1
|
Ihara S, Nguyen BV, Miyamoto Y, Eckmann L. Mucosal vaccination in a murine gnotobiotic model of Giardia lamblia infection. Infect Immun 2024; 92:e0006524. [PMID: 38722167 PMCID: PMC11237505 DOI: 10.1128/iai.00065-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/10/2024] [Indexed: 06/12/2024] Open
Abstract
Giardia lamblia is an important protozoan cause of diarrheal disease worldwide, delayed development and cognitive impairment in children in low- and middle-income countries, and protracted post-infectious syndromes in developed regions. G. lamblia resides in the lumen and at the epithelial surface of the proximal small intestine but is not mucosa invasive. The protozoan parasite is genetically diverse with significant genome differences across strains and assemblages. Animal models, particularly murine models, have been instrumental in defining mechanisms of host defense against G. lamblia, but mice cannot be readily infected with most human pathogenic strains. Antibiotic pretreatment can increase susceptibility, suggesting that the normal microbiota plays a role in controlling G. lamblia infection in mice, but the broader implications on susceptibility to diverse strains are not known. Here, we have used gnotobiotic mice to demonstrate that robust intestinal infection can be achieved for a broad set of human-pathogenic strains of the genetic assemblages A and B. Furthermore, gnotobiotic mice were able to eradicate infection with a similar kinetics to conventional mice after trophozoite challenge. Germ-free mice could also be effectively immunized by the mucosal route with a protective antigen, α1-giardin, in a manner dependent on CD4 T cells. These results indicate that the gnotobiotic mouse model is powerful for investigating acquired host defenses in giardiasis, as the mice are broadly susceptible to diverse G. lamblia strains yet display no apparent defects in mucosal immunity needed for controlling and eradicating this lumen-dwelling pathogen.
Collapse
Affiliation(s)
- Sozaburo Ihara
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Brian V. Nguyen
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Yukiko Miyamoto
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Lars Eckmann
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
2
|
Boczek LA, Ware MW, Rodgers MR, Ryu H. Potassium ferrate's disinfecting ability: a study on human adenovirus, Giardia duodenalis, and microbial indicators under varying pH and water temperature conditions. JOURNAL OF WATER AND HEALTH 2024; 22:1102-1110. [PMID: 38935460 PMCID: PMC11618379 DOI: 10.2166/wh.2024.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/10/2024] [Indexed: 06/29/2024]
Abstract
Ferrate (Fe(VI): HFeO4- /FeO42-), a potent oxidant, has been investigated as an alternative chemical disinfectant in water treatment due to its reduced production of disinfection by-products. In this study, we assessed the disinfecting ability of potassium ferrate against a variety of microorganisms, including waterborne pathogens, under varying pH and water temperature conditions. We presented CT values, a metric of ferrate concentrations (C) and contact time (T), to quantify microbial inactivation rates. Among the tested microorganisms, human adenovirus was the least resistant to ferrate, followed by waterborne bacteria such as Escherichia coli and Vibrio cholerae, and finally, the protozoan parasite Giardia duodenalis. We further investigated the impact of two pH values (7 and 8) and two temperatures (5 and 25 °C) on microbial inactivation rates, observing that inactivation rates increased with lower pH and higher temperature. In addition to showcasing ferrate's capacity to effectively inactivate a range of the tested microorganisms, we offer a ferrate CT table to facilitate the comparison of the effectiveness of various disinfection methods.
Collapse
Affiliation(s)
- Laura A Boczek
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Michael W Ware
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, USA
| | - Mark R Rodgers
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, USA; Retired
| | - Hodon Ryu
- United States Environmental Protection Agency, Office of Research and Development, 26 W. Martin Luther King Dr, Cincinnati, OH 45268, USA E-mail:
| |
Collapse
|
3
|
Quezada-Lázaro R, Vázquez-Cobix Y, Fonseca-Liñán R, Nava P, Hernández-Cueto DD, Cedillo-Peláez C, López-Vidal Y, Huerta-Yepez S, Ortega-Pierres MG. The Cysteine Protease Giardipain-1 from Giardia duodenalis Contributes to a Disruption of Intestinal Homeostasis. Int J Mol Sci 2022; 23:13649. [PMID: 36362435 PMCID: PMC9655832 DOI: 10.3390/ijms232113649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/14/2022] [Accepted: 10/14/2022] [Indexed: 08/05/2023] Open
Abstract
In giardiasis, diarrhoea, dehydration, malabsorption, weight loss and/or chronic inflammation are indicative of epithelial barrier dysfunction. However, the pathogenesis of giardiasis is still enigmatic in many aspects. Here, we show evidence that a cysteine protease of Giardia duodenalis called giardipain-1, contributes to the pathogenesis of giardiasis induced by trophozoites of the WB strain. In an experimental system, we demonstrate that purified giardipain-1 induces apoptosis and extrusion of epithelial cells at the tips of the villi in infected jirds (Meriones unguiculatus). Moreover, jird infection with trophozoites expressing giardipain-1 resulted in intestinal epithelial damage, cellular infiltration, crypt hyperplasia, goblet cell hypertrophy and oedema. Pathological alterations were more pronounced when jirds were infected intragastrically with Giardia trophozoites that stably overexpress giardipain-1. Furthermore, Giardia colonization in jirds results in a chronic inflammation that could relate to the dysbiosis triggered by the protist. Taken together, these results reveal that giardipain-1 plays a key role in the pathogenesis of giardiasis.
Collapse
Affiliation(s)
- Rodrigo Quezada-Lázaro
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico
| | - Yessica Vázquez-Cobix
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico
| | - Rocío Fonseca-Liñán
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico
| | - Porfirio Nava
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City 07360, Mexico
| | - Daniel Dimitri Hernández-Cueto
- Unidad de Investigación en Enfermedades Hemato-Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - Carlos Cedillo-Peláez
- Laboratorio de Inmunología Experimental, Torre de Investigación, Instituto Nacional de Pediatría, Mexico City 04530, Mexico
| | - Yolanda López-Vidal
- Programa de Inmunología Molecular Microbiana, Departamento de Microbiología y Parasitología Facultad de Medicina Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Sara Huerta-Yepez
- Unidad de Investigación en Enfermedades Hemato-Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico
| | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City 07360, Mexico
| |
Collapse
|
4
|
Kwon KM, Lee MJ, Chung HS, Pak JH, Jeon CJ. The Organization of Somatostatin-Immunoreactive Cells in the Visual Cortex of the Gerbil. Biomedicines 2022; 10:biomedicines10010092. [PMID: 35052772 PMCID: PMC8773527 DOI: 10.3390/biomedicines10010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Somatostatin (SST) is widely expressed in the brain and plays various, vital roles involved in neuromodulation. The purpose of this study is to characterize the organization of SST neurons in the Mongolian gerbil visual cortex (VC) using immunocytochemistry, quantitative analysis, and confocal microscopy. As a diurnal animal, the Mongolian gerbil provides us with a different perspective to other commonly used nocturnal rodent models. In this study, SST neurons were located in all layers of the VC except in layer I; they were most common in layer V. Most SST neurons were multipolar round/oval or stellate cells. No pyramidal neurons were found. Moreover, 2-color immunofluorescence revealed that only 33.50%, 24.05%, 16.73%, 0%, and 64.57% of SST neurons contained gamma-aminobutyric acid, calbindin-D28K, calretinin, parvalbumin, and calcium/calmodulin-dependent protein kinase II, respectively. In contrast, neuropeptide Y and nitric oxide synthase were abundantly expressed, with 80.07% and 75.41% in SST neurons, respectively. Our immunocytochemical analyses of SST with D1 and D2 dopamine receptors and choline acetyltransferase, α7 and β2 nicotinic acetylcholine receptors suggest that dopaminergic and cholinergic fibers contact some SST neurons. The results showed some distinguishable features of SST neurons and provided some insight into their afferent circuitry in the gerbil VC. These findings may support future studies investigating the role of SST neurons in visual processing.
Collapse
Affiliation(s)
- Kyung-Min Kwon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Myung-Jun Lee
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
| | - Han-Saem Chung
- Department of Biology, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Department of Biology, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Correspondence:
| |
Collapse
|
5
|
Maertens B, Gagnaire A, Paerewijck O, De Bosscher K, Geldhof P. Regulatory role of the intestinal microbiota in the immune response against Giardia. Sci Rep 2021; 11:10601. [PMID: 34011991 PMCID: PMC8134572 DOI: 10.1038/s41598-021-90261-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 05/10/2021] [Indexed: 12/15/2022] Open
Abstract
Giardia duodenalis is one of the most commonly found intestinal parasites in mammalian hosts. Infections can generally be cleared by mounting an adequate protective immune response that is orchestrated through IL-17A. This study was aimed to investigate if and how the intestinal microbiome affects the protective Th17 response against Giardia by analysing and comparing the immune response following a G. muris and G. duodenalis infection in antibiotic treated and untreated mice. Depletion of the intestinal flora by antibiotic treatment had a severe effect on the infection dynamics of both Giardia species. Not only duration of infection was affected, but also the parasite burden increased significantly. Markers associated with a protective immune response, such as IL-17A and mannose binding lectin 2 were still significantly upregulated following infection in the antibiotic-treated mice, despite the lack of protection. On the other hand, the antibiotic treatment significantly decreased the level of IgA in the intestinal lumen by affecting its transporter and by reducing the number of IgA+ B-cells at the Peyer's patches. Furthermore, the depletion of the gut microbiota by antibiotics also significantly lowered the intestinal motility. The combination of these factors likely results in a decreased clearance of the parasite from the intestinal tract.
