1
|
Terada N, Nagase T, Kayooka H, Adachi Y, Kato E. α-Tocotrienol in rice bran enhances steroidogenesis in mouse Leydig cell via increased gene expression of steroidogenic acute regulatory protein and induction of its mitochondrial translocation. Biosci Biotechnol Biochem 2024; 88:189-195. [PMID: 37880998 DOI: 10.1093/bbb/zbad153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
Rice is a staple food in the Asian region and one of the world's major energy sources. Testosterone is a steroid hormone that maintains physical, sexual, and cognitive ability, and its decline causes health problems like late-onset hypogonadism. Evaluation of various grain extracts showed rice bran to stimulate testosterone secretion from Leydig model cells. α-Tocotrienol was found as a bioactive compound in rice bran, and mechanistic analysis showed the stimulation of steroid hormone synthesis through enhanced gene expression of steroidogenic acute regulatory protein as well as inducing mitochondrial localization of the protein. Preliminary study showed an increasing trend in serum testosterone levels in mice by oral intake of α-tocotrienol. These results suggest that α-tocotrienol intake may be effective in preventing symptoms caused by low testosterone levels.
Collapse
Affiliation(s)
- Naofumi Terada
- Frontiers in Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Tomoaki Nagase
- Frontiers in Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Hiromi Kayooka
- Frontiers in Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Yusuke Adachi
- Department of Bioscience and Chemistry, School of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| | - Eisuke Kato
- Division of Fundamental AgriScience and Research, Research Faculty of Agriculture, Hokkaido University, Kita-ku, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Mohamad NV. Strategies to Enhance the Solubility and Bioavailability of Tocotrienols Using Self-Emulsifying Drug Delivery System. Pharmaceuticals (Basel) 2023; 16:1403. [PMID: 37895874 PMCID: PMC10610013 DOI: 10.3390/ph16101403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/14/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Tocotrienols have higher medicinal value, with multiple sources of evidence showing their biological properties as antioxidant, anti-inflammatory, and osteoprotective compounds. However, tocotrienol bioavailability presents an ongoing challenge in its translation into viable products. This is because tocotrienol oil is known to be a poorly water-soluble compound, making it difficult to be absorbed into the body and resulting in less effectiveness. With the potential and benefits of tocotrienol, new strategies to increase the bioavailability and efficacy of poorly absorbed tocotrienol are required when administered orally. One of the proposed formulation techniques was self-emulsification, which has proven its capacity to improve oral drug delivery of poorly water-soluble drugs by advancing the solubility and bioavailability of these active compounds. This review discusses the updated evidence on the bioavailability of tocotrienols formulated with self-emulsifying drug delivery systems (SEDDSs) from in vivo and human studies. In short, SEDDSs formulation enhances the solubility and passive permeability of tocotrienol, thus improving its oral bioavailability and biological actions. This increases its medicinal and commercial value. Furthermore, the self-emulsifying formulation presents a useful dosage form that is absorbed in vivo independent of dietary fats with consistent and enhanced levels of tocotrienol isomers. Therefore, a lipid-based formulation technique can provide an additional detailed understanding of the oral bioavailability of tocotrienols.
Collapse
Affiliation(s)
- Nur-Vaizura Mohamad
- Centre for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
3
|
ABD MUID SUHAILA, RUTH FROEMMING GABRIELEANISAH, ALI ABDMANAF, ABDUL RAHMAN THUHAIRAHHASRAH, HAMID ZALINA, NAWAWI HAPIZAH. EFFECTS OF PALM OIL DERIVED TOCOTRIENOL RICH FRACTION AND VITAMIN E ISOMERS ON BIOMARKERS OF EARLY ATHEROGENESIS IN STIMULATED HUMAN UMBILICAL VEIN ENDOTHELIAL CELLS. MALAYSIAN APPLIED BIOLOGY 2022; 51:145-152. [DOI: 10.55230/mabjournal.v51i4.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
This study was conducted to investigate the effects of tocotrienol rich fraction (TRF), α-TOC, and pure TCT isomers (α-. γ- & δ-TCT) on inflammation, endothelial activation, nuclear factor kappa B (NFκB), endothelial nitric oxide synthase (eNOS) and monocyte binding activity (MBA) in vitro. Human umbilical vein endothelial cells (HUVECs) were incubated with various concentrations of α-TOC, pure TCT isomers and TRF (0.3-10 µM) together with lipopolysaccharides (LPS) for 16 h. Culture medium and cells were collected and measured for the protein and gene expression of IL-6, TNF-α, NFκB, ICAM-1, VCAM-1, e-selectin, and eNOS. Monocyte binding activity (MBA) was measured by Rose Bengal staining. Area under the curve (AUC) analysis revealed that TRF and pure TCT particularly γ- and δ- isomers, showed better inhibition of inflammation and endothelial activation, MBA and greater eNOS increment than α-TOC. These suggest that TRF and pure TCT isomers have potential as preventive anti-atherogenic agents by attenuating the release of early biomarkers of atherogenesis which is better than α-TOC in LPS-stimulated human endothelial cells.
Collapse
|
4
|
Kiyose C. Absorption, transportation, and distribution of vitamin E homologs. Free Radic Biol Med 2021; 177:226-237. [PMID: 34687866 DOI: 10.1016/j.freeradbiomed.2021.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/13/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022]
Abstract
Vitamin E has eight different naturally occurring forms: four tocopherols and four tocotrienols. Because α-tocopherol has three asymmetric carbons, both natural α-tocopherol (RRR-α-tocopherol) and synthetic α-tocopherol (all-rac-α-tocopherol) are utilized in both pharmaceutical products and food additives. Therefore, determining the distribution of vitamin E in the body is very important. With regard to absorption, and transportation of vitamin E, it is suggested that the pathways mediated by three proteins (CD36, SR-BI, and NPC1L1) as well as passive diffusion affect absorption of vitamin E. Vitamin E homologs are mainly transported by very low-density lipoprotein (VLDL) with the α-tocopherol being recognized by the α-tocopherol transfer protein in liver. However, it is also suggested that chylomicrons (CMs) and high-density lipoprotein (HDL) are involved in transportation of vitamin E homologs from the small intestine to each section of peripheral tissue. In particular, it is speculated that vitamin E homologs transportation by CMs and HDL from enterocytes to peripheral tissues such as adipose tissue greatly affects the distribution of vitamin E homologs, excluding α-tocopherol. However, how lipoprotein lipase affects the incorporation of vitamin E homologs containing lipoprotein into peripheral tissues is unclear. Whether there is biodiscrimination when vitamin E homologs are incorporated into peripheral tissues from lipoprotein is an interesting question. It is likely that future research will reveal how individual vitamin E homologs are incorporated into peripheral tissue, especially the brain, adipose tissue, and skin.
Collapse
Affiliation(s)
- Chikako Kiyose
- Department of Nutrition and Life Science, Kanagawa Institute of Technology, Japan.
| |
Collapse
|
5
|
Irías-Mata A, Sus N, Hug ML, Müller M, Vetter W, Frank J. α-Tocomonoenol Is Bioavailable in Mice and May Partly Be Regulated by the Function of the Hepatic α‑Tocopherol Transfer Protein. Molecules 2020; 25:molecules25204803. [PMID: 33086686 PMCID: PMC7588010 DOI: 10.3390/molecules25204803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/30/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022] Open
Abstract
Tocomonoenols are vitamin E derivatives present in foods with a single double bond at carbon 11' in the sidechain. The α-tocopherol transfer protein (TTP) is required for the maintenance of normal α-tocopherol (αT) concentrations. Its role in the tissue distribution of α-11'-tocomonoenol (αT1) is unknown. We investigated the tissue distribution of αT1 and αT in wild-type (TTP+/+) and TTP knockout (TTP-/-) mice fed diets with either αT or αT1 for two weeks. αT1 was only found in blood, not tissues. αT concentrations in TTP+/+ mice were in the order of adipose tissue > brain > heart > spleen > lungs > kidneys > small intestine > liver. Loss of TTP function depleted αT in all tissues. αT1, contrary to αT, was still present in the blood of TTP-/- mice (16% of αT1 in TTP+/+). Autoclaving and storage at room temperature reduced αT and αT1 in experimental diets. In conclusion, αT1 is bioavailable, reaches the blood in mice, and may not entirely depend on TTP function for secretion into the systemic circulation. However, due to instability of the test compounds in the experimental diets, further in vivo experiments are required to clarify the role of TTP in αT1 secretion. Future research should consider compound stability during autoclaving of rodent feed.
Collapse
Affiliation(s)
- Andrea Irías-Mata
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart, Germany; (A.I.-M.); (N.S.); (M.-L.H.)
| | - Nadine Sus
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart, Germany; (A.I.-M.); (N.S.); (M.-L.H.)
| | - Maria-Lena Hug
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart, Germany; (A.I.-M.); (N.S.); (M.-L.H.)
| | - Marco Müller
- Institute of Food Chemistry, University of Hohenheim, D-70599 Stuttgart, Germany; (M.M.); (W.V.)
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, D-70599 Stuttgart, Germany; (M.M.); (W.V.)
| | - Jan Frank
- Department of Food Biofunctionality, Institute of Nutritional Sciences, University of Hohenheim, Garbenstr. 28, D-70599 Stuttgart, Germany; (A.I.-M.); (N.S.); (M.-L.H.)
