1
|
Zhao N, Lai C, Wang Y, Dai S, Gu H. Understanding the role of DNA methylation in colorectal cancer: Mechanisms, detection, and clinical significance. Biochim Biophys Acta Rev Cancer 2024; 1879:189096. [PMID: 38499079 DOI: 10.1016/j.bbcan.2024.189096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/18/2024] [Accepted: 03/13/2024] [Indexed: 03/20/2024]
Abstract
Colorectal cancer (CRC) is one of the deadliest malignancies worldwide, ranking third in incidence and second in mortality. Remarkably, early stage localized CRC has a 5-year survival rate of over 90%; in stark contrast, the corresponding 5-year survival rate for metastatic CRC (mCRC) is only 14%. Compounding this problem is the staggering lack of effective therapeutic strategies. Beyond genetic mutations, which have been identified as critical instigators of CRC initiation and progression, the importance of epigenetic modifications, particularly DNA methylation (DNAm), cannot be underestimated, given that DNAm can be used for diagnosis, treatment monitoring and prognostic evaluation. This review addresses the intricate mechanisms governing aberrant DNAm in CRC and its profound impact on critical oncogenic pathways. In addition, a comprehensive review of the various techniques used to detect DNAm alterations in CRC is provided, along with an exploration of the clinical utility of cancer-specific DNAm alterations.
Collapse
Affiliation(s)
- Ningning Zhao
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China
| | - Chuanxi Lai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yunfei Wang
- Zhejiang ShengTing Biotech. Ltd, Hangzhou 310000, China
| | - Sheng Dai
- Division of Colorectal Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China.
| | - Hongcang Gu
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China; Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei 230031, China.
| |
Collapse
|
2
|
Morgan AE, Salcedo-Sora JE, Mc Auley MT. A new mathematical model of folate homeostasis in E. coli highlights the potential importance of the folinic acid futile cycle in cell growth. Biosystems 2024; 235:105088. [PMID: 38000545 DOI: 10.1016/j.biosystems.2023.105088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
Folate (vitamin B9) plays a central role in one-carbon metabolism in prokaryotes and eukaryotes. This pathway mediates the transfer of one-carbon units, playing a crucial role in nucleotide synthesis, methylation, and amino acid homeostasis. The folinic acid futile cycle adds a layer of intrigue to this pathway, due to its associations with metabolism, cell growth, and dormancy. It also introduces additional complexity to folate metabolism. A logical way to deal with such complexity is to examine it by using mathematical modelling. This work describes the construction and analysis of a model of folate metabolism, which includes the folinic acid futile cycle. This model was tested under three in silico growth conditions. Model simulations revealed: 1) the folate cycle behaved as a stable biochemical system in three growth states (slow, standard, and rapid); 2) the initial concentration of serine had the greatest impact on metabolite concentrations; 3) 5-formyltetrahydrofolate cyclo-ligase (5-FCL) activity had a significant impact on the levels of the 7 products that carry the one-carbon donated from folates, and the redox couple NADP/NADPH; this was particularly evident in the rapid growth state; 4) 5-FCL may be vital to the survival of the cells by maintaining low levels of homocysteine, as high levels can induce toxicity; and 5) the antifolate therapeutic trimethoprim had a greater impact on folate metabolism with higher nutrient availability. These results highlight the important role of 5-FCL in intracellular folate homeostasis and mass generation under different metabolic scenarios.
Collapse
Affiliation(s)
- Amy E Morgan
- School of Health & Sport Sciences, Hope Park, Liverpool Hope University, Liverpool, L16 9JD, UK.
| | - J Enrique Salcedo-Sora
- Liverpool Shared Research Facilities, GeneMill, University of Liverpool, Liverpool, L69 7ZB, UK
| | - Mark T Mc Auley
- School of Science, Engineering and Environment, University of Salford, Manchester, M5 4NT, UK
| |
Collapse
|
3
|
Kubo Y, Shoji K, Tajima A, Horiguchi S, Fukuoka H, Nishikawa M, Kagawa Y, Kawabata T. Serum 5-Methyltetrahydrofolate Status Is Associated with One-Carbon Metabolism-Related Metabolite Concentrations and Enzyme Activity Indicators in Young Women. Int J Mol Sci 2023; 24:10993. [PMID: 37446171 DOI: 10.3390/ijms241310993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maintaining optimal one-carbon metabolism (OCM) is essential for health and pregnancy. In this cross-sectional study, folate status was assessed based on 5-methyltetrahydrofolate (5-MTHF) levels, and the association between 5-MTHF and OCM-related metabolites was investigated in 227 female Japanese university students aged 18-25 years. The participants were divided into high and low 5-MTHF groups based on their folate status. Serum samples of the participants were collected while they were fasting, and 18 OCM-related metabolites were measured using stable-isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The association between serum 5-MTHF and OCM-related metabolite concentrations was assessed using Spearman's rank correlation coefficient. Serum 5-MTHF concentrations were negatively correlated with total homocysteine (tHcy) concentrations and positively correlated with S-adenosylmethionine (SAM) and total cysteine (tCys) concentrations. Serum 5-MTHF concentrations demonstrated a stronger negative correlation with tHcy/tCys than with tHcy alone. The negative correlation between betaine and tHcy concentrations was stronger in the low 5-MTHF group than in the high 5-MTHF group. The 5-MTHF status could be linked to Hcy flux into the transsulfuration pathway via SAM. Therefore, the tHcy/tCys ratio may be a more sensitive indicator of the 5-MTHF status than tHcy alone. Furthermore, a low 5-MTHF status can enhance Hcy metabolism via betaine.
Collapse
Affiliation(s)
- Yoshinori Kubo
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Akiko Tajima
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Sayaka Horiguchi
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Hideoki Fukuoka
- Department of Perinatal Mesenchymal Stem Cell Research, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Masazumi Nishikawa
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai 982-0215, Japan
| | - Yasuo Kagawa
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| |
Collapse
|
4
|
Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-Based Therapies for Colorectal Cancer. Cells 2020; 9:E1540. [PMID: 32599894 PMCID: PMC7349319 DOI: 10.3390/cells9061540] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal carcinogenesis (CRC) is caused by the gradual long-term accumulation of both genetic and epigenetic changes. Recently, epigenetic alterations have been included in the classification of the CRC molecular subtype, and this points out their prognostic impact. As epigenetic modifications are reversible, they may represent relevant therapeutic targets. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), regulates gene expression. For many years, the deregulation of DNA methylation has been considered to play a substantial part in CRC etiology and evolution. Despite considerable advances in CRC treatment, patient therapy response persists as limited, and their profit from systemic therapies are often hampered by the introduction of chemoresistance. In addition, inter-individual changes in therapy response in CRC patients can arise from their specific (epi)genetic compositions. In this review article, we summarize the options of CRC treatment based on DNA methylation status for their predictive value. This review also includes the therapy outcomes based on the patient's methylation status in CRC patients. In addition, the current challenge of research is to develop therapeutic inhibitors of DNMT. Based on the essential role of DNA methylation in CRC development, the application of DNMT inhibitors was recently proposed for the treatment of CRC patients, especially in patients with DNA hypermethylation.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
5
|
Peng C, Wang J, Asante I, Louie S, Jin R, Chatzi L, Casey G, Thomas DC, Conti DV. A latent unknown clustering integrating multi-omics data (LUCID) with phenotypic traits. Bioinformatics 2019; 36:842-850. [PMID: 31504184 PMCID: PMC7986585 DOI: 10.1093/bioinformatics/btz667] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 01/31/2023] Open
Abstract
MOTIVATION Epidemiologic, clinical and translational studies are increasingly generating multiplatform omics data. Methods that can integrate across multiple high-dimensional data types while accounting for differential patterns are critical for uncovering novel associations and underlying relevant subgroups. RESULTS We propose an integrative model to estimate latent unknown clusters (LUCID) aiming to both distinguish unique genomic, exposure and informative biomarkers/omic effects while jointly estimating subgroups relevant to the outcome of interest. Simulation studies indicate that we can obtain consistent estimates reflective of the true simulated values, accurately estimate subgroups and recapitulate subgroup-specific effects. We also demonstrate the use of the integrated model for future prediction of risk subgroups and phenotypes. We apply this approach to two real data applications to highlight the integration of genomic, exposure and metabolomic data. AVAILABILITY AND IMPLEMENTATION The LUCID method is implemented through the LUCIDus R package available on CRAN (https://CRAN.R-project.org/package=LUCIDus). SUPPLEMENTARY INFORMATION Supplementary materials are available at Bioinformatics online.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Jun Wang
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Isaac Asante
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Stan Louie
- Department of Clinical Pharmacy, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
| | - Ran Jin
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Lida Chatzi
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA
| | - Graham Casey
- Center for Public Health Genomics, Department of Public Health Sciences, University of Virginia, Charlottesville, VA 22908, USA
| | - Duncan C Thomas
- Department of Preventive Medicine, Keck School of Medicine, Los Angeles, CA 90089, USA
| | | |
Collapse
|
6
|
Zaitsev AV, Martinov MV, Vitvitsky VM, Ataullakhanov FI. Rat liver folate metabolism can provide an independent functioning of associated metabolic pathways. Sci Rep 2019; 9:7657. [PMID: 31113966 PMCID: PMC6529478 DOI: 10.1038/s41598-019-44009-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/30/2019] [Indexed: 11/27/2022] Open
Abstract
Folate metabolism in mammalian cells is essential for multiple vital processes, including purine and pyrimidine synthesis, histidine catabolism, methionine recycling, and utilization of formic acid. It remains unknown, however, whether these processes affect each other via folate metabolism or can function independently based on cellular needs. We addressed this question using a quantitative mathematical model of folate metabolism in rat liver cytoplasm. Variation in the rates of metabolic processes associated with folate metabolism (i.e., purine and pyrimidine synthesis, histidine catabolism, and influxes of formate and methionine) in the model revealed that folate metabolism is organized in a striking manner that enables activation or inhibition of each individual process independently of the metabolic fluxes in others. In mechanistic terms, this independence is based on the high activities of a group of enzymes involved in folate metabolism, which efficiently maintain close-to-equilibrium ratios between substrates and products of enzymatic reactions.
