1
|
Saini KC, Rani A, Gupta SK, Sharma P. Algae a Potential Source in Cosmetics: Current Status, Challenges, and Economic Implications. Indian J Microbiol 2024; 64:1445-1460. [PMID: 39678953 PMCID: PMC11645359 DOI: 10.1007/s12088-024-01263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/13/2024] [Indexed: 12/17/2024] Open
Abstract
Recently, many studies have revealed the association between environmental stresses and skin disorders. Skin protects the inner body organs as a first line of defence against various environmental detriments. The physical, chemical, biological, and environmental stresses and internal factors, including reactive oxygen species, can lead to skin aging, laxity, wrinkles, dryness, and coarse texture. Therefore, utilizing naturally occurring bioactive phytochemicals has increased in recent years because of advancements in green technology, and new extraction techniques have made their use more compatible, enabling sustainable development. Alga, both macroalgae and microalgae are photosynthetic organisms that are highly exploited in food, feed, pharmaceuticals, nutraceutical, and cosmetic industries. Algae widely synthesize primary and secondary bioactive metabolites such as polysaccharides, vitamins, flavonoids, carotenoids, pigments, phenolic, and mycosporine-like amino acids, etc. Many cosmetic formulations use algal bioactive metabolites or algal cells as a moisturizer, texture-enhancing agents, anti-wrinkle agents, whitening agents, sunscreen, anti-cellulite, thickening agents, and also for hair care. The current review focuses on a better understanding and recent advancements in the application of algal extract and its biomass in a cosmetic formulation. It also briefly describes the current market scenario, challenges, and future prospectus of algae-based cosmetic products.
Collapse
Affiliation(s)
- Khem Chand Saini
- School of Basic and Applied Sciences, Nirwan University, Jaipur, Rajasthan 303305 India
| | - Alka Rani
- Department of Botany, Central University of Punjab, VPO-Ghudda, Bathinda, Punjab 151401 India
| | - Sonu Kumar Gupta
- Department of Biochemistry and Molecular Biology Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Preeti Sharma
- School of Basic and Applied Sciences, Nirwan University, Jaipur, Rajasthan 303305 India
| |
Collapse
|
2
|
Zorlu Ö, Karabağ S, Erdoğan KE, Aksın M, Üstün B. Immunoexpression Patterns of Adhesion Molecules (E-cadherin, β-catenin, CD56) and Cytokeratins (CK19, CK20, HMWCK, CAM5.2) During Hair Development in Human Fetuses Compared With Adults. Am J Dermatopathol 2024; 46:572-580. [PMID: 38842366 DOI: 10.1097/dad.0000000000002741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
ABSTRACT Abnormalities in the expression of cytokeratins or adhesion molecules have been associated with hair disorders. The expression patterns of these molecules in the hair follicles of developing human fetuses are not obvious. We aimed to investigate the expression patterns of some cytokeratins and adhesion molecules in the hair follicle of human fetuses and compared them with adults. Forty-eight fetuses of >16 gestational weeks and 22 adult cases with total excisions of benign nevi or cysts were enrolled. The skin samples were taken from both the scalp and back of the fetuses. The histopathologically normal skin areas were evaluated in adults. CK19, CK20, CAM5.2, high-molecular-weight cytokeratin, E-cadherin, β-catenin, and CD56 immunohistochemical stainings were performed. In the fetus group, the staining scores declined in the third trimester but elevated and reached the highest level in adults, except for CD56, which did not stain any adult samples. All stainings were mostly observed in the outer root sheath, except CD56 that stained the perifollicular dermal sheath only in fetuses. E-cadherin, β-catenin, and high-molecular-weight cytokeratin strongly and diffusely stained all adult samples. CAM5.2 and CK19 scores were correlated in fetuses (scalp scores: r s = 0.405, P = 0.004; back scores: r s = 0.422, P = 0.003) and adults (back scores: r s = 0.562, P = 0.046). CD56 negativity indicated the immune-privilege feature of adult hair follicles. As CK19, CAM5.2 may be used to find the regions of stem cells or transient amplifying cells.
Collapse
Affiliation(s)
- Özge Zorlu
- Department of Dermatology and Venereology, Tekirdağ Namık Kemal University Faculty of Medicine, Tekirdağ, Turkey
| | - Sevil Karabağ
- Department of Pathology, Tekirdağ Namık Kemal University Faculty of Medicine, Tekirdağ, Turkey
| | - Kıvılcım E Erdoğan
- Department of Pathology, Çukurova University Faculty of Medicine, Adana, Turkey
| | - Merve Aksın
- Department of Pathology, Çukurova University Faculty of Medicine, Adana, Turkey; and
| | - Batuhan Üstün
- Department of Obstetrics and Gynecology, Tekirdağ Namık Kemal University Faculty of Medicine, Tekirdağ, Turkey
| |
Collapse
|
3
|
Šutić Udović I, Hlača N, Massari LP, Brajac I, Kaštelan M, Vičić M. Deciphering the Complex Immunopathogenesis of Alopecia Areata. Int J Mol Sci 2024; 25:5652. [PMID: 38891839 PMCID: PMC11172390 DOI: 10.3390/ijms25115652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024] Open
Abstract
Alopecia areata (AA) is an autoimmune-mediated disorder in which the proximal hair follicle (HF) attack results in non-scarring partial to total scalp or body hair loss. Despite the growing knowledge about AA, its exact cause still needs to be understood. However, immunity and genetic factors are affirmed to be critical in AA development. While the genome-wide association studies proved the innate and acquired immunity involvement, AA mouse models implicated the IFN-γ- and cytotoxic CD8+ T-cell-mediated immune response as the main drivers of disease pathogenesis. The AA hair loss is caused by T-cell-mediated inflammation in the HF area, disturbing its function and disrupting the hair growth cycle without destroying the follicle. Thus, the loss of HF immune privilege, autoimmune HF destruction mediated by cytotoxic mechanisms, and the upregulation of inflammatory pathways play a crucial role. AA is associated with concurrent systemic and autoimmune disorders such as atopic dermatitis, vitiligo, psoriasis, and thyroiditis. Likewise, the patient's quality of life (QoL) is significantly impaired by morphologic disfigurement caused by the illness. The patients experience a negative impact on psychological well-being and self-esteem and may be more likely to suffer from psychiatric comorbidities. This manuscript aims to present the latest knowledge on the pathogenesis of AA, which involves genetic, epigenetic, immunological, and environmental factors, with a particular emphasis on immunopathogenesis.
Collapse
Affiliation(s)
| | | | - Larisa Prpić Massari
- Department of Dermatovenereology, Clinical Hospital Centre Rijeka, Medical Faculty, University of Rijeka, Krešimirova 42, 51000 Rijeka, Croatia; (I.Š.U.); (N.H.); (I.B.); (M.K.); (M.V.)
| | | | | | | |
Collapse
|
4
|
Suzuki T, Chéret J, Scala FD, Rajabi-Estarabadi A, Akhundlu A, Demetrius DL, Gherardini J, Keren A, Harries M, Rodriguez-Feliz J, Epstein G, Lee W, Purba T, Gilhar A, Paus R. Interleukin-15 is a hair follicle immune privilege guardian. J Autoimmun 2024; 145:103217. [PMID: 38581915 DOI: 10.1016/j.jaut.2024.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/08/2024]
Abstract
The autoimmunity-promoting cytokine, Interleukin-15 (IL-15), is often claimed to be a key pathogenic cytokine in alopecia areata (AA). Yet, rhIL-15 promotes human hair follicle (HF) growth ex vivo. We have asked whether the expression of IL-15 and its receptor (IL-15R) isoforms is altered in human AA and how IL-15 impacts on human HF immune privilege (HF-IP) in the presence/absence of interferon-γ (IFNγ), the well-documented key AA-pathogenic cytokine, as well as on hair regrowth after experimental AA induction in vivo. Quantitative immunohistomorphometry showed the number of perifollicular IL-15+ T cells in AA skin biopsies to be significantly increased compared to healthy control skin, while IL-15, IL-15Rα, and IL-15Rγ protein expression within the hair bulb were significantly down-regulated in AA HFs. In organ-cultured human scalp HFs, rhIL-15 significantly reduced hair bulb expression of MICA, the key "danger" signal in AA pathogenesis, and increased production of the HF-IP guardian, α-MSH. Crucially, ex vivo, rhIL-15 prevented IFNγ-induced HF-IP collapse, restored a collapsed HF-IP by IL-15Rα-dependent signaling (as documented by IL-15Rα-silencing), and protected AA-preventive immunoinhibitory iNKT10 cells from IFNγ-induced apoptosis. rhIL-15 even promoted hair regrowth after experimental AA induction in human scalp skin xenotransplants on SCID/beige mice in vivo. Our data introduce IL-15 as a novel, functionally important HF-IP guardian whose signaling is constitutively defective in scalp HFs of AA patients. Our data suggest that selective stimulation of intrafollicular IL-15Rα signaling could become a novel therapeutic approach in AA management, while blocking it pharmacologically may hinder both HF-IP restoration and hair re-growth and may thus make HFs more vulnerable to AA relapse.
