), a foetal growth abnormality, has a long-lasting impact on childhood health. Its aetiology and underlying mechanisms are not well understood. Underlying epigenetic changes of imprinted genes have emerged as a potential pathological pathway because they may be associated with growth, including SGA. As a common methyl donor, folic acid (FA) is essential for DNA methylation, synthesis and repair, and FA supplementation is widely recommended for women planning pregnancy. The present study aimed to investigate the inter-relationships among methylation levels of two imprinted genes [H19 differentially methylated regions (DMRs) and MEST DMRs], maternal FA supplementation and SGA. METHODS We conducted a case-control study. Umbilical cord blood was taken from 39 SGA infants and 49 controls whose birth weights are appropriate for gestational age (AGA). DNA methylation levels of H19 and MEST DMRs were determined by an analysis of mass array quantitative methylation. RESULTS Statistically significantly higher methylation levels were observed at sites 7.8, 9 and 17.18 of H19 (P = 0.030, 0.016 and 0.050, respectively) in the SGA infants compared to the AGA group. In addition, the association was stronger in male births where the mothers took FA around conception at six H19 sites (P = 0.004, 0.005, 0.048, 0.002, 0.021 and 0.005, respectively). CONCLUSIONS Methylation levels at H19 DMRs were higher in SGA infants compared to AGA controls. It appears that the association may be influenced by maternal peri-conception FA supplementation and also be sex-specific.
Collapse
Affiliation(s)
- Y-Y Qian
- Shanghai Medical College of Fudan University, Shanghai, China.,Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - X-L Huang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - H Liang
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - Z-F Zhang
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - J-H Xu
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - J-P Chen
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - W Yuan
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China
| | - L He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - L Wang
- State Key Laboratory of Genetic Engineering and MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China.,Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - M-H Miao
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.
| | - J Du
- Key Lab. of Reproduction Regulation of NPFPC, SIPPR, IRD, Fudan University, Shanghai, China.
| | - D-K Li
- Division of Research, Kaiser Permanente, Oakland, CA, USA
| |
Collapse
|
38
|
Soubry A, Guo L, Huang Z, Hoyo C, Romanus S, Price T, Murphy SK. Obesity-related DNA methylation at imprinted genes in human sperm: Results from the TIEGER study. Clin Epigenetics 2016; 8:51. [PMID: 27158277 PMCID: PMC4859994 DOI: 10.1186/s13148-016-0217-2] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Epigenetic reprogramming in mammalian gametes resets methylation marks that regulate monoallelic expression of imprinted genes. In males, this involves erasure of the maternal methylation marks and establishment of paternal-specific methylation to appropriately guide normal development. The degree to which exogenous factors influence the fidelity of methylation reprogramming is unknown. We previously found an association between paternal obesity and altered DNA methylation in umbilical cord blood, suggesting that the father's endocrine, nutritional, or lifestyle status could potentiate intergenerational heritable epigenetic abnormalities. In these analyses, we examine the relationship between male overweight/obesity and DNA methylation status of imprinted gene regulatory regions in the gametes. METHODS Linear regression models were used to compare sperm DNA methylation percentages, quantified by bisulfite pyrosequencing, at 12 differentially methylated regions (DMRs) from 23 overweight/obese and 44 normal weight men. Our study population included 69 volunteers from The Influence of the Environment on Gametic Epigenetic Reprogramming (TIEGER) study, based in NC, USA. RESULTS After adjusting for age and fertility patient status, semen from overweight or obese men had significantly lower methylation percentages at the MEG3 (β = -1.99; SE = 0.84; p = 0.02), NDN (β = -1.10; SE = 0.47; p = 0.02), SNRPN (β = -0.65; SE = 0.27; p = 0.02), and SGCE/PEG10 (β = -2.5; SE = 1.01; p = 0.01) DMRs. Our data further suggest a slight increase in DNA methylation at the MEG3-IG DMR (β = +1.22; SE = 0.59; p = 0.04) and H19 DMR (β = +1.37; SE = 0.62; p = 0.03) in sperm of overweight/obese men. CONCLUSIONS Our data support that male overweight/obesity status is traceable in the sperm epigenome. Further research is needed to understand the effect of such changes and the point of origin of DNA methylation differences between lean and overweight/obese men. Together with our earlier reports on paternal obesity and epigenetic shifts in the offspring, our studies set the groundwork for future studies investigating male gametic methylation aberrations due to paternal lifestyle factors such as obesity.
