1
|
Zhang W, Tekreeti TA, Leung PSC, Tsuneyama K, Dhillon H, Rojas M, Heuer LS, Ridgway WM, Ansari AA, Young HA, Mackay CR, Gershwin ME. Dietary therapy of murine primary biliary cholangitis induces hepatocellular steatosis: A cautionary tale. Liver Int 2024; 44:2834-2846. [PMID: 39101371 PMCID: PMC11464203 DOI: 10.1111/liv.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
BACKGROUND AND AIMS There is increased interest in utilizing dietary interventions to alter the progression of autoimmune diseases. These efforts are driven by associations of gut microbiota/metabolites with levels of short-chain fatty acids (SCFAs). Propionate is a key SCFA that is commonly used as a food preservative and is endogenously generated by bacterial fermentation of non-digestible carbohydrates in the gut. A thesis has suggested that a diet rich in propionate and other SCFAs can successfully modulate autoimmunity. Herein, we investigated the effect of long-term administration of propionylated high-amylose resistant starches (HAMSP) on the course of murine primary biliary cholangitis. MATERIALS AND METHODS Groups of female ARE-Del mice were fed an HAMSP diet either before or after disease onset. A detailed immunobiological analysis was performed involving autoantibodies and rigorous T-cell phenotyping, including enumeration of T-cell subsets in the spleen, liver, intestinal intraepithelial lymphocytes and lamina propria by flow cytometry. Histopathological scores were used to assess the frequency and severity of liver inflammation and damage to hepatocytes and bile ducts. RESULTS Our results demonstrate that a long-term propionate-yielding diet re-populated the T-cell pool with decreased naïve and central memory T-cell subsets and an increase in the effector memory T cells in mice. Similarly, long-term HAMSP intake reduced CD4+CD8+ double-positive T cells in intraepithelial lymphocytes and the intestinal lamina propria. Critically, HAMSP consumption led to moderate-to-severe hepatocellular steatosis in ARE-Del mice, independent of the stage of autoimmune cholangitis. CONCLUSIONS Our data suggest that administration of HAMSP induces both regulatory and effector T cells. Furthermore, HAMSP administration resulted in hepatocellular steatosis. Given the interest in dietary modulation of autoimmunity and because propionate is widely used as a food preservative, these data have significant implications. This study also provides new insights into the immunological and pathological effects of chronic propionate exposure.
Collapse
Affiliation(s)
- Weici Zhang
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Taha Al Tekreeti
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Patrick SC Leung
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School; Tokushima, Japan
| | - Harleen Dhillon
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Manuel Rojas
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
- Center for Autoimmune Diseases Research (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Bogota, Colombia
| | - Luke S. Heuer
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - William M. Ridgway
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Aftab A. Ansari
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| | - Howard A. Young
- Cancer Innovation Laboratory, Center for Cancer Research, NCI at Frederick, Frederick, MD 21702
| | - Charles R. Mackay
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - M. Eric Gershwin
- Division of Rheumatology, Allergy, and Clinical Immunology, School of Medicine, University of California Davis, CA, USA
| |
Collapse
|
2
|
Nakamori H, Niimi A, Mitsui R, Hashitani H. Lipopolysaccharide accelerates peristalsis by stimulating glucagon-like peptide-1 release from L cells in the rat proximal colon. J Physiol 2024; 602:4803-4820. [PMID: 39287487 DOI: 10.1113/jp286258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Upon epithelial barrier dysfunction, lipopolysaccharide (LPS) stimulates glucagon-like peptide-1 (GLP-1) secretion from enteroendocrine L cells by activating Toll-like receptor 4 (TLR4). Because GLP-1 accelerates peristalsis in the proximal colon, the present study aimed to explore whether LPS facilitates colonic peristalsis by stimulating L cell-derived GLP-1 release. In isolated segments of rat proximal colon that were serosally perfused with physiological salt solution and luminally perfused with 0.9% saline, peristaltic wall motion was video recorded and converted into spatio-temporal maps. Fluorescence immunohistochemistry was also carried out. Intraluminal administration of LPS (100 or 1 µg mL-1 but not 100 ng mL-1) increased the frequency of oro-aboral propagating peristaltic contractions. The LPS-induced acceleration of colonic peristalsis was blocked by TAK-242 (the TLR4 antagonist), exendin-3 (the GLP-1 receptor antagonist) or BIBN4096 (the calcitonin gene-related peptide receptor antagonist). GLP-1-positive epithelial cells co-expressed TLR4 immunoreactivity. In aspirin-pretreated preparations where epithelial barrier function had been impaired, a lower dose of LPS (100 ng mL-1) became capable of accelerating peristalsis. By contrast, luminally applied dimethyl sulphoxide, a reactive oxygen species scavenger that protects epithelial integrity, attenuated the prokinetic effects of a higher dose of LPS (100 µg mL-1). In colonic segments of a stress rat model leading to a leaky gut, LPS induced more pronounced prokinetic effects. Colonic L cells may well sense luminal LPS via TLR4 triggering the release of GLP-1 that stimulates calcitonin gene-related peptide-containing neurons. The resultant acceleration of peristalsis would facilitate excretion of Gram-negative bacteria from the intestine, and thus L cells may have a protective role against intestinal bacterial infections. KEY POINTS: Colonic epithelial cells form a barrier against bacterial invasion but also may contribute more actively to the exclusion of luminal pathogen by stimulating colonic motility. Luminal lipopolysaccharide (LPS) accelerated colonic peristalsis by stimulating calcitonin gene-related peptide-containing neurons. The prokinetic effect of LPS was mediated by the secretion of glucagon-like peptide-1 from enteroendocrine L cells in which Toll-like receptor 4 was expressed. The LPS-mediated acceleration of peristalsis depended on epithelial barrier integrity. L cells have a defensive role against Gram-negative bacterial infections by facilitating faecal excretion, and could be a potential therapeutic target for gastrointestinal infections.
Collapse
Affiliation(s)
- Hiroyuki Nakamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Atsuko Niimi
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Retsu Mitsui
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya, Japan
| |
Collapse
|
3
|
Xu Q, Guo M, Wang H, Liu H, Wei Y, Wang X, Mackay CR, Wang Q. A Butyrate-Yielding Dietary Supplement Prevents Acute Alcoholic Liver Injury by Modulating Nrf2-Mediated Hepatic Oxidative Stress and Gut Microbiota. Int J Mol Sci 2024; 25:9420. [PMID: 39273367 PMCID: PMC11395132 DOI: 10.3390/ijms25179420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Alcoholic liver disease (ALD) is a globally prevalent form of liver disease for which there is no effective treatment. Recent studies have found that a significant decrease in butyrate was closely associated with ALD development. Given the low compliance and delivery efficiency associated with oral-route butyrate administration, a highly effective butyrate-yielding dietary supplement, butyrylated high-amylose maize starch (HAMSB), is a good alternative approach. Here, we synthesized HAMSB, evaluated the effect of HAMSB on acute ALD in mice, compared its effect with that of oral administration of butyrate, and further studied the potential mechanism of action. The results showed HAMSB alleviated acute ALD in mice, as evidenced by the inhibition of hepatic-function impairment and the improvement in liver steatosis and lipid metabolism; in these respects, HAMSB supplementation was superior to oral sodium butyrate administration. These improvements can be attributed to the reduction of oxidative stress though the regulation of Nrf2-mediated antioxidant signaling in the liver and the improvement in the composition and function of microbiota in the intestine. In conclusion, HAMSB is a safe and effective dietary supplement for preventing acute ALD that could be useful as a disease-modifying functional food or candidate medicine.
Collapse
Affiliation(s)
- Qi Xu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Mei Guo
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Haidi Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Haitao Liu
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Yunbo Wei
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Xiao Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| | - Charles R. Mackay
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
- Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia
| | - Quanbo Wang
- Key Laboratory for Natural Active Pharmaceutical Constituents Research in Universities of Shandong Province, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Q.X.); (M.G.); (H.W.); (H.L.); (Y.W.); (X.W.); (C.R.M.)
| |
Collapse
|
4
|
Li X, Gao J, Chen W, Liang J, Gao W, Bodjrenou DM, Zeng H, Zhang Y, Farag MA, Cao H, Zheng B. Properties and functions of acylated starch with short-chain fatty acids: a comprehensive review. Crit Rev Food Sci Nutr 2024:1-14. [PMID: 39023856 DOI: 10.1080/10408398.2024.2365343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Short-chain fatty acids (SCFAs) are the primary energy source of colonic epithelial cells, but oral SCFAs are digested, absorbed, or degraded before reaching the colon. The acylated starch with SCFAs can be fermented and release specific SCFAs under the action of colonic intestinal microbiota. This review first introduces the preparation method, reaction mechanism, and substitution factors. Second, the structure, physical and chemical properties, in vitro function, and mechanism of acylated starch were expounded. Finally, the application of acylated starch in foods is introduced, and its safety is evaluated, providing a basis for the further development of acylated starch-based foods. The acylated starch obtained by different acylation types and preparation methods is different in particle, molecular, and crystal structures, leading to changes in the function and physicochemical properties. Meanwhile, acylated starch has the functional potential of targeted delivery of SCFAs to the colon, which can increase SCFAs in feces and intestine, selectively regulate the intestinal microbiota, and produce a prebiotic effect conducive to host health. The safety of acetylated starch has been supported by relevant studies, which have been widely used in various food fields and have great potential in the food industry.
Collapse
Affiliation(s)
- Xin Li
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Ocean Food and Biological Engineering, Jimei University, Fujian, Xiamen, P.R. China
| | - Jingyi Gao
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Wei Chen
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Jiachen Liang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Wenjie Gao
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - David Mahoudjro Bodjrenou
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Hongliang Zeng
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Yi Zhang
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, Universidade de Vigo - Ourense Campus, Ourense, Spain
| | - Baodong Zheng
- Fujian Provincial Key Laboratory of Quality Science and Processing Technology in Special Starch, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, P.R. China
| |
Collapse
|
5
|
Saha B, A T R, Adhikary S, Banerjee A, Radhakrishnan AK, Duttaroy AK, Pathak S. Exploring the Relationship Between Diet, Lifestyle and Gut Microbiome in Colorectal Cancer Development: A Recent Update. Nutr Cancer 2024; 76:789-814. [PMID: 39207359 DOI: 10.1080/01635581.2024.2367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/18/2024] [Accepted: 06/05/2024] [Indexed: 09/04/2024]
Abstract
Colorectal cancer (CRC) is one of the major causes of cancer-related mortality worldwide. Despite advances in treatment modalities, its prevalence continues to rise, notably among younger populations. Unhealthy dietary habits, sedentary routines, and obesity have been identified as one of the key contributors to the development of colorectal cancer, apart from genetic and epigenetic modifications. Recognizing the profound impact of diet and lifestyle on the intricate gut microbiota ecosystem offers a promising avenue for understanding CRC development and its treatment. Gut dysbiosis, characterized by imbalances favoring harmful microbes over beneficial ones, has emerged as a defining feature of CRC. Changes in diet and lifestyle can profoundly alter the composition of gut microbes and the metabolites they produce, potentially contributing to CRC onset. Focusing on recent evidence, this review discussed various dietary factors, such as high consumption of red and processed meats and low fiber intake, and lifestyle factors, including obesity, lack of physical activity, smoking, and excessive alcohol consumption, that influence the gut microbiome composition and elevate CRC risk.
