1
|
Jangiam W, Swangpun K, Iamsirithaworn S, Piriyasatit S, Bhukdee D. Relative vaccine effectiveness of ChAdOx1/AZD1222 vaccines as booster dose via intradermal injection with a one-fifth dose compared with the intramuscular injection in the prevention of SAR-CoV-2 infections in Phuket: A retrospective cohort study. Int J Infect Dis 2024; 147:107179. [PMID: 39094764 DOI: 10.1016/j.ijid.2024.107179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/14/2024] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
OBJECTIVES This study assessed the real-world relative vaccine effectiveness of the ChAdOx1/AZD1222 vaccine given intradermally at one-fifth dose compared to the standard intramuscular injection, following the completion of 2 doses of CoronaVac, due to limited vaccine availability in Thailand during the Coronavirus disease 2019 (COVID-19) pandemic. METHOD This retrospective cohort study used 138,264 records from Vachira Phuket Hospital, Phuket, Thailand. The records were divided into 2 groups: 49,387 recipients received one-fifth doses via intradermal injections, and 88,877 recipients received standard-dose intramuscular injections from September 14 to October 3, 2021, with follow-up until December 31, 2021. Relative vaccine effectiveness for the cohorts was estimated using Cox regression, adjusting for demographic and clinical risk factors. RESULTS The adjusted hazard ratio between the intradermal and intramuscular groups was 0.88 (95% Confidence Interval 0.76-1.02, P = 0.09), indicating a nonsignificant protective factor for the intradermal group. Further stratified analysis revealed no significant difference between the 2 groups. The 21 and 28-day postvaccination periods minimized the possibility of confounding due to differences in the cohorts' timeframes. CONCLUSION A booster dose of ChAdOx1/AZD1222 given intradermally at one-fifth dose did not show a significant difference compared to the standard intramuscular injection.
Collapse
Affiliation(s)
- Withita Jangiam
- Samut Sakhon Provincial Public Health Office, Ministry of Public Health, Samut Sakhon, Thailand; Vachira Phuket Hospital, Ministry of Public Health, Phuket, Thailand
| | - Kusuma Swangpun
- Phuket Provincial Public Health Office, Ministry of Public Health, Phuket, Thailand
| | | | | | - Dhup Bhukdee
- The Gang Technology Co., Ltd., Bangkhae, Bangkok, Thailand; Center of Excellence in Computational Molecular Biology, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand; Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand; Center of Excellence in Cognitive Clinical and Computational Neuroscience, Department of Internal Medicine, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand; International Medical Program, Faculty of Medicine, Chulalongkorn University, Pathum Wan, Bangkok, Thailand.
| |
Collapse
|
2
|
Bliss CM, Hulin-Curtis SL, Williams M, Marušková M, Davies JA, Statkute E, Baker AT, Stack L, Kerstetter L, Kerr-Jones LE, Milward KF, Russell G, George SJ, Badder LM, Stanton RJ, Coughlan L, Humphreys IR, Parker AL. A pseudotyped adenovirus serotype 5 vector with serotype 49 fiber knob is an effective vector for vaccine and gene therapy applications. Mol Ther Methods Clin Dev 2024; 32:101308. [PMID: 39206304 PMCID: PMC11357811 DOI: 10.1016/j.omtm.2024.101308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Adenoviruses (Ads) have demonstrated significant success as replication-deficient (RD) viral vectored vaccines, as well as broad potential across gene therapy and cancer therapy. Ad vectors transduce human cells via direct interactions between the viral fiber knob and cell surface receptors, with secondary cellular integrin interactions. Ad receptor usage is diverse across the extensive phylogeny. Commonly studied human Ad serotype 5 (Ad5), and chimpanzee Ad-derived vector "ChAdOx1" in licensed ChAdOx1 nCoV-19 vaccine, both form primary interactions with the coxsackie and adenovirus receptor (CAR), which is expressed on human epithelial cells and erythrocytes. CAR usage is suboptimal for targeted gene delivery to cells with low/negative CAR expression, including human dendritic cells (DCs) and vascular smooth muscle cells (VSMCs). We evaluated the performance of an RD Ad5 vector pseudotyped with the fiber knob of human Ad serotype 49, termed Ad5/49K vector. Ad5/49K demonstrated superior transduction of murine and human DCs over Ad5, which translated into significantly increased T cell immunogenicity when evaluated in a mouse cancer vaccine model using 5T4 tumor-associated antigen. Additionally, Ad5/49K exhibited enhanced transduction of primary human VSMCs. These data highlight the potential of Ad5/49K vector for both vascular gene therapy applications and as a potent vaccine vector.
Collapse
Affiliation(s)
- Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Sarah L. Hulin-Curtis
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Marta Williams
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Mahulena Marušková
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - James A. Davies
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Evelina Statkute
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alexander T. Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Louise Stack
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lucas Kerstetter
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
| | - Lauren E. Kerr-Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Kate F. Milward
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Gabrielle Russell
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
| | - Sarah J. George
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol BS2 8HW, UK
| | - Luned M. Badder
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Richard J. Stanton
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Lynda Coughlan
- University of Maryland School of Medicine, Department of Microbiology and Immunology, Baltimore, MD 21201, USA
- University of Maryland School of Medicine, Center for Vaccine Development and Global Health, Baltimore, MD 21201, USA
| | - Ian R. Humphreys
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
3
|
Wallace R, Bliss CM, Parker AL. The Immune System-A Double-Edged Sword for Adenovirus-Based Therapies. Viruses 2024; 16:973. [PMID: 38932265 PMCID: PMC11209478 DOI: 10.3390/v16060973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Pathogenic adenovirus (Ad) infections are widespread but typically mild and transient, except in the immunocompromised. As vectors for gene therapy, vaccine, and oncology applications, Ad-based platforms offer advantages, including ease of genetic manipulation, scale of production, and well-established safety profiles, making them attractive tools for therapeutic development. However, the immune system often poses a significant challenge that must be overcome for adenovirus-based therapies to be truly efficacious. Both pre-existing anti-Ad immunity in the population as well as the rapid development of an immune response against engineered adenoviral vectors can have detrimental effects on the downstream impact of an adenovirus-based therapeutic. This review focuses on the different challenges posed, including pre-existing natural immunity and anti-vector immunity induced by a therapeutic, in the context of innate and adaptive immune responses. We summarise different approaches developed with the aim of tackling these problems, as well as their outcomes and potential future applications.
Collapse
Affiliation(s)
- Rebecca Wallace
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
| | - Carly M. Bliss
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Alan L. Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; (R.W.); (C.M.B.)
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
4
|
Troise F, Leoni G, Sasso E, Del Sorbo M, Esposito M, Romano G, Allocca S, Froechlich G, Cotugno G, Capone S, Folgori A, Scarselli E, D’Alise AM, Nicosia A. Prime and pull of T cell responses against cancer-exogenous antigens is effective against CPI-resistant tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200760. [PMID: 38596303 PMCID: PMC10869775 DOI: 10.1016/j.omton.2024.200760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 04/11/2024]
Abstract
Neoantigen (neoAg)-based cancer vaccines expand preexisting antitumor immunity and elicit novel cancer-specific T cells. However, at odds with prophylactic vaccines, therapeutic antitumor immunity must be induced when the tumor is present and has already established an immunosuppressive environment capable of rapidly impairing the function of anticancer neoAg T cells, thereby leading to lack of efficacy. To overcome tumor-induced immunosuppression, we first vaccinated mice bearing immune checkpoint inhibitor (CPI)-resistant tumors with an adenovirus vector encoding a set of potent cancer-exogenous CD8 and CD4 T cell epitopes (Ad-CAP1), and then "taught" cancer cells to express the same epitopes by using a tumor-retargeted herpesvirus vector (THV-CAP1). Potent CD8 effector T lymphocytes were elicited by Ad-CAP1, and subsequent THV-CAP1 delivery led to a significant delay in tumor growth and even cure.
Collapse
Affiliation(s)
- Fulvia Troise
- Nouscom S.r.l, Via di Castel Romano 100, 00128 Rome, Italy
| | - Guido Leoni
- Nouscom S.r.l, Via di Castel Romano 100, 00128 Rome, Italy
| | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- CEINGE-Advanced Biotechnologies S.c. a.r.l, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | | | | | | | - Simona Allocca
- Nouscom S.r.l, Via di Castel Romano 100, 00128 Rome, Italy
| | - Guendalina Froechlich
- CEINGE-Advanced Biotechnologies S.c. a.r.l, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | | | | | | | | | | | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- CEINGE-Advanced Biotechnologies S.c. a.r.l, Via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
5
|
Trivedi PD, Byrne BJ, Corti M. Evolving Horizons: Adenovirus Vectors' Timeless Influence on Cancer, Gene Therapy and Vaccines. Viruses 2023; 15:2378. [PMID: 38140619 PMCID: PMC10747483 DOI: 10.3390/v15122378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Efficient and targeted delivery of a DNA payload is vital for developing safe gene therapy. Owing to the recent success of commercial oncolytic vector and multiple COVID-19 vaccines, adenovirus vectors are back in the spotlight. Adenovirus vectors can be used in gene therapy by altering the wild-type virus and making it replication-defective; specific viral genes can be removed and replaced with a segment that holds a therapeutic gene, and this vector can be used as delivery vehicle for tissue specific gene delivery. Modified conditionally replicative-oncolytic adenoviruses target tumors exclusively and have been studied in clinical trials extensively. This comprehensive review seeks to offer a summary of adenovirus vectors, exploring their characteristics, genetic enhancements, and diverse applications in clinical and preclinical settings. A significant emphasis is placed on their crucial role in advancing cancer therapy and the latest breakthroughs in vaccine clinical trials for various diseases. Additionally, we tackle current challenges and future avenues for optimizing adenovirus vectors, promising to open new frontiers in the fields of cell and gene therapies.
Collapse
Affiliation(s)
| | | | - Manuela Corti
- Department of Pediatrics, University of Florida, Gainesville, FL 32610, USA; (P.D.T.); (B.J.B.)
| |
Collapse
|
6
|
Okuyama R. mRNA and Adenoviral Vector Vaccine Platforms Utilized in COVID-19 Vaccines: Technologies, Ecosystem, and Future Directions. Vaccines (Basel) 2023; 11:1737. [PMID: 38140142 PMCID: PMC10748114 DOI: 10.3390/vaccines11121737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
New technological platforms, such as mRNA and adenoviral vector vaccines, have been utilized to develop coronavirus disease 2019 (COVID-19) vaccines. These new modalities enable rapid and flexible vaccine design and cost-effective and swift manufacturing, effectively combating pandemics caused by mutating viruses. Innovation ecosystems, including universities, startups, investors, and governments are crucial for developing these cutting-edge technologies. This review summarizes the research and development trajectory of these vaccine technologies, their investments, and the support surrounding them, in addition to the technological details of each technology. In addition, this study examines the importance of an innovation ecosystem in developing novel technologies, comparing it with the case of Japan, which has lagged behind in COVID-19 vaccine development. It also explores the direction of vaccine development in the post-COVID-19 era.
Collapse
Affiliation(s)
- Ryo Okuyama
- College of International Management, Ritsumeikan Asia Pacific University, Beppu 874-8577, Japan
| |
Collapse
|
7
|
Matthews DA, Milligan R, Wee EG, Hanke T. Adenovirus Transcriptome in Human Cells Infected with ChAdOx1-Vectored Candidate HIV-1 Vaccine Is Dominated by High Levels of Correctly Spliced HIVconsv1&62 Transgene RNA. Vaccines (Basel) 2023; 11:1187. [PMID: 37515003 PMCID: PMC10384973 DOI: 10.3390/vaccines11071187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
We develop candidate HIV-1 vaccines, of which two components, ChAdOx1.tHIVconsv1 (C1) and ChAdOx1.HIVconsv62 (C62), are delivered by the simian adenovirus-derived vaccine vector ChAdOx1. Aberrant adenovirus RNA splicing involving transgene(s) coding for the SARS-CoV-2 spike was suggested as an aetiology of rare adverse events temporarily associated with the initial deployment of adenovirus-vectored vaccines during the COVID-19 pandemic. Here, to eliminate this theoretically plausible splicing phenomenon from the list of possible pathomechanisms for our HIV-1 vaccine candidates, we directly sequenced mRNAs in C1- and C62-infected nonpermissive MRC-5 and A549 and permissive HEK293 human cell lines. Our two main observations in nonpermissive human cells, which are most similar to those which become infected after the intramuscular administration of vaccines into human volunteers, were that (i) the dominant adenovirus vector-derived mRNAs were the expected transcripts coding for the HIVconsvX immunogens and (ii) atypical splicing events within the synthetic open reading frame of the two transgenes are rare. We conclude that inadvertent RNA splicing is not a safety concern for the two tested candidate HIV-1 vaccines.
Collapse
Affiliation(s)
- David A Matthews
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Rachel Milligan
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol BS8 1TD, UK
| | - Edmund G Wee
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Tomáš Hanke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 860-0811, Japan
| |
Collapse
|
8
|
Ozharovskaia TA, Popova O, Zubkova OV, Vavilova IV, Pochtovyy AA, Shcheblyakov DV, Gushchin VA, Logunov DY, Gintsburg AL. Development and characterization of a vector system based on the simian adenovirus type 25. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2023. [DOI: 10.24075/brsmu.2023.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Technological versatility and the humoral and cellular immune response induction capacity have conditioned wide spread of adenoviral vectors as vaccine and gene therapy drugs. However, vaccination with Sputnik V made a significant portion of the population immune to the types 5 and 26 (Ad5 and Ad26) recombinant human adenovirus vectors, which are some of the most frequently used bases for candidate vaccines. Today, vaccine designers tend to select alternative adenovirus serotypes as platforms to develop vaccines against new pathogens on. A good example is simian adenovirus type 25 (SAd25), which belongs to subgroup E. It is genetically distant from Ad5 and exhibits extremely low seroprevalence in human beings, which makes it an appealing alternative vaccine vector. The purpose of this work was to design and study a new vaccine platform based on simian adenovirus type 25. We relied on the advanced methods of molecular biology and virology to construct and make recombinant adenoviruses; the phylogenetic analysis in the context of this study was enabled with bioinformatic methods. The resulting recombinant adenoviral vector can effectively replicate itself in the HEK293 cell line (human embryonic kidney cells). This work substantiates the expediency of further investigation into the SAd25 vector as a platform for development of the prevention vaccines against various infectious diseases.