Collapse
Affiliation(s)
- B Maertens
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - A Gagnaire
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - O Paerewijck
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - K De Bosscher
- VIB Department of Medical Protein Research, Translational Nuclear Receptor Research Lab, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - P Geldhof
- Department of Virology, Parasitology and Immunology, Laboratory of Parasitology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| |
Collapse
|
6
|
Propagation of Giardia duodenalis cysts in immunosuppressed CF-1 mice. Vet Parasitol 2019; 268:32-35. [PMID: 30981303 DOI: 10.1016/j.vetpar.2019.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/13/2019] [Accepted: 02/23/2019] [Indexed: 11/22/2022]
Abstract
This study developed and evaluated Giardia duodenalis cyst propagation using a dexamethasone immunosuppressed CF-1 mouse model as an alternative to a previously described Mongolian gerbil model. The CF-1 mouse model shed significantly more cysts per animal during a 16-18 h collection period compared to the gerbil (averages: 7.8 × 106 cysts/CF-1 mouse and 2.5 × 106 cysts/gerbil). In addition, the patency period for this model differed from both G. muris in mice and G. duodenalis in gerbils in that cysts were shed continuously for over 20 days. Results further showed that the β-giardin gene sequences from gerbil derived and mouse derived G. duodenalis were identical, after 34 serial passages through the CF-1 mouse model. Overall, the CF-1 mouse model produced higher concentrations of cysts per animal, and were genetically and phenotypically stable based on β-giardin gene sequences.
Collapse
|
7
|
Argüello-García R, de la Vega-Arnaud M, Loredo-Rodríguez IJ, Mejía-Corona AM, Melgarejo-Trejo E, Espinoza-Contreras EA, Fonseca-Liñán R, González-Robles A, Pérez-Hernández N, Ortega-Pierres MG. Activity of Thioallyl Compounds From Garlic Against Giardia duodenalis Trophozoites and in Experimental Giardiasis. Front Cell Infect Microbiol 2018; 8:353. [PMID: 30374433 PMCID: PMC6196658 DOI: 10.3389/fcimb.2018.00353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Fresh aqueous extracts (AGEs) and several thioallyl compounds (TACs) from garlic have an important antimicrobial activity that likely involves their interaction with exposed thiol groups at single aminoacids or target proteins. Since these groups are present in Giardia duodenalis trophozoites, in this work we evaluated the anti-giardial activity of AGE and several garlic's TACs. In vitro susceptibility assays showed that AGE affected trophozoite viability initially by a mechanism impairing cell integrity and oxidoreductase activities while diesterase activities were abrogated at higher AGE concentrations. The giardicidal activities of seven TACs were related to the molecular descriptor HOMO (Highest Occupied Molecular Orbital) energy and with their capacity to modify the -SH groups exposed in giardial proteins. Interestingly, the activity of several cysteine proteases in trophozoite lysates was inhibited by representative TACs as well as the cytopathic effect of the virulence factor giardipain-1. Of these, allicin showed the highest anti-giardial activity, the lower HOMO value, the highest thiol-modifying activity and the greatest inhibition of cysteine proteases. Allicin had a cytolytic mechanism in trophozoites with subsequent impairment of diesterase and oxidoreductase activities in a similar way to AGE. In addition, by electron microscopy a marked destruction of plasma membrane and endomembranes was observed in allicin-treated trophozoites while cytoskeletal elements were not affected. In further flow cytometry analyses pro-apoptotic effects of allicin concomitant to partial cell cycle arrest at G2 phase with the absence of oxidative stress were observed. In experimental infections of gerbils, the intragastric administration of AGE or allicin decreased parasite numbers and eliminated trophozoites in experimentally infected animals, respectively. These data suggest a potential use of TACs from garlic against G. duodenalis and in the treatment of giardiasis along with their additional benefits in the host's health.
Collapse
Affiliation(s)
- Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Mariana de la Vega-Arnaud
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Iraís J. Loredo-Rodríguez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Adriana M. Mejía-Corona
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Elizabeth Melgarejo-Trejo
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Eulogia A. Espinoza-Contreras
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Rocío Fonseca-Liñán
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Arturo González-Robles
- Departamento de Infectómica y Patogénesis Experimental, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City, Mexico
| | - M. Guadalupe Ortega-Pierres
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| |
Collapse
|
8
|
Pecková R, Sak B, Květoňová D, Kváč M, Koriťáková E, Foitová I. The course of experimental giardiasis in Mongolian gerbil. Parasitol Res 2018; 117:2437-2443. [PMID: 29797082 DOI: 10.1007/s00436-018-5932-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/15/2018] [Indexed: 11/26/2022]
Abstract
Fifteen Mongolian gerbils were inoculated with 10 × 106 viable trophozoites of Giardia intestinalis. Their faeces were examined daily by flotation method and the number of shed cysts was counted. Two animals (male and female) were euthanised at 4- to 5-day intervals (9, 14, 18 days post-infection (DPI)). The remaining nine gerbils were sacrificed and dissected at the end of the experiment (23 DPI). Their small intestinal tissues were processed for examination using histological sectioning and scanning electron microscopy and their complete blood count (CBC) was examined. The highest number of trophozoites at the total was observed in the duodenum in gerbils sacrificed on 14 DPI. Number of shed cysts was positively correlated with number of trophozoites rinsed from the intestine. Infected gerbils had lower body weight gain in comparison with control group and in three male gerbils; diarrhoea occurred during infection. Cyst shedding was negatively correlated with values of mean corpuscular haemoglobin concentration. Females showed another pattern in cyst shedding than males. This information needs to be taken into account while planning the experiments.
Collapse
Affiliation(s)
- Radka Pecková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, v.v.i., Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, v.v.i., Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, v.v.i., Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Eva Koriťáková
- Institute of Biostatistics and Analyses, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ivona Foitová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
9
|
Cytokines, Antibodies, and Histopathological Profiles during Giardia Infection and Variant-Specific Surface Protein-Based Vaccination. Infect Immun 2018; 86:IAI.00773-17. [PMID: 29555679 DOI: 10.1128/iai.00773-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 03/10/2018] [Indexed: 12/13/2022] Open
Abstract
Giardiasis is one of the most common human intestinal diseases worldwide. Several experimental animal models have been used to evaluate Giardia infections, with gerbils (Meriones unguiculatus) being the most valuable model due to their high susceptibility to Giardia infection, abundant shedding of cysts, and pathophysiological alterations and signs of disease similar to those observed in humans. Here, we report cytokine and antibody profiles both during the course of Giardia infection in gerbils and after immunization with a novel oral vaccine comprising a mixture of purified variant-specific surface proteins (VSPs). Transcript levels of representative cytokines of different immune profiles as well as macro- and microtissue alterations were assessed in Peyer's patches, mesenteric lymph nodes, and spleens. During infection, cytokine responses showed a biphasic profile: an early induction of Th1 (gamma interferon [IFN-γ], interleukin-1β [IL-1β], IL-6, and tumor necrosis factor [TNF]), Th17 (IL-17), and Th2 (IL-4) cytokines, together with intestinal alterations typical of inflammation, followed by a shift toward a predominant Th2 (IL-5) response, likely associated with a counterregulatory mechanism. Conversely, immunization with an oral vaccine comprising the entire repertoire of VSPs specifically showed high levels of IL-17, IL-6, IL-4, and IL-5, without obvious signs of inflammation. Both immunized and infected animals developed local (intestinal secretory IgA [S-IgA]) and systemic (serum IgG) humoral immune responses against VSPs; however, only infected animals showed evident signs of giardiasis. This is the first comprehensive report of cytokine expression and anti-Giardia antibody production during infection and VSP vaccination in gerbils, a reliable model of the human disease.