Collapse
Affiliation(s)
| | - Michael V Martinov
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Victor M Vitvitsky
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia.
| | - Fazoil I Ataullakhanov
- Department of Physics, Moscow State University, Moscow, 119991, Russia
- Center for Theoretical Problems of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 119991, Russia
- Dmitry Rogachev National Medical Research Center for Pediatric Hematology, Oncology, and Immunology, Moscow, 117997, Russia
| |
Collapse
|
7
|
Mc Auley MT, Mooney KM, Salcedo-Sora JE. Computational modelling folate metabolism and DNA methylation: implications for understanding health and ageing. Brief Bioinform 2019; 19:303-317. [PMID: 28007697 DOI: 10.1093/bib/bbw116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Indexed: 11/12/2022] Open
Abstract
Dietary folates have a key role to play in health, as deficiencies in the intake of these B vitamins have been implicated in a wide variety of clinical conditions. The reason for this is folates function as single carbon donors in the synthesis of methionine and nucleotides. Moreover, folates have a vital role to play in the epigenetics of mammalian cells by supplying methyl groups for DNA methylation reactions. Intriguingly, a growing body of experimental evidence suggests that DNA methylation status could be a central modulator of the ageing process. This has important health implications because the methylation status of the human genome could be used to infer age-related disease risk. Thus, it is imperative we further our understanding of the processes which underpin DNA methylation and how these intersect with folate metabolism and ageing. The biochemical and molecular mechanisms, which underpin these processes, are complex. However, computational modelling offers an ideal framework for handling this complexity. A number of computational models have been assembled over the years, but to date, no model has represented the full scope of the interaction between the folate cycle and the reactions, which governs the DNA methylation cycle. In this review, we will discuss several of the models, which have been developed to represent these systems. In addition, we will present a rationale for developing a combined model of folate metabolism and the DNA methylation cycle.
Collapse
Affiliation(s)
- Mark T Mc Auley
- Department of Chemical Engineering, Thornton Science Park, University of Chester, UK
| | - Kathleen M Mooney
- Faculty of Health and Social Care, Edge Hill University, Ormskirk, Lancashire, UK
| | | |
Collapse
|
8
|
Zagkos L, Auley MM, Roberts J, Kavallaris NI. Mathematical models of DNA methylation dynamics: Implications for health and ageing. J Theor Biol 2019; 462:184-193. [DOI: 10.1016/j.jtbi.2018.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 12/24/2022]
|
9
|
Shade DC, Park HJ, Hausman DB, Hohos N, Meagher RB, Kauwell GPA, Kilaru V, Lewis RD, Smith AK, Bailey LB. DNA Methylation Changes in Whole Blood and CD16+ Neutrophils in Response to Chronic Folic Acid Supplementation in Women of Childbearing Age. INT J VITAM NUTR RES 2018; 87:271-278. [PMID: 30499755 DOI: 10.1024/0300-9831/a000491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Folate, a water-soluble vitamin, is a key source of one-carbon groups for DNA methylation, but studies of the DNA methylation response to supplemental folic acid yield inconsistent results. These studies are commonly conducted using whole blood, which contains a mixed population of white blood cells that have been shown to confound results. The objective of this study was to determine if CD16+ neutrophils may provide more specific data than whole blood for identifying DNA methylation response to chronic folic acid supplementation. The study was performed in normal weight (BMI 18.5 - 24.9 kg/m2) women (18 - 35 y; n = 12), with blood samples taken before and after 8 weeks of folic acid supplementation at 800 μg/day. DNA methylation patterns from whole blood and isolated CD16+ neutrophils were measured across >485,000 CpG sites throughout the genome using the Infinium HumanMethylation450 BeadChip. Over the course of the 8-week supplementation, 6746 and 7513 CpG sites changed (p < 0.05) in whole blood and CD16+ neutrophils, respectively. DNA methylation decreased in 68.4% (whole blood) and 71.8% (CD16+ neutrophils) of these sites. There were only 182 CpG sites that changed in both the whole blood and CD16+ neutrophils, 139 of which changed in the same direction. These results suggest that the genome-wide DNA methylation response to chronic folic acid supplementation is different between whole blood and CD16+ neutrophils and that a single white blood cell type may function as a more specific epigenetic reporter of folate status than whole blood.
Collapse
Affiliation(s)
- Deanna C Shade
- a Co-first authors; these authors contributed equally.,1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Hea Jin Park
- a Co-first authors; these authors contributed equally.,1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Dorothy B Hausman
- 1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Natalie Hohos
- 1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | | | - Gail P A Kauwell
- 3 Food Science and Human Nutrition Department, University of Florida, Gainesville, FL, USA
| | - Varun Kilaru
- 4 Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Richard D Lewis
- 1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| | - Alicia K Smith
- 4 Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Lynn B Bailey
- 1 Department of Foods and Nutrition, University of Georgia, Athens, GA, USA
| |
Collapse
|
10
|
Sadre-Marandi F, Dahdoul T, Reed MC, Nijhout HF. Sex differences in hepatic one-carbon metabolism. BMC SYSTEMS BIOLOGY 2018; 12:89. [PMID: 30355281 PMCID: PMC6201565 DOI: 10.1186/s12918-018-0621-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
Background There are large differences between men and women of child-bearing age in the expression level of 5 key enzymes in one-carbon metabolism almost certainly caused by the sex hormones. These male-female differences in one-carbon metabolism are greatly accentuated during pregnancy. Thus, understanding the origin and consequences of sex differences in one-carbon metabolism is important for precision medicine. Results We have created a mathematical model of hepatic one-carbon metabolism based on the underlying physiology and biochemistry. We use the model to investigate the consequences of sex differences in gene expression. We give a mechanistic understanding of observed concentration differences in one-carbon metabolism and explain why women have lower S-andenosylmethionine, lower homocysteine, and higher choline and betaine. We give a new explanation of the well known phenomenon that folate supplementation lowers homocysteine and we show how to use the model to investigate the effects of vitamin deficiencies, gene polymorphisms, and nutrient input changes. Conclusions Our model of hepatic one-carbon metabolism is a useful platform for investigating the mechanistic reasons that underlie known associations between metabolites. In particular, we explain how gene expression differences lead to metabolic differences between males and females. Electronic supplementary material The online version of this article (doi:10.1186/s12918-018-0621-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Farrah Sadre-Marandi
- Mathematical Biosciences Institute, The Ohio State University, Columbus, 43210, OH, USA
| | - Thabat Dahdoul
- Department of Mathematics, Cal-State Fullerton, Fullerton, 92831, CA, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, 120 Science Drive, Box 90320, Durham, 27708, NC, USA.
| | | |
Collapse
|
11
|
Chamberlain JA, Dugué PA, Bassett JK, Hodge AM, Brinkman MT, Joo JE, Jung CH, Makalic E, Schmidt DF, Hopper JL, Buchanan DD, English DR, Southey MC, Giles GG, Milne RL. Dietary intake of one-carbon metabolism nutrients and DNA methylation in peripheral blood. Am J Clin Nutr 2018; 108:611-621. [PMID: 30101351 DOI: 10.1093/ajcn/nqy119] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 05/09/2018] [Indexed: 12/28/2022] Open
Abstract
Background Folate and other one-carbon metabolism nutrients are essential to enable DNA methylation to occur, but the extent to which their dietary intake influences methylation in adulthood is unclear. Objective We assessed associations between dietary intake of these nutrients and DNA methylation in peripheral blood, overall and at specific genomic locations. Design We conducted a cross-sectional study using baseline data and samples from 5186 adult participants in the Melbourne Collaborative Cohort Study (MCCS). Nutrient intake was estimated from a food-frequency questionnaire. DNA methylation was measured by using the Illumina Infinium HumanMethylation450 BeadChip array (HM450K). We assessed associations of intakes of folate, riboflavin, vitamins B-6 and B-12, methionine, choline, and betaine with methylation at individual cytosine-guanine dinucleotides (CpGs), and with median (genome-wide) methylation across all CpGs, CpGs in gene bodies, and CpGs in gene promoters. We also assessed associations with methylation at long interspersed nuclear element 1 (LINE-1), satellite 2 (Sat2), and Arthrobacter luteus restriction endonuclease (Alu) repetitive elements for a subset of participants. We used linear mixed regression, adjusting for age, sex, country of birth, smoking, energy intake from food, alcohol intake, Mediterranean diet score, and batch effects to assess log-linear associations with dietary intake of each nutrient. In secondary analyses, we assessed associations with low or high intakes defined by extreme quintiles. Results No evidence of log-linear association was observed at P < 10-7 between the intake of one-carbon metabolism nutrients and methylation at individual CpGs. Low intake of riboflavin was associated with higher methylation at CpG cg21230392 in the first exon of PROM1 (P = 5.0 × 10-8). No consistent evidence of association was observed with genome-wide or repetitive element measures of methylation. Conclusion Our findings suggest that dietary intake of one-carbon metabolism nutrients in adulthood, as measured by a food-frequency questionnaire, has little association with blood DNA methylation. An association with low intake of riboflavin requires replication in independent cohorts. This study was registered at http://www.clinicaltrials.gov as NCT03227003.
Collapse
Affiliation(s)
- James A Chamberlain
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Pierre-Antoine Dugué
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Julie K Bassett
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Allison M Hodge
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Maree T Brinkman
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - JiHoon E Joo
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Chol-Hee Jung
- Melbourne Bioinformatics, The University of Melbourne, Parkville, Victoria, Australia
| | - Enes Makalic
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel F Schmidt
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - John L Hopper
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Daniel D Buchanan
- Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia.,Colorectal Oncogenomics Group, Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, Victoria, Australia.,Genetic Medicine and Familial Cancer Center, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Dallas R English
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Melissa C Southey
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| | - Roger L Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, Victoria, Australia.,Center for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Abstract
Systems composed of many components which interact with each other and lead to unpredictable global behaviour, are considered as complex systems. In a biological context, complex systems represent living systems composed of a large number of interacting elements. In order to study these systems, a precise mathematical modelling was typically used in this context. However, this modelling has limitations in the structural understanding and the behavioural study. In this sense, formal computational modelling is an approach that allows to model and to simulate dynamical properties of these particular systems. In this paper, we use Hybrid Functional Petri Net (HFPN), a Petri net extension dedicated to study and verify biopathways, to model and study the Methionine metabolic pathway. Methionine and its derivatives play significant roles in human bodies. We propose a set of simulations for the purpose of studying and analysing the Methionine pathway’s behaviour. Our simulation results have shown that several important abnormalities in this pathway are related to sever diseases such as Alzheimer’s disease, cardiovascular disease, cancers and others.
Collapse
|
13
|
Jin C, Zhuo Y, Wang J, Zhao Y, Xuan Y, Mou D, Liu H, Zhou P, Fang Z, Che L, Xu S, Feng B, Li J, Jiang X, Lin Y, Wu D. Methyl donors dietary supplementation to gestating sows diet improves the growth rate of offspring and is associating with changes in expression and DNA methylation of insulin-like growth factor-1 gene. J Anim Physiol Anim Nutr (Berl) 2018; 102:1340-1350. [PMID: 29959805 DOI: 10.1111/jpn.12933] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/27/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
Abstract
The study aimed to investigate the effects of maternal dietary methyl donors on the performance of sows and their offspring, and the associated hepatic insulin-like growth factor-1 (IGF-1) expression of the offspring. A total of 24 multiparous sows were randomly fed the control (CON) or the CON diet supplemented with methyl donors (MD) at 3 g/kg betaine, 15 mg/kg folic acid, 400 mg/kg choline and 150 μg/kg VB12 , from mating until delivery. After farrowing, sows were fed a common lactation diet through a 28-days lactation period and six litters per treatment were selected to be fed until at approximately 110 kg BW. Maternal MD supplementation resulted in greater birthweight (p < 0.05) and increased the piglet weights (p < 0.01) and litter weights (p < 0.05) at the age of day 28, compared with that in CON group. The offspring pigs in the MD group had greater ADG (p < 0.05) and tended to lower F:G ratio (p = 0.07) compared with that of CON group from day 28 to 180 of age. The offspring pigs from MD group had greater serum IGF-1 concentrations and expressions of hepatic IGF-1 gene and muscular IGF-1 receptor (IGF-1r) protein at birth (p < 0.05), and greater hepatic IGF-1 protein (p = 0.03) and muscular IGF-1r gene expressions (p < 0.05) at slaughter, than that from the CON group. Moreover, the methylation at the promoter of IGF-1 gene in the liver of newborn piglets and finishing pigs was greater in the MD group than that of the CON group (p < 0.05). In conclusion, maternal MD supplementation throughout gestation could enhance the birthweight and postnatal growth rate of offspring, associated with an increased expression of the IGF-1 gene and IGF-1r, as well as the altered DNA methylation of IGF-1 gene promotor.
