1
|
Wei L, Yu P, Wang H, Liu J. Adeno-associated viral vectors deliver gene vaccines. Eur J Med Chem 2025; 281:117010. [PMID: 39488197 DOI: 10.1016/j.ejmech.2024.117010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/04/2024]
Abstract
Adeno-associated viruses (AAVs) are leading platforms for in vivo delivery of gene therapies, with six licensed AAV-based therapeutics attributed to their non-pathogenic nature, low immunogenicity, and high efficiency. In the realm of gene-based vaccines, one of the most vital therapeutic areas, AAVs are also emerging as promising delivery tools. We scrutinized AAVs, focusing on their virological properties, as well as bioengineering and chemical modifications to demonstrate their significant potential in gene vaccine delivery, and detailing the preparation of AAV particles. Additionally, we summarized the use of AAV vectors in vaccines for both infectious and non-infectious diseases, such as influenza, COVID-19, Alzheimer's disease, and cancer. Furthermore, this review, along with the latest clinical trial updates, provides a comprehensive overview of studies on the potential of using AAV vectors for gene vaccine delivery. It aims to deepen our understanding of the challenges and limitations in nucleic acid delivery and pave the way for future clinical success.
Collapse
Affiliation(s)
- Lai Wei
- College of Life Science and Technology, Beijing University of Chemical Technology, 100029, Beijing, China
| | - Peng Yu
- College of Biotechnology, Tianjin University of Science & Technology, 300457 Tianjin, China
| | - Haomeng Wang
- CanSino (Shanghai) Biological Research Co., Ltd, 201208, Shanghai, China.
| | - Jiang Liu
- Rosalind Franklin Institute, Harwell Campus, OX11 0QS, Oxford, United Kingdom; Department of Pharmacology, University of Oxford, Mansfield Road, OX1 3QT, Oxford, United Kingdom.
| |
Collapse
|
2
|
Spengler JR, Lo MK, Welch SR, Spiropoulou CF. Henipaviruses: epidemiology, ecology, disease, and the development of vaccines and therapeutics. Clin Microbiol Rev 2024:e0012823. [PMID: 39714175 DOI: 10.1128/cmr.00128-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYHenipaviruses were first identified 30 years ago and have since been associated with over 30 outbreaks of disease in humans. Highly pathogenic henipaviruses include Hendra virus (HeV) and Nipah virus (NiV), classified as biosafety level 4 pathogens. In addition, NiV has been listed as a priority pathogen by the World Health Organization (WHO), the Coalition for Epidemic Preparedness Innovations (CEPI), and the UK Vaccines Research and Development Network (UKVN). Here, we re-examine epidemiological, ecological, clinical, and pathobiological studies of HeV and NiV to provide a comprehensive guide of the current knowledge and application to identify and evaluate countermeasures. We also discuss therapeutic and vaccine development efforts. Furthermore, with case identification, prevention, and treatment in mind, we highlight limitations in research and recognize gaps necessitating additional studies.
Collapse
Affiliation(s)
- Jessica R Spengler
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Michael K Lo
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Stephen R Welch
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Christina F Spiropoulou
- Viral Special Pathogens Branch, Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Chen S, Zhang X, Yao Y, Wang S, Li K, Zhang B, Ye T, Chen L, Wu Y, Li E, Xu B, Zhang P, Chuai X, Ran Y, Gong R, Zhang H, Chiu S. Ferritin nanoparticle-based Nipah virus glycoprotein vaccines elicit potent protective immune responses in mice and hamsters. Virol Sin 2024; 39:909-916. [PMID: 39293542 DOI: 10.1016/j.virs.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/11/2024] [Indexed: 09/20/2024] Open
Abstract
Nipah virus (NiV) is a zoonotic paramyxovirus in the genus Henipavirus that is prevalent in Southeast Asia. NiV leads to severe respiratory disease and encephalitis in humans and animals, with a mortality rate of up to 75%. Despite the grave threat to public health and global biosecurity, no medical countermeasures are available for humans. Here, based on self-assembled ferritin nanoparticles (FeNPs), we successfully constructed two candidate FeNP vaccines by loading mammalian cells expressing NiV sG (residues 71-602, FeNP-sG) and Ghead (residues 182-602, FeNP-Ghead) onto E. coli-expressed FeNPs (FeNP-sG and FeNP-Ghead, respectively) through Spycatcher/Spytag technology. Compared with sG and Ghead alone, FeNP-sG and FeNP-Ghead elicited significant NiV specific neutralizing antibody levels and T-cell responses in mice, whereas the immune response in the FeNP-sG immunized group was greater than that in the FeNP-Ghead group. These results further demonstrate that sG possesses greater antigenicity than Ghead and that FeNPs can dramatically enhance immunogenicity. Furthermore, FeNP-sG provided 100% protection against NiV challenge in a hamster model when it was administered twice at a dose of 5 μg/per animal. Our study provides not only a promising candidate vaccine against NiV, but also a theoretical foundation for the design of a NiV immunogen for the development of novel strategies against NiV infection.
Collapse
Affiliation(s)
- Shaohong Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinghai Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Shengdong Wang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangyin Li
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoyue Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxi Ye
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Chen
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wu
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230027, China
| | - Bichao Xu
- Institutional Center for Shared Technologies and Facilities of Wuhan Institute of Virology, CAS, Center for Instrumental Analysis and Metrology, Wuhan 430062, China
| | - Pei Zhang
- Institutional Center for Shared Technologies and Facilities of Wuhan Institute of Virology, CAS, Center for Instrumental Analysis and Metrology, Wuhan 430062, China
| | - Xia Chuai
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China
| | - Yong Ran
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rui Gong
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China.
| | - Huajun Zhang
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430062, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China; Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei 230027, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
4
|
Masum MHU, Mahdeen AA, Barua L, Parvin R, Heema HP, Ferdous J. Developing a chimeric multiepitope vaccine against Nipah virus (NiV) through immunoinformatics, molecular docking and dynamic simulation approaches. Microb Pathog 2024; 197:107098. [PMID: 39521154 DOI: 10.1016/j.micpath.2024.107098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
Nipah virus (NiV) is a highly lethal zoonotic pathogen that poses a significant threat to human and animal health. Unfortunately, no effective treatments have been developed for this deadly zoonotic disease. Therefore, we designed a chimeric multiepitope vaccine targeting the Nipah virus (NiV) glycoprotein and fusion protein through immunoinformatic approaches. Therefore, the vaccine was developed by combining promising and potential antigenic MHC-I, MHC-II, and B-cell epitopes obtained from the selected proteins. When combined, the MHC-I and MHC-II epitopes offered 100 % global population coverage. The physicochemical characterization also exhibited favorable properties, including solubility and potential functional stability of the vaccine within the body (GRAVY score of -0.308). Structural analyses unveiled a well-stabilized secondary and tertiary structure with a Ramachandran score of 84.4 % and a Z score of -5.02. Findings from docking experiments with TLR-2 (-1089.3 kJ/mol) and TLR-4 (-1016.7 kJ/mol) showed a strong affinity of the vaccine towards the receptor. Molecular dynamics simulations revealed unique conformational dynamics among the "vaccine-apo," "vaccine-TLR-2," and "vaccine-TLR-4″ complexes. Consequently, the complexes exhibited significant compactness, flexibility, and exposure to solvents. The results of the codon optimization were remarkable, as the vaccine showed a significant amount of expression in the E. coli vector (GC content of 45.36 % and a CAI score of 1.0). The results of immune simulations, however, showed evidence of both adaptive and innate immune responses induced by the vaccine. Therefore, we highly recommend further research on this chimeric multiepitope vaccine to establish its efficacy and safety against the Nipah virus (NiV).
Collapse
Affiliation(s)
- Md Habib Ullah Masum
- Department of Genomics and Bioinformatics, Faculty of Biotechnology and Genetic Engineering, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh.
| | - Ahmad Abdullah Mahdeen
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Logon Barua
- Department of Microbiology, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Rehana Parvin
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Homaira Pervin Heema
- Genomics Research Group, Department of Pathology and Parasitology, Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University (CVASU), Khulshi, 4225, Chattogram, Bangladesh
| | - Jannatul Ferdous
- Department of Obstetrics and Gynecology, Chittagong Medical College Hospital, Chattogram, 4203, Bangladesh
| |
Collapse
|
5
|
Zhu QX, Zhang YN, Zhang HQ, Leng C, Deng CL, Wang X, Li JJ, Ye XL, Zhang B, Li XD. A single dose recombinant AAV based CHIKV vaccine elicits robust and durable protective antibody responses in mice. PLoS Negl Trop Dis 2024; 18:e0012604. [PMID: 39495779 PMCID: PMC11563480 DOI: 10.1371/journal.pntd.0012604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 11/14/2024] [Accepted: 10/04/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that is responsible for Chikungunya fever, which is characterized by fever, rash, and debilitating polyarthralgia. Since its re-emergence in 2004, CHIKV has continued to spread to new regions and become a severe health threat to global public. Development of safe and single dose vaccines that provide durable protection is desirable to control the spread of virus. The recombinant adeno-associated virus (rAAV) vectors represent promising vaccine platform to provide prolonged protection with a single-dose immunization. In this study, we developed a rAAV capsid serotype 1 vector based CHIKV vaccine and evaluated its protection effect against CHIKV challenge. METHODOLOGY The recombinant AAV1 encoding the full-length structural proteins of CHIKV (named as rAAV1-CHIKV-SP) was generated in vitro by transfecting the plasmids of AAV helper-free system into HEK-293T cells. The safety and immunogenicity of rAAV1-CHIKV-SP were tested in 4-week-old C57BL/6 mice. The antibody responses of the mice receiving prime-boost or single-dose immunization of the vaccine were determined by ELISA and plaque reduction neutralizing test. The immunized mice were challenged with CHIKV to evaluate the protection effect of the vaccine. CONCLUSIONS The rAAV1-CHIKV-SP showed remarkable safety and immunogenicity in C57BL/6 mice. A single dose intramuscular injection of rAAV1-CHIKV-SP elicited high level and long-lasting antibody responses, and conferred complete protection against a heterologous CHIKV strain challenge. These results suggest rAAV1-CHIKV-SP represents a promising vaccine candidate against different CHIKV clades with a simplified immunization strategy.
Collapse
Affiliation(s)
- Qin-Xuan Zhu
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Ya-Nan Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Hong-Qing Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing China
| | - Chao Leng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Cheng-Lin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xin Wang
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Jia-Jia Li
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Xiang-Li Ye
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| | - Bo Zhang
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Dan Li
- School of Medical Technology and Translational Medicine, Hunan Normal University, Changsha, China
| |
Collapse
|
6
|
Saha S, Bhattacharya M, Lee SS, Chakraborty C. Recent Advances of Nipah Virus Disease: Pathobiology to Treatment and Vaccine Advancement. J Microbiol 2024; 62:811-828. [PMID: 39292378 DOI: 10.1007/s12275-024-00168-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 09/19/2024]
Abstract
The zoonotic infection of the Nipah virus (NiV) has yet again appeared in 2023 in Kerala state, India. The virus, which has a mortality rate ranging from about 40 to 70%, has already infected India five times, the first being in 2001. The current infection is the sixth virus outbreak in the Indian population. In 1998, the first NiV infection was noted in one village in Malaysia. After that, outbreaks from other South and Southeast Asian countries have been reported periodically. It can spread between humans through contact with body fluids. Therefore, it is unlikely to generate a new pandemic. However, there is a considerable knowledge gap in the different areas of NiV. To date, no approved vaccines or treatments have been available. To fulfil the knowledge gap, the review article provided a detailed overview of the genome and genome-encoded proteins, epidemiology, transmission, pathobiology, immunobiology, diagnosis, prevention and control measures, therapeutics (monoclonal antibodies and drug molecules), and vaccine advancement of the emerging and deadly pathogen. The advanced information will help researchers to develop safe and effective NiV vaccine and treatment regimens worldwide.
Collapse
Affiliation(s)
- Sagnik Saha
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India
| | - Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Sang-Soo Lee
- Institute for Skeletal Aging & Orthopaedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon, 24252, Republic of Korea.