Collapse
|
10
|
Rousseau A, La Carbona S, Dumètre A, Robertson LJ, Gargala G, Escotte-Binet S, Favennec L, Villena I, Gérard C, Aubert D. Assessing viability and infectivity of foodborne and waterborne stages (cysts/oocysts) of Giardia duodenalis, Cryptosporidium spp., and Toxoplasma gondii: a review of methods. ACTA ACUST UNITED AC 2018; 25:14. [PMID: 29553366 PMCID: PMC5858526 DOI: 10.1051/parasite/2018009] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/09/2018] [Indexed: 11/14/2022]
Abstract
Giardia duodenalis, Cryptosporidium spp. and Toxoplasma gondii are protozoan parasites that have been highlighted as emerging foodborne pathogens by the Food and Agriculture Organization of the United Nations and the World Health Organization. According to the European Food Safety Authority, 4786 foodborne and waterborne outbreaks were reported in Europe in 2016, of which 0.4% were attributed to parasites including Cryptosporidium, Giardia and Trichinella. Until 2016, no standardized methods were available to detect Giardia, Cryptosporidium and Toxoplasma (oo)cysts in food. Therefore, no regulation exists regarding these biohazards. Nevertheless, considering their low infective dose, ingestion of foodstuffs contaminated by low quantities of these three parasites can lead to human infection. To evaluate the risk of protozoan parasites in food, efforts must be made towards exposure assessment to estimate the contamination along the food chain, from raw products to consumers. This requires determining: (i) the occurrence of infective protozoan (oo)cysts in foods, and (ii) the efficacy of control measures to eliminate this contamination. In order to conduct such assessments, methods for identification of viable (i.e. live) and infective parasites are required. This review describes the methods currently available to evaluate infectivity and viability of G. duodenalis cysts, Cryptosporidium spp. and T. gondii oocysts, and their potential for application in exposure assessment to determine the presence of the infective protozoa and/or to characterize the efficacy of control measures. Advantages and limits of each method are highlighted and an analytical strategy is proposed to assess exposure to these protozoa.
Collapse
Affiliation(s)
- Angélique Rousseau
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France - ACTALIA Food Safety Department, 310 Rue Popielujko, 50000 Saint-Lô, France - EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | | | - Aurélien Dumètre
- Aix Marseille Univ, IRD (Dakar, Marseille, Papeete), AP-HM, IHU-Méditerranée Infection, UMR Vecteurs - Infections Tropicales et Méditerranéennes (VITROME), Marseille, France
| | - Lucy J Robertson
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, PO Box 8146 Dep., 0033, Oslo, Norway
| | - Gilles Gargala
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Sandie Escotte-Binet
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Loïc Favennec
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Rouen, 76183 Rouen Cedex, France
| | - Isabelle Villena
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| | - Cédric Gérard
- Food Safety Microbiology, Nestlé Research Center, PO Box 44, CH-1000 Lausanne 26, Switzerland
| | - Dominique Aubert
- EA 3800, Protozooses transmises par l'alimentation, Laboratoire de Parasitologie Mycologie, Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096 Reims, France
| |
Collapse
|
11
|
Pecková R, Doležal K, Sak B, Květoňová D, Kváč M, Nurcahyo W, Foitová I. Effect of Piper betle on Giardia intestinalis infection in vivo. Exp Parasitol 2017; 184:39-45. [PMID: 29154846 DOI: 10.1016/j.exppara.2017.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/08/2017] [Accepted: 11/12/2017] [Indexed: 10/18/2022]
Abstract
Piper betle has been used as a medicinal plant in traditional medical systems throughout South and South East Asia. Experimental studies have revealed its wide and diverse biological and pharmacological effects. In this study, antigiardial activity of Piper betle was tested using experimental infections of Giardia intestinalis, the most common cause of protozoal diarrhoea worldwide, in Mongolian gerbils. Plants were extracted in water, methanol and methanol:tetrahydrofuran. Gerbils were treated for ten days intragastrically twice a day, with the dose of 40 mg of the extract per 100 g of body weight. Drug metronidazole was used as a negative control. Gerbils' faeces were taken every day and examined by flotation method, the number of shed cysts were counted using a haemocytometer. After gerbils' sacrifice and dissection, their duodena were then processed for examination using histological sectioning and scanning electron microscopy. The antigiardial activity was evaluated by the course of cyst shedding throughout the entire experiment. A significant decline in cyst shedding, evaluated by linear regression was found in gerbils treated with the aqueous extract. Our results indicate that the aqueous extract of P. betle shows giardicidal effects.
Collapse
Affiliation(s)
- Radka Pecková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Karel Doležal
- Department of Chemical Biology and Genetics & Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University and Institute of Experimental Botany, Academy of Sciences of Czech Republic, 78371, Olomouc-Holice, Czech Republic
| | - Bohumil Sak
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Dana Květoňová
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Martin Kváč
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences of the Czech Republic, v.v.i., Branišovská 31, 37005, České Budějovice, Czech Republic
| | - Wisnu Nurcahyo
- Department of Parasitology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Ivona Foitová
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| |
Collapse
|
12
|
Giardia Colonizes and Encysts in High-Density Foci in the Murine Small Intestine. mSphere 2017; 2:mSphere00343-16. [PMID: 28656177 PMCID: PMC5480036 DOI: 10.1128/msphere.00343-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Accepted: 04/21/2017] [Indexed: 01/28/2023] Open
Abstract
Giardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation. Giardia lamblia is a highly prevalent yet understudied protistan parasite causing significant diarrheal disease worldwide. Hosts ingest Giardia cysts from contaminated sources. In the gastrointestinal tract, cysts excyst to become motile trophozoites, colonizing and attaching to the gut epithelium. Trophozoites later differentiate into infectious cysts that are excreted and contaminate the environment. Due to the limited accessibility of the gut, the temporospatial dynamics of giardiasis in the host are largely inferred from laboratory culture and thus may not mirror Giardia physiology in the host. Here, we have developed bioluminescent imaging (BLI) to directly interrogate and quantify the in vivo temporospatial dynamics of Giardia infection, thereby providing an improved murine model to evaluate anti-Giardia drugs. Using BLI, we determined that parasites primarily colonize the proximal small intestine nonuniformly in high-density foci. By imaging encystation-specific bioreporters, we show that encystation initiates shortly after inoculation and continues throughout the duration of infection. Encystation also initiates in high-density foci in the proximal small intestine, and high density contributes to the initiation of encystation in laboratory culture. We suggest that these high-density in vivo foci of colonizing and encysting Giardia likely result in localized disruption to the epithelium. This more accurate visualization of giardiasis redefines the dynamics of the in vivo Giardia life cycle, paving the way for future mechanistic studies of density-dependent parasitic processes in the host. IMPORTANCEGiardia is a single-celled parasite causing significant diarrheal disease in several hundred million people worldwide. Due to limited access to the site of infection in the gastrointestinal tract, our understanding of the dynamics of Giardia infections in the host has remained limited and largely inferred from laboratory culture. To better understand Giardia physiology and colonization in the host, we developed imaging methods to quantify Giardia expressing bioluminescent physiological reporters in two relevant animal models. We discovered that parasites primarily colonize and encyst in the proximal small intestine in discrete, high-density foci. We also show that high parasite density contributes to encystation initiation.
Collapse
|
13
|
Emery SJ, Lacey E, Haynes PA. Quantitative proteomics in Giardia duodenalis —Achievements and challenges. Mol Biochem Parasitol 2016; 208:96-112. [DOI: 10.1016/j.molbiopara.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/13/2016] [Accepted: 07/16/2016] [Indexed: 12/31/2022]
|
14
|
Travaillé E, La Carbona S, Gargala G, Aubert D, Guyot K, Dumètre A, Villena I, Houssin M. Development of a qRT-PCR method to assess the viability of Giardia intestinalis cysts, Cryptosporidium spp. and Toxoplasma gondii oocysts. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
15
|
Reynoso-Robles R, Ponce-Macotela M, Rosas-López LE, Ramos-Morales A, Martínez–Gordillo MN, González-Maciel A. The invasive potential of Giardia intestinalis in an in vivo model. Sci Rep 2015; 5:15168. [PMID: 26470844 PMCID: PMC4607969 DOI: 10.1038/srep15168] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 09/18/2015] [Indexed: 12/02/2022] Open
Abstract
Giardiasis is a neglected parasitic disease that affects primarily children, in whom it delays physical and mental development. The pathophysiology of giardiasis in not well understood, and most reports have identified Giardia intestinalis trophozoites only in the lumen and on the brush border of the small intestine. We identified Giardia trophozoites within the epithelium of the small intestine of a lactose intolerance patient. The Giardia trophozoites were obtained and cultured in vitro. In addition, we demonstrated Giardia trophozoite invasion in an animal model. Giardia trophozoites invaded the intestinal mucosa and submucosa of infected gerbils. The invasive trophozoites were observed at 21, 30 and 60 days age, and the average numbers of invaded sites were 17 ± 5, 15 ± 4, and 9 ± 3, respectively. We found trophozoites between epithelial cells, at the base of empty goblet cells, in lacteal vessels and within the submucosa. The morphological integrity of the invasive trophozoites was demonstrated via electron microscopy. The analysis of the gerbils infected with the trophozoites of the WB reference strain did not show intraepithelial trophozoites. These results demonstrate another Giardia pathogenic mechanism, opening the door to numerous future studies.