Collapse
Affiliation(s)
- TA Ozharovskaia
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - O Popova
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - OV Zubkova
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - IV Vavilova
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - AA Pochtovyy
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - DV Shcheblyakov
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - VA Gushchin
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - DYu Logunov
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - AL Gintsburg
- Gamaleya National Research Center for Epidemiology and Microbiology of the Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
9
|
de Jong R, Stockhofe-Zurwieden N, Bonsing J, Wang KF, Vandepaer S, Bouzya B, Toussaint JF, Dieussaert I, Song H, Steff AM. ChAd155-RSV vaccine is immunogenic and efficacious against bovine RSV infection-induced disease in young calves. Nat Commun 2022; 13:6142. [PMID: 36253363 PMCID: PMC9575635 DOI: 10.1038/s41467-022-33649-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
Respiratory syncytial virus (RSV) infection causes a substantial lower-respiratory-tract disease burden in infants, constituting a global priority for vaccine development. We evaluated immunogenicity, safety and efficacy of a chimpanzee adenovirus (ChAd)-based vaccine candidate, ChAd155-RSV, in a bovine RSV (bRSV) challenge model. This model closely reproduces the pathogenesis/clinical manifestations of severe pediatric RSV disease. In seronegative calves, ChAd155-RSV elicits robust neutralizing antibody responses against human RSV. Two doses protect calves from clinical symptoms/lung pathological changes, and reduce nasal/lung virus loads after both a short (4-week) and a long (16-week) interval between last immunization and subsequent bRSV challenge. The one-dose regimen confers near-complete or significant protection after short-term or long-term intervals before challenge, respectively. The presence of pre-existing bRSV-antibodies does not affect short-term efficacy of the two-dose regimen. Immunized calves present no clinical signs of enhanced respiratory disease. Collectively, this supports the development of ChAd155-RSV as an RSV vaccine candidate for infants.
Collapse
Affiliation(s)
- Rineke de Jong
- grid.4818.50000 0001 0791 5666Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Norbert Stockhofe-Zurwieden
- grid.4818.50000 0001 0791 5666Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Judith Bonsing
- grid.4818.50000 0001 0791 5666Wageningen Bioveterinary Research, Wageningen University & Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Kai-Fen Wang
- grid.418019.50000 0004 0393 4335GSK, 14200 Shady Grove Road, Rockville, MD 20850 USA ,grid.508098.c0000 0004 7413 1708Present Address: Atara Biotherapeutics, Inc., 2380 Conejo Spectrum St Suite 200, Thousand Oaks, CA 91320 USA
| | - Sarah Vandepaer
- CONSULTYS Benelux S.A, 73D Rue de Namur, 1000 Brussels, Belgium
| | - Badiaa Bouzya
- grid.425090.a0000 0004 0468 9597GSK, Rue de l’Institut 89, 1330 Rixensart, Belgium
| | - Jean-François Toussaint
- grid.425090.a0000 0004 0468 9597GSK, Rue de l’Institut 89, 1330 Rixensart, Belgium ,Present Address: Sanofi-Pasteur, 14 Espace Henry Vallée, 69007 Lyon, France
| | - Ilse Dieussaert
- grid.425090.a0000 0004 0468 9597GSK, Rue de l’Institut 89, 1330 Rixensart, Belgium
| | - Haifeng Song
- grid.418019.50000 0004 0393 4335GSK, 14200 Shady Grove Road, Rockville, MD 20850 USA ,Present Address: Suzhou Abogen Bioscience Ltd, Suzhou, Jiangsu China
| | - Ann-Muriel Steff
- grid.418019.50000 0004 0393 4335GSK, 14200 Shady Grove Road, Rockville, MD 20850 USA
| |
Collapse
|
10
|
Araújo NM, Rubio IGS, Toneto NPA, Morale MG, Tamura RE. The use of adenoviral vectors in gene therapy and vaccine approaches. Genet Mol Biol 2022; 45:e20220079. [PMID: 36206378 PMCID: PMC9543183 DOI: 10.1590/1678-4685-gmb-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Adenovirus was first identified in the 1950s and since then this pathogenic group
of viruses has been explored and transformed into a genetic transfer vehicle.
Modification or deletion of few genes are necessary to transform it into a
conditionally or non-replicative vector, creating a versatile tool capable of
transducing different tissues and inducing high levels of transgene expression.
In the early years of vector development, the application in monogenic diseases
faced several hurdles, including short-term gene expression and even a fatality.
On the other hand, an adenoviral delivery strategy for treatment of cancer was
the first approved gene therapy product. There is an increasing interest in
expressing transgenes with therapeutic potential targeting the cancer hallmarks,
inhibiting metastasis, inducing cancer cell death or modulating the immune
system to attack the tumor cells. Replicative adenovirus as vaccines may be even
older and date to a few years of its discovery, application of non-replicative
adenovirus for vaccination against different microorganisms has been
investigated, but only recently, it demonstrated its full potential being one of
the leading vaccination tools for COVID-19. This is not a new vector nor a new
technology, but the result of decades of careful and intense work in this
field.
Collapse
Affiliation(s)
- Natália Meneses Araújo
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil.
| | - Ileana Gabriela Sanchez Rubio
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | | | - Mirian Galliote Morale
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil. ,Universidade Federal de São Paulo, Laboratório de Ciências
Moleculares da Tireóide, Diadema, SP, Brazil.
| | - Rodrigo Esaki Tamura
- Universidade Federal de São Paulo, Laboratório de Biologia Molecular
do Câncer, São Paulo, SP, Brazil. ,Universidade Federal de São Paulo, Departamento de Ciências
Biológicas, Diadema, SP, Brazil.
| |
Collapse
|
11
|
Kumar S, Basu M, Ghosh P, Ansari A, Ghosh MK. COVID-19: Clinical status of vaccine development to date. Br J Clin Pharmacol 2022; 89:114-149. [PMID: 36184710 PMCID: PMC9538545 DOI: 10.1111/bcp.15552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/08/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)-induced COVID-19 is a complicated disease. Clinicians are continuously facing difficulties to treat infected patients using the principle of repurposing of drugs as no specific drugs are available to treat COVID-19. To minimize the severity and mortality, global vaccination is the only hope as a potential preventive measure. After a year-long global research and clinical struggle, 165 vaccine candidates have been developed and some are currently still in the pipeline. A total of 28 candidate vaccines have been approved for use and the remainder are in different phases of clinical trials. In this comprehensive report, the authors aim to demonstrate, classify and provide up-to-date clinical trial status of all the vaccines discovered to date and specifically focus on the approved candidates. Finally, the authors specifically focused on the vaccination of different types of medically distinct populations.
Collapse
Affiliation(s)
- Sunny Kumar
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Malini Basu
- Department of MicrobiologyDhruba Chand Halder CollegeIndia
| | - Pratyasha Ghosh
- Department of Economics, Bethune CollegeUniversity of CalcuttaKolkataIndia
| | - Aafreen Ansari
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| | - Mrinal K. Ghosh
- Cancer Biology and Inflammatory Disorder DivisionCouncil of Scientific and Industrial Research‐Indian Institute of Chemical Biology (CSIR‐IICB), TRUE CampusKolkataIndia
| |
Collapse
|
12
|
T-Cell Responses Induced by an Intradermal BNT162b2 mRNA Vaccine Booster Following Primary Vaccination with Inactivated SARS-CoV-2 Vaccine. Vaccines (Basel) 2022; 10:vaccines10091494. [PMID: 36146571 PMCID: PMC9501140 DOI: 10.3390/vaccines10091494] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
A practical booster vaccine is urgently needed to control the coronavirus disease (COVID-19) pandemic. We have previously reported the safety and immunogenicity of a fractional intradermal booster, using the BNT162b2 mRNA vaccine in healthy volunteers who had completed two doses of inactivated SARS-CoV-2 vaccine. In this study, an intramuscular booster at full dosage was used as a control, and a half-dose vaccination was included for reciprocal comparison. Detailed T-cell studies are essential to understand cellular responses to vaccination. T-cell immunity was examined using S1 peptide restimulation and flow cytometry. The fractional dose (1:5) of the BNT162b2 mRNA vaccine enhanced antigen-specific effector T-cells, but the responses were less remarkable compared to the intramuscular booster at full dosage. However, the intradermal regimen was not inferior to the intramuscular booster a month after boosting. An intradermal booster using only one-fifth of the standard dosage could provide comparable T-cell responses with the fractional intramuscular booster. This work confirms the efficacy of intradermal and fractional vaccination in terms of T-cell immunogenicity in previously immunised populations.
Collapse
|
13
|
Folegatti PM, Jenkin D, Morris S, Gilbert S, Kim D, Robertson JS, Smith ER, Martin E, Gurwith M, Chen RT. Vaccines based on the replication-deficient simian adenoviral vector ChAdOx1: Standardized template with key considerations for a risk/benefit assessment. Vaccine 2022; 40:5248-5262. [PMID: 35715352 PMCID: PMC9194875 DOI: 10.1016/j.vaccine.2022.06.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/10/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Replication-deficient adenoviral vectors have been under investigation as a platform technology for vaccine development for several years and have recently been successfully deployed as an effective COVID-19 counter measure. A replication-deficient adenoviral vector based on the simian adenovirus type Y25 and named ChAdOx1 has been evaluated in several clinical trials since 2012. The Brighton Collaboration Benefit-Risk Assessment of VAccines by TechnolOgy (BRAVATO) was formed to evaluate the safety and other key features of new platform technology vaccines. This manuscript reviews key features of the ChAdOx1-vectored vaccines. The simian adenovirus Y25 was chosen as a strategy to circumvent pre-existing immunity to common human adenovirus serotypes which could impair immune responses induced by adenoviral vectored vaccines. Deletion of the E1 gene renders the ChAdOx1 vector replication incompetent and further genetic engineering of the E3 and E4 genes allows for increased insertional capability and optimizes vaccine manufacturing processes. ChAdOx1 vectored vaccines can be manufactured in E1 complementing cell lines at scale and are thermostable. The first ChAdOx1 vectored vaccines approved for human use, against SARS-CoV-2, received emergency use authorization in the UK on 30th December 2020, and is now approved in more than 180 countries. Safety data were compiled from phase I-III clinical trials of ChAdOx1 vectored vaccines expressing different antigens (influenza, tuberculosis, malaria, meningococcal B, prostate cancer, MERS-CoV, Chikungunya, Zika and SARS-CoV-2), conducted by the University of Oxford, as well as post marketing surveillance data for the COVID-19 Oxford-AstraZeneca vaccine. Overall, ChAdOx1 vectored vaccines have been well tolerated. Very rarely, thrombosis with thrombocytopenia syndrome (TTS), capillary leak syndrome (CLS), immune thrombocytopenia (ITP), and Guillain-Barre syndrome (GBS) have been reported following mass administration of the COVID-19 Oxford-AstraZeneca vaccine. The benefits of this COVID-19 vaccination have outweighed the risks of serious adverse events in most settings, especially with mitigation of risks when possible. Extensive immunogenicity clinical evaluation of ChAdOx1 vectored vaccines reveal strong, durable humoral and cellular immune responses to date; studies to refine the COVID-19 protection (e.g., via homologous/heterologous booster, fractional dose) are also underway. New prophylactic and therapeutic vaccines based on the ChAdOx1 vector are currently undergoing pre-clinical and clinical assessment, including vaccines against viral hemorrhagic fevers, Nipah virus, HIV, Hepatitis B, amongst others.
Collapse
Affiliation(s)
| | | | | | | | - Denny Kim
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - James S. Robertson
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Emily R. Smith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA,Corresponding author
| | - Emalee Martin
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Marc Gurwith
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | - Robert T. Chen
- Brighton Collaboration, a program of the Task Force for Global Health, Decatur, GA, USA
| | | |
Collapse
|
14
|
D’Alise AM, Brasu N, De Intinis C, Leoni G, Russo V, Langone F, Baev D, Micarelli E, Petiti L, Picelli S, Fakih M, Le DT, Overman MJ, Shields AF, Pedersen KS, Shah MA, Mukherjee S, Faivre T, Delaite P, Scarselli E, Pace L. Adenoviral-based vaccine promotes neoantigen-specific CD8 + T cell stemness and tumor rejection. Sci Transl Med 2022; 14:eabo7604. [PMID: 35947675 PMCID: PMC9844517 DOI: 10.1126/scitranslmed.abo7604] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Upon chronic antigen exposure, CD8+ T cells become exhausted, acquiring a dysfunctional state correlated with the inability to control infection or tumor progression. In contrast, stem-like CD8+ T progenitors maintain the ability to promote and sustain effective immunity. Adenovirus (Ad)-vectored vaccines encoding tumor neoantigens have been shown to eradicate large tumors when combined with anti-programmed cell death protein 1 (αPD-1) in murine models; however, the mechanisms and translational potential have not yet been elucidated. Here, we show that gorilla Ad vaccine targeting tumor neoepitopes enhances responses to αPD-1 therapy by improving immunogenicity and antitumor efficacy. Single-cell RNA sequencing demonstrated that the combination of Ad vaccine and αPD-1 increased the number of murine polyfunctional neoantigen-specific CD8+ T cells over αPD-1 monotherapy, with an accumulation of Tcf1+ stem-like progenitors in draining lymph nodes and effector CD8+ T cells in tumors. Combined T cell receptor (TCR) sequencing analysis highlighted a broader spectrum of neoantigen-specific CD8+ T cells upon vaccination compared to αPD-1 monotherapy. The translational relevance of these data is supported by results obtained in the first 12 patients with metastatic deficient mismatch repair (dMMR) tumors vaccinated with an Ad vaccine encoding shared neoantigens. Expansion and diversification of TCRs were observed in post-treatment biopsies of patients with clinical response, as well as an increase in tumor-infiltrating T cells with an effector memory signature. These findings indicate a promising mechanism to overcome resistance to PD-1 blockade by promoting immunogenicity and broadening the spectrum and magnitude of neoantigen-specific T cells infiltrating tumors.
