1
|
Abbas EE, Fayed AS, Hegazy MA, Salama NN, Mohamed MA. Toward an Improved Electrocatalytic Determination of Immunomodulator COVID Medication Baricitinib Using Multiwalled Carbon Nanotube Nickel Hybrid. ACS APPLIED BIO MATERIALS 2024; 7:3865-3876. [PMID: 38780243 DOI: 10.1021/acsabm.4c00233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The study presents a first electrochemical method for the determination of the immunomodulator drug Baricitinib (BARI), crucial in managing COVID-19 patients requiring oxygen support. A unique electrode was developed by modifying graphite carbon nickel nanoparticles (NiNPs) with functionalized multiwalled carbon nanotubes (f.MWCNTs), resulting in nanohybrids tailored for highly sensitive BARI detection. Comparative analysis revealed the superior electrocatalytic performance of the nanohybrid-modified electrode over unmodified counterparts and other modifications, attributed to synergistic interactions between f.MWCNTs and nickel nanoparticles. Under optimized conditions, the sensors exhibited linear detection within a concentration range from 4.00 × 10-8 to 5.56 × 10-5 M, with a remarkably low detection limit of 9.65 × 10-9 M. Notably, the modified electrode displayed minimal interference from common substances and demonstrated high precision in detecting BARI in plasma and medicinal formulations, underscoring its clinical relevance and potential impact on COVID-19 treatment strategies.
Collapse
Affiliation(s)
- Enas E Abbas
- Pharmaceutical Chemistry Department, Egyptian Drug Authority, Giza 12512, Egypt
| | - Ahmed S Fayed
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elaini St., P.O. Box 11562 Cairo, Egypt
| | - Maha A Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Elaini St., P.O. Box 11562 Cairo, Egypt
| | - Nahla N Salama
- Pharmaceutical Chemistry Department, Egyptian Drug Authority, Giza 12512, Egypt
| | - Mona A Mohamed
- Pharmaceutical Chemistry Department, Egyptian Drug Authority, Giza 12512, Egypt
| |
Collapse
|
2
|
Lim JK, Njei B. Clinical and Histopathological Discoveries in Patients with Hepatic Injury and Cholangiopathy Who Have Died of COVID-19: Insights and Opportunities for Intervention. Hepat Med 2023; 15:151-164. [PMID: 37814605 PMCID: PMC10560482 DOI: 10.2147/hmer.s385133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/28/2023] [Indexed: 10/11/2023] Open
Abstract
The COVID-19 pandemic has had a profound impact on global health, necessitating a comprehensive understanding of its diverse manifestations. Cholangiopathy, a condition characterized by biliary dysfunction, has emerged as a significant complication in COVID-19 patients. In this review, we report the epidemiology of COVID-19, describe the hepatotropism of SARS-CoV-2, and present the histopathology of acute liver injury (ALI) in COVID-19. Additionally, we explore the relationship between pre-existing chronic liver disease and COVID-19, shedding light on the increased susceptibility of these individuals to develop cholangiopathy. Through an in-depth analysis of cholangiopathy in COVID-19 patients, we elucidate its clinical manifestations, diagnostic criteria, and underlying pathogenesis involving inflammation, immune dysregulation, and vascular changes. Furthermore, we provide a summary of studies investigating post-COVID-19 cholangiopathy, highlighting the long-term effects and potential management strategies for this condition, and discussing opportunities for intervention, including therapeutic targets, diagnostic advancements, supportive care, and future research needs.
Collapse
Affiliation(s)
- Joseph K Lim
- Yale Liver Center and Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Basile Njei
- Yale Liver Center and Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
3
|
Maxwell L, Shreedhar P, Levis B, Chavan SA, Akter S, Carabali M. Overlapping research efforts in a global pandemic: a rapid systematic review of COVID-19-related individual participant data meta-analyses. BMC Health Serv Res 2023; 23:735. [PMID: 37415216 PMCID: PMC10327330 DOI: 10.1186/s12913-023-09726-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Individual participant data meta-analyses (IPD-MAs), which involve harmonising and analysing participant-level data from related studies, provide several advantages over aggregate data meta-analyses, which pool study-level findings. IPD-MAs are especially important for building and evaluating diagnostic and prognostic models, making them an important tool for informing the research and public health responses to COVID-19. METHODS We conducted a rapid systematic review of protocols and publications from planned, ongoing, or completed COVID-19-related IPD-MAs to identify areas of overlap and maximise data request and harmonisation efforts. We searched four databases using a combination of text and MeSH terms. Two independent reviewers determined eligibility at the title-abstract and full-text stages. Data were extracted by one reviewer into a pretested data extraction form and subsequently reviewed by a second reviewer. Data were analysed using a narrative synthesis approach. A formal risk of bias assessment was not conducted. RESULTS We identified 31 COVID-19-related IPD-MAs, including five living IPD-MAs and ten IPD-MAs that limited their inference to published data (e.g., case reports). We found overlap in study designs, populations, exposures, and outcomes of interest. For example, 26 IPD-MAs included RCTs; 17 IPD-MAs were limited to hospitalised patients. Sixteen IPD-MAs focused on evaluating medical treatments, including six IPD-MAs for antivirals, four on antibodies, and two that evaluated convalescent plasma. CONCLUSIONS Collaboration across related IPD-MAs can leverage limited resources and expertise by expediting the creation of cross-study participant-level data datasets, which can, in turn, fast-track evidence synthesis for the improved diagnosis and treatment of COVID-19. TRIAL REGISTRATION 10.17605/OSF.IO/93GF2.
Collapse
Affiliation(s)
- Lauren Maxwell
- Heidelberger Institut Für Global Health, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 130/3, 69120, Heidelberg, Germany.
| | - Priya Shreedhar
- Heidelberger Institut Für Global Health, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 130/3, 69120, Heidelberg, Germany
| | - Brooke Levis
- Centre for Clinical Epidemiology, Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 Cote Ste Catherine Road, Montreal, QC, H3T 1E2, Canada
| | - Sayali Arvind Chavan
- Institute of Tropical Medicine and Public Health, Charité - Universitätsmedizin Berlin, Südring 2-3, 13353, Berlin, Germany
| | - Shaila Akter
- Heidelberger Institut Für Global Health, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 130/3, 69120, Heidelberg, Germany
| | - Mabel Carabali
- Department of Epidemiology, Biostatistics and Occupational Health, School of Population and Global Health, McGill University, 2001 McGill College Avenue, Montréal, H3A 1G1, Canada
- Department of Social and Preventive Medicine, School of Public Health, Universite de Montreal, 7101 Parc Avenue, Montreal, H3N 1X9, Canada
| |
Collapse
|
4
|
Maia IS, Marcadenti A, Veiga VC, Miranda TA, Gomes SPC, Carollo MBS, Negrelli KL, Gomes JO, Tramujas L, Abreu-Silva EO, Westphal GA, Fernandes RP, Horta JGA, Oliveira DC, Flato UAP, Paoliello RCR, Fernandes C, Zandonai CL, Coelho JC, Barros WC, Lemos JC, Bolan RS, Dutra MM, Gebara OCE, Lopes ATA, Alencar Filho MS, Arraes JA, Hamamoto VA, Hernandes ME, Golin NA, Santos TM, Santos RHN, Damiani LP, Zampieri FG, Gesto J, Machado FR, Rosa RG, Azevedo LCP, Avezum A, Lopes RD, Souza TML, Berwanger O, Cavalcanti AB. Antivirals for adult patients hospitalised with SARS-CoV-2 infection: a randomised, phase II/III, multicentre, placebo-controlled, adaptive study, with multiple arms and stages. COALITION COVID-19 BRAZIL IX - REVOLUTIOn trial. LANCET REGIONAL HEALTH. AMERICAS 2023; 20:100466. [PMID: 36908503 PMCID: PMC9991866 DOI: 10.1016/j.lana.2023.100466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/18/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023]
Abstract
Background Repurposed drugs for treatment of new onset disease may be an effective therapeutic shortcut. We aimed to evaluate the efficacy of repurposed antivirals compared to placebo in lowering SARS-CoV2 viral load of COVID-19 patients. Methods REVOLUTIOn is a randomised, parallel, blinded, multistage, superiority and placebo controlled randomised trial conducted in 35 centres in Brazil. We include patients aged 18 years or older admitted to hospital with laboratory-confirmed SARS-CoV-2 infection, symptoms onset 9 days or less and SpO2 94% or lower at room air were eligible. All participants were randomly allocated to receive either atazanavir, daclatasvir or sofosbuvir/daclatasvir or placebo for 10 days. The primary outcome was the decay rate (slope) of the SARS-CoV-2 viral load logarithm assessed in the modified intention to-treat population. This trial was registered with ClinicalTrials.gov, number NCT04468087. Findings Between February 09, 2021, and August 04, 2021, 255 participants were enrolled and randomly assigned to atazanavir (n = 64), daclatasvir (n = 66), sofosbuvir/daclatasvir (n = 67) or placebo (n = 58). Compared to placebo group, the change from baseline to day 10 in log viral load was not significantly different for any of the treatment groups (0.05 [95% CI, -0.03 to 0.12], -0.02 [95% CI, -0.09 to 0.06], and -0.03 [95% CI, -0.11 to 0.04] for atazanavir, daclatasvir and sofosbuvir/daclatasvir groups respectively). There was no significant difference in the occurrence of serious adverse events between treatment groups. Interpretation No significant reduction in viral load was observed from the use of atazanavir, daclatasvir or sofosbuvir/daclatasvir compared to placebo in hospitalised COVID-19 patients who need oxygen support with symptoms onset 9 days or less. Funding Ministério da Ciência, Tecnologia e Inovação (MCTI) - Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ); Cia Latino-Americana de Medicamentos (Clamed); Cia Industrial H. Carlos Schneider (Ciser); Hospital Research Foundation Incorporation, Australia, HCor São Paulo; Blanver Farmoquímica; Instituto de Tecnologia em Fármacos (Farmanguinhos) da Fundação Oswaldo Cruz (Fiocruz); Coordenação Geral de Planejamento Estratégico (Cogeplan)/Fiocruz; and Fundação de apoio a Fiocruz (Fiotec, VPGDI-054-FIO-20-2-13).