Collapse
Affiliation(s)
- Takahiro Suzuki
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jérémy Chéret
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fernanda D Scala
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ali Rajabi-Estarabadi
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Department of Dermatology, Broward Health, Fort Lauderdale, FL, USA
| | - Aysun Akhundlu
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dana-Lee Demetrius
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer Gherardini
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Aviad Keren
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Matthew Harries
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, M6 8HD, UK
| | | | - Gorana Epstein
- Foundation for Hair Restoration, 33143, Miami, Florida, USA
| | - Wendy Lee
- Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Talveen Purba
- Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Amos Gilhar
- Skin Research Laboratory, Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ralf Paus
- Dr. Phillip Frost Dept. of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA; Centre for Dermatology Research, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; CUTANEON - Skin & Hair Innovations, Hamburg, Germany.
| |
Collapse
|
5
|
Vandishi AK, Esmaeili A, Taghipour N. The promising prospect of human hair follicle regeneration in the shadow of new tissue engineering strategies. Tissue Cell 2024; 87:102338. [PMID: 38428370 DOI: 10.1016/j.tice.2024.102338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/11/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Hair loss disorder (alopecia) affects numerous people around the world. The low effectiveness and numerous side effects of common treatments have prompted researchers to investigate alternative and effective solutions. Hair follicle (HF) bioengineering is the knowledge of using hair-inductive (trichogenic) cells. Most bioengineering-based approaches focus on regenerating folliculogenesis through manipulation of regulators of physical/molecular properties in the HF niche. Despite the high potential of cell therapy, no cell product has been produced for effective treatment in the field of hair regeneration. This problem shows the challenges in the functionality of cultured human hair cells. To achieve this goal, research and development of new and practical approaches, technologies and biomaterials are needed. Based on recent advances in the field, this review evaluates emerging HF bioengineering strategies and the future prospects for the field of tissue engineering and successful HF regeneration.
Collapse
Affiliation(s)
- Arezoo Karami Vandishi
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Lee JH, Choi S. Deciphering the molecular mechanisms of stem cell dynamics in hair follicle regeneration. Exp Mol Med 2024; 56:110-117. [PMID: 38182654 PMCID: PMC10834421 DOI: 10.1038/s12276-023-01151-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 01/07/2024] Open
Abstract
Hair follicles, which are connected to sebaceous glands in the skin, undergo cyclic periods of regeneration, degeneration, and rest throughout adult life in mammals. The crucial function of hair follicle stem cells is to maintain these hair growth cycles. Another vital aspect is the activity of melanocyte stem cells, which differentiate into melanin-producing melanocytes, contributing to skin and hair pigmentation. Sebaceous gland stem cells also have a pivotal role in maintaining the skin barrier by regenerating mature sebocytes. These stem cells are maintained in a specialized microenvironment or niche and are regulated by internal and external signals, determining their dynamic behaviors in homeostasis and hair follicle regeneration. The activity of these stem cells is tightly controlled by various factors secreted by the niche components around the hair follicles, as well as immune-mediated damage signals, aging, metabolic status, and stress. In this study, we review these diverse stem cell regulatory and related molecular mechanisms of hair regeneration and disease conditions. Molecular insights would provide new perspectives on the disease mechanisms as well as hair and skin disorder treatment.
Collapse
Affiliation(s)
- Jung Hyun Lee
- Department of Dermatology, School of Medicine, University of Washington, Seattle, WA, 98109, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA, 98109, USA
| | - Sekyu Choi
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
- Institute for Convergence Research and Education in Advanced Technology (I_CREATE), Yonsei University, Incheon, 21983, Republic of Korea.
| |
Collapse
|
7
|
Rodríguez-Acosta ED, Nieto DF, Berna-Rico E, Galván-García HR, Meza-Castro RG, Rosales-Lerma AK, Guerrero-Cervantes AV, Ramírez-Marín HA. Assessing the Efficacy of Monthly 308 nm Excimer Lamp Double-Stacked Pulse Adjusted Therapy for Alopecia Areata. Skin Appendage Disord 2024; 10:18-25. [PMID: 38313573 PMCID: PMC10836865 DOI: 10.1159/000533993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/01/2023] [Indexed: 02/06/2024] Open
Abstract
Introduction Alopecia areata (AA) is an autoimmune disease characterized by T cell-mediated attack on the hair follicle. Although there are a wide range of therapies, the majority of them are not satisfactory due to side effects, pain due to intralesional injections or limited efficacy. In this study, we sought to evaluate the efficacy, influence factors, and safety of 308 nm excimer lamp used in a monthly basis in a double-stacked pulse manner for the treatment of AA. Methods This was a prospective study, using 308 nm excimer lamp in a double-stacked pulse therapy for AA. The primary endpoint was the improvement in SALT score. Results A total of 40 patients with AA were enrolled in this study. Forty (100%) patients achieved clinical response. Hyperpigmentation and erythema occurred on the treated alopecic areas of all patients but they were considered tolerable. Patients of younger age or with a smaller area of affection had a better overall treatment response. Conclusion 308 nm excimer lamp therapy is an excellent option for single or multiple AA because it achieves a good clinical response with less adverse effects than other therapies. This therapy may be useful for low-income countries where new JAK inhibitors are not available, however, for patients with extensive hair loss, it is not as effective and thus, it may be unfit for patients with alopecia totalis and alopecia universals.
Collapse
Affiliation(s)
| | - Diego Fernandez Nieto
- TricoHRC Research Group, Trichology Unit, Dermatology Department, Ramón y Cajal University Hospital, Instituto Ramon y Cajal de Investigación Sanitaria, University of Alcala, Madrid, Spain
- Trichology and Hair Transplantation Unit, Grupo Pedro Jaen Clinic, Madrid, Spain
| | - Emilio Berna-Rico
- TricoHRC Research Group, Trichology Unit, Dermatology Department, Ramón y Cajal University Hospital, Instituto Ramon y Cajal de Investigación Sanitaria, University of Alcala, Madrid, Spain
- Trichology and Hair Transplantation Unit, Grupo Pedro Jaen Clinic, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
8
|
Wang W, Wang H, Long Y, Li Z, Li J. Controlling Hair Loss by Regulating Apoptosis in Hair Follicles: A Comprehensive Overview. Biomolecules 2023; 14:20. [PMID: 38254620 PMCID: PMC10813359 DOI: 10.3390/biom14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Apoptosis is a physiological process that occurs in all cell types of the human body, and it profoundly changes the fate of hair by affecting hair follicle cells. This review outlines the cellular changes, intrinsic biochemical characteristics, and mechanisms underlying apoptosis and summarizes the hair follicle life cycle, including development, cycle stages, and corresponding cellular changes. Finally, the relationship between apoptosis and the hair cycle is discussed and the significance of apoptosis in hair loss conditions and drug treatments is highlighted. Apoptosis induces cellular changes and exhibits distinctive properties through intricate signaling pathways. Hair follicles undergo cyclic periods of growth, regression, and dormancy. Apoptosis is closely correlated with the regression phase by triggering hair follicle cell death and shedding. Regulation of apoptosis in hair follicles plays an essential role in hair loss due to maladies and drug treatments. Mitigating apoptosis can enhance hair growth and minimize hair loss. A comprehensive understanding of the correlation between apoptosis and the hair cycle can facilitate the development of novel treatments to prevent hair loss and stimulate hair regeneration.
Collapse
Affiliation(s)
- Wuji Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Honglan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Yunluan Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Zheng Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563006, China; (W.W.); (H.W.); (Y.L.); (Z.L.)
- Key Laboratory of Basic Pharmacology of Guizhou Province, Zunyi Medical University, Zunyi 563006, China
- Department of Pharmacology, School of Pharmacy, Zunyi Medical University, Zunyi 563006, China
| |
Collapse
|
9
|
Zhou C, Yang X, Yang B, Yan G, Dong X, Ding Y, Fan W, Li L, Yang D, Fang H, Ji C, Cheng H, Zhang S, Goh AH, Liu R, Gu X, Weng Z, Foley P, Sinclair R, Zhang J. A randomized, double-blind, placebo-controlled phase II study to evaluate the efficacy and safety of ivarmacitinib (SHR0302) in adult patients with moderate-to-severe alopecia areata. J Am Acad Dermatol 2023; 89:911-919. [PMID: 37019385 DOI: 10.1016/j.jaad.2023.02.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Alopecia areata (AA) is a CD8+ T cell-mediated autoimmune disease characterized by nonscarring hair loss. Ivarmacitinib, which is a selective oral Janus kinase 1 inhibitor, may interrupt certain cytokine signaling implicated in the pathogenesis of AA. OBJECTIVE To evaluate the efficacy and safety of ivarmacitinib in adult patients with AA who have ≥25% scalp hair loss. METHODS Eligible patients were randomized 1:1:1:1 to receive ivarmacitinib 2, 4, or 8 mg once daily or placebo for 24 weeks. The primary end point was the percentage change from baseline in the Severity of Alopecia Tool score at week 24. RESULTS A total of 94 patients were randomized. At week 24, the least squares mean difference in the percentage change from baseline in the Severity of Alopecia Tool score for ivarmacitinib 2, 4, and 8 mg and placebo groups were -30.51% (90% CI, -45.25, -15.76), -56.11% (90% CI, -70.28, -41.95), -51.01% (90% CI, -65.20, -36.82), and -19.87% (90% CI, -33.99, -5.75), respectively. Two serious adverse events-follicular lymphoma and COVID-19 pneumonia-were reported. LIMITATIONS A small sample size limits the generalizability of the results. CONCLUSION Treatment with ivarmacitinib 4 and 8 mg doses in patients with moderate and severe AA for 24 weeks was efficacious and generally tolerated.