Collapse
Affiliation(s)
- Chao Jin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Zhao
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yuedong Xuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Daolin Mou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Hong Liu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Pan Zhou
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Jiang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education of China, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Leung KY, Pai YJ, Chen Q, Santos C, Calvani E, Sudiwala S, Savery D, Ralser M, Gross SS, Copp AJ, Greene NDE. Partitioning of One-Carbon Units in Folate and Methionine Metabolism Is Essential for Neural Tube Closure. Cell Rep 2018; 21:1795-1808. [PMID: 29141214 PMCID: PMC5699646 DOI: 10.1016/j.celrep.2017.10.072] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/27/2017] [Accepted: 10/18/2017] [Indexed: 11/18/2022] Open
Abstract
Abnormal folate one-carbon metabolism (FOCM) is implicated in neural tube defects (NTDs), severe malformations of the nervous system. MTHFR mediates unidirectional transfer of methyl groups from the folate cycle to the methionine cycle and, therefore, represents a key nexus in partitioning one-carbon units between FOCM functional outputs. Methionine cycle inhibitors prevent neural tube closure in mouse embryos. Similarly, the inability to use glycine as a one-carbon donor to the folate cycle causes NTDs in glycine decarboxylase (Gldc)-deficient embryos. However, analysis of Mthfr-null mouse embryos shows that neither S-adenosylmethionine abundance nor neural tube closure depend on one-carbon units derived from embryonic or maternal folate cycles. Mthfr deletion or methionine treatment prevents NTDs in Gldc-null embryos by retention of one-carbon units within the folate cycle. Overall, neural tube closure depends on the activity of both the methionine and folate cycles, but transfer of one-carbon units between the cycles is not necessary. Inhibition of methionine cycle activity prevents neural tube closure, causing NTDs Loss of embryonic and maternal MTHFR activity does not prevent neural tube closure Glycine is a 1C donor to the folate cycle via the glycine cleavage system in the embryo Ablation of glycine cleavage causes NTDs, preventable by MTHFR inactivity or methionine
Collapse
Affiliation(s)
- Kit-Yi Leung
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Yun Jin Pai
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - Chloe Santos
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Enrica Calvani
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sonia Sudiwala
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Dawn Savery
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Markus Ralser
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College of Cornell University, 1300 York Avenue, New York, NY 10021, USA
| | - Andrew J Copp
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Nicholas D E Greene
- Developmental Biology & Cancer Programme, UCL Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK.
| |
Collapse
|
15
|
Abstract
In view of well-documented association of hyperhomocysteinaemia with a wide spectrum of diseases and higher incidence of vitamin deficiencies in Indians, we proposed a mathematical model to forecast the role of demographic and genetic variables in influencing homocysteinemetabolism and investigated the influence of life style modulations in controlling homocysteine levels. Total plasma homocysteine levels were measured in fasting samples using reverse phase HPLC. Multiple linear regression (MLR) and neuro-fuzzy models were developed. The MLR model explained 64% variability in homocysteine, while the neurofuzzy model showed higher accuracy in predicting homocysteine with a mean absolute error of 0.00002 μmol/L. Methylene tetrahydrofolate reductase (MTHFR) C677T, 5-methyltetrahydrofolate homocysteine methyltransferase (MTR) A2756G and 5- methyltetrahydrofolate homocysteine methyltransferase reductase (MTRR) A66G were shown to be positively associatiated with homocysteine, while nonvegetarian diet, serine hydroxymethyltransferase 1 (SHMT1) C1420T and TYMS 5'-UTR 28 bp tandem repeat exhibited negative association with homocysteine. The protective role of SHMT1 C1420T was attributed to more H-bonding interactions in the mutant modelled compared to the wild type, as shown through in silico analysis. To conclude, polymorphisms in genes regulating remethylation of homocysteine strongly influence homocysteine levels. The restoration of one-carbon homeostasis by SHMT1 C1420T or increased flux of folate towards remethylation due to TYMS 5'-UTR 28 bp tandem repeat or nonvegetarian diet can lower homocysteine levels.
Collapse
|
16
|
Cronje PB. Essential role of methyl donors in animal productivity. ANIMAL PRODUCTION SCIENCE 2018. [DOI: 10.1071/an15729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Dietary requirements for the methyl donors, choline, betaine and folate, in livestock species are poorly defined and have not been included in diet formulation software or simulation models for animals. A deficiency of methyl donors may promote an inflammatory state, which is significant for the livestock industry because chronic low-grade inflammation is widespread among livestock under commercial conditions. Furthermore, recent evidence showing that methyl donors activate adenosine monophosphate-activated protein kinase, an anti-inflammatory master switch, indicates that dietary methyl-donor supplementation could be used to prevent or ameliorate chronic inflammation and its sequelae in livestock, which include fatty liver disease in dairy cows, fatty liver and kidney syndrome in broilers, fatty liver haemorrhagic syndrome in layers, gut ulcers in pigs, liver abscesses in feedlot cattle, enteritis in poultry and susceptibility to heat stress in all species. Because of the complexity of interactions among methyl donors, a modelling approach inclusive of a supporting research effort will be required to harness the potential of methyl-donor supplementation in livestock production.
Collapse
|
17
|
Nijhout HF, Sadre-Marandi F, Best J, Reed MC. Systems Biology of Phenotypic Robustness and Plasticity. Integr Comp Biol 2017; 57:171-184. [DOI: 10.1093/icb/icx076] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
18
|
Misselbeck K, Marchetti L, Field MS, Scotti M, Priami C, Stover PJ. A hybrid stochastic model of folate-mediated one-carbon metabolism: Effect of the common C677T MTHFR variant on de novo thymidylate biosynthesis. Sci Rep 2017; 7:797. [PMID: 28400561 PMCID: PMC5429759 DOI: 10.1038/s41598-017-00854-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 03/13/2017] [Indexed: 11/19/2022] Open
Abstract
Folate-mediated one-carbon metabolism (FOCM) is an interconnected network of metabolic pathways, including those required for the de novo synthesis of dTMP and purine nucleotides and for remethylation of homocysteine to methionine. Mouse models of folate-responsive neural tube defects (NTDs) indicate that impaired de novo thymidylate (dTMP) synthesis through changes in SHMT expression is causative in folate-responsive NTDs. We have created a hybrid computational model comprised of ordinary differential equations and stochastic simulation. We investigated whether the de novo dTMP synthesis pathway was sensitive to perturbations in FOCM that are known to be associated with human NTDs. This computational model shows that de novo dTMP synthesis is highly sensitive to the common MTHFR C677T polymorphism and that the effect of the polymorphism on FOCM is greater in folate deficiency. Computational simulations indicate that the MTHFR C677T polymorphism and folate deficiency interact to increase the stochastic behavior of the FOCM network, with the greatest instability observed for reactions catalyzed by serine hydroxymethyltransferase (SHMT). Furthermore, we show that de novo dTMP synthesis does not occur in the cytosol at rates sufficient for DNA replication, supporting empirical data indicating that impaired nuclear de novo dTMP synthesis results in uracil misincorporation into DNA.
Collapse
Affiliation(s)
- Karla Misselbeck
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068, Rovereto (TN), Italy
- Department of Mathematics, University of Trento, Trento, Italy
| | - Luca Marchetti
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068, Rovereto (TN), Italy
| | - Martha S Field
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, USA
| | - Marco Scotti
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Corrado Priami
- The Microsoft Research - University of Trento Centre for Computational and Systems Biology (COSBI), Piazza Manifattura, 1, 38068, Rovereto (TN), Italy.
- Department of Mathematics, University of Trento, Trento, Italy.
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, 14853, USA.
| |
Collapse
|
19
|
Mason JB, Tang SY. Folate status and colorectal cancer risk: A 2016 update. Mol Aspects Med 2017; 53:73-79. [DOI: 10.1016/j.mam.2016.11.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
|
20
|
MacMillan L, Lamarre SG, daSilva RP, Jacobs RL, Brosnan ME, Brosnan JT. Riboflavin Deficiency in Rats Decreases de novo Formate Production but Does Not Affect Plasma Formate Concentration. J Nutr 2017; 147:346-352. [PMID: 28122934 DOI: 10.3945/jn.116.243535] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 11/29/2016] [Accepted: 12/27/2016] [Indexed: 11/14/2022] Open
Abstract
Background: The one-carbon metabolism pathway is highly dependent on a number of B vitamins in order to provide one-carbon units for purine and thymidylate biosynthesis as well as homocysteine remethylation. Previous studies have examined folate and vitamin B-12 deficiency and their effects on formate metabolism; as of yet, to our knowledge, no studies on the effects of riboflavin deficiency on formate metabolism have been published.Objective: Our objective was to determine the effects of riboflavin deficiency on formate metabolism.Methods: Weanling male rats were randomly assigned either to control, riboflavin-replete (RR) or to experimental, riboflavin-deficient (RD) versions of the AIN-93G diet for 13 d, at which time a constant infusion of [13C]-formate was carried out to ascertain the effects of deficiency on formate production. Gas chromatography-mass spectrometry was used to measure plasma formate concentration and [13C]-formate enrichment. HPLC, LC-mass spectrometry (MS)/MS, and enzymatic assays were used for the measurement of one-carbon precursors and other metabolites.Results: RD rats had significantly lower rates of formate production (15%) as well as significantly reduced hepatic methylenetetrahydrofolate reductase activity (69%) and protein concentration (54%) compared with RR rats. There was no difference in plasma formate concentrations between the groups. Plasma serine, a potential one-carbon precursor, was significantly higher in RD rats (467 ± 73 μM) than in RR rats (368 ± 52 μM).Conclusions: Although deficiencies in folate and vitamin B-12 lead to major changes in plasma formate concentrations, riboflavin deficiency results in no significant difference; this disagrees with the prediction of a published mathematical model. Our observation of a lower rate of formate production is consistent with a role for flavoproteins in this process.