Collapse
Affiliation(s)
- R. Reynoso-Robles
- Laboratorio de Morfologia Celular y Tisular (Laboratory of Cell and Tissue Morphology), Instituto Nacional de Pediatría (Mexican National Institute of Paediatrics), Insurgentes Sur No. 3700-C, Mexico, D. F. C. P. 04530, Mexico
| | - M. Ponce-Macotela
- Laboratorio de Parasitología Experimental (Laboratory of Experimental Parasitology), Instituto Nacional de Pediatría (Mexican National Institute of Paediatrics).
| | - L. E. Rosas-López
- Laboratorio de Morfologia Celular y Tisular (Laboratory of Cell and Tissue Morphology), Instituto Nacional de Pediatría (Mexican National Institute of Paediatrics), Insurgentes Sur No. 3700-C, Mexico, D. F. C. P. 04530, Mexico
| | - A. Ramos-Morales
- Laboratorio de Morfologia Celular y Tisular (Laboratory of Cell and Tissue Morphology), Instituto Nacional de Pediatría (Mexican National Institute of Paediatrics), Insurgentes Sur No. 3700-C, Mexico, D. F. C. P. 04530, Mexico
| | - M. N. Martínez–Gordillo
- Laboratorio de Parasitología Experimental (Laboratory of Experimental Parasitology), Instituto Nacional de Pediatría (Mexican National Institute of Paediatrics).
| | - A. González-Maciel
- Laboratorio de Morfologia Celular y Tisular (Laboratory of Cell and Tissue Morphology), Instituto Nacional de Pediatría (Mexican National Institute of Paediatrics), Insurgentes Sur No. 3700-C, Mexico, D. F. C. P. 04530, Mexico
| |
Collapse
|
16
|
Ethanol and isopropanol in concentrations present in hand sanitizers sharply reduce excystation of Giardia and Entamoeba and eliminate oral infectivity of Giardia cysts in gerbils. Antimicrob Agents Chemother 2015; 59:6749-54. [PMID: 26282413 DOI: 10.1128/aac.01290-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022] Open
Abstract
Enteric protozoan parasites, which are spread by the fecal-oral route, are important causes of diarrhea (Giardia duodenalis) and amebic dysentery (Entamoeba histolytica). Cyst walls of Giardia and Entamoeba have a single layer composed of fibrils of β-1,3-linked GalNAc and β-1,4-linked GlcNAc (chitin), respectively. The goal here was to determine whether hand sanitizers that contain ethanol or isopropanol as the active microbicide might reduce transmission of these parasites. We found that treatment with these alcohols with or without drying in a rotary evaporator (to model rapid evaporation of sanitizers on hands) kills 85 to 100% of cysts of G. duodenalis and 90 to 100% of cysts of Entamoeba invadens (a nonpathogenic model for E. histolytica), as shown by nuclear labeling with propidium iodide and failure to excyst in vitro. Alcohols with or without drying collapsed the cyst walls of Giardia but did not collapse the cyst walls of Entamoeba. To validate the in vitro results, we showed that treatment with alcohols eliminated oral infection of gerbils by 1,000 G. duodenalis cysts, while a commercial hand sanitizer (Purell) killed E. invadens cysts that were directly applied to the hands. These results suggest that expanded use of alcohol-based hand sanitizers might reduce the transmission of Giardia and Entamoeba.
Collapse
|
17
|
Shin GA, Linden KG. Reactivation of Giardia lamblia cysts after exposure to low-pressure UV irradiation. Can J Microbiol 2015; 61:513-6. [PMID: 25966744 DOI: 10.1139/cjm-2014-0844] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we determined the repair capabilities of Giardia lamblia cysts when they were exposed to low-pressure (LP) UV and then 4 different repair conditions. A UV collimated beam apparatus was used to expose shallow suspensions of G. lamblia cysts in buffered reagent water (PBS, pH 7.2) to various doses of LP UV irradiation. After UV irradiation, samples were exposed to 4 repair conditions (light and dark repair conditions with 2 temperatures (25 °C and 37 °C) for each condition). The inactivation of G. lamblia cysts by LP UV was very extensive (∼ 5 log10) even with a low dose of LP UV (1 mJ/cm(2)). More importantly, there was significant restoration of infectivity in G. lamblia cysts when they were exposed to a low dose of LP UV and then to all the repair conditions tested. Overall, the results of this study indicate that G. lamblia cysts do have the ability to repair their UV-damaged DNA when they are exposed to low doses of LP UV irradiation. This is the first study to report the presence of repair in UV-irradiated G. lamblia cysts.
Collapse
Affiliation(s)
- Gwy-Am Shin
- a Department of Environmental Engineering, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, South Korea, 443-749
| | - Karl G Linden
- b Civil, Environmental, and Architectural Engineering, University of Colorado at Boulder, 428 UCB, Boulder, CO 80309, USA
| |
Collapse
|
18
|
Busatti HGNO, Alves RJ, Santana-Anjos KG, Gil FF, Cury MC, Vannier-Santos MA, Gomes MA. Effects of metronidazole analogues on Giardia lamblia: experimental infection and cell organization. Diagn Microbiol Infect Dis 2013; 75:160-4. [PMID: 23331963 DOI: 10.1016/j.diagmicrobio.2012.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 10/29/2012] [Accepted: 11/03/2012] [Indexed: 11/18/2022]
Abstract
The chemotherapeutic agents used for the treatment of giardiasis are often associated with adverse side effects and are refractory cases, due to the development of resistant parasites. Therefore the search for new drugs is required. We have previously reported the giardicidal effects of metronidazole (MTZ) and its analogues (MTZ-Ms, MTZ-Br, MTZ-N(3), and MTZ-I) on the trophozoites of Giardia lamblia. Now we evaluated the activity of some giardicidal MTZ analogues in experimental infections in gerbils and its effects on the morphology and ultrastructural organization of Giardia. The giardicidal activity in experimental infections showed ED(50) values significantly lower for MTZ-I and MTZ-Br when compared to MTZ. Transmission electron microscopy was employed to approach the mechanism(s) of action of MTZ analogues upon the protozoan. MTZ analogues were more active than MTZ in changing significantly the morphology and ultrastructure of the parasite. The analogues affected parasite cell vesicle trafficking, autophagy, and triggered differentiation into cysts. These results coupled with the excellent giardicidal activity and lower toxicity demonstrate that these nitroimidazole derivates may be important therapeutic alternatives for combating giardiasis. In addition, our results suggest a therapeutic advantage in obtaining synthetic metronidazole analogues for screening of activities against other infectious agents.
Collapse
Affiliation(s)
- Haendel G N O Busatti
- Depto. Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
Hohweyer J, Dumètre A, Aubert D, Azas N, Villena I. Tools and methods for detecting and characterizing giardia, cryptosporidium, and toxoplasma parasites in marine mollusks. J Food Prot 2013; 76:1649-57. [PMID: 23992514 DOI: 10.4315/0362-028x.jfp-13-002] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Foodborne infections are of public health importance and deeply impact the global economy. Consumption of bivalve mollusks generates risk for humans because these filtering aquatic invertebrates often concentrate microbial pathogens from their environment. Among them, Giardia, Cryptosporidium, and Toxoplasma are major parasites of humans and animals that may retain their infectivity in raw or undercooked mollusks. This review aims to detail current and future tools and methods for ascertaining the load and potential infectivity of these parasites in marine bivalve mollusks, including sampling strategies, parasite extraction procedures, and their characterization by using microscopy and/or molecular techniques. Method standardization should lead to better risk assessment of mollusks as a source of these major environmental parasitic pathogens and to the development of safety regulations, similar to those existing for bacterial and viral pathogens encountered in the same mollusk species.
Collapse
Affiliation(s)
- Jeanne Hohweyer
- Université de Reims Champagne-Ardenne, Laboratoire de Parasitologie-Mycologie, EA 3800, Protozooses Transmises par l'Alimentation, Faculté de Médecine, SFR Cap-Santé Fed 4231, 51 Rue Cognacq-Jay, 51096 Reims, France
| | | | | | | | | |
Collapse
|
20
|
Ware MW, Keely SP, Villegas EN. Development and evaluation of an off-the-slide genotyping technique for identifying Giardia cysts and Cryptosporidium oocysts directly from US EPA Method 1623 slides. J Appl Microbiol 2013; 115:298-309. [PMID: 23594204 DOI: 10.1111/jam.12223] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 12/01/2022]
Abstract
AIMS This study developed and systematically evaluated performance and limit of detection of an off-the-slide genotyping procedure for both Cryptosporidium oocysts and Giardia cysts. METHODS AND RESULTS Slide standards containing flow-sorted (oo)cysts were used to evaluate the off-the-slide genotyping procedure by microscopy and PCR. Results show approximately 20% of cysts and oocysts are lost during staining. Although transfer efficiency from the slide to the PCR tube could not be determined by microscopy, it was observed that the transfer process aided in the physical lysis of the (oo)cysts likely releasing DNA. PCR detection rates for a single event on a slide were 44% for Giardia and 27% for Cryptosporidium, and a minimum of five cysts and 20 oocysts are required to achieve a 90% PCR detection rate. A Poisson distribution analysis estimated the relative PCR target densities and limits of detection, it showed that 18 Cryptosporidium and five Giardia replicates are required for a 95% probability of detecting a single (oo)cyst on a slide. CONCLUSIONS This study successfully developed and evaluated recovery rates and limits of detection of an off-the-slide genotyping procedure for both Cryptosporidium and Giardia (oo)cysts from the same slide. SIGNIFICANCE AND IMPACT OF THE STUDY This off-the-slide genotyping technique is a simple and low cost tool that expands the applications of US EPA Method 1623 results by identifying the genotypes and assemblages of the enumerated Cryptosporidium and Giardia. This additional information will be useful for microbial risk assessment models and watershed management decisions.
