1
|
Chen J, Bai Y, He X, Xiao W, Chen L, Wong YK, Wang C, Gao P, Cheng G, Xu L, Yang C, Liao F, Han G, Sun J, Xu C, Wang J. The spatiotemporal transcriptional profiling of murine brain during cerebral malaria progression and after artemisinin treatment. Nat Commun 2025; 16:1540. [PMID: 39934099 DOI: 10.1038/s41467-024-52223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 08/28/2024] [Indexed: 02/13/2025] Open
Abstract
Cerebral malaria (CM) is a severe encephalopathy caused by Plasmodium parasite infection, resulting in thousands of annual deaths and neuro-cognitive sequelae even after anti-malarial drugs treatment. Despite efforts to dissect the mechanism, the cellular transcriptomic reprogramming within the spatial context remains elusive. Here, we constructed single-cell and spatial transcriptome atlases of experimental CM (ECM) male murine brain tissues with or without artesunate (ART) treatment. We identified activated inflammatory endothelial cells during ECM, characterized by a disrupted blood-brain barrier, increased antigen presentation, and leukocyte adhesion. We also observed that inflammatory microglia enhance antigen presentation pathway such as MHC-I to CD8+ cytotoxic T cells. The latter underwent an inflammatory state transition with up-regulated cytokine expression and cytotoxic activity. Multi-omics analysis revealed that the activated interferon-gamma response of injured neurons during ECM and persisted after ART treatment. Overall, our research provides valuable resources for understanding malaria parasite-host interaction mechanisms and adjuvant therapy development.
Collapse
Affiliation(s)
- Jiayun Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
| | - Yunmeng Bai
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Xueling He
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Xiao
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China
- Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Lina Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yin Kwan Wong
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Chen Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Peng Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Guangqing Cheng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Liting Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chuanbin Yang
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Fulong Liao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Guang Han
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China
| | - Jichao Sun
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Chengchao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Critical Care Medicine, Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatric, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
- Center for Drug Research and Development, Guangdong Provincial Key Laboratory for Research and Evaluation of Pharmaceutical Preparations, Guangdong Pharmaceutical University, Guangzhou, 510006, Guangdong, China.
- Department of Traditional Chinese Medicine and School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- State Key Laboratory of Antiviral Drugs, School of Pharmacy, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
2
|
Ye C, Clements SA, Gu W, Geurts AM, Mathews CE, Serreze DV, Chen YG, Driver JP. Deletion of Vβ3 +CD4 + T cells by endogenous mouse mammary tumor virus 3 prevents type 1 diabetes induction by autoreactive CD8 + T cells. Proc Natl Acad Sci U S A 2023; 120:e2312039120. [PMID: 38015847 PMCID: PMC10710095 DOI: 10.1073/pnas.2312039120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/23/2023] [Indexed: 11/30/2023] Open
Abstract
In both humans and NOD mice, type 1 diabetes (T1D) develops from the autoimmune destruction of pancreatic beta cells by T cells. Interactions between both helper CD4+ and cytotoxic CD8+ T cells are essential for T1D development in NOD mice. Previous work has indicated that pathogenic T cells arise from deleterious interactions between relatively common genes which regulate aspects of T cell activation/effector function (Ctla4, Tnfrsf9, Il2/Il21), peptide presentation (H2-A g7, B2m), and T cell receptor (TCR) signaling (Ptpn22). Here, we used a combination of subcongenic mapping and a CRISPR/Cas9 screen to identify the NOD-encoded mammary tumor virus (Mtv)3 provirus as a genetic element affecting CD4+/CD8+ T cell interactions through an additional mechanism, altering the TCR repertoire. Mtv3 encodes a superantigen (SAg) that deletes the majority of Vβ3+ thymocytes in NOD mice. Ablating Mtv3 and restoring Vβ3+ T cells has no effect on spontaneous T1D development in NOD mice. However, transferring Mtv3 to C57BL/6 (B6) mice congenic for the NOD H2 g7 MHC haplotype (B6.H2 g7) completely blocks their normal susceptibility to T1D mediated by transferred CD8+ T cells transgenically expressing AI4 or NY8.3 TCRs. The entire genetic effect is manifested by Vβ3+CD4+ T cells, which unless deleted by Mtv3, accumulate in insulitic lesions triggering in B6 background mice the pathogenic activation of diabetogenic CD8+ T cells. Our findings provide evidence that endogenous Mtv SAgs can influence autoimmune responses. Furthermore, since most common mouse strains have gaps in their TCR Vβ repertoire due to Mtvs, it raises questions about the role of Mtvs in other mouse models designed to reflect human immune disorders.
Collapse
Affiliation(s)
- Cheng Ye
- Department of Animal Sciences, University of Florida, Gainesville, FL32611
| | - Sadie A. Clements
- Division of Animal Sciences, University of Missouri, Columbia, MO65201
| | - Weihong Gu
- Division of Animal Sciences, University of Missouri, Columbia, MO65201
| | - Aron M. Geurts
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI53226
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL32610
| | | | - Yi-Guang Chen
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI53226
| | - John P. Driver
- Division of Animal Sciences, University of Missouri, Columbia, MO65201
| |
Collapse
|
3
|
The IL-33/ST2 Pathway in Cerebral Malaria. Int J Mol Sci 2022; 23:ijms232113457. [PMID: 36362246 PMCID: PMC9658244 DOI: 10.3390/ijms232113457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/24/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Interleukin-33 (IL-33) is an immunomodulatory cytokine which plays critical roles in tissue function and immune-mediated diseases. IL-33 is abundant within the brain and spinal cord tissues where it acts as a key cytokine to coordinate the exchange between the immune and central nervous system (CNS). In this review, we report the recent advances to our knowledge regarding the role of IL-33 and of its receptor ST2 in cerebral malaria, and in particular, we highlight the pivotal role that IL-33/ST2 signaling pathway could play in brain and cerebrospinal barriers permeability. IL-33 serum levels are significantly higher in children with severe Plasmodium falciparum malaria than children without complications or noninfected children. IL-33 levels are correlated with parasite load and strongly decrease with parasite clearance. We postulate that sequestration of infected erythrocytes or merozoites liberation from schizonts could amplify IL-33 production in endothelial cells, contributing either to malaria pathogenesis or recovery.
Collapse
|
4
|
Frimpong A, Ofori MF, Degoot AM, Kusi KA, Gershom B, Quartey J, Kyei-Baafour E, Nguyen N, Ndifon W. Perturbations in the T cell receptor β repertoire during malaria infection in children: A preliminary study. Front Immunol 2022; 13:971392. [PMID: 36311775 PMCID: PMC9606469 DOI: 10.3389/fimmu.2022.971392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
The changes occurring in the T cell repertoire during clinical malaria infection in children remain unknown. In this study, we undertook the first detailed comparative study of the T cell repertoire in African children with and without clinical malaria to test the hypothesis that clonotypic expansions that occur during P. falciparum infection will contribute to the generation of a T cell repertoire that is unique to each disease state. We profiled the complementarity-determining region 3 (CDR3) of the TCRβ chain sequences from children with Plasmodium falciparum infections (asymptomatic, uncomplicated and severe malaria) and compared these with sequences from healthy children. Interestingly, we discovered that children with symptomatic malaria have a lower TCR diversity and frequency of shared (or “public”) TCR sequences compared to asymptomatic children. Also, TCR diversity was inversely associated with parasitemia. Furthermore, by clustering TCR sequences based on their predicted antigen specificities, we identified a specificity cluster, with a 4-mer amino acid motif, that is overrepresented in the asymptomatic group compared to the diseased groups. Further investigations into this finding may help in delineating important antigenic targets for vaccine and therapeutic development. The results show that the T cell repertoire in children is altered during malaria, suggesting that exposure to P. falciparum antigens disrupts the adaptive immune response, which is an underlying feature of the disease.
Collapse
Affiliation(s)
- Augustina Frimpong
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
- African Institute for Mathematical Sciences, Accra, Ghana
- *Correspondence: Wilfred Ndifon, ; Augustina Frimpong,
| | - Michael Fokuo Ofori
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Abdoelnaser M. Degoot
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda
| | - Kwadwo Asamoah Kusi
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, Accra, Ghana
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Buri Gershom
- African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Jacob Quartey
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Eric Kyei-Baafour
- Immunology Department, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Accra, Ghana
| | | | - Wilfred Ndifon
- Research Department, African Institute for Mathematical Sciences, Next Einstein Initiative, Kigali, Rwanda
- African Institute for Mathematical Sciences, Cape Town, South Africa
- *Correspondence: Wilfred Ndifon, ; Augustina Frimpong,
| |
Collapse
|
5
|
Ibraheem Y, Bayarsaikhan G, Inoue SI. Host immunity to Plasmodium infection: Contribution of Plasmodium berghei to our understanding of T cell-related immune response to blood-stage malaria. Parasitol Int 2022; 92:102646. [PMID: 35998816 DOI: 10.1016/j.parint.2022.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Malaria is a life-threatening disease caused by infection with Plasmodium parasites. The goal of developing an effective malaria vaccine is yet to be reached despite decades of massive research efforts. CD4+ helper T cells, CD8+ cytotoxic T cells, and γδ T cells are associated with immune responses to both liver-stage and blood-stage Plasmodium infection. The immune responses of T cell-lineages to Plasmodium infection are associated with both protection and immunopathology. Studies with mouse model of malaria contribute to our understanding of host immune response. In this paper, we focus primarily on mouse malaria model with blood-stage Plasmodium berghei infection and review our knowledge of T cell immune responses against Plasmodium infection. Moreover, we also discuss findings of experimental human studies. Uncovering the precise mechanisms of T cell-mediated immunity to Plasmodium infection can be accomplished through further investigations using mouse models of malaria with rodent Plasmodium parasites. Those findings would be invaluable to advance the efforts for development of an effective malaria vaccine.
