1
|
Marín-Sáez J, Lopez-Ruiz R, Faria MA, Ferreira IMPLVO, Garrido Frenich A. A comprehensive study on the digestion, absorption, and metabolization of tropane alkaloids in human cell models. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136192. [PMID: 39427354 DOI: 10.1016/j.jhazmat.2024.136192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Tropane alkaloids (TAs) are toxic compounds with potent anticholinergic effects. Herbal infusions are among the most contaminated food commodities; however, the fate of TAs after ingestion remains poorly understood. This study presents a comprehensive investigation into the absorption, and metabolism of five TAs (atropine, scopolamine, tropine, homatropine, and apoatropine) following the digestion of contaminated tea. In vitro human cell models were employed, including gastric (NCI-N87), intestinal (Caco-2:HT29-MTX), and hepatic (HEP-G2) cells. TAs were found to be highly absorbed in the intestinal epithelium, while gastric cells exhibited poor absorption. Metabolism was studied using a custom-made database, revealing that it occurs predominantly in intestinal cells, involving hydroxylation and methylation reactions. Cell metabolomics was conducted using annotation, fragment simulation, and statistical software platforms. Significant statistical differences were observed for 40 tentatively identified compounds. MetaboAnalyst 5.0 was employed to discern the most disturbed metabolic pathways, with amoniacids biosynthesis pathways and TCA cycles being the most affected. These pathways are involved in responses to cellular metabolic stress, neurotransmitter production, cellular energy generation, and the regulation of oxidative stress response. The findings of this study enhance our understanding of the fate of TAs after ingestion, their metabolization and their effects at the cellular level.
Collapse
Affiliation(s)
- Jesús Marín-Sáez
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E-04120 Almeria, Spain; LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Rosalía Lopez-Ruiz
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E-04120 Almeria, Spain; LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Miguel A Faria
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Isabel M P L V O Ferreira
- LAQV/REQUIMTE, Departamento de Ciências Químicas, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal.
| | - Antonia Garrido Frenich
- Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almeria, Agrifood Campus of International Excellence, ceiA3, E-04120 Almeria, Spain.
| |
Collapse
|
2
|
Papetti L, Del Chierico F, Frattale I, Toto F, Scanu M, Mortera SL, Rapisarda F, Di Michele M, Monte G, Ursitti F, Sforza G, Putignani L, Valeriani M. Pediatric migraine is characterized by traits of ecological and metabolic dysbiosis and inflammation. J Headache Pain 2024; 25:171. [PMID: 39379796 PMCID: PMC11462686 DOI: 10.1186/s10194-024-01871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/19/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Recently, there has been increasing interest in the possible role of the gut microbiota (GM) in the onset of migraine. Our aim was to verify whether bacterial populations associated with intestinal dysbiosis are found in pediatric patients with migraine. We looked for which metabolic pathways, these bacteria were involved and whether they might be associated with gut inflammation and increased intestinal permeability. METHODS Patients aged between 6 and 17 years were recruited. The GM profiling was performed by the 16S rRNA metataxonomics of faecal samples from 98 patients with migraine and 98 healthy subjects. Alpha and beta diversity analyses and multivariate and univariate analyses were applied to compare the gut microbiota profiles between the two group. To predict functional metabolic pathways, we used phylogenetic analysis of communities. The level of indican in urine was analyzed to investigate the presence of metabolic dysbiosis. To assess gut inflammation, increased intestinal permeability and the mucosal immune activation, we measured the plasmatic levels of lipopolysaccharide, occludin and IgA, respectively. RESULTS The α-diversity analysis revealed a significant increase of bacterial richness in the migraine group. The β-diversity analysis showed significant differences between the two groups indicating gut dysbiosis in patients with migraine. Thirty-seven metabolic pathways were increased in the migraine group, which includes changes in tryptophan and phenylalanine metabolism. The presence of metabolic dysbiosis was confirmed by the increased level of indican in urine. Increased levels of plasmatic occludin and IgA indicated the presence of intestinal permeability and mucosal immune activation. The plasmatic LPS levels showed a low intestinal inflammation in patients with migraine. CONCLUSIONS Pediatric patients with migraine present GM profiles different from healthy subjects, associated with metabolic pathways important in migraine.
Collapse
Affiliation(s)
- Laura Papetti
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, Rome, Italy
| | - Federica Del Chierico
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Viale Di San Paolo, 15, Rome, Italy.
| | - Ilaria Frattale
- Child Neurology and Psychiatry Unit, Department of Wellbeing of Mental and Neurological, Dental and Sensory Organ Health, Policlinico Tor Vergata Foundation Hospital, Rome, Italy
| | - Francesca Toto
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Viale Di San Paolo, 15, Rome, Italy
| | - Matteo Scanu
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Viale Di San Paolo, 15, Rome, Italy
| | - Stefano Levi Mortera
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Viale Di San Paolo, 15, Rome, Italy
| | - Federica Rapisarda
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Viale Di San Paolo, 15, Rome, Italy
| | - Marta Di Michele
- Immunology, Rheumatology and Infectious Diseases Research Area, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Viale Di San Paolo, 15, Rome, Italy
| | - Gabriele Monte
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, Rome, Italy
| | - Fabiana Ursitti
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, Rome, Italy
| | - Giorgia Sforza
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, Rome, Italy
| | - Lorenza Putignani
- Unit of Microbiology and Diagnostic Immunology, Unit of Microbiomics and Research Area of Immunology, Rheumatology and Infectious Diseases, Unit of Microbiome, Bambino Gesù Children's Hospital, IRCCS, Viale Di San Paolo, 15, Rome, Italy.
| | - Massimiliano Valeriani
- Developmental Neurology Unit, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant'Onofrio, 4, Rome, Italy.
- Systems Medicine Department, Tor Vergata University of Rome, Rome, Italy.