Collapse
Affiliation(s)
- Luke MacMillan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Simon G Lamarre
- Department of Biology, University of Moncton, Moncton, New Brunswick, Canada; and
| | - Robin P daSilva
- Department of Agricultural, Food and Nutritional Sciences, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Sciences, Alberta Diabetes Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Margaret E Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - John T Brosnan
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada;
| |
Collapse
|
21
|
Mathematical Models for Immunology: Current State of the Art and Future Research Directions. Bull Math Biol 2016; 78:2091-2134. [PMID: 27714570 PMCID: PMC5069344 DOI: 10.1007/s11538-016-0214-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 09/26/2016] [Indexed: 01/01/2023]
Abstract
The advances in genetics and biochemistry that have taken place over the last 10 years led to significant advances in experimental and clinical immunology. In turn, this has led to the development of new mathematical models to investigate qualitatively and quantitatively various open questions in immunology. In this study we present a review of some research areas in mathematical immunology that evolved over the last 10 years. To this end, we take a step-by-step approach in discussing a range of models derived to study the dynamics of both the innate and immune responses at the molecular, cellular and tissue scales. To emphasise the use of mathematics in modelling in this area, we also review some of the mathematical tools used to investigate these models. Finally, we discuss some future trends in both experimental immunology and mathematical immunology for the upcoming years.
Collapse
|
22
|
McKay JA, Adriaens M, Evelo CT, Ford D, Mathers JC. Gene promoter DNA methylation patterns have a limited role in orchestrating transcriptional changes in the fetal liver in response to maternal folate depletion during pregnancy. Mol Nutr Food Res 2016; 60:2031-42. [PMID: 27133805 PMCID: PMC5031189 DOI: 10.1002/mnfr.201600079] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/15/2016] [Accepted: 04/04/2016] [Indexed: 12/12/2022]
Abstract
SCOPE Early-life exposures are critical in fetal programming and may influence function and health in later life. Adequate maternal folate consumption during pregnancy is essential for healthy fetal development and long-term offspring health. The mechanisms underlying fetal programming are poorly understood, but are likely to involve gene regulation. Epigenetic marks, including DNA methylation, regulate gene expression and are modifiable by folate supply. We observed transcriptional changes in fetal liver in response to maternal folate depletion and hypothesized that these changes are concomitant with altered gene promoter methylation. METHODS AND RESULTS Female C57BL/6J mice were fed diets containing 2 or 0.4 mg folic acid/kg for 4 wk before mating and throughout pregnancy. At 17.5-day gestation, genome-wide gene expression and promoter methylation were measured by microarray analysis in male fetal livers. While 989 genes were differentially expressed, 333 promoters had altered methylation (247 hypermethylated, 86 hypomethylated) in response to maternal folate depletion. Only 16 genes had both expression and methylation changes. However, most methylation changes occurred in genomic regions neighboring expression changes. CONCLUSION In response to maternal folate depletion, altered expression at the mRNA level was not associated with altered promoter methylation of the same gene in fetal liver.
Collapse
Affiliation(s)
- Jill A McKay
- Human Nutrition Research Centre, Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK.
| | - Michiel Adriaens
- Maastricht Centre for Systems Biology-MaCSBio, Maastricht University, Maastricht, the Netherlands
| | - Chris T Evelo
- Department of Bioinformatics-BiGCaT, Maastricht University, Maastricht, the Netherlands
| | - Dianne Ford
- Human Nutrition Research Centre, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
23
|
Hall MN, Howe CG, Liu X, Caudill MA, Malysheva O, Ilievski V, Lomax-Luu AM, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Graziano JH, Gamble MV. Supplementation with Folic Acid, but Not Creatine, Increases Plasma Betaine, Decreases Plasma Dimethylglycine, and Prevents a Decrease in Plasma Choline in Arsenic-Exposed Bangladeshi Adults. J Nutr 2016; 146:1062-7. [PMID: 27052531 PMCID: PMC4841924 DOI: 10.3945/jn.115.227132] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/24/2016] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Folic acid (FA) supplementation facilitates urinary excretion of arsenic, a human carcinogen. A better understanding of interactions between one-carbon metabolism intermediates may improve the ability to design nutrition interventions that further facilitate arsenic excretion. OBJECTIVE The objective was to determine if FA and/or creatine supplementation increase choline and betaine and decrease dimethylglycine (DMG). METHODS We conducted a secondary analysis of the Folic Acid and Creatine Trial, a randomized trial in arsenic-exposed Bangladeshi adults (n = 605, aged 24-55 y, 50.3% male) who received arsenic-removal water filters. We examined treatment effects of FA and/or creatine supplementation on plasma choline, betaine, and DMG concentrations, measured by LC-tandem mass spectrometry at baseline and at week 12. Group comparisons were between 1) 400 and 800 μg FA/d (FA400 and FA800, respectively) compared with placebo, 2) creatine (3 g/d) compared with placebo, and 3) creatine plus FA400 compared with FA400. RESULTS Choline decreased in the placebo group (-6.6%; 95% CI: -10.2%, -2.9%) but did not change in the FA groups (FA400: 2.5%; 95% CI: -0.9%, 6.1%; FA800: 1.4%; 95% CI: -2.5%, 5.5%; P < 0.05). Betaine did not change in the placebo group (-3.5%; 95% CI: -9.3%, 2.6%) but increased in the FA groups (FA400: 14.1%; 95% CI: 9.4%, 19.0%; FA800: 13.0%; 95% CI: 7.2%, 19.1%; P < 0.01). The decrease in DMG was greater in the FA groups (FA400: -26.7%; 95% CI: -30.9%, -22.2%; FA800: -27.8%; 95% CI: -31.8%, -23.4%) than in the placebo group (-12.3%; 95% CI: -18.1%, -6.2%; P < 0.01). The percentage change in choline, betaine, and DMG did not differ between creatine treatment arms and their respective reference groups. CONCLUSION Supplementation for 12 wk with FA, but not creatine, increases plasma betaine, decreases plasma DMG, and prevents a decrease in plasma choline in arsenic-exposed Bangladeshi adults. This trial was registered at clinicaltrials.gov as NCT01050556.
Collapse
Affiliation(s)
| | | | - Xinhua Liu
- Biostatistics, Mailman School of Public Health, Columbia University, New York, NY
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY; and
| | - Olga Malysheva
- Division of Nutritional Sciences, Cornell University, Ithaca, NY; and
| | | | | | | | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | | | | |
Collapse
|
24
|
Karamshetty V, Acharya JD, Ghaskadbi S, Goel P. Mathematical Modeling of Glutathione Status in Type 2 Diabetics with Vitamin B12 Deficiency. Front Cell Dev Biol 2016; 4:16. [PMID: 27047940 PMCID: PMC4803754 DOI: 10.3389/fcell.2016.00016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 02/22/2016] [Indexed: 01/11/2023] Open
Abstract
Deficiencies in vitamin B12 and glutathione (GSH) are associated with a number of diseases including type 2 diabetes mellitus. We tested newly diagnosed Indian diabetic patients for correlation between their vitamin B12 and GSH, and found it to be weak. Here we seek to examine the theoretical dependence of GSH on vitamin B12 with a mathematical model of 1-carbon metabolism due to Reed and co-workers. We study the methionine cycle of the Reed-Nijhout model by developing a simple "stylized model" that captures its essential topology and whose kinetics are analytically tractable. The analysis shows-somewhat counter-intuitively-that the flux responsible for the homeostasis of homocysteine is, in fact, peripheral to the methionine cycle. Elevation of homocysteine arises from reduced activity of methionine synthase, a vitamin B12-dependent enzyme, however, this does not increase GSH biosynthesis. The model suggests that the lack of vitamin B12-GSH correlation is explained by suppression of activity in the trans-sulfuration pathway that limits the synthesis of cysteine and GSH from homocysteine. We hypothesize this "cysteine-block" is an essential consequence of vitamin B12 deficiency. It can be clinically relevant to appreciate that these secondary effects of vitamin B12 deficiency could be central to its pathophysiology.
Collapse
Affiliation(s)
- Varun Karamshetty
- Department of Mathematics, Indian Institute of Science Education and Research Pune, India
| | | | | | - Pranay Goel
- Department of Biology, Indian Institute of Science Education and Research Pune, India
| |
Collapse
|
25
|
Hoeijmakers L, Kempe H, Verschure PJ. Epigenetic imprinting during assisted reproductive technologies: The effect of temporal and cumulative fluctuations in methionine cycling on the DNA methylation state. Mol Reprod Dev 2016; 83:94-107. [PMID: 26660493 DOI: 10.1002/mrd.22605] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Accepted: 12/04/2015] [Indexed: 12/22/2022]
Affiliation(s)
- Lianne Hoeijmakers
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| | - Hermannus Kempe
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| | - Pernette J. Verschure
- Swammerdam Institute for Life Sciences; University of Amsterdam; Amsterdam the Netherlands
| |
Collapse
|
26
|
Gregory JF, DeRatt BN, Rios-Avila L, Ralat M, Stacpoole PW. Vitamin B6 nutritional status and cellular availability of pyridoxal 5'-phosphate govern the function of the transsulfuration pathway's canonical reactions and hydrogen sulfide production via side reactions. Biochimie 2016; 126:21-6. [PMID: 26765812 DOI: 10.1016/j.biochi.2015.12.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 12/30/2015] [Indexed: 02/08/2023]
Abstract
The transsulfuration pathway (TS) acts in sulfur amino acid metabolism by contributing to the regulation of cellular homocysteine, cysteine production, and the generation of H2S for signaling functions. Regulation of TS pathway kinetics involves stimulation of cystathionine β-synthase (CBS) by S-adenosylmethionine (SAM) and oxidants such as H2O2, and by Michaelis-Menten principles whereby substrate concentrations affect reaction rates. Although pyridoxal phosphate (PLP) serves as coenzyme for both CBS and cystathionine γ-lyase (CSE), CSE exhibits much greater loss of activity than CBS during PLP insufficiency. Thus, cellular and plasma cystathionine concentrations increase in vitamin B6 deficiency mainly due to the bottleneck caused by reduced CSE activity. Because of the increase in cystathionine, the canonical production of cysteine (homocysteine → cystathionine → cysteine) is largely maintained even during vitamin B6 deficiency. Typical whole body transsulfuration flux in humans is 3-7 μmol/h per kg body weight. The in vivo kinetics of H2S production via side reactions of CBS and CSE in humans are unknown but they have been reported for cultured HepG2 cells. In these studies, cells exhibit a pronounced reduction in H2S production capacity and rates of lanthionine and homolanthionine synthesis in deficiency. In humans, plasma concentrations of lanthionine and homolanthionine exhibit little or no mean change due to 4-wk vitamin B6 restriction, nor do they respond to pyridoxine supplementation of subjects in chronically low-vitamin B6 status. Wide individual variation in responses of the H2S biomarkers to such perturbations of human vitamin B6 status suggests that the resulting modulation of H2S production may have physiological consequences in a subset of people. Supported by NIH grant DK072398. This paper refers to data from studies registered at clinicaltrials.gov as NCT01128244 and NCT00877812.