Collapse
Affiliation(s)
- Yarob Ibraheem
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-city, Nagasaki 852-8523, Japan
| | - Ganchimeg Bayarsaikhan
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-city, Nagasaki 852-8523, Japan
| | - Shin-Ichi Inoue
- Division of Immunology, Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki-city, Nagasaki 852-8523, Japan.
| |
Collapse
|
6
|
The C-type Lectin Receptor CLEC12A Recognizes Plasmodial Hemozoin and Contributes to Cerebral Malaria Development. Cell Rep 2020; 28:30-38.e5. [PMID: 31269448 PMCID: PMC6616648 DOI: 10.1016/j.celrep.2019.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 03/15/2019] [Accepted: 06/04/2019] [Indexed: 01/04/2023] Open
Abstract
Malaria represents a major cause of death from infectious disease. Hemozoin is a Plasmodium-derived product that contributes to progression of cerebral malaria. However, there is a gap of knowledge regarding how hemozoin is recognized by innate immunity. Myeloid C-type lectin receptors (CLRs) encompass a family of carbohydrate-binding receptors that act as pattern recognition receptors in innate immunity. In the present study, we identify the CLR CLEC12A as a receptor for hemozoin. Dendritic cell-T cell co-culture assays indicate that the CLEC12A/hemozoin interaction enhances CD8+ T cell cross-priming. Using the Plasmodium berghei Antwerpen-Kasapa (ANKA) mouse model of experimental cerebral malaria (ECM), we find that CLEC12A deficiency protects mice from ECM, illustrated by reduced ECM incidence and ameliorated clinical symptoms. In conclusion, we identify CLEC12A as an innate sensor of plasmodial hemozoin. CLEC12A recognizes plasmodial hemozoin The CLEC12A/hemozoin interaction enhances CD8+ T cell cross-priming in vitro CLEC12A−/− mice are protected from experimental cerebral malaria
Collapse
|
7
|
γδ-T cells promote IFN-γ-dependent Plasmodium pathogenesis upon liver-stage infection. Proc Natl Acad Sci U S A 2019; 116:9979-9988. [PMID: 31028144 DOI: 10.1073/pnas.1814440116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cerebral malaria (CM) is a major cause of death due to Plasmodium infection. Both parasite and host factors contribute to the onset of CM, but the precise cellular and molecular mechanisms that contribute to its pathogenesis remain poorly characterized. Unlike conventional αβ-T cells, previous studies on murine γδ-T cells failed to identify a nonredundant role for this T cell subset in experimental cerebral malaria (ECM). Here we show that mice lacking γδ-T cells are resistant to ECM when infected with Plasmodium berghei ANKA sporozoites, the liver-infective form of the parasite and the natural route of infection, in contrast with their susceptible phenotype if challenged with P. berghei ANKA-infected red blood cells that bypass the liver stage of infection. Strikingly, the presence of γδ-T cells enhanced the expression of Plasmodium immunogenic factors and exacerbated subsequent systemic and brain-infiltrating inflammatory αβ-T cell responses. These phenomena were dependent on the proinflammatory cytokine IFN-γ, which was required during liver stage for modulation of the parasite transcriptome, as well as for downstream immune-mediated pathology. Our work reveals an unanticipated critical role of γδ-T cells in the development of ECM upon Plasmodium liver-stage infection.
Collapse
|
8
|
Sierro F, Grau GER. The Ins and Outs of Cerebral Malaria Pathogenesis: Immunopathology, Extracellular Vesicles, Immunometabolism, and Trained Immunity. Front Immunol 2019; 10:830. [PMID: 31057552 PMCID: PMC6478768 DOI: 10.3389/fimmu.2019.00830] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 03/28/2019] [Indexed: 12/16/2022] Open
Abstract
Complications from malaria parasite infections still cost the lives of close to half a million people every year. The most severe is cerebral malaria (CM). Employing murine models of CM, autopsy results, in vitro experiments, neuroimaging and microscopic techniques, decades of research activity have investigated the development of CM immunopathology in the hope of identifying steps that could be therapeutically targeted. Yet important questions remain. This review summarizes recent findings, primarily mechanistic insights on the essential cellular and molecular players involved gained within the murine experimental cerebral malaria model. It also highlights recent developments in (a) cell-cell communication events mediated through extracellular vesicles (EVs), (b) mounting evidence for innate immune memory, leading to “trained“ increased or tolerised responses, and (c) modulation of immune cell function through metabolism, that could shed light on why some patients develop this life-threatening condition whilst many do not.
Collapse
Affiliation(s)
- Frederic Sierro
- Vascular Immunology Unit, Department of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia.,Human Health, Nuclear Science, Technology, and Landmark Infrastructure, Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Georges E R Grau
- Vascular Immunology Unit, Department of Pathology, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
9
|
Ohno T, Miyasaka Y, Kuga M, Ushida K, Matsushima M, Kawabe T, Kikkawa Y, Mizuno M, Takahashi M. Mouse NC/Jic strain provides novel insights into host genetic factors for malaria research. Exp Anim 2019; 68:243-255. [PMID: 30880305 PMCID: PMC6699971 DOI: 10.1538/expanim.18-0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Malaria is caused by Plasmodium parasites and is one of the most
life-threatening infectious diseases in humans. Infection can result in severe
complications such as cerebral malaria, acute lung injury/acute respiratory distress
syndrome, and acute renal injury. These complications are mainly caused by P.
falciparum infection and are major causes of death associated with malaria.
There are a few species of rodent-infective malaria parasites, and mice infected with such
parasites are now widely used for screening candidate drugs and vaccines and for studying
host immune responses and pathogenesis associated with disease-related complications. We
found that mice of the NC/Jic strain infected with rodent malarial parasites exhibit
distinctive disease-related complications such as cerebral malaria and nephrotic syndrome,
in addition to a rapid increase in parasitemia. Here, we focus on the analysis of host
genetic factors that affect malarial pathogenesis and describe the characteristic
features, utility, and future prospects for exploitation of the NC/Jic strain as a novel
mouse model for malaria research.
Collapse
Affiliation(s)
- Tamio Ohno
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yuki Miyasaka
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masako Kuga
- Division of Experimental Animals, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kaori Ushida
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Miyoko Matsushima
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Tsutomu Kawabe
- Department of Pathophysiological Laboratory Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daikou-minami, Higashi-ku, Nagoya, Aichi 461-8673, Japan
| | - Yoshiaki Kikkawa
- Mammalian Genetics Project, Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
| | - Masashi Mizuno
- Renal Replacement Therapy, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Masahide Takahashi
- Department of Pathology, Graduate School of Medicine, Nagoya University, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
10
|
Teo TH, Howland SW, Claser C, Gun SY, Poh CM, Lee WW, Lum FM, Ng LF, Rénia L. Co-infection with Chikungunya virus alters trafficking of pathogenic CD8 + T cells into the brain and prevents Plasmodium-induced neuropathology. EMBO Mol Med 2019; 10:121-138. [PMID: 29113976 PMCID: PMC5760855 DOI: 10.15252/emmm.201707885] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Arboviral diseases have risen significantly over the last 40 years, increasing the risk of co-infection with other endemic disease such as malaria. However, nothing is known about the impact arboviruses have on the host response toward heterologous pathogens during co-infection. Here, we investigate the effects of Chikungunya virus (CHIKV) co-infection on the susceptibility and severity of malaria infection. Using the Plasmodium berghei ANKA (PbA) experimental cerebral malaria (ECM) model, we show that concurrent co-infection induced the most prominent changes in ECM manifestation. Concurrent co-infection protected mice from ECM mortality without affecting parasite development in the blood. This protection was mediated by the alteration of parasite-specific CD8+ T-cell trafficking through an IFNγ-mediated mechanism. Co-infection with CHIKV induced higher splenic IFNγ levels that lead to high local levels of CXCL9 and CXCL10. This induced retention of CXCR3-expressing pathogenic CD8+ T cells in the spleen and prevented their migration to the brain. This then averts all downstream pathogenic events such as parasite sequestration in the brain and disruption of blood-brain barrier that prevents ECM-induced mortality in co-infected mice.
Collapse
Affiliation(s)
- Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Carla Claser
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sin Yee Gun
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Chek Meng Poh
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wendy Wl Lee
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Lisa Fp Ng
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
11
|
Ghazanfari N, Mueller SN, Heath WR. Cerebral Malaria in Mouse and Man. Front Immunol 2018; 9:2016. [PMID: 30250468 PMCID: PMC6139318 DOI: 10.3389/fimmu.2018.02016] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/15/2018] [Indexed: 12/18/2022] Open
Abstract
Cerebral malaria (CM) is an acute encephalopathy caused by the malaria parasite Plasmodium falciparum, which develops in a small minority of infected patients and is responsible for the majority of deaths in African children. Despite decades of research on CM, the pathogenic mechanisms are still relatively poorly defined. Nevertheless, many studies in recent years, using a combination of animal models, in vitro cell culture work, and human patients, provide significant insight into the pathologic mechanisms leading to CM. In this review, we summarize recent findings from mouse models and human studies on the pathogenesis of CM, understanding of which may enable development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| | - William R Heath
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia.,The ARC Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
12
|
TCRβ-expressing macrophages induced by a pathogenic murine malaria correlate with parasite burden and enhanced phagocytic activity. PLoS One 2018; 13:e0201043. [PMID: 30044851 PMCID: PMC6059462 DOI: 10.1371/journal.pone.0201043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 07/06/2018] [Indexed: 11/19/2022] Open
Abstract
Macrophages express a wide array of invariant receptors that facilitate host defense and mediate pathogenesis during pathogen invasion. We report on a novel population of CD11bhighCD14+F4/80+ macrophages that express TCRβ. This population expands dramatically during a Plasmodium berghei ANKA infection and sequesters in the brain during experimental cerebral malaria. Importantly, measurement of TCRβ transcript and protein levels in macrophages in wildtype versus nude and Rag1 knockout mice establishes that the observed expression is not a consequence of passive receptor expression due to phagocytosis or trogocytosis of peripheral T cells or nonspecific antibody staining to an Fc receptor or cross reactive epitope. We also demonstrate that TCRβ on brain sequestered macrophages undergoes productive gene rearrangements and shows preferential Vβ usage. Remarkably, there is a significant correlation in the proportion of macrophages that express TCRβ and peripheral parasitemia. In addition, presence of TCRβ on the macrophage also correlates with a significant increase (1.9 fold) in the phagocytosis of parasitized erythrocytes. By transcriptional profiling, we identify a novel set of genes and pathways that associate with TCRβ expression by the macrophage. Expansion of TCRβ-expressing macrophages points towards a convergence of the innate and adaptive immune responses where both arms of the immune system cooperate to modulate the host response to malaria and possibly other infections.