- Center for Sensory-Motor Interaction, Aalborg University, Aalborg, Denmark.
| |
Collapse
|
3
|
Chojnacki J, Popławski T, Kaczka A, Romanowska N, Chojnacki C, Gąsiorowska A. Assessment of Urinary Dopamine and Serotonin Metabolites in Relation to Dysbiosis Indicators in Patients with Functional Constipation. Nutrients 2024; 16:2981. [PMID: 39275296 PMCID: PMC11397005 DOI: 10.3390/nu16172981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND The causes of functional constipation (FC) in adults are unclear, but changes in the gut microbiome may play an important role. The present study aimed to assess the relationship between urinary metabolites of dopamine and serotonin and some dysbiosis indicators in patients with FC. The study included 40 healthy women and 40 women with FC aged 21-46 years. METHODS Urinary levels of homovanillic acid (HVA), 5-hydoxyindoleacetic acid (5-HIAA), p-hydroxyphenylacetic acid (PhAc), and 3-indoxyl sulfate, as final metabolites of dopamine, serotonin, and indole pathway, respectively, were determined using the LC-Ms/Ms method. However, hydrogen-methane and ammonia breath tests were performed. The GA-map Dysbiosis Test was used to identify and characterize the dysbiosis index (DI). RESULTS In patients with FC, the DI was significantly higher than in the control group: 4.05 ± 0.53 vs. 1.52 ± 0.81 points (p < 0.001), but the number of many types of bacteria varied among individuals. The levels of HVA were higher, while 5-HIAA levels were lower in patients. Moreover, the HVA/5-HIAA ratio had a positive correlation with DI as well as with the severity of symptoms. CONCLUSIONS In patients with functional constipation, the balance in dopamine and serotonin secretion is disturbed, which is associated with changes in the gut microbiome.
Collapse
Affiliation(s)
- Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Tomasz Popławski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Aleksandra Kaczka
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Natalia Romanowska
- Department of Gastroenterology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland
| | - Anita Gąsiorowska
- Department of Gastroenterology, Medical University of Lodz, 92-213 Lodz, Poland
| |
Collapse
|
4
|
Ma M, Enomoto Y, Takahashi T, Uchida K, Chambers JK, Goda Y, Yamanaka D, Takahashi SI, Kuwahara M, Li J. Study of the Effects of Condensed Tannin Additives on the Health and Growth Performance of Early-Weaned Piglets. Animals (Basel) 2024; 14:2337. [PMID: 39199871 PMCID: PMC11350907 DOI: 10.3390/ani14162337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
Using 0.5% and 1.0% MGM-P, the objective of the present study was to determine a more appropriate additive level for early-weaned piglets as an alternative to the use of antibiotics. Thirty-six weaned piglets were allotted to one of four groups and given a basal diet (NC), with the basal diet containing either 0.5% (LT) or 1.0% (HT) MGM-P or antibiotics (PC). Diarrhea incidence, growth performance, hematology, blood biochemistry, and blood amino acid concentrations were monitored during the experimental period. Three piglets per group with a body weight nearest to the average level were slaughtered after the experiment to assess their organ index. The results showed that no diarrhea was observed either in the treatment groups or in the control group. The 0.5% group showed an upward trend in body weight and average daily gain at all stages. The WBC counts at 21 days of age were higher (p > 0.05) both in the MGM-P addition groups and the LT and HT groups. For some of the plasma amino acids, such as arginine, phenylalanine concentrations were significantly lower (p < 0.05) in the HT group at the end of the trial. The pathological examination of all organs confirmed no differences. Consequently, the 0.5% MGM-P addition level may be suggested as a potential alternative to the use of antibiotic additives. Even with additives as high as 1%, there is no negative effect on ADG and FCR.
Collapse
Affiliation(s)
- Min Ma
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 319-0206, Japan; (M.M.); (Y.E.); (T.T.)
- Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan;
| | - Yuriko Enomoto
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 319-0206, Japan; (M.M.); (Y.E.); (T.T.)
| | - Tomotsugu Takahashi
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 319-0206, Japan; (M.M.); (Y.E.); (T.T.)
| | - Kazuyuki Uchida
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan; (K.U.); (J.K.C.)
| | - James K. Chambers
- Laboratory of Veterinary Pathology, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan; (K.U.); (J.K.C.)
| | - Yuki Goda
- Laboratory of Cell Regulation, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan; (Y.G.); (S.-I.T.)
| | - Daisuke Yamanaka
- Laboratory of Food and Physiological Models, Graduate School of Agriculture and Life Science, The University of Tokyo, Kasama 113-8654, Japan;
| | - Shin-Ichiro Takahashi
- Laboratory of Cell Regulation, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan; (Y.G.); (S.-I.T.)
| | - Masayoshi Kuwahara
- Veterinary Pathophysiology and Animal Health, Graduate School of Agriculture and Life Science, The University of Tokyo, Tokyo 113-8654, Japan;
| | - Junyou Li
- Animal Resource Science Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Kasama 319-0206, Japan; (M.M.); (Y.E.); (T.T.)
| |
Collapse
|
5
|
Lou Y, Zou X, Pan Z, Huang Z, Zheng S, Zheng X, Yang X, Bao M, Zhang Y, Gu J, Zhang Y. The mechanism of action of Botrychium (Thunb.) Sw. for prevention of idiopathic pulmonary fibrosis based on 1H-NMR-based metabolomics. J Pharm Pharmacol 2024; 76:1018-1027. [PMID: 38776436 DOI: 10.1093/jpp/rgae058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVES This study aimed to reveal the anti-fibrotic effects of Botrychium ternatum (Thunb.) Sw. (BT) against idiopathic pulmonary fibrosis (IPF) and to preliminarily analyze its potential mechanism on bleomycin-induced IPF rats. METHODS The inhibition of fibrosis progression in vivo was assessed by histopathology combined with biochemical indicators. In addition, the metabolic regulatory mechanism was investigated using 1H-nuclear magnetic resonance-based metabolomics combined with multivariate statistical analysis. KEY FINDINGS Firstly, biochemical analysis revealed that BT notably suppressed the expression of hydroxyproline and transforming growth factor-β1 in the pulmonary tissue. Secondly, Masson's trichrome staining and hematoxylin and eosin showed that BT substantially improved the structure of the damaged lung and significantly inhibited the proliferation of collagen fibers and the deposition of extracellular matrix. Finally, serum metabolomic analysis suggested that BT may exert anti-fibrotic effects by synergistically regulating tyrosine metabolism; phenylalanine, tyrosine and tryptophan biosynthesis; and synthesis and degradation of ketone bodies. CONCLUSIONS Our study not only clarifies the potential anti-fibrotic mechanism of BT against IPF at the metabolic level but also provides a theoretical basis for developing BT as an effective anti-fibrotic agent.