Collapse
Affiliation(s)
- M W Ware
- National Exposure Research Laboratory, US Environmental Protection Agency, Cincinnati, OH 45268, USA
| | | | | |
Collapse
|
21
|
Comparison of filters for concentrating microbial indicators and pathogens in lake water samples. Appl Environ Microbiol 2012; 79:1342-52. [PMID: 23263948 DOI: 10.1128/aem.03117-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial indicators are used to indicate increased health risk from pathogens and to make beach closure and advisory decisions; however, beaches are seldom monitored for the pathogens themselves. Studies of sources and types of pathogens at beaches are needed to improve estimates of swimming-associated health risks. It would be advantageous and cost-effective, especially for studies conducted on a regional scale, to use a method that can simultaneously filter and concentrate all classes of pathogens from the large volumes of water needed to detect pathogens. In seven recovery experiments, stock cultures of viruses and protozoa were seeded into 10-liter lake water samples, and concentrations of naturally occurring bacterial indicators were used to determine recoveries. For the five filtration methods tested, the highest median recoveries were as follows: glass wool for adenovirus (4.7%); NanoCeram for enterovirus (14.5%) and MS2 coliphage (84%); continuous-flow centrifugation (CFC) plus Virocap (CFC+ViroCap) for Escherichia coli (68.3%) and Cryptosporidium (54%); automatic ultrafiltration (UF) for norovirus GII (2.4%); and dead-end UF for Enterococcus faecalis (80.5%), avian influenza virus (0.02%), and Giardia (57%). In evaluating filter performance in terms of both recovery and variability, the automatic UF resulted in the highest recovery while maintaining low variability for all nine microorganisms. The automatic UF was used to demonstrate that filtration can be scaled up to field deployment and the collection of 200-liter lake water samples.
Collapse
|
22
|
Kothavade RJ. Potential molecular tools for assessing the public health risk associated with waterborne Cryptosporidium oocysts. J Med Microbiol 2012; 61:1039-1051. [DOI: 10.1099/jmm.0.043158-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
23
|
Gomes MA, de Oliveira DR, de Freitas SE, de Pinho Viana M, Borges EL. Effect of giardiasis combined with low-protein diet on intestinal absorption of glucose and electrolytes in gerbils. Exp Parasitol 2012; 131:448-51. [PMID: 22659230 DOI: 10.1016/j.exppara.2012.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/04/2012] [Accepted: 04/30/2012] [Indexed: 12/12/2022]
Abstract
Studies have shown that symptomatic infection by Giardia lamblia causes acute or chronic diarrhea, dehydration, abdominal pain and malabsorption, leading to undernutrition and weight loss. The aim of the present study was to evaluate the effects of giardiasis and its combination with a low-protein diet on the intestinal absorption of glucose and electrolytes in gerbils. The intestinal absorption of glucose, sodium and potassium was investigated in male gerbils weighing 46-64 g (n≥5). A Tyrode solution containing twice the glucose, sodium and potassium concentration (pH 7.4) was infused through the intestinal loops for 40 min. Glucose absorption was not significantly affected by diet and infection. However, there was a significant increase in sodium absorption in the Giardia-infected group (57.2±6.1, p<0.05) in comparison to the control, low-protein diet and low-protein diet+Giardia-infected groups (8.9±6.5, 2.8±11.1 and 0.8±7.9, respectively; p<0.05). Moreover, potassium was absorbed in the Giardia-infected group (0.45±0.30), while the other groups exhibited potassium secretion. A low-protein diet and Giardia infection had no influence over glucose absorption. However, Giardia infection increased sodium and potassium uptake, suggesting a compensatory mechanism for maintaining homeostasis after likely hypernatremia and hypokalemia caused by the diarrhea that accompanies giardiasis.
Collapse
Affiliation(s)
- Maria Aparecida Gomes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | | | | |
Collapse
|
24
|
Shin G, Linden K, Faubert G. Reactivation of Giardia lamblia cysts after exposure to polychromatic UV light. Lett Appl Microbiol 2010; 51:395-9. [DOI: 10.1111/j.1472-765x.2010.02908.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
25
|
Giardia taxonomy, phylogeny and epidemiology: Facts and open questions. Int J Hyg Environ Health 2010; 213:321-33. [DOI: 10.1016/j.ijheh.2010.06.005] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 05/25/2010] [Accepted: 06/02/2010] [Indexed: 11/18/2022]
|
26
|
Amorim R, Silva D, Taketomi E, Morato M, Mundim M, Ribeiro D, Oliveira T, Viana J, Gomes M, Cury M. Giardia duodenalis: Kinetics of cyst elimination and the systemic humoral and intestinal secretory immune responses in gerbils (Meriones unguiculatus) experimentally infected. Exp Parasitol 2010; 125:297-303. [DOI: 10.1016/j.exppara.2010.02.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Revised: 01/05/2010] [Accepted: 02/08/2010] [Indexed: 10/19/2022]
|
27
|
Abstract
A World Association for the Advancement of Veterinary Parasitology tradition for its conference is to present some highlights of the country hosting the event, and with an emphasis on the history of, and research in, veterinary parasitology. A review of Canada's peoples, physiography, climate, natural resources, agriculture, animal populations, pioneers in veterinary parasitology, research accomplishments by other veterinary parasitologists, centres for research in veterinary parasitology, and major current research had been presented at a World Association for the Advancement of Veterinary Parasitology Conference in Canada in 1987, and was published. The present paper updates the information on the above topics for the 22 years since this conference was last held in Canada.
Collapse
|
28
|
Synergistic Effect of Febantel and Pyrantel Embonate in Elimination of Giardia in a Gerbil Model. Parasitol Res 2009; 105 Suppl 1:S135-40. [DOI: 10.1007/s00436-009-1504-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Shin GA, Linden KG, Faubert G. Inactivation of Giardia lamblia cysts by polychromatic UV. Lett Appl Microbiol 2009; 48:790-2. [PMID: 19413808 DOI: 10.1111/j.1472-765x.2009.02597.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Giardia lamblia is one of the most important waterborne pathogens in the world. In this study, we determined the effectiveness of a promising alternative UV technology - a polychromatic emission from a medium-pressure (MP) UV lamp - against G. lamblia cysts in phosphate buffered saline (PBS) and a filtered drinking water. METHODS AND RESULTS A UV collimated beam apparatus was used to expose shallow suspensions of purified G. lamblia cysts in PBS or a filtered drinking water and the UV-irradiated G. lamblia cysts were assayed in Mongolian gerbils. The inactivation of G. lamblia cysts was very rapid and reached a detection limit of >3 log(10) within a UV dose of 1 mJ cm(-2). CONCLUSION The results of this study indicate that MP UV irradiation is very effective against G. lamblia cysts in both PBS and a filtered drinking water. SIGNIFICANCE AND IMPACT OF THE STUDY It is likely that contamination of drinking water by G. lamblia cysts can be readily controlled by typical MP UV disinfection practises.
Collapse
Affiliation(s)
- G-A Shin
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98105, USA.
| | | | | |
Collapse
|
30
|
Giardia duodenalis: Pathological alterations in gerbils, Meriones unguiculatus, infected with different dosages of trophozoites. Exp Parasitol 2008; 118:449-57. [DOI: 10.1016/j.exppara.2007.10.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2007] [Revised: 09/18/2007] [Accepted: 10/08/2007] [Indexed: 11/18/2022]
|
31
|
Hernández-Sánchez J, Liñan RF, Salinas-Tobón MDR, Ortega-Pierres G. Giardia duodenalis: adhesion-deficient clones have reduced ability to establish infection in Mongolian gerbils. Exp Parasitol 2008; 119:364-72. [PMID: 18456259 DOI: 10.1016/j.exppara.2008.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2007] [Revised: 03/20/2008] [Accepted: 03/22/2008] [Indexed: 11/15/2022]
Abstract
The role of Giardia duodenalis surface molecules in the attachment of trophozoites to epithelial cells has been established through the dual strategies of characterizing G. duodenalis clones with deficient adhesion and blocking experiments with surface-specific monoclonal antibodies. Also, the infectivity of the analyzed clones was tested using Mongolian gerbils as experimental model. Two adhesion-deficient G. duodenalis clones, C6 and C7, were isolated from the wild type C5 clone which in turn was obtained from the WB strain. The adhesion efficiencies of C6 and C7 clones (48.2+/-4.9 and 32.6+/-2.4, respectively) were significantly lower as compared with WB strain or C5 clone (82.8+/-6.4 and 79.9+/-7.9). Analysis of radiolabel surface proteins by 1D and 2D SDS-PAGE revealed prominently labelled 28 and 88 kDa components in C6 and C7 clones and a major 200 kDa protein in the C5 clone and the WB strain. The 88 and 200 kDa components are acidic proteins by two-dimensional electrophoretic analyses. The most striking difference between wild-type and adhesion-deficient Giardia trophozoites was the reduced expression of a 200 kDa surface protein in the latter. Significantly, a mAb (IG3) specific for the 200 kDa protein that reacted with more than 99% of WB and C5 trophozoites and less than 1% of C6 and C7 trophozoites as determined by indirect immunofluorescence inhibited the adhesion of trophozoites from WB and C5 clone to Madin Darby Canine Kidney cells by 52% and 40.9%, respectively, suggesting a participation of this antigen in adherence. Finally, the functional relevance of trophozoite adhesion to epithelial cells was indicated by the reduced capacity of the adhesion-deficient clones to establish the infection in Mongolian gerbils.