Collapse
Affiliation(s)
- Cheng Zhou
- Peking University People's Hospital, Beijing
| | | | - Bin Yang
- Dermatology Hospital of Southern Medical University, Guangzhou
| | - Guofu Yan
- Chongqing Traditional Chinese Medicine Hospital, Chongqing
| | - Xiuqin Dong
- Guangdong Provincial People's Hospital, Guangzhou
| | | | - Weixin Fan
- Jiangsu Province Hospital, The First Affiliated Hospital with Nanjing Medical University, Nanjing
| | - Linfeng Li
- Beijing Friendship Hospital, Capital Medical University, Beijing
| | | | - Hong Fang
- First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou
| | - Chao Ji
- First Affiliated Hospital of Fujian Medical University, Fuzhou
| | - Hao Cheng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou
| | | | | | | | | | | | - Peter Foley
- University of Melbourne, Skin & Cancer Foundation Inc., Melbourne
| | | | | |
Collapse
|
10
|
Tu W, Cao YW, Sun M, Liu Q, Zhao HG. mTOR signaling in hair follicle and hair diseases: recent progress. Front Med (Lausanne) 2023; 10:1209439. [PMID: 37727765 PMCID: PMC10506410 DOI: 10.3389/fmed.2023.1209439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) signaling pathway is a major regulator of cell proliferation and metabolism, playing significant roles in proliferation, apoptosis, inflammation, and illness. More and more evidences showed that the mTOR signaling pathway affects hair follicle circulation and maintains the stability of hair follicle stem cells. mTOR signaling may be a critical cog in Vitamin D receptor (VDR) deficiency-mediated hair follicle damage and degeneration and related alopecia disorders. This review examines the function of mTOR signaling in hair follicles and hair diseases, and talks about the underlying molecular mechanisms that mTOR signaling regulates.
Collapse
Affiliation(s)
| | | | | | | | - Heng-Guang Zhao
- Department of Dermatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
11
|
Deng L, Wan L, Liao T, Wang L, Wang J, Wu X, Shi J. Recent progress on tyrosine kinase 2 JH2 inhibitors. Int Immunopharmacol 2023; 121:110434. [PMID: 37315371 DOI: 10.1016/j.intimp.2023.110434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus kinase (JAK) family, which can regulate the signaling of multiple pro-inflammatory cytokines, including IL12, IL23 and type I interferon (IFNα/β), and its inhibitors can treat autoimmune diseases caused by the abnormal expression of IL12 and IL23. Interest in TYK2 JH2 inhibitors has increased as a result of safety concerns with JAK inhibitors. This overview introduces TYK2 JH2 inhibitors that are already on the market, including Deucravactinib (BMS-986165), as well as those currently in clinical trials, such as BMS-986202, NDI-034858, and ESK-001.
Collapse
Affiliation(s)
- Lidan Deng
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Li Wan
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China
| | - Tingting Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, Sichuan Province, China
| | - Lin Wang
- College of Food and Bioengineering, Xihua University, Chengdu 610039, China
| | - Jie Wang
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550002, China
| | - Xianbo Wu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan 610041, China.
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
12
|
Lee EY, Dai Z, Jaiswal A, Wang EHC, Anandasabapathy N, Christiano AM. Functional interrogation of lymphocyte subsets in alopecia areata using single-cell RNA sequencing. Proc Natl Acad Sci U S A 2023; 120:e2305764120. [PMID: 37428932 PMCID: PMC10629527 DOI: 10.1073/pnas.2305764120] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Alopecia areata (AA) is among the most prevalent autoimmune diseases, but the development of innovative therapeutic strategies has lagged due to an incomplete understanding of the immunological underpinnings of disease. Here, we performed single-cell RNA sequencing (scRNAseq) of skin-infiltrating immune cells from the graft-induced C3H/HeJ mouse model of AA, coupled with antibody-based depletion to interrogate the functional role of specific cell types in AA in vivo. Since AA is predominantly T cell-mediated, we focused on dissecting lymphocyte function in AA. Both our scRNAseq and functional studies established CD8+ T cells as the primary disease-driving cell type in AA. Only the depletion of CD8+ T cells, but not CD4+ T cells, NK, B, or γδ T cells, was sufficient to prevent and reverse AA. Selective depletion of regulatory T cells (Treg) showed that Treg are protective against AA in C3H/HeJ mice, suggesting that failure of Treg-mediated immunosuppression is not a major disease mechanism in AA. Focused analyses of CD8+ T cells revealed five subsets, whose heterogeneity is defined by an "effectorness gradient" of interrelated transcriptional states that culminate in increased effector function and tissue residency. scRNAseq of human AA skin showed that CD8+ T cells in human AA follow a similar trajectory, underscoring that shared mechanisms drive disease in both murine and human AA. Our study represents a comprehensive, systematic interrogation of lymphocyte heterogeneity in AA and uncovers a novel framework for AA-associated CD8+ T cells with implications for the design of future therapeutics.
Collapse
Affiliation(s)
- Eunice Y. Lee
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
- Medical Scientist Training Program, Columbia University, New York, NY10032
| | - Zhenpeng Dai
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
| | - Abhinav Jaiswal
- Department of Dermatology, Weill Cornell Medicine, New York, NY10021
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Eddy Hsi Chun Wang
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
| | - Niroshana Anandasabapathy
- Department of Dermatology, Weill Cornell Medicine, New York, NY10021
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY10065
| | - Angela M. Christiano
- Department of Dermatology, Columbia University Irving Medical Center, New York, NY10032
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY10032
| |
Collapse
|
13
|
Forneris Crego AL, Therianou A, Hashemi P, Higgins CA. A catena between psychiatric disorders and non-scarring alopecias-A systematic review. SKIN HEALTH AND DISEASE 2023; 3:e194. [PMID: 37275427 PMCID: PMC10233074 DOI: 10.1002/ski2.194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022]
Abstract
For many years, clinical observations have suggested that there is an intrinsic connection between psychological state and skin diseases. Stress responses are typically mediated by several hormones, which are modulated via the hypothalamic-pituitary-adrenal axis. This typical stress response is not only one theory for psychiatry disorder pathophysiology, but it also modifies hair growth by altering the skin's inflammatory environment. Given that different forms of hair loss, such as androgenetic alopecia, alopecia areata, or telogen effluvium, and hair follicle cycling can be altered by immune cells within the follicle milieu, we hypothesized that specific forms of hair loss are correlated to psychiatric illnesses. To address this, we conducted a systematic review by searches in April and May 2021 through Ovid MEDLINE and PUBMED (ranging from 1951 to the present day), identifying 179 reports. A further 24 reports were identified through website and citation searches giving a total of 201 reports. After applying exclusion criteria, 21 papers were reviewed, and 17 were included for data analysis. It is undeniable that hair loss greatly affects Health-related Quality of Life (HrQol) and it is heavily associated with major depressive disorder and anxiety. The correlation between hair loss and mental health disorders was significant, however, due to the low number of publications with quantitative data we were not able to identify correlations between each hair loss type with each psychiatric disorder. Further studies to better connect specific hair loss diseases to specific disorders are therefore critical in bettering the way both psychiatric disease, and hair loss, are managed.
Collapse
|
14
|
Petak A, Boras J, Bata I, Ilić I, Hohšteter M, Šoštarić-Zuckermann IC. Clinical and histopathological investigation of symmetrical alopecia with associated chronic pruritus in tufted capuchin monkeys (Sapajus apella apella). J Med Primatol 2023. [PMID: 37114717 DOI: 10.1111/jmp.12645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/28/2023] [Accepted: 04/05/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Symmetrical alopecia is a common symptom of endocrine and autoimmune diseases, which are rarely manifested with pruritus. Increased levels of stress in primates have been presented with increased levels of pruritus and alopecia appearance. METHODS A pruritic and alopecic disease was investigated in a group of tufted capuchin monkeys (N = 12), but due to ethical reasons, four random animals were further investigated by numerous diagnostic methods. The impact of food and enclosure enrichment was assessed and observed over a 2-year period. RESULTS Histopathology of four random tufted capuchin monkeys revealed lymphocytic perifolliculitis, with an appearance of a "swarm of bees" which was suggestive of alopecia areata. Etiological classification of pruritus excluded dermatological, systemic, and neurological causes, making it behavioral. Enclosure and food enrichment had a beneficial impact on pruritus (12/12) and alopecia (10/12). CONCLUSION The findings were suggestive of alopecia areata, while the pruritus was considered behavioral in origin. Alopecia and pruritus improved upon enclosure and food enrichment.
Collapse
Affiliation(s)
- Ana Petak
- Clinic for Small Animals "Buba", Zagreb, Croatia
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | | | | | - Ivana Ilić
- Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Marko Hohšteter
- Department of Veterinary Pathology, Faculty of Veterinary Medicine University of Zagreb, Zagreb, Croatia
| | | |
Collapse
|
15
|
Stefanis AJ. Janus Kinase Inhibitors in the Treatment of Alopecia Areata. Prague Med Rep 2023; 124:5-15. [PMID: 36763827 DOI: 10.14712/23362936.2023.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023] Open
Abstract
Alopecia areata is a disease of autoimmune origin which causes non scarring hair loss. The extent of alopecia varies from a small patch to complete scalp and body hair loss, which can have huge psychosocial impact for those affected. Treatment modalities which have been used so far included nonspecific immunosuppressive medications, such as corticosteroids, cyclosporine, and methotrexate, or topical immunomodulators, such as diphencyprone, dithranol, and squaric acid dibutylester. The recognition of the importance of Janus kinase pathway in alopecia areata pathogenesis enabled more specific approaches in treatment. Positive outcomes of Janus kinase inhibitors in several trials granted approval for baricitinib which became the first on-label treatment for alopecia areata. The aim of this review is to summarize the role, efficacy and safety of several Janus kinase inhibitors in alopecia areata.