Collapse
Affiliation(s)
- Adelheid Soubry
- />Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven University, 3000 Leuven, Belgium
| | - Lisa Guo
- />Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC 27708 USA
| | - Zhiqing Huang
- />Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC 27708 USA
| | - Cathrine Hoyo
- />Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27633 USA
| | - Stephanie Romanus
- />Epidemiology Research Group, Department of Public Health and Primary Care, Faculty of Medicine, KU Leuven University, 3000 Leuven, Belgium
| | - Thomas Price
- />Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Fertility, Duke University Medical Center, Durham, NC 27713 USA
| | - Susan K. Murphy
- />Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Duke University Medical Center, Durham, NC 27708 USA
- />Duke Cancer Institute, Duke University School of Medicine, Durham, NC 27710 USA
| |
Collapse
|
39
|
Li Y, Xie C, Murphy SK, Skaar D, Nye M, Vidal AC, Cecil KM, Dietrich KN, Puga A, Jirtle RL, Hoyo C. Lead Exposure during Early Human Development and DNA Methylation of Imprinted Gene Regulatory Elements in Adulthood. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:666-73. [PMID: 26115033 PMCID: PMC4858407 DOI: 10.1289/ehp.1408577] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Accepted: 06/24/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Lead exposure during early development causes neurodevelopmental disorders by unknown mechanisms. Epidemiologic studies have focused recently on determining associations between lead exposure and global DNA methylation; however, such approaches preclude the identification of loci that may alter human disease risk. OBJECTIVES The objective of this study was to determine whether maternal, postnatal, and early childhood lead exposure can alter the differentially methylated regions (DMRs) that control the monoallelic expression of imprinted genes involved in metabolism, growth, and development. METHODS Questionnaire data and serial blood lead levels were obtained from 105 participants (64 females, 41 males) of the Cincinnati Lead Study from birth to 78 months. When participants were adults, we used Sequenom EpiTYPER assays to test peripheral blood DNA to quantify CpG methylation in peripheral blood leukocytes at DMRs of 22 human imprinted genes. Statistical analyses were conducted using linear regression. RESULTS Mean blood lead concentration from birth to 78 months was associated with a significant decrease in PEG3 DMR methylation (β = -0.0014; 95% CI: -0.0023, -0.0005, p = 0.002), stronger in males (β = -0.0024; 95% CI: -0.0038, -0.0009, p = 0.003) than in females (β = -0.0009; 95% CI: -0.0020, 0.0003, p = 0.1). Elevated mean childhood blood lead concentration was also associated with a significant decrease in IGF2/H19 (β = -0.0013; 95% CI: -0.0023, -0.0003, p = 0.01) DMR methylation, but primarily in females, (β = -0.0017; 95% CI: -0.0029, -0.0006, p = 0.005) rather than in males, (β = -0.0004; 95% CI: -0.0023, 0.0015, p = 0.7). Elevated blood lead concentration during the neonatal period was associated with higher PLAGL1/HYMAI DMR methylation regardless of sex (β = 0.0075; 95% CI: 0.0018, 0.0132, p = 0.01). The magnitude of associations between cumulative lead exposure and CpG methylation remained unaltered from 30 to 78 months. CONCLUSIONS Our findings provide evidence that early childhood lead exposure results in sex-dependent and gene-specific DNA methylation differences in the DMRs of PEG3, IGF2/H19, and PLAGL1/HYMAI in adulthood. CITATION Li Y, Xie C, Murphy SK, Skaar D, Nye M, Vidal AC, Cecil KM, Dietrich KN, Puga A, Jirtle RL, Hoyo C. 2016. Lead exposure during early human development and DNA methylation of imprinted gene regulatory elements in adulthood. Environ Health Perspect 124:666-673; http://dx.doi.org/10.1289/ehp.1408577.