Collapse
|
13
|
Genetic analysis of cerebral malaria in the mouse model infected with Plasmodium berghei. Mamm Genome 2018; 29:488-506. [DOI: 10.1007/s00335-018-9752-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 06/05/2018] [Indexed: 12/22/2022]
|
14
|
Eeka P, Phanithi PB. Cytotoxic T Lymphocyte Granzyme-b mediates neuronal cell death during Plasmodium berghei ANKA induced experimental cerebral malaria. Neurosci Lett 2018; 664:58-65. [DOI: 10.1016/j.neulet.2017.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 10/26/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022]
|
15
|
Van Braeckel-Budimir N, Gras S, Ladell K, Josephs TM, Pewe L, Urban SL, Miners KL, Farenc C, Price DA, Rossjohn J, Harty JT. A T Cell Receptor Locus Harbors a Malaria-Specific Immune Response Gene. Immunity 2017; 47:835-847.e4. [PMID: 29150238 DOI: 10.1016/j.immuni.2017.10.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/02/2017] [Accepted: 10/26/2017] [Indexed: 01/05/2023]
Abstract
Immune response (Ir) genes, originally proposed by Baruj Benacerraf to explain differential antigen-specific responses in animal models, have become synonymous with the major histocompatibility complex (MHC). We discovered a non-MHC-linked Ir gene in a T cell receptor (TCR) locus that was required for CD8+ T cell responses to the Plasmodium berghei GAP5040-48 epitope in mice expressing the MHC class I allele H-2Db. GAP5040-48-specific CD8+ T cell responses emerged from a very large pool of naive Vβ8.1+ precursors, which dictated susceptibility to cerebral malaria and conferred protection against recombinant Listeria monocytogenes infection. Structural analysis of a prototypical Vβ8.1+ TCR-H-2Db-GAP5040-48 ternary complex revealed that germline-encoded complementarity-determining region 1β residues present exclusively in the Vβ8.1 segment mediated essential interactions with the GAP5040-48 peptide. Collectively, these findings demonstrated that Vβ8.1 functioned as an Ir gene that was indispensable for immune reactivity against the malaria GAP5040-48 epitope.
Collapse
Affiliation(s)
| | - Stephanie Gras
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Kristin Ladell
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Tracy M Josephs
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - Lecia Pewe
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Stina L Urban
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA
| | - Kelly L Miners
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK
| | - Carine Farenc
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia
| | - David A Price
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK; Human Immunology Section, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA.
| | - Jamie Rossjohn
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia; Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242, USA; Department of Pathology, University of Iowa, Iowa City, IA 52242, USA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
16
|
Perforin Expression by CD8 T Cells Is Sufficient To Cause Fatal Brain Edema during Experimental Cerebral Malaria. Infect Immun 2017; 85:IAI.00985-16. [PMID: 28264905 DOI: 10.1128/iai.00985-16] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/26/2017] [Indexed: 01/11/2023] Open
Abstract
Human cerebral malaria (HCM) is a serious complication of Plasmodium falciparum infection. The most severe outcomes for patients include coma, permanent neurological deficits, and death. Recently, a large-scale magnetic resonance imaging (MRI) study in humans identified brain swelling as the most prominent predictor of fatal HCM. Therefore, in this study, we sought to define the mechanism controlling brain edema through the use of the murine experimental cerebral malaria (ECM) model. Specifically, we investigated the ability of CD8 T cells to initiate brain edema during ECM. We determined that areas of blood-brain barrier (BBB) permeability colocalized with a reduction of the cerebral endothelial cell tight-junction proteins claudin-5 and occludin. Furthermore, through small-animal MRI, we analyzed edema and vascular leakage. Using gadolinium-enhanced T1-weighted MRI, we determined that vascular permeability is not homogeneous but rather confined to specific regions of the brain. Our findings show that BBB permeability was localized within the brainstem, olfactory bulb, and lateral ventricle. Concurrently with the initiation of vascular permeability, T2-weighted MRI revealed edema and brain swelling. Importantly, ablation of the cytolytic effector molecule perforin fully protected against vascular permeability and edema. Furthermore, perforin production specifically by CD8 T cells was required to cause fatal edema during ECM. We propose that CD8 T cells initiate BBB breakdown through perforin-mediated disruption of tight junctions. In turn, leakage from the vasculature into the parenchyma causes brain swelling and edema. This results in a breakdown of homeostatic maintenance that likely contributes to ECM pathology.
Collapse
|
17
|
Silva-Filho JL, Caruso-Neves C, Pinheiro AAS. Targeting Angiotensin II Type-1 Receptor (AT 1R) Inhibits the Harmful Phenotype of Plasmodium-Specific CD8 + T Cells during Blood-Stage Malaria. Front Cell Infect Microbiol 2017; 7:42. [PMID: 28261571 PMCID: PMC5311040 DOI: 10.3389/fcimb.2017.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/06/2017] [Indexed: 11/26/2022] Open
Abstract
CD8+ T-cell response is critical in the pathogenesis of cerebral malaria during blood-stage. Our group and other have been shown that angiotensin II (Ang II) and its receptor AT1 (AT1R), a key effector axis of renin-angiotensin system (RAS), have immune regulatory effects on T cells. Previously, we showed that inhibition of AT1R signaling protects mice against the lethal disease induced by Plasmodium berghei ANKA infection However, most of the Ang II/AT1R actions were characterized by using only pharmacological approaches, the effects of which may not always be due to a specific receptor blockade. In addition, the mechanisms of action of the AT1R in inducing the pathogenic activity of Plasmodium-specific CD8+ T cells during blood-stage were not determined. Here, we examined how angiotensin II/AT1R axis promotes the harmful response of Plasmodium-specific CD8+ T-cell during blood-stage by using genetic and pharmacological approaches. We evaluated the response of wild-type (WT) and AT1R−/−Plasmodium-specific CD8+ T cells in mice infected with a transgenic PbA lineage expressing ovalbumin; and in parallel infected mice receiving WT Plasmodium-specific CD8+ T cells were treated with losartan (AT1R antagonist) or captopril (ACE inhibitor). Both, AT1R−/− OT-I cells and WT OT-I cells from losartan- or captopril-treated mice showed lower expansion, reduced IL-2 production and IL-2Rα expression, lower activation (lower expression of CD69, CD44 and CD160) and lower exhaustion profiles. AT1R−/− OT-I cells also exhibit lower expression of the integrin LFA-1 and the chemokine receptors CCR5 and CXCR3, known to play a key role in the development of cerebral malaria. Moreover, AT1R−/− OT-I cells produce lower amounts of IFN-γ and TNF-α and show lower degranulation upon restimulation. In conclusion, our results show the pivotal mechanisms of AT1R-induced harmful phenotype of Plasmodium-specific CD8+ T cells during blood-stage malaria.
Collapse
Affiliation(s)
- João L Silva-Filho
- Laboratório de Bioquímica e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | - Celso Caruso-Neves
- Laboratório de Bioquímica e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Instituto Nacional de Ciência e Tecnologia em Biologia e Bioimagem, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTRio de Janeiro, Brazil
| | - Ana A S Pinheiro
- Laboratório de Bioquímica e Sinalização Celular, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de JaneiroRio de Janeiro, Brazil; Instituto Nacional para Pesquisa Translacional em Saúde e Ambiente na Região Amazônica, Conselho Nacional de Desenvolvimento Científico e Tecnológico/MCTRio de Janeiro, Brazil
| |
Collapse
|
18
|
WANG CHUNYAN, YU PEIFA, HE XIAOBING, FANG YONGXIANG, CHENG WENYU, JING ZHIZHONG. αβ T-cell receptor bias in disease and therapy (Review). Int J Oncol 2016; 48:2247-56. [DOI: 10.3892/ijo.2016.3492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 03/21/2016] [Indexed: 11/06/2022] Open
|
19
|
A TCRβ Repertoire Signature Can Predict Experimental Cerebral Malaria. PLoS One 2016; 11:e0147871. [PMID: 26844551 PMCID: PMC4742225 DOI: 10.1371/journal.pone.0147871] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 12/04/2015] [Indexed: 11/19/2022] Open
Abstract
Cerebral Malaria (CM) is associated with a pathogenic T cell response. Mice infected by P. berghei ANKA clone 1.49 (PbA) developing CM (CM+) present an altered PBL TCR repertoire, partly due to recurrently expanded T cell clones, as compared to non-infected and CM- infected mice. To analyse the relationship between repertoire alteration and CM, we performed a kinetic analysis of the TRBV repertoire during the course of the infection until CM-related death in PbA-infected mice. The repertoires of PBL, splenocytes and brain lymphocytes were compared between infected and non-infected mice using a high-throughput CDR3 spectratyping method. We observed a modification of the whole TCR repertoire in the spleen and blood of infected mice, from the fifth and the sixth day post-infection, respectively, while only three TRBV were significantly perturbed in the brain of infected mice. Using multivariate analysis and statistical modelling, we identified a unique TCRβ signature discriminating CM+ from CTR mice, enriched during the course of the infection in the spleen and the blood and predicting CM onset. These results highlight a dynamic modification and compartmentalization of the TCR diversity during the course of PbA infection, and provide a novel method to identify disease-associated TCRβ signature as diagnostic and prognostic biomarkers.