Collapse
Affiliation(s)
- Athanasios J Stefanis
- Department of Dermatovenerology, Third Faculty of Medicine, Charles University and University Hospital Královské Vinohrady, Prague, Czech Republic.
| |
Collapse
|
16
|
Okwundu N, Ogbonna C, McMichael AJ. Seborrheic Dermatitis as a Potential Trigger of Central Centrifugal Cicatricial Alopecia: A Review of Literature. Skin Appendage Disord 2023; 9:13-17. [PMID: 36643200 PMCID: PMC9832998 DOI: 10.1159/000526216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/13/2022] [Indexed: 01/18/2023] Open
Abstract
Central centrifugal cicatricial alopecia (CCCA) is a common form of scarring alopecia that affects the crown or vertex of the scalp as centrifugally spreading patches of permanent hair loss. The etiology of CCCA is uncertain. Genetic predisposition, autoimmune diseases, infections (bacterial and fungal), and other idiopathic factors have all been explored as potential risk factors for the development of CCCA. Seborrheic dermatitis (SD) has been identified in a number of studies as the most common concurrent hair disorder seen in patients with CCCA. The high prevalence of SD in African American women and its association with long-term inflammation of the scalp may increase the likelihood of a connection between SD and other inflammatory conditions of the scalp in this population. Since it has frequently been discovered as a concomitant diagnosis in patients with CCCA, we hypothesize that a history of SD may play a role in the pathogenesis of CCCA.
Collapse
Affiliation(s)
- Nwanneka Okwundu
- Trios Health Family Medicine Residency, University of Washington, Kennewick, Washington, USA
| | - Chiagoziem Ogbonna
- Department of Dermatology and School of Medicine, Wakeforest Baptist Health, Winston-Salem, North Carolina, USA
| | - Amy J. McMichael
- Department of Dermatology and School of Medicine, Wakeforest Baptist Health, Winston-Salem, North Carolina, USA
| |
Collapse
|
17
|
Velásquez-Lopera MM, Hernández N, Jansen AM, García AL, Luna PC, Rico-Restrepo M, del Mar Saez-de-Ocariz M, Tamayo-Buendía MM, Rivitti-Machado MC. Alopecia Areata in Latin America: Where are We and Where are We Going? Dermatol Ther (Heidelb) 2022; 13:95-114. [PMID: 36527577 PMCID: PMC9758465 DOI: 10.1007/s13555-022-00845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Alopecia areata (AA) represents an underrecognized burden in Latin America (LA), severely impacting quality of life (QoL). This impact is exacerbated by limited access to specialized dermatologic care and therapies for AA within and among nations. Many of the unmet needs for AA globally also exist in LA. The region has geographic, ethnic, cultural, and economic conditions. With new AA medicines targeting immunologic pathways on the horizon, LA must prepare regarding regulatory issues, reimbursement, awareness, and education to give adequate and timely treatment for patients with AA. To address these issues, the Americas Health Foundation convened a panel of six dermatologists from Argentina, Brazil, Colombia, and Mexico who are experts in AA and its comorbidities for a 3-day virtual meeting to discuss AA diagnosis and treatment in LA and create a manuscript offering recommendations to address discussed barriers. This publication examines unmet AA needs in LA, treatment, and innovative therapies and recommends improving AA care. Access constraints to conventional and novel medicines hinder appropriate treatments for patients. Therapy initiation delays can affect QoL, mental health, and disease progression. People with AA face stigmas, discrimination, and misconceptions owing to a lack of disease awareness. With promising new treatments for AA on the horizon, all stakeholders must coordinate efforts to enhance LA's AA management landscape and improve patient outcomes.
Collapse
Affiliation(s)
- Margarita M. Velásquez-Lopera
- Centro de Investigaciones Dermatológicas CIDERM, Sección de Dermatología, Facultad de Medicina, Universidad de Antioquia, Cra. 51D # 62-29, Medellín, Colombia
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Paggioli I, Moss J. Alopecia Areata: Case report and review of pathophysiology and treatment with Jak inhibitors. J Autoimmun 2022; 133:102926. [PMID: 36335798 DOI: 10.1016/j.jaut.2022.102926] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Alopecia Areata (AA) is a T-cell mediated autoimmune attack on hair follicles resulting in rapidly developing areas of hair loss involving the scalp and beard that can progress to total scalp hair loss (alopecia totalis) and loss of eyebrows, eyelashes, and total body hair (alopecia universalis). Affected patients have high rates of psychological disorders and decreased quality of life. There are no FDA approved treatments, and the available treatments have a high failure rate. JAK inhibitors are remarkably effective in many autoimmune diseases including Alopecia Areata. Presented is a case report of successful treatment with tofacitinib, and a literature review of the pathophysiology of alopecia areata, the mechanism of action of JAK inhibitors, and the JAK inhibitors in phase 2 and 3 trials.
Collapse
Affiliation(s)
| | - Jeremy Moss
- Brookside Dermatology, 4639 Main Street, Bridgeport, CT, 06606, USA.
| |
Collapse
|
19
|
Chen L, Fan B, Gu H, Yang L, Li X. Effects of Baicalin on Alopecia and the Associated Mechanism. BIOMED RESEARCH INTERNATIONAL 2022; 2022:3139123. [PMID: 36440360 PMCID: PMC9699788 DOI: 10.1155/2022/3139123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 04/10/2024]
Abstract
The aim of the present study was to explore the potential pharmacological mechanism of baicalin by combining network pharmacology prediction and the experimental verification of alopecia. Networks of baicalin-associated targets and alopecia-related genes were constructed using the STRING database. Potential targets and pathways associated with the therapeutic efficacy of baicalin were identified via enrichment analysis using Cytoscape and the database for annotation, visualization and integrated discovery (Metascape). The back hair of C57BL/6J mice was removed with depilatory cream to verify the therapeutic effect of baicalin. Human hair dermal papilla cells (HHDPCs) were used to explore the mechanism of action of baicalin. Network pharmacology analysis revealed that the potential targets of baicalin mainly include protein serine/threonine kinase, Src protein, epidermal growth factor receptor, and insulin-like growth factor 1 (IGF1), which were indicated to mediate neutrophil degranulation and regulation of cell-cell adhesion, vesicle lumen, cytoplasmic vesicle, membrane raft, and endopeptidase activity. Multiple pathways were identified, such as proteoglycans in cancer, PI3K/AKT, and forkhead box O signaling pathways. Following baicalin treatment for the experimental mice, the coverage, length, and weight of the hair increased in a baicalin dose-dependent manner. Moreover, the histological evaluation showed that the number of hair follicles increased after baicalin treatment and melanin formation were pronounced. In addition, baicalin induced an increase in the phosphorylated p-AKT, p-glycogen synthase kinase-3β, p-PI3K, TGF-β1, and vascular endothelial growth factor levels. Furthermore, the activation levels of key protein p-AKT were increased. Baicalin induced the proliferation of HHDPCs in vitro and significantly upregulated p-AKT, IGF1, and alkaline phosphatase. In conclusion, the present study revealed that the pharmacological mechanisms of baicalin in alopecia therapy were associated with the proliferation of DPCs, the activation of the AKT pathway, and the transmission of downstream signals, indicating that baicalin is a potential drug candidate for the clinical treatment of hair loss.
Collapse
Affiliation(s)
- Liping Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Bo Fan
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Huan Gu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| | - Liuqing Yang
- School of Food and Bioengineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Xiaofang Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, China
| |
Collapse
|
20
|
Zhou Y, Huang Z, Wang C, Su J, Jiang P, Li L, Qin J, Xie Z. Investigation of hub genes and immune infiltration in androgenetic alopecia using bioinformatics analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1226. [PMID: 36544676 PMCID: PMC9761178 DOI: 10.21037/atm-22-4634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022]
Abstract
Background Androgenetic alopecia (AGA) is a type of non-scarring hair loss. Current drugs for AGA are accompanied by adverse reactions and a high recurrence rate. Thus, the discovery of diagnostic biomarkers and therapeutic targets for AGA remains imperatively warranted. Methods The GSE90594 dataset, which contained scalp skin biopsies from 14 male AGA cases and healthy volunteers, was used to identify the differentially expressed genes (DEGs). Functional enrichment analysis was subsequently performed. Next, the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database combined with the cytoHubba plugin of Cytoscape were used to obtain the key genes of AGA. Thereafter, the Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was performed to evaluate the relative abundance of immune cells between male AGA patients and healthy controls. The correlation between key genes and infiltrating immune cells was analyzed to obtain the significant immune-cell related genes (IRGs), then intersected with the DEGs between immortalized balding and non-balding human dermal papilla cells (DPCs) of the GSE93766 dataset as well as the DEGs obtained by the GSE90594 dataset, thus obtaining the hub genes of AGA. Finally, the hub genes were validated using GSE36169, which contained expression profiling of tissues biopsied from haired and bald scalps of five individuals with AGA. Results A total of 234 DEGs were obtained from the GSE90594 dataset, which were mainly enriched in the extracellular matrix (ECM)-related pathways and immune-related activities. The STRING database and ten algorithms in the cytoHubba plugin of Cytoscape disclosed 21 key DEGs. The results of the CIBERSORT algorithm revealed the relative abundances of 20 kinds of immune cells between diseased and healthy individuals, and yielded 15 IRGs involved in the pathogenesis of AGA. Next, the intersection analysis identified four hub genes of AGA, comprising COL1A2, PCOLCE, ITGAX, and LOX. The GSE36169 dataset validated the expression pattern of hub genes in the haired scalp of AGA patients. Conclusions We discovered that the hub genes identified are closely linked with the causative factors of AGA, which could be used as the viable diagnostic and therapeutic target in the clinical applications.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Dermatology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhongbo Huang
- Department of Laboratory Medicine, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chen Wang
- Department of Dermatology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinping Su
- Department of Dermatology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ping Jiang
- Department of Dermatology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Lili Li
- Department of Dermatology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jinglin Qin
- Department of Dermatology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zhi Xie
- Department of Dermatology, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
21
|
Sánchez-Pellicer P, Navarro-Moratalla L, Núñez-Delegido E, Agüera-Santos J, Navarro-López V. How Our Microbiome Influences the Pathogenesis of Alopecia Areata. Genes (Basel) 2022; 13:genes13101860. [PMID: 36292745 PMCID: PMC9601531 DOI: 10.3390/genes13101860] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 11/04/2022] Open
Abstract
Alopecia areata is a multifactorial autoimmune-based disease with a complex pathogenesis. As in all autoimmune diseases, genetic predisposition is key. The collapse of the immune privilege of the hair follicle leading to scalp loss is a major pathogenic event in alopecia areata. The microbiota considered a bacterial ecosystem located in a specific area of the human body could somehow influence the pathogenesis of alopecia areata, as it occurs in other autoimmune diseases. Moreover, the Next Generation Sequencing of the 16S rRNA bacterial gene and the metagenomic methodology have provided an excellent characterization of the microbiota. The aim of this narrative review is to examine the published literature on the cutaneous and intestinal microbiota in alopecia areata to be able to establish a pathogenic link. In this review, we summarize the influence of the microbiota on the development of alopecia areata. We first introduce the general pathogenic mechanisms that cause alopecia areata to understand the influence that the microbiota may exert and then we summarize the studies that have been carried out on what type of gut and skin microbiota is found in patients with this disease.