Collapse
Affiliation(s)
- Biki Saha
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Rithi A T
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Subhamay Adhikary
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | - Arun Kumar Radhakrishnan
- Department of Pharmacology, Chettinad Hospital and Research Institute (CHRI), Chettinad Academy of Research and Education (CARE), Chennai, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| |
Collapse
|
6
|
Abdul Hadi N, Marefati A, Purhagen J, Rayner M. Physicochemical and functional properties of short-chain fatty acid starch modified with different acyl groups and levels of modification. Int J Biol Macromol 2024; 267:131523. [PMID: 38608987 DOI: 10.1016/j.ijbiomac.2024.131523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Rice and quinoa starches are modified with short-chain fatty acids (SCFA) with different SCFA acyl chain lengths and levels of modification. This work is aimed to investigate the impact of modifying rice and quinoa starches with short-chain fatty acids (SCFAs) on various physicochemical properties, including particle size, protein and amylose content, thermal behavior, pasting characteristics, and in vitro digestibility. Both native and SCFA-starches showed comparable particle sizes, with rice starches ranging from 1.58 to 2.22 μm and quinoa starches from 5.18 to 5.72 μm. SCFA modification led to lower protein content in both rice (0.218-0.255 %) and quinoa starches (0.537-0.619 %) compared to their native counterparts. Esterification led to the reduction of gelatinization and pasting temperatures as well as the hardness of the paste of SCFA-starches were reduced while paste clarity increased. The highest level of modification in SCFA-starch was associated with the highest amount of resistant starch fraction. Principal component analysis revealed that modification levels exerted a greater influence on starch properties than the types of SCFA used (acetyl, propionyl, and butyryl). These findings is importance in considering the degree of substitution or level of modification when tailoring starch properties through SCFA modification, with implications for various applications in food applications.
Collapse
Affiliation(s)
- N Abdul Hadi
- Department of Food Technology, Engineering, and Nutrition, Lund University, Box 124, 22100 Lund, Sweden; Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia.
| | - A Marefati
- Department of Food Technology, Engineering, and Nutrition, Lund University, Box 124, 22100 Lund, Sweden
| | - J Purhagen
- Department of Food Technology, Engineering, and Nutrition, Lund University, Box 124, 22100 Lund, Sweden
| | - M Rayner
- Department of Food Technology, Engineering, and Nutrition, Lund University, Box 124, 22100 Lund, Sweden; Science and Innovation Center, Oatly AB, Ideon Science Park, Scheelevägen 19, 22363 Lund, Sweden
| |
Collapse
|
7
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
8
|
Cheng J, Zhou J. Unraveling the gut health puzzle: exploring the mechanisms of butyrate and the potential of High-Amylose Maize Starch Butyrate (HAMSB) in alleviating colorectal disturbances. Front Nutr 2024; 11:1285169. [PMID: 38304546 PMCID: PMC10830644 DOI: 10.3389/fnut.2024.1285169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
Colorectal disturbances encompass a variety of disorders that impact the colon and rectum, such as colitis and colon cancer. Butyrate, a short-chain fatty acid, plays a pivotal role in supporting gut health by nourishing colonocytes, promoting barrier function, modulating inflammation, and fostering a balanced microbiome. Increasing colorectal butyrate concentration may serve as a critical strategy to improve colon function and reduce the risk of colorectal disturbances. Butyrylated high-amylose maize starch (HAMSB) is an edible ingredient that efficiently delivers butyrate to the colon. HAMSB is developed by esterifying a high-amylose starch backbone with butyric anhydride. With a degree of substitution of 0.25, each hydroxy group of HAMSB is substituted by a butyryl group in every four D-glucopyranosyl units. In humans, the digestibility of HAMSB is 68% (w/w), and 60% butyrate molecules attached to the starch backbone is absorbed by the colon. One clinical trial yielded two publications, which showed that HAMSB significantly reduced rectal O6-methyl-guanine adducts and epithelial proliferation induced by the high protein diet. Fecal microbial profiles were assessed in three clinical trials, showing that HAMSB supplementation was consistently linked to increased abundance of Parabacteroides distasonis. In animal studies, HAMSB was effective in reducing the risk of diet- or AOM-induced colon cancer by reducing genetic damage, but the mechanisms differed. HAMSB functioned through affecting cecal ammonia levels by modulating colon pH in diet-induced cancer, while it ameliorated chemical-induced colon cancer through downregulating miR19b and miR92a expressions and subsequently activating the caspase-dependent apoptosis. Furthermore, animal studies showed that HAMSB improved colitis via regulating the gut immune modulation by inhibiting histone deacetylase and activating G protein-coupled receptors, but its role in bacteria-induced colon colitis requires further investigation. In conclusion, HAMSB is a food ingredient that may deliver butyrate to the colon to support colon health. Further clinical trials are warranted to validate earlier findings and determine the minimum effective dose of HAMSB.
Collapse
Affiliation(s)
- Junrui Cheng
- Global Scientific and Regulatory Department, Ingredion Incorporated, Bridgewater, NJ, United States
| | - Jing Zhou
- Global Scientific and Regulatory Department, Ingredion Incorporated, Bridgewater, NJ, United States
| |
Collapse
|
9
|
Jang YJ, Moon JS, Kim JE, Kim D, Choi HS, Oh I. Blending Three Probiotics Alleviates Loperamide-Induced Constipation in Sprague-Dawley (SD)-Rats. Food Sci Anim Resour 2024; 44:119-131. [PMID: 38229852 PMCID: PMC10789552 DOI: 10.5851/kosfa.2023.e61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 01/18/2024] Open
Abstract
BIOVITA 3 bacterial species (BIOVITA 3), a probiotic blend powder containing Clostridium butyricum IDCC 1301, Weizmannia coagulans IDCC 1201 and Bacillus subtilis IDCC 1101, has been used as a food ingredient for gut health. However, its efficacy in improving constipation has not been reported. Therefore, we aimed to investigate the functional effects of oral administration of BIOVITA 3 as well as its component strains alone (at 1.0×109 CFU/day) in Sprague-Dawley (SD) rats with loperamide-induced constipation. The study included fecal analysis, gastrointestinal transit ratio, histopathological analysis, short chain fatty acids (SCFAs), and metagenome analysis. As results, the BIOVITA 3 group showed significant improvements in fecal number, water content, gastrointestinal transit ratio, and thickening of the mucosal layer. In the SCFAs analysis, all probiotic-treated groups showed an increase in total SCFAs compared to the loperamide-constipated group. Changes in microbial abundance and the diversity index of three groups (normal, constipated, and BIOVITA 3) were also defined. Of these, the BIOVITA 3 showed a significant improvement in loperamide-constipated SD-rats. This study suggests the possibility that BIOVITA 3 can be applied as an ingredient in functional foods to relieve constipation.
Collapse
Affiliation(s)
- Ye-Ji Jang
- Research Laboratories at ILDONG
Pharmaceutical Co., Ltd., Hwaseong 18449, Korea
| | - Jin Seok Moon
- Research Laboratories at ILDONG
Pharmaceutical Co., Ltd., Hwaseong 18449, Korea
| | - Ji Eun Kim
- Research Laboratories at ILDONG
Pharmaceutical Co., Ltd., Hwaseong 18449, Korea
| | - Dayoung Kim
- Research Laboratories at ILDONG
Pharmaceutical Co., Ltd., Hwaseong 18449, Korea
| | - Han Sol Choi
- Research Laboratories at ILDONG
Pharmaceutical Co., Ltd., Hwaseong 18449, Korea
| | - Ikhoon Oh
- Research Laboratories at ILDONG
Pharmaceutical Co., Ltd., Hwaseong 18449, Korea
| |
Collapse
|
10
|
Deschamp AR, Chen Y, Wang WF, Rasic M, Hatch J, Sanders DB, Ranganathan SC, Ferkol T, Perkins D, Finn P, Davis SD. The association between gut microbiome and growth in infants with cystic fibrosis. J Cyst Fibros 2023; 22:1010-1016. [PMID: 37598041 PMCID: PMC10840679 DOI: 10.1016/j.jcf.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/24/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023]
Abstract
BACKGROUND In cystic fibrosis (CF), pathophysiologic changes in the gastrointestinal tract lead to malnutrition and altered gut microbiome. Microbiome alterations have been linked to linear growth, gut inflammation and respiratory manifestations. Elucidating these gut microbiome alterations may provide insight into future nutritional management in CF. METHODS Infants were followed for 12-months at four sites in the United States (US-CF) and Australia (AUS-CF). 16S rRNA gene sequencing was performed on longitudinal stool samples. Associations between microbial abundance and age, antibiotic prophylaxis, malnutrition, and breast feeding were evaluated using generalized linear mixed models. Taxonomic and predictive functional features were compared between groups. RESULTS Infants with CF (N = 78) were enrolled as part of a larger study. AUS-CF infants had higher mean weight-for-age z-scores than US-CF infants (p = 0.02). A subset of participants (CF N = 40, non-CF disease controls N = 10) provided stool samples for microbiome analysis. AUS-CF infants had lower stool alpha diversity compared to US-CF infants (p < 0.001). AUS-CF infants had higher relative abundance of stool Proteobacteria compared to US-CF infants which was associated with antibiotic prophylaxis (p < 0.001). Malnutrition (weight-for-age <10th percentile) was associated with depleted Lactococcus (p < 0.001). Antibiotic prophylaxis (p = 0.002) and malnutrition (p = 0.012) were linked with predicted decreased activity of metabolic pathways responsible for short chain fatty acid processing. CONCLUSIONS In infants with CF, gut microbiome composition and diversity differed between the two continents. Gut microbial diversity was not linked to growth. The relationship between malnutrition and antibiotic prophylaxis with reduced SCFA fermentation could have implications for gut health and function and warrants additional investigation.