Collapse
Affiliation(s)
- Yutao Lou
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Xiaozhou Zou
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zongfu Pan
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Zhongjie Huang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Shuilian Zheng
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiaowei Zheng
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Xiuli Yang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Meihua Bao
- Academician Workstation, School of Stomatology, Changsha Medical University, Changsha, Hunan 410219, China
| | - Yuan Zhang
- Department of Pharmacy, Zhejiang Provincial People' s Hospital Bijie Hospital, Bijie, Guizhou 551799, China
| | - Jinping Gu
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
| | - Yiwen Zhang
- Department of Pharmacy, Center for Clinical Pharmacy, Cancer Center, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
- Key Laboratory of Endocrine Gland Diseases of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| |
Collapse
|
6
|
Millward DJ. Post-prandial tracer studies of protein and amino acid utilisation: what can they tell us about human amino acid and protein requirements? Br J Nutr 2024; 131:2005-2030. [PMID: 38606599 PMCID: PMC11361918 DOI: 10.1017/s0007114524000734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/26/2024] [Accepted: 03/13/2024] [Indexed: 04/13/2024]
Abstract
Nitrogen balance (NB), the principal methodology used to derive recommendations for human protein and amino acid requirements, has been widely criticised, and calls for increased protein and amino acid requirement recommendations have been made, often on the basis of post-prandial amino acid tracer kinetic studies of muscle protein synthesis, or of amino acid oxidation. This narrative review considers our knowledge of the homeostatic regulation of the FFM throughout the diurnal cycle of feeding and fasting and what can and has been learnt from post-prandial amino acid tracer studies, about amino acid and protein requirements. Within the FFM, muscle mass in well fed weight-stable adults with healthy lifestyles appears fixed at a phenotypic level within a wide range of habitual protein intakes. However homoeostatic regulation occurs in response to variation in habitual protein intake, with adaptive changes in amino acid oxidation which influence the magnitude of diurnal losses and gains of body protein. Post-prandial indicator amino acid oxidation (IAAO) studies have been introduced as an alternative to NB and to the logistically complex 24 h [13C-1] amino acid balance studies, for assessment of protein and amino acid requirements. However, a detailed examination of IAAO studies shows both a lack of concern for homeostatic regulation of amino acid oxidation and major flaws in their design and analytical interpretation, which seriously constrain their ability to provide reliable values. New ideas and a much more critical approach to existing work is needed if real progress is to be made in the area.
Collapse
Affiliation(s)
- D. Joe Millward
- Department of Nutritional Sciences, School of Biosciences & Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
7
|
Carbone L, Bůžková P, Robbins JA, Fink HA, Barzilay JI, Elam RE, Isales C. Association of serum levels of phenylalanine and tyrosine with hip fractures and frailty in older adults: The cardiovascular health study. Arch Osteoporos 2024; 19:51. [PMID: 38898169 DOI: 10.1007/s11657-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
This study examined if the amino acids phenylalanine or tyrosine contribute to risk of hip fracture or frailty in older adults. We determined that neither phenylalanine nor tyrosine are important predictors of hip fracture or frailty. We suggest advice on protein intake for skeletal health consider specific amino acid composition. PURPOSE Protein is essential for skeletal health, but the specific amino acid compositions of protein may have differential associations with fracture risk. The aim of this study was to determine the association of serum levels of the aromatic amino acids phenylalanine and tyrosine with risk for incident hip fractures over twelve years of follow-up and cross sectional associations with frailty. METHODS We included 131 older men and women from the Cardiovascular Health Study (CHS) who sustained a hip fracture over twelve years of follow-up and 131 men and women without an incident hip fracture over this same period of time. 42% of this cohort were men and 95% were Caucasian. Weighted multivariable Cox hazards molecules were used to estimate the hazard ratios (HR) and 95% confidence intervals (CI) of incident hip fracture associated with a one standard deviation (SD) higher serum level of phenylalanine or tyrosine. Relative risk regression was used to determine the cross-sectional association of these amino acids with Freid's frailty index. RESULTS Neither serum levels of phenylalanine (HR 0.85 (95% CI 0.62-1.16) or tyrosine (HR 0.82 (95% CI 0.62-1.1) were significantly associated with incident hip fractures or cross sectionally with frailty (frail compared with prefrail/not frail) (HR 0.92 (95% CI 0.48-1.76) and HR (0.86 (95% CI 0.46-1.61) respectively. CONCLUSION Phenylalanine and tyrosine are not significant contributors to hip fractures or frailty in older men and women.
Collapse
Affiliation(s)
- Laura Carbone
- Division of Rheumatology, Department of Medicine, J. Harold Harrison, MD, Distinguished University Chair in Rheumatology, Augusta University, Augusta, GA, USA.
- Charlie Norwood Veterans Affairs Medical Center, VeteransAffairsHealthCareSystem, Augusta, GA, USA.
| | - Petra Bůžková
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - John A Robbins
- Department of Medicine, University of California, Davis, CA, USA
| | - Howard A Fink
- Geriatric Research Education and Clinical Center, Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Joshua I Barzilay
- Division of Endocrinology, Kaiser Permanente of Georgia, EmoryUniversitySchoolof Medicine, Atlanta, GA, USA
| | - Rachel E Elam
- Charlie Norwood Veterans Affairs Medical Center, VeteransAffairsHealthCareSystem, Augusta, GA, USA
- Division of Rheumatology, DepartmentofMedicine, Augusta University, Augusta, GA, USA
| | - Carlos Isales
- Charlie Norwood Veterans Affairs Medical Center, VeteransAffairsHealthCareSystem, Augusta, GA, USA
- Division of Endocrinology, Department of Medicine, J. Harold Harrison, MD, Distinguished University Chair in Aging, Augusta University, Augusta, GA, USA
| |
Collapse
|
8
|
Stålberg SM, Silwal-Pandit L, Bastani NE, Nebdal DJH, Lingjærde OC, Skålhegg BS, Kure EH. Preoperative profiles of plasma amino acids and derivatives distinguish periampullary cancer and benign disease. BMC Cancer 2024; 24:555. [PMID: 38702616 PMCID: PMC11067218 DOI: 10.1186/s12885-024-12320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/29/2024] [Indexed: 05/06/2024] Open
Abstract
Periampullary cancers, including pancreatic ductal adenocarcinoma, ampullary-, cholangio-, and duodenal carcinoma, are frequently diagnosed in an advanced stage and are associated with poor overall survival. They are difficult to differentiate from each other and challenging to distinguish from benign periampullary disease preoperatively. To improve the preoperative diagnostics of periampullary neoplasms, clinical or biological markers are warranted.In this study, 28 blood plasma amino acids and derivatives from preoperative patients with benign (N = 45) and malignant (N = 72) periampullary disease were analyzed by LC-MS/MS.Principal component analysis and consensus clustering both separated the patients with cancer and the patients with benign disease. Glutamic acid had significantly higher plasma expression and 15 other metabolites significantly lower plasma expression in patients with malignant disease compared with patients having benign disease. Phenylalanine was the only metabolite associated with improved overall survival (HR = 0.50, CI 0.30-0.83, P < 0.01).Taken together, plasma metabolite profiles from patients with malignant and benign periampullary disease were significantly different and have the potential to distinguish malignant from benign disease preoperatively.