Collapse
Affiliation(s)
- Pedro Sánchez-Pellicer
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Laura Navarro-Moratalla
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Eva Núñez-Delegido
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Juan Agüera-Santos
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
| | - Vicente Navarro-López
- MiBioPath Research Group, Department of Clinical Medicine, Health Sciences Faculty, Catholic University of Murcia, Campus de los Jerónimos 135, 30107 Murcia, Spain
- Infectious Diseases Unit, University Hospital of Vinalopó-Fisabio, Carrer Tonico Sansano Mora 14, 03293 Elche, Spain
- Correspondence:
| |
Collapse
|
22
|
Watson VE, Faniel ML, Kamili NA, Krueger LD, Zhu C. Immune-mediated alopecias and their mechanobiological aspects. Cells Dev 2022; 170:203793. [PMID: 35649504 PMCID: PMC10681075 DOI: 10.1016/j.cdev.2022.203793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023]
Abstract
Alopecia is a non-specific term for hair loss clinically diagnosed by the hair loss pattern and histological analysis of patient scalp biopsies. The immune-mediated alopecia subtypes, including alopecia areata, lichen planopilaris, frontal fibrosing alopecia, and central centrifugal cicatricial alopecia, are common, significant forms of alopecia subtypes. For example, alopecia areata is the most common autoimmune disease with a lifetime incidence of approximately 2% of the world's population. In this perspective, we discuss major results from studies of immune-mediated alopecia subtypes. These studies suggest the key event in disease onset as the collapse in immune privilege, which alters the hair follicle microenvironment, e.g., upregulation of major histocompatibility complex molecules and increase of cytokine production, and results in immune cell infiltration, inflammatory responses, and damage of hair follicles. We note that previous studies have established that the hair follicle has a complex mechanical microenvironment, which may regulate the function of not only tissue cells but also immune cell infiltrates. This suggests a potential for mechanobiology to contribute to alopecia research by adding new methods, new approaches, and new ways of thinking, which is missing in the existing literature. To fill this a gap in the alopecia research space, we develop a mechanobiological hypothesis that alterations in the hair follicle microenvironment, specifically in the mechanically responsive tissues and cells, partially due to loss of immune privilege, may be contributors to disease pathology. We further focus our discussion on the potential for applying mechanoimmunology to the study of T cell infiltrates in the hair follicle, as they are considered primary contributors to alopecia pathology. To establish the connection between the mechanoimmunological hypothesis and immune-mediated alopecia subtypes, we discuss what is known about the role of T cells in immune-mediated alopecia subtypes, using the most extensively studied AA as our model.
Collapse
Affiliation(s)
- Valencia E Watson
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Makala L Faniel
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Loren D Krueger
- Department of Dermatology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, USA; Bioengineering PhD Program, USA; Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
23
|
GOKCE NURIYE, BASGOZ NESLIHAN, KENANOGLU SERCAN, AKALIN HILAL, OZKUL YUSUF, ERGOREN MAHMUTCERKEZ, BECCARI TOMMASO, BERTELLI MATTEO, DUNDAR MUNIS. An overview of the genetic aspects of hair loss and its connection with nutrition. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2022; 63:E228-E238. [PMID: 36479473 PMCID: PMC9710406 DOI: 10.15167/2421-4248/jpmh2022.63.2s3.2765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hair loss is a widespread concern in dermatology clinics, affecting both men's and women's quality of life. Hair loss can have many different causes, which are critical to identify in order to provide appropriate treatment. Hair loss can happen due to many variables, such as genetic factors or predisposition, vitamin and mineral deficiencies, skin problems, hair growth disorders, poor diet, hormonal problems, certain internal diseases, drug use, stress and depression, cosmetic factors, childbirth, and the chemotherapy process. Treatment for hair loss varies depending on the type of alopecia, deficiency, or excess of structures such as vitamins and minerals, and also on hair and skin structure. The Mediterranean diet is characterized by low amounts of saturated fat, animal protein, and high amounts of unsaturated fat, fiber, polyphenols, and antioxidants. The main nutrients found in the Mediterranean Diet are rich in antioxidant, anti-inflammatory components. It also has an important place in hair loss treatment, since recently treatment strategies have included polyphenols and unsaturated oils more and more frequently. The goal of this work was to review published articles examining alopecia and its types, the many micronutrients that affect alopecia, and the role of the Mediterranean diet in alopecia. The literature shows that little is known about hair loss, nutritional factors, and diet, and that the data collected are conflicting. Given these differences, research into the function of diet and nutrition in the treatment of baldness is a dynamic and growing topic.
Collapse
Affiliation(s)
- NURIYE GOKCE
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - NESLIHAN BASGOZ
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - SERCAN KENANOGLU
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - HILAL AKALIN
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - YUSUF OZKUL
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - MAHMUT CERKEZ ERGOREN
- Department of Medical Genetics, Faculty of Medicine, Near East University, Nicosia, Cyprus
- DESAM Institute, Near East University, Nicosia, Cyprus
| | - TOMMASO BECCARI
- Department of Pharmaceutical Science, University of Perugia, Perugia, Italy
| | - MATTEO BERTELLI
- MAGISNAT, Peachtree Corners (GA), USA
- MAGI Euregio, Bolzano, Italy
- MAGI’S LAB, Rovereto (TN), Italy
| | - MUNIS DUNDAR
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
24
|
Shen H, Li C, He M, Huang Y, Wang J, Luo J, Wang M, Yue B, Zhang X. Whole blood transcriptome profiling identifies candidate genes associated with alopecia in male giant pandas (Ailuropoda melanoleuca). BMC Genomics 2022; 23:297. [PMID: 35413801 PMCID: PMC9004003 DOI: 10.1186/s12864-022-08501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
Background The giant panda (Ailuropoda melanoleuca) is a threatened species endemic to China. Alopecia, characterized by thinning and broken hair, mostly occurs in breeding males. Alopecia significantly affects the health and public image of the giant panda and the cause of alopecia is unclear. Results Here, we researched gene expression profiles of four alopecia giant pandas and seven healthy giant pandas. All pandas were approximately ten years old and their blood samples collected during the breeding season. A total of 458 up-regulated DEGs and 211 down-regulated DEGs were identified. KEGG pathway enrichment identified that upregulated genes were enriched in the Notch signaling pathway and downregulated genes were enriched in ribosome, oxidative phosphorylation, and thermogenesis pathways. We obtained 28 hair growth-related DEGs, and identified three hub genes NOTCH1, SMAD3, and TGFB1 in PPI analysis. Five hair growth-related signaling pathways were identified with abnormal expression, these were Notch, Wnt, TGF-β, Mapk, and PI3K-Akt. The overexpression of NOTCH1 delays inner root sheath differentiation and results in hair shaft abnormalities. The delayed hair regression was associated with a significant decrease in the expression levels of TGFB1. Conclusions Our data confirmed the abnormal expression of several hair-related genes and pathways and identified alopecia candidate genes in the giant panda. Results of this study provide theoretical basis for the establishment of prevention and treatment strategies for giant pandas with alopecia. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08501-z.
Collapse
Affiliation(s)
- Haibo Shen
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Caiwu Li
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Ming He
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Yan Huang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Wang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Jing Luo
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China
| | - Minglei Wang
- Key Laboratory of State Forestry and Grassland Administration On Conservation Biology of Rare Animals in The Giant Panda National Park, China Conservation and Research Center for the Giant Panda, Dujiangyan, 611830, Sichuan, PR China
| | - Bisong Yue
- Sichuan Key Laboratory of Conservation Biology On Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610064, PR China
| | - Xiuyue Zhang
- Key Laboratory of Bio-Resources and Eco-Environment, Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610064, PR China. .,No. 24 South Section 1, Yihuan Road, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
25
|
Meng X, Zheng L, Xiao Y, Ding X, Wang K, Kang YJ. A novel method for histological examination of hair follicles. Histochem Cell Biol 2022; 158:39-48. [DOI: 10.1007/s00418-022-02098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2022] [Indexed: 11/04/2022]
|
26
|
Carmona-Cruz S, Orozco-Covarrubias L, Sáez-de-Ocariz M. The Human Skin Microbiome in Selected Cutaneous Diseases. Front Cell Infect Microbiol 2022; 12:834135. [PMID: 35321316 PMCID: PMC8936186 DOI: 10.3389/fcimb.2022.834135] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/31/2022] [Indexed: 12/28/2022] Open
Abstract
The human skin harbors a wide variety of microbes that, together with their genetic information and host interactions, form the human skin microbiome. The role of the human microbiome in the development of various diseases has lately gained interest. According to several studies, changes in the cutaneous microbiota are involved in the pathophysiology of several dermatoses. A better delineation of the human microbiome and its interactions with the innate and adaptive immune systems could lead to a better understanding of these diseases, as well as the opportunity to achieve new therapeutic modalities. The present review centers on the most recent knowledge on skin microbiome and its participation in the pathogenesis of several skin disorders: atopic and seborrheic dermatitis, alopecia areata, psoriasis and acne.