Collapse
Affiliation(s)
- A R Deschamp
- Indiana University School of Medicine, Riley Children's Hospital, 340 10th Street, Indianapolis, IN 46202, United States of America.
| | - Y Chen
- University of Illinois Chicago, 1200 West Harrison Street, Chicago, Illinois 60607, United States of America
| | - W F Wang
- University of Illinois Chicago, 1200 West Harrison Street, Chicago, Illinois 60607, United States of America
| | - M Rasic
- University of Illinois Chicago, 1200 West Harrison Street, Chicago, Illinois 60607, United States of America
| | - J Hatch
- Indiana University School of Medicine, Riley Children's Hospital, 340 10th Street, Indianapolis, IN 46202, United States of America
| | - D B Sanders
- Indiana University School of Medicine, Riley Children's Hospital, 340 10th Street, Indianapolis, IN 46202, United States of America
| | - S C Ranganathan
- Royal Children's Hospital, Murdoch Children's Research Institute, 50 Flemington Road, Parkville, Victoria 3052, Australia
| | - T Ferkol
- Washington University, 660 S Euclid Ave, St. Louis, MO 63110, United States of America
| | - D Perkins
- University of Illinois Chicago, 1200 West Harrison Street, Chicago, Illinois 60607, United States of America
| | - P Finn
- University of Illinois Chicago, 1200 West Harrison Street, Chicago, Illinois 60607, United States of America
| | - S D Davis
- Indiana University School of Medicine, Riley Children's Hospital, 340 10th Street, Indianapolis, IN 46202, United States of America
| |
Collapse
|
11
|
Rasouli-Saravani A, Jahankhani K, Moradi S, Gorgani M, Shafaghat Z, Mirsanei Z, Mehmandar A, Mirzaei R. Role of microbiota short-chain fatty acid chains in the pathogenesis of autoimmune diseases. Biomed Pharmacother 2023; 162:114620. [PMID: 37004324 DOI: 10.1016/j.biopha.2023.114620] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
There is emerging evidence that microbiota and its metabolites play an important role in helath and diseases. In this regard, gut microbiota has been found as a crucial component that influences immune responses as well as immune-related disorders such as autoimmune diseases. Gut bacterial dysbiosis has been shown to cause disease and altered microbiota metabolite synthesis, leading to immunological and metabolic dysregulation. Of note, microbiota in the gut produce short-chain fatty acids (SCFAs) such as acetate, butyrate, and propionate, and remodeling in these microbiota metabolites has been linked to the pathophysiology of a number of autoimmune disorders such as type 1 diabetes, multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, celiac disease, and systemic lupus erythematosus. In this review, we will address the most recent findings from the most noteworthy studies investigating the impact of microbiota SCFAs on various autoimmune diseases.
Collapse
Affiliation(s)
- Ashkan Rasouli-Saravani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shadi Moradi
- Department of Immunology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Melika Gorgani
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirsanei
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirreza Mehmandar
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
Can butyrate prevent colon cancer? The AusFAP study: A randomised, crossover clinical trial. Contemp Clin Trials Commun 2023; 32:101092. [PMID: 36852101 PMCID: PMC9958425 DOI: 10.1016/j.conctc.2023.101092] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 02/16/2023] Open
Abstract
Increased colonic butyrate from microbial fermentation of fibre may protect from colorectal cancer (CRC). Dietary butyrylated high amylose maize starch (HAMSB) delivers butyrate to the large bowel. The objective of this clinical trial (AusFAP) is to evaluate potential chemoprotective effects of HAMSB on polyposis in individuals with a genetic form of colon cancer, Familial Adenomatous Polyposis (FAP). The study is a multi-site, double blind, randomised, placebo-controlled crossover trial undertaken at major hospitals in Australia. After a baseline endoscopy participants consume either 40g/day of HAMSB or placebo (low amylose maize) starch for 26 weeks. After another endoscopic examination participants consume the alternate starch for 26 weeks. A third endoscopy at 52 weeks is followed by 26 weeks' washout and a final endoscopy at 78 weeks. Primary outcome measure is the global large bowel polyp number. Secondary measures include global polyp size counts, and number and size of polyps at two tattoo sites: one cleared of polyps at baseline, and another safely chosen with polyps left in situ during the study. Other secondary outcome measures include the effects of intervention on cellular proliferation in colonic biopsies, faecal measures including short chain fatty acid concentrations, and participants' dietary intakes. Generalized linear mixed models analysis will be used to estimate differences in primary outcomes between intervention and placebo periods. This study represents the first clinical evaluation of the effects of increased colonic butyrate on polyp burden in FAP which, if effective, may translate to lower risk of sporadic CRC in the community. Australian New Zealand Clinical Trials Registry Number: 12612000804886.
Collapse
|
13
|
Hernandez-Hernandez O, Julio-Gonzalez LC, Doyagüez EG, Gutiérrez TJ. Potentially Health-Promoting Spaghetti-Type Pastas Based on Doubly Modified Corn Starch: Starch Oxidation via Wet Chemistry Followed by Organocatalytic Butyrylation Using Reactive Extrusion. Polymers (Basel) 2023; 15:polym15071704. [PMID: 37050319 PMCID: PMC10097208 DOI: 10.3390/polym15071704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 03/23/2023] [Indexed: 04/14/2023] Open
Abstract
Extruded spaghetti-type pasta systems were obtained separately either from native or oxidized starch prepared via wet chemistry with the aim of evaluating the effect of oxidation modification of starch. In addition to this, the butyrylation reaction (butyrate (Bu) esterification-short-chain fatty acid) using native or oxidized starch was analyzed under reactive extrusion (REx) conditions with and without the addition of a green food-grade organocatalyst (l(+)-tartaric acid) with the purpose of developing potentially health-promoting spaghetti-type pasta systems in terms of increasing its resistant starch (RS) values. These would be due to obtaining organocatalytic butyrylated starch or not, or the manufacture of a doubly modified starch (oxidized-butyrylated-starch oxidation followed by organocatalytic butyrylation) or not. To this end, six pasta systems were developed and characterized by solid-state 13C cross-polarization magic angle spinning nuclear magnetic resonance (CP MAS NMR) spectroscopy, degree of substitution (DS), attenuated total reflectance Fourier transform infrared (ATR/FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), pancreatic digestion, free Bu content analysis and in vitro starch digestibility. The results obtained here suggest that starch oxidation hydrolytically degrades starch chains, making them more susceptible to enzymatic degradation by α-amylase. However, the oxidized starch-based pasta systems, once esterified by Bu mainly on the amylose molecules (doubly modified pasta systems) increased their RS values, and this was more pronounced with the addition of the organocatalyst (maximum RS value = ~8%). Interestingly, despite the checked chemical changes that took place on the molecular structure of starch upon butyrylation or oxidation reactions in corn starch-based spaghetti-type pasta systems, and their incidence on starch digestibility, the orthorhombic crystalline structure (A-type starch) of starch remained unchanged.
Collapse
Affiliation(s)
| | | | - Elisa G Doyagüez
- Centro de Química Orgánica "Lora Tamayo" (CSIC), Juan de la Cierva 3, 28006 Madrid, Spain
| | - Tomy J Gutiérrez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, Mar del Plata B7608FLC, Argentina
| |
Collapse
|
14
|
Pedersen SS, Prause M, Sørensen C, Størling J, Moritz T, Mariño E, Billestrup N. Targeted Delivery of Butyrate Improves Glucose Homeostasis, Reduces Hepatic Lipid Accumulation and Inflammation in db/db Mice. Int J Mol Sci 2023; 24:4533. [PMID: 36901964 PMCID: PMC10002599 DOI: 10.3390/ijms24054533] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Butyrate produced by the gut microbiota has beneficial effects on metabolism and inflammation. Butyrate-producing bacteria are supported by diets with a high fiber content, such as high-amylose maize starch (HAMS). We investigated the effects of HAMS- and butyrylated HAMS (HAMSB)-supplemented diets on glucose metabolism and inflammation in diabetic db/db mice. Mice fed HAMSB had 8-fold higher fecal butyrate concentration compared to control diet-fed mice. Weekly analysis of fasting blood glucose showed a significant reduction in HAMSB-fed mice when the area under the curve for all five weeks was analyzed. Following treatment, fasting glucose and insulin analysis showed increased homeostatic model assessment (HOMA) insulin sensitivity in the HAMSB-fed mice. Glucose-stimulated insulin release from isolated islets did not differ between the groups, while insulin content was increased by 36% in islets of the HAMSB-fed mice. Expression of insulin 2 was also significantly increased in islets of the HAMSB-fed mice, while no difference in expression of insulin 1, pancreatic and duodenal homeobox 1, MAF bZIP transcription factor A and urocortin 3 between the groups was observed. Hepatic triglycerides in the livers of the HAMSB-fed mice were significantly reduced. Finally, mRNA markers of inflammation in liver and adipose tissue were reduced in mice fed HAMSB. These findings suggest that HAMSB-supplemented diet improves glucose metabolism in the db/db mice, and reduces inflammation in insulin-sensitive tissues.
Collapse
Affiliation(s)
- Signe Schultz Pedersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 København, Denmark
| | - Michala Prause
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 København, Denmark
| | - Christina Sørensen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 København, Denmark
| | - Joachim Størling
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 København, Denmark
- Steno Diabetes Center Copenhagen, 2730 Herlev, Denmark
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 København, Denmark
| | - Eliana Mariño
- Infection and Immunity Program, Biomedicine Discovery Institute, Department of Biochemistry, Monash University, Melbourne, VIC 3800, Australia
| | - Nils Billestrup
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 København, Denmark
| |
Collapse
|
15
|
Song Y, Qu X, Guo M, Hu Q, Mu Y, Hao N, Wei Y, Wang Q, Mackay CR. Indole acetylated high-amylose maize starch: Synthesis, characterization and application for amelioration of colitis. Carbohydr Polym 2023; 302:120425. [PMID: 36604087 DOI: 10.1016/j.carbpol.2022.120425] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
Tryptophan metabolites such as indole-3-acetic acid (IAA) are critical for gut health, through their binding to the aryl hydrocarbon receptor (AhR), and may be useful for treatment of gastrointestinal diseases. Delivery of IAA to the colon is necessary, and one strategy is use of esterified starches which get digested in the colon by gut microbes. High amylose maize starch (HAMS) resists digestion in the upper gastrointestinal tract and is fermented by gut microbiota to release short-chain fatty acids (SCFAs), which are also beneficial to intestinal homeostasis. IAA esterified to HAMS (HAMSIAA) was synthesized with different degrees of substitution (DSs) by controlling the ratio of IAA vs HAMS. Successful incorporation of indole acetyl group was verified by NMR and FTIR spectra. XRD revealed that the crystalline type of HAMSIAA changed from B to V-type. SEM showed the destroyed surface of the starch granules. HAMSIAA with DS ~ 0.3 effectively increased IAA in the colon, to levels unachievable by oral IAA delivery. HAMSIAA increased pathways downstream of AhR activation, including CYP1A1 mRNA expression and IL-22 protein levels, and greatly improved DSS-induced colitis. HAMSIAA could serve as an ideal means for colon-targeted delivery of IAA and a promising nutraceutical for amelioration of inflammatory conditions.