Collapse
Affiliation(s)
- Israel S Maia
- HCor Research Institute, São Paulo, SP, Brazil.,ICU Nereu Ramos, Hospital Nereu Ramos, Florianópolis, SC, Brazil.,Brazilian Intensive Care Research Network, BricNet, São Paulo, Brazil.,Divisão de Anestesiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Viviane C Veiga
- Brazilian Intensive Care Research Network, BricNet, São Paulo, Brazil.,BP ICU - A Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Camilo Fernandes
- ICU Nereu Ramos, Hospital Nereu Ramos, Florianópolis, SC, Brazil
| | | | - Juliana C Coelho
- BP ICU - A Beneficência Portuguesa de São Paulo, São Paulo, SP, Brazil
| | | | | | - Renata S Bolan
- Research Institute Baía Sul, Hospital Baía Sul, Florianópolis, SC, Brazil
| | - Marcela M Dutra
- Research Institute Baía Sul, Hospital Baía Sul, Florianópolis, SC, Brazil
| | | | | | | | | | - Victor A Hamamoto
- Research Institute, Hospital Alemão Oswaldo Cruz, São Paulo, SP, Brazil.,International Research Center, Hospital Alemão Oswaldo Cruz, São Paulo, SP, Brazil
| | | | | | - Tiago M Santos
- HCor Research Institute, São Paulo, SP, Brazil.,Insper-Institute of Education and Research, São Paulo, SP, Brazil
| | | | - Lucas P Damiani
- HCor Research Institute, São Paulo, SP, Brazil.,Academic Research Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Fernando G Zampieri
- Brazilian Intensive Care Research Network, BricNet, São Paulo, Brazil.,Academic Research Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - João Gesto
- Instituto Nacional de Ciência e Tecnologia de Inovação Em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico Em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.,SESI-Innovation Center for Occupational Health, Rio de Janeiro, RJ, Brazil
| | - Flávia R Machado
- Brazilian Intensive Care Research Network, BricNet, São Paulo, Brazil.,Departamento de Anestesiologia, Dor e Medicina Intensiva, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Régis G Rosa
- Brazilian Intensive Care Research Network, BricNet, São Paulo, Brazil.,Moinhos de Vento Research Institute, Hospital Moinhos de Vento, Porto Alegre, RS, Brazil
| | - Luciano C P Azevedo
- Brazilian Intensive Care Research Network, BricNet, São Paulo, Brazil.,Instituto de Pesquisa e Educação, Hospital Sírio-Libanês, São Paulo, SP, Brazil.,Disciplina de Emergências Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Alvaro Avezum
- International Research Center, Hospital Alemão Oswaldo Cruz, São Paulo, SP, Brazil
| | - Renato D Lopes
- Brazilian Clinical Research Institute (BCRI), São Paulo, SP, Brazil.,Duke University Medical Center, Duke Clinical Research Institute, Durham, NC, USA
| | - Thiago M L Souza
- Instituto Nacional de Ciência e Tecnologia de Inovação Em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico Em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil.,Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Otávio Berwanger
- Academic Research Institute, Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Alexandre B Cavalcanti
- HCor Research Institute, São Paulo, SP, Brazil.,Brazilian Intensive Care Research Network, BricNet, São Paulo, Brazil.,Divisão de Anestesiologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
5
|
Moustafa AH, Pasha HF, Abas MA, Aboregela AM. The ameliorating role of sofosbuvir and daclatasvir on thioacetamide-induced kidney injury in adult albino rats. Anat Cell Biol 2023; 56:109-121. [PMID: 36543744 PMCID: PMC9989782 DOI: 10.5115/acb.22.200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Thioacetamide (TAA) exposure and hepatitis C virus infection are usually associated with renal dysfunction. Sofosbuvir (SFV) and daclatasvir (DAC) drugs combination has great value in the treatment of hepatitis C. The study aimed to identify the nephrotoxic effects of TAA and to evaluate the ameliorative role of SFV and DAC in this condition. Forty-eight adult male albino rats were divided into eight groups and received saline (control), SFV, DAC, SFV+DAC, TAA, TAA+SFV, TAA+DAC and TAA+SFV+DAC for eight weeks. Kidney and blood samples were retrieved and processed for histological (Hematoxylin and Eosin and Masson's trichrome), immunohistochemical (α-smooth muscle actin), and biochemical analysis (urea, creatinine, total protein, albumin, malondialdehyde, reduced glutathione, superoxide dismutase, and tumor necrosis factor-α). Examination revealed marked destruction of renal tubules on exposure to TAA with either hypertrophy or atrophy of glomeruli, increase in collagen deposition, and wide expression of α-smooth muscle actin. Also, significant disturbance in kidney functions, oxidative stress markers, and tumor necrosis factor-α. Supplementation with either SFV or DAC produced mild improvement in the tissue and laboratory markers. Moreover, the combination of both drugs greatly refined the pathology induced by TAA at the cellular and laboratory levels. However, there are still significant differences when compared to the control. In conclusion, SFV and DAC combination partially but greatly ameliorated the renal damage induced by TAA which might be enhanced with further supplementations to give new hope for those with nephropathy associated with hepatitis.