- Correspondence: ; Tel.: +49-711-459-24459; Fax: +49-711-459-23386
| |
Collapse
|
6
|
Fiume MM, Bergfeld WF, Belsito DV, Hill RA, Klaassen CD, Liebler DC, Marks JG, Shank RC, Slaga TJ, Snyder PW, Andersen FA, Heldreth B. Safety Assessment of Tocopherols and Tocotrienols as Used in Cosmetics. Int J Toxicol 2019; 37:61S-94S. [PMID: 30235959 DOI: 10.1177/1091581818794455] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 14 tocopherols and tocotrienols and concluded these ingredients are safe as used in cosmetics. The tocopherols are reported to function in cosmetics as antioxidants or skin-conditioning agents; in contrast, tocotrienols are not reported to function as an antioxidants in cosmetics but as a light stabilizer, oral care agent, or skin-conditioning agent. The Panel reviewed the new and existing animal and clinical data to determine the safety of these ingredients and found it appropriate to extrapolate the existing information to conclude on the safety of all the tocopherols and tocotrienols.
Collapse
Affiliation(s)
- Monice M Fiume
- 1 Cosmetic Ingredient Review Senior Director, Cosmetic Ingredient Review, Washington, DC, USA
| | - Wilma F Bergfeld
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Donald V Belsito
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald A Hill
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Curtis D Klaassen
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Daniel C Liebler
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - James G Marks
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Ronald C Shank
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Thomas J Slaga
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - Paul W Snyder
- 2 Cosmetic Ingredient Review Expert Panel Member, Cosmetic Ingredient Review, Washington, DC, USA
| | - F Alan Andersen
- 3 Cosmetic Ingredient Review Former Director, Cosmetic Ingredient Review, Washington, DC, USA
| | - Bart Heldreth
- 4 Cosmetic Ingredient Review Executive Director, Cosmetic Ingredient Review, Washington, DC, USA
| |
Collapse
|
7
|
Szulczewska-Remi A, Nogala-Kałucka M, Nowak KW. Study on the influence of palm oil on blood and liver biochemical parameters, beta-carotene and tocochromanols content as well as antioxidant activity in rats. J Food Biochem 2018; 43:e12707. [PMID: 31353667 DOI: 10.1111/jfbc.12707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/14/2018] [Accepted: 10/02/2018] [Indexed: 11/30/2022]
Abstract
In the ongoing discussion on the health properties of palm oil, a study of the effect a diet supplemented with palm oil on blood and liver biochemical parameters, beta-carotene and tocochromanols content as well as antioxidant activity was undertaken. Forty Wistar rats were randomly divided into five groups, fed with a diet supplemented with plant-based frying commercial fat, palm oil, 7.5% palm oil and 2.5% concentrate from palm oil and 10% of rapeseed oil, respectively. After 21 days, blood samples and livers were collected to determine beta-carotene and tocochromanols concentrations, antioxidant activity using DPPH* radical scavenging activity and TEAC methods, insulin, glucagon, serum triacyloglycerols and cholesterol levels, glucose in blood serum and glycogen in the livers. Research has shown valuable biological properties of palm oil in terms of plasma glucose, total cholesterol, low-density lipoprotein (LDL) cholesterol, and triacylglycerol concentrations which was related to the high content of beta-carotene and tocochromanols. PRACTICAL APPLICATION: Public concern over the health properties of palm oil has been growing. Therefore, this study supplements existing knowledge in this area based on experimental rat observations. In the presented research, plasma glucose was significantly reduced and no additional growth of total or LDL cholesterol, as well as triacylglycerol concentration, was observed after consuming a palm oil-based diet. Palm oil was a good source of beta-carotene and tocochromanols, which were preferentially distributed in rats' livers. Bioavailability of vitamin E-active compounds in palm oil supplemented rats' livers was relatively high as compared to the rapeseed oil group, therefore this observation complements literature in the field of tocotrienols and tocopherols. Studies have not confirmed the harmful effect of palm oil on rats, however in depth human studies appear to be a promising direction for further research.
Collapse
Affiliation(s)
- Aleksandra Szulczewska-Remi
- Department of Controlling, Financial Analysis and Valuation, Poznań University of Economics and Business, Poznań, Poland
| | | | - Krzysztof W Nowak
- Department of Animal Physiology and Biochemistry, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
8
|
Montagnani Marelli M, Marzagalli M, Fontana F, Raimondi M, Moretti RM, Limonta P. Anticancer properties of tocotrienols: A review of cellular mechanisms and molecular targets. J Cell Physiol 2018; 234:1147-1164. [PMID: 30066964 DOI: 10.1002/jcp.27075] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
Vitamin E is composed of two groups of compounds: α-, β-, γ-, and δ-tocopherols (TPs), and the corresponding unsaturated tocotrienols (TTs). TTs are found in natural sources such as red palm oil, annatto seeds, and rice bran. In the last decades, TTs (specifically, γ-TT and δ-TT) have gained interest due to their health benefits in chronic diseases, based on their antioxidant, neuroprotective, cholesterol-lowering, anti-inflammatory activities. Several in vitro and in vivo studies pointed out that TTs also exert a significant antitumor activity in a wide range of cancer cells. Specifically, TTs were shown to exert antiproliferative/proapoptotic effects and to reduce the metastatic or angiogenic properties of different cancer cells; moreover, these compounds were reported to specifically target the subpopulation of cancer stem cells, known to be deeply involved in the development of resistance to standard therapies. Interestingly, recent studies pointed out that TTs exert a synergistic antitumor effect on cancer cells when given in combination with either standard antitumor agents (i.e., chemotherapeutics, statins, "targeted" therapies) or natural compounds with anticancer activity (i.e., sesamin, epigallocatechin gallate (EGCG), resveratrol, ferulic acid). Based on these observations, different TT synthetic derivatives and formulations were recently developed and demonstrated to improve TT water solubility and to reduce TT metabolism in cancer cells, thus increasing their biological activity. These promising results, together with the safety of TT administration in healthy subjects, suggest that these compounds might represent a new chemopreventive or anticancer treatment (i.e., in combination with standard therapies) strategy. Clinical trials aimed at confirming this antitumor activity of TTs are needed.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Monica Marzagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Fabrizio Fontana
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Michela Raimondi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Roberta Manuela Moretti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| | - Patrizia Limonta
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
9
|
Chung E, Mo H, Wang S, Zu Y, Elfakhani M, Rios SR, Chyu MC, Yang RS, Shen CL. Potential roles of vitamin E in age-related changes in skeletal muscle health. Nutr Res 2018; 49:23-36. [DOI: 10.1016/j.nutres.2017.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 08/29/2017] [Accepted: 09/17/2017] [Indexed: 12/21/2022]
|
10
|
Hamirah NK, Kamsani YS, Mohamed Nor Khan NA, Ab Rahim S, Rajikin MH. Effects of Nicotine and Tocotrienol-Rich Fraction Supplementation on Cytoskeletal Structures of Murine Pre-Implantation Embryos. Med Sci Monit Basic Res 2017; 23:373-379. [PMID: 29217815 PMCID: PMC5731215 DOI: 10.12659/msmbr.905447] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background Cytoskeletal structures, in particular actin and tubulin, provide a fundamental framework in all cells, including embryos. The objective of this study was to evaluate the effects of nicotine, which is a source of oxidative stress, and subsequent supplementation with Tocotrienol-rich fraction (TRF) on actin and tubulin of 2- and 8-cell murine embryos. Material/Methods Thirty female Balb/C mice were divided into 4 groups: Group 1 received: subcutaneous (sc) injection of 0.9% NaCl; Group 2 received sc injection of 3.0 nicotine mg/kg bw/day; Group 3 received 3.0 sc injection of nicotine mg/kg bw/day +60 mg/kg bw/day TRF; and Group 4 received 60 sc injection of TRF mg/kg bw/day for 7 consecutive days. The animals were superovulated with 5 IU PMSG followed by 5 IU hCG 48 h later. Animals were cohabited with fertile males overnight and euthanized through cervical dislocation at 24 h post coitum. Embryos at the 2- and 8-cell stages were harvested, fixed, and stained to visualize actin and tubulin distributions by using CLSM. Results Results showed that at 2-cell stage, actin intensities were significantly reduced in the nicotine group compared to that of the control group (p<0.001). In Group 3, the intensity of actin significantly increased compared to that of the nicotine group (p<0.001). At 8-cell stage, actin intensity of the nicotine group was significantly lower than that of the control group (p<0.001). The intensities of actin in Group 3 were increased compared to that of nicotine treatment alone (p<0.001). The same trend was seen in tubulin at 2- and 8-cell stages. Interestingly, both actin and tubulin structures in the TRF-treated groups were enhanced compared to the control. Conclusions This study suggests that TRF prevents the deleterious effects of nicotine on the cytoskeletal structures of 2- and 8-cell stages of pre-implantation mice embryos in vitro.