Collapse
Affiliation(s)
- Javier Hernández-Sánchez
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico, DF, Mexico
| | | | | | | |
Collapse
|
32
|
Li D, Craik SA, Smith DW, Belosevic M. Comparison of levels of inactivation of two isolates of Giardia lamblia cysts by UV light. Appl Environ Microbiol 2007; 73:2218-23. [PMID: 17277216 PMCID: PMC1855674 DOI: 10.1128/aem.02024-06] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Accepted: 01/21/2007] [Indexed: 11/20/2022] Open
Abstract
The effects of 254-nm UV irradiation on two human isolates (WB and H3) of Giardia lamblia cysts were assessed using a collimated beam protocol and a Mongolian gerbil model. The levels of infection of cysts in the gerbils were assessed based on the presence of cysts in feces and the presence and activity of trophozoites in the small intestine of inoculated gerbils. The results suggest that there were differences in the infectivities of the WB and H3 isolates, as well as in susceptibilities of the parasites to UV light. Without UV exposure, gerbils were more readily infected by isolate H3 cysts. After UV exposure of the cysts, however, the gerbils were more susceptible to isolate WB cysts.
Collapse
Affiliation(s)
- Dong Li
- Department of Civil and Environmental Engineering, 3-133 Markin/CNRL Natural Resources Engineering Facility, University of Alberta, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
33
|
Velazquez C, Beltran M, Ontiveros N, Rascon L, Figueroa DC, Granados AJ, Hernandez-Martinez J, Hernandez J, Astiazaran-Garcia H. Giardia lamblia infection induces different secretory and systemic antibody responses in mice. Parasite Immunol 2005; 27:351-6. [PMID: 16149993 DOI: 10.1111/j.1365-3024.2005.00793.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The adult mouse model of Giardia lamblia infection serves as an excellent animal model to understand the immunological mechanisms involved in the control and clearance of Giardia infection. Little is known about the G. lamblia-specific antigens that stimulate the humoral immune response in this model of giardiasis. We analysed the secretory and systemic antibody responses to G. lamblia during primary and secondary infection in C3H/HeJ adult mice. Faecal IgA and Serum IgG anti-G. lamblia antibodies were observed at week 2 post-infection. Serum IgG responses remained constant over the next several weeks, whereas faecal IgA titres continued to rise from weeks 2-6 post-infection. Western blot analysis revealed that intestinal IgA and serum IgG antibody responses were directed toward several distinct proteins of G. lamblia. Certain proteins appeared to be recognized by both faecal IgA and serum IgG, whereas other antigens were specific for either the secretory or systemic antibody responses. G. lamblia primary and secondary infections were associated with differences in the antibody recognition pattern. The biochemical and immunological characterization of these antigens will help us to better understand the immunobiology of the G. lamblia-host interaction.
Collapse
Affiliation(s)
- C Velazquez
- Department of Chemistry-Biology, University of Sonora, Hermosillo, Sonora, México.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ropolo AS, Saura A, Carranza PG, Lujan HD. Identification of variant-specific surface proteins in Giardia muris trophozoites. Infect Immun 2005; 73:5208-11. [PMID: 16041041 PMCID: PMC1201240 DOI: 10.1128/iai.73.8.5208-5211.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Giardia lamblia undergoes antigenic variation, a process that might allow the parasite to evade the host's immune response and adapt to different environments. Here we show that Giardia muris, a related species that naturally infects rodents, possesses multiple variant-specific surface proteins (VSPs) and expresses VSPs on its surface, suggesting that it undergoes antigenic variation similar to that of G. lamblia.
Collapse
Affiliation(s)
- Andrea S Ropolo
- Cátedra de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Nacional de Córdoba, Haya de la Torre S/N, Pabellón Argentina 2do piso, Ciudad Universitaria, CP 5000 Córdoba, Argentina
| | | | | | | |
Collapse
|
35
|
Abstract
Giardiasis is now known to occur not only endemically, but also as an epidemic disease spread primarily via drinking water. Giardia from different animals, although morphologically indistinguishable, vary in host specificity. This raises the possibility that lower animals may harbour representatives of this genus which are transmissible to humans. In this article, Ernest Meyer discusses our present understanding of the epidemiology of Giardia, related to problems of speciation in this genus.
Collapse
Affiliation(s)
- E A Meyer
- Department of Microbiology and Immunology, The Oregon Health Sciences University, 3181 S.W. Sam Jackson Park Road, Portland, Oregon 97201, USA
| |
Collapse
|
36
|
Humen MA, De Antoni GL, Benyacoub J, Costas ME, Cardozo MI, Kozubsky L, Saudan KY, Boenzli-Bruand A, Blum S, Schiffrin EJ, Pérez PF. Lactobacillus johnsonii La1 antagonizes Giardia intestinalis in vivo. Infect Immun 2005; 73:1265-9. [PMID: 15664978 PMCID: PMC547090 DOI: 10.1128/iai.73.2.1265-1269.2005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This study describes the in vivo activity of Lactobacillus johnsonii La1 (NCC533) in Giardia intestinalis-infected gerbils (Meriones unguiculatus). Daily administration of lactobacilli in the drinking water from 7 days before inoculation with Giardia trophozoites efficiently prevented G. intestinalis strain WB clone C6 from infecting gerbils. More specifically, shedding of fecal Giardia antigens (GSA65 protein) was diminished in the La1-treated group, and resolution of infection was observed by 21 days postinoculation. Histology and analysis of enzymatic markers of microvillus membrane integrity revealed that probiotic administration also protected against parasite-induced mucosal damage. In addition, a cellular response to Giardia antigens was stimulated in spleen cells from La1-treated gerbils. Results show for the first time the antigiardial effect of probiotic lactobacilli in vivo and provide further insight into the antagonistic properties of lactic acid bacteria against protozoa involved in intestinal infections.
Collapse
Affiliation(s)
- Martín A Humen
- CIDCA, Universidad Nacional de La Plata, Calle 47 y 116 (CC 553), 1900 La Plata, Argentina.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
von Allmen N, Bienz M, Hemphill A, Müller N. Experimental infections of neonatal mice with cysts of Giardia lamblia clone GS/M-83-H7 are associated with an antigenic reset of the parasite. Infect Immun 2004; 72:4763-71. [PMID: 15271938 PMCID: PMC470631 DOI: 10.1128/iai.72.8.4763-4771.2004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transmission of the protozoan parasite Giardia lamblia from one to another host individuum occurs through peroral ingestion of cysts which, following excystation in the small intestine, release two trophozoites each. Many studies have focused on the major surface antigen, VSP (for variant surface protein), which is responsible for the antigenic variability of the parasite. By using trophozoites of G. lamblia clone GS/M-83-H7 (expressing VSP H7) and the neonatal mouse model for experimental infections, we quantitatively assessed the process of antigenic variation of the parasite on the transcriptional level. In the present study, variant-specific regions identified on different GS/M-83-H7 vsp sequences served as targets for quantitative reverse transcription-PCR to monitor alterations in vsp mRNA levels during infection. Respective results demonstrated that antigenic switching of both the duodenal trophozoite and the cecal cyst populations was associated with a massive reduction in vsp H7 mRNA levels but not with a simultaneous increase in transcripts of any of the subvariant vsp genes analyzed. Most importantly, we also explored giardial variant-type formation and vsp mRNA levels after infection of mice with cysts. This infection mode led to an antigenic reset of the parasite in that a VSP H7-negative inoculum "converted" into a population of intestinal trophozoites that essentially consisted of the original VSP H7 type. This antigenic reset appears to be associated with excystation rather than with a selective process which favors expansion of a residual population of VSP H7 types within the antigenically diversified cyst inoculum. Based on these findings, the VSP H7 type has to be regarded as a predominant variant of G. lamblia clone GS/M-83-H7 which (re-)emerges during early-stage infection and may contribute to an optimal establishment of the parasite within the intestine of the experimental murine host.
Collapse
Affiliation(s)
- N von Allmen
- Institute of Parasitology, CH-3001 Berne, Switzerland
| | | | | | | |
Collapse
|
38
|
McDonnell PA, Scott KGE, Teoh DA, Olson ME, Upcroft JA, Upcroft P, Buret AG. Giardia duodenalis trophozoites isolated from a parrot (Cacatua galerita) colonize the small intestinal tracts of domestic kittens and lambs. Vet Parasitol 2003; 111:31-46. [PMID: 12523977 DOI: 10.1016/s0304-4017(02)00349-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This study examines the ability of Giardia duodenalis trophozoites, isolated from a wild bird, to colonize the intestinal tracts of companion animals (kittens) and domestic ruminants (lambs). Trophozoites colonized the intestinal tracts of intraduodenally inoculated animals as demonstrated by increasing parasite burdens within the duodenum and jejunum and by fecal passage of cysts within 4 days post-inoculation. The pathogenesis of the trophozoites was further investigated in kittens. In these animals, infection significantly reduced jejunal brush border microvillous length and density, which resulted in a loss of overall epithelial brush border surface area. This injury was associated with the production of diarrhea in four of five infected kittens. These findings indicate that some bird species may carry G. duodenalis that represent a possible health threat to companion animals and livestock. Our results describe the first successful colonization of avian-derived G. duodenalis trophozoites in the small intestines of domestic kittens and lambs.