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
7
|
Tan FH, Sukri A, Idris N, Ong KC, Schee JP, Tan CT, Tan SH, Wong KT, Wong LP, Tee KK, Chang LY. A systematic review on Nipah virus: global molecular epidemiology and medical countermeasures development. Virus Evol 2024; 10:veae048. [PMID: 39119137 PMCID: PMC11306115 DOI: 10.1093/ve/veae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/19/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that causes encephalitis and a high mortality rate in infected subjects. This systematic review aimed to comprehensively analyze the global epidemiology and research advancements of NiV to identify the key knowledge gaps in the literature. Articles searched using literature databases, namely PubMed, Scopus, Web of Science, and Science Direct yielded 5,596 articles. After article screening, 97 articles were included in this systematic review, comprising 41 epidemiological studies and 56 research developments on NiV. The majority of the NiV epidemiological studies were conducted in Bangladesh, reflecting the country's significant burden of NiV outbreaks. The initial NiV outbreak was identified in Malaysia in 1998, with subsequent outbreaks reported in Bangladesh, India, and the Philippines. Transmission routes vary by country, primarily through pigs in Malaysia, consumption of date palm juice in Bangladesh, and human-to-human in India. However, the availability of NiV genome sequences remains limited, particularly from Malaysia and India. Mortality rates also vary according to the country, exceeding 70% in Bangladesh, India, and the Philippines, and less than 40% in Malaysia. Understanding these differences in mortality rate among countries is crucial for informing NiV epidemiology and enhancing outbreak prevention and management strategies. In terms of research developments, the majority of studies focused on vaccine development, followed by phylogenetic analysis and antiviral research. While many vaccines and antivirals have demonstrated complete protection in animal models, only two vaccines have progressed to clinical trials. Phylogenetic analyses have revealed distinct clades between NiV Malaysia, NiV Bangladesh, and NiV India, with proposals to classify NiV India as a separate strain from NiV Bangladesh. Taken together, comprehensive OneHealth approaches integrating disease surveillance and research are imperative for future NiV studies. Expanding the dataset of NiV genome sequences, particularly from Malaysia, Bangladesh, and India will be pivotal. These research efforts are essential for advancing our understanding of NiV pathogenicity and for developing robust diagnostic assays, vaccines and therapeutics necessary for effective preparedness and response to future NiV outbreaks.
Collapse
Affiliation(s)
- Foo Hou Tan
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Asif Sukri
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor 43600, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Jie Ping Schee
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Chong Tin Tan
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kum Thong Wong
- Universiti Malaya Medical Centre, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
- Department of Pathology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li Ping Wong
- Department of Social Preventive Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Kok Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| | - Li-Yen Chang
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Wilayah Persekutuan 50603, Malaysia
| |
Collapse
|
8
|
Byrne PO, Blade EG, Fisher BE, Ambrozak DR, Ramamohan AR, Graham BS, Loomis RJ, McLellan JS. Prefusion stabilization of the Hendra and Langya virus F proteins. J Virol 2024; 98:e0137223. [PMID: 38214525 PMCID: PMC10878279 DOI: 10.1128/jvi.01372-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 01/13/2024] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are pathogenic paramyxoviruses that cause mild-to-severe disease in humans. As members of the Henipavirus genus, NiV and HeV use an attachment (G) glycoprotein and a class I fusion (F) glycoprotein to invade host cells. The F protein rearranges from a metastable prefusion form to an extended postfusion form to facilitate host cell entry. Prefusion NiV F elicits higher neutralizing antibody titers than postfusion NiV F, indicating that stabilization of prefusion F may aid vaccine development. A combination of amino acid substitutions (L104C/I114C, L172F, and S191P) is known to stabilize NiV F in its prefusion conformation, although the extent to which substitutions transfer to other henipavirus F proteins is not known. Here, we perform biophysical and structural studies to investigate the mechanism of prefusion stabilization in F proteins from three henipaviruses: NiV, HeV, and Langya virus (LayV). Three known stabilizing substitutions from NiV F transfer to HeV F and exert similar structural and functional effects. One engineered disulfide bond, located near the fusion peptide, is sufficient to stabilize the prefusion conformations of both HeV F and LayV F. Although LayV F shares low overall sequence identity with NiV F and HeV F, the region around the fusion peptide exhibits high sequence conservation across all henipaviruses. Our findings indicate that substitutions targeting this site of conformational change might be applicable to prefusion stabilization of other henipavirus F proteins and support the use of NiV as a prototypical pathogen for henipavirus vaccine antigen design.IMPORTANCEPathogenic henipaviruses such as Nipah virus (NiV) and Hendra virus (HeV) cause respiratory symptoms, with severe cases resulting in encephalitis, seizures, and coma. The work described here shows that the NiV and HeV fusion (F) proteins share common structural features with the F protein from an emerging henipavirus, Langya virus (LayV). Sequence alignment alone was sufficient to predict which known prefusion-stabilizing amino acid substitutions from NiV F would stabilize the prefusion conformations of HeV F and LayV F. This work also reveals an unexpected oligomeric interface shared by prefusion HeV F and NiV F. Together, these advances lay a foundation for future antigen design targeting henipavirus F proteins. In this way, Nipah virus can serve as a prototypical pathogen for the development of protective vaccines and monoclonal antibodies to prepare for potential henipavirus outbreaks.
Collapse
Affiliation(s)
- Patrick O. Byrne
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth G. Blade
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | - Brian E. Fisher
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - David R. Ambrozak
- Immunology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ajit R. Ramamohan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| | | | - Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
9
|
Shimoyama T, Oba M, Takemae H, Omatsu T, Tani H, Mizutani T. Potent immunogenicity and neutralization of recombinant adeno-associated virus expressing the glycoprotein of severe fever with thrombocytopenia virus. J Vet Med Sci 2024; 86:228-238. [PMID: 38143087 PMCID: PMC10898983 DOI: 10.1292/jvms.23-0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease caused by a tick-borne virus called severe fever with thrombocytopenia syndrome virus (SFTSV). In recent years, human infections through contact with ticks and through contact with the bodily fluids of infected dogs and cats have been reported; however, no vaccine is currently available. SFTSV has two glycoproteins (Gn and Gc) on its envelope, which are vaccine-target antigens involved in immunogenicity. In the present study, we constructed novel SFTS vaccine candidates using an adeno-associated virus (AAV) vector to transport the SFTSV glycoprotein genome. AAV vectors are widely used in gene therapy and their safety has been confirmed in clinical trials. Recently, AAV vectors have been used to develop influenza and SARS-CoV-2 vaccines. Two types of vaccines (AAV9-SFTSV Gn and AAV9-SFTSV Gc) carrying SFTSV Gn and Gc genes were produced. The expression of Gn and Gc proteins in HEK293T cells was confirmed by infection with vaccines. These vaccines were inoculated into mice, and the collected sera produced anti-SFTS antibodies. Furthermore, sera from AAV9-SFTSV Gn infected mice showed a potent neutralizing ability, similar to previously reported SFTS vaccine candidates that protected animals from SFTSV infection. These findings suggest that this vaccine is a promising candidate for a new SFTS vaccine.
Collapse
Affiliation(s)
- Toshiaki Shimoyama
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Mami Oba
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Tsutomu Omatsu
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hideki Tani
- Department of Virology, Toyama Institute of Health, Toyama, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
10
|
Mishra G, Prajapat V, Nayak D. Advancements in Nipah virus treatment: Analysis of current progress in vaccines, antivirals, and therapeutics. Immunology 2024; 171:155-169. [PMID: 37712243 DOI: 10.1111/imm.13695] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
Nipah virus (NiV) causes severe encephalitis in humans. Three NiV strains NiV-Malaysia (NiVM ), NiV Bangladesh (NiVB ), and NiV India (NiVI reported in 2019) have been circulating in South-Asian nations. Sporadic outbreak observed in South-East Asian countries but human to human transmission raises the concern about its pandemic potential. The presence of the viral genome in reservoir bats has further confirmed that NiV has spread to the African and Australian continents. NiV research activities have gained momentum to achieve specific preparedness goals to meet any future emergency-as a result, several potential vaccine candidates have been developed and tested in a variety of animal models. Some of these candidate vaccines have entered further clinical trials. Research activities related to the discovery of therapeutic monoclonal antibodies (mAbs) have resulted in the identification of a handful of candidates capable of neutralizing the virion. However, progress in discovering potential antiviral drugs has been limited. Thus, considering NiV's pandemic potential, it is crucial to fast-track ongoing projects related to vaccine clinical trials, anti-NiV therapeutics. Here, we discuss the current progress in NiV-vaccine research and therapeutic options, including mAbs and antiviral medications.
Collapse
Affiliation(s)
- Gayatree Mishra
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Vishal Prajapat
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Debasis Nayak
- Department of Biological Science, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| |
Collapse
|
11
|
Popik B, Luft JG, Knak Guerra KT, de Oliveira Alvares L. Molecular mechanisms underpinning deconditioning-update in fear memory. Hippocampus 2023; 33:1267-1276. [PMID: 37795810 DOI: 10.1002/hipo.23579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/25/2023] [Accepted: 09/18/2023] [Indexed: 10/06/2023]
Abstract
Traumatic experiences are closely associated with some psychiatric conditions such as post-traumatic stress disorder. Deconditioning-update promotes robust and long-lasting attenuation of aversive memories. The deconditioning protocol consists of applying weak/neutral footshocks during reactivations, so that the original tone-shock association is replaced by an innocuous stimulus that does not produce significant fear response. Here, we present the molecular bases that can support this mechanism. To this end, we used pharmacological tools to inhibit the activity of ionotropic glutamate receptors (NMDA-GluN2B and CP-AMPA), the activity of proteases (calpains), and the receptors that control intracellular calcium storage (IP3 receptors), as well as the endocannabinoid system (CB1). Our results indicate that blocking these molecular targets prevents fear memory update by deconditioning. Therefore, this study uncovered the molecular substrate of deconditioning-update strategy, and, broadly, shed new light on the traumatic memory destabilization mechanisms that might be used to break the boundaries regarding reconsolidation-based approaches to deal with maladaptive memories.
Collapse
Affiliation(s)
- Bruno Popik
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Jordana Griebler Luft
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Kétlyn Talise Knak Guerra
- LPBNC, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucas de Oliveira Alvares
- Neurobiology of Memory Lab, Biophysics Department, Biosciences Institute, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
12
|
Lu M, Yao Y, Zhang X, Liu H, Gao G, Peng Y, Chen M, Zhao J, Zhang X, Yin C, Guo W, Yang P, Hu X, Rao J, Li E, Chen T, Chiu S, Wong G, Yuan Z, Lan J, Shan C. Both chimpanzee adenovirus-vectored and DNA vaccines induced long-term immunity against Nipah virus infection. NPJ Vaccines 2023; 8:170. [PMID: 37925490 PMCID: PMC10625554 DOI: 10.1038/s41541-023-00762-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/10/2023] [Indexed: 11/06/2023] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that poses a severe threat to humans due to its high morbidity and the lack of viable countermeasures. Vaccines are the most crucial defense against NiV infections. Here, a recombinant chimpanzee adenovirus-based vaccine (AdC68-G) and a DNA vaccine (DNA-G) were developed by expressing the codon-optimized full-length glycoprotein (G) of NiV. Strong and sustained neutralizing antibody production, accompanied by an effective T-cell response, was induced in BALB/c mice by intranasal or intramuscular administration of one or two doses of AdC68-G, as well as by priming with DNA-G and boosting with intramuscularly administered AdC68-G. Importantly, the neutralizing antibody titers were maintained for up to 68 weeks in the mice that received intramuscularly administered AdC68-G and the prime DNA-G/boost AdC68-G regimen, without a significant decline. Additionally, Syrian golden hamsters immunized with AdC68-G and DNA-G via homologous or heterologous prime/boost immunization were completely protected against a lethal NiV virus challenge, without any apparent weight loss, clinical signs, or pathological tissue damage. There was a significant reduction in but not a complete absence of the viral load and number of infectious particles in the lungs and spleen tissue following NiV challenge. These findings suggest that the AdC68-G and DNA-G vaccines against NiV infection are promising candidates for further development.
Collapse
Affiliation(s)
- Mingqing Lu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Xuekai Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Miaoyu Chen
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Jiaxuan Zhao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - XiaoYu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Chunhong Yin
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Weiwei Guo
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Peipei Yang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Juhong Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
- University of the Chinese Academy of Sciences, Beijing, 100039, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Tong Chen
- University of the Chinese Academy of Sciences, Beijing, 100039, China
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China
| | - Gary Wong
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhiming Yuan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Jiaming Lan
- CAS Key Laboratory of Molecular Virology & Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China.