Collapse
Affiliation(s)
- Ahmed H Moustafa
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Heba F Pasha
- Department of Medical Biochemistry and Genetics, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Manar A Abas
- Department of Biochemistry, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Adel M Aboregela
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt.,Department of Basic Medical Sciences, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
6
|
Wang J, Wagner AL, Chen Y, Jaime E, Hu X, Wu S, Lu Y, Ruan Y, Pan SW. Would COVID-19 vaccination willingness increase if mobile technologies prohibit unvaccinated individuals from public spaces? A nationwide discrete choice experiment from China. Vaccine 2022; 40:7466-7475. [PMID: 34742594 PMCID: PMC8531240 DOI: 10.1016/j.vaccine.2021.10.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/06/2021] [Accepted: 10/01/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Achieving COVID-19 community protection (aka, herd immunity) in China may be challenging because many individuals remain unsure or are unwilling to be vaccinated. One potential means to increase COVID-19 vaccine uptake is to essentially mandate vaccination by using existing mobile technologies that can prohibit unvaccinated individuals from certain public spaces. The "Health Code" is a ubiquitous mobile phone app in China that regulates freedom of travel based on individuals' predicted risk of exposure to SARS-CoV-2. Green-colored codes indicate ability to travel unrestricted in low-risk regions; yellow-colored codes indicate prohibition from major public spaces and modes of public transportation. We examined the effects of a "Health Code"-based vaccine mandate on willingness to vaccinate for COVID-19 in China. METHODS In August 2020, an online discrete choice experiment (DCE) was conducted among adults living in China. Participants completed up to six DCE choice sets, each containing two hypothetical COVID-19 vaccination scenario choices and a "do not vaccinate" choice. Half of the choice sets had a "Health Code" attribute that associated the "do not vaccinate" choice with a yellow Health Code implying restricted travel. Weighted, mixed effects multinomial logit regression was used to estimate preference utilities and predicted choice probabilities. RESULTS Overall, 873 participants completed 4317 choice sets. Most participants attained at least college-level education (90.9%). 29.8% of participants were identified as vaccine hesitators (defined as being unsure or unwilling to receive a COVID-19 vaccination). With and without the "Health Code"-based vaccine mandate, there was an 8.6% (85% CI: 6.4% - 10.92%) and 17.3% (85% CI:13.1% - 21.6%) respective predicted probability that vaccine hesitators would choose "do not vaccinate" over a common vaccination scenario currently in China (i.e., free, domestic vaccine, 80% effectiveness, 10% probability of fever side-effects, administered in a large hospital, two doses). Corresponding predicted probabilities for people who did not express vaccine hesitancy was 0.3% (93% CI: 0.0% - 14.3%) and 3.5% (93% CI:2.3% - 4.8%). The "Health Code"-based mandate significantly increased willingness to vaccinate when vaccine efficacy was greater than 60%. CONCLUSION Among vaccine hesitators with higher educational attainment, willingness to vaccinate for COVID-19 appears to increase if mobile technology-based vaccine mandates prohibit unvaccinated individuals from public spaces and public transportation. However, such mandates may not increase willingness if perceived vaccine efficacy is low.
Collapse
Affiliation(s)
- Jing Wang
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Abram L Wagner
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Ying Chen
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Etienne Jaime
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Xinwen Hu
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Shiqiang Wu
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Yihan Lu
- Ministry of Education Key Laboratory of Public Health Safety, Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yuhua Ruan
- State Key Laboratory of Infectious Disease Prevention and Control (SKLID), Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Stephen W Pan
- Department of Health and Environmental Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China.
| |
Collapse
|
7
|
Di Stefano L, Ogburn EL, Ram M, Scharfstein DO, Li T, Khanal P, Baksh SN, McBee N, Gruber J, Gildea MR, Clark MR, Goldenberg NA, Bennani Y, Brown SM, Buckel WR, Clement ME, Mulligan MJ, O’Halloran JA, Rauseo AM, Self WH, Semler MW, Seto T, Stout JE, Ulrich RJ, Victory J, Bierer BE, Hanley DF, Freilich D. Hydroxychloroquine/chloroquine for the treatment of hospitalized patients with COVID-19: An individual participant data meta-analysis. PLoS One 2022; 17:e0273526. [PMID: 36173983 PMCID: PMC9521809 DOI: 10.1371/journal.pone.0273526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/09/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Results from observational studies and randomized clinical trials (RCTs) have led to the consensus that hydroxychloroquine (HCQ) and chloroquine (CQ) are not effective for COVID-19 prevention or treatment. Pooling individual participant data, including unanalyzed data from trials terminated early, enables more detailed investigation of the efficacy and safety of HCQ/CQ among subgroups of hospitalized patients. METHODS We searched ClinicalTrials.gov in May and June 2020 for US-based RCTs evaluating HCQ/CQ in hospitalized COVID-19 patients in which the outcomes defined in this study were recorded or could be extrapolated. The primary outcome was a 7-point ordinal scale measured between day 28 and 35 post enrollment; comparisons used proportional odds ratios. Harmonized de-identified data were collected via a common template spreadsheet sent to each principal investigator. The data were analyzed by fitting a prespecified Bayesian ordinal regression model and standardizing the resulting predictions. RESULTS Eight of 19 trials met eligibility criteria and agreed to participate. Patient-level data were available from 770 participants (412 HCQ/CQ vs 358 control). Baseline characteristics were similar between groups. We did not find evidence of a difference in COVID-19 ordinal scores between days 28 and 35 post-enrollment in the pooled patient population (odds ratio, 0.97; 95% credible interval, 0.76-1.24; higher favors HCQ/CQ), and found no convincing evidence of meaningful treatment effect heterogeneity among prespecified subgroups. Adverse event and serious adverse event rates were numerically higher with HCQ/CQ vs control (0.39 vs 0.29 and 0.13 vs 0.09 per patient, respectively). CONCLUSIONS The findings of this individual participant data meta-analysis reinforce those of individual RCTs that HCQ/CQ is not efficacious for treatment of COVID-19 in hospitalized patients.
Collapse
Affiliation(s)
- Leon Di Stefano
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Elizabeth L. Ogburn
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel O. Scharfstein
- Division of Biostatistics, Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Tianjing Li
- University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado, United States of America
| | - Preeti Khanal
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Sheriza N. Baksh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Nichol McBee
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Joshua Gruber
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Marianne R. Gildea
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Megan R. Clark
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Neil A. Goldenberg
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Johns Hopkins All Children’s Institute for Clinical and Translational Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, United States of America
| | - Yussef Bennani
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- University Medical Center, New Orleans, New Orleans, Louisiana, United States of America
| | - Samuel M. Brown
- Division of Pulmonary and Critical Care Medicine, Intermountain Medical Center, Murray, Utah, United States of America
- University of Utah, Salt Lake City, Utah, United States of America
| | - Whitney R. Buckel
- Pharmacy Services, Intermountain Healthcare, Murray, Utah, United States of America
| | - Meredith E. Clement
- Louisiana State University Health Sciences Center, New Orleans, Louisiana, United States of America
- University Medical Center, New Orleans, New Orleans, Louisiana, United States of America
| | - Mark J. Mulligan
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, New York, United States of America
- Vaccine Center, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Jane A. O’Halloran
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Adriana M. Rauseo
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Wesley H. Self
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Matthew W. Semler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Todd Seto
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii, United States of America
| | - Jason E. Stout
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, New York, United States of America
| | - Jennifer Victory
- Bassett Research Institute, Bassett Medical Center, Cooperstown, New York, United States of America
| | - Barbara E. Bierer
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Daniel Freilich
- Department of Internal Medicine, Division of Infectious Diseases, Bassett Medical Center, Cooperstown, New York, United States of America
| | | |
Collapse
|
8
|
Di Stefano L, Ogburn EL, Ram M, Scharfstein DO, Li T, Khanal P, Baksh SN, McBee N, Gruber J, Gildea MR, Clark MR, Goldenberg NA, Bennani Y, Brown SM, Buckel WR, Clement ME, Mulligan MJ, O’Halloran JA, Rauseo AM, Self WH, Semler MW, Seto T, Stout JE, Ulrich RJ, Victory J, Bierer BE, Hanley DF, Freilich D. Hydroxychloroquine/chloroquine for the treatment of hospitalized patients with COVID-19: An individual participant data meta-analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.10.22269008. [PMID: 35043124 PMCID: PMC8764733 DOI: 10.1101/2022.01.10.22269008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background Results from observational studies and randomized clinical trials (RCTs) have led to the consensus that hydroxychloroquine (HCQ) and chloroquine (CQ) are not effective for COVID-19 prevention or treatment. Pooling individual participant data, including unanalyzed data from trials terminated early, enables more detailed investigation of the efficacy and safety of HCQ/CQ among subgroups of hospitalized patients. Methods We searched ClinicalTrials.gov in May and June 2020 for US-based RCTs evaluating HCQ/CQ in hospitalized COVID-19 patients in which the outcomes defined in this study were recorded or could be extrapolated. The primary outcome was a 7-point ordinal scale measured between day 28 and 35 post enrollment; comparisons used proportional odds ratios. Harmonized de-identified data were collected via a common template spreadsheet sent to each principal investigator. The data were analyzed by fitting a prespecified Bayesian ordinal regression model and standardizing the resulting predictions. Results Eight of 19 trials met eligibility criteria and agreed to participate. Patient-level data were available from 770 participants (412 HCQ/CQ vs 358 control). Baseline characteristics were similar between groups. We did not find evidence of a difference in COVID-19 ordinal scores between days 28 and 35 post-enrollment in the pooled patient population (odds ratio, 0.97; 95% credible interval, 0.76-1.24; higher favors HCQ/CQ), and found no convincing evidence of meaningful treatment effect heterogeneity among prespecified subgroups. Adverse event and serious adverse event rates were numerically higher with HCQ/CQ vs control (0.39 vs 0.29 and 0.13 vs 0.09 per patient, respectively). Conclusions The findings of this individual participant data meta-analysis reinforce those of individual RCTs that HCQ/CQ is not efficacious for treatment of COVID-19 in hospitalized patients.