Collapse
Affiliation(s)
- Stina Margrethe Stålberg
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway
- Department of Pathology, Skien Hospital, Vestfold og Telemark, Norway
| | - Laxmi Silwal-Pandit
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nasser Ezzatkhah Bastani
- Division for Molecular Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Ole Christian Lingjærde
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Computer Science, University of Oslo, Oslo, Norway
| | - Bjørn Steen Skålhegg
- Division for Molecular Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Hegland Kure
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
- Department of Natural Sciences and Environmental Health, University of South-Eastern Norway, Bø i Telemark, Norway.
| |
Collapse
|
9
|
Huang K, Li F, Liu Y, Liang B, Qu P, Yang L, Han S, Li W, Mo X, Dong L, Lin Y. Multi-omics analyses reveal interactions between the skin microbiota and skin metabolites in atopic dermatitis. Front Microbiol 2024; 15:1349674. [PMID: 38559353 PMCID: PMC10978668 DOI: 10.3389/fmicb.2024.1349674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Introduction Atopic dermatitis (AD) is one of the most common inflammatory skin diseases. Skin microecological imbalance is an important factor in the pathogenesis of AD, but the underlying mechanism of its interaction with humans remains unclear. Methods 16S rRNA gene sequencing was conducted to reveal the skin microbiota dynamics. Changes in skin metabolites were tracked by LC-MS metabolomics. We then explored the potential mechanism of interaction by analyzing the correlation between skin bacterial communities and metabolites in corresponding skin-associated samples. Results Samples from 18 AD patients and 18 healthy volunteers (HVs) were subjected to 16S rRNA gene sequencing and LC-MS metabolomics. AD patients had dysbiosis of the skin bacterial community with decreased species richness and evenness. The relative abundance of the genus Staphylococcus increased significantly in AD, while the abundances of the genera Propionibacterium and Brevundimonas decreased significantly. The relative abundance of the genera Staphylococcus in healthy females was significantly higher than those in healthy males, while it showed no difference in AD patients with or without lesions. The effects of AD status, sex and the presence or absence of rashes on the number of differentially abundant metabolites per capita were successively reduced. Multiple metabolites involved in purine metabolism and phenylalanine metabolism pathways (such as xanthosine/xanthine and L-phenylalanine/trans-cinnamate) were increased in AD patients. These trends were much more obvious between female AD patients and female HVs. Spearman correlation analysis revealed that the genus Staphylococcus was positively correlated with various compounds involved in phenylalanine metabolism and purine metabolic pathways. The genera Brevundimonas and Lactobacillus were negatively correlated with various compounds involved in purine metabolism, phenylalanine metabolism and sphingolipid signaling pathways. Discussion We suggest that purine metabolism and phenylalanine metabolism pathway disorders may play a certain role in the pathogenic mechanism of Staphylococcus aureus in AD. We also found that females are more likely to be colonized by the genus Staphylococcus than males. Differentially abundant metabolites involved in purine metabolism and phenylalanine metabolism pathways were more obvious in female. However, we should notice that the metabolites we detected do not necessarily derived from microbes, they may also origin from the host.
Collapse
Affiliation(s)
- Kaikai Huang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fang Li
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yingyao Liu
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baoying Liang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Pinghua Qu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linlin Yang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shanshan Han
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenjun Li
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Xiumei Mo
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Guangzhou, China
| | - Lei Dong
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Lin
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Clinical Research Center for Chinese Medicine Dermatology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, China
| |
Collapse
|
10
|
Fan Y, Keerthisinghe TP, Nian M, Cao X, Chen X, Yang Q, Sampathkumar K, Loo JSC, Ng KW, Demokritou P, Fang M. Comparative secretome metabolic dysregulation by six engineered dietary nanoparticles (EDNs) on the simulated gut microbiota. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133003. [PMID: 38029586 DOI: 10.1016/j.jhazmat.2023.133003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/27/2023] [Accepted: 11/12/2023] [Indexed: 12/01/2023]
Abstract
The potential use of engineered dietary nanoparticles (EDNs) in diet has been increasing and poses a risk of exposure. The effect of EDNs on gut bacterial metabolism remains largely unknown. In this study, liquid chromatography-mass spectrometry (LC-MS) based metabolomics was used to reveal significantly altered metabolites and metabolic pathways in the secretome of simulated gut microbiome exposed to six different types of EDNs (Chitosan, cellulose nanocrystals (CNC), cellulose nanofibrils (CNF) and polylactic-co-glycolic acid (PLGA); two inorganic EDNs including TiO2 and SiO2) at two dietary doses. We demonstrated that all six EDNs can alter the composition in the secretome with distinct patterns. Chitosan, followed by PLGA and SiO2, has shown the highest potency in inducing the secretome change with major pathways in tryptophan and indole metabolism, bile acid metabolism, tyrosine and phenol metabolism. Metabolomic alterations with clear dose response were observed in most EDNs. Overall, phenylalanine has been shown as the most sensitive metabolites, followed by bile acids such as chenodeoxycholic acid and cholic acid. Those metabolites might be served as the representative metabolites for the EDNs-gut bacteria interaction. Collectively, our studies have demonstrated the sensitivity and feasibility of using metabolomic signatures to understand and predict EDNs-gut microbiome interaction.