Collapse
Affiliation(s)
- Nurul Kamsani Hamirah
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Yuhaniza Shafinie Kamsani
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia.,Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia
| | - Nor-Ashikin Mohamed Nor Khan
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia.,Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia
| | - Sharaniza Ab Rahim
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Mohd Hamim Rajikin
- Institute of Medical Molecular Biotechnology, Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia.,Faculty of Medicine, Universiti Teknologi MARA, Selangor, Malaysia.,Maternofetal and Embryo Research Group (MatE), Universiti Teknologi MARA, Jalan Hospital, Sungai Buloh, Malaysia
| |
Collapse
|
11
|
Shen CL, Klein A, Chin KY, Mo H, Tsai P, Yang RS, Chyu MC, Ima-Nirwana S. Tocotrienols for bone health: a translational approach. Ann N Y Acad Sci 2017; 1401:150-165. [PMID: 28891093 DOI: 10.1111/nyas.13449] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 07/04/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023]
Abstract
Osteoporosis, a degenerative bone disease, is characterized by low bone mass and microstructural deterioration of bone tissue resulting in aggravated bone fragility and susceptibility to fractures. The trend of extended life expectancy is accompanied by a rise in the prevalence of osteoporosis and concomitant complications in the elderly population. Epidemiological evidence has shown an association between vitamin E consumption and the prevention of age-related bone loss in elderly women and men. Animal studies show that ingestion of vitamin E, especially tocotrienols, may benefit bone health in terms of maintaining higher bone mineral density and improving bone microstructure and quality. The beneficial effects of tocotrienols on bone health appear to be mediated via antioxidant/anti-inflammatory pathways and/or 3-hydroxy-3-methylglutaryl coenzyme A mechanisms. We discuss (1) an overview of the prevalence and etiology of osteoporosis, (2) types of vitamin E (tocopherols versus tocotrienols), (3) findings of tocotrienols and bone health from published in vitro and animal studies, (4) possible mechanisms involved in bone protection, and (5) challenges and future direction for research.
Collapse
Affiliation(s)
- Chwan-Li Shen
- Department of Pathology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Annika Klein
- Department of Kinesiology and Sport Management, Texas Tech University, Lubbock, Texas
| | - Kok-Yong Chin
- Department of Pharmacology, Universiti Kebangasaan Malaysia, Kuala Lumpur, Malaysia
| | - Huanbiao Mo
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, Georgia
| | - Peihsuan Tsai
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Rong-Sen Yang
- Department of Orthopedics, School of Medicine, National Taiwan University Hospital, Taipei City, Taiwan
| | - Ming-Chien Chyu
- Graduate Healthcare Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, Texas
| | | |
Collapse
|
12
|
Oral Administration of Ethanolamine Glycerophospholipid Containing a High Level of Plasmalogen Improves Memory Impairment in Amyloid β-Infused Rats. Lipids 2017; 52:575-585. [DOI: 10.1007/s11745-017-4260-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 04/24/2017] [Indexed: 01/29/2023]
|
13
|
Synergistic Anticancer Effect of Tocotrienol Combined with Chemotherapeutic Agents or Dietary Components: A Review. Int J Mol Sci 2016; 17:ijms17101605. [PMID: 27669218 PMCID: PMC5085638 DOI: 10.3390/ijms17101605] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 12/20/2022] Open
Abstract
Tocotrienol (T3), unsaturated vitamin E, is gaining a lot of attention owing to its potent anticancer effect, since its efficacy is much greater than that of tocopherol (Toc). Various factors are known to be involved in such antitumor action, including cell cycle arrest, apoptosis induction, antiangiogenesis, anti-metastasis, nuclear factor-κB suppression, and telomerase inhibition. Owing to a difference in the affinity of T3 and Toc for the α-tocopherol transfer protein, the bioavailability of orally ingested T3 is lower than that of Toc. Furthermore, cellular uptake of T3 is interrupted by coadministration of α-Toc in vitro and in vivo. Based on this, several studies are in progress to screen for molecules that can synergize with T3 in order to augment its potency. Combinations of T3 with chemotherapeutic drugs (e.g., statins, celecoxib, and gefitinib) or dietary components (e.g., polyphenols, sesamin, and ferulic acid) exhibit synergistic actions on cancer cell growth and signaling pathways. In this review, we summarize the current status of synergistic effects of T3 and an array of agents on cancer cells, and discuss their molecular mechanisms of action. These combination strategies would encourage further investigation and application in cancer prevention and therapy.
Collapse
|
14
|
Muid S, Froemming GRA, Rahman T, Ali AM, Nawawi HM. Delta- and gamma-tocotrienol isomers are potent in inhibiting inflammation and endothelial activation in stimulated human endothelial cells. Food Nutr Res 2016; 60:31526. [PMID: 27396399 PMCID: PMC4938891 DOI: 10.3402/fnr.v60.31526] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/22/2016] [Accepted: 05/22/2016] [Indexed: 02/07/2023] Open
Abstract
Background Tocotrienols (TCTs) are more potent antioxidants than α-tocopherol (TOC). However, the effectiveness and mechanism of the action of TCT isomers as anti-atherosclerotic agents in stimulated human endothelial cells under inflammatory conditions are not well established. Aims 1) To compare the effects of different TCT isomers on inflammation, endothelial activation, and endothelial nitric oxide synthase (eNOS). 2) To identify the two most potent TCT isomers in stimulated human endothelial cells. 3) To investigate the effects of TCT isomers on NFκB activation, and protein and gene expression levels in stimulated human endothelial cells. Methods Human umbilical vein endothelial cells were incubated with various concentrations of TCT isomers or α-TOC (0.3–10 µM), together with lipopolysaccharides for 16 h. Supernatant cells were collected and measured for protein and gene expression of cytokines (interleukin-6, or IL-6; tumor necrosis factor-alpha, or TNF-α), adhesion molecules (intercellular cell adhesion molecule-1, or ICAM-1; vascular cell adhesion molecule-1, or VCAM-1; and e-selectin), eNOS, and NFκB. Results δ-TCT is the most potent TCT isomer in the inhibition of IL-6, ICAM-1, VCAM-1, and NFκB, and it is the second potent in inhibiting e-selectin and eNOS. γ-TCT isomer is the most potent isomer in inhibiting e-selectin and eNOS, and it is the second most potent in inhibiting is IL-6, VCAM-1, and NFκB. For ICAM-1 protein expression, the most potent is δ-TCT followed by α-TCT. α- and β-TCT inhibit IL-6 at the highest concentration (10 µM) but enhance IL-6 at lower concentrations. γ-TCT markedly increases eNOS expression by 8–11-fold at higher concentrations (5–10 µM) but exhibits neutral effects at lower concentrations. Conclusion δ- and γ-TCT are the two most potent TCT isomers in terms of the inhibition of inflammation and endothelial activation whilst enhancing eNOS, possibly mediated via the NFκB pathway. Hence, there is a great potential for TCT isomers as anti-atherosclerotic agents.
Collapse
Affiliation(s)
- Suhaila Muid
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Selangor, Malaysia
| | - Gabriele R Anisah Froemming
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Selangor, Malaysia.,Institute of Pathology, Laboratory and Forensic Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - Thuhairah Rahman
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Selangor, Malaysia.,Institute of Pathology, Laboratory and Forensic Medicine, Universiti Teknologi MARA, Selangor, Malaysia
| | - A Manaf Ali
- Faculty of Agriculture & Biotechnology, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Hapizah M Nawawi
- Faculty of Medicine, Universiti Teknologi MARA (UiTM), Selangor, Malaysia.,Institute of Pathology, Laboratory and Forensic Medicine, Universiti Teknologi MARA, Selangor, Malaysia; ;
| |
Collapse
|
15
|
Yamashita S, Kiko T, Fujiwara H, Hashimoto M, Nakagawa K, Kinoshita M, Furukawa K, Arai H, Miyazawa T. Alterations in the Levels of Amyloid-β, Phospholipid Hydroperoxide, and Plasmalogen in the Blood of Patients with Alzheimer’s Disease: Possible Interactions between Amyloid-β and These Lipids. J Alzheimers Dis 2015; 50:527-37. [DOI: 10.3233/jad-150640] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Shinji Yamashita
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Takehiro Kiko
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Hironori Fujiwara
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
- Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Michio Hashimoto
- Department of Environmental Physiology, Shimane University Faculty of Medicine, Izumo, Japan
| | - Kiyotaka Nakagawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mikio Kinoshita
- Department of Food Science, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Katsutoshi Furukawa
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroyuki Arai
- Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Teruo Miyazawa
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
- Food and Biotechnology Innovation Project, New Industry Creation Hatchery Center (NICHe), Tohoku University, Sendai, Japan
- Food and Health Science Research Unit, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
16
|
Hansen H, Wang T, Dolde D, Xin H. Tocopherol and annatto tocotrienols distribution in laying-hen body. Poult Sci 2015; 94:2421-33. [PMID: 26286995 DOI: 10.3382/ps/pev228] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 06/28/2015] [Indexed: 11/20/2022] Open
Abstract
The impact of supplementing laying-hen feed with annatto tocotrienols (T3s) and alpha-tocopherol on the distribution of various forms of vitamin E and cholesterol throughout the hen's body was evaluated. A total of 18 organs or tissues (skin, fat pad, liver and gall bladder, heart, oviduct, forming yolk, laid yolk, lungs, spleen, kidney, pancreas, gizzard, digestive tract, brain, thigh, breast, manure, and blood) were collected after 7 wk of feeding on diets enriched with various levels of alpha-tocopherol and annatto extract that contained gamma-T3 and delta-T3. Tissue weights, contents of lipid, alpha-tocopherol, gamma-T3, delta-T3, cholesterol, and fatty acid composition of extracted lipids from the collected organs and tissues were determined. Tissue weight and lipid content did not change significantly with feed supplementation treatments, except that the liver became heavier with increased levels of supplementation. Overall, the main organs that accumulated the supplemented vitamin E were fat pad, liver and gall bladder, oviduct, forming yolks, laid yolks, kidney, brain, thigh, and breast. Much of annatto gamma-T3 and delta-T3 (> 90%) was found in the manure, indicating poor uptake. In some tissues (brain and oviduct,) a significant increase in polyunsaturated fatty acids was seen with increased supplementation. Alpha-tocopherol impacted the transfer of gamma-T3 to forming and laid yolks, but did not impact delta-T3 transfer. No significant differences were found in most of the tissues in cholesterol, except a reduction in heart, based on tissue as-is. Blood samples showed large variations in individual hens with no significant differences in total and HDL cholesterol, or total triacylglycerols. Supplementing feed with annatto T3s and alpha-tocopherol showed that the vitamin E profile and distribution of the laying-hen body can be altered, but to different extents depending on tissue. The result of this research has significance in enhancing meat nutrient content.