Collapse
|
20
|
Nacer A, Movila A, Sohet F, Girgis NM, Gundra UM, Loke P, Daneman R, Frevert U. Experimental cerebral malaria pathogenesis--hemodynamics at the blood brain barrier. PLoS Pathog 2014; 10:e1004528. [PMID: 25474413 PMCID: PMC4256476 DOI: 10.1371/journal.ppat.1004528] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/17/2014] [Indexed: 12/16/2022] Open
Abstract
Cerebral malaria claims the lives of over 600,000 African children every year. To better understand the pathogenesis of this devastating disease, we compared the cellular dynamics in the cortical microvasculature between two infection models, Plasmodium berghei ANKA (PbA) infected CBA/CaJ mice, which develop experimental cerebral malaria (ECM), and P. yoelii 17XL (PyXL) infected mice, which succumb to malarial hyperparasitemia without neurological impairment. Using a combination of intravital imaging and flow cytometry, we show that significantly more CD8(+) T cells, neutrophils, and macrophages are recruited to postcapillary venules during ECM compared to hyperparasitemia. ECM correlated with ICAM-1 upregulation on macrophages, while vascular endothelia upregulated ICAM-1 during ECM and hyperparasitemia. The arrest of large numbers of leukocytes in postcapillary and larger venules caused microrheological alterations that significantly restricted the venous blood flow. Treatment with FTY720, which inhibits vascular leakage, neurological signs, and death from ECM, prevented the recruitment of a subpopulation of CD45(hi) CD8(+) T cells, ICAM-1(+) macrophages, and neutrophils to postcapillary venules. FTY720 had no effect on the ECM-associated expression of the pattern recognition receptor CD14 in postcapillary venules suggesting that endothelial activation is insufficient to cause vascular pathology. Expression of the endothelial tight junction proteins claudin-5, occludin, and ZO-1 in the cerebral cortex and cerebellum of PbA-infected mice with ECM was unaltered compared to FTY720-treated PbA-infected mice or PyXL-infected mice with hyperparasitemia. Thus, blood brain barrier opening does not involve endothelial injury and is likely reversible, consistent with the rapid recovery of many patients with CM. We conclude that the ECM-associated recruitment of large numbers of activated leukocytes, in particular CD8(+) T cells and ICAM(+) macrophages, causes a severe restriction in the venous blood efflux from the brain, which exacerbates the vasogenic edema and increases the intracranial pressure. Thus, death from ECM could potentially occur as a consequence of intracranial hypertension.
Collapse
Affiliation(s)
- Adéla Nacer
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Alexandru Movila
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Fabien Sohet
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Natasha M. Girgis
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Uma Mahesh Gundra
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - P'ng Loke
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
| | - Richard Daneman
- Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America
| | - Ute Frevert
- Department of Microbiology, Division of Medical Parasitology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
21
|
THEMIS is required for pathogenesis of cerebral malaria and protection against pulmonary tuberculosis. Infect Immun 2014; 83:759-68. [PMID: 25452553 DOI: 10.1128/iai.02586-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We identify an N-ethyl-N-nitrosourea (ENU)-induced I23N mutation in the THEMIS protein that causes protection against experimental cerebral malaria (ECM) caused by infection with Plasmodium berghei ANKA. Themis(I23N) homozygous mice show reduced CD4(+) and CD8(+) T lymphocyte numbers. ECM resistance in P. berghei ANKA-infected Themis(I23N) mice is associated with decreased cerebral cellular infiltration, retention of blood-brain barrier integrity, and reduced proinflammatory cytokine production. THEMIS(I23N) protein expression is absent from mutant mice, concurrent with the decreased THEMIS(I23N) stability observed in vitro. Biochemical studies in vitro and functional complementation in vivo in Themis(I23N/+):Lck(-/+) doubly heterozygous mice demonstrate that functional coupling of THEMIS to LCK tyrosine kinase is required for ECM pathogenesis. Damping of proinflammatory responses in Themis(I23N) mice causes susceptibility to pulmonary tuberculosis. Thus, THEMIS is required for the development and ultimately the function of proinflammatory T cells. Themis(I23N) mice can be used to study the newly discovered association of THEMIS (6p22.33) with inflammatory bowel disease and multiple sclerosis.
Collapse
|
22
|
Pai S, Qin J, Cavanagh L, Mitchell A, El-Assaad F, Jain R, Combes V, Hunt NH, Grau GER, Weninger W. Real-time imaging reveals the dynamics of leukocyte behaviour during experimental cerebral malaria pathogenesis. PLoS Pathog 2014; 10:e1004236. [PMID: 25033406 PMCID: PMC4102563 DOI: 10.1371/journal.ppat.1004236] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 05/23/2014] [Indexed: 02/02/2023] Open
Abstract
During experimental cerebral malaria (ECM) mice develop a lethal neuropathological syndrome associated with microcirculatory dysfunction and intravascular leukocyte sequestration. The precise spatio-temporal context in which the intravascular immune response unfolds is incompletely understood. We developed a 2-photon intravital microscopy (2P-IVM)-based brain-imaging model to monitor the real-time behaviour of leukocytes directly within the brain vasculature during ECM. Ly6Chi monocytes, but not neutrophils, started to accumulate in the blood vessels of Plasmodium berghei ANKA (PbA)-infected MacGreen mice, in which myeloid cells express GFP, one to two days prior to the onset of the neurological signs (NS). A decrease in the rolling speed of monocytes, a measure of endothelial cell activation, was associated with progressive worsening of clinical symptoms. Adoptive transfer experiments with defined immune cell subsets in recombinase activating gene (RAG)-1-deficient mice showed that these changes were mediated by Plasmodium-specific CD8+ T lymphocytes. A critical number of CD8+ T effectors was required to induce disease and monocyte adherence to the vasculature. Depletion of monocytes at the onset of disease symptoms resulted in decreased lymphocyte accumulation, suggesting reciprocal effects of monocytes and T cells on their recruitment within the brain. Together, our studies define the real-time kinetics of leukocyte behaviour in the central nervous system during ECM, and reveal a significant role for Plasmodium-specific CD8+ T lymphocytes in regulating vascular pathology in this disease. Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection that takes a significant toll on human life. Blockage of the brain blood vessels contributes to the clinical signs of CM, however we know little about the precise pathological events that lead to this disease. To this end, studies in Plasmodium-infected mice, that also develop a similar fatal disease, have proven useful. These studies have revealed an important role for leukocytes not so much in protecting but rather promoting pathology in the brain. To better understand leukocyte behaviour during experimental CM, we established a brain-imaging model that allows us to ‘peek’ into the brain of living mice and watch immunological events as they unfold. We found that worsening of disease was accompanied by an accumulation of monocytes in the blood vessels. Monocyte accumulation was regulated by activated CD8+ T cells but only when present in critical numbers. Monocyte depletion resulted in reduced T cell trafficking to the brain, but this did not result in improved disease outcome. Our studies reveal the orchestration of leukocyte accumulation in real time during CM, and demonstrate that CD8+ T cells play a crucial role in promoting clinical signs in this disease.
Collapse
Affiliation(s)
- Saparna Pai
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- * E-mail: (SP); (WW)
| | - Jim Qin
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
| | - Lois Cavanagh
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Mitchell
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
| | - Fatima El-Assaad
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Rohit Jain
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Valery Combes
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Nicholas H. Hunt
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Molecular Immunopathology Unit, Discipline of Pathology, Sydney Medical School and Bosch Institute, University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Georges E. R. Grau
- Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
- Vascular Immunology Unit, Discipline of Pathology, Sydney Medical School, University of Sydney, Camperdown, Sydney, New South Wales, Australia
| | - Wolfgang Weninger
- Immune Imaging Laboratory, The Centenary Institute, Newtown, Sydney, New South Wales, Australia
- Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia
- Department of Dermatology, Royal Prince Alfred Hospital, Camperdown, Sydney, New South Wales, Australia
- * E-mail: (SP); (WW)
| |
Collapse
|
23
|
Abstract
SUMMARY This review begins with a discussion of the large family of Staphylococcus aureus and beta-hemolytic streptococcal pyrogenic toxin T lymphocyte superantigens from structural and immunobiological perspectives. With this as background, the review then discusses the major known and possible human disease associations with superantigens, including associations with toxic shock syndromes, atopic dermatitis, pneumonia, infective endocarditis, and autoimmune sequelae to streptococcal illnesses. Finally, the review addresses current and possible novel strategies to prevent superantigen production and passive and active immunization strategies.
Collapse
|
24
|
Holt MP, Shevach EM, Punkosdy GA. Endogenous mouse mammary tumor viruses (mtv): new roles for an old virus in cancer, infection, and immunity. Front Oncol 2013; 3:287. [PMID: 24324930 PMCID: PMC3840357 DOI: 10.3389/fonc.2013.00287] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/10/2013] [Indexed: 12/31/2022] Open
Abstract
Mouse Mammary Tumor Viruses are beta-retroviruses that exist in both exogenous (MMTV) and endogenous (Mtv) forms. Exogenous MMTV is transmitted via the milk of lactating animals and is capable of inducing mammary gland tumors later in life. MMTV has provided a number of critical models for studying both viral infection as well as human breast cancer. In addition to the horizontally transmitted MMTV, most inbred mouse strains contain permanently integrated Mtv proviruses within their genome that are remnants of MMTV infection and vertically transmitted. Historically, Mtv have been appreciated for their role in shaping the T cell repertoire during thymic development via negative selection. In addition, more recent work has demonstrated a larger role for Mtv in modulating host immune responses due to its peripheral expression. The influence of Mtv on host response has been observed during experimental murine models of Polyomavirus- and ESb-induced lymphoma as well as Leishmania major and Plasmodium berghei ANKA infection. Decreased susceptibility to bacterial pathogens and virus-induced tumors has been observed among mice lacking all Mtv. We have also demonstrated a role for Mtv Sag in the expansion of regulatory T cells following chronic viral infection. The aim of this review is to summarize the latest research in the field regarding peripheral expression of Mtv with a particular focus on their role and influence on the immune system, infectious disease outcome, and potential involvement in tumor formation.