Collapse
Affiliation(s)
- Yue Li
- Department of Community and Family Medicine, and
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Changchun Xie
- Division of Epidemiology and Biostatistics, Department of Environmental Health, Center for Clinical and Translational Science and Training, University of Cincinnati (UC), Cincinnati, Ohio, USA
| | - Susan K. Murphy
- Department of Community and Family Medicine, and
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - David Skaar
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University (NCSU), Raleigh, North Carolina, USA
| | - Monica Nye
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adriana C. Vidal
- Department of Community and Family Medicine, and
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kim M. Cecil
- Cincinnati Children’s Environmental Health Center, Cincinnati Children’s Hospital Medical Center, UC College of Medicine, Cincinnati, Ohio, USA
- Department of Radiology,
- Department of Pediatrics,
- Department of Environmental Health,
- Center for Environmental Genetics, and
| | - Kim N. Dietrich
- Division of Epidemiology and Biostatistics, UC College of Medicine, Cincinnati, Ohio, USA
| | - Alvaro Puga
- Department of Environmental Health,
- Center for Environmental Genetics, and
| | - Randy L. Jirtle
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University (NCSU), Raleigh, North Carolina, USA
- Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Sport and Exercise Sciences, Institute of Sport and Physical Activity Research, University of Bedfordshire, Bedford, Bedfordshire, United Kingdom
- Address correspondence to C. Hoyo, Department of Biological Sciences, Center for Human Health and the Environment (CHHE), Program of Epidemiology and Environmental Epigenomics, North Carolina State University (NCSU), Raleigh, NC 27695-7633 USA. Telephone: (919) 515-0540. E-mail: , or R.L. Jirtle, Department of Biological Sciences, CHHE, NCSU, Raleigh, NC 27695-7633 USA. Telephone: (919) 399-3342. E-mail:
| | - Cathrine Hoyo
- Department of Community and Family Medicine, and
- Department of Obstetrics and Gynecology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University (NCSU), Raleigh, North Carolina, USA
- Address correspondence to C. Hoyo, Department of Biological Sciences, Center for Human Health and the Environment (CHHE), Program of Epidemiology and Environmental Epigenomics, North Carolina State University (NCSU), Raleigh, NC 27695-7633 USA. Telephone: (919) 515-0540. E-mail: , or R.L. Jirtle, Department of Biological Sciences, CHHE, NCSU, Raleigh, NC 27695-7633 USA. Telephone: (919) 399-3342. E-mail:
| |
Collapse
|
40
|
Abstract
Genomic imprinting refers to the epigenetic mechanism that results in the mono-allelic expression of a subset of genes in a parent-of-origin manner. These haploid genes are highly active in the placenta and are functionally implicated in the appropriate development of the fetus. Furthermore, the epigenetic marks regulating imprinted expression patterns are established early in development. These characteristics make genomic imprinting a potentially useful biomarker for environmental insults, especially during the in utero or early development stages, and for health outcomes later in life. Herein, we critically review the current literature regarding environmental influences on imprinted genes and summarize findings that suggest that imprinted loci are sensitive to known teratogenic agents, such as alcohol and tobacco, as well as less established factors with the potential to manipulate the in utero environment, including assisted reproductive technology. Finally, we discuss the potential of genomic imprinting to serve as an environmental sensor during early development.
Collapse
|
41
|
Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 2015; 8:389-99. [PMID: 26673039 PMCID: PMC4864062 DOI: 10.2217/epi.15.114] [Citation(s) in RCA: 461] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aim: DNA methylation is the best known epigenetic mark. Cancer and other pathologies show an altered DNA methylome. However, delivering complete DNA methylation maps is compromised by the price and labor-intensive interpretation of single nucleotide methods. Material & methods: Following the success of the HumanMethylation450 BeadChip (Infinium) methylation microarray (450K), we report the technical and biological validation of the newly developed MethylationEPIC BeadChip (Infinium) microarray that covers over 850,000 CpG methylation sites (850K). The 850K microarray contains >90% of the 450K sites, but adds 333,265 CpGs located in enhancer regions identified by the ENCODE and FANTOM5 projects. Results & conclusion: The 850K array demonstrates high reproducibility at the 450K CpG sites, is consistent among technical replicates, is reliable in the matched study of fresh frozen versus formalin-fixed paraffin-embeded samples and is also useful for 5-hydroxymethylcytosine. These results highlight the value of the MethylationEPIC BeadChip as a useful tool for the analysis of the DNA methylation profile of the human genome.