Collapse
Affiliation(s)
| | - Nadia Brasu
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy,University of Turin, 10060 Turin, Italy
| | - Carlo De Intinis
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy
| | | | - Valentina Russo
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy,University of Turin, 10060 Turin, Italy
| | | | - Denis Baev
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy
| | | | - Luca Petiti
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Dung T. Le
- Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Anthony F. Shields
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Katrina S. Pedersen
- Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | - Elisa Scarselli
- Nouscom SRL, 00128 Rome, Italy,Corresponding author. (L. Pace); (E.S.)
| | - Luigia Pace
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy,Corresponding author. (L. Pace); (E.S.)
| |
Collapse
|
15
|
Pinpathomrat N, Intapiboon P, Seepathomnarong P, Ongarj J, Sophonmanee R, Hengprakop J, Surasombatpattana S, Uppanisakorn S, Mahasirimongkol S, Sawaengdee W, Phumiamorn S, Sapsutthipas S, Kongkamol C, Ingviya T, Sangsupawanich P, Chusri S. Immunogenicity and safety of an intradermal ChAdOx1 nCoV-19 boost in a healthy population. NPJ Vaccines 2022; 7:52. [PMID: 35562372 PMCID: PMC9106663 DOI: 10.1038/s41541-022-00475-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 04/07/2022] [Indexed: 11/09/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic. Two doses of an inactivated SARS-CoV-2 vaccine (CoronaVac) have been shown to be insufficient to protect against variants of concern (VOCs), while viral vector vaccines remain protective against the infection. Herein, we conducted a preliminary study to evaluate the safety and immunity in an adult population who received the conventional 2 dosage-regimen of inactivated SARS-CoV-2 vaccine; with an additional intradermal ChAdOx1 nCoV-19 reciprocal dosage (1:5). An Intramuscular ChAdOx1 nCoV-19 booster was also included as a control. Immediate and delayed local reactions were frequently observed in the fractional intradermal boost, but systemic side effects were significantly decreased compared to the conventional intramuscular boost. The anti-RBD-IgG levels, the neutralising function against delta variants, and T cell responses were significantly increased after boosting via both routes. Interestingly, the shorter interval elicited higher immunogenicity compared to the extended interval. Taken together, a reciprocal dosage of intradermal ChAdOx1 nCoV-19 booster reduces systemic adverse reactions and enhances non inferiority humoral and cellular immune responses compared to a full dose of intramuscular boosting. These findings provide for an effective vaccine management during the shortages of vaccine supply.
Collapse
Affiliation(s)
- Nawamin Pinpathomrat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Porntip Intapiboon
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Purilap Seepathomnarong
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jomkwan Ongarj
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Ratchanon Sophonmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Jariya Hengprakop
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Supattra Uppanisakorn
- Clinical Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | | | - Waritta Sawaengdee
- Department of Medical Science, Ministry of Public Health, Nonthaburi, Thailand
| | - Supaporn Phumiamorn
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Sompong Sapsutthipas
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Chanon Kongkamol
- Division of Digital Innovation and Data Analytics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Thammasin Ingviya
- Division of Digital Innovation and Data Analytics, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Pasuree Sangsupawanich
- Clinical Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Sarunyou Chusri
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
| |
Collapse
|
16
|
Soraci L, Lattanzio F, Soraci G, Gambuzza ME, Pulvirenti C, Cozza A, Corsonello A, Luciani F, Rezza G. COVID-19 Vaccines: Current and Future Perspectives. Vaccines (Basel) 2022; 10:608. [PMID: 35455357 PMCID: PMC9025326 DOI: 10.3390/vaccines10040608] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/04/2022] [Accepted: 04/07/2022] [Indexed: 12/16/2022] Open
Abstract
Currently available vaccines against severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are highly effective but not able to keep the coronavirus disease 2019 (COVID-19) pandemic completely under control. Alternative R&D strategies are required to induce a long-lasting immunological response and to reduce adverse events as well as to favor rapid development and large-scale production. Several technological platforms have been used to develop COVID-19 vaccines, including inactivated viruses, recombinant proteins, DNA- and RNA-based vaccines, virus-vectored vaccines, and virus-like particles. In general, mRNA vaccines, protein-based vaccines, and vectored vaccines have shown a high level of protection against COVID-19. However, the mutation-prone nature of the spike (S) protein affects long-lasting vaccine protection and its effectiveness, and vaccinated people can become infected with new variants, also showing high virus levels. In addition, adverse effects may occur, some of them related to the interaction of the S protein with the angiotensin-converting enzyme 2 (ACE-2). Thus, there are some concerns that need to be addressed and challenges regarding logistic problems, such as strict storage at low temperatures for some vaccines. In this review, we discuss the limits of vaccines developed against COVID-19 and possible innovative approaches.
Collapse
Affiliation(s)
- Luca Soraci
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
| | - Fabrizia Lattanzio
- Scientific Direction, Italian National Research Center on Aging (IRCCS INRCA), 60121 Ancona, Italy;
| | - Giulia Soraci
- Department of Obstetrics and Gynecology, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Elsa Gambuzza
- Territorial Office of Messina, Italian Ministry of Health, 98122 Messina, Italy
| | | | - Annalisa Cozza
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Andrea Corsonello
- Unit of Geriatric Medicine, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy; (L.S.); (A.C.)
- Laboratory of Pharmacoepidemiology and Biostatistics, Italian National Research Center on Aging (IRCCS INRCA), 87100 Cosenza, Italy;
| | - Filippo Luciani
- Infectious Diseases Unit of Annunziata Hospital, 87100 Cosenza, Italy;
| | - Giovanni Rezza
- Health Prevention Directorate, Italian Ministry of Health, 00144 Rome, Italy;
| |
Collapse
|
17
|
Hamady A, Lee J, Loboda ZA. Waning antibody responses in COVID-19: what can we learn from the analysis of other coronaviruses? Infection 2022; 50:11-25. [PMID: 34324165 PMCID: PMC8319587 DOI: 10.1007/s15010-021-01664-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 07/08/2021] [Indexed: 12/16/2022]
Abstract
OBJECTIVES The coronavirus disease 2019 (COVID-19), caused by the novel betacoronavirus severe acute respiratory syndrome 2 (SARS-CoV-2), was declared a pandemic in March 2020. Due to the continuing surge in incidence and mortality globally, determining whether protective, long-term immunity develops after initial infection or vaccination has become critical. METHODS/RESULTS In this narrative review, we evaluate the latest understanding of antibody-mediated immunity to SARS-CoV-2 and to other coronaviruses (SARS-CoV, Middle East respiratory syndrome coronavirus and the four endemic human coronaviruses) in order to predict the consequences of antibody waning on long-term immunity against SARS-CoV-2. We summarise their antibody dynamics, including the potential effects of cross-reactivity and antibody waning on vaccination and other public health strategies. At present, based on our comparison with other coronaviruses we estimate that natural antibody-mediated protection for SARS-CoV-2 is likely to last for 1-2 years and therefore, if vaccine-induced antibodies follow a similar course, booster doses may be required. However, other factors such as memory B- and T-cells and new viral strains will also affect the duration of both natural and vaccine-mediated immunity. CONCLUSION Overall, antibody titres required for protection are yet to be established and inaccuracies of serological methods may be affecting this. We expect that with standardisation of serological testing and studies with longer follow-up, the implications of antibody waning will become clearer.
Collapse
Affiliation(s)
- Ali Hamady
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - JinJu Lee
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Zuzanna A Loboda
- Department of Immunology and Inflammation, Imperial College London, London, UK.
| |
Collapse
|
18
|
Joe CCD, Jiang J, Linke T, Li Y, Fedosyuk S, Gupta G, Berg A, Segireddy RR, Mainwaring D, Joshi A, Cashen P, Rees B, Chopra N, Nestola P, Humphreys J, Davies S, Smith N, Bruce S, Verbart D, Bormans D, Knevelman C, Woodyer M, Davies L, Cooper L, Kapanidou M, Bleckwenn N, Pappas D, Lambe T, Smith DC, Green CM, Venkat R, Ritchie AJ, Gilbert SC, Turner R, Douglas AD. Manufacturing a chimpanzee adenovirus-vectored SARS-CoV-2 vaccine to meet global needs. Biotechnol Bioeng 2022; 119:48-58. [PMID: 34585736 PMCID: PMC8653296 DOI: 10.1002/bit.27945] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 12/16/2022]
Abstract
Manufacturing has been the key factor limiting rollout of vaccination during the COVID-19 pandemic, requiring rapid development and large-scale implementation of novel manufacturing technologies. ChAdOx1 nCoV-19 (AZD1222, Vaxzevria) is an efficacious vaccine against SARS-CoV-2, based upon an adenovirus vector. We describe the development of a process for the production of this vaccine and others based upon the same platform, including novel features to facilitate very large-scale production. We discuss the process economics and the "distributed manufacturing" approach we have taken to provide the vaccine at globally-relevant scale and with international security of supply. Together, these approaches have enabled the largest viral vector manufacturing campaign to date, providing a substantial proportion of global COVID-19 vaccine supply at low cost.
Collapse
Affiliation(s)
- Carina C. D. Joe
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Jinlin Jiang
- Biopharmaceuticals DevelopmentR&D, AstraZenecaGaithersburgMarylandUSA
| | - Thomas Linke
- Biopharmaceuticals DevelopmentR&D, AstraZenecaGaithersburgMarylandUSA
| | - Yuanyuan Li
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Sofiya Fedosyuk
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Gaurav Gupta
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Adam Berg
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Nicole Bleckwenn
- Biopharmaceuticals DevelopmentR&D, AstraZenecaGaithersburgMarylandUSA
| | - Daniel Pappas
- Biopharmaceuticals DevelopmentR&D, AstraZenecaGaithersburgMarylandUSA
| | - Teresa Lambe
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | | | - Catherine M. Green
- Clinical Biomanufacturing Facility, Nuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Raghavan Venkat
- Biopharmaceuticals DevelopmentR&D, AstraZenecaGaithersburgMarylandUSA
| | - Adam J. Ritchie
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Sarah C. Gilbert
- Nuffield Department of Medicine, Jenner InstituteUniversity of OxfordOxfordUK
| | - Richard Turner
- Purification Process Sciences, Biopharmaceuticals DevelopmentR&D, AstraZenecaCambridgeUK
| | | |
Collapse
|
19
|
D'Alise AM, Leoni G, De Lucia M, Langone F, Nocchi L, Tucci FG, Micarelli E, Cotugno G, Troise F, Garzia I, Vitale R, Bignone V, Di Matteo E, Bartolomeo R, Charych DH, Lahm A, Zalevsky J, Nicosia A, Scarselli E. Maximizing cancer therapy via complementary mechanisms of immune activation: PD-1 blockade, neoantigen vaccination, and Tregs depletion. J Immunother Cancer 2021; 9:jitc-2021-003480. [PMID: 34824160 PMCID: PMC8627409 DOI: 10.1136/jitc-2021-003480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/02/2022] Open
Abstract
Background A number of different immune pathways are involved in the effective killing of cancer cells, collectively named as the ‘Cancer Immunity Cycle’. Anti-PD-1 checkpoint blockade (CPB) therapy is active on one of these pathways and reinvigorates anticancer T cell immunity, leading to long-term responses in a limited fraction of patients with cancer. We have previously shown that neoantigens-based adenovirus vectored vaccine in combination with anti-PD-1 further expands pre-existing anticancer immunity and elicits novel neoantigen-specific T cells thereby increasing efficacy to 50% of tumor clearance in mice. Here we added a third component to the CPB plus vaccine combination, which is able to modify the suppressive tumor microenvironment by reducing the number of tumor-infiltrating regulatory T cells (Tregs), as strategy for improving the therapeutic efficacy and overcoming resistance. Methods The antitumor efficacy of anti-PD-1, neoantigen vaccine and Treg modulating agents, either Bempegaldesleukin (BEMPEG: NKTR-214) or an anti-CTLA-4 mAb with Treg-depleting activity, was investigated in murine tumor models. We evaluated tumor growth in treated animals, neoantigen-specific T cells in tumors, tumor-infiltrating lymphocytes (TILs) and intratumoral Tregs. Results The addition of BEMPEG or anti-CTLA-4 to the combination of vaccine and anti-PD-1 led to complete eradication of large tumors in nearby 100% of treated animals, in association with expansion and activation of cancer neoantigen-specific T cells and reduction of tumor-infiltrating Tregs. Conclusion These data support the notion that the integrated regulation of three steps of the cancer immunity cycle, including expansion of neoantigen-specific T cells, reversal of the exhausted T cell phenotype together with the reduction of intratumoral Tregs may represent a novel rationally designed drug combination approach to achieve higher cure rates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Alfredo Nicosia
- NousCom, Rome, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Napoli, Campania, Italy
| | | |
Collapse
|
20
|
Patel M, Shahjin F, Cohen JD, Hasan M, Machhi J, Chugh H, Singh S, Das S, Kulkarni TA, Herskovitz J, Meigs DD, Chandra R, Hettie KS, Mosley RL, Kevadiya BD, Gendelman HE. The Immunopathobiology of SARS-CoV-2 Infection. FEMS Microbiol Rev 2021; 45:fuab035. [PMID: 34160586 PMCID: PMC8632753 DOI: 10.1093/femsre/fuab035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to coronavirus disease 2019 (COVID-19). Virus-specific immunity controls infection, transmission and disease severity. With respect to disease severity, a spectrum of clinical outcomes occur associated with age, genetics, comorbidities and immune responses in an infected person. Dysfunctions in innate and adaptive immunity commonly follow viral infection. These are heralded by altered innate mononuclear phagocyte differentiation, activation, intracellular killing and adaptive memory, effector, and regulatory T cell responses. All of such affect viral clearance and the progression of end-organ disease. Failures to produce effective controlled antiviral immunity leads to life-threatening end-organ disease that is typified by the acute respiratory distress syndrome. The most effective means to contain SARS-CoV-2 infection is by vaccination. While an arsenal of immunomodulators were developed for control of viral infection and subsequent COVID-19 disease, further research is required to enable therapeutic implementation.