Collapse
Affiliation(s)
- H Hansen
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - T Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States DuPont Pioneer Hi-Bred International, Johnson, IA, United States
| | - David Dolde
- DuPont Pioneer Hi-Bred International, Johnson, IA, United States
| | - Hongwei Xin
- Department of Agricultural and Biosystems Engineering and Animal Science, Iowa State University, Ames, IA, United States
| |
Collapse
|
17
|
Nakamura T, Noma A, Terao J. Location of α-tocopherol and α-tocotrienol to heterogeneous cell membranes and inhibition of production of peroxidized cholesterol in mouse fibroblasts. SPRINGERPLUS 2014; 3:550. [PMID: 25279334 PMCID: PMC4182322 DOI: 10.1186/2193-1801-3-550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 09/18/2014] [Indexed: 12/03/2022]
Abstract
Background α-Tocopherol (α-T) and α-tocotrienol (α-T3) are well recognized as lipophilic antioxidants. Nevertheless, there is limited knowledge on their location in heterogeneous cell membranes. We first investigated the distribution of α-T and α-T3 to the cholesterol-rich microdomains (lipid rafts and caveolae) of heterogeneous cell membranes by incubating these antioxidants with cultured mouse fibroblasts. Findings Levels of cellular uptake for α-T and α-T3 were adjusted to the same order, as that of the latter was much more efficient than that of the former in the cultured cells. After ultracentrifugation, α-T and α-T3 were partitioned to the microdomain fractions. When the distribution of α-T and α-T3 was further confirmed by using methyl-β-cyclodextrin (which removes cholesterol from membranes), α-T was suggested to be distributed to the microdomains (approx. 9% of the total uptake). The same treatment did not affect α-T3 content in the microdomain fractions, indicating that α-T3 is not located in these cholesterol-rich domains. However, α-T and α-T3 significantly inhibited the production of peroxidized cholesterol when cells were exposed to ultraviolet-A light. Conclusions These results suggest that α-T and α-T3 can act as membranous antioxidants against photo-irradiated cholesterol peroxidation irrespective of their distribution to cholesterol-rich microdomains.
Collapse
Affiliation(s)
- Toshiyuki Nakamura
- Department of Food Science, Institute of Health Bioscience, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan ; School of Food and Nutrition Sciences, University of Shizuoka, Shizuoka, Japan
| | - Ayako Noma
- Department of Food Science, Institute of Health Bioscience, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| | - Junji Terao
- Department of Food Science, Institute of Health Bioscience, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima, 770-8503 Japan
| |
Collapse
|
18
|
Chin KY, Ima-Nirwana S. Effects of annatto-derived tocotrienol supplementation on osteoporosis induced by testosterone deficiency in rats. Clin Interv Aging 2014; 9:1247-59. [PMID: 25120355 PMCID: PMC4128692 DOI: 10.2147/cia.s67016] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Background Previous animal models have demonstrated that tocotrienol is a potential treatment for postmenopausal osteoporosis. This study evaluated the antiosteoporotic effects of annatto-derived tocotrienol (AnTT) using a testosterone-deficient osteoporotic rat model. Methods Forty rats were divided randomly into baseline, sham, orchidectomized, AnTT, and testosterone groups. The baseline group was euthanized without undergoing any surgical treatment or intervention. The remaining groups underwent orchidectomy, with the exception of the sham group. AnTT 60 mg/kg/day was given orally to the AnTT group, while the testosterone group received testosterone enanthate 7 mg/kg per week intramuscularly for 8 weeks. Structural changes in trabecular bone at the proximal tibia were examined using microcomputed tomography. Structural and dynamic changes at the distal femur were examined using histomorphometric methods. Serum osteocalcin and C-terminal of type 1 collagen crosslinks were measured. Bone-related gene expression in the distal femur was examined. Results There were significant degenerative changes in structural indices in the orchidectomized group (P<0.05), but no significant changes in dynamic indices, bone remodeling markers, or gene expression (P>0.05) when compared with the sham group. The AnTT group showed significant improvement in structural indices at the femur (P<0.05) and significantly increased expression of bone formation genes (P<0.05). Testosterone was more effective than AnTT in preventing degeneration of bone structural indices in the femur and tibia (P<0.05). Conclusion AnTT supplementation improves bone health in testosterone-deficient rats by enhancing bone formation. Its potential should be evaluated further by varying the dosage and treatment duration.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Chin KY, Ima-Nirwana S. The effects of α-tocopherol on bone: a double-edged sword? Nutrients 2014; 6:1424-41. [PMID: 24727433 PMCID: PMC4011043 DOI: 10.3390/nu6041424] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 02/22/2014] [Accepted: 02/28/2014] [Indexed: 12/18/2022] Open
Abstract
Recent studies have found conflicting evidence on the role of α-tocopherol (αTF) on bone health. This nonsystematic review aimed to summarize the current evidence on the effects of αTF on bone health from cell culture, animal, and human studies in order to clarify the role of αTF on bone health. Our review found that αTF exerted beneficial, harmful or null effects on bone formation cells. Animal studies generally showed positive effects of αTF supplementation on bone in various models of osteoporosis. However, high-dose αTF was possibly detrimental to bone in normal animals. Human studies mostly demonstrated a positive relationship between αTF, as assessed using high performance liquid chromatography and/or dietary questionnaire, and bone health, as assessed using bone mineral density and/or fracture incidence. Three possible reasons high dosage of αTF can be detrimental to bone include its interference with Vitamin K function on bone, the blocking of the entry of other Vitamin E isomers beneficial to bone, and the role of αTF as a prooxidant. However, these adverse effects have not been shown in human studies. In conclusion, αTF may have a dual role in bone health, whereby in the appropriate doses it is beneficial but in high doses it may be harmful to bone.
Collapse
Affiliation(s)
- Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.
| | - Soelaiman Ima-Nirwana
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia.
| |
Collapse
|
20
|
Drotleff AM, Bohnsack C, Schneider I, Hahn A, Ternes W. Human oral bioavailability and pharmacokinetics of tocotrienols from tocotrienol-rich (tocopherol-low) barley oil and palm oil formulations. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
21
|
Dhall S, Do DC, Garcia M, Kim J, Mirebrahim SH, Lyubovitsky J, Lonardi S, Nothnagel EA, Schiller N, Martins-Green M. Generating and reversing chronic wounds in diabetic mice by manipulating wound redox parameters. J Diabetes Res 2014; 2014:562625. [PMID: 25587545 PMCID: PMC4284939 DOI: 10.1155/2014/562625] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/18/2014] [Accepted: 11/18/2014] [Indexed: 01/08/2023] Open
Abstract
By 2025, more than 500 M people worldwide will suffer from diabetes; 125 M will develop foot ulcer(s) and 20 M will undergo an amputation, creating a major health problem. Understanding how these wounds become chronic will provide insights to reverse chronicity. We hypothesized that oxidative stress (OS) in wounds is a critical component for generation of chronicity. We used the db/db mouse model of impaired healing and inhibited, at time of injury, two major antioxidant enzymes, catalase and glutathione peroxidase, creating high OS in the wounds. This was necessary and sufficient to trigger wounds to become chronic. The wounds initially contained a polymicrobial community that with time selected for specific biofilm-forming bacteria. To reverse chronicity we treated the wounds with the antioxidants α-tocopherol and N-acetylcysteine and found that OS was highly reduced, biofilms had increased sensitivity to antibiotics, and granulation tissue was formed with proper collagen deposition and remodeling. We show for the first time generation of chronic wounds in which biofilm develops spontaneously, illustrating importance of early and continued redox imbalance coupled with the presence of biofilm in development of wound chronicity. This model will help decipher additional mechanisms and potentially better diagnosis of chronicity and treatment of human chronic wounds.
Collapse
Affiliation(s)
- Sandeep Dhall
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
- Bioengineering Interdepartmental Graduate Program, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Danh C. Do
- Division of Biomedical Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Monika Garcia
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Jane Kim
- Department of Botany and Plant Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Seyed H. Mirebrahim
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Julia Lyubovitsky
- Bioengineering Interdepartmental Graduate Program, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Stefano Lonardi
- Department of Computer Science and Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Eugene A. Nothnagel
- Department of Botany and Plant Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Neal Schiller
- Division of Biomedical Sciences, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Manuela Martins-Green
- Department of Cell Biology and Neuroscience, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
- Bioengineering Interdepartmental Graduate Program, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
- *Manuela Martins-Green:
| |
Collapse
|
22
|
Lee KS, Yuen KH, Ng WK. Deposition of tocopherol and tocotrienol in the tissues of red hybrid tilapia, Oreochromis sp., fed vitamin E-free diets supplemented with different plant oils. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:1457-1471. [PMID: 23604920 DOI: 10.1007/s10695-013-9799-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 04/07/2013] [Indexed: 06/02/2023]
Abstract
Vitamin E, a potent antioxidant consisting of four isomers each (α, β, γ, δ) of tocopherol (T) and tocotrienol (T3), is found naturally in plant oils at different concentrations. In this study, four semi-purified isonitrogenous and isolipidic (10 %) diets containing canola oil, cold-pressed soybean oil, wheat germ oil, or palm fatty acid distillates (PFAD) as the sole vitamin E source were fed to triplicate groups of red hybrid tilapia (Oreochromis sp.) fingerlings (14.82 ± 0.05 g) for 45 days. Vitamin E concentrations and composition were measured in the muscle, liver, skin, and adipose tissue. Deposition of α-T (53.4-93.1 % of total vitamin E) predominated over deposition of other isomers, except in the liver of fish fed the SBO diet, where α-T and γ-T deposition was in the ratio 40:60. T3 deposition (2.6-29.4 %) was only detected in tissues of fish fed the PFAD diet; adipose tissue was the major storage depot. Fish fed the SBO diet contained significantly more (P < 0.05) muscle thiobarbituric acid-reactive substances. Muscle fatty acid composition reflected dietary fatty acid profile. This is the first study to compare the deposition in fish tissues of the naturally occurring vitamin E isomers present in plant oils. The type and concentration of endogenous vitamin E and the fatty acid composition of plant oils can affect the oxidative stability of tilapia tissues.