Collapse
|
27
|
Lintzeri DA, Constantinou A, Hillmann K, Ghoreschi K, Vogt A, Blume-Peytavi U. Alopecia areata – Aktuelles Verständnis und Management. J Dtsch Dermatol Ges 2022; 20:59-93. [PMID: 35040563 DOI: 10.1111/ddg.14689_g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Dimitra Aikaterini Lintzeri
- Klinik für Dermatologie, Venerologie und Allergologie, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Andria Constantinou
- Klinik für Dermatologie, Venerologie und Allergologie, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Kathrin Hillmann
- Klinik für Dermatologie, Venerologie und Allergologie, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Kamran Ghoreschi
- Klinik für Dermatologie, Venerologie und Allergologie, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Annika Vogt
- Klinik für Dermatologie, Venerologie und Allergologie, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Ulrike Blume-Peytavi
- Klinik für Dermatologie, Venerologie und Allergologie, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| |
Collapse
|
28
|
Lintzeri DA, Constantinou A, Hillmann K, Ghoreschi K, Vogt A, Blume-Peytavi U. Alopecia areata - Current understanding and management. J Dtsch Dermatol Ges 2022; 20:59-90. [PMID: 35040577 DOI: 10.1111/ddg.14689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Alopecia areata (AA) is a chronic, immune-mediated disease characterized by acute or chronic non-scarring hair loss, with a heterogeneity in clinical manifestations ranging from patchy hair loss to complete scalp and body hair loss. An overview of the up-to-date pathophysiology and the underlying signaling pathways involved in AA together with diagnostic and therapeutic recommendations will be provided. Current treatments, including topical, systemic and injectable interventions show varying response and frequent relapses reflecting the unmet clinical need. Thus, the new emerging concepts and therapeutic approaches, including Janus kinase inhibitors are eagerly awaited. Traditional and emerging therapies of AA will be discussed, in order to provide physicians with guidance for AA management. Since the latter is so challenging and often tends to take a chronic course, it can have an enormous psychosocial burden on patients, compromising their quality of life and often causing depression and anxiety. Therefore, the psychosocial aspects of the disease need to be evaluated and addressed, in order to implement appropriate psychological support when needed.
Collapse
Affiliation(s)
- Dimitra Aikaterini Lintzeri
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Andria Constantinou
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Kathrin Hillmann
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Annika Vogt
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Ulrike Blume-Peytavi
- Department of Dermatology, Venereology and Allergology, Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| |
Collapse
|
29
|
Minokawa Y, Sawada Y, Nakamura M. Lifestyle Factors Involved in the Pathogenesis of Alopecia Areata. Int J Mol Sci 2022; 23:ijms23031038. [PMID: 35162962 PMCID: PMC8835065 DOI: 10.3390/ijms23031038] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 12/27/2022] Open
Abstract
Alopecia areata is a representative inflammatory skin disease that is associated with various environmental stimuli. While psychological stress is believed to be a major pathogenetic trigger in alopecia areata, infants and newborns also suffer from the disease, suggesting the possible presence of other environmental factors. Daily lifestyle is well known to be involved in various inflammatory diseases and influences the severity of inflammatory skin diseases. However, only a limited number of studies have summarized these influences on alopecia areata. In this review article, we summarize lifestyle factor-related influences on the pathogenesis of alopecia areata and focus on environmental factors, such as smoking, alcohol consumption, sleep, obesity, fatty acids, and gluten consumption.
Collapse
|
30
|
Vikhe Patil K, Mak KHM, Genander M. A Hairy Cituation - PADIs in Regeneration and Alopecia. Front Cell Dev Biol 2021; 9:789676. [PMID: 34966743 PMCID: PMC8710808 DOI: 10.3389/fcell.2021.789676] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/23/2021] [Indexed: 02/04/2023] Open
Abstract
In this Review article, we focus on delineating the expression and function of Peptidyl Arginine Delminases (PADIs) in the hair follicle stem cell lineage and in inflammatory alopecia. We outline our current understanding of cellular processes influenced by protein citrullination, the PADI mediated posttranslational enzymatic conversion of arginine to citrulline, by exploring citrullinomes from normal and inflamed tissues. Drawing from other stem cell lineages, we detail the potential function of PADIs and specific citrullinated protein residues in hair follicle stem cell activation, lineage specification and differentiation. We highlight PADI3 as a mediator of hair shaft differentiation and display why mutations in PADI3 are linked to human alopecia. Furthermore, we propose mechanisms of PADI4 dependent fine-tuning of the hair follicle lineage progression. Finally, we discuss citrullination in the context of inflammatory alopecia. We present how infiltrating neutrophils establish a citrullination-driven self-perpetuating proinflammatory circuitry resulting in T-cell recruitment and activation contributing to hair follicle degeneration. In summary, we aim to provide a comprehensive perspective on how citrullination modulates hair follicle regeneration and contributes to inflammatory alopecia.
Collapse
Affiliation(s)
- Kim Vikhe Patil
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kylie Hin-Man Mak
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Genander
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Sakamoto K, Jin SP, Goel S, Jo JH, Voisin B, Kim D, Nadella V, Liang H, Kobayashi T, Huang X, Deming C, Horiuchi K, Segre JA, Kong HH, Nagao K. Disruption of the endopeptidase ADAM10-Notch signaling axis leads to skin dysbiosis and innate lymphoid cell-mediated hair follicle destruction. Immunity 2021; 54:2321-2337.e10. [PMID: 34582748 DOI: 10.1016/j.immuni.2021.09.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/02/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Hair follicles (HFs) function as hubs for stem cells, immune cells, and commensal microbes, which must be tightly regulated during homeostasis and transient inflammation. Here we found that transmembrane endopeptidase ADAM10 expression in upper HFs was crucial for regulating the skin microbiota and protecting HFs and their stem cell niche from inflammatory destruction. Ablation of the ADAM10-Notch signaling axis impaired the innate epithelial barrier and enabled Corynebacterium species to predominate the microbiome. Dysbiosis triggered group 2 innate lymphoid cell-mediated inflammation in an interleukin-7 (IL-7) receptor-, S1P receptor 1-, and CCR6-dependent manner, leading to pyroptotic cell death of HFs and irreversible alopecia. Double-stranded RNA-induced ablation models indicated that the ADAM10-Notch signaling axis bolsters epithelial innate immunity by promoting β-defensin-6 expression downstream of type I interferon responses. Thus, ADAM10-Notch signaling axis-mediated regulation of host-microbial symbiosis crucially protects HFs from inflammatory destruction, which has implications for strategies to sustain tissue integrity during chronic inflammation.
Collapse
Affiliation(s)
- Keiko Sakamoto
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Seon-Pil Jin
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shubham Goel
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jay-Hyun Jo
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Voisin
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Doyoung Kim
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Vinod Nadella
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hai Liang
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tetsuro Kobayashi
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xin Huang
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Clay Deming
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keisuke Horiuchi
- Department of Orthopedic Surgery, National Defense Medical College, Saitama 359-8513, Japan
| | - Julia A Segre
- Microbial Genomics Section, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Heidi H Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
32
|
Willems A, Sinclair R. Alopecias in humans: biology, pathomechanisms and emerging therapies. Vet Dermatol 2021; 32:596-e159. [PMID: 34431565 DOI: 10.1111/vde.13014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/19/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND The hair follicle is a complete mini-organ with a complex biology. Recent discoveries have shed light on the pathogenesis and genetic basis of a number of hair loss conditions, offering novel treatment alternatives. OBJECTIVE To explore the biology and physiology of hair growth, the pathomechanism behind alopecias and emerging therapies. CONCLUSION AND CLINICAL IMPORTANCE Hair growth is influenced by numerous physiological moderators. Greater understanding of the biology and physiology of the hair follicle and the pathomechanisms of hair disease facilitates development of targeted treatments. Sublingual minoxidil is a promising therapy in humans where optimised drug delivery enhances efficacy and reduces systemic adverse effects. Janice kinase inhibitors, which disrupt the inflammatory cascade, help maintain the hair follicle, preserve immune privilege, and regrow hair in alopecia areata. As the pathomechanisms of other forms of alopecia become better understood, new targeted therapies with greater efficacy will emerge.