Collapse
Affiliation(s)
- Jesse F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611-0370, USA.
| | - Barbara N DeRatt
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611-0370, USA
| | - Luisa Rios-Avila
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611-0370, USA
| | - Maria Ralat
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL 32611-0370, USA
| | - Peter W Stacpoole
- Division of Endocrinology and Metabolism, Departments of Biochemistry and Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
27
|
Mathematical analysis of the regulation of competing methyltransferases. BMC SYSTEMS BIOLOGY 2015; 9:69. [PMID: 26467983 PMCID: PMC4606511 DOI: 10.1186/s12918-015-0215-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Methyltransferase (MT) reactions, in which methyl groups are attached to substrates, are fundamental to many aspects of cell biology and human physiology. The universal methyl donor for these reactions is S-adenosylmethionine (SAM) and this presents the cell with an important regulatory problem. If the flux along one pathway is changed then the SAM concentration will change affecting all the other MT pathways, so it is difficult for the cell to regulate the pathways independently. METHODS We created a mathematical model, based on the known biochemistry of the folate and methionine cycles, to study the regulatory mechanisms that enable the cell to overcome this difficulty. Some of the primary mechanisms are long-range allosteric interactions by which substrates in one part of the biochemical network affect the activity of enzymes at distant locations in the network (not distant in the cell). Because of these long-range allosteric interactions, the dynamic behavior of the network is very complicated, and so mathematical modeling is a useful tool for investigating the effects of the regulatory mechanisms and understanding the complicated underlying biochemistry and cell biology. RESULTS We study the allosteric binding of 5-methyltetrahydrofolate (5 mTHF) to glycine-N-methyltransferase (GNMT) and explain why data in the literature implies that when one molecule binds, GNMT retains half its activity. Using the model, we quantify the effects of different regulatory mechanisms and show how cell processes would be different if the regulatory mechanisms were eliminated. In addition, we use the model to interpret and understand data from studies in the literature. Finally, we explain why a full understanding of how competing MTs are regulated is important for designing intervention strategies to improve human health. CONCLUSIONS We give strong computational evidence that once bound GNMT retains half its activity. The long-range allosteric interactions enable the cell to regulate the MT reactions somewhat independently. The low K m values of many MTs also play a role because the reactions then run near saturation and changes in SAM have little effect. Finally, the inhibition of the MTs by the product S-adenosylhomocysteine also stabilizes reaction rates against changes in SAM.
Collapse
|
28
|
Abstract
Mathematical models are a useful tool for investigating a large number of questions in metabolism, genetics, and gene–environment interactions. A model based on the underlying biology and biochemistry is a platform for in silico biological experimentation that can reveal the causal chain of events that connect variation in one quantity to variation in another. We discuss how we construct such models, how we have used them to investigate homeostatic mechanisms, gene–environment interactions, and genotype–phenotype mapping, and how they can be used in precision and personalized medicine.
Collapse
Affiliation(s)
| | - Janet A Best
- Department of Mathematics, Ohio State University, Columbus, OH, 43210, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
29
|
You YA, Lee JH, Kwon EJ, Yoo JY, Kwon WS, Pang MG, Kim YJ. Proteomic Analysis of One-carbon Metabolism-related Marker in Liver of Rat Offspring. Mol Cell Proteomics 2015; 14:2901-9. [PMID: 26342040 PMCID: PMC4638034 DOI: 10.1074/mcp.m114.046888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Indexed: 01/17/2023] Open
Abstract
Maternal food intake has a significant effect on the fetal environment, and an inadequate maternal diet may result in intrauterine growth restriction. Intrauterine growth restriction newborn rat pups nursed by normal diet-fed dams exhibited rapid catch-up growth, which plays a critical role in the risk for metabolic and cardiovascular disease in later life. Specifically, one-carbon metabolism in the liver plays a critical role in placental and fetal growth. Impaired functioning of one-carbon metabolism is associated with increased homocysteine levels. In this study, we applied a comprehensive proteomic approach to identify differential expression of proteins related to one-carbon metabolism in the livers of rat offspring as an effect of maternal food restriction during gestation. Data are available via ProteomeXchange with identifier PXD002578. We determined that betaine-homocysteine S-methyltransferase 1, methylenetetrahydrofolate dehydrogenase 1, and ATP synthase subunit beta mitochondrial (ATP5B) expression levels were significantly reduced in the livers of rat offspring exposed to maternal food restriction during gestation compared with in the offspring of rats fed a normal diet (p < 0.05). Moreover, the expression levels of betaine-homocysteine S-methyltransferase 1, methylenetetrahydrofolate dehydrogenase 1, and ATP synthase subunit beta mitochondrial were negatively correlated with serum homocysteine concentration in male offspring exposed to maternal food restriction during gestation and normal diet during lactation. However, in female offspring only expression levels of methylenetetrahydrofolate dehydrogenase 1 were negatively correlated with homocysteine concentration. This study shows that maternal food restriction during late gestation and normal diet during lactation lead to increased homocysteine concentration through disturbance of one-carbon metabolism in the livers of male offspring. This suggests that male offspring have an increased gender-specific susceptibility to disease in later life through fetal programming.
Collapse
Affiliation(s)
- Young-Ah You
- From the ‡Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 158-710, Korea
| | - Ji Hye Lee
- §Department of Obstetrics and Gynecology, Ewha Womans University, Seoul, 158-710, Korea
| | - Eun Jin Kwon
- §Department of Obstetrics and Gynecology, Ewha Womans University, Seoul, 158-710, Korea
| | - Jae Young Yoo
- From the ‡Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 158-710, Korea
| | - Woo-Sung Kwon
- ¶Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Korea
| | - Myung-Geol Pang
- ¶Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-Do 456-756, Korea
| | - Young Ju Kim
- From the ‡Medical Research Institute, School of Medicine, Ewha Womans University, Seoul 158-710, Korea; §Department of Obstetrics and Gynecology, Ewha Womans University, Seoul, 158-710, Korea;
| |
Collapse
|
30
|
Neuhouser ML, Cheng TYD, Beresford SAA, Brown E, Song X, Miller JW, Zheng Y, Thomson CA, Shikany JM, Vitolins MZ, Rohan T, Green R, Ulrich CM. Red blood cell folate and plasma folate are not associated with risk of incident colorectal cancer in the Women's Health Initiative observational study. Int J Cancer 2015; 137:930-9. [PMID: 25643945 PMCID: PMC4478092 DOI: 10.1002/ijc.29453] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 01/08/2015] [Indexed: 12/31/2022]
Abstract
The relationship between folate and colorectal cancer (CRC) risk is unclear. We investigated the association of two biomarkers of folate status, plasma folate and red blood cell (RBC) folate, with CRC risk using a nested case-control design in the Women's Health Initiative Observational Study. Postmenopausal women (n = 93,676) aged 50-79 years were enrolled in the Women's Health Initiative Observational Study (1993-1998). A fasting blood draw and extensive health, dietary and lifestyle data were collected upon enrollment. Through 2008, 988 incident CRC cases were reported and confirmed with medical records adjudication. Cases and controls were matched on age (± 3 years), enrollment date (± 1 year), race/ethnicity, blood draw date (± 6 months) and hysterectomy status. Plasma and RBC folate were determined by radio assay. Folate biomarker values were divided into quartiles, and conditional logistic regression estimated odds ratios (ORs) and 95% confidence intervals (CI) for the associations of folate with total CRC, by tumor site and by stage at diagnosis. Additional analyses examined whether risks varied across time periods corresponding to the United States folic acid fortification policy: prefortification (1994-1995), perifortification (1996-1997) and postfortification (1998). ORs for overall CRC risk comparing Q4 vs. Q1 were 0.91 (95% CI 0.67-1.24) and 0.91 (95% CI 0.67-1.23) for RBC and plasma folate, respectively. There were no changes in risk attributable to food supply fortification. These results do not support an overall association of folate with CRC risk and suggest that folic acid fortification of the US food supply did not alter the associations in these postmenopausal women.
Collapse
Affiliation(s)
- Marian L Neuhouser
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Ting-Yuan David Cheng
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
- Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY
| | - Shirley A A Beresford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| | - Elissa Brown
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Xiaoling Song
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Joshua W Miller
- Department of Nutritional Sciences, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ
- Department of Medical Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA
| | - Yingye Zheng
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
| | - Cynthia A Thomson
- Canyon Ranch Center for Prevention and Health Promotion, University of Arizona, Tucson, AZ
| | - James M Shikany
- Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL
| | - Mara Z Vitolins
- Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC
| | - Thomas Rohan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY
| | - Ralph Green
- Department of Medical Pathology and Laboratory Medicine, School of Medicine, University of California, Davis, Sacramento, CA
| | - Cornelia M Ulrich
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA
- Population Sciences, Huntsman Cancer Institute, Salt Lake City, UT
| |
Collapse
|
31
|
Oosterink JE, Naninck EF, Korosi A, Lucassen PJ, van Goudoever JB, Schierbeek H. Accurate measurement of the essential micronutrients methionine, homocysteine, vitamins B6, B12, B9 and their metabolites in plasma, brain and maternal milk of mice using LC/MS ion trap analysis. J Chromatogr B Analyt Technol Biomed Life Sci 2015. [DOI: 10.1016/j.jchromb.2015.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
32
|
Bailey LB, Stover PJ, McNulty H, Fenech MF, Gregory JF, Mills JL, Pfeiffer CM, Fazili Z, Zhang M, Ueland PM, Molloy AM, Caudill MA, Shane B, Berry RJ, Bailey RL, Hausman DB, Raghavan R, Raiten DJ. Biomarkers of Nutrition for Development-Folate Review. J Nutr 2015; 145:1636S-1680S. [PMID: 26451605 PMCID: PMC4478945 DOI: 10.3945/jn.114.206599] [Citation(s) in RCA: 325] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/11/2014] [Accepted: 04/14/2015] [Indexed: 12/13/2022] Open
Abstract
The Biomarkers of Nutrition for Development (BOND) project is designed to provide evidence-based advice to anyone with an interest in the role of nutrition in health. Specifically, the BOND program provides state-of-the-art information and service with regard to selection, use, and interpretation of biomarkers of nutrient exposure, status, function, and effect. To accomplish this objective, expert panels are recruited to evaluate the literature and to draft comprehensive reports on the current state of the art with regard to specific nutrient biology and available biomarkers for assessing nutrients in body tissues at the individual and population level. Phase I of the BOND project includes the evaluation of biomarkers for 6 nutrients: iodine, iron, zinc, folate, vitamin A, and vitamin B-12. This review represents the second in the series of reviews and covers all relevant aspects of folate biology and biomarkers. The article is organized to provide the reader with a full appreciation of folate's history as a public health issue, its biology, and an overview of available biomarkers (serum folate, RBC folate, and plasma homocysteine concentrations) and their interpretation across a range of clinical and population-based uses. The article also includes a list of priority research needs for advancing the area of folate biomarkers related to nutritional health status and development.