Collapse
Affiliation(s)
- P A McDonnell
- School of Biomolecular and Biomedical Science, Faculty of Science, Griffith University, Kessels Road, Nathan 4111, Qld, Australia.
| | | | | | | | | | | | | |
Collapse
|
39
|
Duque-Beltrán S, Nicholls-Orejuela RS, Arévalo-Jamaica A, Guerrero-Lozano R, Montenegro S, James MA. Detection of Giardia duodenalis antigen in human fecal eluates by enzyme-linked immunosorbent assay using polyclonal antibodies. Mem Inst Oswaldo Cruz 2002; 97:1165-8. [PMID: 12563485 DOI: 10.1590/s0074-02762002000800018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The present study developed and standardized an enzime-linked immunosorbent assay (ELISA) to detect Giardia antigen in feces using rabbit polyclonal antibodies. Giardia cysts were purified from human fecal samples by sucrose and percoll gradients. Gerbils (Meriones unguiculatus) were infected to obtain trophozoites. Rabbits were inoculated with either cyst or trophozoite antigens of 14 Colombian Giardia isolates to develop antibodies against the respective stages. The IgG anti-Giardia were purified by sequential caprylic acid and ammonium sulfate precipitation. A portion of these polyclonal antibodies was linked to alkaline phosphatase (conjugate). One hundred and ninety six samples of human feces, from different patients, were tested by parasitologic diagnosis: 69 were positive for Giardia cysts, 56 had no Giardia parasites, and 71 revealed parasites other than Giardia. The optimal concentration of polyclonal antibodies for antigen capture was 40 g/ml and the optimal conjugate dilution was 1:100. The absorbance cut-off value was 0.24. The parameters of the ELISA test for Giardia antigen detection were: sensitivity, 100% (95% CI: 93.4-100%); specificity, 95% (95% CI: 88.6-97.6%); positive predictive value, 91% (95% CI: 81.4-95.9%); and negative predictive value, 100% (95% CI: 96.1-100%). This ELISA will improve the diagnosis of Giardia infections in Colombia and will be useful in following patients after treatment.
Collapse
Affiliation(s)
- Sofía Duque-Beltrán
- Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia
| | | | | | | | | | | |
Collapse
|
40
|
Linden KG, Shin GA, Faubert G, Cairns W, Sobsey MD. UV disinfection of Giardia lamblia cysts in water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2002; 36:2519-2522. [PMID: 12075814 DOI: 10.1021/es0113403] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The human and animal pathogen Giardia lamblia is a waterborne risk to public health because the cysts are ubiquitous and persistent in water and wastewater, not completely removed by physical-chemical treatment processes, and relatively resistant to chemical disinfection. Given the recently recognized efficacy of UV irradiation against Cryptosporidium parvum oocysts, the inactivation of G. lamblia cysts in buffered saline water at pH 7.3 and room temperature by near monochromatic (254 nm) UV irradiation from low-pressure mercury vapor lamps was determined using a "collimated beam" exposure system. Reduction of G. lamblia infectivity for gerbils was very rapid and extensive, reaching a detection limit of >4 log within a dose of 10 JM-2. The ability of UV-irradiated G. lamblia cysts to repair UV-induced damage following typical drinking water and wastewater doses of 160 and 400 JM(-2) was also investigated using experimental protocols typical for bacterial and eucaryotic DNA repair under both light and dark conditions. The infectivity reduction of G. lamblia cysts at these UV doses remained unchanged after exposure to repair conditions. Therefore, no phenotypic evidence of either light or dark repair of DNA damage caused by LP UV irradiation of cysts was observed at the UV doses tested. We conclude that UV disinfection at practical doses achieves appreciable (much greater than 4 log) inactivation of G. lamblia cysts in water with no evidence of DNA repair leading to infectivity reactivation.
Collapse
Affiliation(s)
- Karl G Linden
- Department of Civil and Environmental Engineering, Duke University, Durham, North Carolina 27708, USA.
| | | | | | | | | |
Collapse
|
41
|
Mofidi AA, Meyer EA, Wallis PM, Chou CI, Meyer BP, Ramalingam S, Coffey BM. The effect of UV light on the inactivation of Giardia lamblia and Giardia muris cysts as determined by animal infectivity assay (P-2951-01). WATER RESEARCH 2002; 36:2098-2108. [PMID: 12092585 DOI: 10.1016/s0043-1354(01)00412-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study measured the effect of germicidal ultraviolet (UV) light on Giardia lamblia and Giardia muris cysts, as determined by their infectivity in Mongolian gerbils and CD-1 mice, respectively. Reduction of cyst infectivity due to UV exposure was quantified by applying most probable number techniques. Controlled bench-scale, collimated-beam tests exposed cysts suspended in filtered natural water to light from a low-pressure UV lamp. Both G. lamblia and G. muris cysts showed similar sensitivity to UV light. At 3 mJ/cm2, a dose 10-fold lower than what large-scale UV reactors may be designed to provide, > 2-log10 (99 percent) inactivation was observed. These results, combined with previously published data showing other protozoa and bacteria have similar, high sensitivity to UV light, establish that UV disinfection of drinking water is controlled by viruses which may require over 10-fold more UV dose for the same level of control.
Collapse
Affiliation(s)
- Alexander A Mofidi
- Water Quality, Metropolitan Water District of Southern California, La Verne 91750-3399, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Campbell AT, Wallis P. The effect of UV irradiation on human-derived Giardia lamblia cysts. WATER RESEARCH 2002; 36:963-969. [PMID: 11848367 DOI: 10.1016/s0043-1354(01)00309-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The effect of UV irradiation on human-derived Giardia lamblia cysts (WB isolate, cultivated using the gerbil model, and purified to homogeneity) was assessed using a 254nm collimated beam protocol. The infection kinetics of UV-exposed cysts were directly compared to the infection kinetics of control (non-UV-exposed) cysts. This demonstrated that a UV dose at 254 nm resulted in significant inactivation of the Giardia cysts. Up to 2 log (99%) inactivation was observed at a UV dose of approximately 10 mJ cm(-2) (range 9.3-11.7 mJ cm(-2)). Higher UV doses (between 20 and 40 mJ cm(-2)) resulted in up to 3 log (99.9%) inactivation of the cysts. The actual inactivation at these dose levels could be higher, but for this study the maximum quantifiable limit of cyst inactivation was up to 3 logs (99.9%). Chemical actinometry using the Rahn potassium iodide actinometer was used to confirm the UV dose delivered. No correlation between a PI/DAPI vital dye viability assay and the infectious dose assay was observed. The vital dye viability assay demonstrated no inactivation. Future work using an alternative UV delivery systems including a demonstration-scale device is recommended and more work with a variety of isolates is warranted.
Collapse
|
43
|
Teoh DA, Kamieniecki D, Pang G, Buret AG. Giardia lamblia rearranges F-actin and alpha-actinin in human colonic and duodenal monolayers and reduces transepithelial electrical resistance. J Parasitol 2000; 86:800-6. [PMID: 10958459 DOI: 10.1645/0022-3395(2000)086[0800:glrfaa]2.0.co;2] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanisms of epithelial injury in giardiasis remain unknown. The effects of live Giardia lamblia on cellular G-actin, F-actin, alpha-actinin, and electrical resistance of human intestinal epithelial monolayers were investigated using SCBN and Caco2 cell lines grown on chamber slides or Transwell filter membranes. In separate experiments, some monolayers were also exposed to sonicated trophozoites, some to supernatant from live G. lamblia cultures, and some with or without the Ca2+ channel blocker verapamil. After 2, 24, or 48 hr of coincubation with G. lamblia, monolayers were assessed for cytoskeletal arrangement under fluorescence and confocal laser microscopy, and transepithelial electrical resistance was measured. Exposure to live G. lamblia trophozoites induced localized condensation of F-actin and loss of perijunctional alpha-actinin while G-actin remained unchanged. Confocal laser microscopy indicated that F-actin rearrangement was not affected by verapamil and was localized within the terminal web area. Coincubation of monolayers with G. lamblia lysates or with spent medium alone similarly rearranged F-actin. Verapamil alone did not alter F-actin. Electrical resistance of SCBN and Caco2 monolayers exposed to G. lamblia was significantly decreased versus controls regardless of whether live or lysed trophozoite samples were used. The results indicate that G. lamblia-induced epithelial injury is associated with F-actin and alpha-actinin rearrangements in the terminal web area via mechanisms independent of extracellular Ca2+. These alterations are associated with reduced transepithelial electrical resistance and are due at least in part to trophozoite products.