Collapse
Affiliation(s)
- Yingying Song
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Xinyan Qu
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Mei Guo
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Qiongzheng Hu
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yan Mu
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Na Hao
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yunbo Wei
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Quanbo Wang
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Charles R Mackay
- Laboratory of Immunology for Environment and Health, School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China; Department of Microbiology, Infection and Immunity Program, Biomedicine Discovery Institute, Monash University, Melbourne 3800, Australia.
| |
Collapse
|
16
|
Microbiota-derived acetate enhances host antiviral response via NLRP3. Nat Commun 2023; 14:642. [PMID: 36746963 PMCID: PMC9901394 DOI: 10.1038/s41467-023-36323-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
Pathogenic viral infections represent a major challenge to human health. Host immune responses to respiratory viruses are closely associated with microbiome and metabolism via the gut-lung axis. It has been known that host defense against influenza A virus (IAV) involves activation of the NLRP3 inflammasome, however, mechanisms behind the protective function of NLRP3 are not fully known. Here we show that an isolated bacterial strain, Bifidobacterium pseudolongum NjM1, enriched in the gut microbiota of Nlrp3-/- mice, protects wild-type but not Nlrp3 deficient mice against IAV infection. This effect depends on the enhanced production of type I interferon (IFN-I) mediated by NjM1-derived acetate. Application of exogenous acetate reproduces the protective effect of NjM1. Mechanistically, NLRP3 bridges GPR43 and MAVS, and promotes the oligomerization and signalling of MAVS; while acetate enhances MAVS aggregation upon GPR43 engagement, leading to elevated IFN-I production. Thus, our data support a model of NLRP3 mediating enhanced induction of IFN-I via acetate-producing bacterium and suggest that the acetate-GPR43-NLRP3-MAVS-IFN-I signalling axis is a potential therapeutic target against respiratory viral infections.
Collapse
|
17
|
Jama HA, Rhys-Jones D, Nakai M, Yao CK, Climie RE, Sata Y, Anderson D, Creek DJ, Head GA, Kaye DM, Mackay CR, Muir J, Marques FZ. Prebiotic intervention with HAMSAB in untreated essential hypertensive patients assessed in a phase II randomized trial. NATURE CARDIOVASCULAR RESEARCH 2023; 2:35-43. [PMID: 39196205 DOI: 10.1038/s44161-022-00197-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/23/2022] [Indexed: 08/29/2024]
Abstract
Fibers remain undigested until they reach the colon, where some are fermented by gut microbiota, producing metabolites called short-chain fatty acids (SCFAs), such as acetate and butyrate1. SCFAs lower blood pressure in experimental models2-5, but their translational potential is unknown. Here we present the results of a phase II, randomized, placebo-controlled, double-blind cross-over trial (Australian New Zealand Clinical Trials Registry ACTRN12619000916145) using prebiotic acetylated and butyrylated high-amylose maize starch (HAMSAB) supplementation6. Twenty treatment-naive participants with hypertension were randomized to 40 g per day of HAMSAB or placebo, completing each arm for 3 weeks, with a 3-week washout period between them. The primary endpoint was a reduction in ambulatory systolic blood pressure. Secondary endpoints included changes to circulating cytokines, immune markers and gut microbiome modulation. Patients receiving the HAMSAB treatment showed a clinically relevant reduction in 24-hour systolic blood pressure independent of age, sex and body mass index without any adverse effects. HAMSAB increased levels of acetate and butyrate, shifted the microbial ecosystem and expanded the prevalence of SCFA producers. In summary, a prebiotic intervention with HAMSAB could represent a promising option to deliver SCFAs and lower blood pressure in patients with essential hypertension.
Collapse
Affiliation(s)
- Hamdi A Jama
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia
| | - Dakota Rhys-Jones
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Michael Nakai
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia
| | - Chu K Yao
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Rachel E Climie
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Sports Cardiology Laboratory, Clinical Research Domain, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Yusuke Sata
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Geoffrey A Head
- Neuropharmacology Laboratory, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Pharmacology, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - David M Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, VIC, Australia
- Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Charles R Mackay
- Department of Microbiology, Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health, Monash University, Clayton, VIC, Australia
- School of Pharmaceutical Sciences, Shandong Analysis and Test Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jane Muir
- Department of Gastroenterology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Francine Z Marques
- Hypertension Research Laboratory, School of Biological Sciences, Faculty of Science, Monash University, Clayton, VIC, Australia.
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
18
|
Vidal NP, Bai W, Geng M, Martinez MM. Organocatalytic acetylation of pea starch: Effect of alkanoyl and tartaryl groups on starch acetate performance. Carbohydr Polym 2022; 294:119780. [PMID: 35868756 DOI: 10.1016/j.carbpol.2022.119780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/20/2022] [Accepted: 06/22/2022] [Indexed: 11/23/2022]
Abstract
Organocatalytic acetylation of pea starch was systematically optimized using tartaric acid as catalyst. The effect of the degree of substitution with alkanoyl (DSacyl) and tartaryl groups (DStar) on thermal and moisture resistivity, and film-forming properties was investigated. Pea starch with DSacyl from 0.03 to 2.8 was successfully developed at more efficient reaction rates than acetylated maize starch. Nevertheless, longer reaction time resulted in granule surface roughness, loss of birefringence, hydrolytic degradation, and a DStar up to 0.5. Solid-state 13C NMR and SEC-MALS-RI suggested that tartaryl groups formed crosslinked di-starch tartrate. Acetylation increased the hydrophobicity, degradation temperature (by ~17 %), and glass transition temperature (by up to ~38 %) of pea starch. The use of organocatalytically-acetylated pea starch with DSacyl ≤ 0.39 generated starch-based biofilms with higher tensile and water barrier properties. Nevertheless, at higher DS, the incompatibility between highly acetylated and native pea starches resulted in a heterogenous/microporous structure that worsened film properties.
Collapse
Affiliation(s)
- Natalia P Vidal
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark; Aarhus Institute of Advanced Studies (AIAS), Aarhus University, DK-8000 Aarhus, Denmark
| | - Wenqiang Bai
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark
| | - Mingwei Geng
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mario M Martinez
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, AgroFood Park 48, Aarhus N 8200, Denmark.
| |
Collapse
|
19
|
Nikiforov-Nikishin A, Smorodinskaya S, Kochetkov N, Nikiforov-Nikishin D, Danilenko V, Bugaev O, Vatlin A, Abrosimova N, Antipov S, Kudryavtsev A, Klimov V. Effects of Three Feed Additives on the Culturable Microbiota Composition and Histology of the Anterior and Posterior Intestines of Zebrafish ( Danio rerio). Animals (Basel) 2022; 12:2424. [PMID: 36139282 PMCID: PMC9495144 DOI: 10.3390/ani12182424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
In this study, the effect of three promising feed additives (chelated compounds of trace elements, butyric acid, lycopene) on changes in the culturable microbiota and histological parameters of two sections of the intestines of Danio rerio (zebrafish) was studied. The use of these feed additives can help to eliminate the deficiency of trace elements, modulate the composition of the microbiota due to the postbiotic properties of butyric acid, and reduce oxidative stress when using lycopene. Incorporation of the investigated supplements in the feed resulted in a significant change in the relative abundance of certain groups of microorganisms. The taxonomic diversity of cultured microorganisms did not differ in the anterior and posterior intestines, while there were differences in the relative abundance of these microorganisms. The most sensitive groups of microorganisms were the genera Bacillus and Serratia. A significant effect on the composition of the cultured microbiota was caused by lycopene (in all studied concentrations), leading to a significant increase in the relative abundance of Firmicutes in the anterior gut. Studies of the histological structure of the anterior and posterior guts have shown the relationship between the barrier and secretory functions of the gut and the composition of the microbiota while using butyric acid (1 and 2 g kg-1) and trace element chelated compounds (2 mg kg-1). This culture-dependent method of studying the microbiome makes it possible to assess changes in some representatives of the main groups of microorganisms (Firmicutes and Proteobacteria). Despite the incompleteness of the data obtained by the culture-dependent method, its application makes it possible to assess the bioactive properties of feed and feed additives and their impact on the microbiota involved in digestive processes.
Collapse
Affiliation(s)
- Alexei Nikiforov-Nikishin
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| | - Svetlana Smorodinskaya
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| | - Nikita Kochetkov
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| | - Dmitry Nikiforov-Nikishin
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| | - Valery Danilenko
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Oleg Bugaev
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| | - Aleksey Vatlin
- Laboratory of Bacterial Genetics, Vavilov Institute of General Genetics, Russian Academy of Sciences, 119333 Moscow, Russia
| | - Nina Abrosimova
- Department of Aquaculture Techniques, Don State Technical University, Gagarin Square 1, 344003 Rostov-on-Don, Russia
| | - Sergei Antipov
- Department of Biophysics and Biotechnology, Voronezh State University, University Square 1, 394063 Voronezh, Russia
| | - Alexander Kudryavtsev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Viktor Klimov
- Faculty of Biotechnology and Fisheries, Moscow State University of Technologies and Management (FCU), 73 Zemlyanoy Val Str., 109004 Moscow, Russia
| |
Collapse
|
20
|
Starch acylation of different short-chain fatty acids and its corresponding influence on gut microbiome and diabetic indexes. Food Chem 2022; 389:133089. [DOI: 10.1016/j.foodchem.2022.133089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/29/2022] [Accepted: 04/24/2022] [Indexed: 12/21/2022]
|
21
|
Zhou S, Zhu W, Qin X, Li S, Chu W. Synthesis and Evaluation of Antioxidant and Potential Prebiotic Activities of Acetylated and Butyrylated Fructo-Oligosaccharides. Antioxidants (Basel) 2022; 11:antiox11091658. [PMID: 36139732 PMCID: PMC9495569 DOI: 10.3390/antiox11091658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/09/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Fructo-oligosaccharides (FOS) have well-known bifidogenic effects as probiotics. In this study, esterification was adopted for FOS modification to produce better prebiotic properties. We synthesized and characterized acetylated fructo-oligosaccharides (Ac-FOS) and butyrylated fructo-oligosaccharides (Bu-FOS) as candidate prebiotics. Antioxidant activity and prebiotic esactiviti were evaluated as important indicators. We found, surprisingly, that butyrylation was an effective method in significantly improving the antioxidant activity of FOS. The fermentation products of feces from mice added to Ac-FOS and Bu-FOS, were investigated in vitro, including changes of pH values, short-chain fatty acids (SCFAs) production, and microbiota composition. Supplementation of Ac-FOS or Bu-FOS increased pH values and promoted the growth and activity of beneficial intestinal bacteria, such as Bifidobacteria and Lactobacillus. More importantly, the levels of prebiotic SCFAs were obviously elevated as detected by Gas Chromatography–Mass Spectrometry (GC-MS). Results suggest that Ac-FOS and Bu-FOS have great potential applications in SCFA delivery systems and gut microbiota regulation.