- Hubei Jiangxia Laboratory, Wuhan, 430200, China.
| |
Collapse
|
13
|
Pigeaud DD, Geisbert TW, Woolsey C. Animal Models for Henipavirus Research. Viruses 2023; 15:1980. [PMID: 37896758 PMCID: PMC10610982 DOI: 10.3390/v15101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are zoonotic paramyxoviruses in the genus Henipavirus (HNV) that emerged nearly thirty years ago. Outbreaks of HeV and NiV have led to severe respiratory disease and encephalitis in humans and animals characterized by a high mortality rate. Despite the grave threat HNVs pose to public health and global biosecurity, no approved medical countermeasures for human use currently exist against HeV or NiV. To develop candidate vaccines and therapeutics and advance the field's understanding of HNV pathogenesis, animal models of HeV and NiV have been instrumental and remain indispensable. Various species, including rodents, ferrets, and nonhuman primates (NHPs), have been employed for HNV investigations. Among these, NHPs have demonstrated the closest resemblance to human HNV disease, although other animal models replicate some key disease features. Here, we provide a comprehensive review of the currently available animal models (mice, hamsters, guinea pigs, ferrets, cats, dogs, nonhuman primates, horses, and swine) to support HNV research. We also discuss the strengths and limitations of each model for conducting pathogenesis and transmission studies on HeV and NiV and for the evaluation of medical countermeasures.
Collapse
Affiliation(s)
- Declan D. Pigeaud
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Courtney Woolsey
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX 77555, USA; (D.D.P.); (T.W.G.)
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
14
|
Huang X, Li Y, Li R, Wang S, Yang L, Wang S, Yin Y, Zai X, Zhang J, Xu J. Nipah virus attachment glycoprotein ectodomain delivered by type 5 adenovirus vector elicits broad immune response against NiV and HeV. Front Cell Infect Microbiol 2023; 13:1180344. [PMID: 37577376 PMCID: PMC10413271 DOI: 10.3389/fcimb.2023.1180344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Nipah virus (NiV) and Hendra virus (HeV) are newly emerging dangerous zoonotic pathogens of the Henipavirus genus of the Paramyxoviridae family. NiV and HeV (HNVs) which are transmitted by bats cause acute respiratory disease and fatal encephalitis in humans. To date, as there is a lack of antiviral drugs or effective antiviral therapies, the development of vaccines against those two viruses is of primary importance, and the immunogen design is crucial to the success of vaccines. In this study, the full-length protein (G), the ectodomain (Ge) and the head domain (Gs) of NiV attachment glycoprotein were delivered by the replication-defective type 5 adenovirus vector (Ad5) respectively, and the recombinant Ad5-NiV vaccine candidates (Ad5-NiVG, Ad5-NiVGe and Ad5-NiVGs) were constructed and their immunogenicity were evaluated in mice. The results showed that all the vaccine candidates stimulated specific humoral and cellular immune responses efficiently and rapidly against both NiV and HeV, and the Ad5-NiVGe elicited the strongest immune responses after a single-dose immunization. Furthermore, the potent conserved T-cell epitope DTLYFPAVGFL shared by NiV and HeV was identified in the study, which may provide valid information on the mechanism of HNVs-specific cellular immunity. In summary, this study demonstrates that the Ad5-NiVGe could be a potent vaccine candidate against HNVs by inducing robust humoral and cellular immune responses.
Collapse
Affiliation(s)
- Xiaoyan Huang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yaohui Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ruihua Li
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Shaoyan Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Lu Yang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuyi Wang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Ying Yin
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Xiaodong Zai
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Jun Zhang
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| | - Junjie Xu
- Laboratory of Vaccine and Antibody Engineering, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
15
|
Findlay-Wilson S, Flett L, Salguero FJ, Ruedas-Torres I, Fotheringham S, Easterbrook L, Graham V, Dowall S. Establishment of a Nipah Virus Disease Model in Hamsters, including a Comparison of Intranasal and Intraperitoneal Routes of Challenge. Pathogens 2023; 12:976. [PMID: 37623936 PMCID: PMC10458503 DOI: 10.3390/pathogens12080976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Nipah virus (NiV) is an emerging pathogen that can cause severe respiratory illness and encephalitis in humans. The main reservoir is fruit bats, distributed across a large geographical area that includes Australia, Southeast Asia, and Africa. Incursion into humans is widely reported through exposure of infected pigs, ingestion of contaminated food, or through contact with an infected person. With no approved treatments or vaccines, NiV poses a threat to human public health and has epidemic potential. To aid with the assessment of emerging interventions being developed, an expansion of preclinical testing capability is required. Given variations in the model parameters observed in different sites during establishment, optimisation of challenge routes and doses is required. Upon evaluating the hamster model, an intranasal route of challenge was compared with intraperitoneal delivery, demonstrating a more rapid dissemination to wider tissues in the latter. A dose effect was observed between those causing respiratory illness and those resulting in neurological disease. The data demonstrate the successful establishment of the hamster model of NiV disease for subsequent use in the evaluation of vaccines and antivirals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stuart Dowall
- United Kingdom Health Security Agency (UKHSA), Porton Down, Salisbury SP4 0JG, UK; (S.F.-W.); (L.F.); (F.J.S.); (I.R.-T.); (S.F.); (L.E.); (V.G.)
| |
Collapse
|
16
|
Filipić B, Pantelić I, Nikolić I, Majhen D, Stojić-Vukanić Z, Savić S, Krajišnik D. Nanoparticle-Based Adjuvants and Delivery Systems for Modern Vaccines. Vaccines (Basel) 2023; 11:1172. [PMID: 37514991 PMCID: PMC10385383 DOI: 10.3390/vaccines11071172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/31/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023] Open
Abstract
Ever since the development of the first vaccine, vaccination has had the great impact on global health, leading to the decrease in the burden of numerous infectious diseases. However, there is a constant need to improve existing vaccines and develop new vaccination strategies and vaccine platforms that induce a broader immune response compared to traditional vaccines. Modern vaccines tend to rely on certain nanotechnology platforms but are still expected to be readily available and easy for large-scale manufacturing and to induce a durable immune response. In this review, we present an overview of the most promising nanoadjuvants and nanoparticulate delivery systems and discuss their benefits from tehchnological and immunological standpoints as well as their objective drawbacks and possible side effects. The presented nano alums, silica and clay nanoparticles, nanoemulsions, adenoviral-vectored systems, adeno-associated viral vectors, vesicular stomatitis viral vectors, lentiviral vectors, virus-like particles (including bacteriophage-based ones) and virosomes indicate that vaccine developers can now choose different adjuvants and/or delivery systems as per the requirement, specific to combatting different infectious diseases.
Collapse
Affiliation(s)
- Brankica Filipić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Ivana Pantelić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Ines Nikolić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
- Section of Pharmaceutical Sciences, University of Geneva, 1206 Geneva, Switzerland
| | - Dragomira Majhen
- Division of Molecular Biology, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Snežana Savić
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| | - Danina Krajišnik
- Department of Pharmaceutical Technology and Cosmetology, University of Belgrade-Faculty of Pharmacy, 11000 Belgrade, Serbia
| |
Collapse
|
17
|
Woolsey C, Borisevich V, Fears AC, Agans KN, Deer DJ, Prasad AN, O’Toole R, Foster SL, Dobias NS, Geisbert JB, Fenton KA, Cross RW, Geisbert TW. Recombinant vesicular stomatitis virus-vectored vaccine induces long-lasting immunity against Nipah virus disease. J Clin Invest 2023; 133:e164946. [PMID: 36445779 PMCID: PMC9888376 DOI: 10.1172/jci164946] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
The emergence of the novel henipavirus, Langya virus, received global attention after the virus sickened over three dozen people in China. There is heightened concern that henipaviruses, as respiratory pathogens, could spark another pandemic, most notably the deadly Nipah virus (NiV). NiV causes near-annual outbreaks in Bangladesh and India and induces a highly fatal respiratory disease and encephalitis in humans. No licensed countermeasures against this pathogen exist. An ideal NiV vaccine would confer both fast-acting and long-lived protection. Recently, we reported the generation of a recombinant vesicular stomatitis virus-based (rVSV-based) vaccine expressing the NiV glycoprotein (rVSV-ΔG-NiVBG) that protected 100% of nonhuman primates from NiV-associated lethality within a week. Here, to evaluate the durability of rVSV-ΔG-NiVBG, we vaccinated African green monkeys (AGMs) one year before challenge with an uniformly lethal dose of NiV. The rVSV-ΔG-NiVBG vaccine induced stable and robust humoral responses, whereas cellular responses were modest. All immunized AGMs (whether receiving a single dose or prime-boosted) survived with no detectable clinical signs or NiV replication. Transcriptomic analyses indicated that adaptive immune signatures correlated with vaccine-mediated protection. While vaccines for certain respiratory infections (e.g., COVID-19) have yet to provide durable protection, our results suggest that rVSV-ΔG-NiVBG elicits long-lasting immunity.
Collapse
Affiliation(s)
- Courtney Woolsey
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Viktoriya Borisevich
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Alyssa C. Fears
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Krystle N. Agans
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Daniel J. Deer
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Abhishek N. Prasad
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Rachel O’Toole
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Stephanie L. Foster
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Natalie S. Dobias
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Joan B. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Karla A. Fenton
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Robert W. Cross
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Thomas W. Geisbert
- Galveston National Laboratory and
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
18
|
Satterfield BA, Mire CE, Geisbert TW. Overview of Experimental Vaccines and Antiviral Therapeutics for Henipavirus Infection. Methods Mol Biol 2023; 2682:1-22. [PMID: 37610570 DOI: 10.1007/978-1-0716-3283-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are highly pathogenic paramyxoviruses, which have emerged in recent decades and cause sporadic outbreaks of respiratory and encephalitic disease in Australia and Southeast Asia, respectively. Over two billion people currently live in regions potentially at risk due to the wide range of the Pteropus fruit bat reservoir, yet there are no approved vaccines or therapeutics to protect against or treat henipavirus disease. In recent years, significant progress has been made toward developing various experimental vaccine platforms and therapeutics. Here, we describe these advances for both human and livestock vaccine candidates and discuss the numerous preclinical studies and the few that have progressed to human phase 1 clinical trial and the one approved veterinary vaccine.
Collapse
Affiliation(s)
| | - Chad E Mire
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.
- National Bio- and Agro-defense Facility, Agricultural Research Services, United States Department of Agriculture, Manhattan, NY, USA.
| | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
19
|
Shi C, Tian L, Zheng W, Zhu Y, Sun P, Liu L, Liu W, Song Y, Xia X, Xue X, Zheng X. Recombinant adeno-associated virus serotype 9 AAV-RABVG expressing a Rabies Virus G protein confers long-lasting immune responses in mice and non-human primates. Emerg Microbes Infect 2022; 11:1439-1451. [PMID: 35579916 PMCID: PMC9154782 DOI: 10.1080/22221751.2022.2078226] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three or four intramuscular doses of the inactivated human rabies virus vaccines are needed for pre- or post-exposure prophylaxis in humans. This procedure has made a great contribution to prevent human rabies deaths, which bring huge economic burdens in developing countries. Herein, a recombinant adeno-associated virus serotype 9, AAV9-RABVG, harbouring a RABV G gene, was generated to serve as a single dose rabies vaccine candidate. The RABV G protein was stably expressed in the 293T cells infected with AAV9-RABVG. A single dose of 2 × 1011 v.p. of AAV9-RABVG induced robust and long-term positive seroconversions in BALB/c mice with a 100% survival from a lethal RABV challenge. In Cynomolgus Macaques vaccinated with a single dose of 1 × 1013 v.p. of AAV9-RABVG, the titres of rabies VNAs increased remarkably from 2 weeks after immunity, and maintained over 31.525 IU/ml at 52 weeks. More DCs were activated significantly for efficient antigen presentations of RABV G protein, and more B cells were activated to be responsible for antibody responses. Significantly more RABV G specific IFN-γ-secreting CD4+ and CD8+ T cells, and IL-4-secreting CD4+ T cells were activated, and significantly higher levels of IL-2, IFN-γ, IL-4, and IL-10 were secreted to aid immune responses. Overall, the AAV9-RABVG was a single dose rabies vaccine candidate with great promising by inducing robust, long-term humoral responses and both Th1 and Th2 cell-mediated immune responses in mice and non-human primates.