Collapse
Affiliation(s)
- Michael P Holt
- Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Bethesda, MD , USA
| | | | | |
Collapse
|
25
|
Oakley MS, Sahu BR, Lotspeich-Cole L, Solanki NR, Majam V, Pham PT, Banerjee R, Kozakai Y, Derrick SC, Kumar S, Morris SL. The transcription factor T-bet regulates parasitemia and promotes pathogenesis during Plasmodium berghei ANKA murine malaria. THE JOURNAL OF IMMUNOLOGY 2013; 191:4699-708. [PMID: 24078698 DOI: 10.4049/jimmunol.1300396] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The pathogenesis of experimental cerebral malaria (ECM) is an immunologic process, mediated in part by Th1 CD4(+) T cells. However, the role of the Th1 CD4(+) T cell differentiation program on the ability to control parasitemia and susceptibility to ECM disease during blood stage malaria has never been assessed directly. Using the Plasmodium berghei ANKA murine model of ECM and mice deficient for the transcription factor T-bet (the master regulator of Th1 cells) on the susceptible C57BL/6 background, we demonstrate that although T-bet plays a role in the regulation of parasite burden, it also promotes the pathogenesis of ECM. T-bet-deficient (Tbx21(-/-)) mice had higher parasitemia than wild type controls did during the ECM phase of disease (17.7 ± 3.1% versus 10.9 ± 1.5%). In addition, although 100% (10/10) of wild type mice developed ECM by day 9 after infection, only 30% (3/10) of Tbx21(-/-) mice succumbed to disease during the cerebral phase of infection. Resistance to ECM in Tbx21(-/-) mice was associated with diminished numbers of IFN-γ-producing CD4(+) T cells in the spleen and a lower accumulation of CD4(+) and CD8(+) T cells in the brain. An augmented Th2 immune response characterized by enhanced production of activated GATA-3(+) CD4(+) T cells and elevated levels of the eotaxin, MCP-1, and G-CSF cytokines was observed in the absence of T-bet. Our results suggest that in virulent malarias, immune modulation or therapy resulting in an early shift toward a Th2 response may help to ameliorate the most severe consequences of malaria immunopathogenesis and the prospect of host survival.
Collapse
Affiliation(s)
- Miranda S Oakley
- Division of Bacterial, Parasitic, and Allergenic Products, U.S. Food and Drug Administration, Rockville, MD 20852
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Howland SW, Poh CM, Gun SY, Claser C, Malleret B, Shastri N, Ginhoux F, Grotenbreg GM, Rénia L. Brain microvessel cross-presentation is a hallmark of experimental cerebral malaria. EMBO Mol Med 2013; 5:984-99. [PMID: 23681698 PMCID: PMC3721469 DOI: 10.1002/emmm.201202273] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 01/02/2023] Open
Abstract
Cerebral malaria is a devastating complication of Plasmodium falciparum infection. Its pathogenesis is complex, involving both parasite- and immune-mediated events. CD8+ T cells play an effector role in murine experimental cerebral malaria (ECM) induced by Plasmodium berghei ANKA (PbA) infection. We have identified a highly immunogenic CD8 epitope in glideosome-associated protein 50 that is conserved across rodent malaria species. Epitope-specific CD8+ T cells are induced during PbA infection, migrating to the brain just before neurological signs manifest. They are functional, cytotoxic and can damage the blood–brain barrier in vivo. Such CD8+ T cells are also found in the brain during infection with parasite strains/species that do not induce neuropathology. We demonstrate here that PbA infection causes brain microvessels to cross-present parasite antigen, while non-ECM-causing parasites do not. Further, treatment with fast-acting anti-malarial drugs before the onset of ECM reduces parasite load and thus antigen presentation in the brain, preventing ECM death. Thus our data suggest that combined therapies targeting both the parasite and host antigen-presenting cells may improve the outcome of CM patients.
Collapse
Affiliation(s)
- Shanshan W Howland
- Singapore Immunology Network, Agency for Science, Technology and Research A*STAR, Singapore, Singapore
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Rénia L, Howland SW, Claser C, Charlotte Gruner A, Suwanarusk R, Hui Teo T, Russell B, Ng LFP. Cerebral malaria: mysteries at the blood-brain barrier. Virulence 2012; 3:193-201. [PMID: 22460644 PMCID: PMC3396698 DOI: 10.4161/viru.19013] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cerebral malaria is the most severe pathology caused by the malaria parasite, Plasmodium falciparum. The pathogenic mechanisms leading to cerebral malaria are still poorly defined as studies have been hampered by limited accessibility to human tissues. Nevertheless, histopathology of post-mortem human tissues and mouse models of cerebral malaria have indicated involvement of the blood-brain barrier in cerebral malaria. In contrast to viruses and bacteria, malaria parasites do not infiltrate and infect the brain parenchyma. Instead, rupture of the blood-brain barrier occurs and may lead to hemorrhages resulting in neurological alterations. Here, we review the most recent findings from human studies and mouse models on the interactions of malaria parasites and the blood-brain barrier, shedding light on the pathogenesis of cerebral malaria, which may provide directions for possible interventions.
Collapse
Affiliation(s)
- Laurent Rénia
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A STAR), Biopolis, Singapore.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Lau LS, Fernandez Ruiz D, Davey GM, de Koning-Ward TF, Papenfuss AT, Carbone FR, Brooks AG, Crabb BS, Heath WR. Blood-Stage Plasmodium berghei Infection Generates a Potent, Specific CD8+ T-Cell Response Despite Residence Largely in Cells Lacking MHC I Processing Machinery. J Infect Dis 2011; 204:1989-96. [DOI: 10.1093/infdis/jir656] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
29
|
Accumulation of Plasmodium berghei-infected red blood cells in the brain is crucial for the development of cerebral malaria in mice. Infect Immun 2010; 78:4033-9. [PMID: 20605973 DOI: 10.1128/iai.00079-10] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cerebral malaria is the most severe complication of human infection with Plasmodium falciparum. It was shown that Plasmodium berghei ANKA-induced cerebral malaria was prevented in 100% of mice depleted of CD8+ T cells 1 day prior to the development of neurological signs. However, the importance of parasites in the brains of these mice was never clearly investigated. Moreover, the relevance of this model to human cerebral malaria has been questioned many times, especially concerning the relative importance of leukocytes versus parasitized erythrocytes sequestered in the brain. Here, we show that mice protected from cerebral malaria by CD8+ T-cell depletion have significantly fewer parasites in the brain. Treatment of infected mice with an antimalarial drug 15 to 20 h prior to the estimated time of death also protected mice from cerebral malaria without altering the number of CD8+ T cells in the brain. These mice subsequently developed cerebral malaria with parasitized red blood cells in the brain. Our results clearly demonstrated that sequestration of CD8+ T cells in the brain is not sufficient for the development of cerebral malaria in C57BL/6 mice but that the concomitant presence of parasitized red blood cells is crucial for the onset of pathology. Importantly, these results also demonstrated that the experimental cerebral malaria model shares many features with human pathology and might be a relevant model to study its pathogenesis.
Collapse
|
30
|
Steeg C, Adler G, Sparwasser T, Fleischer B, Jacobs T. Limited role of CD4+Foxp3+ regulatory T cells in the control of experimental cerebral malaria. THE JOURNAL OF IMMUNOLOGY 2009; 183:7014-22. [PMID: 19890049 DOI: 10.4049/jimmunol.0901422] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cerebral malaria (CM) associated with Plasmodium berghei ANKA (PbA) infection is an accepted model of human CM. CM during PbA infection critically depends on sequestration of T cells into the brain. Several studies aimed to address the role of regulatory T cells (T(reg)) in modulating this pathogenic T cell response. However, these studies are principally hampered due to the fact that until recently no reagents were available to deplete Foxp3(+) T(reg) specifically. To study the function of T(reg) in the genesis of CM, we used depletion of T(reg) mice that are transgenic for a bacterial artificial chromosome expressing a diphtheria toxin receptor-enhanced GFP fusion protein under the control of the foxp3 gene locus. These mice allow for a selective depletion of Foxp3(+) T(reg) by diphtheria toxin injection, and also their specific detection and purification during an ongoing infection. Using depletion of T(reg) mice, we found only a small increase in the absolute numbers of Foxp3(+) T(reg) during PbA infection and, consequently, the ratio of T(reg) to T effector cells (T(eff)) decreased due to the rapid expansion of T(eff). Although the latter sequester in the brains of infected mice, almost no T(reg) were found in the brains of infected mice. Furthermore, we demonstrate that depletion of T(reg) has no influence on sequestration of T(eff) and on the clinical outcome, and only minor influence on T cell activation. Using ex vivo analysis of purified T(reg) from either naive mice or PbA-infected mice, we found that both exhibit similar inhibitory capacity on T(eff).
Collapse
Affiliation(s)
- Christiane Steeg
- Bernhard Nocht Institute for Tropical Medicine, Hamburg 20359, Germany
| | | | | | | | | |
Collapse
|
31
|
Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha+ dendritic cells. Proc Natl Acad Sci U S A 2008; 105:14509-14. [PMID: 18799734 DOI: 10.1073/pnas.0806727105] [Citation(s) in RCA: 161] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although CD8(+) T cells do not contribute to protection against the blood stage of Plasmodium infection, there is mounting evidence that they are principal mediators of murine experimental cerebral malaria (ECM). At present, there is no direct evidence that the CD8(+) T cells mediating ECM are parasite-specific or, for that matter, whether parasite-specific CD8(+) T cells are generated in response to blood-stage infection. To resolve this and to define the cellular requirements for such priming, we generated transgenic P. berghei parasites expressing model T cell epitopes. This approach was necessary as MHC class I-restricted antigens to blood-stage infection have not been defined. Here, we show that blood-stage infection leads to parasite-specific CD8(+) and CD4(+) T cell responses. Furthermore, we show that P. berghei-expressed antigens are cross-presented by the CD8alpha(+) subset of dendritic cells (DC), and that this induces pathogen-specific cytotoxic T lymphocytes (CTL) capable of lysing cells presenting antigens expressed by blood-stage parasites. Finally, using three different experimental approaches, we provide evidence that CTL specific for parasite-expressed antigens contribute to ECM.