Collapse
Affiliation(s)
- Sebastian Moran
- Cancer Epigenetics & Biology Program (PEBC), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Carles Arribas
- Cancer Epigenetics & Biology Program (PEBC), 08908 L'Hospitalet, Barcelona, Catalonia, Spain
| | - Manel Esteller
- Cancer Epigenetics & Biology Program (PEBC), 08908 L'Hospitalet, Barcelona, Catalonia, Spain.,Department of Physiological Sciences II, School of Medicine, University of Barcelona, Barcelona, Catalonia, Spain.,Institucio Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
42
|
Fedak KM, Bernal A, Capshaw ZA, Gross S. Applying the Bradford Hill criteria in the 21st century: how data integration has changed causal inference in molecular epidemiology. Emerg Themes Epidemiol 2015; 12:14. [PMID: 26425136 PMCID: PMC4589117 DOI: 10.1186/s12982-015-0037-4] [Citation(s) in RCA: 371] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 09/23/2015] [Indexed: 01/15/2023] Open
Abstract
In 1965, Sir Austin Bradford Hill published nine “viewpoints” to help determine if observed epidemiologic associations are causal. Since then, the “Bradford Hill Criteria” have become the most frequently cited framework for causal inference in epidemiologic studies. However, when Hill published his causal guidelines—just 12 years after the double-helix model for DNA was first suggested and 25 years before the Human Genome Project began—disease causation was understood on a more elementary level than it is today. Advancements in genetics, molecular biology, toxicology, exposure science, and statistics have increased our analytical capabilities for exploring potential cause-and-effect relationships, and have resulted in a greater understanding of the complexity behind human disease onset and progression. These additional tools for causal inference necessitate a re-evaluation of how each Bradford Hill criterion should be interpreted when considering a variety of data types beyond classic epidemiology studies. Herein, we explore the implications of data integration on the interpretation and application of the criteria. Using examples of recently discovered exposure–response associations in human disease, we discuss novel ways by which researchers can apply and interpret the Bradford Hill criteria when considering data gathered using modern molecular techniques, such as epigenetics, biomarkers, mechanistic toxicology, and genotoxicology.
Collapse
Affiliation(s)
- Kristen M Fedak
- Department of Environmental and Radiological Health Sciences, Colorado State University, 350 West Lake Street, Fort Collins, CO 80521 USA ; Cardno ChemRisk, 4840 Pearl East Circle, Suite 300 West, Boulder, CO 80301 USA
| | - Autumn Bernal
- Cardno ChemRisk, 130 Vantis Suite 170, Aliso Viejo, CA 92656 USA
| | - Zachary A Capshaw
- Cardno ChemRisk, 4840 Pearl East Circle, Suite 300 West, Boulder, CO 80301 USA
| | - Sherilyn Gross
- Cardno ChemRisk, 4840 Pearl East Circle, Suite 300 West, Boulder, CO 80301 USA
| |
Collapse
|
43
|
Darcy D, Atwal PS, Angell C, Gadi I, Wallerstein R. Mosaic paternal genome-wide uniparental isodisomy with down syndrome. Am J Med Genet A 2015. [PMID: 26219535 DOI: 10.1002/ajmg.a.37187] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We report on a 6-month-old girl with two apparent cell lines; one with trisomy 21, and the other with paternal genome-wide uniparental isodisomy (GWUPiD), identified using single nucleotide polymorphism (SNP) based microarray and microsatellite analysis of polymorphic loci. The patient has Beckwith-Wiedemann syndrome (BWS) due to paternal uniparental disomy (UPD) at chromosome location 11p15 (UPD 11p15), which was confirmed through methylation analysis. Hyperinsulinemic hypoglycemia is present, which is associated with paternal UPD 11p15.5; and she likely has medullary nephrocalcinosis, which is associated with paternal UPD 20, although this was not biochemically confirmed. Angelman syndrome (AS) analysis was negative but this testing is not completely informative; she has no specific features of AS. Clinical features of this patient include: dysmorphic features consistent with trisomy 21, tetralogy of Fallot, hemihypertrophy, swirled skin hyperpigmentation, hepatoblastoma, and Wilms tumor. Her karyotype is 47,XX,+21[19]/46,XX[4], and microarray results suggest that the cell line with trisomy 21 is biparentally inherited and represents 40-50% of the genomic material in the tested specimen. The difference in the level of cytogenetically detected mosaicism versus the level of mosaicism observed via microarray analysis is likely caused by differences in the test methodologies. While a handful of cases of mosaic paternal GWUPiD have been reported, this patient is the only reported case that also involves trisomy 21. Other GWUPiD patients have presented with features associated with multiple imprinted regions, as does our patient.