Collapse
Affiliation(s)
- Chenjuan Shi
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Li Tian
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenwen Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yelei Zhu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China.,Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, Zhejiang, People's Republic of China
| | - Peilu Sun
- Institute of Materia Medical, Shandong Academy of Medical Sciences, Jinan, People's Republic of China
| | - Lele Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wenkai Liu
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Yanyan Song
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| | - Xianzhu Xia
- Institute of Military Veterinary Medicine, Academy of Military Medical Science, Changchun, People's Republic of China
| | - Xianghong Xue
- Divisions of Infectious Diseases of Special Animal, Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, People's Republic of China
| | - Xuexing Zheng
- Department of Virology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
20
|
Gazal S, Sharma N, Gazal S, Tikoo M, Shikha D, Badroo GA, Rashid M, Lee SJ. Nipah and Hendra Viruses: Deadly Zoonotic Paramyxoviruses with the Potential to Cause the Next Pandemic. Pathogens 2022; 11:pathogens11121419. [PMID: 36558753 PMCID: PMC9784551 DOI: 10.3390/pathogens11121419] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/30/2022] Open
Abstract
Nipah and Hendra viruses are deadly zoonotic paramyxoviruses with a case fatality rate of upto 75%. The viruses belong to the genus henipavirus in the family Paramyxoviridae, a family of negative-sense single-stranded RNA viruses. The natural reservoirs of NiV and HeV are bats (flying foxes) in which the virus infection is asymptomatic. The intermediate hosts for NiV and HeV are swine and equine, respectively. In humans, NiV infections result in severe and often fatal respiratory and neurological manifestations. The Nipah virus was first identified in Malaysia and Singapore following an outbreak of encephalitis in pig farmers and subsequent outbreaks have been reported in Bangladesh and India almost every year. Due to its extreme pathogenicity, pandemic potential, and lack of established antiviral therapeutics and vaccines, research on henipaviruses is highly warranted so as to develop antivirals or vaccines that could aid in the prevention and control of future outbreaks.
Collapse
Affiliation(s)
- Sabahat Gazal
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Neelesh Sharma
- Division of Veterinary Medicine, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
- Correspondence: (N.S.); (S.-J.L.)
| | - Sundus Gazal
- Division of Veterinary Microbiology, College of Veterinary Sciences, Guru Angad Dev Veterinary and Animal Science University, Ludhiana 141004, Punjab, India
| | - Mehak Tikoo
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Deep Shikha
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Gulzar Ahmed Badroo
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Mohd Rashid
- Division of Veterinary Microbiology and Immunology, Faculty of Veterinary Science and Animal Husbandry, Sher-e-Kashmir University of Agricultural Sciences and Technology of Jammu, R.S. Pura, Jammu 181102, Jammu and Kashmir, India
| | - Sung-Jin Lee
- Department of Applied Animal Science, College of Animal Life Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea
- Correspondence: (N.S.); (S.-J.L.)
| |
Collapse
|
21
|
The pathogenesis of Nipah virus: A review. Microb Pathog 2022; 170:105693. [DOI: 10.1016/j.micpath.2022.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 11/24/2022]
|
22
|
Travieso T, Li J, Mahesh S, Mello JDFRE, Blasi M. The use of viral vectors in vaccine development. NPJ Vaccines 2022; 7:75. [PMID: 35787629 PMCID: PMC9253346 DOI: 10.1038/s41541-022-00503-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/15/2022] [Indexed: 12/22/2022] Open
Abstract
Vaccines represent the single most cost-efficient and equitable way to combat and eradicate infectious diseases. While traditional licensed vaccines consist of either inactivated/attenuated versions of the entire pathogen or subunits of it, most novel experimental vaccines against emerging infectious diseases employ nucleic acids to produce the antigen of interest directly in vivo. These include DNA plasmid vaccines, mRNA vaccines, and recombinant viral vectors. The advantages of using nucleic acid vaccines include their ability to induce durable immune responses, high vaccine stability, and ease of large-scale manufacturing. In this review, we present an overview of pre-clinical and clinical data on recombinant viral vector vaccines and discuss the advantages and limitations of the different viral vector platforms.
Collapse
Affiliation(s)
- Tatianna Travieso
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Jenny Li
- Duke University, Durham, NC, USA
| | - Sneha Mahesh
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Juliana Da Fonzeca Redenze E Mello
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA
| | - Maria Blasi
- Department of Medicine, Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA. .,Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
23
|
Rahman MM, Puspo JA, Adib AA, Hossain ME, Alam MM, Sultana S, Islam A, Klena JD, Montgomery JM, Satter SM, Shirin T, Rahman MZ. An Immunoinformatics Prediction of Novel Multi-Epitope Vaccines Candidate Against Surface Antigens of Nipah Virus. Int J Pept Res Ther 2022; 28:123. [PMID: 35761851 PMCID: PMC9219388 DOI: 10.1007/s10989-022-10431-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2022] [Indexed: 11/16/2022]
Abstract
Nipah virus (NiV) is an emerging zoonotic virus causing outbreaks of encephalitis and respiratory illnesses in humans, with high mortality. NiV is considered endemic in Bangladesh and Southeast Asia. There are no licensed vaccines against NiV. This study aimed at predicting a dual-antigen multi-epitope subunit chimeric vaccine against surface-glycoproteins G and F of NiV. Targeted proteins were subjected to immunoinformatics analyses to predict antigenic B-cell and T-cell epitopes. The proposed vaccine designs were implemented based on the conservancy, population coverage, molecular docking, immune simulations, codon adaptation, secondary mRNA structure, and in-silico cloning. Total 40 T and B-cell epitopes were found to be conserved, antigenic (vaxijen-value > 0.4), non-toxic, non-allergenic, and human non-homologous. Of 12 hypothetical vaccines, two (NiV_BGD_V1 and NiV_BGD_V2) were strongly immunogenic, non-allergenic, and structurally stable. The proposed vaccine candidates show a negative Z-score (- 6.32 and - 6.67) and 83.6% and 89.3% of most rama-favored regions. The molecular docking confirmed the highest affinity of NiV_BGD_V1 and NiV_BGD_V2 with TLR-4 (ΔG = - 30.7) and TLR8 (ΔG = - 20.6), respectively. The vaccine constructs demonstrated increased levels of immunoglobulins and cytokines in humans and could be expressed properly using an adenoviral-based pAdTrack-CMV expression vector. However, more experimental investigations and clinical trials are needed to validate its efficacy and safety. Supplementary Information The online version contains supplementary material available at 10.1007/s10989-022-10431-z.
Collapse
Affiliation(s)
- Md. Mahfuzur Rahman
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Joynob Akter Puspo
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Ahmed Ahsan Adib
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Mohammad Enayet Hossain
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Mohammad Mamun Alam
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Sharmin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212 Bangladesh
| | | | - John D. Klena
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Joel M. Montgomery
- Viral Special Pathogens Branch, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA 30333 USA
| | - Syed M. Satter
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Mohakhali, Dhaka 1212 Bangladesh
| | - Mohammed Ziaur Rahman
- Infectious Diseases Division (IDD), icddr,b, 68, Shaheed Tajuddin Ahmed Sarani, Mohakhali, Dhaka 1212 Bangladesh
| |
Collapse
|
24
|
Lawrence P, Escudero-Pérez B. Henipavirus Immune Evasion and Pathogenesis Mechanisms: Lessons Learnt from Natural Infection and Animal Models. Viruses 2022; 14:v14050936. [PMID: 35632678 PMCID: PMC9146692 DOI: 10.3390/v14050936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/01/2023] Open
Abstract
Nipah henipavirus (NiV) and Hendra henipavirus (HeV) are zoonotic emerging paramyxoviruses causing severe disease outbreaks in humans and livestock, mostly in Australia, India, Malaysia, Singapore and Bangladesh. Both are bat-borne viruses and in humans, their mortality rates can reach 60% in the case of HeV and 92% for NiV, thus being two of the deadliest viruses known for humans. Several factors, including a large cellular tropism and a wide zoonotic potential, con-tribute to their high pathogenicity. This review provides an overview of HeV and NiV pathogenicity mechanisms and provides a summary of their interactions with the immune systems of their different host species, including their natural hosts bats, spillover-hosts pigs, horses, and humans, as well as in experimental animal models. A better understanding of the interactions between henipaviruses and their hosts could facilitate the development of new therapeutic strategies and vaccine measures against these re-emerging viruses.
Collapse
Affiliation(s)
- Philip Lawrence
- Science and Humanities Confluence Research Centre (EA 1598), Catholic University of Lyon (UCLy), 69002 Lyon, France
- Correspondence: (P.L.); (B.E.-P.)
| | - Beatriz Escudero-Pérez
- WHO Collaborating Centre for Arbovirus and Haemorrhagic Fever Reference and Research, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Centre for Infection Research (DZIF), Partner Site Hamburg-Luebeck-Borstel, 38124 Braunschweig, Germany
- Correspondence: (P.L.); (B.E.-P.)
| |
Collapse
|
25
|
A recombinant VSV-vectored vaccine rapidly protects nonhuman primates against lethal Nipah virus disease. Proc Natl Acad Sci U S A 2022; 119:e2200065119. [PMID: 35286211 PMCID: PMC8944267 DOI: 10.1073/pnas.2200065119] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Concern has increased about the pandemic potential of Nipah virus (NiV). Similar to SARS-CoV-2, NiV is an RNA virus that is transmitted by respiratory droplets. There are currently no NiV vaccines licensed for human use. While several preventive vaccines have shown promise in protecting animals against lethal NiV disease, most studies have assessed protection 1 mo after vaccination. However, in order to contain and control outbreaks, vaccines that can rapidly confer protection in days rather than months are needed. Here, we show that a recombinant vesicular stomatitis virus vector expressing the NiV glycoprotein can completely protect monkeys vaccinated 7 d prior to NiV exposure and 67% of animals vaccinated 3 d before NiV challenge. Nipah virus (NiV) is an emerging highly lethal zoonotic disease that, like SARS-CoV-2, can be transmitted via respiratory droplets. Single-injection vaccines that rapidly control NiV outbreaks are needed. To assess the ability of a vaccine to induce fast-acting protection, we immunized African green monkeys with a recombinant vesicular stomatitis virus (VSV) expressing the Bangladesh strain glycoprotein (NiVBG) of NiV (rVSV-ΔG-NiVBG). Monkeys were challenged 3 or 7 d later with a lethal dose of NiVB. All monkeys vaccinated with rVSV-ΔG-NiVBG 7 d prior to NiVB exposure were protected from lethal disease, while 67% of animals vaccinated 3 d before NiVB challenge survived. Vaccine protection correlated with natural killer cell and cytotoxic T cell transcriptional signatures, whereas lethality was linked to sustained interferon signaling. NiV G-specific antibodies in vaccinated survivors corroborated additional transcriptomic findings, supporting activation of humoral immunity. This study demonstrates that rVSV-based vaccines may have utility in rapidly protecting humans against NiV infection.
Collapse
|
26
|
Liu F, Feng C, Xu S, Wu Q, Tang J, Chen Y, Xu R, Chen F, Gao N, Xu Z, Gu S, Lan Y, Zhou H, Hu X, Wang X. An AAV vaccine targeting the RBD of the SARS-CoV-2 S protein induces effective neutralizing antibody titers in mice and canines. Vaccine 2022; 40:1208-1212. [PMID: 35094871 PMCID: PMC8769940 DOI: 10.1016/j.vaccine.2022.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/26/2021] [Accepted: 01/13/2022] [Indexed: 11/03/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has resulted in catastrophic damage worldwide. Accordingly, the development of powerful, safe, easily accessible vaccines with long-term effectiveness is understood as an urgently needed countermeasure against this ongoing pandemic. Guided by this strong promise of using AAVs, we here designed, optimized, and developed an AAV-based vaccines (including AAV-RBD(max), AAV-RBD(wt), AAV-2xRBD, and AAV-3xRBD) that elicit strong immune responses against the RBD domain of the SARS-CoV-2 S protein. These immunogenic responses have proven long-lived, with near peak levels for at least six months in mice. Notably, the sera immunized with AAV-3xRBD vaccine contains powerful neutralizing antibodies against the SARS-CoV-2 pseudovirus. Further evidence proven that potent specific antibodies could also be elicited in canines after vaccination with AAV-3xRBD vaccine.