Collapse
Affiliation(s)
- Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Heerak Chugh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Snigdha Singh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Tanmay A Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology –Head & Neck Surgery, Stanford University, Palo Alto, CA 94304, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| |
Collapse
|
21
|
Intapiboon P, Seepathomnarong P, Ongarj J, Surasombatpattana S, Uppanisakorn S, Mahasirimongkol S, Sawaengdee W, Phumiamorn S, Sapsutthipas S, Sangsupawanich P, Chusri S, Pinpathomrat N. Immunogenicity and Safety of an Intradermal BNT162b2 mRNA Vaccine Booster after Two Doses of Inactivated SARS-CoV-2 Vaccine in Healthy Population. Vaccines (Basel) 2021; 9:1375. [PMID: 34960122 PMCID: PMC8703694 DOI: 10.3390/vaccines9121375] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/18/2021] [Accepted: 11/20/2021] [Indexed: 01/01/2023] Open
Abstract
Effective vaccine coverage is urgently needed to tackle the COVID-19 pandemic. Inactivated vaccines have been introduced in many countries for emergency usage, but have only provided limited protection. Heterologous vaccination is a promising strategy to maximise vaccine immunogenicity. Here, we conducted a phase I, randomised control trial to observe the safety and immunogenicity after an intradermal boost, using a fractional dosage (1:5) of BNT162b2 mRNA vaccine in healthy participants in Songkhla, Thailand. In total, 91 volunteers who had been administered with two doses of inactivated SARS-CoV-2 (CoronaVac) were recruited into the study, and then randomised (1:1:1) to received different regimens of the third dose. An intramuscular booster with a full dose of BNT162b2 was included as a conventional control, and a half dose group was included as reciprocal comparator. Both, immediate and delayed adverse events following immunisation (AEFI) were monitored. Humoral and cellular immune responses were examined to observe the booster effects. The intradermal booster provided significantly fewer systemic side effects, from 70% down to 19.4% (p < 0.001); however, they were comparable to local reactions with the conventional intramuscular booster. In the intradermal group after receiving only one fifth of the conventional dosage, serum Anti-RBD IgG was halved compared to the full dose of an intramuscular injection. However, the neutralising function against the Delta strain remained intact. T cell responses were also less effective in the intradermal group compared to the intramuscular booster. Together, the intradermal booster, using a fractional dose of BNT162b2, can reduce systemic reactions and provides a good level and function of antibody responses compared to the conventional booster. This favourable intradermal boosting strategy provides a suitable alternative for vaccines and effective vaccine management to increase the coverage during the vaccine shortage.
Collapse
Affiliation(s)
- Porntip Intapiboon
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.I.); (S.C.)
| | - Purilap Seepathomnarong
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (J.O.)
| | - Jomkwan Ongarj
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (J.O.)
| | | | - Supattra Uppanisakorn
- Clinical Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (S.U.); (P.S.)
| | | | - Waritta Sawaengdee
- Department of Medical Science, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.M.); (W.S.)
| | - Supaporn Phumiamorn
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.P.); (S.S.)
| | - Sompong Sapsutthipas
- Institute of Biological Products, Department of Medical Sciences, Ministry of Public Health, Nonthaburi 11000, Thailand; (S.P.); (S.S.)
| | - Pasuree Sangsupawanich
- Clinical Research Center, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (S.U.); (P.S.)
| | - Sarunyou Chusri
- Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.I.); (S.C.)
| | - Nawamin Pinpathomrat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand; (P.S.); (J.O.)
| |
Collapse
|
22
|
Sheerin D, Dold C, O'Connor D, Pollard AJ, Rollier CS. Distinct patterns of whole blood transcriptional responses are induced in mice following immunisation with adenoviral and poxviral vector vaccines encoding the same antigen. BMC Genomics 2021; 22:777. [PMID: 34717548 PMCID: PMC8556829 DOI: 10.1186/s12864-021-08061-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Viral vectors, including adenovirus (Ad) and modified vaccinia Ankara (MVA), have gained increasing attention as vaccine platforms in recent years due to their capacity to express antigens from a wide array of pathogens, their rapid induction of humoral and cellular protective immune responses, and their relatively low production costs. In particular, the chimpanzee Ad vector, ChAdOx1, has taken centre stage as a leading COVID-19 vaccine candidate. However, despite mounting data, both clinical and pre-clinical, demonstrating effective induction of adaptive immune responses, the innate immune signals that precede the protective responses that make these vectors attractive vaccine platforms remain poorly understood. RESULTS In this study, a mouse immunisation model was used to evaluate whole blood gene expression changes 24 h after either a single dose or heterologous prime-boost regimen of an Ad and/or MVA vaccine. We demonstrate through comparative analysis of Ad vectors encoding different antigens that a transgene product-specific gene signature can be discerned from the vector-induced transcriptional response. Expression of genes involved in TLR2 stimulation and γδ T cell and natural killer cell activation were induced after a single dose of Ad, while MVA led to greater expression of type I interferon genes. The order of prime-boost combinations was found to influence the magnitude of the gene expression changes, with MVA/Ad eliciting greater transcriptional perturbation than Ad/MVA. Contrasting the two regimens revealed significant enrichment of epigenetic regulation pathways and augmented expression of MHC class I and II molecules associated with MVA/Ad. CONCLUSION These data demonstrate that the order in which vaccines from heterologous prime-boost regimens are administered leads to distinct transcriptional responses and may shape the immune response induced by such combinations. The characterisation of early vaccine-induce responses strengthens our understanding of viral vector vaccine mechanisms of action ahead of their characterisation in human clinical trials and are a valuable resource to inform the pre-clinical design of appropriate vaccine constructs for emerging infectious diseases.
Collapse
Affiliation(s)
- Dylan Sheerin
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK.
- Infectious Diseases and Immune Defence Division, The Walter & Eliza Hall Institute of Medical Research (WEHI), Melbourne, Victoria, 3052, Australia.
| | - Christina Dold
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Daniel O'Connor
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| | - Christine S Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Oxford, UK
| |
Collapse
|
23
|
Berg A, Wright D, Dulal P, Stedman A, Fedosyuk S, Francis MJ, Charleston B, Warimwe GM, Douglas AD. Stability of Chimpanzee Adenovirus Vectored Vaccines (ChAdOx1 and ChAdOx2) in Liquid and Lyophilised Formulations. Vaccines (Basel) 2021; 9:1249. [PMID: 34835180 PMCID: PMC8623940 DOI: 10.3390/vaccines9111249] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/04/2022] Open
Abstract
Adenovirus vectored vaccines have entered global use during the COVID-19 pandemic, and are in development for multiple other human and veterinary applications. An attraction of the technology is the suitability of the vaccines for storage at 2-8 °C for months. Widely used COVID-19 vaccine ChAdOx1 nCoV-19 (University of Oxford/AstraZeneca) is based on a species E simian adenovirus. Species E simian serotypes have been used in a wide range of other development programs, but the stability of such vectors has not been extensively described in the peer-reviewed literature. Here, we explore the stability of two candidate vaccines based on two species E serotypes: a Rift Valley fever vaccine based upon the ChAdOx1 vector (Y25 serotype) used in ChAdOx1 nCoV-19, and a rabies vaccine based upon a ChAdOx2 vector (AdC68 serotype). We describe each vector's stability in liquid and lyophilised formulations using in vitro and in vivo potency measurements. Our data support the suitability of liquid formulations of these vectors for storage at 2-8 °C for up to 1 year, and potentially for nonrefrigerated storage for a brief period during last-leg distribution (perhaps 1-3 days at 20 °C-the precise definition of acceptable last-leg storage conditions would require further product-specific data). Depending upon the level of inprocess potency loss that is economically acceptable, and the level of instorage loss that is compatible with maintenance of acceptable end-of-storage potency, a previously reported lyophilised formulation may enable longer term storage at 20 °C or storage for a number of days at 30 °C.
Collapse
Affiliation(s)
- Adam Berg
- Wellcome Trust Centre for Human Genetics, Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; (A.B.); (P.D.); (S.F.)
| | - Daniel Wright
- Wellcome Trust Centre for Human Genetics, Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; (A.B.); (P.D.); (S.F.)
| | - Pawan Dulal
- Wellcome Trust Centre for Human Genetics, Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; (A.B.); (P.D.); (S.F.)
| | - Anna Stedman
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.); (B.C.); (G.M.W.)
| | - Sofiya Fedosyuk
- Wellcome Trust Centre for Human Genetics, Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; (A.B.); (P.D.); (S.F.)
| | - Michael J. Francis
- BioVacc Consulting Ltd., The Red House, 10 Market Square, Amersham HP7 0DQ, UK;
| | - Bryan Charleston
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.); (B.C.); (G.M.W.)
| | - George M. Warimwe
- The Pirbright Institute, Ash Road, Pirbright, Woking GU24 0NF, UK; (A.S.); (B.C.); (G.M.W.)
- KEMRI-Wellcome Trust Research Programme, Kilifi P.O. Box 230-80108, Kenya
- Centre for Tropical Medicine & Global Health, University of Oxford, Oxford OX3 7LG, UK
| | - Alexander D. Douglas
- Wellcome Trust Centre for Human Genetics, Jenner Institute, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK; (A.B.); (P.D.); (S.F.)
| |
Collapse
|
24
|
Dulal P, Gharaei R, Berg A, Walters AA, Hawkins N, Claridge TDW, Kowal K, Neill S, Ritchie AJ, Ashfield R, Hill AVS, Tronci G, Russell SJ, Douglas AD. Characterisation of factors contributing to the performance of nonwoven fibrous matrices as substrates for adenovirus vectored vaccine stabilisation. Sci Rep 2021; 11:20877. [PMID: 34686689 PMCID: PMC8536692 DOI: 10.1038/s41598-021-00065-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/23/2021] [Indexed: 11/09/2022] Open
Abstract
Adenovirus vectors offer a platform technology for vaccine development. The value of the platform has been proven during the COVID-19 pandemic. Although good stability at 2-8 °C is an advantage of the platform, non-cold-chain distribution would have substantial advantages, in particular in low-income countries. We have previously reported a novel, potentially less expensive thermostabilisation approach using a combination of simple sugars and glass micro-fibrous matrix, achieving excellent recovery of adenovirus-vectored vaccines after storage at temperatures as high as 45 °C. This matrix is, however, prone to fragmentation and so not suitable for clinical translation. Here, we report an investigation of alternative fibrous matrices which might be suitable for clinical use. A number of commercially-available matrices permitted good protein recovery, quality of sugar glass and moisture content of the dried product but did not achieve the thermostabilisation performance of the original glass fibre matrix. We therefore further investigated physical and chemical characteristics of the glass fibre matrix and its components, finding that the polyvinyl alcohol present in the glass fibre matrix assists vaccine stability. This finding enabled us to identify a potentially biocompatible matrix with encouraging performance. We discuss remaining challenges for transfer of the technology into clinical use, including reliability of process performance.
Collapse
Affiliation(s)
- Pawan Dulal
- Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK.
| | - Robabeh Gharaei
- grid.9909.90000 0004 1936 8403Clothworkers’ Centre for Textile Materials Innovation for Healthcare, University of Leeds, Leeds, LS2 9JT UK
| | - Adam Berg
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Adam A. Walters
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Nicholas Hawkins
- grid.4991.50000 0004 1936 8948Oxford Silk Group, ABRG, Department of Zoology, University of Oxford, Oxford, OX2 3RE UK
| | - Tim D. W. Claridge
- grid.4991.50000 0004 1936 8948Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA UK
| | - Katarzyna Kowal
- grid.436666.7Nonwovens Innovation and Research Institute Ltd, 169 Meanwood Road, Leeds, LS7 1SR UK
| | - Steven Neill
- grid.436666.7Nonwovens Innovation and Research Institute Ltd, 169 Meanwood Road, Leeds, LS7 1SR UK
| | - Adam J. Ritchie
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Rebecca Ashfield
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Adrian V. S. Hill
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| | - Giuseppe Tronci
- grid.9909.90000 0004 1936 8403Clothworkers’ Centre for Textile Materials Innovation for Healthcare, University of Leeds, Leeds, LS2 9JT UK
| | - Stephen J. Russell
- grid.9909.90000 0004 1936 8403Clothworkers’ Centre for Textile Materials Innovation for Healthcare, University of Leeds, Leeds, LS2 9JT UK ,grid.436666.7Nonwovens Innovation and Research Institute Ltd, 169 Meanwood Road, Leeds, LS7 1SR UK
| | - Alexander D. Douglas
- grid.270683.80000 0004 0641 4511Jenner Institute, University of Oxford, Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN UK
| |
Collapse
|
25
|
A three-antigen Plasmodium falciparum DNA prime-Adenovirus boost malaria vaccine regimen is superior to a two-antigen regimen and protects against controlled human malaria infection in healthy malaria-naïve adults. PLoS One 2021; 16:e0256980. [PMID: 34495988 PMCID: PMC8425539 DOI: 10.1371/journal.pone.0256980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/15/2021] [Indexed: 12/13/2022] Open
Abstract
Background A DNA-prime/human adenovirus serotype 5 (HuAd5) boost vaccine encoding Plasmodium falciparum (Pf) circumsporozoite protein (PfCSP) and Pf apical membrane antigen-1 (PfAMA1), elicited protection in 4/15 (27%) of subjects against controlled human malaria infection (CHMI) that was statistically associated with CD8+ T cell responses. Subjects with high level pre-existing immunity to HuAd5 were not protected, suggesting an adverse effect on vaccine efficacy (VE). We replaced HuAd5 with chimpanzee adenovirus 63 (ChAd63), and repeated the study, assessing both the two-antigen (CSP, AMA1 = CA) vaccine, and a novel three-antigen (CSP, AMA1, ME-TRAP = CAT) vaccine that included a third pre-erythrocytic stage antigen [malaria multiple epitopes (ME) fused to the Pf thrombospondin-related adhesive protein (TRAP)] to potentially enhance protection. Methodology This was an open label, randomized Phase 1 trial, assessing safety, tolerability, and VE against CHMI in healthy, malaria naïve adults. Forty subjects (20 each group) were to receive three monthly CA or CAT DNA priming immunizations, followed by corresponding ChAd63 boost four months later. Four weeks after the boost, immunized subjects and 12 infectivity controls underwent CHMI by mosquito bite using the Pf3D7 strain. VE was assessed by determining the differences in time to parasitemia as detected by thick blood smears up to 28-days post CHMI and utilizing the log rank test, and by calculating the risk ratio of each treatment group and subtracting from 1, with significance calculated by the Cochran-Mantel-Haenszel method. Results In both groups, systemic adverse events (AEs) were significantly higher after the ChAd63 boost than DNA immunizations. Eleven of 12 infectivity controls developed parasitemia (mean 11.7 days). In the CA group, 15 of 16 (93.8%) immunized subjects developed parasitemia (mean 12.0 days). In the CAT group, 11 of 16 (63.8%) immunized subjects developed parasitemia (mean 13.0 days), indicating significant protection by log rank test compared to infectivity controls (p = 0.0406) and the CA group (p = 0.0229). VE (1 minus the risk ratio) in the CAT group was 25% compared to -2% in the CA group. The CA and CAT vaccines induced robust humoral (ELISA antibodies against CSP, AMA1 and TRAP, and IFA responses against sporozoites and Pf3D7 blood stages), and cellular responses (IFN-γ FluoroSpot responses to CSP, AMA1 and TRAP) that were not associated with protection. Conclusions This study demonstrated that the ChAd63 CAT vaccine exhibited significant protective efficacy, and confirmed protection was afforded by adding a third antigen (T) to a two-antigen (CA) formulation to achieve increased VE. Although the ChAd63-CAT vaccine was associated with increased frequencies of systemic AEs compared to the CA vaccine and, historically, compared to the HuAd5 vectored malaria vaccine encoding CSP and AMA1, they were transient and associated with increased vector dosing.