Collapse
Affiliation(s)
- Diana Darcy
- Silicon Valley Genetics Center, Santa Clara Valley Medical Center, San Jose, California
| | | | - Cathy Angell
- Neonatology, O'Connor Hospital, San Jose, California
| | - Inder Gadi
- Laboratory Corporation of America, Research Triangle Park, North Carolina
| | - Robert Wallerstein
- Silicon Valley Genetics Center, Santa Clara Valley Medical Center, San Jose, California
| |
Collapse
|
44
|
Baran Y, Subramaniam M, Biton A, Tukiainen T, Tsang EK, Rivas MA, Pirinen M, Gutierrez-Arcelus M, Smith KS, Kukurba KR, Zhang R, Eng C, Torgerson DG, Urbanek C, Li JB, Rodriguez-Santana JR, Burchard EG, Seibold MA, MacArthur DG, Montgomery SB, Zaitlen NA, Lappalainen T. The landscape of genomic imprinting across diverse adult human tissues. Genome Res 2015; 25:927-36. [PMID: 25953952 PMCID: PMC4484390 DOI: 10.1101/gr.192278.115] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 05/07/2015] [Indexed: 12/24/2022]
Abstract
Genomic imprinting is an important regulatory mechanism that silences one of the parental copies of a gene. To systematically characterize this phenomenon, we analyze tissue specificity of imprinting from allelic expression data in 1582 primary tissue samples from 178 individuals from the Genotype-Tissue Expression (GTEx) project. We characterize imprinting in 42 genes, including both novel and previously identified genes. Tissue specificity of imprinting is widespread, and gender-specific effects are revealed in a small number of genes in muscle with stronger imprinting in males. IGF2 shows maternal expression in the brain instead of the canonical paternal expression elsewhere. Imprinting appears to have only a subtle impact on tissue-specific expression levels, with genes lacking a systematic expression difference between tissues with imprinted and biallelic expression. In summary, our systematic characterization of imprinting in adult tissues highlights variation in imprinting between genes, individuals, and tissues.
Collapse
Affiliation(s)
- Yael Baran
- The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel
| | - Meena Subramaniam
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Anne Biton
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Taru Tukiainen
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA
| | - Emily K Tsang
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA
| | - Manuel A Rivas
- Wellcome Trust Center for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Matti Pirinen
- Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland
| | - Maria Gutierrez-Arcelus
- Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland
| | - Kevin S Smith
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Kim R Kukurba
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Rui Zhang
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Celeste Eng
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Dara G Torgerson
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Cydney Urbanek
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| | | | - Esteban G Burchard
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA; Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California 94158, USA
| | - Max A Seibold
- Integrated Center for Genes, Environment, and Health, National Jewish Health, Denver, Colorado 80206, USA; Department of Pediatrics, National Jewish Health, Denver, Colorado 80206, USA; Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado-Denver, Denver, Colorado 80045, USA
| | - Daniel G MacArthur
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Stephen B Montgomery
- Department of Pathology, Stanford University, Stanford, California 94305, USA; Department of Genetics, Stanford University, Stanford, California 94305, USA
| | - Noah A Zaitlen
- Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA
| | - Tuuli Lappalainen
- New York Genome Center, New York, New York 10013, USA; Department of Systems Biology, Columbia University, New York, New York 10032, USA
| |
Collapse
|
45
|
Martos SN, Tang WY, Wang Z. Elusive inheritance: Transgenerational effects and epigenetic inheritance in human environmental disease. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:44-54. [PMID: 25792089 PMCID: PMC4784256 DOI: 10.1016/j.pbiomolbio.2015.02.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 01/26/2015] [Accepted: 02/23/2015] [Indexed: 01/25/2023]
Abstract