Collapse
Affiliation(s)
- Yijun Fan
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Anhui Medical University, No 678 Furong Road, Hefei 230601, Anhui, China
| | | | - Min Nian
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiaoqiong Cao
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Xing Chen
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qin Yang
- Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Joachim Say Chye Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, 655 Huntington Ave, Boston, MA 02115, USA
| | - Mingliang Fang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Institute of Eco-Chongming, Shanghai 202162, China.
| |
Collapse
|
11
|
Boguszewicz Ł, Heyda A, Ciszek M, Bieleń A, Skorupa A, Mrochem-Kwarciak J, Składowski K, Sokół M. Metabolite Biomarkers of Prolonged and Intensified Pain and Distress in Head and Neck Cancer Patients Undergoing Radio- or Chemoradiotherapy by Means of NMR-Based Metabolomics-A Preliminary Study. Metabolites 2024; 14:60. [PMID: 38248863 PMCID: PMC10819132 DOI: 10.3390/metabo14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Treatment of head and neck squamous cell carcinoma (HNSCC) has a detrimental impact on patient quality of life. The rate of recognized distress/depression among HNSCC patients ranges from 9.8% to 83.8%, and the estimated prevalence of depression among patients receiving radiotherapy is 63%. Shorter overall survival also occurs in preexisting depression or depressive conditions. The present study analyzes the nuclear magnetic resonance (NMR) blood serum metabolic profiles during radio-/chemoradiotherapy and correlates the detected alterations with pain and/or distress accumulated with the disease and its treatment. NMR spectra were acquired on a Bruker 400 MHz spectrometer and analyzed using multivariate methods. The results indicate that distress and/or pain primarily affect the serum lipids and metabolites of energy (glutamine, glucose, lactate, acetate) and one-carbon (glycine, choline, betaine, methanol, threonine, serine, histidine, formate) metabolism. Sparse disturbances in the branched-chain amino acids (BCAA) and in the metabolites involved in protein metabolism (lysine, tyrosine, phenylalanine) are also observed. Depending on the treatment modality-radiotherapy or concurrent chemoradiotherapy-there are some differences in the altered metabolites.
Collapse
Affiliation(s)
- Łukasz Boguszewicz
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (A.S.); (M.S.)
| | - Alicja Heyda
- 1st Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.H.); (A.B.)
| | - Mateusz Ciszek
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (A.S.); (M.S.)
| | - Agata Bieleń
- 1st Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.H.); (A.B.)
| | - Agnieszka Skorupa
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (A.S.); (M.S.)
| | - Jolanta Mrochem-Kwarciak
- Analytics and Clinical Biochemistry Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
| | - Krzysztof Składowski
- 1st Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.H.); (A.B.)
| | - Maria Sokół
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (A.S.); (M.S.)
- 1st Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.H.); (A.B.)
| |
Collapse
|
12
|
Jin H, Zhang J, Wang Y, Ge W, Jing Y, Cao X, Huo Y, Fu Y. A codon-based live-cell biomonitoring system for assessing intracellular phenylalanine bioavailability in cyanobacteria. Biosens Bioelectron 2024; 244:115792. [PMID: 37922807 DOI: 10.1016/j.bios.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Phenylalanine, as an essential aromatic amino acid, is not only needed for protein and vital molecules such as neurotransmitter and hormone synthesis but also a substrate for the biosynthesis of phenylpropanoids and various bioactive compounds. The metabolism of phenylalanine is dynamic and transitory, which would otherwise inhibit cell growth. Therefore, it is challenging and imperative to monitor intracellular phenylalanine bioavailability in real time, which has great significance for evaluating the effectiveness of introducing pathway-specific genetic modifications to enhance phenylalanine generation. In this study, we proposed a live-cell biomonitoring system to assess phenylalanine bioavailability in real time in cyanobacteria based on codon degeneracy and species-specific usage bias. The biomonitoring system was generated through genetic modification of phenylalanine codons in the chloramphenicol antibiotic resistance gene to wholly preferred and rare codons, in combination with an orthogonal constitutive promoter Trc to express these genes. Cyanobacterial cells equipped with a preferred codon-based gene showed a significant growth advantage over those with rare codons under antibiotic pressure, while the delayed growth caused by rare codon-based genes could be rescued by supplementing phenylalanine in the cultivation medium. Increasing intracellular phenylalanine bioavailability could promote rare codon-based gene containing cell growth to a similar level as wild-type strains harboring preferred codon-based gene, providing a live-cell visualized screening method to relatively define phenylalanine content from either random mutation libraries or pathway-specific engineering cyanobacterial chassis before conducting labor-intensive quantitative measurements.
Collapse
Affiliation(s)
- Haojie Jin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 518000, PR China
| | - Jiaqi Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, PR China
| | - Wanzhao Ge
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China
| | - Yike Jing
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China
| | - Xiaoyu Cao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China
| | - Yixin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, PR China
| | - Yujie Fu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, PR China; Ecological Observation and Research Station of Heilongjiang Sanjiang Plain Wetlands, National Forestry and Grassland Administration, Shuangyashan, 518000, PR China.
| |
Collapse
|
13
|
Tessari P. Stepwise Discovery of Insulin Effects on Amino Acid and Protein Metabolism. Nutrients 2023; 16:119. [PMID: 38201949 PMCID: PMC10780923 DOI: 10.3390/nu16010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/10/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
A clear effect of insulin deficiency and replacement on body/muscle mass was a landmark observation at the start of the insulin age. Since then, an enormous body of investigations has been produced on the pathophysiology of diabetes mellitus from a hormonal/metabolic point of view. Among them, the study of the effects of insulin on body growth and protein accretion occupies a central place and shows a stepwise, continuous, logical, and creative development. Using a metaphor, insulin may be viewed as a director orchestrating the music (i.e., the metabolic effects) played by the amino acids and proteins. As a hormone, insulin obviously does not provide either energy or substrates by itself. Rather, it tells cells how to produce and utilize them. Although the amino acids can be released and taken up by cells independently of insulin, the latter can powerfully modulate these movements. Insulin regulates (inhibits) protein degradation and, in some instances, stimulates protein synthesis. This review aims to provide a synthetic and historical view of the key steps taken from the discovery of insulin as an "anabolic hormone", to the in-depth analysis of its effects on amino acid metabolism and protein accretions, as well as of its interaction with nutrients.
Collapse
Affiliation(s)
- Paolo Tessari
- Department of Medicine, University of Padova, 35128 Padova, Italy
| |
Collapse
|
14
|
Pei X, Tang S, Jiang H, Zhang W, Xu G, Zuo Z, Ren Z, Chen C, Shen Y, Li C, Li D. Paeoniflorin recued hepatotoxicity under zinc oxide nanoparticles exposure via regulation on gut-liver axis and reversal of pyroptosis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166885. [PMID: 37678520 DOI: 10.1016/j.scitotenv.2023.166885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 09/09/2023]
Abstract
The risks of Zinc oxide nanoparticles (ZnO NPs) applications in biological medicine, food processing industry, agricultural production and the biotoxicity brought by environmental invasion of ZnO NPs both gradually troubled the public due to the lack of research on detoxification strategies. TFEB-regulated autophagy-pyroptosis pathways were found as the crux of the hepatotoxicity induced by ZnO NPs in our latest study. Here, our study served as a connecting link between preceding toxic target and the following protection mechanism of Paeoniflorin (PF). According to a combined analysis of network pharmacology/molecular docking-intestinal microbiota-metabolomics first developed in our study, PF alleviated the hepatotoxicity of ZnO NPs from multiple aspects. The hepatic inflammatory injury and hepatocyte pyroptosis in mice liver exposed to ZnO NPs was significantly inhibited by PF. And the intestinal microbiota disorder and liver metabolic disturbance were rescued. The targets predicted by bioinformatics and the signal trend in subacute toxicological model exhibited the protectiveness of PF related to the SIRT1-mTOR-TFEB pathway. These evidences clarified multiple protective mechanisms of PF which provided a novel detoxification approach against ZnO NPs, and further provided a strategy for the medicinal value development of PF.