Collapse
|
26
|
Alhashimi M, Elkashif A, Sayedahmed EE, Mittal SK. Nonhuman Adenoviral Vector-Based Platforms and Their Utility in Designing Next Generation of Vaccines for Infectious Diseases. Viruses 2021; 13:1493. [PMID: 34452358 PMCID: PMC8402644 DOI: 10.3390/v13081493] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
Several human adenoviral (Ad) vectors have been developed for vaccine delivery owing to their numerous advantages, including the feasibility of different vector designs, the robustness of elicited immune responses, safety, and scalability. To expand the repertoire of Ad vectors for receptor usage and circumvention of Ad vector immunity, the use of less prevalent human Ad types or nonhuman Ads were explored for vector design. Notably, many nonhuman Ad vectors have shown great promise in preclinical and clinical studies as vectors for vaccine delivery. This review describes the key features of several nonhuman Ad vector platforms and their implications in developing effective vaccines against infectious diseases.
Collapse
Affiliation(s)
| | | | | | - Suresh K. Mittal
- Immunology and Infectious Disease, and Purdue University Center for Cancer Research, Department of Comparative Pathobiology, Purdue Institute for Inflammation, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907-2027, USA; (M.A.); (A.E.); (E.E.S.)
| |
Collapse
|
27
|
Negahdaripour M, Shafiekhani M, Moezzi SMI, Amiri S, Rasekh S, Bagheri A, Mosaddeghi P, Vazin A. Administration of COVID-19 vaccines in immunocompromised patients. Int Immunopharmacol 2021; 99:108021. [PMID: 34352567 PMCID: PMC8316069 DOI: 10.1016/j.intimp.2021.108021] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 07/11/2021] [Accepted: 07/23/2021] [Indexed: 12/23/2022]
Abstract
Since the beginning of vaccination programs against COVID-19 in different countries, several populations such as patients with specific immunological conditions have been considered as the priorities for immunization. In this regard, patients with autoimmune diseases or those receiving immunosuppressive agents and anti-cancer therapies, need special attention. However, no confirmed data is presently available regarding COVID-19 vaccines in these populations due to exclusion from the conducted clinical trials. Given the probable suppression or over-activation of the immune system in such patients, reaching a consensus for their vaccination is critical, besides gathering data and conducting trials, which could probably clarify this matter in the future. In this review, besides a brief on the available COVID-19 vaccines, considerations and available knowledge about administering similar vaccines in patients with cancer, hematopoietic stem cell transplantation, solid organ transplantation, multiple sclerosis (MS), inflammatory bowel disease (IBD), and rheumatologic and dermatologic autoimmune disorders are summarized to help in decision making. As discussed, live-attenuated viruses, which should be avoided in these groups, are not employed in the present COVID-19 vaccines. Thus, the main concern regarding efficacy could be met using a potent COVID-19 vaccine. Moreover, the vaccination timing for maximum efficacy could be decided according to the patient’s condition, indicated medications, and the guides provided here. Post-vaccination monitoring is also advised to ensure an adequate immune response. Further studies in this area are urgently warranted.
Collapse
Affiliation(s)
- Manica Negahdaripour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shafiekhani
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Iman Moezzi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sogand Amiri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rasekh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ashkan Bagheri
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pouria Mosaddeghi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran; Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Afsaneh Vazin
- Clinical Pharmacy Department, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
28
|
de Graaf H, Payne RO, Taylor I, Miura K, Long CA, Elias SC, Zaric M, Minassian AM, Silk SE, Li L, Poulton ID, Baker M, Draper SJ, Gbesemete D, Brendish NJ, Martins F, Marini A, Mekhaiel D, Edwards NJ, Roberts R, Vekemans J, Moyle S, Faust SN, Berrie E, Lawrie AM, Hill F, Hill AVS, Biswas S. Safety and Immunogenicity of ChAd63/MVA Pfs25-IMX313 in a Phase I First-in-Human Trial. Front Immunol 2021; 12:694759. [PMID: 34335606 PMCID: PMC8318801 DOI: 10.3389/fimmu.2021.694759] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/29/2021] [Indexed: 11/13/2022] Open
Abstract
Background Transmission blocking vaccines targeting the sexual-stages of the malaria parasite could play a major role to achieve elimination and eradication of malaria. The Plasmodium falciparum Pfs25 protein (Pfs25) is the most clinically advanced candidate sexual-stage antigen. IMX313, a complement inhibitor C4b-binding protein that forms heptamers with the antigen fused to it, improve antibody responses. This is the first time that viral vectors have been used to induce antibodies in humans against an antigen that is expressed only in the mosquito vector. Methods Clinical trial looking at safety and immunogenicity of two recombinant viral vectored vaccines encoding Pfs25-IMX313 in healthy malaria-naive adults. Replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding Pfs25-IMX313, were delivered by the intramuscular route in a heterologous prime-boost regimen using an 8-week interval. Safety data and samples for immunogenicity assays were taken at various time-points. Results The reactogenicity of the vaccines was similar to that seen in previous trials using the same viral vectors encoding other antigens. The vaccines were immunogenic and induced both antibody and T cell responses against Pfs25, but significant transmission reducing activity (TRA) was not observed in most volunteers by standard membrane feeding assay. Conclusion Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. However, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine formulation. Trial Registration Clinicaltrials.gov NCT02532049.
Collapse
Affiliation(s)
- Hans de Graaf
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Ruth O Payne
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Iona Taylor
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Carol A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Sean C Elias
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Marija Zaric
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Sarah E Silk
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Lee Li
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Ian D Poulton
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Megan Baker
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Diane Gbesemete
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Nathan J Brendish
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Filipa Martins
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Arianna Marini
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - David Mekhaiel
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Nick J Edwards
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Rachel Roberts
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Sarah Moyle
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Saul N Faust
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust and Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Eleanor Berrie
- Clinical Biomanufacturing Facility, University of Oxford, Oxford, United Kingdom
| | - Alison M Lawrie
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sumi Biswas
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Kolli SK, Salman AM, Ramesar J, Chevalley-Maurel S, Kroeze H, Geurten FGA, Miyazaki S, Mukhopadhyay E, Marin-Mogollon C, Franke-Fayard B, Hill AVS, Janse CJ. Screening of viral-vectored P. falciparum pre-erythrocytic candidate vaccine antigens using chimeric rodent parasites. PLoS One 2021; 16:e0254498. [PMID: 34252120 PMCID: PMC8274855 DOI: 10.1371/journal.pone.0254498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 11/19/2022] Open
Abstract
To screen for additional vaccine candidate antigens of Plasmodium pre-erythrocytic stages, fourteen P. falciparum proteins were selected based on expression in sporozoites or their role in establishment of hepatocyte infection. For preclinical evaluation of immunogenicity of these proteins in mice, chimeric P. berghei sporozoites were created that express the P. falciparum proteins in sporozoites as an additional copy gene under control of the uis4 gene promoter. All fourteen chimeric parasites produced sporozoites but sporozoites of eight lines failed to establish a liver infection, indicating a negative impact of these P. falciparum proteins on sporozoite infectivity. Immunogenicity of the other six proteins (SPELD, ETRAMP10.3, SIAP2, SPATR, HT, RPL3) was analyzed by immunization of inbred BALB/c and outbred CD-1 mice with viral-vectored (ChAd63 or ChAdOx1, MVA) vaccines, followed by challenge with chimeric sporozoites. Protective immunogenicity was determined by analyzing parasite liver load and prepatent period of blood stage infection after challenge. Of the six proteins only SPELD immunized mice showed partial protection. We discuss both the low protective immunogenicity of these proteins in the chimeric rodent malaria challenge model and the negative effect on P. berghei sporozoite infectivity of several P. falciparum proteins expressed in the chimeric sporozoites.
Collapse
Affiliation(s)
- Surendra Kumar Kolli
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed M. Salman
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Jai Ramesar
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Hans Kroeze
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Fiona G. A. Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Ekta Mukhopadhyay
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | | | | | - Adrian V. S. Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
30
|
Collins KA, Brod F, Snaith R, Ulaszewska M, Longley RJ, Salman AM, Gilbert SC, Spencer AJ, Franco D, Ballou WR, Hill AVS. Ultra-low dose immunization and multi-component vaccination strategies enhance protection against malaria in mice. Sci Rep 2021; 11:10792. [PMID: 34031479 PMCID: PMC8144388 DOI: 10.1038/s41598-021-90290-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
An effective vaccine would be a valuable tool for malaria control and elimination; however, the leading malaria vaccine in development, RTS,S/AS01, provided only partial protection in a Phase 3 trial. R21 is a next-generation RTS,S-like vaccine. We have previously shown in mice that R21 administered in Matrix-M is highly immunogenic, able to elicit complete protection against sporozoite challenge, and can be successfully administered with TRAP based viral-vectors resulting in enhanced protection. In this study, we developed a novel, GMP-compatible purification process for R21, and evaluated the immunogenicity and protective efficacy of ultra-low doses of both R21 and RTS,S when formulated in AS01. We demonstrated that both vaccines are highly immunogenic and also elicit comparable high levels of protection against transgenic parasites in BALB/c mice. By lowering the vaccine dose there was a trend for increased immunogenicity and sterile protection, with the highest dose vaccine groups achieving the lowest efficacy (50% sterile protection). We also evaluated the ability to combine RTS,S/AS01 with TRAP based viral-vectors and observed concurrent induction of immune responses to both antigens with minimal interference when mixing the vaccines prior to administration. These studies suggest that R21 or RTS,S could be combined with viral-vectors for a multi-component vaccination approach and indicate that low dose vaccination should be fully explored in humans to maximize potential efficacy.
Collapse
Affiliation(s)
- Katharine A Collins
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Radboud Institute for Health Science, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Florian Brod
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Snaith
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rhea J Longley
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ahmed M Salman
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexandra J Spencer
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Adrian V S Hill
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
31
|
Younis BM, Osman M, Khalil EAG, Santoro F, Furini S, Wiggins R, Keding A, Carraro M, Musa AEA, Abdarahaman MAA, Mandefield L, Bland M, Aebischer T, Gabe R, Layton AM, Lacey CJN, Kaye PM, Musa AM. Safety and immunogenicity of ChAd63-KH vaccine in post-kala-azar dermal leishmaniasis patients in Sudan. Mol Ther 2021; 29:2366-2377. [PMID: 33781913 PMCID: PMC8261165 DOI: 10.1016/j.ymthe.2021.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/06/2020] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Post-kala-azar dermal leishmaniasis (PKDL) is a chronic, stigmatizing skin condition occurring frequently after apparent clinical cure from visceral leishmaniasis. Given an urgent need for new treatments, we conducted a phase IIa safety and immunogenicity trial of ChAd63-KH vaccine in Sudanese patients with persistent PKDL. LEISH2a (ClinicalTrials.gov: NCT02894008) was an open-label three-phase clinical trial involving sixteen adult and eight adolescent patients with persistent PKDL (median duration, 30 months; range, 6-180 months). Patients received a single intramuscular vaccination of 1 × 1010 viral particles (v.p.; adults only) or 7.5 × 1010 v.p. (adults and adolescents), with primary (safety) and secondary (clinical response and immunogenicity) endpoints evaluated over 42-120 days follow-up. AmBisome was provided to patients with significant remaining disease at their last visit. ChAd63-KH vaccine showed minimal adverse reactions in PKDL patients and induced potent innate and cell-mediated immune responses measured by whole-blood transcriptomics and ELISpot. 7/23 patients (30.4%) monitored to study completion showed >90% clinical improvement, and 5/23 (21.7%) showed partial improvement. A logistic regression model applied to blood transcriptomic data identified immune modules predictive of patients with >90% clinical improvement. A randomized controlled trial to determine whether these clinical responses were vaccine-related and whether ChAd63-KH vaccine has clinical utility is underway.
Collapse
Affiliation(s)
- Brima M Younis
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Army Ave., Khartoum, Sudan
| | - Mohamed Osman
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Eltahir A G Khalil
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Army Ave., Khartoum, Sudan
| | - Francesco Santoro
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Rebecca Wiggins
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Ada Keding
- Department of Health Sciences, University of York, Heslington, York YO10 5DD, UK
| | - Monica Carraro
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Anas E A Musa
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Army Ave., Khartoum, Sudan
| | - Mujahid A A Abdarahaman
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Army Ave., Khartoum, Sudan
| | - Laura Mandefield
- Department of Health Sciences, University of York, Heslington, York YO10 5DD, UK
| | - Martin Bland
- Department of Health Sciences, University of York, Heslington, York YO10 5DD, UK
| | | | - Rhian Gabe
- Wolfson Institute of Preventive Medicine, Queen Mary University of London, London E1 4NS, UK
| | - Alison M Layton
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Charles J N Lacey
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK
| | - Paul M Kaye
- York Biomedical Research Institute, Hull York Medical School, University of York, Heslington, York YO10 5DD, UK.
| | - Ahmed M Musa
- Department of Clinical Pathology & Immunology, Institute of Endemic Diseases, University of Khartoum, Army Ave., Khartoum, Sudan.
| |
Collapse
|
32
|
Longet S, Mellors J, Carroll MW, Tipton T. Ebolavirus: Comparison of Survivor Immunology and Animal Models in the Search for a Correlate of Protection. Front Immunol 2021; 11:599568. [PMID: 33679690 PMCID: PMC7935512 DOI: 10.3389/fimmu.2020.599568] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/29/2020] [Indexed: 01/21/2023] Open
Abstract
Ebola viruses are enveloped, single-stranded RNA viruses belonging to the Filoviridae family and can cause Ebola virus disease (EVD), a serious haemorrhagic illness with up to 90% mortality. The disease was first detected in Zaire (currently the Democratic Republic of Congo) in 1976. Since its discovery, Ebola virus has caused sporadic outbreaks in Africa and was responsible for the largest 2013-2016 EVD epidemic in West Africa, which resulted in more than 28,600 cases and over 11,300 deaths. This epidemic strengthened international scientific efforts to contain the virus and develop therapeutics and vaccines. Immunology studies in animal models and survivors, as well as clinical trials have been crucial to understand Ebola virus pathogenesis and host immune responses, which has supported vaccine development. This review discusses the major findings that have emerged from animal models, studies in survivors and vaccine clinical trials and explains how these investigations have helped in the search for a correlate of protection.