Collapse
Affiliation(s)
- Anneliese Willems
- Sinclair Dermatology, 2 Wellington Parade, East Melbourne, VIC, 3002, Australia
| | - Rodney Sinclair
- Sinclair Dermatology, 2 Wellington Parade, East Melbourne, VIC, 3002, Australia.,Department of Medicine, Alan Gilbert Building University of Melbourne, 161 Barry St, Melbourne, VIC, 3010, Australia
| |
Collapse
|
33
|
Dillon KAL. A Comprehensive Literature Review of JAK Inhibitors in Treatment of Alopecia Areata. Clin Cosmet Investig Dermatol 2021; 14:691-714. [PMID: 34211288 PMCID: PMC8242127 DOI: 10.2147/ccid.s309215] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022]
Abstract
Alopecia areata (AA) is a chronic, immune-mediated form of nonscarring alopecia that is multifactorial and results in localized patches. It is often described as a self-limiting condition that results in the spontaneous regrowth of hair in most cases. However, this regrowth may take several months or years to occur in some patients, leading to the development of psychoemotional trauma in those that are affected. Although several therapies for AA have been developed and tested, there is no specific treatment that has been approved, leading to the availability of many off-label conventional treatment options, with very limited responses. More recently, with the advancement of pre-clinical and genetic studies, a greater understanding of the pathomechanisms involved in the development of AA has been uncovered. This has resulted in the introduction of targeted therapies that use small molecules to block specific pathways involved in AA pathophysiology. As such, the use of janus kinase (JAK) inhibitors for treatment of AA has emerged. JAK inhibitors block the T-cell mediated inflammatory response thought to be the driving factor behind AA pathogenesis, by inhibiting the janus kinase (JAK) signal transducer and activator of transcription (STAT) signaling pathway, leading to a reversal of hair loss in AA patients. Thus, in an effort to demonstrate the efficacy of JAK inhibitors in the treatment of AA, several studies have been published within recent years. However, the question remains, “Are JAK inhibitors effective and safe in the management of Alopecia Areata?”. This review aims to provide a comprehensive report on the role, efficacy, and outcomes of using JAK inhibitors in the treatment of AA. To competently answer the research question highlighted, the most recent, quality articles published over a 10–15-year period were sourced using PubMed, NCBI, Research gate, Medline, Cochrane Central Register of Controlled Trials, EMBASE and Google scholar. The literature search was primarily focused on randomized controlled trials (RCTs); however, in the absence of such, only the most recently published case reports, case series, clinical trials and open-label studies published to date were included.
Collapse
Affiliation(s)
- Kerry-Ann L Dillon
- Department of Microbiology, Immunology and Pharmacology, St. George's University School of Medicine, True Blue, Grenada.,Department of Dermatology, School of Health, Sport & Professional Practice, Faculty of Life Sciences and Education, University of South Wales, Pontypridd, South Wales, UK
| |
Collapse
|
34
|
Jo CE, Gooderham M, Beecker J. TYK 2 inhibitors for the treatment of dermatologic conditions: the evolution of JAK inhibitors. Int J Dermatol 2021; 61:139-147. [PMID: 33929045 DOI: 10.1111/ijd.15605] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 12/14/2022]
Abstract
Increasing understanding of cytokines as major drivers of immune-mediated diseases has revolutionized targeted treatments for these conditions. As the pathogenesis of autoimmune conditions is mediated by a complex interplay of various cytokines, Janus kinase (JAK) inhibitors have been of particular interest due to their ability to target multiple cytokines simultaneously. However, due to safety concerns with first generation JAK inhibitors, most notably from JAK2 and JAK3 inhibition, interest has shifted to more selective inhibition of TYK2. Three key TYK2 inhibitors that have advanced furthest in clinical trials for treatment of dermatologic autoimmune conditions are deucravacitinib (BMS-986165), brepocitinib (PF-06700841), and PF-06826647. This review outlines the current understanding of the efficacy and safety of these three TYK2 inhibitors from completed phase I and II studies and summarizes studies currently in progress for dermatologic conditions.
Collapse
Affiliation(s)
- Christine E Jo
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Melinda Gooderham
- Department of Medicine, Queen's University, Kingston, Ontario, Canada.,SKiN Centre for Dermatology, Peterborough, Ontario, Canada.,Probity Medical Research Inc., Waterloo, Ontario, Canada
| | - Jennifer Beecker
- Probity Medical Research Inc., Waterloo, Ontario, Canada.,Division of Dermatology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
35
|
Desai K, Mesquita T, Romanelli P, Miteva M. Coexistence of frontal fibrosing alopecia and alopecia areata: 3 new cases and review of the literature. Int J Dermatol 2020; 59:e456-e459. [DOI: 10.1111/ijd.15137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 07/21/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Karishma Desai
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | | | - Paolo Romanelli
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| | - Mariya Miteva
- Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery University of Miami Miller School of Medicine Miami FL USA
| |
Collapse
|
36
|
Identification and verification of EOMEs regulated network in Alopecia areata. Int Immunopharmacol 2020; 84:106544. [DOI: 10.1016/j.intimp.2020.106544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 01/25/2023]
|
37
|
Gudjonsson JE, Kabashima K, Eyerich K. Mechanisms of skin autoimmunity: Cellular and soluble immune components of the skin. J Allergy Clin Immunol 2020; 146:8-16. [PMID: 32631499 DOI: 10.1016/j.jaci.2020.05.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases are driven by either T cells or antibodies reacting specifically to 1 or more self-antigens. Although a number of self-antigens associated with skin diseases have been identified, the causative antigen(s) remains unknown in the great majority of skin diseases suspected to be autoimmune driven. Model diseases such as pemphigus, dermatitis herpetiformis, and more recently psoriasis have added greatly to our understanding of skin autoimmunity. Depending on the dominant T- or B-cell phenotype, skin autoimmune diseases usually follow 1 of 6 immune response patterns: lichenoid, eczematous, bullous, psoriatic, fibrogenic, or granulomatous. Usually, skin autoimmunity develops as a consequence of several events-an altered microbiome, inherited dysfunctional immunity, antigens activating innate immunity, epigenetic modifications, sex predisposition, and impact of antigens either as neoantigen or through molecular mimicry. This review summarizes currently known antigens of skin autoimmune diseases and discusses mechanisms of skin autoimmunity.
Collapse
Affiliation(s)
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kilian Eyerich
- Division of Dermatology and Venereology, Department of Medicine Solna, and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden; Unit of Dermatology, Karolinska University Hospital, Department of Dermatology and Venereology, Stockholm, Sweden; Department of Dermatology and Allergy, Technical University of Munich, Munich, Germany.
| |
Collapse
|
38
|
Del Duca E, Ruano Ruiz J, Pavel AB, Sanyal RD, Song T, Gay-Mimbrera J, Zhang N, Estrada YD, Peng X, Renert-Yuval Y, Phelps RG, Paus R, Krueger JG, Guttman-Yassky E. Frontal fibrosing alopecia shows robust T helper 1 and Janus kinase 3 skewing. Br J Dermatol 2020; 183:1083-1093. [PMID: 32215911 DOI: 10.1111/bjd.19040] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Frontal fibrosing alopecia (FFA) is a scarring alopecia with unclear pathogenesis and a progressive course. The disease has a major impact on patients' quality of life and there is a lack of effective treatment to halt disease progression. METHODS We profiled lesional and nonlesional scalp biopsies collected in 2017 from patients with FFA (n = 12) compared with scalp biopsies from patients with alopecia areata (AA) (n = 8) and controls (n = 8) to evaluate gene and protein expression, including the primary outcome (CXCL9). We determined significant differences between biomarkers using a two-sided Student's t-test adjusting P-values by false discovery rate. RESULTS Significant increases were seen in CD8+ cytotoxic T cells, CD11c+ dendritic cells, CD103+ and CD69+ tissue-resident memory T cells in FFA and AA vs. control scalp (P < 0·05), with corresponding significantly upregulated granzyme B mRNA, particularly in FFA (P < 0·01). In AA, cellular infiltrates were primarily concentrated at the bulb, while in FFA these were mainly localized at the bulge. FFA demonstrated significant upregulation of T helper 1/intereferon (IFN) (IFN-γ, CXCL9/CXCL10), the Janus kinase/signal transducers and activators of transcription (JAK-STAT) pathway (STAT1, JAK3) and fibrosis-related products (vimentin, fibronectin; P < 0·05), with no concomitant downregulation of hair keratins and the T-regulatory marker, forkhead box P3, which were decreased in AA. The stem cell markers CD200 and K15 demonstrated significantly reduced expression only in FFA (P < 0·05). CONCLUSIONS These data suggest that follicular damage and loss of stem cells in FFA may be mediated through immune attack in the bulge region, with secondary fibrosis and reduced but still detectable stem cells. JAK/STAT-targeting treatments may be able to prevent permanent follicular destruction and fibrosis in early disease stages.
Collapse
Affiliation(s)
- E Del Duca
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Dermatology, University of Rome Tor Vergata, Rome, Italy
| | - J Ruano Ruiz
- Department of Dermatology, University of Córdoba, Córdoba, Spain.,Immune-Mediated Inflammatory Skin Diseases Research Group, IMIBIC/Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - A B Pavel
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R D Sanyal
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - T Song
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - J Gay-Mimbrera
- Department of Dermatology, University of Córdoba, Córdoba, Spain.,Immune-Mediated Inflammatory Skin Diseases Research Group, IMIBIC/Reina Sofía University Hospital, University of Córdoba, Córdoba, Spain
| | - N Zhang
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Y D Estrada
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - X Peng
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Y Renert-Yuval
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - R G Phelps
- Department of Pathology, Division of Dermatopathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - R Paus
- Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.,Centre for Dermatology Research, University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - J G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - E Guttman-Yassky
- Department of Dermatology and Laboratory of Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| |
Collapse
|
39
|
Chin LD, AbuHilal M. Ocrelizumab-induced alopecia areata-A series of five patients from Ontario, Canada: A case report. SAGE Open Med Case Rep 2020; 8:2050313X20919614. [PMID: 32477559 PMCID: PMC7233903 DOI: 10.1177/2050313x20919614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Background Ocrelizumab is a humanized monoclonal antibody that targets the CD20 antigen found on B-cells. It is indicated in the treatment of both relapsing-remitting multiple sclerosis and primary progressive multiple sclerosis. Objective The aim of this study is to report and describe the characteristics of alopecia areata following treatment with ocrelizumab for multiple sclerosis. Results Five patients were reported, two female and three male. Four of the five patients had alopecia areata of the scalp, one of the five having alopecia to the beard area. All patients responded well to conventional treatment with topical and intralesional corticosteroids and topical minoxidil foam. Ocrelizumab can be associated with the development of alopecia areata. Initiation of proper treatment may lead to quick improvement or resolution of this potentially reversible adverse effect.