Collapse
|
32
|
Host biomarkers and biological pathways that are associated with the expression of experimental cerebral malaria in mice. Infect Immun 2008; 76:4518-29. [PMID: 18644885 DOI: 10.1128/iai.00525-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cerebral malaria (CM) is a primary cause of malaria-associated deaths among young African children. Yet no diagnostic tools are available that could be used to predict which of the children infected with Plasmodium falciparum malaria will progress to CM. We used the Plasmodium berghei ANKA murine model of experimental cerebral malaria (ECM) and high-density oligonucleotide microarray analyses to identify host molecules that are strongly associated with the clinical symptoms of ECM. Comparative expression analyses were performed with C57BL/6 mice, which have an ECM-susceptible phenotype, and with mice that have ECM-resistant phenotypes: CD8 knockout and perforin knockout mice on the C57BL/6 background and BALB/c mice. These analyses allowed the identification of more than 200 host molecules (a majority of which had not been identified previously) with altered expression patterns in the brain that are strongly associated with the manifestation of ECM. Among these host molecules, brain samples from mice with ECM expressed significantly higher levels of p21, metallothionein, and hemoglobin alpha1 proteins by Western blot analysis than mice unaffected by ECM, suggesting the possible utility of these molecules as prognostic biomarkers of CM in humans. We suggest that the higher expression of hemoglobin alpha1 in the brain may be associated with ECM and could be a source of excess heme, a molecule that is considered to trigger the pathogenesis of CM. Our studies greatly enhance the repertoire of host molecules for use as diagnostics and novel therapeutics in CM.
Collapse
|
33
|
Common strategies to prevent and modulate experimental cerebral malaria in mouse strains with different susceptibilities. Infect Immun 2008; 76:3312-20. [PMID: 18474652 DOI: 10.1128/iai.01475-07] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection, predominantly experienced by children and nonimmune adults, which results in significant mortality and long-term sequelae. Previous studies have reported distinct susceptibility gene loci in CBA/CaH (CBA) and C57BL/6 (B6) mice with experimental CM (ECM) caused by infection with Plasmodium berghei ANKA. Here we present an analysis of genome-wide expression profiles in brain tissue taken from B6 and CBA mice with ECM and report significant heterogeneity between the two mouse strains. Upon comparison of the leukocyte composition of ECM brain tissue, microglia were expanded in B6 mice but not CBA mice. Furthermore, circulating levels of gamma interferon, interleukin-10, and interleukin-6 were significantly higher in the serum of B6 mice than in that of CBA mice with ECM. Two therapeutic strategies were applied to B6 and CBA mice, i.e., (i) depletion of regulatory T (Treg) cells prior to infection and (ii) depletion of CD8(+) T cells after the establishment of ECM. Despite the described differences between susceptible mouse strains, depletion of Treg cells before infection attenuated ECM in both B6 and CBA mice. In addition, the depletion of CD8(+) T cells when ECM symptoms are apparent leads to abrogation of ECM in B6 mice and a lack of progression of ECM in CBA mice. These results may have important implications for the development of effective treatments for human CM.
Collapse
|
34
|
Loizon S, Boeuf P, Tetteh JKA, Goka B, Obeng-Adjei G, Kurtzhals JAL, Rogier C, Akanmori BD, Mercereau-Puijalon O, Hviid L, Behr C. Vβ profiles in African children with acute cerebral or uncomplicated malaria: very focused changes among a remarkable global stability. Microbes Infect 2007; 9:1252-9. [PMID: 17890120 DOI: 10.1016/j.micinf.2007.05.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 04/30/2007] [Accepted: 05/14/2007] [Indexed: 11/18/2022]
Abstract
T cells are thought to play a critical role in cerebral malaria pathogenesis. However, available evidences are restricted to rodent models in which V beta specific T cell expansion has been associated with neurological syndrome suggesting involvement of superantigens or dominant antigens. Using flow cytometry, we studied the peripheral V beta T cell repertoire of Ghanaian children with cerebral malaria, uncomplicated malaria and asymptomatic control children, to look for either expansion or deletion of specific V beta associated with cerebral malaria. At admission, the general pattern of the repertoire of the patients was very similar, with no major distortion compared to the control group a part a significant increase of the frequency of the V beta 21.3 subset correlating with disease severity and attributed to the CD4 subset. During convalescence very limited fluctuations were observed including a significant decrease of the V beta 21.3 subset and increase of the V beta 20 subset, a subset not detected at admission. The remarkable stability of the V beta repertoire observed in acute malaria either cerebral or uncomplicated argues against the idea that cerebral malaria would result from a T cell-mediated inflammatory shock syndrome driven by some dominant super-antigenic activity(ies). The significance of the reproducible increase of the CD4+V beta 21.3T cell subset deserves further investigations.
Collapse
Affiliation(s)
- Séverine Loizon
- Unité d'Immunologie Moléculaire des Parasites, CNRS URA 2581, Département de Parasitologie, Institut Pasteur, 25 rue du Dr Roux, 75724 Paris cedex 15, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vigário AM, Belnoue E, Grüner AC, Mauduit M, Kayibanda M, Deschemin JC, Marussig M, Snounou G, Mazier D, Gresser I, Rénia L. Recombinant human IFN-alpha inhibits cerebral malaria and reduces parasite burden in mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:6416-25. [PMID: 17475871 DOI: 10.4049/jimmunol.178.10.6416] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most C57BL/6 mice infected i.p. with Plasmodium berghei ANKA (PbA) die between 7 and 14 days with neurologic signs, and the remainder die later (>15 days) with severe anemia. Daily i.p. injections of a recombinant human IFN-alpha (active on mouse cells) prevented death by cerebral malaria (87% deaths in the control mice vs 6% in IFN-alpha-treated mice). The mechanisms of this IFN-alpha protective effect were multiple. IFN-alpha-treated, PbA-infected mice showed 1) a marked decrease in the number of PbA parasites in the blood mediated by IFN-gamma, 2) less sequestered parasites in cerebral vessels, 3) reduced up-regulation of ICAM-1 expression in brain endothelial cells, 4) milder rise of blood levels of TNF, 5) increased levels of IFN-gamma in the blood resulting from an increased production by splenic CD8+ T cells, and 6) fewer leukocytes (especially CD8+ T cells) sequestered in cerebral vessels. On the other hand, IFN-alpha treatment did not affect the marked anemia observed in PbA-infected mice. Survival time in IFN-alpha-treated mice was further increased by performing three blood transfusions over consecutive days.
Collapse
|
36
|
Schofield L. Intravascular infiltrates and organ-specific inflammation in malaria pathogenesis. Immunol Cell Biol 2007; 85:130-7. [PMID: 17344907 DOI: 10.1038/sj.icb.7100040] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Malaria infects 5-10% of humanity and causes around two million deaths annually, mostly in children. The disease is of significant interest to immunologists, as acquired host immunity can limit the clinical impact of infection and partially reduces parasite replication; however, immunological reactions also contribute significantly to pathogenesis and fatalities. This review addresses the view that immunopathology in severe malaria arises predominantly from intravascular lesions resulting from a pathogen-initiated cascade of activated immune effector and regulatory cells infiltrating the vascular beds of diverse target organs, including bone marrow, spleen, brain, placenta and lungs. The main feature distinguishing these processes from classical cellular inflammation is the absence of extravasation, resulting from the intravascular location of the pathogen. Clinical and epidemiological observations combined with experimental infections in animal models suggest that parasite 'molecular patterns' or toxins cause cytokine and chemokine enhancement of infiltrates, composed of macrophages, neutrophils, natural killer (NK) cells, invariant natural killer T (iNKT) cells, gamma/delta T cells and both CD4(+) and CD8(+) effector T cells, leading to local vascular and organ derangement. Diverse pattern recognition and NK receptors crucially regulate these responding cell populations. Thus, innate immune mechanisms lie at the heart of this massive global public health problem.
Collapse
Affiliation(s)
- Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
| |
Collapse
|
37
|
Carvalho LJM, Ferreira-da-cruz MF, Daniel-Ribeiro CT, Pelajo-Machado M, Lenzi HL. Plasmodium berghei ANKA infection induces thymocyte apoptosis and thymocyte depletion in CBA mice. Mem Inst Oswaldo Cruz 2007; 101:523-8. [PMID: 17072456 DOI: 10.1590/s0074-02762006000500007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Accepted: 05/19/2006] [Indexed: 11/22/2022] Open
Abstract
Immune responses to malaria infections are characterized by strong T and B cell activation, which, in addition of potentially causing immunopathology, are of poor efficacy against the infection. It is possible that the thymus is involved in the origin of immunopathological reactions and a target during malaria infections. This work was developed in an attempt to further clarify these points. We studied the sequential changes in the thymus of CBA mice infected with Plasmodium berghei ANKA, a model in which 60-90% of the infected animals develop cerebral malaria. During the acute phase of infection, different degrees of thymocyte apoptosis were recorded. (1) starry-sky pattern of diffuse apoptosis with maintenance of cortical-medullary structure; (2) intense apoptosis with cortical atrophy, with absence of large cells; (3) severe cortical thymocyte depletion, resulting in cortical-medullary inversion. In the latter, only residual clusters of small thymocytes were observed within the framework of epithelial cells. The intensity of thymus alterations could not be associated with the degree of parasitemia, the expression of clinical signs of cerebral malaria or intensity of brain lesions. The implications of these events for malaria immunity and pathology are discussed.
Collapse
Affiliation(s)
- Leonardo J M Carvalho
- Laboratório de Pesquisas em Malária, Departamento de Imunologia, Instituto Oswaldo Cruz-Fiocruz, Av. Brasil 4365, 21045-900 Rio de Janeiro, RJ, Brasil.
| | | | | | | | | |
Collapse
|
38
|
Vigário AM, Gorgette O, Dujardin HC, Cruz T, Cazenave PA, Six A, Bandeira A, Pied S. Regulatory CD4+ CD25+ Foxp3+ T cells expand during experimental Plasmodium infection but do not prevent cerebral malaria. Int J Parasitol 2007; 37:963-73. [PMID: 17350019 DOI: 10.1016/j.ijpara.2007.01.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 12/13/2022]
Abstract
Pathogenic CD8+ T cells are implicated in the physiopathological mechanisms leading to experimental cerebral malaria (CM) in Plasmodium berghei ANKA (PbA) infected mice. Therefore, we hypothesised that in CM susceptible mice the neuropathology could be, at least in part, the result of an inefficient control of pathogenic effector T cells by CD4+ CD25+ Treg cells. Remarkably, the number of CD4+ CD25high T cells expressing Foxp3 increased in the spleen during the course of infection. These cells displayed an activated phenotype and consistent with that, CD4+ CD25high Treg cells isolated from PbA-infected mice showed an enhanced regulatory activity in vitro. Surprisingly, these cells do not migrate to the brain at the time of neurological symptoms as the conventional CD4+ T cells do. CM was not exacerbated in anti-CD25 treated mice when infected with PbA one month after treatment, even if splenic CD8+ T cells expressing CD69 increased in these mice. Taken together, these results show that P. berghei infection leads to an increase of the number of splenic CD4+ CD25high Treg cells exhibiting in vitro suppressive function, but they do not seem to be involved in vivo in the protection against CM.