Collapse
Affiliation(s)
- Stephanie Longet
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Jack Mellors
- Public Health England, National Infection Service, Salisbury, United Kingdom
| | - Miles W. Carroll
- Public Health England, National Infection Service, Salisbury, United Kingdom
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Tom Tipton
- Public Health England, National Infection Service, Salisbury, United Kingdom
| |
Collapse
|
33
|
Sasso E, D'Alise AM, Zambrano N, Scarselli E, Folgori A, Nicosia A. New viral vectors for infectious diseases and cancer. Semin Immunol 2020; 50:101430. [PMID: 33262065 DOI: 10.1016/j.smim.2020.101430] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/23/2020] [Accepted: 11/16/2020] [Indexed: 12/12/2022]
Abstract
Since the discovery in 1796 by Edward Jenner of vaccinia virus as a way to prevent and finally eradicate smallpox, the concept of using a virus to fight another virus has evolved into the current approaches of viral vectored genetic vaccines. In recent years, key improvements to the vaccinia virus leading to a safer version (Modified Vaccinia Ankara, MVA) and the discovery that some viruses can be used as carriers of heterologous genes encoding for pathological antigens of other infectious agents (the concept of 'viral vectors') has spurred a new wave of clinical research potentially providing for a solution for the long sought after vaccines against major diseases such as HIV, TB, RSV and Malaria, or emerging infectious diseases including those caused by filoviruses and coronaviruses. The unique ability of some of these viral vectors to stimulate the cellular arm of the immune response and, most importantly, T lymphocytes with cell killing activity, has also reawakened the interest toward developing therapeutic vaccines against chronic infectious diseases and cancer. To this end, existing vectors such as those based on Adenoviruses have been improved in immunogenicity and efficacy. Along the same line, new vectors that exploit viruses such as Vesicular Stomatitis Virus (VSV), Measles Virus (MV), Lymphocytic choriomeningitis virus (LCMV), cytomegalovirus (CMV), and Herpes Simplex Virus (HSV), have emerged. Furthermore, technological progress toward modifying their genome to render some of these vectors incompetent for replication has increased confidence toward their use in infant and elderly populations. Lastly, their production process being the same for every product has made viral vectored vaccines the technology of choice for rapid development of vaccines against emerging diseases and for 'personalised' cancer vaccines where there is an absolute need to reduce time to the patient from months to weeks or days. Here we review the recent developments in viral vector technologies, focusing on novel vectors based on primate derived Adenoviruses and Poxviruses, Rhabdoviruses, Paramixoviruses, Arenaviruses and Herpesviruses. We describe the rationale for, immunologic mechanisms involved in, and design of viral vectored gene vaccines under development and discuss the potential utility of these novel genetic vaccine approaches in eliciting protection against infectious diseases and cancer.
Collapse
Affiliation(s)
- Emanuele Sasso
- Nouscom srl, Via di Castel Romano 100, 00128 Rome, Italy; Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy.
| | | | - Nicola Zambrano
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| | | | | | - Alfredo Nicosia
- Ceinge-Biotecnologie Avanzate S.C. A.R.L., via Gaetano Salvatore 486, 80145 Naples, Italy; Department of Molecular Medicine and Medical Biotechnology, University Federico II, Via Pansini 5, 80131 Naples, Italy.
| |
Collapse
|
34
|
Capone S, Brown A, Hartnell F, Sorbo MD, Traboni C, Vassilev V, Colloca S, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E, Swadling L. Optimising T cell (re)boosting strategies for adenoviral and modified vaccinia Ankara vaccine regimens in humans. NPJ Vaccines 2020; 5:94. [PMID: 33083029 PMCID: PMC7550607 DOI: 10.1038/s41541-020-00240-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/20/2020] [Indexed: 12/11/2022] Open
Abstract
Simian adenoviral and modified vaccinia Ankara (MVA) viral vectors used in heterologous prime-boost strategies are potent inducers of T cells against encoded antigens and are in advanced testing as vaccine carriers for a wide range of infectious agents and cancers. It is unclear if these responses can be further enhanced or sustained with reboosting strategies. Furthermore, despite the challenges involved in MVA manufacture dose de-escalation has not been performed in humans. In this study, healthy volunteers received chimpanzee-derived adenovirus-3 and MVA vaccines encoding the non-structural region of hepatitis C virus (ChAd3-NSmut/MVA-NSmut) 8 weeks apart. Volunteers were then reboosted with a second round of ChAd3-NSmut/MVA-NSmut or MVA-NSmut vaccines 8 weeks or 1-year later. We also determined the capacity of reduced doses of MVA-NSmut to boost ChAd3-NSmut primed T cells. Reboosting was safe, with no enhanced reactogenicity. Reboosting after an 8-week interval led to minimal re-expansion of transgene-specific T cells. However, after a longer interval, T cell responses expanded efficiently and memory responses were enhanced. The 8-week interval regimen induced a higher percentage of terminally differentiated and effector memory T cells. Reboosting with MVA-NSmut alone was as effective as with ChAd3-NSmut/MVA-NSmut. A ten-fold lower dose of MVA (2 × 107pfu) induced high-magnitude, sustained, broad, and functional Hepatitis C virus (HCV)-specific T cell responses, equivalent to standard doses (2 × 108 pfu). Overall, we show that following Ad/MVA prime-boost vaccination reboosting is most effective after a prolonged interval and is productive with MVA alone. Importantly, we also show that a ten-fold lower dose of MVA is as potent in humans as the standard dose.
Collapse
Affiliation(s)
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Cinzia Traboni
- ReiThera Srl, Via di Castel Romano, 100, 00128 Rome, Italy.,Present Address: Nouscom Srl, Via di Castel Romano, 100, 00128 Rome, Italy
| | | | | | - Alfredo Nicosia
- Keires AG, Baumleingasse 18, CH 4051 Basel, Switzerland.,CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | | | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford, UK.,The Jenner Institute, University of Oxford, Oxford, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Oxford NIHR BRC, and Translational Gastroenterology Unit, Oxford, UK.,The Jenner Institute, University of Oxford, Oxford, UK
| | - Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Present Address: Rayne Institute, University College London, London, UK
| |
Collapse
|
35
|
Importance of the Immunodominant CD8 + T Cell Epitope of Plasmodium berghei Circumsporozoite Protein in Parasite- and Vaccine-Induced Protection. Infect Immun 2020; 88:IAI.00383-20. [PMID: 32719159 DOI: 10.1128/iai.00383-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/15/2022] Open
Abstract
The circumsporozoite protein (CSP) builds up the surface coat of sporozoites and is the leading malaria pre-erythrocytic-stage vaccine candidate. CSP has been shown to induce robust CD8+ T cell responses that are capable of eliminating developing parasites in hepatocytes, resulting in protective immunity. In this study, we characterized the importance of the immunodominant CSP-derived epitope SYIPSAEKI of Plasmodium berghei in both sporozoite- and vaccine-induced protection in murine infection models. In BALB/c mice, where SYIPSAEKI is efficiently presented in the context of the major histocompatibility complex class I (MHC-I) molecule H-2-Kd, we established that epitope-specific CD8+ T cell responses contribute to parasite killing following sporozoite immunization. Yet, sterile protection was achieved in the absence of this epitope, substantiating the concept that other antigens can be sufficient for parasite-induced protective immunity. Furthermore, we demonstrated that SYIPSAEKI-specific CD8+ T cell responses elicited by viral-vectored CSP-expressing vaccines effectively targeted parasites in hepatocytes. The resulting sterile protection strictly relied on the expression of SYIPSAEKI. In C57BL/6 mice, which are unable to present the immunodominant epitope, CSP-based vaccines did not confer complete protection, despite the induction of high levels of CSP-specific antibodies. These findings underscore the significance of CSP in protection against malaria pre-erythrocytic stages and demonstrate that a significant proportion of the protection against the parasite is mediated by CD8+ T cells specific for the immunodominant CSP-derived epitope.
Collapse
|
36
|
Goldstein N, Bockstal V, Bart S, Luhn K, Robinson C, Gaddah A, Callendret B, Douoguih M. Safety and Immunogenicity of Heterologous and Homologous Two Dose Regimens of Ad26- and MVA-Vectored Ebola Vaccines: A Randomized, Controlled Phase 1 Study. J Infect Dis 2020; 226:595-607. [PMID: 32939546 PMCID: PMC9441209 DOI: 10.1093/infdis/jiaa586] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/14/2020] [Indexed: 11/12/2022] Open
Abstract
Background This phase 1 placebo-controlled study assessed the safety and immunogenicity of 2-dose regimens of Ad26.ZEBOV (adenovirus serotype 26 [Ad26]) and MVA-BN-Filo (modified vaccinia Ankara [MVA]) vaccines with booster vaccination at day 360. Methods Healthy US adults (N = 164) randomized into 10 groups received saline placebo or standard or high doses of Ad26 or MVA in 2-dose regimens at 7-, 14-, 28-, or 56-day intervals; 8 groups received booster Ad26 or MVA vaccinations on day 360. Participants reported solicited and unsolicited reactogenicity; we measured immunoglobulin G binding, neutralizing antibodies and cellular immune responses to Ebola virus glycoprotein. Results All regimens were well tolerated with no serious vaccine-related adverse events. Heterologous (Ad26,MVA [dose 1, dose 2] or MVA,Ad26) and homologous (Ad26,Ad26) regimens induced humoral and cellular immune responses 21 days after dose 2; responses were higher after heterologous regimens. Booster vaccination elicited anamnestic responses in all participants. Conclusions Both heterologous and homologous Ad26,MVA Ebola vaccine regimens are well tolerated in healthy adults, regardless of interval or dose level. Heterologous 2-dose Ad26,MVA regimens containing an Ebola virus insert induce strong, durable humoral and cellular immune responses. Immunological memory was rapidly recalled by booster vaccination, suggesting that Ad26 booster doses could be considered for individuals at risk of Ebola infection, who previously received the 2-dose regimen.
Collapse
Affiliation(s)
- Neil Goldstein
- Janssen Infectious Diseases and Vaccines, Leiden, The Netherlands
| | - Viki Bockstal
- Janssen Infectious Diseases and Vaccines, Leiden, The Netherlands
| | | | - Kerstin Luhn
- Janssen Infectious Diseases and Vaccines, Leiden, The Netherlands
| | - Cynthia Robinson
- Janssen Infectious Diseases and Vaccines, Leiden, The Netherlands
| | - Auguste Gaddah
- Janssen Infectious Diseases and Vaccines, Beerse, Belgium
| | | | - Macaya Douoguih
- Janssen Infectious Diseases and Vaccines, Leiden, The Netherlands
| |
Collapse
|
37
|
Folegatti PM, Bittaye M, Flaxman A, Lopez FR, Bellamy D, Kupke A, Mair C, Makinson R, Sheridan J, Rohde C, Halwe S, Jeong Y, Park YS, Kim JO, Song M, Boyd A, Tran N, Silman D, Poulton I, Datoo M, Marshall J, Themistocleous Y, Lawrie A, Roberts R, Berrie E, Becker S, Lambe T, Hill A, Ewer K, Gilbert S. Safety and immunogenicity of a candidate Middle East respiratory syndrome coronavirus viral-vectored vaccine: a dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial. THE LANCET. INFECTIOUS DISEASES 2020; 20:816-826. [PMID: 32325038 PMCID: PMC7172901 DOI: 10.1016/s1473-3099(20)30160-2] [Citation(s) in RCA: 139] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection continue to rise in the Arabian Peninsula 7 years after it was first described in Saudi Arabia. MERS-CoV poses a significant risk to public health security because of an absence of currently available effective countermeasures. We aimed to assess the safety and immunogenicity of the candidate simian adenovirus-vectored vaccine expressing the full-length spike surface glycoprotein, ChAdOx1 MERS, in humans. METHODS This dose-escalation, open-label, non-randomised, uncontrolled, phase 1 trial was done at the Centre for Clinical Vaccinology and Tropical Medicine (Oxford, UK) and included healthy people aged 18-50 years with negative pre-vaccination tests for HIV antibodies, hepatitis B surface antigen, and hepatitis C antibodies (and a negative urinary pregnancy test for women). Participants received a single intramuscular injection of ChAdOx1 MERS at three different doses: the low-dose group received 5 × 109 viral particles, the intermediate-dose group received 2·5 × 1010 viral particles, and the high-dose group received 5 × 1010 viral particles. The primary objective was to assess safety and tolerability of ChAdOx1 MERS, measured by the occurrence of solicited, unsolicited, and serious adverse events after vaccination. The secondary objective was to assess the cellular and humoral immunogenicity of ChAdOx1 MERS, measured by interferon-γ-linked enzyme-linked immunospot, ELISA, and virus neutralising assays after vaccination. Participants were followed up for up to 12 months. This study is registered with ClinicalTrials.gov, NCT03399578. FINDINGS Between March 14 and Aug 15, 2018, 24 participants were enrolled: six were assigned to the low-dose group, nine to the intermediate-dose group, and nine to the high-dose group. All participants were available for follow-up at 6 months, but five (one in the low-dose group, one in the intermediate-dose group, and three in the high-dose group) were lost to follow-up at 12 months. A single dose of ChAdOx1 MERS was safe at doses up to 5 × 1010 viral particles with no vaccine-related serious adverse events reported by 12 months. One serious adverse event reported was deemed to be not related to ChAdOx1 MERS. 92 (74% [95% CI 66-81]) of 124 solicited adverse events were mild, 31 (25% [18-33]) were moderate, and all were self-limiting. Unsolicited adverse events in the 28 days following vaccination considered to be possibly, probably, or definitely related to ChAdOx1 MERS were predominantly mild in nature and resolved within the follow-up period of 12 months. The proportion of moderate and severe adverse events was significantly higher in the high-dose group than in the intermediate-dose group (relative risk 5·83 [95% CI 2·11-17·42], p<0·0001) Laboratory adverse events considered to be at least possibly related to the study intervention were self-limiting and predominantly mild in severity. A significant increase from baseline in T-cell (p<0·003) and IgG (p<0·0001) responses to the MERS-CoV spike antigen was observed at all doses. Neutralising antibodies against live MERS-CoV were observed in four (44% [95% CI 19-73]) of nine participants in the high-dose group 28 days after vaccination, and 19 (79% [58-93]) of 24 participants had antibodies capable of neutralisation in a pseudotyped virus neutralisation assay. INTERPRETATION ChAdOx1 MERS was safe and well tolerated at all tested doses. A single dose was able to elicit both humoral and cellular responses against MERS-CoV. The results of this first-in-human clinical trial support clinical development progression into field phase 1b and 2 trials. FUNDING UK Department of Health and Social Care, using UK Aid funding, managed by the UK National Institute for Health Research.