Collapse
Affiliation(s)
- Fei Liu
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, No. 287 Changhuai Road, Bengbu, Anhui, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Canbin Feng
- Laboratory of Genome Editing and Brain Diseases, Center for Excellence in Brain Science and Intelligence Technology/Institute of Neuroscience, Chinese Academy of Science, Shanghai 200031, China
| | - Shiqi Xu
- CAS Key Laboratory of Molecular Virology & Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Qiang Wu
- Laboratory of Genome Editing and Brain Diseases, Center for Excellence in Brain Science and Intelligence Technology/Institute of Neuroscience, Chinese Academy of Science, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jian Tang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yan Chen
- Laboratory of Genome Editing and Brain Diseases, Center for Excellence in Brain Science and Intelligence Technology/Institute of Neuroscience, Chinese Academy of Science, Shanghai 200031, China
| | - Ruisheng Xu
- Laboratory of Genome Editing and Brain Diseases, Center for Excellence in Brain Science and Intelligence Technology/Institute of Neuroscience, Chinese Academy of Science, Shanghai 200031, China
| | - Fuliang Chen
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, No. 287 Changhuai Road, Bengbu, Anhui, China
| | - Ni Gao
- Laboratory of Genome Editing and Brain Diseases, Center for Excellence in Brain Science and Intelligence Technology/Institute of Neuroscience, Chinese Academy of Science, Shanghai 200031, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhengzheng Xu
- Laboratory of Genome Editing and Brain Diseases, Center for Excellence in Brain Science and Intelligence Technology/Institute of Neuroscience, Chinese Academy of Science, Shanghai 200031, China
| | - Shihui Gu
- Department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Yang Lan
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Haibo Zhou
- Laboratory of Genome Editing and Brain Diseases, Center for Excellence in Brain Science and Intelligence Technology/Institute of Neuroscience, Chinese Academy of Science, Shanghai 200031, China
| | - Xinde Hu
- Laboratory of Genome Editing and Brain Diseases, Center for Excellence in Brain Science and Intelligence Technology/Institute of Neuroscience, Chinese Academy of Science, Shanghai 200031, China.
| | - Xiaojing Wang
- Anhui Province Key Laboratory of Clinical and Preclinical Research in Respiratory Disease, Molecular Diagnosis Center, Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Bengbu Medical College, No. 287 Changhuai Road, Bengbu, Anhui, China.
| |
Collapse
|
27
|
Gómez Román R, Tornieporth N, Cherian NG, Shurtleff AC, L'Azou Jackson M, Yeskey D, Hacker A, Mungai E, Le TT. Medical countermeasures against henipaviruses: a review and public health perspective. THE LANCET. INFECTIOUS DISEASES 2021; 22:e13-e27. [PMID: 34735799 PMCID: PMC8694750 DOI: 10.1016/s1473-3099(21)00400-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022]
Abstract
Henipaviruses, including Nipah virus, are regarded as pathogens of notable epidemic potential because of their high pathogenicity and the paucity of specific medical countermeasures to control infections in humans. We review the evidence of medical countermeasures against henipaviruses and project their cost in a post-COVID-19 era. Given the sporadic and unpredictable nature of henipavirus outbreaks, innovative strategies will be needed to circumvent the infeasibility of traditional phase 3 clinical trial regulatory pathways. Stronger partnerships with scientific institutions and regulatory authorities in low-income and middle-income countries can inform coordination of appropriate investments and development of strategies and normative guidelines for the deployment and equitable use of multiple medical countermeasures. Accessible measures should include global, regional, and endemic in-country stockpiles of reasonably priced small molecules, monoclonal antibodies, and vaccines as part of a combined collection of products that could help to control henipavirus outbreaks and prevent future pandemics.
Collapse
Affiliation(s)
- Raúl Gómez Román
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Nadia Tornieporth
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway; University of Applied Sciences & Arts, Hanover, Germany
| | | | - Amy C Shurtleff
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | | - Debra Yeskey
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Adam Hacker
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Eric Mungai
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | - Tung Thanh Le
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway.
| |
Collapse
|
28
|
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are bat-borne zoonotic para-myxoviruses identified in the mid- to late 1990s in outbreaks of severe disease in livestock and people in Australia and Malaysia, respectively. HeV repeatedly re-emerges in Australia while NiV continues to cause outbreaks in South Asia (Bangladesh and India), and these viruses have remained transboundary threats. In people and several mammalian species, HeV and NiV infections present as a severe systemic and often fatal neurologic and/or respiratory disease. NiV stands out as a potential pandemic threat because of its associated high case-fatality rates and capacity for human-to-human transmission. The development of effective vaccines, suitable for people and livestock, against HeV and NiV has been a research focus. Here, we review the progress made in NiV and HeV vaccine development, with an emphasis on those approaches that have been tested in established animal challenge models of NiV and HeV infection and disease.
Collapse
Affiliation(s)
- Moushimi Amaya
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA;
| |
Collapse
|
29
|
Shahnaij M, Iyori M, Mizukami H, Kajino M, Yamagoshi I, Syafira I, Yusuf Y, Fujiwara K, Yamamoto DS, Kato H, Ohno N, Yoshida S. Liver-Directed AAV8 Booster Vaccine Expressing Plasmodium falciparum Antigen Following Adenovirus Vaccine Priming Elicits Sterile Protection in a Murine Model. Front Immunol 2021; 12:612910. [PMID: 34248928 PMCID: PMC8261234 DOI: 10.3389/fimmu.2021.612910] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocyte infection by malaria sporozoites is a bottleneck in the life-cycle of Plasmodium spp. including P. falciparum, which causes the most lethal form of malaria. Therefore, developing an effective vaccine capable of inducing the strong humoral and cellular immune responses necessary to block the pre-erythrocytic stage has potential to overcome the spatiotemporal hindrances pertaining to parasite biology and hepatic microanatomy. We recently showed that when combined with a human adenovirus type 5 (AdHu5)-priming vaccine, adeno-associated virus serotype 1 (AAV1) is a potent booster malaria vaccine vector capable of inducing strong and long-lasting protective immune responses in a rodent malaria model. Here, we evaluated the protective efficacy of a hepatotropic virus, adeno-associated virus serotype 8 (AAV8), as a booster vector because it can deliver a transgene potently and rapidly to the liver, the organ malaria sporozoites initially infect and multiply in following sporozoite injection by the bite of an infected mosquito. We first generated an AAV8-vectored vaccine expressing P. falciparum circumsporozoite protein (PfCSP). Intravenous (i.v.) administration of AAV8-PfCSP to mice initially primed with AdHu5-PfCSP resulted in a hepatocyte transduction rate ~2.5 times above that seen with intramuscular (i.m.) administration. This immunization regimen provided a better protection rate (100% sterile protection) than that of the i.m. AdHu5-prime/i.m. AAV8-boost regimen (60%, p < 0.05), i.m. AdHu5-prime/i.v. AAV1-boost (78%), or i.m. AdHu5-prime/i.m. AAV1-boost (80%) against challenge with transgenic PfCSP-expressing P. berghei sporozoites. Compared with the i.m. AdHu5-prime/i.v. AAV1-boost regimen, three other regimens induced higher levels of PfCSP-specific humoral immune responses. Importantly, a single i.v. dose of AAV8-PfCSP recruited CD8+ T cells, especially resident memory CD8+ T cells, in the liver. These data suggest that boost with i.v. AAV8-PfCSP can improve humoral and cellular immune responses in BALB/c mice. Therefore, this regimen holds great promise as a next-generation platform for the development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Mohammad Shahnaij
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Iyori
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Hiroaki Mizukami
- Division of Gene Therapy, Jichi Medical University, Shimotsuke, Japan
| | - Mayu Kajino
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Iroha Yamagoshi
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Intan Syafira
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| | - Yenni Yusuf
- Department of Parasitology, Faculty of Medicine, University of Hasanuddin, Makassar, Indonesia
| | - Ken Fujiwara
- Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Daisuke S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Hirotomo Kato
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Shigeto Yoshida
- Laboratory of Vaccinology and Applied Immunology, Kanazawa University School of Pharmacy, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
30
|
Preclinical Assessment of Ursolic Acid Loaded into Nanostructured Lipid Carriers in Experimental Visceral Leishmaniasis. Pharmaceutics 2021; 13:pharmaceutics13060908. [PMID: 34205283 PMCID: PMC8235317 DOI: 10.3390/pharmaceutics13060908] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/08/2021] [Accepted: 06/17/2021] [Indexed: 12/17/2022] Open
Abstract
Ursolic acid, a triterpene produced by plants, displayed leishmanicidal activity in vitro and in vivo; however, the low solubility of this triterpene limits its efficacy. To increase the activity of ursolic acid (UA), this triterpene was entrapped in nanostructured lipid carriers (UA-NLC), physical-chemical parameters were estimated, the toxicity was assayed in healthy golden hamsters, and the efficacy of UA-NLC was studied in experimental visceral leishmanisis. UA-NLC exhibited a spherical shape with a smooth surface with a size of 266 nm. UA-NLC displayed low polydispersity (PDI = 0.18) and good colloidal stability (-29.26 mV). Hamsters treated with UA-NLC did not present morphological changes in visceral organs, and the levels of AST, ALT, urea and creatinine were normal. Animals infected with Leishmania (Leishmania) infantum and treated with UA-NLC showed lower parasitism than the infected controls, animals treated with UA or Amphotericin B (AmB). The therapeutic activity of UA-NLC was associated with the increase in a protective immune response, and it was associated with a high degree of spleen and liver preservation, and the normalization of hepatic and renal functions. These data indicate that the use of lipid nanoparticles as UA carriers can be an interesting strategy for the treatment of leishmaniasis.
Collapse
|
31
|
Acutain MF, Griebler Luft J, Vazquez CA, Popik B, Cercato MC, Epstein A, Salvetti A, Jerusalinsky DA, de Oliveira Alvares L, Baez MV. Reduced Expression of Hippocampal GluN2A-NMDAR Increases Seizure Susceptibility and Causes Deficits in Contextual Memory. Front Neurosci 2021; 15:644100. [PMID: 33897358 PMCID: PMC8064689 DOI: 10.3389/fnins.2021.644100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/08/2021] [Indexed: 12/23/2022] Open
Abstract
N-methyl-D-aspartate receptors are heterotetramers composed of two GluN1 obligatory subunits and two regulatory subunits. In cognitive-related brain structures, GluN2A and GluN2B are the most abundant regulatory subunits, and their expression is subjected to tight regulation. During development, GluN2B expression is characteristic of immature synapses, whereas GluN2A is present in mature ones. This change in expression induces a shift in GluN2A/GluN2B ratio known as developmental switch. Moreover, modifications in this relationship have been associated with learning and memory, as well as different pathologies. In this work, we used a specific shRNA to induce a reduction in GluN2A expression after the developmental switch, both in vitro in primary cultured hippocampal neurons and in vivo in adult male Wistar rats. After in vitro characterization, we performed a cognitive profile and evaluated seizure susceptibility in vivo. Our in vitro results showed that the decrease in the expression of GluN2A changes GluN2A/GluN2B ratio without altering the expression of other regulatory subunits. Moreover, rats expressing the anti-GluN2A shRNA in vivo displayed an impaired contextual fear-conditioning memory. In addition, these animals showed increased seizure susceptibility, in terms of both time and intensity, which led us to conclude that deregulation in GluN2A expression at the hippocampus is associated with seizure susceptibility and learning–memory mechanisms.
Collapse
Affiliation(s)
- Maria Florencia Acutain
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | - Jordana Griebler Luft
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Cecila Alejandra Vazquez
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | - Bruno Popik
- Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Magalí C Cercato
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | | | - Anna Salvetti
- International Center for Infectiology Research (CIRI), INSERM U1111, CNRS UMR5308, Université de Lyon (UCBL1), Lyon, France
| | - Diana A Jerusalinsky
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina
| | | | - Maria Verónica Baez
- Instituto de Biología Celular y Neurociencia "Prof. E. De Robertis" (IBCN, CONICET-UBA), Buenos Aires, Argentina.,1° U.A. Departamento de Histologia, Embriología, Biologia Celular y Genética, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
32
|
Recent developments in vaccines strategies against human viral pathogens. RECENT DEVELOPMENTS IN APPLIED MICROBIOLOGY AND BIOCHEMISTRY 2021. [PMCID: PMC7564847 DOI: 10.1016/b978-0-12-821406-0.00001-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Recently, several viruses have emerged or reemerged from obscurity to become serious global health threats, raising alarm regarding their sustained epidemic transmission. One of the main public health concerns of these emerging viruses is their sustained circulation among populations of immunologically naïve, susceptible hosts. With every new viral emergence or reemergence, comes the call for rapid vaccine development and the induction of protective immunity through vaccination can be a powerful tool to prevent this concern by conferring protection to the population at risk. Vaccines are considered a critical component of disease prevention against emerging viral infections because, in many cases, other medical options are limited or nonexistent. While the classic approaches to vaccine development are still amenable to emerging viruses, the advent of latest technologies in molecular techniques has profoundly influenced our understanding of virus biology, and immune responses and vaccination methods based on replicating, attenuated, and nonreplicating virus vector approaches have become useful vaccine platforms. Together with a growing understanding in the biology of newly emerging virus diseases, a range of new vaccine strategies, vaccines against new and reemerging viruses may become a possibility.