Collapse
Affiliation(s)
- Xingyao Pei
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Shusheng Tang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Haiyang Jiang
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Yuanmingyuan West Road No.2, Haidian District, Beijing 100193, China
| | - Wenjuan Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Gang Xu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zonghui Zuo
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Zhenhui Ren
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Chun Chen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Yao Shen
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Cun Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China
| | - Daowen Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Jinjing Road No.22, Xiqing District, Tianjin 300392, China; State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, College of Pharmacy, Nankai University, Haihe Education Park, Tongyan Road No.38, Tianjin 300353, China; Tianjin Key Laboratory of Biological Feed Additive Enterprise, S&E Burgeoning Biotechnology (Tianjin) Co., Ltd, Tianjin 300383, China.
| |
Collapse
|
15
|
Pałka K, Podsadni K, Pająk M. Enzymatic synthesis of halogen derivatives of L-phenylalanine and phenylpyruvic acid stereoselectively labeled with hydrogen isotopes in the side chain. J Labelled Comp Radiopharm 2023; 66:362-368. [PMID: 37530220 DOI: 10.1002/jlcr.4057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Halogenated, labeled with deuterium, tritium or doubly labeled with deuterium and tritium in the 3S position of the side chain isotopomers of L-phenylalanine and phenylpyruvic acid were synthesized. Isotopomers of halogenated L-phenylalanine were obtained by addition of ammonia from isotopically enriched buffer solution to the halogenated derivative of (E)-cinnamic acid catalyzed by phenylalanine ammonia lyase. Isotopomers of halogenated phenylpyruvic acid were obtained enzymatically by conversion of the appropriate isotopomer of halogenated L-phenylalanine in the presence of phenylalanine dehydrogenase. As a source of deuterium was used deuterated water, as a source of tritium was used a solution of highly diluted tritiated water. The labeling takes place in good yields and with high deuterium atom% abundance.
Collapse
Affiliation(s)
| | - Katarzyna Podsadni
- Chair and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | | |
Collapse
|
16
|
Afonso GJM, Cavaleiro C, Valero J, Mota SI, Ferreiro E. Recent Advances in Extracellular Vesicles in Amyotrophic Lateral Sclerosis and Emergent Perspectives. Cells 2023; 12:1763. [PMID: 37443797 PMCID: PMC10340215 DOI: 10.3390/cells12131763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/22/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease characterized by the progressive death of motor neurons, leading to paralysis and death. It is a rare disease characterized by high patient-to-patient heterogeneity, which makes its study arduous and complex. Extracellular vesicles (EVs) have emerged as important players in the development of ALS. Thus, ALS phenotype-expressing cells can spread their abnormal bioactive cargo through the secretion of EVs, even in distant tissues. Importantly, owing to their nature and composition, EVs' formation and cargo can be exploited for better comprehension of this elusive disease and identification of novel biomarkers, as well as for potential therapeutic applications, such as those based on stem cell-derived exosomes. This review highlights recent advances in the identification of the role of EVs in ALS etiopathology and how EVs can be promising new therapeutic strategies.
Collapse
Affiliation(s)
- Gonçalo J. M. Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Carla Cavaleiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Jorge Valero
- Instituto de Neurociencias de Castilla y León, University of Salamanca, 37007 Salamanca, Spain;
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Department of Cell Biology and Pathology, University of Salamanca, 37007 Salamanca, Spain
| | - Sandra I. Mota
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Elisabete Ferreiro
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (G.J.M.A.); (C.C.)
- Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- III-Institute of Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
17
|
Dai X, Liu M, Xu S, Zhao H, Li X, Bai Y, Zou Y, An Y, Fan F, Zhang J, Cai B. Metabolomics profile of plasma in acute diquat-poisoned patients using gas chromatography-mass spectrometry. Food Chem Toxicol 2023; 176:113765. [PMID: 37023971 DOI: 10.1016/j.fct.2023.113765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Diquat (DQ) has been confirmed to be toxic to humans and responsible for severe health impairment. While to date, very little is known about the toxicological mechanisms of DQ. Thus, investigations to discover the toxic targets and potential biomarkers of DQ poisoning are urgently needed. In this study, a metabolic profiling analysis was conducted to reveal the changes of metabolites of plasma and find out the potential biomarkers of DQ intoxication by GC-MS. First, multivariate statistical analysis demonstrated that acute DQ poisoning can lead to metabolomic changes in human plasma. Then, metabolomics studies showed that 31 of the identified metabolites were significantly altered by DQ. Pathway analysis indicated that three primarily metabolic pathways including phenylalanine, tyrosine and tryptophan biosynthesis, taurine and hypotaurine metabolism, and phenylalanine metabolism were affected by DQ, resulting in the perturbations of phenylalanine, tyrosine, taurine, and cysteine. Finally, the results of receiver operating characteristic analysis showed the above four metabolites could be used as reliable tools for the diagnosis and severity assessments of DQ intoxication. These data provided the theoretical basis for basic research to understand the potential mechanisms of DQ poisoning, and also identified the desirable biomarkers with great potential for clinical applications.