Epigenetic mechanisms involving DNA methylation, histone modification, histone variants and nucleosome positioning, and noncoding RNAs regulate cell-, tissue-, and developmental stage-specific gene expression by influencing chromatin structure and modulating interactions between proteins and DNA. Epigenetic marks are mitotically inherited in somatic cells and may be altered in response to internal and external stimuli. The idea that environment-induced epigenetic changes in mammals could be inherited through the germline, independent of genetic mechanisms, has stimulated much debate. Many experimental models have been designed to interrogate the possibility of transgenerational epigenetic inheritance and provide insight into how environmental exposures influence phenotypes over multiple generations in the absence of any apparent genetic mutation. Unexpected molecular evidence has forced us to reevaluate not only our understanding of the plasticity and heritability of epigenetic factors, but of the stability of the genome as well. Recent reviews have described the difference between transgenerational and intergenerational effects; the two major epigenetic reprogramming events in the mammalian lifecycle; these two events making transgenerational epigenetic inheritance of environment-induced perturbations rare, if at all possible, in mammals; and mechanisms of transgenerational epigenetic inheritance in non-mammalian eukaryotic organisms. This paper briefly introduces these topics and mainly focuses on (1) transgenerational phenotypes and epigenetic effects in mammals, (2) environment-induced intergenerational epigenetic effects, and (3) the inherent difficulties in establishing a role for epigenetic inheritance in human environmental disease.
Collapse
Affiliation(s)
- Suzanne N Martos
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| | - Wan-Yee Tang
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Zhibin Wang
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
46
|
McCullough LE, Mendez MA, Miller EE, Murtha AP, Murphy SK, Hoyo C. Associations between prenatal physical activity, birth weight, and DNA methylation at genomically imprinted domains in a multiethnic newborn cohort. Epigenetics 2015; 10:597-606. [PMID: 25928716 DOI: 10.1080/15592294.2015.1045181] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Birth weight is a commonly used indicator of the fetal environment and a predictor of future health outcomes. While the etiology of birth weight extremes is likely multifactorial, epidemiologic data suggest that prenatal physical activity (PA) may play an important role. The mechanisms underlying this association remain unresolved, although epigenetics has been proposed. This study aimed to estimate associations between prenatal PA, birth weight, and newborn DNA methylation levels at differentially methylated regions (DMRs) regulating 4 imprinted genes known to be important in fetal development. Study participants (N = 1281) were enrolled as part of the Newborn Epigenetics Study. Prenatal PA was ascertained using the Pregnancy Physical Activity Questionnaire, and birth weight data obtained from hospital records. Among 484 term mother-infant pairs, imprinted gene methylation levels were measured at DMRs using bisulfite pyrosequencing. Generalized linear and logistic regression models were used to estimate associations. After adjusting for preterm birth and race/ethnicity, we found that infants born to mothers in the highest quartile of total non-sedentary time had lower birth weight compared to infants of mothers in the lowest quartile (β = -81.16, SE = 42.02, P = 0.05). These associations appeared strongest among male infants (β = -125.40, SE = 58.10, P = 0.03). Methylation at the PLAGL1 DMR was related to total non-sedentary time (P < 0.05). Our findings confirm that prenatal PA is associated with reduced birth weight, and is the first study to support a role for imprinted gene plasticity in these associations. Larger studies are required.
Collapse
Key Words
- BMI, body mass index
- BW, birth weight
- DMR, differentially methylated regions
- DOHaD, developmental origins of health and disease
- HIV, human immunodeficiency virus
- IGF, insulin-like growth factor
- LBW, low birth weight
- LMP, last menstrual period
- MET, metabolic equivalent
- NEST, Newborn Epigenetic Study
- PA, physical activity
- SE, standard error.