Collapse
|
33
|
Loomis RJ, Stewart-Jones GBE, Tsybovsky Y, Caringal RT, Morabito KM, McLellan JS, Chamberlain AL, Nugent ST, Hutchinson GB, Kueltzo LA, Mascola JR, Graham BS. Structure-Based Design of Nipah Virus Vaccines: A Generalizable Approach to Paramyxovirus Immunogen Development. Front Immunol 2020; 11:842. [PMID: 32595632 PMCID: PMC7300195 DOI: 10.3389/fimmu.2020.00842] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/14/2020] [Indexed: 12/18/2022] Open
Abstract
Licensed vaccines or therapeutics are rarely available for pathogens with epidemic or pandemic potential. Developing interventions for specific pathogens and defining generalizable approaches for related pathogens is a global priority and inherent to the UN Sustainable Development Goals. Nipah virus (NiV) poses a significant epidemic threat, and zoonotic transmission from bats-to-humans with high fatality rates occurs almost annually. Human-to-human transmission of NiV has been documented in recent outbreaks leading public health officials and government agencies to declare an urgent need for effective vaccines and therapeutics. Here, we evaluate NiV vaccine antigen design options including the fusion glycoprotein (F) and the major attachment glycoprotein (G). A stabilized prefusion F (pre-F), multimeric G constructs, and chimeric proteins containing both pre-F and G were developed as protein subunit candidate vaccines. The proteins were evaluated for antigenicity and structural integrity using kinetic binding assays, electron microscopy, and other biophysical properties. Immunogenicity of the vaccine antigens was evaluated in mice. The stabilized pre-F trimer and hexameric G immunogens both induced serum neutralizing activity in mice, while the post-F trimer immunogen did not elicit neutralizing activity. The pre-F trimer covalently linked to three G monomers (pre-F/G) induced potent neutralizing antibody activity, elicited responses to the greatest diversity of antigenic sites, and is the lead candidate for clinical development. The specific stabilizing mutations and immunogen designs utilized for NiV were successfully applied to other henipaviruses, supporting the concept of identifying generalizable solutions for prototype pathogens as an approach to pandemic preparedness.
Collapse
Affiliation(s)
- Rebecca J. Loomis
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Guillaume B. E. Stewart-Jones
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yaroslav Tsybovsky
- Electron Microscopy Laboratory, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Ria T. Caringal
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Kaitlyn M. Morabito
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States
| | - Amy L. Chamberlain
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Sean T. Nugent
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Geoffrey B. Hutchinson
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Lisa A. Kueltzo
- Vaccine Production Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - John R. Mascola
- Virology Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
34
|
A Soluble Version of Nipah Virus Glycoprotein G Delivered by Vaccinia Virus MVA Activates Specific CD8 and CD4 T Cells in Mice. Viruses 2019; 12:v12010026. [PMID: 31878180 PMCID: PMC7019319 DOI: 10.3390/v12010026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/13/2022] Open
Abstract
Nipah virus (NiV) is an emerging zoonotic virus that is transmitted by bats to humans and to pigs, causing severe respiratory disease and often fatal encephalitis. Antibodies directed against the NiV-glycoprotein (G) protein are known to play a major role in clearing NiV infection and in providing vaccine-induced protective immunity. More recently, T cells have been also shown to be involved in recovery from NiV infection. So far, relatively little is known about the role of T cell responses and the antigenic targets of NiV-G that are recognized by CD8 T cells. In this study, NiV-G protein served as the target immunogen to activate NiV-specific cellular immune responses. Modified Vaccinia virus Ankara (MVA), a safety-tested strain of vaccinia virus for preclinical and clinical vaccine research, was used for the generation of MVA–NiV-G candidate vaccines expressing different versions of recombinant NiV-G. Overlapping peptides covering the entire NiV-G protein were used to identify major histocompatibility complex class I/II-restricted T cell responses in type I interferon receptor-deficient (IFNAR−/−) mice after vaccination with the MVA–NiV-G candidate vaccines. We have identified an H2-b-restricted nonamer peptide epitope with CD8 T cell antigenicity and a H2-b 15mer with CD4 T cell antigenicity in the NiV-G protein. The identification of this epitope and the availability of the MVA–NiV-G candidate vaccines will help to evaluate NiV-G-specific immune responses and the potential immune correlates of vaccine-mediated protection in the appropriate murine models of NiV-G infection. Of note, a soluble version of NiV-G was advantageous in activating NiV-G-specific cellular immune responses using these peptides.
Collapse
|
35
|
Nidetz NF, McGee MC, Tse LV, Li C, Cong L, Li Y, Huang W. Adeno-associated viral vector-mediated immune responses: Understanding barriers to gene delivery. Pharmacol Ther 2019; 207:107453. [PMID: 31836454 DOI: 10.1016/j.pharmthera.2019.107453] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
Adeno-associated viral (AAV) vectors have emerged as the leading gene delivery platform for gene therapy and vaccination. Three AAV-based gene therapy drugs, Glybera, LUXTURNA, and ZOLGENSMA were approved between 2012 and 2019 by the European Medicines Agency and the United States Food and Drug Administration as treatments for genetic diseases hereditary lipoprotein lipase deficiency (LPLD), inherited retinal disease (IRD), and spinal muscular atrophy (SMA), respectively. Despite these therapeutic successes, clinical trials have demonstrated that host anti-viral immune responses can prevent the long-term gene expression of AAV vector-encoded genes. Therefore, it is critical that we understand the complex relationship between AAV vectors and the host immune response. This knowledge could allow for the rational design of optimized gene transfer vectors capable of either subverting host immune responses in the context of gene therapy applications, or stimulating desirable immune responses that generate protective immunity in vaccine applications to AAV vector-encoded antigens. This review provides an overview of our current understanding of the AAV-induced immune response and discusses potential strategies by which these responses can be manipulated to improve AAV vector-mediated gene transfer.
Collapse
Affiliation(s)
- Natalie F Nidetz
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Michael C McGee
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Longping V Tse
- Department of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Chengwen Li
- Gene Therapy Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Le Cong
- Department of Pathology and Department of Genetics, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Yunxing Li
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853, USA
| | - Weishan Huang
- Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA; Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
36
|
Shuai L, Ge J, Wen Z, Wang J, Wang X, Bu Z. Immune responses in mice and pigs after oral vaccination with rabies virus vectored Nipah disease vaccines. Vet Microbiol 2019; 241:108549. [PMID: 31928698 DOI: 10.1016/j.vetmic.2019.108549] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/06/2019] [Accepted: 12/10/2019] [Indexed: 10/25/2022]
Abstract
Nipah virus (NiV) is a re-emerging zoonotic pathogen that causes high mortality in humans and pigs. Oral immunization in free-roaming animals is one of the most practical approaches to prevent NiV pandemics. We previously generated a recombinant rabies viruses (RABV) Evelyn-Rokitnicki-Abelseth (ERA) strain, rERAG333E, which contains a mutation from arginine to glutamic acid at residue 333 of glycoprotein (G333E) and serves as an oral vaccine for dog rabies. In this study, we generated two recombinant RABVs, rERAG333E/NiVG and rERAG333E/NiVF, expressing the NiV Malaysian strain attachment glycoprotein (NiV-G) or fusion glycoprotein (NiV-F) gene based on the rERAG333E vector platform. Both rERAG333E/NiVG and rERAG333E/NiVF displayed growth properties similar to those of rERAG333E and caused marked syncytia formation after co-infection in BSR cell culture. Adult and suckling mice intracerebrally inoculated with the recombinant RABVs showed NiV-G and NiV-F expression did not increase the virulence of rERAG333E. Oral vaccination with rERAG333E/NiVG either singularly or combined with rERAG333E/NiVF induced significant NiV neutralizing antibody against NiV and RABV, and IgG to NiV-G or NiV-F in mice and pigs. rERAG333E/NiVG and rERAG333E/NiVF thus appeared to be suitable candidates for further oral vaccines for potential animal targets in endemic areas of NiV disease and rabies.
Collapse
Affiliation(s)
- Lei Shuai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jinying Ge
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhiyuan Wen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jinliang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Xijun Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| | - Zhigao Bu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
37
|
Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q 2019; 39:26-55. [PMID: 31006350 PMCID: PMC6830995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 10/20/2023] Open
Abstract
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Collapse
Affiliation(s)
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Sandip Chakraborty
- Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, West Tripura, India
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU), Mathura, India
| | - Senthilkumar Natesan
- Biomac Life Sciences Pvt Ltd., Indian Institute of Public Health Gandhinagar, Gujarat, India
| | - Rekha Khandia
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Ashok Munjal
- Department of Biochemistry and Genetics, Barkatullah University, Bhopal, India
| | - Kranti Suresh Vora
- Wheels India Niswarth (WIN) Foundation, Maternal and Child Health (MCH), University of Canberra, Gujarat, India
| | - Shyma K. Latheef
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Yashpal Singh Malik
- Division of Biological Standardization, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Rajendra Singh
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Devendra T. Mourya
- National Institute of Virology, Ministry of Health and Family Welfare, Govt of India, Pune, India
| |
Collapse
|
38
|
A structural basis for antibody-mediated neutralization of Nipah virus reveals a site of vulnerability at the fusion glycoprotein apex. Proc Natl Acad Sci U S A 2019; 116:25057-25067. [PMID: 31767754 PMCID: PMC6911215 DOI: 10.1073/pnas.1912503116] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Nipah virus (NiV) is a highly pathogenic paramyxovirus that causes frequent outbreaks of severe neurologic and respiratory disease in humans with high case fatality rates. The 2 glycoproteins displayed on the surface of the virus, NiV-G and NiV-F, mediate host-cell attachment and membrane fusion, respectively, and are targets of the host antibody response. Here, we provide a molecular basis for neutralization of NiV through antibody-mediated targeting of NiV-F. Structural characterization of a neutralizing antibody (nAb) in complex with trimeric prefusion NiV-F reveals an epitope at the membrane-distal domain III (DIII) of the molecule, a region that undergoes substantial refolding during host-cell entry. The epitope of this monoclonal antibody (mAb66) is primarily protein-specific and we observe that glycosylation at the periphery of the interface likely does not inhibit mAb66 binding to NiV-F. Further characterization reveals that a Hendra virus-F-specific nAb (mAb36) and many antibodies in an antihenipavirus-F polyclonal antibody mixture (pAb835) also target this region of the molecule. Integrated with previously reported paramyxovirus F-nAb structures, these data support a model whereby the membrane-distal region of the F protein is targeted by the antibody-mediated immune response across henipaviruses. Notably, our domain-specific sequence analysis reveals no evidence of selective pressure at this region of the molecule, suggestive that functional constraints prevent immune-driven sequence variation. Combined, our data reveal the membrane-distal region of NiV-F as a site of vulnerability on the NiV surface.
Collapse
|
39
|
Pelissier R, Iampietro M, Horvat B. Recent advances in the understanding of Nipah virus immunopathogenesis and anti-viral approaches. F1000Res 2019; 8. [PMID: 31656582 PMCID: PMC6798321 DOI: 10.12688/f1000research.19975.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/08/2019] [Indexed: 12/24/2022] Open
Abstract
Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that emerged at the end of last century as a human pathogen capable of causing severe acute respiratory infection and encephalitis. Although NiV provokes serious diseases in numerous mammalian species, the infection seems to be asymptomatic in NiV natural hosts, the fruit bats, which provide a continuous virus source for further outbreaks. Consecutive human-to-human transmission has been frequently observed during outbreaks in Bangladesh and India. NiV was shown to interfere with the innate immune response and interferon type I signaling, restraining the anti-viral response and permitting viral spread. Studies of adaptive immunity in infected patients and animal models have suggested an unbalanced immune response during NiV infection. Here, we summarize some of the recent studies of NiV pathogenesis and NiV-induced modulation of both innate and adaptive immune responses, as well as the development of novel prophylactic and therapeutic approaches, necessary to control this highly lethal emerging infection.