Collapse
Affiliation(s)
- Shuxin Zhou
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Zhu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Xianjin Qin
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- School of Pharmaceutical Science, Peking University, Beijing 100089, China
| | - Shipo Li
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Weihua Chu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
- Correspondence:
| |
Collapse
|
22
|
Cuervo-Zanatta D, Syeda T, Sánchez-Valle V, Irene-Fierro M, Torres-Aguilar P, Torres-Ramos MA, Shibayama-Salas M, Silva-Olivares A, Noriega LG, Torres N, Tovar AR, Ruminot I, Barros LF, García-Mena J, Perez-Cruz C. Dietary Fiber Modulates the Release of Gut Bacterial Products Preventing Cognitive Decline in an Alzheimer's Mouse Model. Cell Mol Neurobiol 2022; 43:1595-1618. [PMID: 35953741 DOI: 10.1007/s10571-022-01268-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/28/2022] [Indexed: 12/11/2022]
Abstract
Fiber intake is associated with a lower risk for Alzheimer´s disease (AD) in older adults. Intake of plant-based diets rich in soluble fiber promotes the production of short-chain fatty acids (SCFAs: butyrate, acetate, propionate) by gut bacteria. Butyrate administration has antiinflammatory actions, but propionate promotes neuroinflammation. In AD patients, gut microbiota dysbiosis is a common feature even in the prodromal stages of the disease. It is unclear whether the neuroprotective effects of fiber intake rely on gut microbiota modifications and specific actions of SCFAs in brain cells. Here, we show that restoration of the gut microbiota dysbiosis through the intake of soluble fiber resulted in lower propionate and higher butyrate production, reduced astrocyte activation and improved cognitive function in 6-month-old male APP/PS1 mice. The neuroprotective effects were lost in antibiotic-treated mice. Moreover, propionate promoted higher glycolysis and mitochondrial respiration in astrocytes, while butyrate induced a more quiescent metabolism. Therefore, fiber intake neuroprotective action depends on the modulation of butyrate/propionate production by gut bacteria. Our data further support and provide a mechanism to explain the beneficial effects of dietary interventions rich in soluble fiber to prevent dementia and AD. Fiber intake restored the concentration of propionate and butyrate by modulating the composition of gut microbiota in male transgenic (Tg) mice with Alzheimer´s disease. Gut dysbiosis was associated with intestinal damage and high propionate levels in control diet fed-Tg mice. Fiber-rich diet restored intestinal integrity and promoted the abundance of butyrate-producing bacteria. Butyrate concentration was associated with better cognitive performance in fiber-fed Tg mice. A fiber-rich diet may prevent the development of a dysbiotic microbiome and the related cognitive dysfunction in people at risk of developing Alzheimer´s disease.
Collapse
Affiliation(s)
- Daniel Cuervo-Zanatta
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México.,Laboratorio de Referencia y Soporte Para Genomas, Transcriptomas y Caracterización de Microbiomas, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Tauqeerunnisa Syeda
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Vicente Sánchez-Valle
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Mariangel Irene-Fierro
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México
| | - Pablo Torres-Aguilar
- Unidad Periférica de Neurociencias, Instituto de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Ciudad de Mexico, 14269, México
| | - Mónica Adriana Torres-Ramos
- Unidad Periférica de Neurociencias, Instituto de Neurología y Neurocirugía Manuel Velasco Suárez (INNNMVS), Ciudad de Mexico, 14269, México
| | - Mineko Shibayama-Salas
- Departmento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, 07360, Ciudad de Mexico, Mexico
| | - Angélica Silva-Olivares
- Departmento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, 07360, Ciudad de Mexico, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y de la Nutrición "Salvador Zubiran" (INCMNSZ), 14080, Ciudad de México, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y de la Nutrición "Salvador Zubiran" (INCMNSZ), 14080, Ciudad de México, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y de la Nutrición "Salvador Zubiran" (INCMNSZ), 14080, Ciudad de México, Mexico
| | - Iván Ruminot
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - L Felipe Barros
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Jaime García-Mena
- Laboratorio de Referencia y Soporte Para Genomas, Transcriptomas y Caracterización de Microbiomas, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México.
| | - Claudia Perez-Cruz
- Laboratorio de Neuroplasticidad y Neurodegeneración, Departamento de Farmacologia, Centro de Investigación y de Estudios Avanzados del I.P.N. (Cinvestav), Av. IPN 2508, Ciudad de Mexico, 07360, México.
| |
Collapse
|
23
|
Snelson M, Rampanelli E, Nieuwdorp M, Hanssen NMJ, Coughlan MT. Microbial influencers: treating diabetes through the gut. Immunol Cell Biol 2022; 100:390-393. [DOI: 10.1111/imcb.12558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Matthew Snelson
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School Monash University Melbourne VIC Australia
| | - Elena Rampanelli
- Department of Experimental Vascular Medicine, Amsterdam University Medical Center, Location AMC, Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM) Institute Amsterdam Institute for Infection and Immunity (AII) Amsterdam The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine Amsterdam University Medical Center, Location AMC Amsterdam The Netherlands
| | - Nordin MJ Hanssen
- Diabetes Centrum, Department of Internal and Vascular Medicine Amsterdam University Medical Center Amsterdam The Netherlands
| | - Melinda T Coughlan
- Glycation, Nutrition and Metabolism Laboratory, Department of Diabetes, Central Clinical School Monash University Melbourne VIC Australia
| |
Collapse
|
24
|
O'Riordan KJ, Collins MK, Moloney GM, Knox EG, Aburto MR, Fülling C, Morley SJ, Clarke G, Schellekens H, Cryan JF. Short chain fatty acids: Microbial metabolites for gut-brain axis signalling. Mol Cell Endocrinol 2022; 546:111572. [PMID: 35066114 DOI: 10.1016/j.mce.2022.111572] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 02/08/2023]
Abstract
The role of the intestinal microbiota as a regulator of gut-brain axis signalling has risen to prominence in recent years. Understanding the relationship between the gut microbiota, the metabolites it produces, and the brain will be critical for the subsequent development of new therapeutic approaches, including the identification of novel psychobiotics. A key focus in this regard have been the short-chain fatty acids (SCFAs) produced by bacterial fermentation of dietary fibre, which include butyrate, acetate, and propionate. Ongoing research is focused on the entry of SCFAs into systemic circulation from the gut lumen, their migration to cerebral circulation and across the blood brain barrier, and their potential to exert acute and chronic effects on brain structure and function. This review aims to discuss our current mechanistic understanding of the direct and indirect influence that SCFAs have on brain function, behaviour and physiology, which will inform future microbiota-targeted interventions for brain disorders.
Collapse
Affiliation(s)
| | - Michael K Collins
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - Emily G Knox
- APC Microbiome Ireland, University College Cork, Ireland; School of Pharmacy, University College Cork, Ireland
| | - María R Aburto
- APC Microbiome Ireland, University College Cork, Ireland
| | | | - Shane J Morley
- APC Microbiome Ireland, University College Cork, Ireland
| | - Gerard Clarke
- APC Microbiome Ireland, University College Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - Harriët Schellekens
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy & Neuroscience, University College Cork, Ireland.
| |
Collapse
|
25
|
He Y, Shi L, Qi Y, Wang Q, Zhao J, Zhang H, Wang G, Chen W. Butylated starch alleviates polycystic ovary syndrome by stimulating the secretion of peptide tyrosine-tyrosine and regulating faecal microbiota. Carbohydr Polym 2022; 287:119304. [DOI: 10.1016/j.carbpol.2022.119304] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 01/26/2023]
|
26
|
Kang S, You HJ, Ju Y, Kim HJ, Jeong YJ, Johnston TV, Ji GE, Ku S, Park MS. Butyl-fructooligosaccharides modulate gut microbiota in healthy mice and ameliorate ulcerative colitis in a DSS-induced model. Food Funct 2022; 13:1834-1845. [DOI: 10.1039/d1fo03337a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Butyl-fructooligosaccharides (B-FOSs) are newly synthesized prebiotics composed of short-chain FOS (GF2, 1-kestose; GF3, nystose; GF4, fructofuranosyl-nystose; GF5, 1-F-(1-b-D-fructofuranosyl)-2-nystose) bound with one or two butyric groups by ester bonds. Previous in...
Collapse
|
27
|
Organocatalytic esterification of polysaccharides for food applications: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
28
|
Nakamori H, Iida K, Hashitani H. Mechanisms underlying the prokinetic effects of endogenous glucagon-like peptide-1 in the rat proximal colon. Am J Physiol Gastrointest Liver Physiol 2021; 321:G617-G627. [PMID: 34643099 DOI: 10.1152/ajpgi.00175.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 01/31/2023]
Abstract
Glucagon-like peptide-1 (GLP-1), a well-known insulin secretagogue, is released from enteroendocrine L cells both luminally and basolaterally to exert different effects. Basolaterally released GLP-1 increases epithelial ion transport by activating CGRP-containing enteric afferent neurons. Although bath-applied GLP-1 reduced the contractility of colonic segments, GLP-1-induced stimulation of afferent neurons could also accelerate peristaltic contractions. Here, the roles of endogenous GLP-1 in regulating colonic peristalsis were investigated using isolated colonic segments. Isolated segments of rat proximal colon were placed in an organ bath, serosally perfused with oxygenated physiological salt solution, and luminally perfused with degassed 0.9% saline. Colonic wall motion was recorded using a video camera and converted into spatiotemporal maps. Intraluminal administration of GLP-1 (100 nM) stimulating the secretion of GLP-1 from L cells increased the frequency of oro-aboral propagating peristaltic contractions. The acceleratory effect of GLP-1 was blocked by luminally applied exendin-3 (9-39) (100 nM), a GLP-1 receptor antagonist. GLP-1-induced acceleration of peristaltic contractions was also prevented by bath-applied BIBN4069 (1 μM), a CGRP receptor antagonist. In colonic segments that had been exposed to bath-applied capsaicin (100 nM) that desensitizes extrinsic afferents, GLP-1 was still capable of exerting its prokinetic effect. Stimulation of endogenous GLP-1 secretion with a luminally applied cocktail of short-chain fatty acids (1 mM) increased the frequency of peristaltic waves in an exendin-3 (9-39)-sensitive manner. Thus, GLP-1 activates CGRP-expressing intrinsic afferents to accelerate peristalsis in the proximal colon. Short-chain fatty acids appear to stimulate endogenous GLP-1 secretion from L cells resulting in the acceleration of colonic peristalsis.NEW & NOTEWORTHY Glucagon-like peptide-1 (GLP-1) activates CGRP-containing intrinsic afferent neurons resulting in the acceleration of colonic peristalsis. Short-chain fatty acids stimulate the secretion of endogenous GLP-1 from L cells that accelerates colonic peristalsis. Thus, besides the well-known humoral insulinotropic action, GLP-1 exerts a local action via the activation of the enteric nervous system to accelerate colonic motility. Such a prokinetic action of GLP-1 could underlie the mechanisms causing diarrhea in patients with type-2 diabetes treated with GLP-1 analogs.