Collapse
Affiliation(s)
- Lynn B Bailey
- Department of Foods and Nutrition, University of Georgia, Athens, GA;
| | - Patrick J Stover
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Helene McNulty
- Northern Ireland Centre for Food and Health, Biomedical Sciences Research Institute, University of Ulster, Londonderry, United Kingdom
| | - Michael F Fenech
- Genome Health Nutrigenomics Laboratory, Food, Nutrition, and Bioproducts Flagship, Commonwealth Scientific and Industrial Research Organization, Adelaide, Australia
| | - Jesse F Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL
| | - James L Mills
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | | | - Zia Fazili
- National Center for Environmental Health, CDC, Atlanta, GA
| | - Mindy Zhang
- National Center for Environmental Health, CDC, Atlanta, GA
| | - Per M Ueland
- Department of Clinical Science, Univeristy of Bergen, Bergen, Norway
| | - Anne M Molloy
- Institute of Molecular Medicine, Trinity College, Dublin, Ireland
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY
| | - Barry Shane
- Department of Nutritional Sciences and Toxicology, University of California-Berkeley, Berkeley, CA
| | - Robert J Berry
- National Center on Birth Defects and Developmental Disabilities, CDC, Atlanta, GA; and
| | | | - Dorothy B Hausman
- Department of Foods and Nutrition, University of Georgia, Athens, GA
| | - Ramkripa Raghavan
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD
| | - Daniel J Raiten
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD;
| |
Collapse
|
33
|
|
34
|
Nijhout HF, Best J, Reed MC. Escape from homeostasis. Math Biosci 2014; 257:104-10. [PMID: 25242608 DOI: 10.1016/j.mbs.2014.08.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 08/20/2014] [Accepted: 08/21/2014] [Indexed: 12/14/2022]
Abstract
Many physiological systems, from gene networks to biochemistry to whole organism physiology, exhibit homeostatic mechanisms that keep certain variables within a fairly narrow range. Because homeostatic mechanisms buffer traits against environmental and genetic variation they allow the accumulation of cryptic genetic variation. Homeostatic mechanisms are never perfect and can be destabilized by mutations in genes that alter the kinetics of the underlying mechanism. We use mathematical models to study five diverse mechanisms of homeostasis: thermoregulation; maintenance of homocysteine concentration; neural control by a feed forward circuit; the myogenic response in the kidney; and regulation of extracellular dopamine levels in the brain. In all these cases there are homeostatic regions where the trait is relatively insensitive to genetic or environmental variation, flanked by regions where it is sensitive. Moreover, mutations or environmental changes can place an individual closer to the edge of the homeostatic region, thus predisposing that individual to deleterious effects caused by additional mutations or environmental changes. Mutations and environmental variables can also reduce the size of the homeostatic region, thus releasing potentially deleterious cryptic genetic variation. These considerations of mutations, environment, homeostasis, and escape from homeostasis help to explain why the etiology of so many diseases is complex.
Collapse
Affiliation(s)
| | - Janet Best
- Department of Mathematics, Duke University, Durham, NC 27705, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27705, USA
| |
Collapse
|
35
|
da Silva VR, Ralat MA, Quinlivan EP, DeRatt BN, Garrett TJ, Chi YY, Frederik Nijhout H, Reed MC, Gregory JF. Targeted metabolomics and mathematical modeling demonstrate that vitamin B-6 restriction alters one-carbon metabolism in cultured HepG2 cells. Am J Physiol Endocrinol Metab 2014; 307:E93-101. [PMID: 24824655 PMCID: PMC4080146 DOI: 10.1152/ajpendo.00697.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Low vitamin B-6 nutritional status is associated with increased risk for cardiovascular disease and certain cancers. Pyridoxal 5'-phosphate (PLP) serves as a coenzyme in many cellular processes, including several reactions in one-carbon (1C) metabolism and the transsulfuration pathway of homocysteine catabolism. To assess the effect of vitamin B-6 deficiency on these processes and associated pathways, we conducted quantitative analysis of 1C metabolites including tetrahydrofolate species in HepG2 cells cultured in various concentrations of pyridoxal. These results were compared with predictions of a mathematical model of 1C metabolism simulating effects of vitamin B-6 deficiency. In cells cultured in vitamin B-6-deficient medium (25 or 35 nmol/l pyridoxal), we observed >200% higher concentrations of betaine (P < 0.05) and creatinine (P < 0.05) and >60% lower concentrations of creatine (P < 0.05) and 5,10-methenyltetrahydrofolate (P < 0.05) compared with cells cultured in medium containing intermediate (65 nmol/l) or the supraphysiological 2,015 nmol/l pyridoxal. Cystathionine, cysteine, glutathione, and cysteinylglycine, which are components of the transsulfuration pathway and subsequent reactions, exhibited greater concentrations at the two lower vitamin B-6 concentrations. Partial least squares discriminant analysis showed differences in overall profiles between cells cultured in 25 and 35 nmol/l pyridoxal vs. those in 65 and 2,015 nmol/l pyridoxal. Mathematical model predictions aligned with analytically derived results. These data reveal pronounced effects of vitamin B-6 deficiency on 1C-related metabolites, including previously unexpected secondary effects on creatine. These results complement metabolomic studies in humans demonstrating extended metabolic effects of vitamin B-6 insufficiency.
Collapse
Affiliation(s)
- Vanessa R da Silva
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Maria A Ralat
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Eoin P Quinlivan
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Barbara N DeRatt
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida
| | - Timothy J Garrett
- Biomedical Mass Spectrometry Laboratory, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Yueh-Yun Chi
- Department of Biostatistics, University of Florida, Gainesville, Florida
| | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, North Carolina
| | - Jesse F Gregory
- Food Science and Human Nutrition Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida;
| |
Collapse
|
36
|
Kao ACC, Rojnic Kuzman M, Tiwari AK, Zivkovic MV, Chowdhury NI, Medved V, Kekin I, Zai CC, Lieberman JA, Meltzer HY, Bozina T, Bozina N, Kennedy JL, Sertic J, Müller DJ. Methylenetetrahydrofolate reductase gene variants and antipsychotic-induced weight gain and metabolic disturbances. J Psychiatr Res 2014; 54:36-42. [PMID: 24725652 DOI: 10.1016/j.jpsychires.2014.03.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 02/11/2014] [Accepted: 03/13/2014] [Indexed: 10/25/2022]
Abstract
Weight gain and metabolic disturbances represent serious side-effects in antipsychotic (AP) treatment, particularly with clozapine and olanzapine. The methylenetetrahydrofolate reductase (MTHFR) gene is a key determinant in the folate metabolism and previous studies reported a significant effect on AP-induced weight gain and related metabolic abnormalities. Thus, we investigated MTHFR gene variants and changes in several important metabolic parameters in AP-treated patients. In this study, two functional MTHFR polymorphisms, rs1801133 (C677T) and rs1801131 (A1298C), were investigated for changes in weight and metabolic parameters. Genotypic associations were evaluated in a large population (n = 347 including 66 first episode psychosis, FEP patients) treated mostly with clozapine and olanzapine. We did not detect any genotypic association with weight changes (p > 0.05) in our total sample and in the sample refined for ancestry and medication. In our allelic analyses, we observed a trend for the 677-C allele to be associated with weight gain in the total sample (p = 0.03). This effect appeared to be driven by the FEP patients where those carrying the C-allele gained, on average, twice as much weight. Exploratory analyses revealed a significant association between the C677T and the A1298C polymorphism with HDL cholesterol serum levels in patients (p = 0.031). Overall we did not detect a major effect of two functional MTHFR gene variants and AP-induced weight gain. However, our findings suggest an effect of the C677T polymorphism in FEP patients and changes in weight and cholesterol levels. Further investigations in a larger sample are required.
Collapse
Affiliation(s)
- A C C Kao
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Biological Sciences, University of Toronto, Scarborough, ON, Canada
| | - M Rojnic Kuzman
- Department of Psychiatry, University Hospital Centre Zagreb, Zagreb School of Medicine, Croatia
| | - A K Tiwari
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | | | - N I Chowdhury
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - V Medved
- Department of Psychiatry, University Hospital Centre Zagreb, Zagreb School of Medicine, Croatia
| | - I Kekin
- Department of Psychiatry, University Hospital Centre Zagreb, Zagreb School of Medicine, Croatia
| | - C C Zai
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - J A Lieberman
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University and the New York State Psychiatric Institute, New York City, NY, USA
| | - H Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - T Bozina
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb School of Medicine, Croatia
| | - N Bozina
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb School of Medicine, Croatia
| | - J L Kennedy
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - J Sertic
- Department of Laboratory Diagnostics, University Hospital Centre Zagreb, Zagreb School of Medicine, Croatia
| | - D J Müller
- Pharmacogenetics Research Clinic, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
37
|
Lawley SD, Yun J, Gamble MV, Hall MN, Reed MC, Nijhout HF. Mathematical modeling of the effects of glutathione on arsenic methylation. Theor Biol Med Model 2014; 11:20. [PMID: 24885596 PMCID: PMC4041632 DOI: 10.1186/1742-4682-11-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023] Open
Abstract
Background Arsenic is a major environmental toxin that is detoxified in the liver by biochemical mechanisms that are still under study. In the traditional metabolic pathway, arsenic undergoes two methylation reactions, each followed by a reduction, after which it is exported and released in the urine. Recent experiments show that glutathione plays an important role in arsenic detoxification and an alternative biochemical pathway has been proposed in which arsenic is first conjugated by glutathione after which the conjugates are methylated. In addition, in rats arsenic-glutathione conjugates can be exported into the plasma and removed by the liver in the bile. Methods We have developed a mathematical model for arsenic biochemistry that includes three mechanisms by which glutathione affects arsenic methylation: glutathione increases the speed of the reduction steps; glutathione affects the activity of arsenic methyltranferase; glutathione sequesters inorganic arsenic and its methylated downstream products. The model is based as much as possible on the known biochemistry of arsenic methylation derived from cellular and experimental studies. Results We show that the model predicts and helps explain recent experimental data on the effects of glutathione on arsenic methylation. We explain why the experimental data imply that monomethyl arsonic acid inhibits the second methylation step. The model predicts time course data from recent experimental studies. We explain why increasing glutathione when it is low increases arsenic methylation and that at very high concentrations increasing glutathione decreases methylation. We explain why the possible temporal variation of the glutathione concentration affects the interpretation of experimental studies that last hours. Conclusions The mathematical model aids in the interpretation of data from recent experimental studies and shows that the Challenger pathway of arsenic methylation, supplemented by the glutathione effects described above, is sufficient to understand and predict recent experimental data. More experimental studies are needed to explicate the detailed mechanisms of action of glutathione on arsenic methylation. Recent experimental work on the effects of glutathione on arsenic methylation and our modeling study suggest that supplements that increase hepatic glutathione production should be considered as strategies to reduce adverse health effects in affected populations.