Collapse
|
39
|
Rénia L, Potter SM, Mauduit M, Rosa DS, Kayibanda M, Deschemin JC, Snounou G, Grüner AC. Pathogenic T cells in cerebral malaria. Int J Parasitol 2006; 36:547-54. [PMID: 16600241 DOI: 10.1016/j.ijpara.2006.02.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2005] [Revised: 02/01/2006] [Accepted: 02/10/2006] [Indexed: 11/24/2022]
Abstract
Malaria remains a major global health problem and cerebral malaria (CM) is one of the most serious complications of this disease. Recent years have seen important advances in our understanding of the pathogenesis of cerebral malaria. Parasite sequestration, a hallmark of this syndrome, is thought to be solely responsible for the pathological process. However, this phenomenon cannot explain all aspects of the pathogenesis of CM. The use of an animal model, Plasmodium berghei ANKA in mice, has allowed the identification of specific pathological components of CM. Although multiple pathways may lead to CM, an important role for CD8+ T cells has been clarified. Other cells, including platelets, and mediators such as cytokines also have an important role. In this review we have focused on the role of T cells, and discuss what remains to be studied to understand the pathways by which these cells mediate CM.
Collapse
Affiliation(s)
- Laurent Rénia
- Department of Immunology, Institut Cochin, INSERM U567, CNRS UMR 8104, Université René Descartes, Hôpital Cochin, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Hafalla JCR, Cockburn IA, Zavala F. Protective and pathogenic roles of CD8+ T cells during malaria infection. Parasite Immunol 2006; 28:15-24. [PMID: 16438672 DOI: 10.1111/j.1365-3024.2006.00777.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
CD8+ T cells play a key role in protection against pre-erythrocytic stages of malaria infection. Many vaccine strategies are based on the idea of inducing a strong infection-blocking CD8+ T cell response. Here, we summarize what is known about the development, specificity and protective effect of malaria-specific CD8+ T cells and report on recent developments in the field. Although work in mouse models continues to make progress in our understanding of the basic biology of these cells, many questions remain to be answered - particularly on the roles of these cells in human infections. Increasing evidence is also emerging of a harmful role for CD8+ T cells in the pathology of cerebral malaria in rodent systems. Once again, the relevance of these results to human disease is one of the primary questions facing workers in this field.
Collapse
Affiliation(s)
- J C R Hafalla
- Department of Medical Parasitology, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
41
|
Bakir HY, Tomiyama-Miyaji C, Watanabe H, Nagura T, Kawamura T, Sekikawa H, Abo T. Reasons why DBA/2 mice are resistant to malarial infection: expansion of CD3int B220+ gammadelta T cells with double-negative CD4- CD8- phenotype in the liver. Immunology 2006; 117:127-35. [PMID: 16423048 PMCID: PMC1782202 DOI: 10.1111/j.1365-2567.2005.02273.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
DBA/2 (H-2(d)) mice are known to be more resistant than C57BL/6 (B6, H-2(b)) mice to the non-lethal 17XNL strain of Plasmodium yoelii. This is a very strange phenomenon because the functions of conventional T cells, especially CD8(+) T cells, are known to be somewhat lower in DBA/2 mice than in other strains of mice. We examined herein how immune responses differed between DBA/2 mice and B6 mice during malarial infection. DBA/2 mice and (DBA/2 x B6)F(1) (BDF(1), H-2(b/d)) mice were found to have milder parasitaemia and to recover more quickly from malarial infection than B6 mice. These DBA/2 and BDF(1) mice were also found to experience a marked expansion of interleukin (IL)-2Rbeta(+) CD3(int) cells and gammadelta T cells in the liver, especially in the recovery phase. The expansion of unconventional T cells (i.e. B220(+) T cells) was also marked in DBA/2 and BDF(1) mice. The majority of B220(+) T cells were gammadelta T cells and these T cells were double-negative CD4(-) CD8(-). More importantly, the production of immunoglobulin M (IgM)-type anti-DNA autoantibody was also higher in DBA/2 and BDF(1) mice than in B6 mice. In conjunction with data on cytokine production, these results indicate that primitive T and B cells, namely autoreactive extrathymic T cells and autoantibody-producing B cells, may be much more activated in DBA/2 mice and therefore resistant to the non-lethal 17XNL strain of P. yoelii.
Collapse
MESH Headings
- Animals
- Antibodies, Antinuclear/biosynthesis
- Antibodies, Monoclonal/immunology
- CD3 Complex/analysis
- Cytokines/biosynthesis
- Immunity, Innate
- Immunoglobulin M/biosynthesis
- Immunophenotyping
- Leukocyte Common Antigens/analysis
- Liver/immunology
- Malaria/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Parasitemia/immunology
- Plasmodium yoelii
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Reverse Transcriptase Polymerase Chain Reaction/methods
- Spleen/immunology
- T-Lymphocyte Subsets/immunology
Collapse
Affiliation(s)
- Hanaa Y Bakir
- Department of Immunology, Niigata University School of Medicine, Niigata, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Engwerda C, Belnoue E, Grüner AC, Rénia L. ExperimentalModels of Cerebral Malaria. Curr Top Microbiol Immunol 2005. [DOI: 10.1007/3-540-29967-x_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
43
|
Abstract
Malaria is possibly the most serious infectious disease of humans, infecting 5-10% of the world's population, with 300-600 million clinical cases and more than 2 million deaths annually. Adaptive immune responses in the host limit the clinical impact of infection and provide partial, but incomplete, protection against pathogen replication; however, these complex immunological reactions can contribute to disease and fatalities. So, appropriate regulation of immune responses to malaria lies at the heart of the host-parasite balance and has consequences for global public health. This Review article addresses the innate and adaptive immune mechanisms elicited during malaria that either cause or prevent disease and fatalities, and it considers the implications for vaccine design.
Collapse
Affiliation(s)
- Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | |
Collapse
|
44
|
Collette A, Bagot S, Ferrandiz ME, Cazenave PA, Six A, Pied S. A profound alteration of blood TCRB repertoire allows prediction of cerebral malaria. THE JOURNAL OF IMMUNOLOGY 2004; 173:4568-75. [PMID: 15383590 DOI: 10.4049/jimmunol.173.7.4568] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cerebral malaria (CM) is one of the severe complications of Plasmodium infection. In murine models of CM, Talphabeta cells have been implicated in the neuropathogenesis. To obtain insights into the TCRB repertoire during CM, we used high throughput CDR3 spectratyping and set up new methods and software tools to analyze data. We compared PBL and spleen repertoires of mice infected with Plasmodium berghei ANKA that developed CM (CM(+)) or not (CM(-)) to evidence modifications of the TCRB repertoire associated with neuropathology. Using distinct statistical multivariate methods, the PBL repertoires of CM(+) mice were found to be specifically altered. This alteration is partly due to recurrently expanded T cell clones. Strikingly, alteration of the PBL repertoire can be used to distinguish between CM(+) and CM(-). This study provides the first ex vivo demonstration of modifications of Talphabeta cell compartment during CM. Finally, our original approach for deciphering lymphocyte repertoires can be transposed to various pathological conditions.
Collapse
MESH Headings
- Animals
- Cell Separation
- Clone Cells
- Complementarity Determining Regions/biosynthesis
- Complementarity Determining Regions/blood
- Complementarity Determining Regions/genetics
- Female
- Immunoglobulin Constant Regions/biosynthesis
- Immunoglobulin Constant Regions/blood
- Immunoglobulin Constant Regions/genetics
- Immunoglobulin Variable Region/biosynthesis
- Immunoglobulin Variable Region/blood
- Immunoglobulin Variable Region/genetics
- Malaria, Cerebral/genetics
- Malaria, Cerebral/immunology
- Malaria, Cerebral/pathology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred DBA
- Plasmodium berghei/immunology
- Plasmodium berghei/pathogenicity
- Polymerase Chain Reaction/methods
- Predictive Value of Tests
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, alpha-beta/blood
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Recurrence
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
Collapse
Affiliation(s)
- Alexis Collette
- Immunophysiopathologie Infectieuse, Centre National de la Recherche Scientifique Unité de Recherche Associée 1961, Institut Pasteur, and Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | |
Collapse
|
45
|
Bagot S, Nogueira F, Collette A, do Rosario V, Lemonier F, Cazenave PA, Pied S. Comparative study of brain CD8+ T cells induced by sporozoites and those induced by blood-stage Plasmodium berghei ANKA involved in the development of cerebral malaria. Infect Immun 2004; 72:2817-26. [PMID: 15102792 PMCID: PMC387860 DOI: 10.1128/iai.72.5.2817-2826.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To obtain insight into the mechanisms that contribute to the pathogenesis of Plasmodium infections, we developed an improved rodent model that mimics human malaria closely by inducing cerebral malaria (CM) through sporozoite infection. We used this model to carry out a detailed study on isolated T cells recruited from the brains of mice during the development of CM. We compared several aspects of the immune response related to the experimental model of Plasmodium berghei ANKA infection induced by sporozoites in C57BL/6 mice and those related to a blood-stage infection. Our data show that in both models, oligoclonal TCRVbeta4(+), TCRVbeta6(+), TCRVbeta8.1(+), and TCRVbeta11(+) major histocompatibility complex class I-restricted CD8 T cells were present in the brains of CM(+) mice. These CD8(+) T cells display an activated phenotype, do not undergo apoptosis, secrete gamma interferon or tumor necrosis factor alpha, and are associated with the development of the neurological syndrome.