Collapse
Affiliation(s)
- Xinhua Dai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Maozhu Liu
- Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shuyun Xu
- Department of Emergency Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Han Zhao
- West China Clinical Medical College, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xuezhi Li
- West China Clinical Medical College, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yangjuan Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuangao Zou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yunfei An
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Fan
- West China School of Basic Medical Science & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jing Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Bei Cai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Kumar Tripathi S, Kesharwani K, Saxena D, Singh R, Kautu A, Sharma S, Pandey A, Chopra S, Ballabh Joshi K. Silver-Nanoparticle-Embedded Short Amphiphilic Peptide Nanostructures and Their Plausible Application to Reduce Bacterial Infections. ChemMedChem 2023; 18:e202200654. [PMID: 36604305 DOI: 10.1002/cmdc.202200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023]
Abstract
The microbiota-gut-brain axis (GBA) plays a critical role in the development of neurodegenerative diseases. Dysbiosis of the intestinal microbiome causes a significant alteration in the gut microbiota of Alzheimer's disease (AD) patients, followed by neuroinflammatory processes. Thus, AD beginning in the gut is closely related to an imbalance in gut microbiota, and hence a multidomain approach to reduce this imbalance by exerting positive effects on the gut microbiota is needed. In one example, a tyrosine-based short peptide amphiphile (sPA) was used to synthesize antibacterial AgNPs-sPA nanostructures. Such nanostructures showed high biocompatibility and low cytotoxicity, and therefore work as model drug delivery agents for addressing local bacterial infections. These may have therapeutic value for the treatment of microbiota-triggered progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Satyendra Kumar Tripathi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Khushboo Kesharwani
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Deepanshi Saxena
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India
| | - Ramesh Singh
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Aanand Kautu
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Shruti Sharma
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Archna Pandey
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| | - Sidharth Chopra
- Department of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Janakipuram Extension, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Khashti Ballabh Joshi
- Department of Chemistry, School of Chemical Science and Technology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, 470003, India
| |
Collapse
|
19
|
Higueras C, Escudero R, Rebolé A, García-Sancho M, Rodríguez-Franco F, Sainz Á, Rey AI. Changes in Faecal and Plasma Amino Acid Profile in Dogs with Food-Responsive Enteropathy as Indicators of Gut Homeostasis Disruption: A Pilot Study. Vet Sci 2023; 10:vetsci10020112. [PMID: 36851416 PMCID: PMC9966949 DOI: 10.3390/vetsci10020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Dogs suffering from food-responsive enteropathy (FRE) respond to an elimination diet based on hydrolysed protein or novel protein; however, studies regarding the amino acid profile in FRE dogs are lacking. The aim of this pilot study was to evaluate whether the plasma and faecal amino acid profiles differed between control and FRE dogs and whether these could serve as indicators of severity of illness. Blood, faecal samples, body condition score, and severity of clinical signs based on the canine inflammatory bowel disease activity index were collected before starting the elimination diet. FRE dogs had lower proportions of plasma Asparagine, Histidine, Glycine, Cystine, Leucine, and branched-chain/aromatic amino acids; however, Phenylalanine increased. In faecal samples, Cystine was greater whereas Phenylalanine was lesser in sick dogs compared to control. Leucine correlated negatively with faecal humidity (r = -0.66), and Leucine and Phenylalanine with faecal fat (r = -0.57 and r = -0.62, respectively). Faecal Phenylalanine (r = 0.80), Isoleucine (r = 0.75), and Leucine (r = 0.92) also correlated positively with total short-chain fatty acids, whereas a negative correlation was found with Glycine (r = -0.85) and Cystine (r = -0.61). This study demonstrates the importance of Leucine and Phenylalanine amino acids as indicators of the disease severity in FRE dogs.
Collapse
Affiliation(s)
- Cristina Higueras
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Rosa Escudero
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Almudena Rebolé
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Mercedes García-Sancho
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Fernando Rodríguez-Franco
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Ángel Sainz
- Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
| | - Ana I. Rey
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Avda. Puerta de Hierro s/n., 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-913-943-889
| |
Collapse
|
20
|
Zheng M, Zhang X, Cheng Y, Sun L, Zhang X. Hydroxyl transfer versus cyclization reaction in the gas phase: Sequential loss of NH 3 and CH 2CO from protonated phenylalanine derivatives. Front Chem 2023; 10:1094329. [PMID: 36700082 PMCID: PMC9868239 DOI: 10.3389/fchem.2022.1094329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/23/2022] [Indexed: 01/10/2023] Open
Abstract
Collisional activation of protonated phenylalanine derivatives deamination products leads to hydroxyl skeletal rearrangement versus cyclization reaction, and to form hydroxylbenzyl cation via elimination of CH2CO. To better clarify this unusual fragmentation reaction, accurate mass measurements experiments, native isotope experiments, multiple-stage mass spectrometry experiments, different substituents experiments, and density functional theory (DFT) calculations were carried out to investigate the dissociation mechanistic pathways of protonated phenylalanine derivatives deamination products. In route 1, a three-membered ring-opening reaction and a 1,3-hydroxyl transfer (from the carbonyl carbon atom to the interposition carbon atom of carbonyl) occurs to form 3-hydroxy-1-oxo-3-phenylpropan-1-ylium, followed by dissociation to lose CH2CO to give hydroxy (phenyl)methylium. In route 2, a successive cyclization rearrangement reaction and proton transfer occur to form a 2-hydroxylphenylpropionyl cation or protonated 2-hydroxy-4H-benzopyran, followed by dissociation to lose CH2CO or CH≡COH to give 2-hydroxylbenzyl cation. In route 3, a successive hydroxyl transfer (from the carbonyl carbon atom to the ortho carbon atom on benzene) and two stepwise proton transfer (1,2-proton transfer to the ipso-carbon atom of the phenyl ring followed by 1,3-proton transfer to the ortho carbon atom of carbonyl) occurs to form a 2-hydroxylphenylpropionyl cation, which subsequently dissociates to form 2-hydroxylbenzyl cation by elimination of CH2CO. DFT calculations suggested that route 1 was more favorable than route 2 and route 3 from a thermodynamic point of view.