Collapse
Affiliation(s)
| | | | | | | | - Michael C Reed
- Department of Mathematics, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
38
|
Nijhout HF, Reed MC. Homeostasis and Dynamic Stability of the Phenotype Link Robustness and Plasticity. Integr Comp Biol 2014; 54:264-75. [DOI: 10.1093/icb/icu010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
39
|
Wu X, Zou T, Cao N, Ni J, Xu W, Zhou T, Wang X. Plasma homocysteine levels and genetic polymorphisms in folate metablism are associated with breast cancer risk in chinese women. Hered Cancer Clin Pract 2014; 12:2. [PMID: 24559276 PMCID: PMC3936891 DOI: 10.1186/1897-4287-12-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 02/07/2014] [Indexed: 12/24/2022] Open
Abstract
Background Folate plays a pivotal role in DNA synthesis, repair, methylation and homocysteine (Hcy) metabolism. Therefore, alterations in the folate-mediated one-carbon metabolism may lead to abnormal methylation proliferation, increases of tumor/neoplasia and vein thrombosis/cardiovascular risk. The serine hydroxymethyhransferase (SHMT), methionine synthase (MS), methionine synthase reductase (MTRR) and cystathionine beta synthase (CBS) regulate key reactions in the folate and Hcy metabolism. Therefore, we investigated whether the genetic variants of the SHMT, MS, MTRR and CBS gene can affect plasma Hcy levels and are associated with breast cancer risk. Methods Genotyping was performed by PCR-RFLP method. Plasma Hcy levels were measured by the fluorescence polarization immunoassay on samples of 96 cases and 85 controls. Results (a) The SHMT 1420 T, MS 2756G, MTRR 66G allele frequency distribution showed significant difference between case and controls (p < 0.01 ~ 0.05). (b) The concentration of plasma Hcy levels of SHMT 1420TT was significantly lower than that of the wild type, while the plasma Hcy levels of MS 2756GG, CBS 699TT/1080TT significantly higher than that of the wild type both in case and controls. The plasma Hcy levels of MTRR 66GG was significantly higher than that of wild type in cases. The plasma Hcy levels of the same genotype in cases were significantly higher than those of controls except SHMT 1420CC, MS 2756AA, MTRR 66GG; (c) Multivariate Logistic regression analysis showed that SHMT C1420T (OR = 0.527, 95% CI = 0.55 ~ 1.24), MS A2756G (OR = 2.32, 95% CI = 0.29 ~ 0.82), MTRR A66G (OR = 1.84, 95% CI = 0.25 ~ 1.66) polymorphism is significantly associated with breast cancer risk. And elevated plasma Hcy levels were significantly linked to increased risk of breast cancer (adjusted OR = 4.45, 95% CI = 1.89-6.24 for the highest tertile as compared with the lowest tertile). Conclusions The current study results seem to suggest a possibility that SHMT C1420T mutation may be negatively correlated with breast cancer susceptibility; while MS A2756G and MTRR A66G mutation may be positively associated with breast cancer risk. SHMT C1420T, MS A2756G, MTRR A66G, CBS C1080T, CBS C699T locus mutation may be factors affecting plasma levels of Hcy. The plasma Hcy levels could be metabolic risk factor for breast cancer risk to a certain extent.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Ministry of Education, Yunnan Normal University, Kunming, Yunnan 650500, China.
| |
Collapse
|
40
|
Dwarkanath P, Barzilay JR, Thomas T, Thomas A, Bhat S, Kurpad AV. High folate and low vitamin B-12 intakes during pregnancy are associated with small-for-gestational age infants in South Indian women: a prospective observational cohort study. Am J Clin Nutr 2013; 98:1450-8. [PMID: 24108785 DOI: 10.3945/ajcn.112.056382] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Folic acid supplementation in those with a low vitamin B-12 intake or status may have adverse effects. These effects are unknown with regard to birth outcome in pregnant Indian women who are routinely supplemented with high doses of folic acid. OBJECTIVE The objective was to examine the association of unbalanced vitamin B-12 and total folate (folic acid supplement + dietary folate) intakes during pregnancy with outcomes in small-for-gestational-age (SGA) infants. DESIGN This was a prospective observational cohort study of 1838 pregnant women in South India. Low intake of dietary vitamin B-12 in the presence of high total folate intake was examined as the ratio of vitamin B-12 intake to total folate intake. RESULTS The inadequacy of vitamin B-12 intake (<1.2 μg/d) assessed by a food-frequency questionnaire in the first, second, and third trimesters of pregnancy was 25%, 11%, and 10%, respectively. Multivariate log binomial regression showed that low vitamin B-12 and folate intakes in the first trimester were independently associated with a higher risk of SGA. In a subgroup of women with high supplemental folic acid intakes in the second trimester, those with the lowest tertile of vitamin B-12:folate ratio had a higher risk of SGA outcome than did those in the highest tertile (adjusted RR: 2.73; 95% CI: 1.17, 6.37). A similar trend was observed in the analysis of blood micronutrient status in a random subset (n = 316) of the sample. CONCLUSIONS These findings suggest that, in addition to vitamin B-12 and folate deficiencies alone, there may be adverse birth outcomes associated with unbalanced vitamin B-12 and folate intakes or status during pregnancy. These findings have important implications for the antenatal B vitamin supplementation policy in India. This trial was registered at the Clinical Trial Registry of India as 2013/07/005342.
Collapse
Affiliation(s)
- Pratibha Dwarkanath
- Division of Nutrition (PD and AVK) and the Epidemiology and Biostatistics Unit (TT), St John's Research Institute, St John's National Academy of Health Sciences, Bangalore, India; Harvard College, Cambridge, MA (JRB); the Department of Obstetrics and Gynecology, St John's Medical College, St John's National Academy of Health Sciences, Bangalore, India (AT); and the Department of Pediatrics, St John's Medical College, St John's National Academy of Health Sciences, Bangalore, India (SB)
| | | | | | | | | | | |
Collapse
|
41
|
Rios-Avila L, Nijhout HF, Reed MC, Sitren HS, Gregory JF. A mathematical model of tryptophan metabolism via the kynurenine pathway provides insights into the effects of vitamin B-6 deficiency, tryptophan loading, and induction of tryptophan 2,3-dioxygenase on tryptophan metabolites. J Nutr 2013; 143:1509-19. [PMID: 23902960 PMCID: PMC3743279 DOI: 10.3945/jn.113.174599] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 03/02/2013] [Accepted: 06/26/2013] [Indexed: 01/17/2023] Open
Abstract
Vitamin B-6 deficiency is associated with impaired tryptophan metabolism because of the coenzyme role of pyridoxal 5'-phosphate (PLP) for kynureninase and kynurenine aminotransferase. To investigate the underlying mechanism, we developed a mathematical model of tryptophan metabolism via the kynurenine pathway. The model includes mammalian data on enzyme kinetics and tryptophan transport from the intestinal lumen to liver, muscle, and brain. Regulatory mechanisms and inhibition of relevant enzymes were included. We simulated the effects of graded reduction in cellular PLP concentration, tryptophan loads and induction of tryptophan 2,3-dioxygenase (TDO) on metabolite profiles and urinary excretion. The model predictions matched experimental data and provided clarification of the response of metabolites in various extents of vitamin B-6 deficiency. We found that moderate deficiency yielded increased 3-hydroxykynurenine and a decrease in kynurenic acid and anthranilic acid. More severe deficiency also yielded an increase in kynurenine and xanthurenic acid and more pronounced effects on the other metabolites. Tryptophan load simulations with and without vitamin B-6 deficiency showed altered metabolite concentrations consistent with published data. Induction of TDO caused an increase in all metabolites, and TDO induction together with a simulated vitamin B-6 deficiency, as has been reported in oral contraceptive users, yielded increases in kynurenine, 3-hydroxykynurenine, and xanthurenic acid and decreases in kynurenic acid and anthranilic acid. These results show that the model successfully simulated tryptophan metabolism via the kynurenine pathway and can be used to complement experimental investigations.
Collapse
Affiliation(s)
- Luisa Rios-Avila
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL; and
| | | | | | - Harry S. Sitren
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL; and
| | - Jesse F. Gregory
- Food Science and Human Nutrition Department, University of Florida, Gainesville, FL; and
| |
Collapse
|
42
|
de Vogel S, Ulvik A, Meyer K, Ueland PM, Nygård O, Vollset SE, Tell GS, Gregory JF, Tretli S, Bjørge T. Sarcosine and other metabolites along the choline oxidation pathway in relation to prostate cancer--a large nested case-control study within the JANUS cohort in Norway. Int J Cancer 2013; 134:197-206. [PMID: 23797698 DOI: 10.1002/ijc.28347] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 01/01/2023]
Abstract
Methyl group donors and intermediates of one-carbon metabolism affect DNA synthesis and DNA methylation, and may thereby affect prostate carcinogenesis. Choline, the precursor of betaine, and the one-carbon metabolite sarcosine have been associated with increased prostate cancer risk. Within JANUS, a prospective cohort in Norway (n = 317,000) with baseline serum samples, we conducted a nested case-control study among 3,000 prostate cancer cases and 3,000 controls. Using conditional logistic regression, odds ratios (ORs) and 95% confidence intervals (CIs) for prostate cancer risk were estimated according to quintiles of circulating betaine, dimethylglycine (DMG), sarcosine, glycine and serine. High sarcosine and glycine concentrations were associated with reduced prostate cancer risk of borderline significance (sarcosine: highest vs. lowest quintile OR = 0.86, CI = 0.72-1.01, p(trend) = 0.03; glycine: OR = 0.83, CI = 0.70-1.00, p(trend) = 0.07). Serum betaine, DMG and serine were not associated with prostate cancer risk. However, individuals with a high glycine/serine ratio were at decreased prostate cancer risk (OR = 0.74, CI = 0.69-0.85, p(trend) < 0.001). This population-based study suggested that men with high serum sarcosine or glycine concentrations have modestly reduced prostate cancer risk. Ratios of metabolites reflecting one-carbon balance may be associated with prostate cancer risk, as demonstrated for the glycine/serine ratio, and should be explored in future studies.
Collapse
Affiliation(s)
- Stefan de Vogel
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Duncan TM, Reed MC, Nijhout HF. A population model of folate-mediated one-carbon metabolism. Nutrients 2013; 5:2457-74. [PMID: 23857220 PMCID: PMC3738981 DOI: 10.3390/nu5072457] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 05/29/2013] [Accepted: 06/04/2013] [Indexed: 12/05/2022] Open
Abstract
Background: Previous mathematical models for hepatic and tissue one-carbon metabolism have been combined and extended to include a blood plasma compartment. We use this model to study how the concentrations of metabolites that can be measured in the plasma are related to their respective intracellular concentrations. Methods: The model consists of a set of ordinary differential equations, one for each metabolite in each compartment, and kinetic equations for metabolism and for transport between compartments. The model was validated by comparison to a variety of experimental data such as the methionine load test and variation in folate intake. We further extended this model by introducing random and systematic variation in enzyme activity. Outcomes and Conclusions: A database of 10,000 virtual individuals was generated, each with a quantitatively different one-carbon metabolism. Our population has distributions of folate and homocysteine in the plasma and tissues that are similar to those found in the NHANES data. The model reproduces many other sets of clinical data. We show that tissue and plasma folate is highly correlated, but liver and plasma folate much less so. Oxidative stress increases the plasma S-adenosylmethionine/S-adenosylhomocysteine (SAM/SAH) ratio. We show that many relationships among variables are nonlinear and in many cases we provide explanations. Sampling of subpopulations produces dramatically different apparent associations among variables. The model can be used to simulate populations with polymorphisms in genes for folate metabolism and variations in dietary input.