- birth weight
- epidemiology
- epigenetics
- imprinted genes
- methylation
- physical activity
Collapse
Affiliation(s)
- Lauren E McCullough
- a Department of Epidemiology; University of North Carolina Chapel Hill ; Chapel Hill , NC , USA
| | | | | | | | | | | |
Collapse
|
47
|
King K, Murphy S, Hoyo C. Epigenetic regulation of Newborns' imprinted genes related to gestational growth: patterning by parental race/ethnicity and maternal socioeconomic status. J Epidemiol Community Health 2015; 69:639-47. [PMID: 25678712 DOI: 10.1136/jech-2014-204781] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 01/22/2015] [Indexed: 12/30/2022]
Abstract
BACKGROUND Children born to parents with lower income and education are at risk for obesity and later-life risk of common chronic diseases, and epigenetics has been hypothesised to link these associations. However, epigenetic targets are unknown. We focus on a cluster of well-characterised genomically imprinted genes because their monoallelic expression is regulated by DNA methylation at differentially methylated regions (DMRs), are critical in fetal growth, and DNA methylation patterns at birth have been associated with increased risk of birth weight extremes and overweight status or obesity in early childhood. METHODS We measured DNA methylation at DMRs regulating genomically imprinted domains (IGF2/H19, DLK1/MEG3, NNAT and PLAGL1) using umbilical cord blood leucocytes from 619 infants recruited in Durham, North Carolina in 2010-2011. We examined differences in DNA methylation levels by race/ethnicity of both parents, and the role that maternal socioeconomic status (SES) may play in the association between race/ethnic epigenetic differences. RESULTS Unadjusted race/ethnic differences only were evident for DMRs regulating MEG3 and IGF2; race/ethnic differences persisted in IGF2/H19 and NNAT after accounting for income and education. CONCLUSIONS Results suggest that parental factors may not only influence DNA methylation, but also do so in ways that vary by DMR. Findings support the hypothesis that epigenetics may link the observed lower SES during the prenatal period and poor outcomes such as low birth weight; lower birth weight has previously been associated with adult-onset chronic diseases and conditions that include cardiovascular diseases, diabetes, obesity and some cancers.
Collapse
Affiliation(s)
- Katherine King
- Environmental Public Health Division, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA Department of Community and Family Medicine, Duke University Medical Center, Durham, North Carolina, USA
| | - Susan Murphy
- Department of Obstetrics and Gynecology, Duke University, Durham, North Carolina, USA
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
48
|
Nye MD, Hoyo C, Murphy SK. In vitro lead exposure changes DNA methylation and expression of IGF2 and PEG1/MEST. Toxicol In Vitro 2015; 29:544-50. [PMID: 25596546 DOI: 10.1016/j.tiv.2015.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 12/10/2014] [Accepted: 01/06/2015] [Indexed: 11/28/2022]
Abstract
Epigenetic processes, such as changes in DNA methylation, likely mediate the link between environmental exposures in utero and altered gene expression. Differentially methylated regions (DMRs) that regulate imprinted genes may be especially vulnerable to environmental exposures since imprinting is established and maintained largely through DNA methylation, resulting in expression from only one parental chromosome. We used the human embryonic kidney cell line, HEK-293, to investigate the effects of exposure to physiologically relevant doses of lead acetate (Pb) on the methylation status of nine imprinted gene DMRs. We assessed mean methylation after seventy-two hours of Pb exposure (0-25 μg/dL) using bisulfite pyrosequencing. The PEG1/MEST and IGF2 DMRs had maximum methylation decreases of 9.6% (20 μg/dL; p<0.005) and 3.8% (25 μg/dL; p<0.005), respectively. Changes at the MEG3 DMRs had a maximum decrease in methylation of 2.9% (MEG3) and 1.8% (MEG3-IG) at 5 μg/dL Pb, but were not statistically significant. The H19, NNAT, PEG3, PLAGL1, and SGCE/PEG10 DMRs showed a less than 0.5% change in methylation, across the dose range used, and were deemed non-responsive to Pb in our model. Pb exposure below reportable/actionable levels increased expression of PEG1/MEST concomitant with decreased methylation. These results suggest that Pb exposure can stably alter the regulatory capacity of multiple imprinted DMRs.