Collapse
Affiliation(s)
- Leon Di Stefano
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Elizabeth L. Ogburn
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Malathi Ram
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Daniel O. Scharfstein
- Division of Biostatistics, Department of Population Health Sciences, University of Utah School of Medicine, Salt Lake City, Utah
| | - Tianjing Li
- University of Colorado Denver, Anschutz Medical Campus, Denver, Colorado
| | - Preeti Khanal
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sheriza N. Baksh
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Nichol McBee
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Joshua Gruber
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Marianne R. Gildea
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
- Current address: FHI 360, Durham, North Carolina
| | - Megan R. Clark
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Neil A. Goldenberg
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
- Johns Hopkins All Children’s Institute for Clinical and Translational Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida
| | - Yussef Bennani
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
- University Medical Center, New Orleans, New Orleans, Louisiana
| | - Samuel M. Brown
- Division of Pulmonary and Critical Care Medicine, Intermountain Medical Center, Murray, Utah
- University of Utah, Salt Lake City, Utah
| | | | - Meredith E. Clement
- Louisiana State University Health Sciences Center, New Orleans, Louisiana
- University Medical Center, New Orleans, New Orleans, Louisiana
| | - Mark J. Mulligan
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, New York
- Vaccine Center, New York University Grossman School of Medicine, New York, New York
| | - Jane A. O’Halloran
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Adriana M. Rauseo
- Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri
| | - Wesley H. Self
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Matthew W. Semler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Todd Seto
- Department of Medicine, University of Hawaii John A. Burns School of Medicine, Honolulu, Hawaii
| | - Jason E. Stout
- Division of Infectious Diseases and International Health, Duke University Medical Center, Durham, North Carolina
| | - Robert J. Ulrich
- Department of Medicine, Division of Infectious Diseases and Immunology, New York University Grossman School of Medicine, New York, New York
| | - Jennifer Victory
- Bassett Research Institute, Bassett Medical Center, Cooperstown, New York
| | - Barbara E. Bierer
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Daniel F. Hanley
- Division of Brain Injury Outcomes, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Daniel Freilich
- Department of Internal Medicine, Division of Infectious Diseases, Bassett Medical Center, Cooperstown, New York
| |
Collapse
|
9
|
Sokhela S, Bosch B, Hill A, Simmons B, Woods J, Johnstone H, Akpomiemie G, Ellis L, Owen A, Casas CP, Venter WDF. Randomized clinical trial of nitazoxanide or sofosbuvir/daclatasvir for the prevention of SARS-CoV-2 infection. J Antimicrob Chemother 2022; 77:2706-2712. [PMID: 35953881 PMCID: PMC9384711 DOI: 10.1093/jac/dkac266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The COVER trial evaluated whether nitazoxanide or sofosbuvir/daclatasvir could lower the risk of SARS-CoV-2 infection. Nitazoxanide was selected given its favourable pharmacokinetics and in vitro antiviral effects against SARS-CoV-2. Sofosbuvir/daclatasvir had shown favourable results in early clinical trials. METHODS In this clinical trial in Johannesburg, South Africa, healthcare workers and others at high risk of infection were randomized to 24 weeks of either nitazoxanide or sofosbuvir/daclatasvir as prevention, or standard prevention advice only. Participants were evaluated every 4 weeks for COVID-19 symptoms and had antibody and PCR testing. The primary endpoint was positive SARS-CoV-2 PCR and/or serology ≥7 days after randomization, regardless of symptoms. A Poisson regression model was used to estimate the incidence rate ratios of confirmed SARS-CoV-2 between each experimental arm and control. RESULTS Between December 2020 and January 2022, 828 participants were enrolled. COVID-19 infections were confirmed in 100 participants on nitazoxanide (2234 per 1000 person-years; 95% CI 1837-2718), 87 on sofosbuvir/daclatasvir (2125 per 1000 person-years; 95% CI 1722-2622) and 111 in the control arm (1849 per 1000 person-years; 95% CI 1535-2227). There were no significant differences in the primary endpoint between the treatment arms, and the results met the criteria for futility. In the safety analysis, the frequency of grade 3 or 4 adverse events was low and similar across arms. CONCLUSIONS In this randomized trial, nitazoxanide and sofosbuvir/daclatasvir had no significant preventative effect on infection with SARS-CoV-2 among healthcare workers and others at high risk of infection.
Collapse
Affiliation(s)
- Simiso Sokhela
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Bronwyn Bosch
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Andrew Hill
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Bryony Simmons
- LSE Health, London School of Economics & Political Science, London, UK
| | - Joana Woods
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Godspower Akpomiemie
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Leah Ellis
- Imperial College London, School of Public Health, London, UK
| | - Andrew Owen
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Carmen Perez Casas
- Unitaid, Global Health Campus, Chem. du Pommier 40, 1218 Le Grand-Saconnex, Switzerland
| | | |
Collapse
|
10
|
Chen CK, Weng TS, Chen YH, Kao JH, Chao CM. Clinical efficacy of sofosbuvir/daclatasvir in patients with COVID-19: a systematic review and meta-analysis of randomized trials. Expert Rev Clin Pharmacol 2022; 15:997-1002. [DOI: 10.1080/17512433.2022.2103539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Chao-Kun Chen
- Department of Thoracic Surgery, Chi Mei Medical Center, Tainan, Taiwan
| | - Teng-Song Weng
- Department of Pharmacy, Chi Mei Medical Center, Liouying, Taiwan
| | - Yu-Hung Chen
- Department of Pharmacy, Chi Mei Medical Center, Liouying, Taiwan
| | - Jui- Heng Kao
- Department of Internal Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, Taiwan
| |
Collapse
|
11
|
Messina V, Nevola R, Izzi A, De Lucia Sposito P, Marrone A, Rega R, Fusco R, Lumino P, Rinaldi L, Gaglione P, Simeone F, Sasso FC, Maggi P, Adinolfi LE. Efficacy and safety of the sofosbuvir/velpatasvir combination for the treatment of patients with early mild to moderate COVID-19. Sci Rep 2022; 12:5771. [PMID: 35388092 PMCID: PMC8985058 DOI: 10.1038/s41598-022-09741-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is still a health problem worldwide despite the availability of vaccines. Therefore, there is a need for effective and safe antiviral. SARS-CoV-2 and HCV necessitate RNA-dependent RNA polymerase (RdRp) for replication; therefore, it has been hypothesized that RdRp inhibitors used to treat HCV may be effective treating SARS-CoV-2. Accordingly, we evaluated the effect of the sofosbuvir/velpatasvir (SOF/VEL) combination in early SARS-CoV-2 infection. A multicenter case-control study was conducted, enrolling 120 patients with mild or moderate COVID-19, of whom 30, HCV coinfected or not, received SOF/VEL tablets (400/100 mg) once daily for 9 days within a median of 6 days from the beginning of infection and 90 controls were treated with standard care. The primary endpoint was the effect on viral clearance, and the secondary endpoint was the improvement of clinical outcomes. Nasal swabs for SARS-CoV-2 by PCR were performed every 5-7 days. Between 5-14 days after starting SOF/VEL treatment, SAS-CoV-2 clearance was observed in 83% of patients, while spontaneous clearance in the control was 13% (p < 0.001). An earlier SARS-CoV-2 clearance was observed in the SOF/VEL group than in the control group (median 14 vs 22 days, respectively, p < 0.001) also when the first positivity was considered. None of the patients in the SOF/VEL group showed disease progression, while in the control group, 24% required more intensive treatment (high flow oxygen or noninvasive/invasive ventilation), and one patient died (p < 0.01). No significant side effects were observed in the SOF/VEL group. Early SOF/VEL treatment in mild/moderate COVID-19 seems to be safe and effective for faster elimination of SARS-CoV-2 and to prevent disease progression.