Collapse
Affiliation(s)
- Rodolphe Pelissier
- International Center for Infectiology Research-CIRI, Immunobiology of Viral Infections team, Inserm U1111, CNRS, UMR5308, University of Lyon, Ecole Normale Supérieure de Lyon, France
| | - Mathieu Iampietro
- International Center for Infectiology Research-CIRI, Immunobiology of Viral Infections team, Inserm U1111, CNRS, UMR5308, University of Lyon, Ecole Normale Supérieure de Lyon, France
| | - Branka Horvat
- International Center for Infectiology Research-CIRI, Immunobiology of Viral Infections team, Inserm U1111, CNRS, UMR5308, University of Lyon, Ecole Normale Supérieure de Lyon, France
| |
Collapse
|
40
|
Stroh E, Fischer K, Schwaiger T, Sauerhering L, Franzke K, Maisner A, Groschup MH, Blohm U, Diederich S. Henipavirus-like particles induce a CD8 T cell response in C57BL/6 mice. Vet Microbiol 2019; 237:108405. [PMID: 31561922 DOI: 10.1016/j.vetmic.2019.108405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/01/2019] [Accepted: 09/02/2019] [Indexed: 12/13/2022]
Abstract
Nipah virus (NiV), a BSL-4 pathogen, belongs to the genus Henipavirus within the family Paramyxoviridae. To date, no effective vaccine is available. Although most of the current vaccine studies aim to induce a neutralizing antibody response, it has become evident that a promising vaccine should target both, humoral and cell-mediated immune response. Virus-like particles (VLPs) have been shown to activate both arms of the adaptive immune response. In our study, VLPs composed of the NiV surface glycoproteins G and F and the matrix protein of the closely related Hendra virus (HeV M) induced both, a neutralizing antibody response and an antigen-specific CD8 T cell response with proliferation, IFN-γ expression and Th1 cytokine secretion in C57BL/6 mice. In contrast, in BALB/c mice only a neutralizing antibody response was observed. All three viral proteins included in the VLPs were shown to harbor CD8 T cell epitopes; however, the combination of all three proteins enhanced the magnitude of the CD8 T cell response. To conclude, VLPs represent a promising vaccine candidate, as they induce humoral as well as CD8 T cell-mediated immune responses.
Collapse
Affiliation(s)
- Eileen Stroh
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Kerstin Fischer
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Theresa Schwaiger
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Lucie Sauerhering
- Institute for Virology, Philipps-University Marburg, Marburg, Germany
| | - Kati Franzke
- Institute of Infectology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Andrea Maisner
- Institute for Virology, Philipps-University Marburg, Marburg, Germany
| | - Martin H Groschup
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Ulrike Blohm
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sandra Diederich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.
| |
Collapse
|
41
|
Thakur N, Bailey D. Advances in diagnostics, vaccines and therapeutics for Nipah virus. Microbes Infect 2019; 21:278-286. [PMID: 30817995 DOI: 10.1016/j.micinf.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 12/22/2022]
Abstract
Nipah virus is an emerging zoonotic paramyxovirus that causes severe and often fatal respiratory and neurological disease in humans. The virus was first discovered after an outbreak of encephalitis in pig farmers in Malaysia and Singapore with subsequent outbreaks in Bangladesh or India occurring almost annually. Due to the highly pathogenic nature of NiV, its pandemic potential, and the lack of licensed vaccines or therapeutics, there is a requirement for research and development into highly sensitive and specific diagnostic tools as well as antivirals and vaccines to help prevent and control future outbreak situations.
Collapse
Affiliation(s)
- Nazia Thakur
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK
| | - Dalan Bailey
- The Pirbright Institute, Pirbright, Woking, GU24 0NF, UK.
| |
Collapse
|
42
|
van Doremalen N, Lambe T, Sebastian S, Bushmaker T, Fischer R, Feldmann F, Haddock E, Letko M, Avanzato VA, Rissanen I, LaCasse R, Scott D, Bowden TA, Gilbert S, Munster V. A single-dose ChAdOx1-vectored vaccine provides complete protection against Nipah Bangladesh and Malaysia in Syrian golden hamsters. PLoS Negl Trop Dis 2019; 13:e0007462. [PMID: 31170144 PMCID: PMC6581282 DOI: 10.1371/journal.pntd.0007462] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 06/18/2019] [Accepted: 05/13/2019] [Indexed: 11/23/2022] Open
Abstract
Nipah virus (NiV) is a highly pathogenic re-emerging virus that causes outbreaks in South East Asia. Currently, no approved and licensed vaccine or antivirals exist. Here, we investigated the efficacy of ChAdOx1 NiVB, a simian adenovirus-based vaccine encoding NiV glycoprotein (G) Bangladesh, in Syrian hamsters. Prime-only as well as prime-boost vaccination resulted in uniform protection against a lethal challenge with NiV Bangladesh: all animals survived challenge and we were unable to find infectious virus either in oral swabs, lung or brain tissue. Furthermore, no pathological lung damage was observed. A single-dose of ChAdOx1 NiVB also prevented disease and lethality from heterologous challenge with NiV Malaysia. While we were unable to detect infectious virus in swabs or tissue of animals challenged with the heterologous strain, a very limited amount of viral RNA could be found in lung tissue by in situ hybridization. A single dose of ChAdOx1 NiVB also provided partial protection against Hendra virus and passive transfer of antibodies elicited by ChAdOx1 NiVB vaccination partially protected Syrian hamsters against NiV Bangladesh. From these data, we conclude that ChAdOx1 NiVB is a suitable candidate for further NiV vaccine pre-clinical development.
Collapse
Affiliation(s)
- Neeltje van Doremalen
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Teresa Lambe
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Sarah Sebastian
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Trenton Bushmaker
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Robert Fischer
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Friederike Feldmann
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Elaine Haddock
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Michael Letko
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| | - Victoria A. Avanzato
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Ilona Rissanen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rachel LaCasse
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Dana Scott
- Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, United States of America
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Sarah Gilbert
- The Jenner Institute, University of Oxford, Oxford, United Kingdom
| | - Vincent Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rocky Mountain Laboratories, Hamilton, MT, United States of America
| |
Collapse
|
43
|
Mire CE, Geisbert JB, Agans KN, Versteeg KM, Deer DJ, Satterfield BA, Fenton KA, Geisbert TW. Use of Single-Injection Recombinant Vesicular Stomatitis Virus Vaccine to Protect Nonhuman Primates Against Lethal Nipah Virus Disease. Emerg Infect Dis 2019; 25:1144-1152. [PMID: 31107231 PMCID: PMC6537706 DOI: 10.3201/eid2506.181620] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nipah virus (NiV) is a zoonotic pathogen that causes high case-fatality rates (CFRs) in humans. Two NiV strains have caused outbreaks: the Malaysia strain (NiVM), discovered in 1998-1999 in Malaysia and Singapore (≈40% CFR); and the Bangladesh strain (NiVB), discovered in Bangladesh and India in 2001 (≈80% CFR). Recently, NiVB in African green monkeys resulted in a more severe and lethal disease than NiVM. No NiV vaccines or treatments are licensed for human use. We assessed replication-restricted single-injection recombinant vesicular stomatitis vaccine NiV vaccine vectors expressing the NiV glycoproteins against NiVB challenge in African green monkeys. All vaccinated animals survived to the study endpoint without signs of NiV disease; all showed development of NiV F Ig, NiV G IgG, or both, as well as neutralizing antibody titers. These data show protective efficacy against a stringent and relevant NiVB model of human infection.
Collapse
|
44
|
Singh RK, Dhama K, Chakraborty S, Tiwari R, Natesan S, Khandia R, Munjal A, Vora KS, Latheef SK, Karthik K, Singh Malik Y, Singh R, Chaicumpa W, Mourya DT. Nipah virus: epidemiology, pathology, immunobiology and advances in diagnosis, vaccine designing and control strategies - a comprehensive review. Vet Q 2019. [PMID: 31006350 PMCID: PMC6830995 DOI: 10.1080/01652176.2019.1580827] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Nipah (Nee-pa) viral disease is a zoonotic infection caused by Nipah virus (NiV), a paramyxovirus belonging to the genus Henipavirus of the family Paramyxoviridae. It is a biosafety level-4 pathogen, which is transmitted by specific types of fruit bats, mainly Pteropus spp. which are natural reservoir host. The disease was reported for the first time from the Kampung Sungai Nipah village of Malaysia in 1998. Human-to-human transmission also occurs. Outbreaks have been reported also from other countries in South and Southeast Asia. Phylogenetic analysis affirmed the circulation of two major clades of NiV as based on currently available complete N and G gene sequences. NiV isolates from Malaysia and Cambodia clustered together in NiV-MY clade, whereas isolates from Bangladesh and India clusterered within NiV-BD clade. NiV isolates from Thailand harboured mixed population of sequences. In humans, the virus is responsible for causing rapidly progressing severe illness which might be characterized by severe respiratory illness and/or deadly encephalitis. In pigs below six months of age, respiratory illness along with nervous symptoms may develop. Different types of enzyme-linked immunosorbent assays along with molecular methods based on polymerase chain reaction have been developed for diagnostic purposes. Due to the expensive nature of the antibody drugs, identification of broad-spectrum antivirals is essential along with focusing on small interfering RNAs (siRNAs). High pathogenicity of NiV in humans, and lack of vaccines or therapeutics to counter this disease have attracted attention of researchers worldwide for developing effective NiV vaccine and treatment regimens.
Collapse
Affiliation(s)
- Raj Kumar Singh
- a ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Sandip Chakraborty
- c Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry , West Tripura , India
| | - Ruchi Tiwari
- d Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Senthilkumar Natesan
- e Biomac Life Sciences Pvt Ltd. , Indian Institute of Public Health Gandhinagar , Gujarat , India
| | - Rekha Khandia
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Ashok Munjal
- f Department of Biochemistry and Genetics , Barkatullah University , Bhopal , India
| | - Kranti Suresh Vora
- g Wheels India Niswarth (WIN) Foundation, Maternal and Child Health (MCH) , University of Canberra , Gujarat , India
| | - Shyma K Latheef
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Kumaragurubaran Karthik
- h Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Yashpal Singh Malik
- i Division of Biological Standardization , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Rajendra Singh
- b Division of Pathology , ICAR-Indian Veterinary Research Institute , Bareilly , India
| | - Wanpen Chaicumpa
- j Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine, Siriraj Hospital , Mahidol University , Bangkok , Thailand
| | - Devendra T Mourya
- k National Institute of Virology , Ministry of Health and Family Welfare, Govt of India , Pune , India
| |
Collapse
|
45
|
Zhu F, Wang Y, Xu Z, Qu H, Zhang H, Niu L, Xue H, Jing D, He H. Novel adeno‑associated virus‑based genetic vaccines encoding hepatitis C virus E2 glycoprotein elicit humoral immune responses in mice. Mol Med Rep 2018; 19:1016-1023. [PMID: 30569131 PMCID: PMC6323296 DOI: 10.3892/mmr.2018.9739] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022] Open
Abstract
Hepatitis C virus (HCV) infection remains a major public health issue despite the introduction of several direct-acting antiviral agents (DAAs), with some 185 million individuals infected with HCV worldwide. There is an urgent need for an effective prophylactic HCV vaccine. In the present study, we constructed genetic vaccines based on novel recombinant adeno-associated viral (rAAV) vectors (AAV2/8 or AAV2/rh32.33) that express the envelope glycoprotein E2 from the HCV genotype 1b. Expression of HCV E2 protein in 293 cells was confirmed by western blot analysis. rAAV2/8.HCV E2 vaccine or rAAV2/rh32.33.HCV E2 vaccine was intramuscularly injected into C57BL/6 mice. HCV E2-specific antigen was produced, and long-lasting specific antibody responses remained detectable XVI weeks following immunization. In addition, the rAAV2/rh32.33 vaccine induced higher antigen-specific antibody levels than the rAAV2/8 vaccine or AAV plasmid. Moreover, both AAV vaccines induced neutralizing antibodies against HCV genotypes 1a and 1b. Finally, it is worth mentioning that neutralizing antibody levels directed against AAV2/rh32.33 were lower than those against AAV2/8 in both mouse and human serum. These results demonstrate that AAV vectors, especially the AAVrh32.33, have particularly favorable immunogenicity for development into an effective HCV vaccine.