Collapse
Affiliation(s)
- Kuan-Shern Lee
- Fish Nutrition Laboratory, School of Biological Sciences, Universiti Sains Malyasia, 11800, Penang, Malaysia
| | | | | |
Collapse
|
23
|
α-Tocopherol does not Accelerate Depletion of γ-Tocopherol and Tocotrienol or Excretion of their Metabolites in Rats. Lipids 2013; 48:687-95. [DOI: 10.1007/s11745-013-3796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/07/2013] [Indexed: 10/26/2022]
|
24
|
|
25
|
Effects of tocotrienol and lovastatin combination on osteoblast and osteoclast activity in estrogen-deficient osteoporosis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:960742. [PMID: 22927884 PMCID: PMC3425381 DOI: 10.1155/2012/960742] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/12/2012] [Accepted: 07/13/2012] [Indexed: 12/21/2022]
Abstract
Statins are HMGCoA reductase inhibitors and had been demonstrated to stimulate bone formation in rodents after high oral doses. Observational studies on patients treated with oral statins were varied. Delta-tocotrienol had been found to stimulate the cleavage of HMGCoA reductase and inhibit its activity. Tocotrienols were found to have both catabolic and anabolic effects on bone in different animal models of osteoporosis. The current study aimed to ascertain the effects of delta-tocotrienol and lovastatin combination on biochemical and static bone histomorphometric parameters in a postmenopausal rat model at clinically tolerable doses. 48 Sprague Dawley female rats were randomly divided into 6 groups: (1) baseline control group; (2) sham-operated control group; (3) ovariectomised control group; (4) ovariectomised and 11 mg/kg lovastatin; (5) ovariectomised and 60 mg/kg delta-tocotrienol; (6) ovariectomised and 60 mg/kg delta-tocotrienol + 11 mg/kg lovastatin. These treatments were given daily via oral gavage for 8 weeks. Delta-tocotrienol plus lovastatin treatment significantly increased bone formation and reduced bone resorption compared to the other groups. Therefore, the combined treatment may have synergistic or additive effects and have the potential to be used as an antiosteoporotic agent in patients who are at risk of both osteoporosis and hypercholesterolemia, especially in postmenopausal women.
Collapse
|
26
|
Frank J, Chin XWD, Schrader C, Eckert GP, Rimbach G. Do tocotrienols have potential as neuroprotective dietary factors? Ageing Res Rev 2012; 11:163-80. [PMID: 21763788 DOI: 10.1016/j.arr.2011.06.006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 06/28/2011] [Accepted: 06/30/2011] [Indexed: 11/17/2022]
Abstract
Tocotrienols (T(3)) belong to the family of vitamin E compounds (α-, β-, γ-, δ-tocopherols and -tocotrienols) and have unique biological properties that make them potential neuroprotective dietary factors. In addition to their antioxidant activity, T(3) at micromolar concentrations exert cholesterol-lowering activities in cells, animal models and some, but not all, human studies by means of inhibition of the activity of the rate-limiting enzyme in cholesterol biosynthesis, 3-hydroxy-3-methylglutaryl coenzyme A reductase. At lower concentrations (∼10 nmol/L), T(3) modulate signalling pathways involved in neuronal cell death in cell culture experiments. Targets of T(3) include prenyl transferases, non-receptor tyrosine kinase, phospholipase A(2), 12-lipoxygenase, cyclooxygenase-2, and nuclear factor κB. The low bioavailability and rapid excretion of T(3) represents a major hurdle in their preventive use. Fasting plasma concentrations, even after supplementation with high doses, are below 1 μmol/L. T(3) bioavailability may be enhanced by ingestion with a high-fat meal, self-emulsifying drug delivery systems, or phytochemicals that inhibit T(3) metabolism and excretion. T(3) have no known adverse effects when consumed as part of a normal diet and the studies reviewed here support the notion that they may have potential as neuroprotective agents. However, experiments in relevant animal models and randomised human intervention trials addressing the neuroprotection mediated by T(3) are scarce and, thus, highly warranted.
Collapse
Affiliation(s)
- Jan Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
27
|
Vasanthi HR, Parameswari RP, Das DK. Multifaceted role of tocotrienols in cardioprotection supports their structure: function relation. GENES & NUTRITION 2012; 7:19-28. [PMID: 21604025 PMCID: PMC3250529 DOI: 10.1007/s12263-011-0227-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 04/08/2011] [Indexed: 01/01/2023]
Abstract
Tocotrienols are a class of vitamin E which modulates several mechanisms associated with cardioprotection, anti-cancer, anti-diabetic, and neuroprotection. Unlike other Vitamin E-like compounds, tocotrienols possess inimitable properties. Quite a lot of studies have determined the cardioprotective abilities of tocotrienols and have been shown to possess novel hypocholesterolemic effects together with an ability to reduce the atherogenic apolipoprotein and lipoprotein plasma levels. In addition, tocotrienol has been suggested to have an antioxidant, anti-thrombotic, and anti-tumor effect indicating that tocotrienol may serve as an effective agent in the prevention and/or treatment of cardiovascular disease and cancer. The bioactivity exhibited is due to the structural characteristics of tocotrienols. Rich sources of tocotrienols which include rice bran, palm oil, and other edible oils exhibit protective effect against cardiovascular disorders. The conclusions drawn from the early literature that vitamin E group of compounds provides an inevitable role in cardioprotection is sustained in many more recent studies.
Collapse
Affiliation(s)
- Hannah R. Vasanthi
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, Puducherry India
| | - R. P. Parameswari
- Herbal and Indian Medicine Research Laboratory, Sri Ramachandra University, Chennai, India
| | - Dipak K. Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, CT 06030-1110 USA
| |
Collapse
|
28
|
Increased antioxidant capacity in the plasma of dogs after a single oral dosage of tocotrienols. Br J Nutr 2011; 106 Suppl 1:S116-9. [PMID: 22005405 DOI: 10.1017/s0007114511000511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The intestinal absorption of tocotrienols (TCT) in dogs is, to our knowledge, so far unknown. Adult Beagle dogs (n 8) were administered a single oral dosage of a TCT-rich fraction (TRF; 40 mg/kg body weight) containing 32 % α-TCT, 2 % β-TCT, 27 % γ-TCT, 14 % δ-TCT and 25 % α-tocopherol (α-TCP). Blood was sampled at baseline (fasted), 1, 2, 3, 4, 5, 6, 8 and 12 h after supplementation. Plasma and chylomicron concentrations of TCT and α-TCP were measured at each time point. Plasma TAG were measured enzymatically, and plasma antioxidant capacity was assessed by the Trolox equivalent antioxidant capacity assay. In fasted dogs, levels of TCT were 0·07 (sd 0.03) μmol/l. Following the administration of the TRF, total plasma TCT peaked at 2 h (7.16 (SD 3.88) μmol/l; P < 0.01) and remained above baseline levels (0.67 (SD 0.44) μmol/l; P < 0.01) at 12 h. The TCT response in chylomicrons paralleled the increase in TCT in plasma with a maximum peak (3.49 (SD 2.06) μmol/l; P < 0.01) at 2 h post-dosage. α-TCP was the major vitamin E detected in plasma and unaffected by TRF supplementation. The Trolox equivalent values increased from 2 h (776 (SD 51.2) μmol/l) to a maximum at 12 h (1130 (SD 7.72) μmol/l; P < 0.01). The results show that TCT are detected in postprandial plasma of dogs. The increase in antioxidant capacity suggests a potential beneficial role of TCT supplementation in the prevention or treatment of several diseases in dogs.
Collapse
|
29
|
Miyazawa T, Nakagawa K, Sookwong P. Health benefits of vitamin E in grains, cereals and green vegetables. Trends Food Sci Technol 2011. [DOI: 10.1016/j.tifs.2011.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Tissue Distribution of α- and γ-Tocotrienol and γ-Tocopherol in Rats and Interference with Their Accumulation by α-Tocopherol. Lipids 2011; 47:129-39. [DOI: 10.1007/s11745-011-3620-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/23/2011] [Indexed: 10/16/2022]
|
31
|
Amyloid β-induced erythrocytic damage and its attenuation by carotenoids. FEBS Lett 2011; 585:1249-54. [PMID: 21459092 DOI: 10.1016/j.febslet.2011.03.060] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Revised: 03/23/2011] [Accepted: 03/28/2011] [Indexed: 11/22/2022]
Abstract
The presence of amyloid β-peptide (Aβ) in human blood has recently been established, and it has been hypothesized that Aβ readily contacts red blood cells (RBC) and oxidatively impairs RBC functions. In this study, we conducted in vitro and in vivo studies, which provide evidence that Aβ induces oxidative injury to RBC by binding to them, causing RBC phospholipid peroxidation and diminishing RBC endogenous carotenoids, especially xanthophylls. This type of damage is likely to injure the vasculature, potentially reducing oxygen delivery to the brain and facilitating Alzheimer's disease (AD). As a preventive strategy, because the Aβ-induced RBC damage could be attenuated by treatment of RBC with xanthophylls, we suggest that xanthophylls may contribute to the prevention of AD.