Collapse
Affiliation(s)
- Laura D Chin
- Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mohn'd AbuHilal
- Division of Dermatology, Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
40
|
Adam RC, Yang H, Ge Y, Infarinato NR, Gur-Cohen S, Miao Y, Wang P, Zhao Y, Lu CP, Kim JE, Ko JY, Paik SS, Gronostajski RM, Kim J, Krueger JG, Zheng D, Fuchs E. NFI transcription factors provide chromatin access to maintain stem cell identity while preventing unintended lineage fate choices. Nat Cell Biol 2020; 22:640-650. [PMID: 32393888 PMCID: PMC7367149 DOI: 10.1038/s41556-020-0513-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Tissue homeostasis and regeneration rely on resident stem cells (SCs), whose behaviour is regulated through niche-dependent crosstalk. The mechanisms underlying SC identity are still unfolding. Here, using spatiotemporal gene ablation in murine hair follicles, we uncover a critical role for the transcription factors (TFs) nuclear factor IB (NFIB) and IX (NFIX) in maintaining SC identity. Without NFI TFs, SCs lose their hair-regenerating capability, and produce skin bearing striking resemblance to irreversible human alopecia, which also displays reduced NFIs. Through single-cell transcriptomics, ATAC-Seq and ChIP-Seq profiling, we expose a key role for NFIB and NFIX in governing super-enhancer maintenance of the key hair follicle SC-specific TF genes. When NFIB and NFIX are genetically removed, the stemness epigenetic landscape is lost. Super-enhancers driving SC identity are decommissioned, while unwanted lineages are de-repressed ectopically. Together, our findings expose NFIB and NFIX as crucial rheostats of tissue homeostasis, functioning to safeguard the SC epigenome from a breach in lineage confinement that otherwise triggers irreversible tissue degeneration.
Collapse
Affiliation(s)
- Rene C Adam
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Regeneron Pharmaceuticals, New York, NY, USA
| | - Hanseul Yang
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Yejing Ge
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- Department of Cancer Biology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Nicole R Infarinato
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Shiri Gur-Cohen
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Yuxuan Miao
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Ping Wang
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Yilin Zhao
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
| | - Catherine P Lu
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
- The Hansjörg Wyss Department of Plastic Surgery, New York University School of Medicine, New York, NY, USA
| | - Jeong E Kim
- Department of Dermatology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Joo Y Ko
- Department of Dermatology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Seung S Paik
- Department of Pathology, College of Medicine, Hanyang University, Seoul, South Korea
| | - Richard M Gronostajski
- Department of Biochemistry, Developmental Genomics Group, NYS Center of Excellence in Bioinformatics and Life Sciences, State University of New York at Buffalo, New York, NY, USA
| | - Jaehwan Kim
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
- Division of Dermatology, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, New York, NY, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, New York, NY, USA
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
41
|
Rahmani W, Sinha S, Biernaskie J. Immune modulation of hair follicle regeneration. NPJ Regen Med 2020; 5:9. [PMID: 32411394 PMCID: PMC7214459 DOI: 10.1038/s41536-020-0095-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/15/2020] [Indexed: 12/13/2022] Open
Abstract
The mammalian hair follicle undergoes repeated bouts of regeneration orchestrated by a variety of hair follicle stem cells. The last decade has witnessed the emergence of the immune niche as a key regulator of stem cell behavior and hair follicle regeneration. Hair follicles chemotactically attract macrophages and T cells so that they are in range to regulate epithelial stem cell quiescence, proliferation and differentiation during physiologic and injured states. Disruption of this dynamic relationship leads to clinically significant forms of hair loss including scarring and non-scarring alopecias. In this review, we summarize key concepts behind immune-mediated hair regeneration, highlight gaps in the literature and discuss the therapeutic potential of exploiting this relationship for treating various immune-mediated alopecias.
Collapse
Affiliation(s)
- Waleed Rahmani
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Sarthak Sinha
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4 Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 1N4 Canada
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 1N4 Canada
| |
Collapse
|
42
|
Chen CL, Huang WY, Wang EHC, Tai KY, Lin SJ. Functional complexity of hair follicle stem cell niche and therapeutic targeting of niche dysfunction for hair regeneration. J Biomed Sci 2020; 27:43. [PMID: 32171310 PMCID: PMC7073016 DOI: 10.1186/s12929-020-0624-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/23/2020] [Indexed: 01/05/2023] Open
Abstract
Stem cell activity is subject to non-cell-autonomous regulation from the local microenvironment, or niche. In adaption to varying physiological conditions and the ever-changing external environment, the stem cell niche has evolved with multifunctionality that enables stem cells to detect these changes and to communicate with remote cells/tissues to tailor their activity for organismal needs. The cyclic growth of hair follicles is powered by hair follicle stem cells (HFSCs). Using HFSCs as a model, we categorize niche cells into 3 functional modules, including signaling, sensing and message-relaying. Signaling modules, such as dermal papilla cells, immune cells and adipocytes, regulate HFSC activity through short-range cell-cell contact or paracrine effects. Macrophages capacitate the HFSC niche to sense tissue injury and mechanical cues and adipocytes seem to modulate HFSC activity in response to systemic nutritional states. Sympathetic nerves implement the message-relaying function by transmitting external light signals through an ipRGC-SCN-sympathetic circuit to facilitate hair regeneration. Hair growth can be disrupted by niche pathology, e.g. dysfunction of dermal papilla cells in androgenetic alopecia and influx of auto-reacting T cells in alopecia areata and lichen planopilaris. Understanding the functions and pathological changes of the HFSC niche can provide new insight for the treatment of hair loss.
Collapse
Affiliation(s)
- Chih-Lung Chen
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Wen-Yen Huang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | | | - Kang-Yu Tai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan. .,Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan. .,Department of Dermatology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan. .,Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan. .,Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
43
|
Harries M, Hardman J, Chaudhry I, Poblet E, Paus R. Profiling the human hair follicle immune system in lichen planopilaris and frontal fibrosing alopecia: can macrophage polarization differentiate these two conditions microscopically? Br J Dermatol 2020; 183:537-547. [PMID: 31883384 DOI: 10.1111/bjd.18854] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/27/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Frontal fibrosing alopecia (FFA) is traditionally regarded as a variant of lichen planopilaris (LPP) based on histological features. Distinct clinical presentation, demographics and epidemiology suggest that differing pathogenic factors determine the final phenotype. OBJECTIVES To map the hair follicle immune system in LPP and FFA by systematically comparing key inflammatory markers in defined hair follicle compartments. METHODS Lesional scalp biopsies from LPP and FFA and healthy controls were stained with the following immunohistochemical markers: CD1a and CD209, CD4, CD8, CD56, CD68, CD123, CXCR3, forkhead box (FOX)P3, mast cell tryptase and cKit. Macrophage polarization was explored using CD206, CD163, CD86, receptor for advanced glycation end products (RAGE), interleukin (IL)-4 and IL-13 on paired lesional and nonlesional LPP and FFA samples. RESULTS Increased numbers of CD8+ , CXCR3+ and FOXP3+ T cells and CD68+ macrophages were identified in the distal hair follicle epithelium and perifollicular mesenchyme in both LPP and FFA compared with controls. In both LPP and FFA, total and degranulated mast cells and CD123+ plasmacytoid dendritic cells were increased in the perifollicular mesenchyme adjacent to the bulge and infundibulum, whereas numbers of CD1a+ and CD209+ dendritic cells were significantly reduced in the infundibulum connective tissue sheath. However, only with CD68 staining was a significant difference between LPP and FFA identified, with greater numbers of CD68+ cells in LPP samples. Furthermore, the identified macrophage polarization markers downregulated CD86 and upregulated CD163 and IL-4 expression in lesional LPP compared with FFA samples. CONCLUSIONS This comparative immunopathological analysis is the first to profile systematically the hair follicle immune system in LPP and FFA. Our analysis highlights a potential role of macrophages in disease pathobiology and suggests that macrophage polarization may differ between LPP and FFA, allowing microscopic differentiation. Linked Comment: Kinoshita-Ise. Br J Dermatol 2020; 183:419-420.
Collapse
Affiliation(s)
- M Harries
- Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre and NIHR Biomedical Research Centre, Manchester, U.K.,Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | - J Hardman
- Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K
| | - I Chaudhry
- Department of Pathology, Royal Liverpool University Hospital, Liverpool, U.K
| | - E Poblet
- Department of Pathology, University General Hospital of Murcia, Murcia, Spain
| | - R Paus
- Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, U.K.,Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, U.S.A
| |
Collapse
|
44
|
Prasad S, De Souza B, Burns LJ, Senna MM. Primary cicatricial alopecia associated with systemic indolent mastocytosis. JAAD Case Rep 2020; 6:146-148. [PMID: 32042874 PMCID: PMC7000442 DOI: 10.1016/j.jdcr.2019.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
45
|
Introduction: Special Issue—Basic and Translational Skin Immunology. Int Immunol 2019. [DOI: 10.1093/intimm/dxz038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|