Collapse
Affiliation(s)
- Vincenzo Messina
- Infectious Disease Unit, Azienda Ospedaliera Di Caserta S. Anna e S. Sebastiano, Caserta, Italy
| | - Riccardo Nevola
- Department of Advanced Medical and Surgery Science, Internal Medicine Covid Center, University of Campania Luigi Vanvitelli, 80100, Naples, Italy.
| | - Antonio Izzi
- Infectious Diseases, 3Rd Covid Center Ospedale Cotugno, Naples, Italy
| | | | - Aldo Marrone
- Department of Advanced Medical and Surgery Science, Internal Medicine Covid Center, University of Campania Luigi Vanvitelli, 80100, Naples, Italy
| | - Roberto Rega
- Infectious Diseases, 3Rd Covid Center Ospedale Cotugno, Naples, Italy
| | | | - Paolina Lumino
- Infectious Diseases, 3Rd Covid Center Ospedale Cotugno, Naples, Italy
| | - Luca Rinaldi
- Department of Advanced Medical and Surgery Science, Internal Medicine Covid Center, University of Campania Luigi Vanvitelli, 80100, Naples, Italy
| | | | - Filomena Simeone
- Infectious Disease Unit, Azienda Ospedaliera Di Caserta S. Anna e S. Sebastiano, Caserta, Italy
| | - Ferdinando Carlo Sasso
- Department of Advanced Medical and Surgery Science, Internal Medicine Covid Center, University of Campania Luigi Vanvitelli, 80100, Naples, Italy
| | - Paolo Maggi
- Infectious Disease Unit, Azienda Ospedaliera Di Caserta S. Anna e S. Sebastiano, Caserta, Italy
| | - Luigi Elio Adinolfi
- Department of Advanced Medical and Surgery Science, Internal Medicine Covid Center, University of Campania Luigi Vanvitelli, 80100, Naples, Italy
| |
Collapse
|
12
|
Hsu CK, Chen CY, Chen WC, Lai CC, Hung SH, Lin WT. The effect of sofosbuvir-based treatment on the clinical outcomes of patients with COVID-19: a systematic review and meta-analysis of randomized controlled trials. Int J Antimicrob Agents 2022; 59:106545. [PMID: 35134505 PMCID: PMC8817946 DOI: 10.1016/j.ijantimicag.2022.106545] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/16/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022]
Abstract
This systematic review and meta-analysis examined the efficacy of sofosbuvir-based antiviral treatment against COVID-19 (coronavirus disease 2019). PubMed, Embase, Cochrane Central Register of Controlled Trials and ClinicalTrials.gov were searched from inception to 15 August 2021. Studies comparing the clinical efficacy and safety of sofosbuvir-based antiviral regimens (study group) with other antivirals or standard of care (control group) in patients with COVID-19 were included. Overall, 687 patients with COVID-19 were included, of which 377 patients received sofosbuvir-based treatment. Mortality was lower in the study group than in the control group [odds ratio (OR) = 0.49, 95% confidence interval (CI) 0.30–0.79; I2 = 0%]. The overall clinical recovery rate was higher in the study group than in the control group (OR = 1.82, 95% CI 1.20–2.76; I2 = 28%). The study group presented a lower requirement for mechanical ventilation (OR = 0.33, 95% CI 0.13–0.89; I2 = 0%) and intensive care unit admission (OR = 0.42, 95% CI 0.25–0.70; I2 = 0%) than the control group. Furthermore, the study group exhibited a shorter hospital length of stay [mean deviation (MD), –1.49, 95% CI –2.62 to –0.37; I2 = 56%] and recovery time (MD, –1.34, 95% CI –2.29 to –0.38; I2 = 46%) than the control group. Sofosbuvir-based treatment may help reduce mortality in patients with COVID-19 and improve associated clinical outcomes. Furthermore, sofosbuvir-based treatment was as safe as the comparator in patients with COVID-19. However, further large-scale studies are warranted to validate these findings.
Collapse
|
13
|
Abstract
The development of effective antiviral therapy for COVID-19 is critical for those awaiting vaccination, as well as for those who do not respond robustly to vaccination. This review summarizes 1 year of progress in the race to develop antiviral therapies for COVID-19, including research spanning preclinical and clinical drug development efforts, with an emphasis on antiviral compounds that are in clinical development or that are high priorities for clinical development. The review is divided into sections on compounds that inhibit SARS-CoV-2 enzymes, including its polymerase and proteases; compounds that inhibit virus entry, including monoclonal antibodies; interferons; and repurposed drugs that inhibit host processes required for SARS-CoV-2 replication. The review concludes with a summary of the lessons to be learned from SARS-CoV-2 drug development efforts and the challenges to continued progress.
Collapse
Affiliation(s)
- Kaiming Tao
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Janin Nouhin
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Hector Bonilla
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Prasanna Jagannathan
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
14
|
Drożdżal S, Rosik J, Lechowicz K, Machaj F, Szostak B, Przybyciński J, Lorzadeh S, Kotfis K, Ghavami S, Łos MJ. An update on drugs with therapeutic potential for SARS-CoV-2 (COVID-19) treatment. Drug Resist Updat 2021; 59:100794. [PMID: 34991982 PMCID: PMC8654464 DOI: 10.1016/j.drup.2021.100794] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic is one of the greatest threats to human health in the 21st century with more than 257 million cases and over 5.17 million deaths reported worldwide (as of November 23, 2021. Various agents were initially proclaimed to be effective against SARS-CoV-2, the etiological agent of COVID-19. Hydroxychloroquine, lopinavir/ritonavir, and ribavirin are all examples of therapeutic agents, whose efficacy against COVID-19 was later disproved. Meanwhile, concentrated efforts of researchers and clinicians worldwide have led to the identification of novel therapeutic options to control the disease including PAXLOVID™ (PF-07321332). Although COVID-19 cases are currently treated using a comprehensive approach of anticoagulants, oxygen, and antibiotics, the novel Pfizer agent PAXLOVID™ (PF-07321332), an investigational COVID-19 oral antiviral candidate, significantly reduced hospitalization time and death rates, based on an interim analysis of the phase 2/3 EPIC-HR (Evaluation of Protease Inhibition for COVID-19 in High-Risk Patients) randomized, double-blind study of non-hospitalized adult patients with COVID-19, who are at high risk of progressing to severe illness. The scheduled interim analysis demonstrated an 89 % reduction in risk of COVID-19-related hospitalization or death from any cause compared to placebo in patients treated within three days of symptom onset (primary endpoint). However, there still exists a great need for the development of additional treatments, as the recommended therapeutic options are insufficient in many cases. Thus far, mRNA and vector vaccines appear to be the most effective modalities to control the pandemic. In the current review, we provide an update on the progress that has been made since April 2020 in clinical trials concerning the effectiveness of therapies available to combat COVID-19. We focus on currently recommended therapeutic agents, including steroids, various monoclonal antibodies, remdesivir, baricitinib, anticoagulants and PAXLOVID™ summarizing the latest original studies and meta-analyses. Moreover, we aim to discuss other currently and previously studied agents targeting COVID-19 that either show no or only limited therapeutic activity. The results of recent studies report that hydroxychloroquine and convalescent plasma demonstrate no efficacy against SARS-CoV-2 infection. Lastly, we summarize the studies on various drugs with incoherent or insufficient data concerning their effectiveness, such as amantadine, ivermectin, or niclosamide.