Collapse
Affiliation(s)
- Pedro M Folegatti
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mustapha Bittaye
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amy Flaxman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Fernando Ramos Lopez
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Duncan Bellamy
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexandra Kupke
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Catherine Mair
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Makinson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jonathan Sheridan
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Cornelius Rohde
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Sandro Halwe
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Yuji Jeong
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Young-Shin Park
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Jae-Ouk Kim
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Manki Song
- International Vaccine Institute, Science Unit, Seoul, South Korea
| | - Amy Boyd
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nguyen Tran
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Silman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ian Poulton
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehreen Datoo
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Julia Marshall
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Yrene Themistocleous
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alison Lawrie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rachel Roberts
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Eleanor Berrie
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Stephan Becker
- Institute of Virology, Philipps University of Marburg, Marburg, Germany; German Center for Infection Research, Thematic Translational Unit Emerging Infections, Marburg, Germany
| | - Teresa Lambe
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Adrian Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Katie Ewer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Gilbert
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
Shields CW, Wang LLW, Evans MA, Mitragotri S. Materials for Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1901633. [PMID: 31250498 DOI: 10.1002/adma.201901633] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/17/2019] [Indexed: 05/20/2023]
Abstract
Breakthroughs in materials engineering have accelerated the progress of immunotherapy in preclinical studies. The interplay of chemistry and materials has resulted in improved loading, targeting, and release of immunomodulatory agents. An overview of the materials that are used to enable or improve the success of immunotherapies in preclinical studies is presented, from immunosuppressive to proinflammatory strategies, with particular emphasis on technologies poised for clinical translation. The materials are organized based on their characteristic length scale, whereby the enabling feature of each technology is organized by the structure of that material. For example, the mechanisms by which i) nanoscale materials can improve targeting and infiltration of immunomodulatory payloads into tissues and cells, ii) microscale materials can facilitate cell-mediated transport and serve as artificial antigen-presenting cells, and iii) macroscale materials can form the basis of artificial microenvironments to promote cell infiltration and reprogramming are discussed. As a step toward establishing a set of design rules for future immunotherapies, materials that intrinsically activate or suppress the immune system are reviewed. Finally, a brief outlook on the trajectory of these systems and how they may be improved to address unsolved challenges in cancer, infectious diseases, and autoimmunity is presented.
Collapse
Affiliation(s)
- C Wyatt Shields
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Michael A Evans
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
39
|
Benest J, Rhodes S, Afrough S, Evans T, White R. Response Type and Host Species may be Sufficient to Predict Dose-Response Curve Shape for Adenoviral Vector Vaccines. Vaccines (Basel) 2020; 8:vaccines8020155. [PMID: 32235634 PMCID: PMC7349762 DOI: 10.3390/vaccines8020155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/20/2022] Open
Abstract
Vaccine dose-response curves can follow both saturating and peaking shapes. Dose-response curves for adenoviral vector vaccines have not been systematically described. In this paper, we explore the dose-response shape of published adenoviral animal and human studies. Where data were informative, dose-response was approximately five times more likely to be peaking than saturating. There was evidence that host species and response type may be sufficient for prediction of dose-response curve shape. Dose-response curve shape prediction could decrease clinical trial costs, accelerating the development of life-saving vaccines.
Collapse
Affiliation(s)
- John Benest
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.)
- Correspondence:
| | - Sophie Rhodes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.)
| | - Sara Afrough
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK (T.E.)
| | - Thomas Evans
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK (T.E.)
| | - Richard White
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.)
| |
Collapse
|
40
|
Afrough S, Rhodes S, Evans T, White R, Benest J. Immunologic Dose-Response to Adenovirus-Vectored Vaccines in Animals and Humans: A Systematic Review of Dose-Response Studies of Replication Incompetent Adenoviral Vaccine Vectors when Given via an Intramuscular or Subcutaneous Route. Vaccines (Basel) 2020; 8:E131. [PMID: 32192058 PMCID: PMC7157626 DOI: 10.3390/vaccines8010131] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/21/2022] Open
Abstract
Optimal vaccine dosing is important to ensure the greatest protection and safety. Analysis of dose-response data, from previous studies, may inform future studies to determine the optimal dose. Implementing more quantitative modelling approaches in vaccine dose finding have been recently suggested to accelerate vaccine development. Adenoviral vectored vaccines are in advanced stage of development for a variety of prophylactic and therapeutic indications, however dose-response has not yet been systematically determined. To further inform adenoviral vectored vaccines dose identification, historical dose-response data should be systematically reviewed. A systematic literature review was conducted to collate and describe the available dose-response studies for adenovirus vectored vaccines. Of 2787 papers identified by Medline search strategy, 35 were found to conform to pre-defined criteria. The majority of studies were in mice or humans and studied adenovirus serotype 5. Dose-response data were available for 12 different immunological responses. The majority of papers evaluated three dose levels, only two evaluated more than five dose levels. The most common dosing range was 107-1010 viral particles in mouse studies and 108-1011 viral particles in human studies. Data were available on adenovirus vaccine dose-response, primarily on adenovirus serotype 5 backbones and in mice and humans. These data could be used for quantitative adenoviral vectored vaccine dose optimisation analysis.
Collapse
Affiliation(s)
- Sara Afrough
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK;
| | - Sophie Rhodes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| | - Thomas Evans
- Vaccitech Ltd., The Schrodinger Building, Heatley Road, The Oxford Science Park, Oxford OX4 4GE, UK;
| | - Richard White
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| | - John Benest
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK; (S.R.); (R.W.); (J.B.)
| |
Collapse
|
41
|
Bliss CM, Parsons AJ, Nachbagauer R, Hamilton JR, Cappuccini F, Ulaszewska M, Webber JP, Clayton A, Hill AV, Coughlan L. Targeting Antigen to the Surface of EVs Improves the In Vivo Immunogenicity of Human and Non-human Adenoviral Vaccines in Mice. Mol Ther Methods Clin Dev 2020; 16:108-125. [PMID: 31934599 PMCID: PMC6953706 DOI: 10.1016/j.omtm.2019.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 12/25/2022]
Abstract
Adenoviral (Ad) vectors represent promising vaccine platforms for infectious disease. To overcome pre-existing immunity to commonly used human adenovirus serotype 5 (Ad5), vectors based on rare species or non-human Ads are being developed. However, these vectors often exhibit reduced potency compared with Ad5, necessitating the use of innovative approaches to augment the immunogenicity of the encoded antigen (Ag). To achieve this, we engineered model Ag, enhanced green fluorescent protein (EGFP), for targeting to the surface of host-derived extracellular vesicles (EVs), namely exosomes. Exosomes are nano-sized EVs that play important roles in cell-to-cell communication and in regulating immune responses. Directed targeting of Ag to the surface of EVs/exosomes is achieved by "exosome display," through fusion of Ag to the C1C2 domain of lactadherin, a protein highly enriched in exosomes. Herein, we engineered chimpanzee adenovirus ChAdOx1 and Ad5-based vaccines encoding EGFP, or EGFP targeted to EVs (EGFP_C1C2), and compared vaccine immunogenicity in mice. We determined that exosome display substantially increases Ag-specific humoral immunity following intramuscular and intranasal vaccination, improving the immunological potency of both ChAdOx1 and Ad5. We propose that this Ag-engineering approach could increase the immunogenicity of diverse Ad vectors that exhibit desirable manufacturing characteristics, but currently lack the potency of Ad5.
Collapse
Affiliation(s)
- Carly M. Bliss
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Andrea J. Parsons
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Raffael Nachbagauer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jennifer R. Hamilton
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Federica Cappuccini
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Marta Ulaszewska
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Jason P. Webber
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 2XN, UK
| | - Aled Clayton
- Division of Cancer & Genetics, School of Medicine, Cardiff University, Cardiff CF14 2XN, UK
| | - Adrian V.S. Hill
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford, ORCRB Roosevelt Drive, Headington, Oxford OX3 7DQ, UK
| |
Collapse
|
42
|
Molina-Franky J, Cuy-Chaparro L, Camargo A, Reyes C, Gómez M, Salamanca DR, Patarroyo MA, Patarroyo ME. Plasmodium falciparum pre-erythrocytic stage vaccine development. Malar J 2020; 19:56. [PMID: 32013956 PMCID: PMC6998842 DOI: 10.1186/s12936-020-3141-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 01/25/2020] [Indexed: 12/13/2022] Open
Abstract
Worldwide strategies between 2010 and 2017 aimed at controlling malarial parasites (mainly Plasmodium falciparum) led to a reduction of just 18% regarding disease incidence rates. Many biologically-derived anti-malarial vaccine candidates have been developed to date; this has involved using many experimental animals, an immense amount of work and the investment of millions of dollars. This review provides an overview of the current state and the main results of clinical trials for sporozoite-targeting vaccines (i.e. the parasite stage infecting the liver) carried out by research groups in areas having variable malaria transmission rates. However, none has led to promising results regarding the effective control of the disease, thereby making it necessary to complement such efforts at finding/introducing new vaccine candidates by adopting a multi-epitope, multi-stage approach, based on minimal subunits of the main sporozoite proteins involved in the invasion of the liver.
Collapse
Affiliation(s)
- Jessica Molina-Franky
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Laura Cuy-Chaparro
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Anny Camargo
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - César Reyes
- PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia.,Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá, Colombia.,3D Structures Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Marcela Gómez
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - David Ricardo Salamanca
- Health Sciences Faculty, Universidad de Boyacá, Tunja, Colombia.,Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,PhD Program in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia. .,Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia.
| | - Manuel Elkin Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia. .,Medical School, Universidad Nacional de Colombia, Bogotá, Colombia.
| |
Collapse
|
43
|
Neukirch L, Fougeroux C, Andersson AMC, Holst PJ. The potential of adenoviral vaccine vectors with altered antigen presentation capabilities. Expert Rev Vaccines 2020; 19:25-41. [PMID: 31889453 DOI: 10.1080/14760584.2020.1711054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Despite their appeal as vaccine vectors, adenoviral vectors are yet unable to induce protective immune responses against some weakly immunogenic antigens. Additionally, the maximum doses of adenovirus-based vaccines are limited by vector-induced toxicity, causing vector elimination and diminished immune responses against the target antigen. In order to increase immune responses to the transgene, while maintaining a moderate vector dose, new technologies for improved transgene presentation have been developed for adenoviral vaccine vectors.Areas covered: This review provides an overview of different genetic-fusion adjuvants that aim to improve antigen presentation in the context of adenoviral vector-based vaccines. The influence on both T cell and B cell responses are discussed, with a main focus on two technologies: MHC class II-associated invariant chain and virus-like-vaccines.Expert opinion: Different strategies have been tested to improve adenovirus-based vaccinations with varying degrees of success. The reviewed genetic adjuvants were designed to increase antigen processing and MHC presentation, or promote humoral immune responses with an improved conformational antigen display. While none of the introduced technologies is universally applicable, this review shall give an overview to identify potential improvements for future vaccination approaches.
Collapse
Affiliation(s)
- Lasse Neukirch
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases and German Cancer Research Center, Heidelberg, Germany.,Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Cyrielle Fougeroux
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Anne-Marie Carola Andersson
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| | - Peter Johannes Holst
- Center for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,InProTher ApS, Copenhagen, Denmark
| |
Collapse
|
44
|
Preclinical Development and Assessment of Viral Vectors Expressing a Fusion Antigen of Plasmodium falciparum LSA1 and LSAP2 for Efficacy against Liver-Stage Malaria. Infect Immun 2020; 88:IAI.00573-19. [PMID: 31740525 PMCID: PMC6977128 DOI: 10.1128/iai.00573-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 11/14/2019] [Indexed: 12/14/2022] Open
Abstract
Despite promising progress in malaria vaccine development in recent years, an efficacious subunit vaccine against Plasmodium falciparum remains to be licensed and deployed. Cell-mediated protection from liver-stage malaria relies on a sufficient number of antigen-specific T cells reaching the liver during the time that parasites are present. A single vaccine expressing two antigens could potentially increase both the size and breadth of the antigen-specific response while halving vaccine production costs. Despite promising progress in malaria vaccine development in recent years, an efficacious subunit vaccine against Plasmodium falciparum remains to be licensed and deployed. Cell-mediated protection from liver-stage malaria relies on a sufficient number of antigen-specific T cells reaching the liver during the time that parasites are present. A single vaccine expressing two antigens could potentially increase both the size and breadth of the antigen-specific response while halving vaccine production costs. In this study, we investigated combining two liver-stage antigens, P. falciparum LSA1 (PfLSA1) and PfLSAP2, and investigated the induction of protective efficacy by coadministration of single-antigen vectors or vaccination with dual-antigen vectors, using simian adenovirus and modified vaccinia virus Ankara vectors. The efficacy of these vaccines was assessed in mouse malaria challenge models using chimeric P. berghei parasites expressing the relevant P. falciparum antigens and challenging mice at the peak of the T cell response. Vaccination with a combination of the single-antigen vectors expressing PfLSA1 or PfLSAP2 was shown to improve protective efficacy compared to vaccination with each single-antigen vector alone. Vaccination with dual-antigen vectors expressing both PfLSA1 and PfLSAP2 resulted in responses to both antigens, particularly in outbred mice, and most importantly, the efficacy was equivalent to that of vaccination with a mixture of single-antigen vectors. Based on these promising data, dual-antigen vectors expressing PfLSA1 and PfLSAP2 will now proceed to manufacturing and clinical assessment under good manufacturing practice (GMP) guidelines.