Collapse
Affiliation(s)
- Sébastien Bagot
- Unité d'Immunophysiopathologie Infectieuse, CNRS URA 1961, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | | | | | |
Collapse
|
46
|
Collette A, Cazenave PA, Pied S, Six A. New methods and software tools for high throughput CDR3 spectratyping. Application to T lymphocyte repertoire modifications during experimental malaria. J Immunol Methods 2003; 278:105-16. [PMID: 12957400 DOI: 10.1016/s0022-1759(03)00225-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Immune repertoires of T or B cells are very often studied by Complementary Determining Region 3 (CDR3) spectratyping. However, data obtained with this method is usually subject to a biased eye analysis. We developed recently the ISEApeaks software package to retrieve and handle peak data from automated sequencers, from which CDR3 spectratype data is obtained. We describe a general strategy for CDR3 spectratype analysis based on two new specific modules and multivariate statistics. The first module addresses the crucial problem of peak smoothing. The second is a toolbox for the analysis of CDR3 spectratypes, which includes perturbation computation, recurrent peak finding, expansion assessment and datamining. To illustrate our approach, we assessed the complex TCRB repertoire modifications induced by Plasmodium berghei ANKA (PbA) infection. This global and exhaustive repertoire analysis approach is of general interest for T- and B-lymphocyte repertoire studies and is currently used in human cohorts in various pathologies and during clinical trials.
Collapse
Affiliation(s)
- Alexis Collette
- Immunophysiopathologie Infectieuse, CNRS URA 1961, Institut Pasteur, 25-28 rue du Dr. Roux, 75724 Paris 15, France
| | | | | | | |
Collapse
|
47
|
Belnoue E, Kayibanda M, Deschemin JC, Viguier M, Mack M, Kuziel WA, Rénia L. CCR5 deficiency decreases susceptibility to experimental cerebral malaria. Blood 2003; 101:4253-9. [PMID: 12560237 DOI: 10.1182/blood-2002-05-1493] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of susceptible mouse strains with Plasmodium berghei ANKA (PbA) is a valuable experimental model of cerebral malaria (CM). Two major pathologic features of CM are the intravascular sequestration of infected erythrocytes and leukocytes inside brain microvessels. We have recently shown that only the CD8+ T-cell subset of these brain-sequestered leukocytes is critical for progression to CM. Chemokine receptor-5 (CCR5) is an important regulator of leukocyte trafficking in the brain in response to fungal and viral infection. Therefore, we investigated whether CCR5 plays a role in the pathogenesis of experimental CM. Approximately 70% to 85% of wild-type and CCR5+/- mice infected with PbA developed CM, whereas only about 20% of PbA-infected CCR5-deficient mice exhibited the characteristic neurologic signs of CM. The brains of wild-type mice with CM showed significant increases in CCR5+ leukocytes, particularly CCR5+ CD8+ T cells, as well as increases in T-helper 1 (Th1) cytokine production. The few PbA-infected CCR5-deficient mice that developed CM exhibited a similar increase in CD8+ T cells. Significant leukocyte accumulation in the brain and Th1 cytokine production did not occur in PbA-infected CCR5-deficient mice that did not develop CM. Moreover, experiments using bone marrow (BM)-chimeric mice showed that a reduced but significant proportion of deficient mice grafted with CCR5+ BM develop CM, indicating that CCR5 expression on a radiation-resistant brain cell population is necessary for CM to occur. Taken together, these results suggest that CCR5 is an important factor in the development of experimental CM.
Collapse
Affiliation(s)
- Elodie Belnoue
- Département d'Immunologie, Institut Cochin, institut National de la Santé et de la Recherche Médicale (INSERM), Université René Descartes, Hôpital Cochin, Paris, France
| | | | | | | | | | | | | |
Collapse
|
48
|
Hansen DS, Siomos MA, Buckingham L, Scalzo AA, Schofield L. Regulation of murine cerebral malaria pathogenesis by CD1d-restricted NKT cells and the natural killer complex. Immunity 2003; 18:391-402. [PMID: 12648456 DOI: 10.1016/s1074-7613(03)00052-9] [Citation(s) in RCA: 140] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
NKT cells are specialized cells coexpressing NK and T cell receptors. Upon activation they rapidly produce high levels of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4) and are therefore postulated to influence T(H)1/T(H)2 immune responses. The precise role of the CD1/NKT cell pathway in immune response to infection remains unclear. We show here that CD1d-restricted NKT cells from distinct genetic backgrounds differentially influence T(H)1/T(H)2 polarization, proinflammatory cytokine levels, pathogenesis, and fatality in the P. berghei ANKA/rodent model of cerebral malaria. The functional properties of CD1d-restricted NKT cells vary according to expression of loci of the natural killer complex (NKC) located on mouse chromosome 6, which is shown here to be a significant genetic determinant of murine malarial fatalities.
Collapse
MESH Headings
- Animals
- Antigens/metabolism
- Antigens, CD1/genetics
- Antigens, CD1/metabolism
- Antigens, CD1d
- Antigens, Surface
- Cytokines/biosynthesis
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Malaria, Cerebral/etiology
- Malaria, Cerebral/genetics
- Malaria, Cerebral/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- NK Cell Lectin-Like Receptor Subfamily B
- Plasmodium berghei
- Proteins/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- T-Lymphocyte Subsets/immunology
- Th1 Cells/immunology
- Th2 Cells/immunology
Collapse
Affiliation(s)
- Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | | | | | |
Collapse
|
49
|
Nitcheu J, Bonduelle O, Combadiere C, Tefit M, Seilhean D, Mazier D, Combadiere B. Perforin-dependent brain-infiltrating cytotoxic CD8+ T lymphocytes mediate experimental cerebral malaria pathogenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:2221-8. [PMID: 12574396 DOI: 10.4049/jimmunol.170.4.2221] [Citation(s) in RCA: 239] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Experimental cerebral malaria (ECM) resulting from Plasmodium berghei ANKA infection involves T lymphocytes. However, the mechanisms of T cell-mediated pathogenesis remain unknown. We found that, in contrast to ECM-susceptible C57BL6 mice, perforin-deficient (PFP-KO) mice were resistant to ECM in the absence of brain lesions, whereas cytoadherence of parasitized erythrocytes and massive accumulation of activated/effector CD8 lymphocytes were observed in both groups of mice. ECM is induced in PFP-KO mice after adoptive transfer of cytotoxic CD8+ cells from infected C57BL6 mice, which were directed to the brain of PFP-KO mice. This specific recruitment might involve chemokine/chemokine receptors, since their expression was up-regulated on activated CD8 cells, and susceptibility to ECM was delayed in CCR5-KO mice. Thus, lymphocyte cytotoxicity and cell trafficking are key players in ECM pathogenesis.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Brain/immunology
- Brain/metabolism
- Brain/parasitology
- Brain/pathology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Movement/genetics
- Cell Movement/immunology
- Female
- Fluoresceins/metabolism
- Genetic Predisposition to Disease
- Immunity, Innate/genetics
- Immunologic Memory/genetics
- Malaria, Cerebral/genetics
- Malaria, Cerebral/immunology
- Malaria, Cerebral/pathology
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Membrane Glycoproteins/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Perforin
- Plasmodium berghei/immunology
- Plasmodium berghei/pathogenicity
- Pore Forming Cytotoxic Proteins
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/deficiency
- Receptors, CCR5/genetics
- Spleen/chemistry
- Spleen/cytology
- Spleen/immunology
- Spleen/transplantation
- Succinimides/metabolism
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/pathology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- T-Lymphocytes, Cytotoxic/pathology
Collapse
Affiliation(s)
- Josianne Nitcheu
- Institut National de la Santé et de la Recherche Médicale, Unité 511, Immunobiologie Cellulaire et Moléculaire des Infections Parasitaires, CHU Pitie-Salpétrière, Université Pierre et Marie Curie, 91 boulevard de l'Hôpital, 75634 Paris Cedex 13, France
| | | | | | | | | | | | | |
Collapse
|
50
|
Bauer PR, Van Der Heyde HC, Sun G, Specian RD, Granger DN. Regulation of endothelial cell adhesion molecule expression in an experimental model of cerebral malaria. Microcirculation 2002; 9:463-70. [PMID: 12483543 DOI: 10.1038/sj.mn.7800159] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2002] [Accepted: 07/12/2002] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Plasmodium falciparum malaria in humans and animal models of this disease have revealed changes in the infected host that are consistent with a systemic inflammatory response. Although it has been proposed that endothelial cell adhesion molecules (CAM) contribute to the adhesive interactions of Plasmodium-infected erythrocytes and immune cells with vascular endothelial cells, ECAM expression has not been systematically studied in Plasmodium-infected animals. METHODS In this study, the dual radiolabeled monoclonal antibody method was used to quantify the expression of different ECAMs (ICAM-1, VCAM-1, P-selectin, E-selectin) in different regional vascular beds of Plasmodium berghei ANKA-inffected mice (PbA), a well-recognized model of human cerebral malaria. The roles of T lymphocytes and certain cytokines (TNF-alpha, IL-12, IFN-gamma) in mediating the infection-induced expression of ICAM-1 and P-selectin were assessed by using relevant mutant mice. RESULTS Wild-type (WT) mice exhibited highly significant increases in the expression of ICAM-1, VCAM-1, and P-selectin (but not E-selectin) in all vascular beds on the 6th day of PbA infection. The PbA-induced upregulation of ICAM-1 was significantly blunted in mice that were either deficient in IFN-alpha, IL-12 (but not TNF1b) or T lymphocytes (Rag-1 deficiency); however, these responses were tissue specific. CONCLUSIONS These findings indicate that vascular endothelial cells in most regional circulations assume an inflammatory phenotype and that cytokines and immune cells mediate this response in a tissue-specific manner.
Collapse
Affiliation(s)
- Phillipe R Bauer
- Departments of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| | | | | | | | | |
Collapse
|