Collapse
Affiliation(s)
- Sylwester Drożdżal
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Kacper Lechowicz
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University in Szczecin, Poland
| | - Jarosław Przybyciński
- Department of Nephrology, Transplantation and Internal Medicine, Pomeranian Medical University in Szczecin, Poland
| | - Shahrokh Lorzadeh
- Department of Molecular Genetics, Science and Research Branch, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Katarzyna Kotfis
- Department of Anesthesiology, Intensive Therapy and Acute Intoxications, Pomeranian Medical University in Szczecin, Poland
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada; Research Institutes of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Biology of Breathing Theme, Children Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 0V9, Canada; Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran; Faculty of Medicine, Katowice School of Technology, 40-555 Katowice, Poland
| | - Marek J Łos
- Biotechnology Centre, Silesian University of Technology, 44-100 Gliwice, Poland.
| |
Collapse
|
15
|
Mobarak S, Salasi M, Hormati A, Khodadadi J, Ziaee M, Abedi F, Ebrahimzadeh A, Azarkar Z, Mansour-Ghanaei F, Joukar F, Yeganeh S, Yaghubi Kalurazi T, Naghipour M, Mehrabi Z, Bahadori AR, Yaghoubi S, Moslemi R, Abbaspour Kasgari H, Fakheri H, Moghimi M, Shabani AM, Nekoukar Z, Babamahmoodi F, Davoudi Badabi AR, Davoodi L, Hassaniazad M, Barahimi E, Tousi A, Sadeghi A, Hosamirudsari H, Ali Asgari A, Abdollahi M, Anushiravani A, Shabani M, Shokouhi S, Khajavirad N, Salehi M, Dehghan Manshadi SA, Mousavi H, Zolfaghari F, Azimi E, Zeinali A, Akbarpour E, Merat D, Eslami G, Mousaviasl S, Sayar S, Radmanesh E, Ebrahimzadeh M, Arizavi Z, Jelvay S, Salmanzadeh S, Esmaeilian H, Mobarak M, Karimi J, Poormontaseri Z, Hasooni Bahrini N, Bonyadi A, Dehghani F, Mirzaei H, Noori Jangi M, Pourmasoomi H, Rezaie Keikhaie L, Afshari M, Nateghi Baygi A, Nateghi Baygi H, Levi J, McCann K, Wentzel H, Simmons B, Hill A, Merat S. Evaluation of the effect of sofosbuvir and daclatasvir in hospitalized COVID-19 patients: a randomized double-blind clinical trial (DISCOVER). J Antimicrob Chemother 2021; 77:758-766. [PMID: 34849957 PMCID: PMC8690191 DOI: 10.1093/jac/dkab433] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Background The combination of sofosbuvir and daclatasvir has shown preliminary efficacy for hospitalized patients with COVID-19 in four open-label studies with small sample sizes. This larger trial aimed to assess if the addition of sofosbuvir/daclatasvir to standard care improved clinical outcomes in hospitalized patients with COVID-19. Methods This was a placebo-controlled, double-blind, randomized clinical trial in adults hospitalized with COVID-19 at 19 hospitals in Iran. Patients were randomized to oral sofosbuvir/daclatasvir 400/60 mg once-daily or placebo in addition to standard of care. Patients were included if they had positive PCR or diagnostic chest CT, O2 saturation <95% and compatible symptoms. The primary outcome was hospital discharge within 10 days of randomization. Secondary outcomes included mortality and time to clinical events. The trial is registered on the Iran Registry of Clinical Trials under IRCT20200624047908N1. Results Between July and October 2020, 1083 patients were randomized to either the sofosbuvir/daclatasvir arm (n = 541) or the placebo arm (n = 542). No significant difference was observed in the primary outcome of hospital discharge within 10 days, which was achieved by 415/541 (77%) in the sofosbuvir/daclatasvir arm and 411/542 (76%) in the placebo arm [risk ratio (RR) 1.01, 95% CI 0.95–1.08, P = 0.734]. In-hospital mortality was 60/541 (11%) in the sofosbuvir/daclatasvir arm versus 55/542 (10%) in the placebo arm (RR 1.09, 95% CI 0.77–1.54, P = 0.615). No differences were observed in time to hospital discharge or time to in-hospital mortality. Conclusions We observed no significant effect of sofosbuvir/daclatasvir versus placebo on hospital discharge or survival in hospitalized COVID-19 patients.
Collapse
Affiliation(s)
- Sara Mobarak
- Abadan University of Medical Sciences, Abadan, Iran
| | - Mehdi Salasi
- Imam Khomeini Hospital of Abadan Petroleum Health Organization, Abadan, Iran
| | - Ahmad Hormati
- Colorectal Research Center, Iran University of Medical Sciences, Tehran, Iran.,Gastroenterology and Hepatology Disease Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Javad Khodadadi
- Infectious Disease Department, Qom University of Medical Sciences, Qom, Iran
| | - Masood Ziaee
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Farshid Abedi
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Azadeh Ebrahimzadeh
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zohreh Azarkar
- Infectious Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Sara Yeganeh
- Caspian Digestive Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tofigh Yaghubi Kalurazi
- Department of Health, Nutrition & Infectious Diseases, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammadreza Naghipour
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Zeinab Mehrabi
- Department of Infectious Diseases, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Reza Bahadori
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Diseases, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rohollah Moslemi
- Department of Clinical Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Hafez Fakheri
- Gut and Liver Research Center, Non-communicable Disease Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Minoo Moghimi
- Department of Clinical Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Mohammad Shabani
- Department of Clinical Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Zahra Nekoukar
- Department of Clinical Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farhang Babamahmoodi
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Reza Davoudi Badabi
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Lotfollah Davoodi
- Antimicrobial Resistance Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Hassaniazad
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Elham Barahimi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Abdolali Tousi
- Student Research Committee, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Anahita Sadeghi
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ali Ali Asgari
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Anushiravani
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoosh Shabani
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shervin Shokouhi
- Department of Infectious Diseases and Tropical Medicine, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasim Khajavirad
- Department of Internal Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Salehi
- Infectious Diseases Department, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hashem Mousavi
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farnaz Zolfaghari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elmira Azimi
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Aida Zeinali
- Department of Cardiology, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Akbarpour
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Dorsa Merat
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Sara Sayar
- Abadan University of Medical Sciences, Abadan, Iran
| | | | | | | | - Saeed Jelvay
- Abadan University of Medical Sciences, Abadan, Iran
| | | | | | | | - Jalal Karimi
- Department of Infectious Disease, Fasa University of Medical Sciences, Fasa, Iran
| | - Zahra Poormontaseri
- Department of Infectious Disease, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Atefeh Bonyadi
- Imam Khomeini Hospital of Abadan Petroleum Health Organization, Abadan, Iran
| | - Fatemeh Dehghani
- Imam Khomeini Hospital of Abadan Petroleum Health Organization, Abadan, Iran
| | - Hadi Mirzaei
- Department of Biotechnology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Masoome Noori Jangi
- Department of Infectious Diseases, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Hossein Pourmasoomi
- Department of Infectious Diseases, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Lili Rezaie Keikhaie
- Department of Infectious Diseases, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahdi Afshari
- Pediatric Gastroenterology and Hepatology Research Center, Zabol University of Medical Sciences, Zabol, Iran
| | - Alireza Nateghi Baygi
- Research and Development Department, Fanavaran Rojan Mohaghegh Darou Co., Tehran, Iran
| | - Helia Nateghi Baygi
- Research and Development Department, Fanavaran Rojan Mohaghegh Darou Co., Tehran, Iran
| | - Jacob Levi
- Department of Intensive Care, University College London Hospital, London, UK
| | - Kaitlyn McCann
- School of Public Health, Imperial College London, London, UK
| | - Hannah Wentzel
- School of Public Health, Imperial College London, London, UK
| | - Bryony Simmons
- Department of Infectious Diseases, Imperial College London, London, UK
| | - Andrew Hill
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Shahin Merat
- Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
Kow CS, Javed A, Ramachandram D, Hasan SS. Clinical outcomes of sofosbuvir-based antivirals in patients with COVID-19: a systematic review and meta-analysis of randomized trials. Expert Rev Anti Infect Ther 2021; 20:567-575. [PMID: 34719324 DOI: 10.1080/14787210.2022.2000861] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Several randomized trials have evaluated the effects of sofosbuvir-based direct-acting antivirals on the clinical outcomes in patients with COVID-19. METHODS A systematic literature search with no language restrictions was performed on electronic databases and preprint repositories to identify eligible randomized trials published up to 8 July 2021. A random-effects model was used to estimate the pooled odds ratio (OR) for outcomes of interest with the use of sofosbuvir combined with direct-acting antiviral agents relative to the nonuse of sofosbuvir-based direct-acting antiviral agents at 95% confidence intervals (CI). RESULTS The meta-analysis of 11 trials (n = 2,161) revealed statistically significant reduction in the odds of mortality (pooled odds ratio = 0.59; 95% confidence interval 0.36 to 0.99) but no statistically significant difference in the odds of development of composite endpoint of severe illness (pooled odds ratio = 0.79; 95% confidence interval 0.43 to 1.44) with the administration of sofosbuvir-based direct-acting antiviral agents among patients with COVID-19, relative to non-administration of sofosbuvir-based direct-acting antiviral agents.Subgroup analysis with seven trials involving sofosbuvir-daclatasvir revealed no significant mortality benefit (pooled odds ratio = 0.77; 95% confidence interval 0.48 to 1.22). CONCLUSION Sofosbuvir-based direct-acting antiviral agents have no protective effects against the development of severe illness in patients with COVID-19 with the current dosing regimen. Whether sofosbuvir-based direct-acting antiviral agents could offer mortality benefits would require further investigations.