Collapse
Affiliation(s)
- Fengqin Zhu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Yibo Wang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Zhen Xu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Haiyang Qu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Hairong Zhang
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Lingling Niu
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Honglu Xue
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Dehuai Jing
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Heng He
- Department of Gastroenterology, Affiliated Hospital of Jining Medical University, Jining Medical University, Jining, Shandong 272000, P.R. China
| |
Collapse
|
46
|
Paulk NK, Pekrun K, Charville GW, Maguire-Nguyen K, Wosczyna MN, Xu J, Zhang Y, Lisowski L, Yoo B, Vilches-Moure JG, Lee GK, Shrager JB, Rando TA, Kay MA. Bioengineered Viral Platform for Intramuscular Passive Vaccine Delivery to Human Skeletal Muscle. Mol Ther Methods Clin Dev 2018; 10:144-155. [PMID: 30101152 PMCID: PMC6077147 DOI: 10.1016/j.omtm.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/05/2018] [Indexed: 01/08/2023]
Abstract
Skeletal muscle is ideal for passive vaccine administration as it is easily accessible by intramuscular injection. Recombinant adeno-associated virus (rAAV) vectors are in consideration for passive vaccination clinical trials for HIV and influenza. However, greater human skeletal muscle transduction is needed for therapeutic efficacy than is possible with existing serotypes. To bioengineer capsids with therapeutic levels of transduction, we utilized a directed evolution approach to screen libraries of shuffled AAV capsids in pools of surgically resected human skeletal muscle cells from five patients. Six rounds of evolution were performed in various muscle cell types, and evolved variants were validated against existing muscle-tropic serotypes rAAV1, 6, and 8. We found that evolved variants NP22 and NP66 had significantly increased primary human and rhesus skeletal muscle fiber transduction from surgical explants ex vivo and in various primary and immortalized myogenic lines in vitro. Importantly, we demonstrated reduced seroreactivity compared to existing serotypes against normal human serum from 50 adult donors. These capsids represent powerful tools for human skeletal muscle expression and secretion of antibodies from passive vaccines.
Collapse
Affiliation(s)
- Nicole K. Paulk
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Katja Pekrun
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Gregory W. Charville
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Katie Maguire-Nguyen
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Michael N. Wosczyna
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | - Jianpeng Xu
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Yue Zhang
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Leszek Lisowski
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Bryan Yoo
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Gordon K. Lee
- Department of Surgery, Division of Plastic & Reconstructive Surgery, Stanford University, Stanford, CA 94305, USA
| | - Joseph B. Shrager
- Department of Cardiothoracic Surgery, Division of Thoracic Surgery, Stanford University and VA Palo Alto Health Care System, Stanford, CA 94305, USA
| | - Thomas A. Rando
- Glenn Center for Biology of Aging and Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA 94305, USA
- Neurology Service and Rehabilitation Research and Development Center of Excellence, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Mark A. Kay
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
47
|
Ghenassia A, Gross DA, Lorain S, Tros F, Urbain D, Benkhelifa-Ziyyat S, Charbit A, Davoust J, Chappert P. Intradermal Immunization with rAAV1 Vector Induces Robust Memory CD8 + T Cell Responses Independently of Transgene Expression in DCs. Mol Ther 2017; 25:2309-2322. [PMID: 28720467 DOI: 10.1016/j.ymthe.2017.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 06/15/2017] [Accepted: 06/18/2017] [Indexed: 01/16/2023] Open
Abstract
Recombinant adeno-associated viral (rAAV) vectors exhibit interesting properties as vaccine carriers for their ability to induce long-lasting antibody responses. However, rAAV-based vaccines have been suggested to trigger functionally impaired long-term memory CD8+ T cell responses, in part due to poor dendritic cell (DC) transduction. Such results, albeit limited to intramuscular immunization, undermined the use of rAAV as vaccine vehicles against intracellular pathogens. We report here that intradermal immunization with a model rAAV2/1-based vaccine drives the development of bona fide long-term memory CD8+ T cell responses. The intradermal route of immunization and the presence of potent major histocompatibility complex (MHC) class II responses showed synergistic effects on the overall quantity and quality of systemic long-term effector memory transgene-specific CD8+ T cells being generated against the transgene. Of key interest, we found that the induction of memory cytotoxic T lymphocytes (CTLs) following intradermal immunization was solely dependent on the cross-presentation of skin-expressed transgene products, which appeared highly enhanced as compared to muscle-expressed transgene products. Overall our results highlight key tissue-specific differences in transgene presentation pathway requirements of importance for the design of rAAV-based T cell-inducing vaccines.
Collapse
Affiliation(s)
- Alexandre Ghenassia
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France
| | - David-Alexandre Gross
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France
| | - Stéphanie Lorain
- Myology Research Center, UM76, INSERM U974, CNRS FRE 3617, Institut de Myologie, UPMC Université Paris 6, Sorbonne Universités, 75005 Paris, France
| | - Fabiola Tros
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France
| | - Dominique Urbain
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France
| | - Sofia Benkhelifa-Ziyyat
- Myology Research Center, UM76, INSERM U974, CNRS FRE 3617, Institut de Myologie, UPMC Université Paris 6, Sorbonne Universités, 75005 Paris, France
| | - Alain Charbit
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France
| | - Jean Davoust
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France.
| | - Pascal Chappert
- Institut Necker Enfants Malades, INSERM U1151, CNRS, UMR8253, Faculté de Médecine, Université Paris Descartes, Sorbonne Paris Cité, 75743 Paris, France.
| |
Collapse
|
48
|
Enchéry F, Horvat B. Understanding the interaction between henipaviruses and their natural host, fruit bats: Paving the way toward control of highly lethal infection in humans. Int Rev Immunol 2017; 36:108-121. [PMID: 28060559 DOI: 10.1080/08830185.2016.1255883] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hendra virus and Nipah virus (NiV) are highly pathogenic zoonotic paramyxoviruses, from henipavirus genus, that have emerged in late 1990s in Australia and South-East Asia, respectively. Since their initial identification, numerous outbreaks have been reported, affecting both domestic animals and humans, and multiple rounds of person-to-person NiV transmission were observed. Widely distributed fruit bats from Pteropodidae family were found to be henipavirus natural reservoir. Numerous studies have reported henipavirus seropositivity in pteropid bats, including bats in Africa, thus expanding notably the geographic distribution of these viruses. Interestingly, henipavirus infection in bats seems to be asymptomatic, in contrast to severe disease induced in numerous other mammals. Unique among the mammals by their ability to fly, these intriguing animals are natural reservoir for many other emerging and remerging viruses highly pathogenic for humans. This feature, combined with absence of clinical symptoms, has attracted the interest of scientific community to virus-bat interactions. Therefore, several bat genomes were sequenced and particularities of the bat immune system have been intensively analyzed during the last decade to understand their coexistence with viruses in the absence of disease. The peculiarities in inflammasome activation, a constitutive expression of interferon alpha, and some differences in adaptive immunity have been recently reported in fruit bats. Studies on virus-bat interactions have thus emerged as an exciting novel area of research that should shed new light on the mechanisms that regulate viral infection and may allow development of novel therapeutic approaches to control this highly lethal emerging infectious disease in humans.
Collapse
Affiliation(s)
- François Enchéry
- a CIRI, International Center for Infectiology Research (Immunobiology of Viral Infections Team), Inserm, U1111, CNRS, UMR5308, University Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, France, Laboratoire d'Excellence ECOFECT , Lyon , France
| | - Branka Horvat
- a CIRI, International Center for Infectiology Research (Immunobiology of Viral Infections Team), Inserm, U1111, CNRS, UMR5308, University Claude Bernard Lyon 1, Ecole Normale Supérieure de Lyon, France, Laboratoire d'Excellence ECOFECT , Lyon , France
| |
Collapse
|
49
|
Vector-based genetically modified vaccines: Exploiting Jenner's legacy. Vaccine 2016; 34:6436-6448. [PMID: 28029542 PMCID: PMC7115478 DOI: 10.1016/j.vaccine.2016.06.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 06/02/2016] [Accepted: 06/20/2016] [Indexed: 12/21/2022]
Abstract
The global vaccine market is diverse while facing a plethora of novel developments. Genetic modification (GM) techniques facilitate the design of ’smarter’ vaccines. For many of the major infectious diseases of humans, like AIDS and malaria, but also for most human neoplastic disorders, still no vaccines are available. It may be speculated that novel GM technologies will significantly contribute to their development. While a promising number of studies is conducted on GM vaccines and GM vaccine technologies, the contribution of GM technology to newly introduced vaccines on the market is disappointingly limited. In this study, the field of vector-based GM vaccines is explored. Data on currently available, actually applied, and newly developed vectors is retrieved from various sources, synthesised and analysed, in order to provide an overview on the use of vector-based technology in the field of GM vaccine development. While still there are only two vector-based vaccines on the human vaccine market, there is ample activity in the fields of patenting, preclinical research, and different stages of clinical research. Results of this study revealed that vector-based vaccines comprise a significant part of all GM vaccines in the pipeline. This study further highlights that poxviruses and adenoviruses are among the most prominent vectors in GM vaccine development. After the approval of the first vectored human vaccine, based on a flavivirus vector, vaccine vector technology, especially based on poxviruses and adenoviruses, holds great promise for future vaccine development. It may lead to cheaper methods for the production of safe vaccines against diseases for which no or less perfect vaccines exist today, thus catering for an unmet medical need. After the introduction of Jenner’s vaccinia virus as the first vaccine more than two centuries ago, which eventually led to the recent eradication of smallpox, this and other viruses may now be the basis for constructing vectors that may help us control other major scourges of mankind.
Collapse
|
50
|
Pickering BS, Hardham JM, Smith G, Weingartl ET, Dominowski PJ, Foss DL, Mwangi D, Broder CC, Roth JA, Weingartl HM. Protection against henipaviruses in swine requires both, cell-mediated and humoral immune response. Vaccine 2016; 34:4777-86. [PMID: 27544586 DOI: 10.1016/j.vaccine.2016.08.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Hendra virus (HeV) and Nipah virus (NiV) are members of the genus Henipavirus, within the family Paramyxoviridae. Nipah virus has caused outbreaks of human disease in Bangladesh, Malaysia, Singapore, India and Philippines, in addition to a large outbreak in swine in Malaysia in 1998/1999. Recently, NiV was suspected to be a causative agent of an outbreak in horses in 2014 in the Philippines, while HeV has caused multiple human and equine outbreaks in Australia since 1994. A swine vaccine able to prevent shedding of infectious virus is of veterinary and human health importance, and correlates of protection against henipavirus infection in swine need to be better understood. In the present study, three groups of animals were employed. Pigs vaccinated with adjuvanted recombinant soluble HeV G protein (sGHEV) and challenged with HeV, developed antibody levels considered to be protective prior to the challenge (titers of 320). However, activation of the cell-mediated immune response was not detected, and the animals were only partially protected against challenge with 5×10(5) PFU of HeV per animal. In the second group, cross-neutralizing antibody levels against NiV in the sGHEV vaccinated animals did not reach protective levels, and with no activation of cellular immune memory, these animals were not protected against NiV. Only pigs orally infected with 5×10(4) PFU of NiV per animal were protected against nasal challenge with 5×10(5) PFU of NiV per animal. This group of pigs developed protective antibody levels, as well as cell-mediated immune memory. Peripheral blood mononuclear cells restimulated with UV-inactivated NiV upregulated IFN-gamma, IL-10 and the CD25 activation marker on CD4(+)CD8(+) T memory helper cells and to lesser extent on CD4(-)CD8(+) T cells. In conclusion, both humoral and cellular immune responses were required for protection of swine against henipaviruses.
Collapse
Affiliation(s)
- Brad S Pickering
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - John M Hardham
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Greg Smith
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada
| | - Eva T Weingartl
- School of Public Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paul J Dominowski
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Dennis L Foss
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Duncan Mwangi
- Zoetis, Veterinary Medicine Research & Development, Kalamazoo, MI 49007, USA
| | - Christopher C Broder
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD 20814, USA
| | - James A Roth
- Center for Food Security and Public Health, College of Veterinary Medicine, Iowa State University, Ames, IA 50010, USA; Transboundary Animal Biologics, Inc, Ames, IA 50010, USA
| | - Hana M Weingartl
- National Centre for Foreign Animal Disease, Canadian Food Inspection Agency, Winnipeg, Manitoba, Canada; Department of Medical Microbiology, Faculty of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|