Collapse
Affiliation(s)
- Hiroyuki Nakamori
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Koji Iida
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hikaru Hashitani
- Department of Cell Physiology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
29
|
Ultrasonication enhanced the multi-scale structural characteristics of rice starch following short-chain fatty acids acylation. Int J Biol Macromol 2021; 190:333-342. [PMID: 34492246 DOI: 10.1016/j.ijbiomac.2021.08.227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 12/26/2022]
Abstract
Considering the variation of the diffusion character of the three anhydrides, ultrasonication was applied for investigating its impact on the reaction efficiency of the rice starch acylation from three short-chain fatty acids (SCFAs). The current data indicated that the signal peak of the FTIR spectrum at 1720 cm-1 and additional resonances in the NMR confirmed the occurrence of the acylation reaction onto the starch molecules. More interestingly, this is the first study to reveal that a lower power density ultrasonication improved the reaction efficiencies of acetylation (19%), while a higher power density could lead to a reduced acylation reactivity of propionylation compared to the control one. On the contrary, the reaction efficiency of butyrylation (64%) was significantly enhanced by the ultrasound-assisted treatment with a greater association between reaction efficiency and ultrasonic power density, indicating the importance of the diffusion character for impacting the acylation reactivity among these three anhydrides. The ultrasonic-assisted SCFAs-modified rice starch has a lower peak viscosity and setback value, indicating that the replacement of the acyl groups for OH groups in the starch avoids starch molecules rearrangement. Meanwhile, the rheological properties exhibited that the starch achieved from ultrasonic-assistance significantly reduced the area of the hysteresis curve, suggesting a destroyed gel textural property. Thus, an appropriate ultrasonication but not all could effectively enhance the acylation efficiency and improve starch rheological property.
Collapse
|
30
|
Wang R, Li M, Liu J, Wang F, Wang J, Zhou Z. Dual modification manipulates rice starch characteristics following debranching and propionate esterification. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2021.106833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Li M, Wang J, Wang F, Strappe P, Liu W, Zheng J, Zhou Z, Zhang Y. Microbiota fermentation characteristics of acylated starches and the regulation mechanism of short-chain fatty acids on hepatic steatosis. Food Funct 2021; 12:8659-8668. [PMID: 34346457 DOI: 10.1039/d1fo01226f] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Starches acylated with specific short-chain fatty acids (SCFAs) have the potential to provide specificity in SCFA delivery. It is well documented that SCFAs are involved in lipid metabolism, but the underlying mechanism is still unclear. For characterizing the fermentation properties of acylated starches with various SCFAs in terms of SCFA production, three different acylated starches were prepared following the esterification of high amylose maize starch (HAMS) using acetic anhydride, propionic anhydride and butyric anhydride, respectively. Compared with HAMS, the gut microbiota fermentation of acetylated, propionylated and butylated starches specifically increased the production of acetic acid, propionic acid, and butyric acid, respectively, indicating that the introduced acyl group can be effectively released during the fermentation process. Furthermore, the utilization of these starches generated more total SCFAs, suggesting that they can be effectively fermented by the microbiota as a carbohydrate substrate. Study on an in vitro model of cultured rat hepatocytes indicated that either mixed SCFAs or butyrate play an important role in regulating lipid metabolism via activating AMPK and PPAR signaling pathways, implying the importance of butyrate in the improvement of lipid metabolism and accumulation. This study may provide further understanding of the individual function of the corresponding SCFA.
Collapse
Affiliation(s)
- Mei Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jing Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Fenfen Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, Qld 4700, Australia.
| | - Wenting Liu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Jianxian Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. .,ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Ye Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China.
| |
Collapse
|
32
|
Tian P, Zhu H, Qian X, Chen Y, Wang Z, Zhao J, Zhang H, Wang G, Chen W. Consumption of Butylated Starch Alleviates the Chronic Restraint Stress-Induced Neurobehavioral and Gut Barrier Deficits Through Reshaping the Gut Microbiota. Front Immunol 2021; 12:755481. [PMID: 34603341 PMCID: PMC8485752 DOI: 10.3389/fimmu.2021.755481] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/02/2021] [Indexed: 01/22/2023] Open
Abstract
The beneficial effect of short-chain fatty acids (SCFAs) on host health has been well recognized based on the booming knowledge from gut microbiome research. The role of SCFA in influencing psychological function is highlighted in recent years but has not been fully elucidated. In this study, the SCFA-acylated starches were used to accomplish a sizeable intestine-targeted release of the SCFAs, and the neurobehavioral, immunological, and microbial effects were further investigated. Acetylated-, butylated-, and isobutylated-starch could attenuate the depression-like behaviors and excessive corticosterone production in chronically stressed mice. Butylated- starch significantly reduced the colonic permeability via increasing the tight junction proteins (including ZO-1, Claudin, and Occludin) gene expression and reduced the level of the inflammatory cytokines (including IL-1β and IL-6). The butylated starch's neurological and immunological benefits may be derived from the gut microbiome modifications, including normalizing the abundance of certain beneficial microbes (Odoribacter and Oscillibacter) and metabolomic pathways (Tryptophan synthesis and Inositol degradation). The present findings further validate the brain-beneficial effect of butyrate and offer novel guidance for developing novel food or dietary supplements for improving mental health.
Collapse
Affiliation(s)
- Peijun Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Huiyue Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xin Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ying Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zheng Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
- Wuxi Translational Medicine Research Center, Jiangsu Translational Medicine Research Institute, Wuxi, China
| | - Gang Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
33
|
Li M, Wang F, Wang J, Wang R, Strappe P, Zheng B, Zhou Z, Chen L. Manipulation of the internal structure of starch by propionyl treatment and its diverse influence on digestion and in vitro fermentation characteristics. Carbohydr Polym 2021; 270:118390. [PMID: 34364631 DOI: 10.1016/j.carbpol.2021.118390] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 06/26/2021] [Indexed: 10/21/2022]
Abstract
High amylose maize starch (HAMS) and waxy maize starch (WMS) were modified by propionylation and their corresponding physicochemical characteristics, digestion and fermentation properties were studied. The results indicated that two new peaks related to methylene (2.20 ppm) and methyl (0.97 ppm) in the NMR spectrum were formed, indicating the occurrence of propionylation, and this was further confirmed by the formation of a characteristic absorption at 1747 cm-1 in the FTIR spectrum. The propionylation led the modified starch having a lower electron density contrast between the crystalline and amorphous flakes, resulting in the formation of a more compact structure following the increased degrees of substitution (DS). The propionylated starch also had a higher thermal stability and hydrophobicity. These structural changes increased the content of resistant starch (RS) and reduced the predicted glycemic index. More importantly, the gut microbiota fermentation properties indicated that the propionylation of the starch can not only increase the yield of propionate, but also increase the concentration of total short-chain fatty acids (SCFAs). This study highlights a new approach to significantly enhance the RS content in starch, together with an increased SCFA generation capacity.
Collapse
Affiliation(s)
- Mei Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Fenfen Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jing Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Rui Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Padraig Strappe
- School of Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4700, Australia
| | - Bo Zheng
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Ling Chen
- Ministry of Education Engineering Research Center of Starch & Protein Processing, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
34
|
Preventing Colorectal Cancer through Prebiotics. Microorganisms 2021; 9:microorganisms9061325. [PMID: 34207094 PMCID: PMC8234836 DOI: 10.3390/microorganisms9061325] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC), the third most common cancer in the world, has been recently rising in emerging countries due to environmental and lifestyle factors. Many of these factors are brought up by industrialization, which includes lack of physical activity, poor diet, circadian rhythm disruption, and increase in alcohol consumption. They can increase the risk of CRC by changing the colonic environment and by altering gut microbiota composition, a state referred to as gut dysbiosis. Prebiotics, which are nutrients that can help maintain intestinal microbial homeostasis and mitigate dysbiosis, could be beneficial in preventing inflammation and CRC. These nutrients can hinder the effects of dysbiosis by encouraging the growth of beneficial bacteria involved in short-chain fatty acids (SCFA) production, anti-inflammatory immunity, maintenance of the intestinal epithelial barrier, pro-apoptotic mechanisms, and other cellular mechanisms. This review aims to summarize recent reports about the implication of prebiotics, and probable mechanisms, in the prevention and treatment of CRC. Various experimental studies, specifically in gut microbiome, have effectively demonstrated the protective effect of prebiotics in the progress of CRC. Hence, comprehensive knowledge is urgent to understand the clinical applications of prebiotics in the prevention or treatment of CRC.
Collapse
|
35
|
Li ZT, Hu GA, Zhu L, Zhao ZC, Yun Jiang, Gao MJ, Zhan XB. In vitro digestion and fecal fermentation of highly resistant starch rice and its effect on the gut microbiota. Food Chem 2021; 361:130095. [PMID: 34091400 DOI: 10.1016/j.foodchem.2021.130095] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/09/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023]
Abstract
Highly resistant starch rice (HRSR) is of particular interest in terms of its capacity to deliver short-chain fatty acids (SCFAs) to the colon in the prevention of diabetes mellitus and obesity. In this study, HRSR was processed into cooked rice, rice milk, rice cake, and rice popcorn, and the in vitro digestion and fermentation processes were monitored. The results showed that the starch digestibility of the four samples conformed to a first-order two-phase equation, and the resistant starch content of rice cake was the highest (11.98%). Compared with inulin, rice cake had a slower fermentation rate, and the butyrate concentration increased by 67.85%. The abundances of Prevotellaceae, which promotes the synthesis of SCFAs, and anti-inflammatory Faecalibacterium increased. The abundances of Proteobacteria and Megamonas, markers of gut microbiota imbalance, decreased. The results might facilitate the design and production of functional food products for type 2 diabetic and obese patients and improving colonic health.
Collapse
Affiliation(s)
- Zhi-Tao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guo-Ao Hu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Li Zhu
- Wuxi Galaxy Biotech Co. Ltd., Wuxi 214125, China
| | - Zhi-Chao Zhao
- Institute of crop science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Min-Jie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Xiao-Bei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
36
|
Xie Z, Ding L, Huang Q, Fu X, Liu F, Dhital S, Zhang B. In vitro colonic fermentation profiles and microbial responses of propionylated high-amylose maize starch by individual Bacteroides-dominated enterotype inocula. Food Res Int 2021; 144:110317. [PMID: 34053522 DOI: 10.1016/j.foodres.2021.110317] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 03/13/2021] [Accepted: 03/14/2021] [Indexed: 12/28/2022]
Abstract
The concept of "enterotype" has been proposed to differentiate the gut microbiota between individual humans, and different dominant bacteria utilize fiber substrates with different fermentation properties and microbial changes. In this study, we made propionylated high-amylose maize starch and investigated both in vitro fecal fermentation properties and microbial responses by individual Bacteroides-dominated enterotype inocula. Propionyl group substitution of HAMS did not significantly change gas production profiles, suggesting that the gas production during fermentation is independent of propionylation. The final concentration of released propionate significantly increased (10.26-12.60 mM) as a function of propionylation degree, suggesting that the introduced propionyl groups can increase the concentration of short-chain fatty acids (SCFA) during colonic fermentation. At the genus level, Bacteroides was obviously promoted for all donors with the final abundance in the range of 0.1-0.24, indicating that propionylated high-amylose maize starch changed the structure and abundance of microbiota compared to unmodified starch. Besides, the non-metric dimensional scoring (NMDS) plots showed that those changes were related to the initial microbiota composition. The results may offer useful information for the design of personalized food products and relevant therapies at least within Bacteroides-dominated enterotype.