Collapse
Affiliation(s)
- Chia Siang Kow
- School of Pharmacy, Monash University Malaysia, Petaling Jaya, Malaysia
| | - Amaan Javed
- University College of Medical Sciences, University of Delhi, Delhi, India
| | | | - Syed Shahzad Hasan
- School of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK.,School of Biomedical Sciences and Pharmacy, University of Newcastle, Newcastle, Australia
| |
Collapse
|
17
|
Dowarah J, Marak BN, Yadav UCS, Singh VP. Potential drug development and therapeutic approaches for clinical intervention in COVID-19. Bioorg Chem 2021; 114:105016. [PMID: 34144277 PMCID: PMC8143914 DOI: 10.1016/j.bioorg.2021.105016] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 05/20/2021] [Indexed: 01/25/2023]
Abstract
While the vaccination is now available to many countries and will slowly dissipate to others, effective therapeutics for COVID-19 is still illusive. The SARS-CoV-2 pandemic has posed an unprecedented challenge to researchers, scientists, and clinicians and affected the wellbeing of millions of people worldwide. Since the beginning of the pandemic, a multitude of existing anti-viral, antibiotic, antimalarial, and anticancer drugs have been tested, and some have shown potency in the treatment and management of COVID-19, albeit others failed to leave any positive impact and a few also became controversial as they showed mixed clinical outcomes. In the present article, we have brought together some of the candidate therapeutic drugs being repurposed or used in the clinical trials and discussed their clinical efficacy and safety for COVID-19.
Collapse
Affiliation(s)
- Jayanta Dowarah
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | - Brilliant N Marak
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India
| | | | - Ved Prakash Singh
- Department of Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India; Department of Industrial Chemistry, School of Physical Sciences, Mizoram University, Aizawl 796004, Mizoram, India.
| |
Collapse
|
18
|
Spearman CW, Aghemo A, Valenti L, Sonderup MW. COVID-19 and the liver: A 2021 update. Liver Int 2021; 41:1988-1998. [PMID: 34152690 DOI: 10.1111/liv.14984] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
In December 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was identified in Wuhan, China and has since resulted in a global pandemic in excess of 165 million reported infections and 3.4 million attributable deaths. COVID-19 is primarily a respiratory illness, which may be complicated by pneumonia and acute respiratory distress syndrome. SARS-CoV-2 is also responsible for numerous extrapulmonary manifestations involving the haematologic, cardiovascular, renal, gastrointestinal and hepatobiliary, endocrinologic, neurologic, ophthalmologic and dermatologic systems. This review will discuss the pathophysiology of COVID-19; focusing on the mechanisms and outcomes of liver injury associated with COVID-19; its impact on chronic liver disease (CLD); management of CLD during the COVID-19 pandemic and the long-term impact of COVID-19 on CLD.
Collapse
Affiliation(s)
- Catherine W Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Alessio Aghemo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy.,Division of Internal Medicine and Hepatology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Luca Valenti
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy.,Department of Transfusion Medicine and Hematology, Fondazione IRCCS Ca' Granda Ospedale Policlinico, Milan, Italy
| | - Mark W Sonderup
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
19
|
Butt AA, Yan P, Chotani RA, Shaikh OS. Mortality is not increased in SARS-CoV-2 infected persons with hepatitis C virus infection. Liver Int 2021; 41:1824-1831. [PMID: 33534931 PMCID: PMC8013466 DOI: 10.1111/liv.14804] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Accepted: 01/24/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Impact of SARS-CoV-2 infection upon hospitalization, intensive care unit (ICU) admissions and mortality in persons with hepatitis C virus (HCV) infection is unknown. METHODS We used the Electronically Retrieved Cohort of HCV infected Veterans (ERCHIVES) database to determine the impact of HCV infection upon the rates of acute care hospitalization, ICU admission and all-cause mortality. We identified Veterans with chronic HCV infection and propensity score matched controls without HCV in ERCHIVES. We excluded those with HIV or hepatitis B virus coinfection. RESULTS We identified 975 HCV+ and 975 propensity score matched HCV- persons with SARS-CoV-2 infection. Mean FIB-4 score (±SD) was higher in those with HCV (1.9 ± 2.1 vs 1.2 ± 0.9; P < .0001) and a larger proportion of those with HCV had cirrhosis (8.1% vs 1.4%; P < .0001). A larger proportion of HCV+ were hospitalized compared to HCV- (24.0% vs 18.3%; P = .002); however, those requiring ICU care and mortality were also similar in both groups (6.6% vs 6.5%; P = .9). Among those with FIB-4 score of 1.45-3.25, hospitalization rate/1000-person-years was 41.4 among HCV+ and 20.2 among HCV-, while among those with a FIB-4 > 3.25, the rate- was 9.4 and 0.6 (P < .0001). There was no difference in all-cause mortality by age, gender, FIB-4 score, number of comorbidities or treatment with remdesivir and/or systemic corticosteroids. CONCLUSIONS HCV+ persons with SARS-CoV-2 infection are more likely to be admitted to a hospital. The hospitalization rate also increased with higher FIB-4 score. However, admission to an ICU and mortality are not different between those with and without HCV infection.
Collapse
Affiliation(s)
- Adeel A. Butt
- VA Pittsburgh Healthcare SystemPittsburghPAUSA,Weill Cornell Medical CollegeNew YorkNYUSA
| | - Peng Yan
- VA Pittsburgh Healthcare SystemPittsburghPAUSA
| | - Rashid A. Chotani
- University of Nebraska Medical CenterOmahaNEUSA,Innovative Emergency ManagementMorrisvilleNCUSA
| | - Obaid S. Shaikh
- VA Pittsburgh Healthcare SystemPittsburghPAUSA,University of Pittsburgh Medical CenterPittsburghPAUSA
| |
Collapse
|
20
|
Gil Martínez V, Avedillo Salas A, Santander Ballestín S. Antiviral Therapeutic Approaches for SARS-CoV-2 Infection: A Systematic Review. Pharmaceuticals (Basel) 2021; 14:736. [PMID: 34451833 PMCID: PMC8398077 DOI: 10.3390/ph14080736] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/12/2022] Open
Abstract
Due to the lack of an etiologic treatment for SARS-CoV-2 and the difficulties involved in developing new drugs, some drugs already approved for other diseases or with efficacy against SARS and MERS, have been used in patients with COVID-19. This systematic review aims to summarize evidence on the efficacy and safety of five antivirals applied to patients with COVID-19, that have proven to be effective either in vitro studies or in studies on SARS-CoV and MERS.; An intensive search of different databases (Pub Med, WoS, MEDLINE and Cochrane COVID-19 Study Register) has been carried out until the end of April 2021. This systematic review has been conducted according to the PRISMA statement. From each of the included studies, the characteristics of the intervention and comparison groups, demographic data and results were extracted independently; Remdesivir is well tolerated and helps to accelerate clinical improvement but is ineffective in reducing mortality. Favipiravir is safe and shows promising results regarding symptom resolution but does not improve viral clearance. The use of lopinavir/ritonavir has been associated with an increased risk of gastrointestinal adverse events and it has not proven to be effective. No significant differences were observed between patients treated with ribavirin or umifenovir and their respective control groups; Remdesivir and favipiravir are well tolerated and effective in accelerating clinical improvement. This systematic review does not support the use of lopinavir/ritonavir, ribavirin and umifenovir in hospitalized patients with COVID-19.