Collapse
Affiliation(s)
- D A Teoh
- Department of Biological Sciences, University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
44
|
Astiazarán-García H, Espinosa-Cantellano M, Castañón G, Chávez-Munguía B, Martínez-Palomo A. Giardia lamblia: effect of infection with symptomatic and asymptomatic isolates on the growth of gerbils (Meriones unguiculatus). Exp Parasitol 2000; 95:128-35. [PMID: 10910714 DOI: 10.1006/expr.2000.4514] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gerbils (Meriones unguiculatus) were intragastrically inoculated with axenic Giardia lamblia cultures from symptomatic and asymptomatic children. All isolates were able to colonize the duodenum. However, the colonization capacity of the symptomatic isolates was significantly higher compared to that of the asymptomatic ones. Despite the different colonization capacity of the isolates, the growth curves of infected animals were significantly lower than those of controls. The study demonstrates that acute giardia infections are capable of altering the corporal development of the host. These results may suggest that not only symptomatic, but also asymptomatic giardiasis in children, often unnoticed by parents and clinicians, could be causing a silent detriment in their nutritional status.
Collapse
Affiliation(s)
- H Astiazarán-García
- Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del I. P. N., Av. I. P. N. 2508, Zacatenco, Mexico, D.F, C. P. 07360, Mexico
| | | | | | | | | |
Collapse
|
45
|
Abstract
The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquitous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen.
Collapse
|
46
|
Geoffroy MC, Guyard C, Quatannens B, Pavan S, Lange M, Mercenier A. Use of green fluorescent protein to tag lactic acid bacterium strains under development as live vaccine vectors. Appl Environ Microbiol 2000; 66:383-91. [PMID: 10618252 PMCID: PMC91834 DOI: 10.1128/aem.66.1.383-391.2000] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1999] [Accepted: 10/26/1999] [Indexed: 11/20/2022] Open
Abstract
The lactic acid bacteria (LAB) are safe microorganisms which are mainly used for the preparation of fermented foods and for probiotic applications. The potential of LAB as live vehicles for the production and delivery of therapeutic molecules such as antigens is also being actively investigated today. However, very little is known about the fate of live LAB when administered in vivo and about the interaction of these microorganisms with the nasal or gastrointestinal ecosystem. For future applications, it is essential to be able to discriminate the biotherapeutic strain from the endogenous microflora and to unravel the mechanisms underlying the postulated health-beneficial effect. We therefore started to investigate both aspects in a mouse model with two LAB species presently under development as live vaccine vectors, i.e., Lactococcus lactis and Lactobacillus plantarum. We have constructed different expression vectors carrying the gfp (green fluorescent protein [GFP]) gene from the jellyfish Aequoria victoria, and we found that this visible marker was best expressed when placed under the control of the inducible strong nisA promoter from L. lactis. Notably, a threshold amount of GFP was necessary to obtain a bright fluorescent phenotype. We further demonstrated that fluorescent L. plantarum NCIMB8826 can be enumerated and sorted by flow cytometry. Moreover, tagging of this strain with GFP allowed us to visualize its phagocytosis by macrophages in vitro and ex vivo and to trace it in the gastrointestinal tract of mice upon oral administration.
Collapse
Affiliation(s)
- M C Geoffroy
- Département de Microbiologie des Ecosystèmes, Institut Pasteur de Lille, Lille Cedex 59019, France
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The intestinal protozoan Giardia duodenalis is a widespread opportunistic parasite of humans and animals. This parasite inhabits the upper part of the small intestine and has a direct life cycle. After ingestion of cysts, which are the infective stage, the trophozoites emerge from the cysts in the duodenum and attach to the small intestinal mucosa of the host. Since the migration of trophozoites from the lumen of the intestine into surrounding tissues is an unusual occurrence, the immune response to Giardia remains localized. The identification of antigens that play a role in acquired immunity has been difficult because of the occurrence of antigenic variation and because, Giardia being an ubiquitous organism, it is possible that the antigenic profiles of isolates from different geographic areas will vary. Innate-immunity mechanisms play a role in the control and/or severity of the infection. Both humoral and cell-mediated immune responses play a role in acquired immunity, but the mechanisms involved are unknown. A variety of serological assays have been used to detect circulating antibodies in serum. Because of the biological characteristics of the parasite and the lack of suitable antigens, the sensitivity of serological assays remains poor. On the other hand, detection of antigens in feces of infected patients has met with success. Commercial kits are available, and they are reported to be more sensitive than microscopic examination for the detection of giardiasis on a single specimen.
Collapse
Affiliation(s)
- G Faubert
- Institute of Parasitology, Macdonald Campus of McGill University, Ste. Anne-de-Bellevue, Qu¿ebec, Canada H9X 3V9.
| |
Collapse
|
48
|
Neumann NF, Gyürek LL, Gammie L, Finch GR, Belosevic M. Comparison of animal infectivity and nucleic acid staining for assessment of Cryptosporidium parvum viability in water. Appl Environ Microbiol 2000; 66:406-12. [PMID: 10618255 PMCID: PMC91837 DOI: 10.1128/aem.66.1.406-412.2000] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptosporidium parvum oocysts were stained with the fluorogenic dyes SYTO-9 and SYTO-59 and sorted by flow cytometry in order to determine whether the fluorescent staining intensity correlated with the ability of oocysts to infect neonatal CD-1 mice. Oocysts that did not fluoresce or that displayed weak fluorescent intensity when stained with SYTO-9 or SYTO-59 readily established infections in mice, whereas those oocysts that fluoresced brightly did not. Although fluorescent staining profiles varied among different batches of oocysts, a relative cutoff in fluorescent staining intensity that correlated with animal infectivity was observed for all batches.
Collapse
Affiliation(s)
- N F Neumann
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | | | | | |
Collapse
|
49
|
Nash TE. Antigenic variation in Giardia lamblia and the host's immune response. Philos Trans R Soc Lond B Biol Sci 1997; 352:1369-75. [PMID: 9355129 PMCID: PMC1692022 DOI: 10.1098/rstb.1997.0122] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Giardia lamblia, a protozoan parasite of the small intestine of humans and other animals, undergoes surface antigenic variation. The antigens involved belong to a family of variant-specific surface proteins (VSPs), which are unique, cysteine-rich zinc finger proteins. The patterns of infection in humans and animals fail to show the expected cyclical waves of increasing and decreasing numbers of parasites expressing unique VSPs. Nevertheless, changes in VSP expression occur within the population in vivo owing to selection of VSPs by both immune and non-immune mechanisms. After inoculation of a single G. lamblia clone (able to persist in the absence of immune pressure) expressing one VSP (> or = 90%) into mice or humans, the original VSP continues to be expressed until 2 weeks post inoculation (p.i.), when many other VSPs gradually replace it. Selection by immune-mediated processes is suggested because switching occurs at the same time that humoral responses are first detected. In most mouse strains, switching also occurs at about two weeks. Almost all trophozoites are eliminated at three weeks (p.i.), but a barely detectable infection persists over months. In neonatal mice, apparent self-cure is delayed until the sixth or seventh week. Antigenic switching does not occur in adult or neonatal severe combined immunodeficiency disease (SCID) mice, but does occur in neonatal nude mice, thus implicating B-cell-mediated mechanisms in immune switching. Not all VSPs are expressed to the same degree in vivo. Some VSPs appear to be preferentially selected whereas others are eliminated on a non-immune basis. In infections in which immunity does not play a role, such as in SCID mice, and during the first week of infection in immunocompetent mice or gerbils, persisting VSPs are preferentially expressed and maintained whereas non-persisting VSPs are replaced within the first week of infection. The purpose of antigenic variation may be presentation of a wide assortment of VSPs to hosts, increasing the chance of a successful initial infection or reinfection. Immune selection of variants comes into play following biological selection.
Collapse
Affiliation(s)
- T E Nash
- Laboratory of Parasitic Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
50
|
Belosevic M, Guy RA, Taghi-Kilani R, Neumann NF, Gyürék LL, Liyanage LR, Millard PJ, Finch GR. Nucleic acid stains as indicators of Cryptosporidium parvum oocyst viability. Int J Parasitol 1997; 27:787-98. [PMID: 9279581 DOI: 10.1016/s0020-7519(97)00033-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We developed nucleic acid dye staining methodology for untreated, heat-treated and chemically inactivated C. parvum oocysts. The nucleic acid staining was compared to in vitro excystation and animal infectivity using split samples of oocysts. Among the nucleic acid stains tested, SYTO-9, hexidium and SYTO-59 stained the oocysts consistently, and the staining was related to the infectivity of the oocysts to neonatal CD-1 mice but not to in vitro excystation. The nucleic acid viability assay was used to determine log-inactivations of the oocysts after treatment with ozone, chlorine, chlorine dioxide and combinations of different chemical disinfectants, and was found to indicate log-inactivation levels similar to that of animal infectivity. A combined immunofluorescence-nucleic acid staining assay was developed for the oocysts of C. parvum and this assay will be invaluable for the detection and viability of oocysts in the laboratory and in environmental samples.
Collapse
Affiliation(s)
- M Belosevic
- Department of Biological Sciences, University of Alberta, Edmonton, Canada.
| | | | | | | | | | | | | | | |
Collapse
|