Collapse
Affiliation(s)
- Monica D Nye
- Duke University Medical Center, Department of Obstetrics and Gynecology, B225 LSRC, Research Drive, Durham, NC 27708, USA; University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, 450 West Drive, Chapel Hill, NC 27599, USA.
| | - Cathrine Hoyo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Susan K Murphy
- Duke University Medical Center, Department of Obstetrics and Gynecology, B225 LSRC, Research Drive, Durham, NC 27708, USA.
| |
Collapse
|
49
|
Aberrant allele-switch imprinting of a novel IGF1R intragenic antisense non-coding RNA in breast cancers. Eur J Cancer 2014; 51:260-70. [PMID: 25465188 DOI: 10.1016/j.ejca.2014.10.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/14/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Abstract
The insulin-like growth factor type I receptor (IGF1R) is frequently dysregulated in breast cancers, yet the molecular mechanisms are unknown. A novel intragenic long non-coding RNA (lncRNA) IRAIN within the IGF1R locus has been recently identified in haematopoietic malignancies using RNA-guided chromatin conformation capture (R3C). In breast cancer tissues, we found that IRAIN lncRNA was transcribed from an intronic promoter in an antisense direction as compared to the IGF1R coding mRNA. Unlike the IGF1R coding RNA, this non-coding RNA was imprinted, with monoallelic expression from the paternal allele. In breast cancer tissues that were informative for single nucleotide polymorphism (SNP) rs8034564, there was an imbalanced expression of the two parental alleles, where the 'G' genotype was favorably imprinted over the 'A' genotype. In breast cancer patients, IRAIN was aberrantly imprinted in both tumours and peripheral blood leucocytes, exhibiting a pattern of allele-switch: the allele expressed in normal tissues was inactivated and the normally imprinted allele was expressed. Epigenetic analysis revealed that there was extensive DNA demethylation of CpG islands in the gene promoter. These data identify IRAIN lncRNA as a novel imprinted gene that is aberrantly regulated in breast cancer.
Collapse
|
50
|
Markunas CA, Xu Z, Harlid S, Wade PA, Lie RT, Taylor JA, Wilcox AJ. Identification of DNA methylation changes in newborns related to maternal smoking during pregnancy. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:1147-53. [PMID: 24906187 PMCID: PMC4181928 DOI: 10.1289/ehp.1307892] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 06/04/2014] [Indexed: 05/17/2023]
Abstract
BACKGROUND Maternal smoking during pregnancy is associated with significant infant morbidity and mortality, and may influence later disease risk. One mechanism by which smoking (and other environmental factors) might have long-lasting effects is through epigenetic modifications such as DNA methylation. OBJECTIVES We conducted an epigenome-wide association study (EWAS) investigating alterations in DNA methylation in infants exposed in utero to maternal tobacco smoke, using the Norway Facial Clefts Study. METHODS The Illumina HumanMethylation450 BeadChip was used to assess DNA methylation in whole blood from 889 infants shortly after delivery. Of 889 mothers, 287 reported smoking-twice as many smokers as in any previous EWAS of maternal smoking. CpG sites related to maternal smoking during the first trimester were identified using robust linear regression. RESULTS We identified 185 CpGs with altered methylation in infants of smokers at genome-wide significance (q-value < 0.05; mean Δβ = ± 2%). These correspond to 110 gene regions, of which 7 have been previously reported and 10 are newly confirmed using publicly available results. Among these 10, the most noteworthy are FRMD4A, ATP9A, GALNT2, and MEG3, implicated in processes related to nicotine dependence, smoking cessation, and placental and embryonic development. CONCLUSIONS Our study identified 10 genes with newly established links to maternal smoking. Further, we note differences between smoking-related methylation changes in newborns and adults, suggesting possible distinct effects of direct versus indirect tobacco smoke exposure as well as potential differences due to age. Further work would be needed to determine whether these small changes in DNA methylation are biologically or clinically relevant. The methylation changes identified in newborns may mediate the association between in utero maternal smoking exposure and later health outcomes.
Collapse
|