Collapse
|
32
|
Gee PT. Unleashing the untold and misunderstood observations on vitamin E. GENES & NUTRITION 2011; 6:5-16. [PMID: 21437026 PMCID: PMC3040795 DOI: 10.1007/s12263-010-0180-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 07/07/2010] [Indexed: 02/07/2023]
Abstract
Paradoxically, meta-analysis of human randomized controlled trials revealed that natural but not synthetic α-tocopherol supplementation significantly increases all-cause mortality at 95% confidence interval. The root cause was that natural α-tocopherol supplementation significantly depressed bioavailability of other forms of vitamin E that have better chemo-prevention capability. Meta-analysis outcome demonstrated flaws in the understanding of vitamin E. Reinterpretation of reported data provides plausible explanations to several important observations. While α-tocopherol is almost exclusively secreted in chylomicrons, enterocytes secrete tocotrienols in both chylomicrons and small high-density lipoproteins. Vitamin E secreted in chylomicrons is discriminately repacked by α-tocopherol transfer protein into nascent very low-density lipoproteins in the liver. Circulating very low-density lipoproteins undergo delipidation to form intermediate-density lipoproteins and low-density lipoproteins. Uptake of vitamin E in intermediate-density lipoproteins and low-density lipoproteins takes place at various tissues via low-density lipoproteins receptor-mediated endocytosis. Small high-density lipoproteins can deliver tocotrienols upon maturation to peripheral tissues independent of α-tocopherol transfer protein action, and uptake of vitamin E takes place at selective tissues by scavenger receptor-mediated direct vitamin E uptake. Dual absorption pathways for tocotrienols are consistent with human and animal studies. α-Tocopherol depresses the bioavailability of α-tocotrienol and has antagonistic effect on tocotrienols in chemo-prevention against degenerative diseases. Therefore, it is an undesirable component for chemo-prevention. Future research directions should be focused on tocotrienols, preferably free from α-tocopherol, for optimum chemo-prevention and benefits to mankind.
Collapse
Affiliation(s)
- Ping Tou Gee
- Palm Nutraceuticals Sdn. Bhd., Batu 7, Jalan Mawai, 81900 Kota Tinggi, Johor Malaysia
| |
Collapse
|
33
|
Abstract
Phospholipid hydroperoxides (PLOOH) accumulate abnormally in the erythrocytes of dementia patients, and dietary xanthophylls (polar carotenoids such as astaxanthin) are hypothesised to prevent the accumulation. In the present study, we conducted a randomised, double-blind, placebo-controlled human trial to assess the efficacy of 12-week astaxanthin supplementation (6 or 12 mg/d) on both astaxanthin and PLOOH levels in the erythrocytes of thirty middle-aged and senior subjects. After 12 weeks of treatment, erythrocyte astaxanthin concentrations were higher in both the 6 and 12 mg astaxanthin groups than in the placebo group. In contrast, erythrocyte PLOOH concentrations were lower in the astaxanthin groups than in the placebo group. In the plasma, somewhat lower PLOOH levels were found after astaxanthin treatment. These results suggest that astaxanthin supplementation results in improved erythrocyte antioxidant status and decreased PLOOH levels, which may contribute to the prevention of dementia.
Collapse
|
34
|
Ren Z, Pae M, Dao MC, Smith D, Meydani SN, Wu D. Dietary supplementation with tocotrienols enhances immune function in C57BL/6 mice. J Nutr 2010; 140:1335-41. [PMID: 20484546 PMCID: PMC6498457 DOI: 10.3945/jn.110.121434] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
alpha-Tocopherol (alpha-Toc) enhances T cell function, whereas little is known in this regard for tocotrienols (T3), the less-known members of the vitamin E family. We pair-fed young (4 mo) and old (23 mo) C57BL/6 mice 0.1% Tocomin 50%, a mixture of T3 and alpha-Toc or a control diet containing an equal amount of alpha-Toc for 6 wk. As expected, lymphocyte proliferation was lower in the old mice compared with the young mice. Lymphocyte proliferation in the old T3 group was significantly higher than that in the old control group, whereas no significant difference was found in young mice. Splenocytes from old mice produced less interleukin (IL)-2, IL-4, IL-6, and IL-10 compared with young mice, whereas no significant age-related difference was found in IL-1beta, tumor necrosis factor-alpha, and interferon-gamma. T3 feeding was associated with a higher IL-1beta production in old mice but not in young mice. Peritoneal macrophages from old mice produced significantly more IL-1beta, IL-6, IL-10, and prostaglandin E(2) (PGE(2)) compared with those from young mice. Mice of both ages fed T3 had higher production of IL-1beta but not PGE(2) or other cytokines. In the in vitro study, splenocytes isolated from young and old mice were supplemented with the purified form of each individual T3 (0.01-10 mumol/L) and mitogen-stimulated cell proliferation was determined. All T3 enhanced lymphocyte proliferation in old but not young mice with a potency order of alpha- > gamma- > delta-T3. Together, these results suggest a beneficial effect of T3 in improving the age-related decline in T cell function.
Collapse
Affiliation(s)
- Zhihong Ren
- Nutritional Immunology Laboratory Tufts University, Boston, MA 02111
| | - Munkyong Pae
- Nutritional Immunology Laboratory Tufts University, Boston, MA 02111
| | - Maria Carlota Dao
- Nutritional Immunology Laboratory Tufts University, Boston, MA 02111
| | - Donald Smith
- Comparative Biology Unit, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory Tufts University, Boston, MA 02111,To whom correspondence should be addressed. E-mail:
| | - Dayong Wu
- Nutritional Immunology Laboratory Tufts University, Boston, MA 02111,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Antioxidant effect of lutein towards phospholipid hydroperoxidation in human erythrocytes. Br J Nutr 2009; 102:1280-4. [DOI: 10.1017/s0007114509990316] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Peroxidised phospholipid-mediated cytotoxity is involved in the pathophysiology of many diseases; for example, phospholipid hydroperoxides (PLOOH) are abnormally increased in erythrocytes of dementia patients. Dietary carotenoids (especially xanthophylls, polar carotenoids such as lutein) have gained attention as potent inhibitors against erythrocyte phospholipid hydroperoxidation, thereby making them plausible candidates for preventing diseases (i.e. dementia). To evaluate these points, we investigated whether orally administered lutein is distributed to human erythrocytes, and inhibits erythrocyte PLOOH formation. Six healthy subjects took one capsule of food-grade lutein (9·67 mg lutein per capsule) once per d for 4 weeks. Before and during the supplementation period, carotenoids and PLOOH in erythrocytes and plasma were determined by our developed HPLC technique. The administered lutein was incorporated into human erythrocytes, and erythrocyte PLOOH level decreased after the ingestion for 2 and 4 weeks. The antioxidative effect of lutein was confirmed on erythrocyte membranes, but not in plasma. These results suggest that lutein has the potential to act as an important antioxidant molecule in erythrocytes, and it thereby may contribute to the prevention of dementia. Therefore future biological and clinical studies will be required to evaluate the efficacy as well as safety of lutein in models of dementia with a realistic prospect of its use in human therapy.
Collapse
|
36
|
Yamashita K. Studies on Enhancement of In Vivo Antioxidant Activity by Mutual Interactions of Food Components: Sesame Lignan and Vitamin E. ACTA ACUST UNITED AC 2009. [DOI: 10.4327/jsnfs.62.155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
37
|
Wu SJ, Liu PL, Ng LT. Tocotrienol-rich fraction of palm oil exhibits anti-inflammatory property by suppressing the expression of inflammatory mediators in human monocytic cells. Mol Nutr Food Res 2008; 52:921-9. [PMID: 18481320 DOI: 10.1002/mnfr.200700418] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Tocotrienol-rich fraction (TRF) of palm oil has been shown to possess potent antioxidant, anticancer, and cholesterol lowering activities. In this study, our aim was to examine the effects of TRF on LPS-induced inflammatory response through measuring the production of inflammatory mediators, namely nitric oxide (NO), prostaglandin E(2) (PGE(2)), inducible nitric oxide synthase (iNOS), cytokines (TNF-alpha, IL-4, and IL-8), cyclooxygenase-1 and -2 (COX-1 and COX-2), and nuclear factor-kappaB (NF-kappaB) in human monocytic (THP-1) cells. At concentrations 0.5-5.0 microg/mL, TRF dose-dependently protected against LPS-induced cell death. At same concentrations, TRF also showed potent anti-inflammatory activity as demonstrated by a dose-dependent inhibition of LPS (1 microg/mL)-induced release of NO and PGE(2), and a significant decrease in the transcription of proinflammatory cytokines. TRF at 1.0 microg/mL significantly blocked the LPS induction of iNOS and COX-2 expression, but not COX-1. This anti-inflammatory activity was further supported by the inhibition of NF-kappaB expression. These results conclude that TRF possesses potent anti-inflammatory activity, and its mechanism of action could be through the inhibition of iNOS and COX-2 production, as well as NF-kappaB expression.