Collapse
Affiliation(s)
- Tanya M. Duncan
- Department of Biology, Duke University, Durham, NC 27708, USA; E-Mail:
| | - Michael C. Reed
- Department of Mathematics, Duke University, Durham, NC 27708, USA; E-Mail:
| | - H. Frederik Nijhout
- Department of Biology, Duke University, Durham, NC 27708, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-919-684-2793; Fax: +1-919-660-7293
| |
Collapse
|
44
|
Leung KY, De Castro SCP, Cabreiro F, Gustavsson P, Copp AJ, Greene NDE. Folate metabolite profiling of different cell types and embryos suggests variation in folate one-carbon metabolism, including developmental changes in human embryonic brain. Mol Cell Biochem 2013; 378:229-36. [PMID: 23483428 PMCID: PMC3634978 DOI: 10.1007/s11010-013-1613-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/02/2013] [Indexed: 12/01/2022]
Abstract
Folates act as co-factors for transfer of one-carbon units for nucleotide production, methylation and other biosynthetic reactions. Comprehensive profiling of multiple folates can be achieved using liquid chromatography tandem mass spectrometry, enabling determination of their relative abundance that may provide an indication of metabolic differences between cell types. For example, cell lines exposed to methotrexate showed a dose-dependent elevation of dihydrofolate, consistent with inhibition of dihydrofolate reductase. We analysed the folate profile of E. coli sub-types as well as cell lines and embryonic tissue from both human and mouse. The folate profile of bacteria differed markedly from those of all the mammalian samples, most notably in the greater abundance of formyl tetrahydrofolate. The overall profiles of mouse and human fibroblasts and mid-gestation mouse embryos were broadly similar, with specific differences. The major folate species in these cell types was 5-methyl tetrahydrofolate, in contrast to lymphoblastoid cell lines in which the predominant form was tetrahydrofolate. Analysis of embryonic human brain revealed a shift in folate profile with increasing developmental stage, with a decline in relative abundance of dihydrofolate and increase in 5-methyl tetrahydrofolate. These cell type-specific and developmental changes in folate profile may indicate differential requirements for the various outputs of folate metabolism.
Collapse
Affiliation(s)
- Kit-Yi Leung
- Neural Development Unit and Newlife Birth Defects Research Centre, Institute of Child Health, University College London, London, UK
| | | | | | | | | | | |
Collapse
|
45
|
Scotti M, Stella L, Shearer EJ, Stover PJ. Modeling cellular compartmentation in one-carbon metabolism. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2013; 5:343-65. [PMID: 23408533 DOI: 10.1002/wsbm.1209] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Folate-mediated one-carbon metabolism (FOCM) is associated with risk for numerous pathological states including birth defects, cancers, and chronic diseases. Although the enzymes that constitute the biological pathways have been well described and their interdependency through the shared use of folate cofactors appreciated, the biological mechanisms underlying disease etiologies remain elusive. The FOCM network is highly sensitive to nutritional status of several B-vitamins and numerous penetrant gene variants that alter network outputs, but current computational approaches do not fully capture the dynamics and stochastic noise of the system. Combining the stochastic approach with a rule-based representation will help model the intrinsic noise displayed by FOCM, address the limited flexibility of standard simulation methods for coarse-graining the FOCM-associated biochemical processes, and manage the combinatorial complexity emerging from reactions within FOCM that would otherwise be intractable.
Collapse
Affiliation(s)
- Marco Scotti
- The Microsoft Research-University of Trento Centre for Computational and Systems Biology (COSBI), Rovereto, Italy
| | | | | | | |
Collapse
|
46
|
Figueiredo JC, Levine AJ, Crott JW, Baurley J, Haile RW. Folate-genetics and colorectal neoplasia: what we know and need to know next. Mol Nutr Food Res 2013; 57:607-27. [PMID: 23401104 DOI: 10.1002/mnfr.201200278] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Revised: 10/11/2012] [Accepted: 11/07/2012] [Indexed: 12/18/2022]
Abstract
SCOPE The metabolism of folate involves a complex network of polymorphic enzymes that may explain a proportion of the risk associated with colorectal neoplasia. Over 60 observational studies primarily in non-Hispanic White populations have been conducted on selected genetic variants in specific genes, MTHFR, MTR, MTRR, CBS, TCNII, RFC, GCPII, SHMT, TYMS, and MTHFD1, including five meta-analyses on MTHFR 677C>T (rs1801133) and MTHFR 1298C>T (rs1801131); two meta-analyses on MTR-2756A>C (rs1805087); and one for MTRR 66A>G (rs1801394). METHODS AND RESULTS This systematic review synthesizes these data, highlighting the consistent inverse association between MTHFR 677TT genotype and risk of colorectal cancer (CRC) and its null association with adenoma risk. Results for other variants varied across individual studies; in our meta-analyses we observed some evidence for SHMT 1420C>T (rs1979277) ((odds ratio) OR = 0.85; 95% confidence interval (CI) = 0.73-1.00 for TT v. CC) and TYMS 5' 28 bp repeat (rs34743033) and CRC risk (OR = 0.84; 95% CI = 0.75-0.94 for 2R/3R v. 3R/3R and OR = 0.82; 95% CI = 0.69-0.98 for 2R/2R v. 3R/3R). CONCLUSION To gain further insight into the role of folate variants in colorectal neoplasia will require incorporating measures of the metabolites, including B-vitamin cofactors, homocysteine and S-adenosylmethionine, and innovative statistical methods to better approximate the folate one-carbon metabolism pathway.
Collapse
Affiliation(s)
- Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | | | | | | | | |
Collapse
|
47
|
Gene-gene interactions in folate and adenosine biosynthesis pathways affect methotrexate efficacy and tolerability in rheumatoid arthritis. Pharmacogenet Genomics 2012; 19:935-44. [PMID: 19858780 DOI: 10.1097/fpc.0b013e32833315d1] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE As no single nucleotide polymorphism has emerged as pivotal to predict the lack of efficacy and dose-limiting toxicities to methotrexate (MTX), we evaluated the contribution of gene-gene interactions to the effects of this prodrug in rheumatoid arthritis. METHODS A total of 255 patients treated with MTX for at least 3 months were evaluated with efficacy assessed using the European League Against Rheumatism response criteria or a physician's assessment of patient's response to MTX visual analog scale. Gastrointestinal and neurological idiosyncrasies were recorded in 158 patients. Fourteen single nucleotide polymorphisms in folate and adenosine biosynthesis pathways were measured and detection of gene-gene interactions was performed using multifactor-dimensionality reduction, a method that reduces high-dimensional genetic data into a single dimension of predisposing or risk-genotype combinations. RESULTS Efficacy to MTX (53% responders) was associated with high-order epistasis among variants in inosine-triphosphate pyrophosphatase, aminoimidazole-carboxamide ribonucleotide transformylase, and reduced folate carrier genes. In the absence of predisposing genotype combinations, a 3.8-fold lower likelihood of efficacy was observed (vs. in their presence, 95% confidence interval: 2.2-6.4; P<0.001). Increasing MTX polyglutamate concentrations tended to partially overcome this selective disadvantage. Idiosyncrasies occurred in 29% of patients. In the presence of risk-genotype combinations among variants in methylene tetrahydrofolate reductase, γ-glutamyl-hydrolase, thymidylate synthase, serine hydroxymethyltransferase, and inosine-triphosphate pyrophosphatase genes, an 8.9-fold higher likelihood to exhibit toxicities was observed (vs. in their absence, 95% confidence interval: 3.6-21.9; P<0.001). False-positive report probabilities were below 0.2, thereby indicating that true signals were likely detected in this cohort. CONCLUSION These data indicate that gene-gene interactions impact MTX efficacy and tolerability in rheumatoid arthritis.
Collapse
|
48
|
Malkaram SA, Hassan YI, Zempleni J. Online tools for bioinformatics analyses in nutrition sciences. Adv Nutr 2012; 3:654-65. [PMID: 22983844 PMCID: PMC3648747 DOI: 10.3945/an.112.002477] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recent advances in "omics" research have resulted in the creation of large datasets that were generated by consortiums and centers, small datasets that were generated by individual investigators, and bioinformatics tools for mining these datasets. It is important for nutrition laboratories to take full advantage of the analysis tools to interrogate datasets for information relevant to genomics, epigenomics, transcriptomics, proteomics, and metabolomics. This review provides guidance regarding bioinformatics resources that are currently available in the public domain, with the intent to provide a starting point for investigators who want to take advantage of the opportunities provided by the bioinformatics field.
Collapse
Affiliation(s)
- Sridhar A. Malkaram
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska
| | - Yousef I. Hassan
- Nutrition and Food Science Department, Faculty of Health Sciences, University of Kalamoon, Deirattiah, Syria
| | - Janos Zempleni
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, Nebraska,To whom correspondence should be addressed: E-mail:
| |
Collapse
|
49
|
Murphy NM, Diviney M, Szer J, Bardy P, Grigg A, Hoyt R, King-Kallimanis B, Holdsworth R, McCluskey J, Tait BD. The Effect of Folinic Acid on Methylenetetrahydrofolate Reductase Polymorphisms in Methotrexate-Treated Allogeneic Hematopoietic Stem Cell Transplants. Biol Blood Marrow Transplant 2012; 18:722-30. [DOI: 10.1016/j.bbmt.2011.09.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 09/08/2011] [Indexed: 11/28/2022]
|
50
|
Anderson DD, Woeller CF, Chiang EP, Shane B, Stover PJ. Serine hydroxymethyltransferase anchors de novo thymidylate synthesis pathway to nuclear lamina for DNA synthesis. J Biol Chem 2012; 287:7051-62. [PMID: 22235121 DOI: 10.1074/jbc.m111.333120] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The de novo thymidylate biosynthetic pathway in mammalian cells translocates to the nucleus for DNA replication and repair and consists of the enzymes serine hydroxymethyltransferase 1 and 2α (SHMT1 and SHMT2α), thymidylate synthase, and dihydrofolate reductase. In this study, we demonstrate that this pathway forms a multienzyme complex that is associated with the nuclear lamina. SHMT1 or SHMT2α is required for co-localization of dihydrofolate reductase, SHMT, and thymidylate synthase to the nuclear lamina, indicating that SHMT serves as scaffold protein that is essential for complex formation. The metabolic complex is enriched at sites of DNA replication initiation and associated with proliferating cell nuclear antigen and other components of the DNA replication machinery. These data provide a mechanism for previous studies demonstrating that SHMT expression is rate-limiting for de novo thymidylate synthesis and indicate that de novo thymidylate biosynthesis occurs at replication forks.
Collapse
Affiliation(s)
- Donald D Anderson
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | |
Collapse
|