Collapse
Affiliation(s)
- Zhuqing Xie
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Li Ding
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China
| | - Qiang Huang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiong Fu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Feitong Liu
- H&H Group Global Research and Technology Center, Guangzhou 510700, China
| | - Sushil Dhital
- Department of Chemical Engineering, Monash University, Clayton Campus, VIC 3800, Australia
| | - Bin Zhang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; SCUT-Zhuhai Institute of Modern Industrial Innovation, Zhuhai 519175, China; Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China; Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
37
|
Mu Y, Kinashi Y, Li J, Yoshikawa T, Kishimura A, Tanaka M, Matsui T, Mori T, Hase K, Katayama Y. Polyvinyl Butyrate Nanoparticles as Butyrate Donors for Colitis Treatment. ACS APPLIED BIO MATERIALS 2021; 4:2335-2341. [DOI: 10.1021/acsabm.0c01105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yunmei Mu
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yusuke Kinashi
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Jinting Li
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takuma Yoshikawa
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akihiro Kishimura
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Molecular System, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Mitsuru Tanaka
- Research and Development Center for Five-Sense Devices, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Toshiro Matsui
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Takeshi Mori
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Koji Hase
- Division of Biochemistry, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
- Division of Mucosal Barrierology, International Research and Development Center for Mucosal Vaccines, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Yoshiki Katayama
- Graduate School of Systems Life Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Center for Future Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Research Center for Molecular System, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd., Chung Li, Taoyuan 32023, Taiwan
| |
Collapse
|
38
|
Li JY, Yu M, Pal S, Tyagi AM, Dar H, Adams J, Weitzmann MN, Jones RM, Pacifici R. Parathyroid hormone-dependent bone formation requires butyrate production by intestinal microbiota. J Clin Invest 2020; 130:1767-1781. [PMID: 31917685 DOI: 10.1172/jci133473] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/23/2019] [Indexed: 12/22/2022] Open
Abstract
Parathyroid hormone (PTH) is a critical regulator of skeletal development that promotes both bone formation and bone resorption. Using microbiota depletion by wide-spectrum antibiotics and germ-free (GF) female mice, we showed that the microbiota was required for PTH to stimulate bone formation and increase bone mass. Microbiota depletion lowered butyrate levels, a metabolite responsible for gut-bone communication, while reestablishment of physiologic levels of butyrate restored PTH-induced anabolism. The permissive activity of butyrate was mediated by GPR43 signaling in dendritic cells and by GPR43-independent signaling in T cells. Butyrate was required for PTH to increase the number of bone marrow (BM) regulatory T cells (Tregs). Tregs stimulated production of the osteogenic Wnt ligand Wnt10b by BM CD8+ T cells, which activated Wnt-dependent bone formation. Together, these data highlight the role that butyrate produced by gut luminal microbiota plays in triggering regulatory pathways, which are critical for the anabolic action of PTH in bone.
Collapse
Affiliation(s)
- Jau-Yi Li
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and.,Emory Microbiome Center, Emory University, Atlanta, Georgia, USA
| | - Mingcan Yu
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and.,Emory Microbiome Center, Emory University, Atlanta, Georgia, USA
| | - Subhashis Pal
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and.,Emory Microbiome Center, Emory University, Atlanta, Georgia, USA
| | - Abdul Malik Tyagi
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and.,Emory Microbiome Center, Emory University, Atlanta, Georgia, USA
| | - Hamid Dar
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and.,Emory Microbiome Center, Emory University, Atlanta, Georgia, USA
| | - Jonathan Adams
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and.,Emory Microbiome Center, Emory University, Atlanta, Georgia, USA
| | - M Neale Weitzmann
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and.,Emory Microbiome Center, Emory University, Atlanta, Georgia, USA.,Atlanta Department of Veterans Affairs Medical Center, Decatur, Georgia, USA
| | - Rheinallt M Jones
- Emory Microbiome Center, Emory University, Atlanta, Georgia, USA.,Division of Pediatric Gastroenterology,, Hepatology, and Nutrition, Department of Pediatrics, and.,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| | - Roberto Pacifici
- Division of Endocrinology, Metabolism and Lipids, Department of Medicine, and.,Emory Microbiome Center, Emory University, Atlanta, Georgia, USA.,Immunology and Molecular Pathogenesis Program, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
39
|
Kimura-Todani T, Hata T, Miyata N, Takakura S, Yoshihara K, Zhang XT, Asano Y, Altaisaikhan A, Tsukahara T, Sudo N. Dietary delivery of acetate to the colon using acylated starches as a carrier exerts anxiolytic effects in mice. Physiol Behav 2020; 223:113004. [PMID: 32525009 DOI: 10.1016/j.physbeh.2020.113004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/17/2020] [Accepted: 06/04/2020] [Indexed: 01/07/2023]
Abstract
Recently, short-chain fatty acids (SCFA) have been shown to play an important role in mediating the gut-brain interaction and thereby participate in the patho-physiological process of stress-related disorders. In the current study, we examined whether SCFA generated in the lower gut affects host metabolic and behavioral characteristics. To determine this, we used special diets containing acylated starches that can reach the colon without being absorbed in the upper gastrointestinal tract of male mice. The delivery of SCFA to the colon using this method induced a substantial increase in acetate, butyrate, and propionate in the cecum. Moreover, the diets containing acylated starches also decreased microbial diversity in the cecum, concomitant with a significant impact on microbial composition. In marble-burying (MB) tests, the mice that consumed diets containing acetylated starches showed a decrease in anxiety-like behavior compared with the mice that consumed diets containing either butyrylated or propionylated starches. Cecal acetate contents were significantly associated with anxiety-like behaviors when evaluated by elevated plus-maze and MB tests. Collectively, these results indicate that gut acetate elevation of a dietary origin may exert anxiolytic effects on behavioral phenotypes of the host.
Collapse
Affiliation(s)
- Tae Kimura-Todani
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomokazu Hata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Noriyuki Miyata
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shu Takakura
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kazufumi Yoshihara
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Xue-Ting Zhang
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasunari Asano
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Altanzul Altaisaikhan
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Nobuyuki Sudo
- Department of Psychosomatic Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
40
|
Wang L, Cen S, Wang G, Lee YK, Zhao J, Zhang H, Chen W. Acetic acid and butyric acid released in large intestine play different roles in the alleviation of constipation. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103953] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
41
|
Han K, Jibiki T, Fukushima M. Effect of Hydrothermal Treatment of Depigmented Turmeric (
Curcuma longa
L.) on Cecal Fermentation in Rats. STARCH-STARKE 2020. [DOI: 10.1002/star.201900221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Kyu‐Ho Han
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary Medicine Obihiro Hokkaido 080‐8555 Japan
- Research Center for Global Agro‐medicineObihiro University of Agriculture and Veterinary Medicine Obihiro Hokkaido 080‐8555 Japan
| | - Takeshi Jibiki
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary Medicine Obihiro Hokkaido 080‐8555 Japan
| | - Michihiro Fukushima
- Department of Life and Food SciencesObihiro University of Agriculture and Veterinary Medicine Obihiro Hokkaido 080‐8555 Japan
| |
Collapse
|
42
|
Guo J, Tan L, Kong L. Impact of dietary intake of resistant starch on obesity and associated metabolic profiles in human: a systematic review of the literature. Crit Rev Food Sci Nutr 2020; 61:889-905. [PMID: 32321291 DOI: 10.1080/10408398.2020.1747391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
As a global public health issue with an increasing prevalence, obesity is related to several metabolic disorders, but is largely preventable. Resistant starch (RS), the indigestible portion of starch, has been studied for its potential effects on reducing obesity. This systematic review aimed to investigate the effect of dietary intake of RS on obesity development and related metabolic profiles in human, including body weight and composition, energy intake and satiety, lipid profiles, blood glucose and insulin, and other blood biomarkers. Eleven peer-reviewed articles published in English between 2000 and 2019 were identified after screening using CENTRAL, MEDLINE, and CINAHL Plus. Based on the results, RS intake had no direct effect on body weight and body composition. Evidence for its effect on reducing energy intake and increasing satiety, as well as improving lipid profiles was inconsistent. Beneficial effects of RS intake on several blood biomarkers were supported, indicating its regulatory roles in blood glucose homeostasis, insulin sensitivity, and gut hormone concentrations. Specifically, five out of the eight articles measuring blood glucose reported a decrease in either fasting or postprandial glucose levels; two out of the three articles measuring insulin sensitivity indicated a significant improvement after RS supplementation; studies measuring gut hormone concentrations including glucagon-like peptide 1 (GLP-1), and peptide YY (PYY) also showed significant improvements after RS interventions. In conclusion, the effect of dietary intake of RS on obesity and its related metabolic complications was not conclusive. Further research with larger sample sizes and longer duration is warranted.
Collapse
Affiliation(s)
- Jiayue Guo
- Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, Alabama, USA
| | - Libo Tan
- Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, Alabama, USA
| | - Lingyan Kong
- Department of Human Nutrition and Hospitality Management, University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
43
|
Ruan W, Engevik MA, Spinler JK, Versalovic J. Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration. Dig Dis Sci 2020; 65:695-705. [PMID: 32067143 DOI: 10.1007/s10620-020-06118-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human gastrointestinal (GI) tract contains communities of microbes (bacteria, fungi, viruses) that vary by anatomic location and impact human health. Microbial communities differ in composition based on age, diet, and location in the gastrointestinal tract. Differences in microbial composition have been associated with chronic disease states. In terms of function, microbial metabolites provide key signals that help maintain healthy human physiology. Alterations of the healthy gastrointestinal microbiome have been linked to the development of various disease states including inflammatory bowel disease, diabetes, and colorectal cancer. While the definition of a healthy GI microbiome cannot be precisely identified, features of a healthy gut microbiome include relatively greater biodiversity and relative abundances of specific phyla and genera. Microbes with desirable functional profiles for the human host have been identified, in addition to specific metabolic features of the microbiome. This article reviews the composition and function of the healthy human GI microbiome, including the relative abundances of different bacterial taxa and the specific metabolic pathways and classes of microbial metabolites contributing to human health and disease prevention.