Collapse
Affiliation(s)
| | | | - Sonia Santander Ballestín
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain; (V.G.M.); (A.A.S.)
| |
Collapse
|
21
|
Bitaraf E, Ahmadi SAY, Gandomi-Mohammadabadi A, Noorani Mejareh Z, Abdollahi B, Balasi J, Moodi F, Hemmati N, Kabir A. Effects of Immune System-Related Medications on COVID-19 Outcome in a Cohort of Iranian Patients: Preliminary Report of a Data Mining Study. J Immunol Res 2021; 2021:9934134. [PMID: 34307694 PMCID: PMC8254655 DOI: 10.1155/2021/9934134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 06/08/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Regulation of the immune system is critical for fighting against viral infections. Both suppression and hyperactivity of the immune system result in failure of treatment. The present study was designed to show the effects of immune system-related medications on mortality and length of stay (LOS) in a cohort of Iranian patients with coronavirus disease 2019 (COVID-19). METHODS A data mining study was performed on 6417 cases of COVID-19 covered by 17 educational hospitals of Iran University of Medical Sciences, Tehran. Association of a researcher-designed drug list with death and LOS was studied. For death outcome, logistic regression was used reporting odds ratio (OR) with 95% confidence interval (CI). For LOS, right censored Poisson regression was used reporting incidence rate ratio (IRR) with 95% CI. RESULTS Among the corticosteroids, prednisolone was a risk factor on death (OR = 1.41, 95%CI = 1.03 - 1.94). This association was increased after adjustment of age interactions (OR = 3.45, 95%CI = 1.01 - 11.81) and was removed after adjustment of ICU admission interactions (OR = 2.64, 95%CI = 0.70 - 9.92). Hydroxychloroquine showed a protecting effect on death (OR = 0.735, 95%CI = 0.627 - 0.862); however, this association was removed after adjustment of age interactions (OR = 0.76, 95%CI = 0.41 - 1.40). Among the antivirals, oseltamivir showed a protecting effect on death (OR = 0.628, 95%CI = 0.451 - 0.873); however, this association was removed after adjustment of age interactions (OR = 0.45, 95%CI = 0.11 - 1.82). For reduction of LOS, the only significant association was for hydroxychloroquine (IRR = 0.85, 95%CI = 0.79 - 0.92). CONCLUSION The results of such data mining studies can be used in clinics until completing the evidence. Hydroxychloroquine may reduce mortality in some specific groups; however, its association may be confounded by some latent variables and unknown interactions. Administration of corticosteroids should be based on the conditions of each case.
Collapse
Affiliation(s)
- Ehsan Bitaraf
- Center for Statistics and Information Technology, Central Library, Iran University of Medical Sciences, Tehran, Iran
| | - Seyyed Amir Yasin Ahmadi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Zahra Noorani Mejareh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahare Abdollahi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Javad Balasi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzan Moodi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Hemmati
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Kabir
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Tam NM, Pham MQ, Ha NX, Nam PC, Phung HTT. Computational estimation of potential inhibitors from known drugs against the main protease of SARS-CoV-2. RSC Adv 2021; 11:17478-17486. [PMID: 35479689 PMCID: PMC9032918 DOI: 10.1039/d1ra02529e] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/03/2021] [Indexed: 12/20/2022] Open
Abstract
The coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread worldwide recently, leading to global social and economic disruption. Although the emergently approved vaccine programs against SARS-CoV-2 have been rolled out globally, the number of COVID-19 daily cases and deaths has remained significantly high. Here, we attempt to computationally screen for possible medications for COVID-19 via rapidly estimating the highly potential inhibitors from an FDA-approved drug database against the main protease (Mpro) of SARS-CoV-2. The approach combined molecular docking and fast pulling of ligand (FPL) simulations that were demonstrated to be accurate and suitable for quick prediction of SARS-CoV-2 Mpro inhibitors. The results suggested that twenty-seven compounds were capable of strongly associating with SARS-CoV-2 Mpro. Among them, the seven top leads are daclatasvir, teniposide, etoposide, levoleucovorin, naldemedine, cabozantinib, and irinotecan. The potential application of these drugs in COVID-19 therapy has thus been discussed.
Collapse
Affiliation(s)
- Nguyen Minh Tam
- Computational Chemistry Research Group, Ton Duc Thang University Ho Chi Minh City Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University Ho Chi Minh City Vietnam
| | - Minh Quan Pham
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology Hanoi Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology Hanoi Vietnam
| | - Nguyen Xuan Ha
- Faculty of Chemistry and Environment, Thuyloi University, Ministry of Agriculture and Rural Development Hanoi Vietnam
| | - Pham Cam Nam
- Department of Chemical Engineering, The University of Da Nang, University of Science and Technology Da Nang City Vietnam
| | | |
Collapse
|
23
|
Spera AM. Are nucleotide inhibitors, already used for treating hepatitis C virus infection, a potential option for the treatment of COVID-19 compared with standard of care? A literature review. World J Virol 2021; 10:53-61. [PMID: 33816150 PMCID: PMC7995413 DOI: 10.5501/wjv.v10.i2.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/28/2021] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is global pandemic with various clinical presentations, ranging from cold to sometimes unrecoverable acute respiratory distress syndrome. Although urgently needed, currently there are no specific treatments for COVID-19. Repurposing existing pharmaceuticals to treat COVID-19 is crucial to control the pandemic. In silico and in vitro studies suggest that a nucleotide inhibitor called Sofosbuvir, has also antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), apart from suppressing other positive-strand ribonucleic Acid viruses with conserved polymerase (hepatitis C virus). The aim of this study was to assess if Sofosbuvir improves clinical outcomes in patients with moderate or severe COVID-19. A compre-hensive overview of scientific literature has been made. Terms searched in PubMed were: COVID-19, SARS-CoV-2, nucleotide inhibitors, pandemic, Sofosbuvir. Results clinical trials conducted among adults with moderate or severe COVID-19 were analyzed. Patients were divided in treatment and control arms, receiving Sofosbuvir plus standard care and standard care alone respectively. The addition of Sofosbuvir to standard care significantly reduced the duration of hospital stay compared with standard care alone in clinical trials examined. If efficacy of these repurposed, cheap and easily available drug against SARS-CoV-2 is further demonstrated, it could be essential to refine the treatment of COVID-19.
Collapse
Affiliation(s)
- Anna Maria Spera
- Department of Infectious Diseases, University of Study of Salerno, Salerno 84131, Italy
| |
Collapse
|
24
|
Khodarahmi R, Sayad B, Mehrabi M, Najafi F, Miladi R, Mohseni Afshar Z, Mansouri F, Shirvani M, Salimi M, Shadmani F. Clinical effectiveness and safety of sofosbuvir–velpatasvir as add-on treatment for COVID-19 patients: Study protocol and preliminary data for the randomized controlled trial. JOURNAL OF REPORTS IN PHARMACEUTICAL SCIENCES 2021. [DOI: 10.4103/jrptps.jrptps_46_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
25
|
Khalili H, Nourian A, Ahmadinejad Z, Emadi Kouchak H, Jafari S, Dehghan Manshadi SA, Rasolinejad M, Kebriaeezadeh A. Efficacy and safety of sofosbuvir/ ledipasvir in treatment of patients with COVID-19; A randomized clinical trial. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020102. [PMID: 33525212 PMCID: PMC7927527 DOI: 10.23750/abm.v91i4.10877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023]
Abstract
Background: There is no study regarding the use of SOF/LDP in treatment of COVID-19. Objectives: In this study, the efficacy and safety of SOF/LDP were assessed in treatment of patients with mild to moderate COVID-19. Methods: Among an open-label randomized clinical trial, 82 patients with mild to moderated COVID-19 were assigned to receive either SOF/LDP 400/100 mg daily plus the standard of care (SOF/LDP group, n=42) or the standard of care alone (control group, n=40) for 10 days. Time to clinical response, rate of clinical response, duration of hospital and ICU stay and 14-day mortality were assessed. Results: Clinical response occurred in 91.46% of patients. Although rates of clinical response were comparable between the groups but it occurred faster in the SOF/LDP group than the control group (2 vs. 4 days respectively, P= 0.02). Supportive cares were provided in the medical wards for most patients but 17.07% of patients were transferred to ICU during the hospitalization course. However, durations of hospital and ICU stay were comparable between the groups. 14-day mortality rate was 7.14% and 7.5% in the SOF/ LDP and control groups respectively. No adverse effects leading to drug discontinuation occurred. Gastrointestinal events (nausea, vomiting and diarrhea) were the most common side effects (15.85%). Conclusion: Added to the standard of care, SOF/LDP accelerated time to the clinical response. However, rate of clinical response, duration of hospital and ICU stay and 14-day mortality were not different. No significant adverse event was detected. More randomized clinical trials with larger sample sizes are needed to confirm the efficacy and safety of SOF/LDP in the treatment of COVID-19. (www.actabiomedica.it)
Collapse
Affiliation(s)
| | | | | | | | - Sirous Jafari
- Tehran University of Medical Sciences, Tehran, Iran.
| | | | | | | |
Collapse
|