Collapse
Affiliation(s)
- Shu-Jing Wu
- Department of Health and Nutrition, Chia-Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | | |
Collapse
|
38
|
Hiura Y, Tachibana H, Arakawa R, Aoyama N, Okabe M, Sakai M, Yamada K. Specific accumulation of gamma- and delta-tocotrienols in tumor and their antitumor effect in vivo. J Nutr Biochem 2008; 20:607-13. [PMID: 18824342 DOI: 10.1016/j.jnutbio.2008.06.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/30/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
Abstract
In contrast to extensive studies on tocopherols, very little is understood about tocotrienols (T3). We evaluated the antitumor activities of gamma-T3 and delta-T3 in murine hepatoma MH134 cells in vitro and in vivo. We found that delta-T3 inhibited the growth of MH134 cells more strongly than gamma-T3 by inducing apoptosis. In C3H/HeN mice implanted with MH134, it was found that gamma-T3 and delta-T3 feeding significantly delayed tumor growth. On the other hand, both T3 had no significant effect on body weight, normal-tissue weight and immunoglobulin levels. Intriguingly, we found that T3 was detected in tumor, but not in normal tissues. These results, to our knowledge, are the first demonstration of specific accumulation of gamma-T3 and delta-T3 in tumors and suggest that T3 accumulation is critical for the antitumor activities of T3.
Collapse
Affiliation(s)
- Yuhei Hiura
- Faculty of Agriculture, Laboratory of Food Chemistry, Division of Applied Biological Chemistry, Department of Bioscience and Biotechnology, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
39
|
Opinion on mixed tocopherols, tocotrienol tocopherol and tocotrienols as sources for vitamin E added as a nutritional substance in food supplements ‐ Scientific Opinion of the Panel on Food Additives, Flavourings, Processing aids and Materials in Contact with food (AFC). EFSA J 2008. [DOI: 10.2903/j.efsa.2008.640] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Nesaretnam K, Yew WW, Wahid MB. Tocotrienols and cancer: Beyond antioxidant activity. EUR J LIPID SCI TECH 2007. [DOI: 10.1002/ejlt.200600212] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Kawakami Y, Tsuzuki T, Nakagawa K, Miyazawa T. Distribution of tocotrienols in rats fed a rice bran tocotrienol concentrate. Biosci Biotechnol Biochem 2007; 71:464-71. [PMID: 17284857 DOI: 10.1271/bbb.60524] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To examine the distribution of rice bran tocotrienol (T3), we gave rice bran T3 to rats after considering an acceptable daily intake of vitamin E for humans. Male SD rats (5 weeks of age) were fed for 3 weeks on a commercial diet containing 6.4 mg of vitamin E per 100 g wt and additively received vitamin E or the vehicle (vitamin E-free corn oil) by oral intubation. The animals were randomly divided into 4 groups depending on the type of test diet: control (vehicle), non-T3 (no T3 + 4.3 mg of tocopherol (TOC)/kg body weight (b.w.)/day), low-T3 (0.8 mg T3 + 3.5 mg TOC/kg b.w./day), and high-T3 (3.2 mg T3 + 1.1 mg TOC/kg b.w./day). The control rats and rats in the non-T3, low-T3, and high-T3 groups took 4.3 and 8.6 mg of vitamin E/kg b.w./day, respectively. Rice bran gamma-T3 was significantly distributed to the adipose tissue and increased from 1.1 to 10.2 nmol/g of adipose tissue according to the rice bran T3 intake.
Collapse
Affiliation(s)
- Yuki Kawakami
- Food and Biodynamic Chemistry Laboratory, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | | | | | | |
Collapse
|
42
|
Franke AA, Murphy SP, Lacey R, Custer LJ. Tocopherol and tocotrienol levels of foods consumed in Hawaii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:769-78. [PMID: 17263473 DOI: 10.1021/jf0623844] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Because of the individual biological effects and the uncertain or missing information on levels of tocopherols (T) and tocotrienols (T3) in foods frequently consumed in Hawaii, 79 food items (50 in duplicate) were analyzed for alpha-, beta-, gamma-, and delta-tocopherol (alphaT, betaT, gammaT, and deltaT) and alpha-, beta-, gamma-, and delta-tocotrienol (alphaT3, betaT3, gammaT3, and deltaT3) in addition to alpha-tocopheryl acetate (alphaTac). Foods from local markets were stored according to usual household habits, freeze-dried, homogenized, and extracted three times with hexane containing butylated hydroxytoluene as a preservative and tocol as an internal standard. A normal-phase high-pressure liquid chromatography system was applied with fluorescence and photodiode array detection that resulted in baseline separation of all eight analytes and the internal standard tocol (To). The sum of all E vitamer concentrations, or total E vitamers (TEV), in all foods analyzed ranged an average from 0.6 to 828 mg/kg (T < or = 542 mg/kg and T3 < or = 432 mg/kg) and showed the following ranges: oils, 497-828 mg/kg (mainly alphaT and gammaT); margarines, 359-457 mg/kg (mainly gammaT); salad dressings, 20-291 mg/kg (mainly gammaT, except alphaT when soy oil was the main ingredient); cookies, 54-138 mg/kg (mainly gammaT); snacks, 101-220 mg/kg (mainly gammaT); nuts, 22-201 mg/kg (mainly alphaT); vegetables, 2-152 mg/kg (mainly alphaT); pasta, 24-90 mg/kg; cereals, 4-56 mg/kg (mainly betaT3 followed by alphaT); fish, 2-39 mg/kg (mainly alphaT); fried tofu, 64 mg/kg (mainly gammaT); breads, 20-22 mg/kg (mainly betaT3); fat-free mayonnaise, 5 mg/kg (mainly alphaT); poi (fermented taro root), 2 mg/kg (mostly alphaT); and fruits, 2 (papaya) to 13 mg/kg (canned pumpkin) with alphaT predominating. Cereals fortified with alphaTac ranked third and eighth among all foods assayed regarding alphaT and TEV levels, respectively. As compared to the few data available in the literature, our values agreed with some (corn flakes, mango fruit, fat-free mayonnaise, dry-roasted macadamia nuts, dry-roasted peanuts, mixed nuts, spaghetti/marinara pasta sauce, oils, and red bell pepper) but differed for many other items. Our results provide new information on the E vitamer content in foods, emphasize the vast differences of bioactivities of individual E vitamers, and confirm the need for analyses of foods consumed in specific study populations.
Collapse
Affiliation(s)
- Adrian A Franke
- Cancer Research Center of Hawaii, University of Hawaii, 1236 Lauhala Street, Honolulu, HI 96813, USA.
| | | | | | | |
Collapse
|
43
|
Abe C, Ikeda S, Uchida T, Yamashita K, Ichikawa T. Triton WR1339, an inhibitor of lipoprotein lipase, decreases vitamin E concentration in some tissues of rats by inhibiting its transport to liver. J Nutr 2007; 137:345-50. [PMID: 17237309 DOI: 10.1093/jn/137.2.345] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this experiment was to clarify the contribution of the alpha-tocopherol transfer activity of lipoprotein lipase (LPL) to vitamin E transport to tissues in vivo. We studied the effect of Triton WR1339, which prevents the catabolism of triacylglycerol-rich lipoproteins by LPL on vitamin E distribution in rats. Vitamin E-deficient rats fed a vitamin E-free diet for 4 wk were injected with Triton WR1339 and administered by oral gavage an emulsion containing 10 mg of alpha-tocopherol, 10 mg of gamma-tocopherol, or 29.5 mg of a tocotrienol mixture with 200 mg of sodium taurocholate, 200 mg of triolein, and 50 mg of albumin. alpha-Tocopherol was detected in the serum and other tissues of the vitamin E-deficient rats, but gamma-tocopherol, alpha- and gamma-tocotrienol were not detected. Triton WR1339 injection elevated (P<0.05) the serum alpha-tocopherol concentration and inhibited (P<0.05) the elevation of alpha-tocopherol concentration in the liver, adrenal gland, and spleen due to the oral administration of alpha-tocopherol. Neither alpha-tocopherol administration nor Triton WR1339 injection affected (P>or=0.05) the alpha-tocopherol concentration in the perirenal adipose tissue, epididymal fat, and soleus muscle despite a high expression of LPL in the adipose tissue and muscle. These data show that alpha-tocopherol transfer activity of LPL in adipose tissue and muscle is not important for alpha-tocopherol transport to the tissue after alpha-tocopherol intake or that the amount transferred is small relative to the tissue concentration. Furthermore, Triton WR1339 injection tended to elevate the serum gamma-tocopherol (P=0.071) and alpha-tocotrienol (P=0.053) concentrations and lowered them (P<0.05) in the liver and adrenal gland of rats administered gamma-tocopherol or alpha-tocotrienol. These data suggest that lipolysis of triacylglycerol-rich chylomicron by LPL is necessary for postprandial vitamin E transport to the liver and subsequent transport to the other tissues.