Collapse
Affiliation(s)
- Wenly Ruan
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA.,Section of Gastroenterology, Hepatology, and Nutrition, Texas Children's Hospital, Houston, TX, USA
| | - Melinda A Engevik
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA
| | - Jennifer K Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA.,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA. .,Department of Pathology, Texas Children's Hospital, 1102 Bates St., Feigin Tower Suite 830, Houston, TX, 77030, USA.
| |
Collapse
|
44
|
Abdul Hadi N, Wiege B, Stabenau S, Marefati A, Rayner M. Comparison of Three Methods to Determine the Degree of Substitution of Quinoa and Rice Starch Acetates, Propionates, and Butyrates: Direct Stoichiometry, FTIR, and 1H-NMR. Foods 2020; 9:E83. [PMID: 31940907 PMCID: PMC7023049 DOI: 10.3390/foods9010083] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 11/17/2022] Open
Abstract
Rice and quinoa starch esters were prepared by acylation using short-chain fatty acid anhydrides with different chain lengths (acetic, propionic, and butyric anhydride). A direct stoichiometric method based on the acylation reaction was used to determine the degree of substitution (DS) and acyl content (AC). In addition, Fourier-transform infrared spectroscopy (FTIR) was used to validate the conformational changes of acylated starch and 1H-NMR was used as a DS reference method. DS by stoichiometric calculation was shown to be in agreement with FTIR and was comparable with DS obtained from Proton nuclear magnetic resonance (1H-NMR). Based on this study, stoichiometric calculation allows rapid and direct determination of substitution levels and acyl content without the loss of samples, which provides efficiency and optimization of manufacturing procedures in producing the desired level of esterified starches.
Collapse
Affiliation(s)
- Nabilah Abdul Hadi
- Department of Food Technology, Engineering, and Nutrition, Lund University, SE 22100 Lund, Sweden; (A.M.); (M.R.)
- School of Food Science and Technology, University Malaysia Terengganu, Kuala Terengganu 21030, Terengganu, Malaysia
| | - Berthold Wiege
- Department of Safety and Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 32756 Detmold, Germany; (B.W.); (S.S.)
| | - Sebastian Stabenau
- Department of Safety and Cereals, Max Rubner-Institut, Federal Research Institute of Nutrition and Food, 32756 Detmold, Germany; (B.W.); (S.S.)
| | - Ali Marefati
- Department of Food Technology, Engineering, and Nutrition, Lund University, SE 22100 Lund, Sweden; (A.M.); (M.R.)
| | - Marilyn Rayner
- Department of Food Technology, Engineering, and Nutrition, Lund University, SE 22100 Lund, Sweden; (A.M.); (M.R.)
| |
Collapse
|
45
|
Xie Z, Wang S, Wang Z, Fu X, Huang Q, Yuan Y, Wang K, Zhang B. In vitro fecal fermentation of propionylated high-amylose maize starch and its impact on gut microbiota. Carbohydr Polym 2019; 223:115069. [DOI: 10.1016/j.carbpol.2019.115069] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/05/2019] [Accepted: 07/06/2019] [Indexed: 02/06/2023]
|
46
|
Balamurugan R, Pugazhendhi S, Balachander GM, Dharmalingam T, Mortimer EK, Gopalsamy GL, Woodman RJ, Meng R, Alpers DH, Manary M, Binder HJ, Brown IL, Young GP, Ramakrishna BS. Effect of Native and Acetylated Dietary Resistant Starches on Intestinal Fermentative Capacity of Normal and Stunted Children in Southern India. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3922. [PMID: 31618992 PMCID: PMC6843365 DOI: 10.3390/ijerph16203922] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/10/2019] [Accepted: 10/12/2019] [Indexed: 12/29/2022]
Abstract
The health benefits of dietary amylase resistant starch (RS) arise from intestinal microbial fermentation and generation of short chain fatty acids (SCFA). We compared the intestinal fermentative capability of stunted and nonstunted ('healthy') children in southern India using two types of RS: high amylose maize starch (HAMS) and acetylated HAMS (HAMSA). Twenty children (10 stunted and 10 healthy) aged 2 to 5 years were fed biscuits containing HAMS (10 g/day) for two weeks followed by a 2-week washout and then HAMSA biscuits (10 g/day) for 2 weeks. Fecal samples were collected at 3-4 day intervals and pH and SCFA analyzed. At entry, stunted children had lower SCFA concentrations compared to healthy children. Both types of RS led to a significant decrease in fecal pH and increase in fecal acetate and propionate in both healthy and stunted children. However, while HAMS increased fecal butyrate in both groups of children, HAMSA increased butyrate in healthy but not stunted children. Furthermore, healthy children showed a significantly greater increase than stunted children in both acetate and butyrate when fed either RS. No adverse effects were reported with either RS. Stunted children have impaired capacity to ferment certain types of RS which has implications for choice of RS in formulations aimed at improving microbial function in stunted children.
Collapse
Affiliation(s)
- Ramadass Balamurugan
- Wellcome Research Unit (Biochemistry), Christian Medical College, Vellore, Tamil Nadu 632004, India.
| | - Srinivasan Pugazhendhi
- Wellcome Research Unit (Biochemistry), Christian Medical College, Vellore, Tamil Nadu 632004, India.
| | - Gowri M Balachander
- Wellcome Research Unit (Biochemistry), Christian Medical College, Vellore, Tamil Nadu 632004, India.
| | - Tamilselvan Dharmalingam
- Wellcome Research Unit (Biochemistry), Christian Medical College, Vellore, Tamil Nadu 632004, India.
| | - Elissa K Mortimer
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park 5045, South Australia, Australia.
| | - Geetha L Gopalsamy
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park 5045, South Australia, Australia.
| | - Richard J Woodman
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park 5045, South Australia, Australia.
| | - Rosie Meng
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park 5045, South Australia, Australia.
| | - David H Alpers
- Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Mark Manary
- Washington University School of Medicine, Saint Louis, MO 63110, USA.
| | - Henry J Binder
- Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Ian L Brown
- Australian Cancer Research Foundation, Sydney 2000, Australia.
| | - Graeme P Young
- College of Medicine and Public Health, Flinders University of South Australia, Bedford Park 5045, South Australia, Australia.
| | | |
Collapse
|
47
|
Dai D, Sun S, Hong Y, Gu Z, Cheng L, Li Z, Li C. Structural and functional characteristics of butyrylated maize starch. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Abstract
Short-chain fatty acids (SCFAs), the main metabolites produced by bacterial fermentation of dietary fibre in the gastrointestinal tract, are speculated to have a key role in microbiota-gut-brain crosstalk. However, the pathways through which SCFAs might influence psychological functioning, including affective and cognitive processes and their neural basis, have not been fully elucidated. Furthermore, research directly exploring the role of SCFAs as potential mediators of the effects of microbiota-targeted interventions on affective and cognitive functioning is sparse, especially in humans. This Review summarizes existing knowledge on the potential of SCFAs to directly or indirectly mediate microbiota-gut-brain interactions. The effects of SCFAs on cellular systems and their interaction with gut-brain signalling pathways including immune, endocrine, neural and humoral routes are described. The effects of microbiota-targeted interventions such as prebiotics, probiotics and diet on psychological functioning and the putative mediating role of SCFA signalling will also be discussed, as well as the relationship between SCFAs and psychobiological processes. Finally, future directions to facilitate direct investigation of the effect of SCFAs on psychological functioning are outlined.
Collapse
|
49
|
Llorente C, Jimenez R, Brotman Y, Fernie AR, Sreenivasulu N. Rice Grain Quality Benchmarking Through Profiling of Volatiles and Metabolites in Grains Using Gas Chromatography Mass Spectrometry. Methods Mol Biol 2019; 1892:187-199. [PMID: 30397807 DOI: 10.1007/978-1-4939-8914-0_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Gas chromatograph coupled with mass spectrometer is widely used to profile volatiles and metabolites from the homogenized rice flour obtained from mature grains. Rice grains consist of central endosperm which stores majorly starch and, in addition, accumulate various storage proteins as storage reserves. The outer nutritious aleurone layer stores lipids, sugar alcohols, volatiles, antioxidants, vitamins, and various micronutrients. Once paddy sample is dehulled, milled, and ground cryogenically, the brown rice flour is subjected to extraction of primary metabolites and volatiles using an appropriate extraction method. In metabolite profiling of the liquid extract obtained from the rice sample, mixture is initially subjected to methoxyamination then silylation before being subjected to untargeted metabolite profiling. Peaks obtained are processed for noise reduction and specific signal selection. Volatile compounds are initially extracted using a solid phase adsorbent prior to analysis. All these compounds, metabolites, and volatiles are detected in the mass selective detector by fragmentation at 70 eV ionization energy and the resultant mass spectrum compared with a built-in library of compounds. Data mined from the gas chromatography mass spectrometry analysis are then subjected to post-processing statistical analysis.
Collapse
Affiliation(s)
- Cindy Llorente
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Rosario Jimenez
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - Yariv Brotman
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Department of Life Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Center of Plant System Biology and Biotechnology, Plovdiv, Bulgaria
| | - Nese Sreenivasulu
- International Rice Research Institute, Los Baños, Laguna, Philippines.
| |
Collapse
|
50
|
Genda T, Kondo T, Sugiura S, Hino S, Shimamoto S, Nakamura T, Ukita S, Morita T. Bacterial Fermentation of Water-Soluble Cellulose Acetate Raises Large-Bowel Acetate and Propionate and Decreases Plasma Cholesterol Concentrations in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11909-11916. [PMID: 30354117 DOI: 10.1021/acs.jafc.8b04093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We hypothesized that water-soluble cellulose acetate (WSCA) could be useful tool for the delivery of short-chain fatty acids to the large intestine. Rats were fed a control diet or a diet containing graded levels of WSCA for up to 21 days. Consuming WSCA dose-dependently increased large-bowel acetate and propionate concentrations through the bacterial fermentation. When WSCA was used as substrate, acetyl esterase activity in the cecal bacteria was detected solely in rats fed WSCA, in which the activity increased over time accompanied by an increased number of Bacteroides xylanisolvens. Consuming WSCA at a 4% level increased the goblet cell numbers and mucin contents in the cecum and lowered plasma cholesterol concentrations, which tended to correlate with the portal plasma concentrations of propionate. The results suggest that bacterial fermentation of WSCA is characterized by the greater production of acetate and propionate, which may contribute to the physiologic alterations.
Collapse
Affiliation(s)
- Tomomi Genda
- Department of Bioscience, Graduate School of Science and Technology , Shizuoka University , Shizuoka 422-8529 , Japan
| | - Takashi Kondo
- Department of Bioscience, Graduate School of Science and Technology , Shizuoka University , Shizuoka 422-8529 , Japan
| | - Shunsaku Sugiura
- Department of Agriculture, Graduate School of Integrated Science and Technology , Shizuoka University , Shizuoka 422-8529 , Japan
| | - Shingo Hino
- College of Agriculture, Academic Institute , Shizuoka University , Shizuoka 422-8529 , Japan
| | - Shu Shimamoto
- Daicel Corporation , Konan 2-18-1 , Minatoku , Tokyo 108-8230 , Japan
| | | | - Shizuka Ukita
- Daicel Corporation , Konan 2-18-1 , Minatoku , Tokyo 108-8230 , Japan
| | - Tatsuya Morita
- College of Agriculture, Academic Institute , Shizuoka University , Shizuoka 422-8529 , Japan
| |
Collapse
|