Collapse
|
45
|
Campos RK, Preciado-Llanes L, Azar SR, Lopez-Camacho C, Reyes-Sandoval A, Rossi SL. A Single and Un-Adjuvanted Dose of a Chimpanzee Adenovirus-Vectored Vaccine against Chikungunya Virus Fully Protects Mice from Lethal Disease. Pathogens 2019; 8:pathogens8040231. [PMID: 31718104 PMCID: PMC6963200 DOI: 10.3390/pathogens8040231] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/07/2019] [Accepted: 11/08/2019] [Indexed: 12/28/2022] Open
Abstract
The mosquito-borne chikungunya virus (CHIKV) has become a major global health problem. Upon infection, chikungunya fever (CHIKF) can result in long-term joint pain and arthritis, and despite intense research, no licensed vaccine for CHIKV is available. We have developed two recombinant chimpanzee adenovirus-vectored vaccines (ChAdOx1) that induce swift and robust anti-CHIKV immune responses with a single dose, without the need for adjuvants or booster vaccines. Here, we report the vaccines’ protective efficacies against CHIKV infection in a lethal A129 mouse model. Our results indicate that a single, un-adjuvanted ChAdOx1 Chik or ChAdOx1 Chik ΔCap dose provided complete protection against a lethal virus challenge and prevented CHIKV-associated severe inflammation. These candidate vaccines supported survival equal to the attenuated 181/25 CHIKV reference vaccine but without the vaccine-related side effects, such as weight loss. Vaccination with either ChAdOx1 Chik or ChAdOx1 Chik ΔCap resulted in high titers of neutralizing antibodies that are associated with protection, indicating that the presence of the capsid within the vaccine construct may not be essential to afford protection under the conditions tested. We conclude that both replication-deficient ChAdOx1 Chik vaccines are safe even when used in A129 mice and afford complete protection from a lethal challenge.
Collapse
Affiliation(s)
- Rafael Kroon Campos
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (R.K.C.); (S.R.A.)
| | - Lorena Preciado-Llanes
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7DQ, UK; (L.P.-L.); (C.L.-C.)
| | - Sasha R. Azar
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; (R.K.C.); (S.R.A.)
| | - Cesar Lopez-Camacho
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7DQ, UK; (L.P.-L.); (C.L.-C.)
| | - Arturo Reyes-Sandoval
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, The Henry Wellcome Building for Molecular Physiology, Roosevelt Drive, Oxford OX3 7DQ, UK; (L.P.-L.); (C.L.-C.)
- Correspondence: (A.R.-S.); (S.L.R.); Tel.: +44(186)-528-7811 (A.R.-S.); +1(409)-772-9033 (S.L.R.)
| | - Shannan L. Rossi
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Correspondence: (A.R.-S.); (S.L.R.); Tel.: +44(186)-528-7811 (A.R.-S.); +1(409)-772-9033 (S.L.R.)
| |
Collapse
|
46
|
D'Alise AM, Leoni G, Cotugno G, Troise F, Langone F, Fichera I, De Lucia M, Avalle L, Vitale R, Leuzzi A, Bignone V, Di Matteo E, Tucci FG, Poli V, Lahm A, Catanese MT, Folgori A, Colloca S, Nicosia A, Scarselli E. Adenoviral vaccine targeting multiple neoantigens as strategy to eradicate large tumors combined with checkpoint blockade. Nat Commun 2019; 10:2688. [PMID: 31217437 PMCID: PMC6584502 DOI: 10.1038/s41467-019-10594-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 05/21/2019] [Indexed: 12/20/2022] Open
Abstract
Neoantigens (nAgs) are promising tumor antigens for cancer vaccination with the potential of inducing robust and selective T cell responses. Genetic vaccines based on Adenoviruses derived from non-human Great Apes (GAd) elicit strong and effective T cell-mediated immunity in humans. Here, we investigate for the first time the potency and efficacy of a novel GAd encoding multiple neoantigens. Prophylactic or early therapeutic vaccination with GAd efficiently control tumor growth in mice. In contrast, combination of the vaccine with checkpoint inhibitors is required to eradicate large tumors. Gene expression profile of tumors in regression shows abundance of activated tumor infiltrating T cells with a more diversified TCR repertoire in animals treated with GAd and anti-PD1 compared to anti-PD1. Data suggest that effectiveness of vaccination in the presence of high tumor burden correlates with the breadth of nAgs-specific T cells and requires concomitant reversal of tumor suppression by checkpoint blockade.
Collapse
Affiliation(s)
| | - Guido Leoni
- Nouscom Srl, Via Castel Romano 100, 00128, Rome, Italy
| | | | - Fulvia Troise
- Nouscom Srl, Via Castel Romano 100, 00128, Rome, Italy
| | | | - Imma Fichera
- Nouscom Srl, Via Castel Romano 100, 00128, Rome, Italy
| | | | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Rosa Vitale
- Nouscom Srl, Via Castel Romano 100, 00128, Rome, Italy
| | | | | | | | | | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Via Nizza 52, 10126, Turin, Italy
| | - Armin Lahm
- Nouscom Srl, Via Castel Romano 100, 00128, Rome, Italy
| | | | | | | | - Alfredo Nicosia
- Nouscom AG, Bäumleingasse, 18 CH-4051, Basel, Switzerland.,Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131, Naples, Italy.,CEINGE, Via Comunale Margherita, 484-538, 80131, Naples, Italy
| | | |
Collapse
|
47
|
Safety and Immunogenicity of a Novel Recombinant Simian Adenovirus ChAdOx2 as a Vectored Vaccine. Vaccines (Basel) 2019; 7:vaccines7020040. [PMID: 31096710 PMCID: PMC6630572 DOI: 10.3390/vaccines7020040] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/30/2019] [Accepted: 05/08/2019] [Indexed: 12/16/2022] Open
Abstract
Adenovirus vectored vaccines are a highly effective strategy to induce cellular immune responses which are particularly effective against intracellular pathogens. Recombinant simian adenovirus vectors were developed to circumvent the limitations imposed by the use of human adenoviruses due to widespread seroprevalence of neutralising antibodies. We have constructed a replication deficient simian adenovirus-vectored vaccine (ChAdOx2) expressing 4 genes from the Mycobacterium avium subspecies paratuberculosis (AhpC, Gsd, p12 and mpa). Safety and T-cell immunogenicity results of the first clinical use of the ChAdOx2 vector are presented here. The trial was conducted using a ‘three-plus-three’ dose escalation study design. We demonstrate the vaccine is safe, well tolerated and immunogenic.
Collapse
|
48
|
Mehrizi AA, Ameri Torzani M, Zakeri S, Jafary Zadeh A, Babaeekhou L. Th1 immune response to Plasmodium falciparum recombinant thrombospondin-related adhesive protein (TRAP) antigen is enhanced by TLR3-specific adjuvant, poly(I:C) in BALB/c mice. Parasite Immunol 2019; 40:e12538. [PMID: 29799636 DOI: 10.1111/pim.12538] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/21/2018] [Indexed: 12/12/2022]
Abstract
Sporozoite-based malaria vaccines have provided a gold standard for malaria vaccine development, and thrombospondin-related adhesive protein (TRAP) serves as the main vaccine candidate antigen on sporozoites. As recombinant malaria vaccine candidate antigens are poorly immunogenic, additional appropriate immunostimulants, such as an efficient adjuvant, are highly essential to modulate Th1-cell predominance and also to induce a protective and long-lived immune response. In this study, polyinosinic:polycytidylic acid [poly(I:C)], the ligand of TLR3, was considered as the potential adjuvant for vaccines targeting stronger Th1-based immune responses. For this purpose, BALB/c mice were immunized with rPfTRAP delivered in putative poly(I:C) adjuvant, and humoural and cellular immune responses were determined in different immunized mouse groups. Delivery of rPfTRAP with poly(I:C) induced high levels and titres of persisted and also high-avidity anti-rPfTRAP IgG antibodies comparable to complete Freund's adjuvant (CFA)/incomplete Freund's adjuvant (IFA) adjuvant after the second boost. In addition, rPfTRAP formulated with poly(I:C) elicited a higher ratio of IFN-γ/IL-5, IgG2a/IgG1, and IgG2b/IgG1 than with CFA/IFA, indicating that poly(I:C) supports the induction of a stronger Th1-based immune response. This is a first time study which reveals the potential of rPfTRAP delivery in poly(I:C) to increase the level, avidity and durability of both anti-PfTRAP cytophilic antibodies and Th1 cytokines.
Collapse
Affiliation(s)
- A A Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - M Ameri Torzani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.,Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| | - S Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - A Jafary Zadeh
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - L Babaeekhou
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Iran
| |
Collapse
|
49
|
Pirahmadi S, Zakeri S, Mehrizi AA, Karimi L, Djadid ND. Heterogeneity in the acquisition of naturally acquired antibodies to cell-traversal protein for ookinetes and sporozoites (CelTOS) and thrombospondin-related adhesion protein (TRAP) of Plasmodium falciparum in naturally infected patients from unstable malaria areas in Iran. Acta Trop 2019; 190:365-374. [PMID: 30543766 DOI: 10.1016/j.actatropica.2018.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 11/19/2022]
Abstract
Currently, there is no subunit malaria vaccine capable of providing long-lasting protection, and a vaccine based on a single-antigen has shown moderate to unsatisfactory efficacies in clinical trials. As in malaria elimination and eradication strategies, the primary objective is reduction in disease and death due to P. falciparum, in the present investigation, for the first time, we attempted to determine and compare the naturally acquired immune responses to two well-recognized sporozoite antigens, cell-traversal protein for ookinetes and sporozoites (CelTOS) and thrombospondin-related adhesion protein (TRAP), in P. falciparum-infected individuals (n = 204) in low malaria transmission settings of Iran using ELISA. Besides, the profile of IgG isotype responses, the avidity of IgG, IgG1, and IgG3, and the association of anti-PfCelTOS and -PfTRAP antibodies with host age were evaluated. Positive antibody responses to PfCelTOS and PfTRAP antigens were detected in 16.2% and 31.9% of Iranian P. falciparum-infected individuals, respectively, indicating significantly lower immune response to PfCelTOS than PfTRAP (P <0.0001, McNemar's test). Also, among the positive samples for anti-PfCelTOS (n = 33) and -PfTRAP (n = 65) total IgG, the cytophilic IgG1 and IgG3 antibodies were predominant. A significant proportion of the examined positive responders had high- and intermediate-avidity for IgG (93.9%, 87.7%), IgG1 (96.3%, 87.7%), and IgG3 (76%, 78.7%) antibodies to both PfCelTOS and PfTRAP antigens, respectively, with no correlation with age (P >0.05; Spearman's correlation test). In conclusion, the present data suggests the acquisition of heterogenic immune responses to both antigens in the same patients naturally infected with P. falciparum from settings of low malaria transmission intensity in Iran in which their role in protection to malaria needs further study.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Leila Karimi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
50
|
Jia W, Channappanavar R, Zhang C, Li M, Zhou H, Zhang S, Zhou P, Xu J, Shan S, Shi X, Wang X, Zhao J, Zhou D, Perlman S, Zhang L. Single intranasal immunization with chimpanzee adenovirus-based vaccine induces sustained and protective immunity against MERS-CoV infection. Emerg Microbes Infect 2019; 8:760-772. [PMID: 31130102 PMCID: PMC6542157 DOI: 10.1080/22221751.2019.1620083] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/16/2019] [Accepted: 05/09/2019] [Indexed: 01/19/2023]
Abstract
The recently identified Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe and fatal acute respiratory illness in humans. However, no approved prophylactic and therapeutic interventions are currently available. The MERS-CoV envelope spike protein serves as a crucial target for neutralizing antibodies and vaccine development, as it plays a critical role in mediating viral entry through interactions with the cellular receptor, dipeptidyl peptidase 4 (DPP4). Here, we constructed a recombinant rare serotype of the chimpanzee adenovirus 68 (AdC68) that expresses full-length MERS-CoV S protein (AdC68-S). Single intranasal immunization with AdC68-S induced robust and sustained neutralizing antibody and T cell responses in BALB/c mice. In a human DPP4 knock-in (hDPP4-KI) mouse model, it completely protected against lethal challenge with a mouse-adapted MERS-CoV (MERS-CoV-MA). Passive transfer of immune sera to naïve hDPP4-KI mice also provided survival advantages from lethal MERS-CoV-MA challenge. Analysis of sera absorption and isolated monoclonal antibodies from immunized mice demonstrated that the potent and broad neutralizing activity was largely attributed to antibodies targeting the receptor binding domain (RBD) of the S protein. These results show that AdC68-S can induce protective immune responses in mice and represent a promising candidate for further development against MERS-CoV infection in both dromedaries and humans.
Collapse
MESH Headings
- Adenoviridae/genetics
- Administration, Intranasal
- Animals
- Animals, Genetically Modified
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Coronavirus Infections/prevention & control
- Drug Carriers/administration & dosage
- Humans
- Immunization, Passive
- Mice, Inbred BALB C
- Middle East Respiratory Syndrome Coronavirus/genetics
- Middle East Respiratory Syndrome Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/genetics
- Spike Glycoprotein, Coronavirus/immunology
- Survival Analysis
- T-Lymphocytes/immunology
- Treatment Outcome
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/genetics
- Vaccines, Synthetic/immunology
- Viral Vaccines/administration & dosage
- Viral Vaccines/genetics
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- Wenxu Jia
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Rudragouda Channappanavar
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, USA
- Department of Acute and Tertiary Care, and the Institute for the Study of Host–Pathogen Systems, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Chao Zhang
- School of Medicine and Life Sciences, Nanjing University of Chinese Medicine, Nanjing, People’s Republic of China
- Key Laboratory of Molecular Virology & Immunology, Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Mingxi Li
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Haixia Zhou
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Shuyuan Zhang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Panpan Zhou
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Jiuyang Xu
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Sisi Shan
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Xuanling Shi
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Xinquan Wang
- The Ministry of Education Key Laboratory of Protein Science, Beijing Advanced Innovation Center for Structural Biology, Collaborative Innovation Center for Biotherapy, School of Life Sciences, Tsinghua University, Beijing, People’s Republic of China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Dongming Zhou
- Key Laboratory of Molecular Virology & Immunology, Vaccine Research Center, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, People’s Republic of China
| | - Stanley Perlman
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, USA
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, People’s Republic of China
| | - Linqi Zhang
- Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Beijing Advanced Innovation Center for Structural Biology, Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|