Collapse
Affiliation(s)
- Chisato Abe
- Department of Nutritional Sciences, Nagoya University of Arts and Sciences, Nissin 470-0196, Japan
| | | | | | | | | |
Collapse
|
44
|
Sen CK, Khanna S, Rink C, Roy S. Tocotrienols: the emerging face of natural vitamin E. VITAMINS AND HORMONES 2007; 76:203-61. [PMID: 17628176 PMCID: PMC3681510 DOI: 10.1016/s0083-6729(07)76008-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural vitamin E includes eight chemically distinct molecules: alpha-, beta-, gamma-, and delta-tocopherols and alpha-, beta-, gamma-, and delta-tocotrienols. More than 95% of all studies on vitamin E are directed toward the specific study of alpha-tocopherol. The other forms of natural vitamin E remain poorly understood. The abundance of alpha-tocopherol in the human body and the comparable efficiency of all vitamin E molecules as antioxidants led biologists to neglect the non-tocopherol vitamin E molecules as topics for basic and clinical research. Recent developments warrant a serious reconsideration of this conventional wisdom. The tocotrienol subfamily of natural vitamin E possesses powerful neuroprotective, anticancer, and cholesterol-lowering properties that are often not exhibited by tocopherols. Current developments in vitamin E research clearly indicate that members of the vitamin E family are not redundant with respect to their biological functions. alpha-Tocotrienol, gamma-tocopherol, and delta-tocotrienol have emerged as vitamin E molecules with functions in health and disease that are clearly distinct from that of alpha-tocopherol. At nanomolar concentration, alpha-tocotrienol, not alpha-tocopherol, prevents neurodegeneration. On a concentration basis, this finding represents the most potent of all biological functions exhibited by any natural vitamin E molecule. Recently, it has been suggested that the safe dose of various tocotrienols for human consumption is 200-1000/day. A rapidly expanding body of evidence supports that members of the vitamin E family are functionally unique. In recognition of this fact, title claims in publications should be limited to the specific form of vitamin E studied. For example, evidence for toxicity of a specific form of tocopherol in excess may not be used to conclude that high-dosage "vitamin E" supplementation may increase all-cause mortality. Such conclusion incorrectly implies that tocotrienols are toxic as well under conditions where tocotrienols were not even considered. The current state of knowledge warrants strategic investment into the lesser known forms of vitamin E. This will enable prudent selection of the appropriate vitamin E molecule for studies addressing a specific health need.
Collapse
Affiliation(s)
- Chandan K Sen
- Laboratory of Molecular Medicine, Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
45
|
Abstract
Tocotrienols, a group of Vitamin E stereoisomers, offer many health benefits including their ability to lower cholesterol levels, and provide anticancer and tumor-suppressive activities. Several recent studies determined the cardioprotective abilities of tocotrienols, although the number is only 1% compared to the study with tocopherols. Both in acute perfusion experiments and in chronic models, tocotrienols attenuate myocardial ischemia-reperfusion injury, artherosclerosis, and reduced ventricular arrythmias. Apart from the antioxidative role of tocotrienols, it appears that tocotrienols mediated cardioprotection is also achieved through the preconditioning-like effect, the best yet devised method of cardioprotection. Hence, tocotrienols likely fulfills the definition of a pharmacological preconditioning agent and give a tremendous opportunity to place tocotrienols as an important therapeutic option in cardiovascular system.
Collapse
Affiliation(s)
- Samarjit Das
- Cardiovascular Research Center, University of Connecticut School of Medicine, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
46
|
Affiliation(s)
- Samarjit Das
- Cardiovascular Research Center, University of Connecticut School of Medicine Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
47
|
Abstract
More than 80 years after the discovery of the essentiality of vitamin E for mammals, the molecular basis of its action is still an enigma. From the eight different forms of vitamin E, only α-tocopherol is retained in the body. This is in part due to the specific selection ofRRR-α-tocopherol by the α-tocopherol transfer protein and in part by its low rate of degradation and elimination compared with the other vitamers. Since the tocopherols have comparable antioxidant properties and some tocotrienols are even more effective in scavenging radicals, the antioxidant capacity cannot be the explanation for its essentiality, at least not the only one. In the last decade, a high number of so-called novel functions of almost all forms of vitamin E have been described, including regulation of cellular signalling and gene expression. α-Tocopherol appears to be most involved in gene regulation, whereas γ-tocopherol appears to be highly effective in preventing cancer-related processes. Tocotrienols appear to be effective in amelioration of neurodegeneration. Most of the novel functions of individual forms of vitamin E have been demonstratedin vitroonly and requirein vivoconfirmation. The distinct bioactivities of the various vitamers are discussed, considering their metabolism and the potential functions of metabolites.
Collapse
|
48
|
Fairus S, Nor RM, Cheng HM, Sundram K. Postprandial metabolic fate of tocotrienol-rich vitamin E differs significantly from that of alpha-tocopherol. Am J Clin Nutr 2006; 84:835-42. [PMID: 17023711 DOI: 10.1093/ajcn/84.4.835] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND The detection of tocotrienols in human plasma has proven elusive, and it is hypothesized that they are rapidly assimilated and redistributed in various mammalian tissues. OBJECTIVE The primary study objective was to evaluate the postprandial fate of tocotrienols and alpha-tocopherol in human plasma and lipoproteins. DESIGN Seven healthy volunteers (4 males, 3 females) were administered a single dose of vitamin E [1011 mg palm tocotrienol-rich fraction (TRF) or 1074 mg alpha-tocopherol] after a 7-d conditioning period with a tocotrienol-free diet. Blood was sampled at baseline (fasted) and 2, 4, 5, 6, 8, and 24 h after supplementation. Concentrations of tocopherol and tocotrienol isomers in plasma, triacylglycerol-rich particles (TRPs), LDLs, and HDLs were measured at each interval. RESULTS After intervention with TRF, plasma tocotrienols peaked at 4 h (4.79 +/- 1.2 microg/mL), whereas alpha-tocopherol peaked at 6 h (13.46 +/- 1.68 microg/mL). Although tocotrienols were similarly detected in TRPs, LDLs, and HDLs, tocotrienol concentrations were significantly lower than alpha-tocopherol concentrations. In comparison, plasma alpha-tocopherol peaked at 8 h (24.3 +/- 5.22 microg/mL) during the alpha-tocopherol treatment and emerged as the major vitamin E isomer detected in plasma and lipoproteins during both the TRF and the alpha-tocopherol treatments. CONCLUSIONS Tocotrienols are detected in postprandial plasma, albeit in significantly lower concentrations than is alpha-tocopherol. This finding confirms previous observations that, in the fasted state, tocotrienols are not detected in plasma. Tocotrienol transport in lipoproteins appears to follow complex biochemically mediated pathways within the lipoprotein cascade.
Collapse
Affiliation(s)
- Syed Fairus
- Food Technology and Nutrition Unit, Malaysian Palm Oil Board, Selangor, Malaysia
| | | | | | | |
Collapse
|
49
|
Sen CK, Khanna S, Roy S. Tocotrienols: Vitamin E beyond tocopherols. Life Sci 2006; 78:2088-98. [PMID: 16458936 PMCID: PMC1790869 DOI: 10.1016/j.lfs.2005.12.001] [Citation(s) in RCA: 339] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2005] [Revised: 03/23/2005] [Accepted: 06/13/2005] [Indexed: 02/06/2023]
Abstract
In nature, eight substances have been found to have vitamin E activity: alpha-, beta-, gamma- and delta-tocopherol; and alpha-, beta-, gamma- and delta-tocotrienol. Yet, of all papers on vitamin E listed in PubMed less than 1% relate to tocotrienols. The abundance of alpha-tocopherol in the human body and the comparable efficiency of all vitamin E molecules as antioxidants, led biologists to neglect the non-tocopherol vitamin E molecules as topics for basic and clinical research. Recent developments warrant a serious reconsideration of this conventional wisdom. Tocotrienols possess powerful neuroprotective, anti-cancer and cholesterol lowering properties that are often not exhibited by tocopherols. Current developments in vitamin E research clearly indicate that members of the vitamin E family are not redundant with respect to their biological functions. alpha-Tocotrienol, gamma-tocopherol, and delta-tocotrienol have emerged as vitamin E molecules with functions in health and disease that are clearly distinct from that of alpha-tocopherol. At nanomolar concentration, alpha-tocotrienol, not alpha-tocopherol, prevents neurodegeneration. On a concentration basis, this finding represents the most potent of all biological functions exhibited by any natural vitamin E molecule. An expanding body of evidence support that members of the vitamin E family are functionally unique. In recognition of this fact, title claims in manuscripts should be limited to the specific form of vitamin E studied. For example, evidence for toxicity of a specific form of tocopherol in excess may not be used to conclude that high-dosage "vitamin E" supplementation may increase all-cause mortality. Such conclusion incorrectly implies that tocotrienols are toxic as well under conditions where tocotrienols were not even considered. The current state of knowledge warrants strategic investment into the lesser known forms of vitamin E. This will enable prudent selection of the appropriate vitamin E molecule for studies addressing a specific need.
Collapse
Affiliation(s)
- Chandan K Sen
- Department of Surgery, Davis Heart and Lung Research Institute, The Ohio State University Medical Center, Columbus, Ohio 43210, USA.
| | | | | |
Collapse
|
50
|
Wada S, Satomi Y, Murakoshi M, Noguchi N, Yoshikawa T, Nishino H. Tumor suppressive effects of tocotrienol in vivo and in vitro. Cancer Lett 2005; 229:181-91. [PMID: 16098658 DOI: 10.1016/j.canlet.2005.06.036] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 06/25/2005] [Accepted: 06/28/2005] [Indexed: 10/25/2022]
Abstract
Tocotrienols have been reported to have higher biological activities than tocopherols. We investigated the antitumor effect of tocotrienols both in vivo and in vitro. Oral administration of tocotrienols resulted in significant suppression of liver and lung carcinogenesis in mice. In human hepatocellular carcinoma HepG2 cells, delta-tocotrienol exerted more significant antiproliferative effect than alpha-, beta-, and gamma-tocotrienols. delta-Tocotrienol induced apoptosis, and also tended to induce S phase arrest. On the other hand, gene expression analysis showed that delta-tocotrienol increased CYP1A1 gene, a phase I enzyme. Although further study will be necessary to investigate possible adverse effect, the data obtained in present study suggest that tocotrienols could be promising agents for cancer prevention.
Collapse
Affiliation(s)
- Sayori Wada
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kawaramachi Hirokoji, Kamigyo-ku, Kyoto 602-0841, Japan.
| | | | | | | | | | | |
Collapse
|