Collapse
|
21
|
Yoon S, Lee G, Yu J, Lee K, Lee K, Si J, You HJ, Ko G. Distinct Changes in Microbiota-Mediated Intestinal Metabolites and Immune Responses Induced by Different Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11121762. [PMID: 36551419 PMCID: PMC9774394 DOI: 10.3390/antibiotics11121762] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The cocktails of antibiotics are utilized to study the functions of microbiota. There have been studies on the alteration of not only the microbiota composition but also the host's metabolism or immunity. However, the bacterial species associated with these altered physiologic markers are still unclear. Therefore, we supplied mice with drinking water containing ampicillin (AMP), vancomycin (VAN), neomycin (NEO), or metronidazole (MET) to observe the effect of each antibiotic on helper T cells and inflammation-related gene expression and metabolism, including amino acid metabolism and changes in gut microbiota. We observed major changes in gut microbiota in mice treated with AMP and VAN, respectively, immediately after administration. The abundance of the genera Parabacteroides and Akkermansia increased in the AMP and VAN groups, while Prevotella almost disappeared from both groups. The compositional changes in intestinal metabolites in the AMP and VAN groups were more distinct than those in the NEO and MET groups, which was similar to the microbiome results. In particular, the most distinct changes were observed in amino acid related metabolism in AMP and VAN groups; the amounts of phenylalanine and tyrosine were increased in the AMP group while those were decreased in the VAN group. The changed amounts of intestinal amino acids in each of the AMP and VAN groups were correlated with increases in the abundance of the genera Parabacteroides and Akkermansia in the AMP and VAN groups, respectively. The most distinctive changes in intestinal gene expression were observed in the ileum, especially the expression Th17-related genes such as rorgt, il17a, and il17f, which decreased dramatically in the guts of most of the antibiotic-treated groups. These changes were also associated with a significant decrease in Prevotella in both the AMP and VAN groups. Taken together, these findings indicate that changes in gut microbiota as well as host physiology, including host metabolism and immunity, differ depending on the types of antibiotics, and the antibiotic-induced gut microbiota alteration has a correlation with host physiology such as host metabolic or immunological status. Thus, the immune and metabolic status of the host should be taken into account when administering antibiotics.
Collapse
Affiliation(s)
- Sunghyun Yoon
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Giljae Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsun Yu
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kiuk Lee
- KoBioLabs, Inc., Seoul 13488, Republic of Korea
| | - Kyeongju Lee
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiyeon Si
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
- Natural Products Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Ju You
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Inc., Seoul 13488, Republic of Korea
- Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
- Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (H.J.Y.); (G.K.)
| | - GwangPyo Ko
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Republic of Korea
- KoBioLabs, Inc., Seoul 13488, Republic of Korea
- Center for Human and Environmental Microbiome, Institute of Health and Environment, Seoul National University, Seoul 08826, Republic of Korea
- Correspondence: (H.J.Y.); (G.K.)
| |
Collapse
|
22
|
Affiliation(s)
- Jeffrey Wang
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | | |
Collapse
|
23
|
Essential Amino Acid Ingestion Facilitates Leucine Retention and Attenuates Myofibrillar Protein Breakdown following Bodyweight Resistance Exercise in Young Adults in a Home-Based Setting. Nutrients 2022; 14:nu14173532. [PMID: 36079790 PMCID: PMC9460609 DOI: 10.3390/nu14173532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/25/2022] Open
Abstract
Home-based resistance exercise (RE) has become increasingly prevalent, but its effects on protein metabolism are understudied. We tested the effect of an essential amino acid formulation (EAA+: 9 g EAAs, 3 g leucine) and branched-chain amino acids (BCAAs: 6 g BCAAs, 3 g leucine), relative to a carbohydrate (CHO) placebo, on exogenous leucine retention and myofibrillar protein breakdown following dynamic bodyweight RE in a home-based setting. Twelve recreationally active adults (nine male, three female) participated in a double-blind, placebo-controlled, crossover study with four trial conditions: (i) RE and EAA+ (EX-EAA+); (ii) RE and BCAAs (EX-BCAA); (iii) RE and CHO placebo (EX-CHO); and (iv) rest and CHO placebo (REST-CHO). Total exogenous leucine oxidation and retention (estimates of whole-body anabolism) and urinary 3-methylhistidine:creatinine ratio (3MH:Cr; estimate of muscle catabolism) were assessed over 5 h post-supplement. Total exogenous leucine oxidation and retention in EX-EAA+ and EX-BCAA did not significantly differ (p = 0.116) but were greater than EX-CHO (p < 0.01). There was a main effect of condition on urinary 3MH:Cr (p = 0.034), with post hoc analysis revealing a trend (p = 0.096) for reduced urinary 3MH:Cr with EX-EAA+ (32%) compared to EX-CHO. By direct comparison, urinary 3MH:Cr was significantly lower (23%) in EX-EAA+ than EX-BCAA (p = 0.026). In summary, the ingestion of EAA+ or BCAA provided leucine that was ~60% retained for protein synthesis following home-based bodyweight RE, but EAA+ most effectively attenuated myofibrillar protein breakdown.
Collapse
|
24
|
John RV, Devasia T, N M, Lukose J, Chidangil S. Micro-Raman spectroscopy study of blood samples from myocardial infarction patients. Lasers Med Sci 2022; 37:3451-3460. [PMID: 35821543 DOI: 10.1007/s10103-022-03604-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 06/28/2022] [Indexed: 12/15/2022]
Abstract
Acute myocardial infarction (MI) is found to be a major causative factor for global mortality and morbidity. This situation demands necessity of developing efficient and rapid diagnostic tools to detect acute MI. Raman spectroscopy is a non-destructive optical diagnostic technique, which has high potential in probing biochemical changes in clinical samples during initiation and progress of diseases. In this work, blood was taken as the sample to examine inflammation in acute MI patients using Raman spectroscopy. Ratio of Raman peak intensities that corresponds to phenylalanine (1000 cm-1) and tyrosine (825 cm-1) can facilitate indirect information about tetrahydrobiopterin (BH4) availability, which can indicate inflammatory status in patients. This ratio obtained was higher for MI patients in comparison with control subjects. The decrease in phenylalanine and tyrosine ratio (Phe-Tyr ratio) is attributed to the prognosis of standard of care (medications like antiplatelets including aspirin, statin and revascularisation) leading to inflammation reduction. Phe-Tyr ratio estimated from the Raman spectra of blood can be exploited as a reliable method to probe inflammation due to MI. The method is highly objective, require only microliters of sample and minimal sample preparation, signifying its clinical utility.
Collapse
Affiliation(s)
- Reena V John
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Tom Devasia
- Department of Cardiology, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Mithun N
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Jijo Lukose
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Santhosh Chidangil
- Centre of Excellence for Biophotonics, Department of Atomic and Molecular Physics, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
25
|
Pei J, Zhao S, Yin M, Wu F, Li J, Zhang G, Wu X, Bao P, Xiong L, Song W, Ba Y, Yan P, Song R, Guo X. Differential proteomics of placentas reveals metabolic disturbance and oxidative damage participate yak spontaneous miscarriage during late pregnancy. BMC Vet Res 2022; 18:248. [PMID: 35761325 PMCID: PMC9235108 DOI: 10.1186/s12917-022-03354-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 06/20/2022] [Indexed: 12/03/2022] Open
Abstract
Background High spontaneous miscarriage rate in yak, especially during late pregnancy, have caused a great economic loss to herdsmen living in the Qinghai-Tibet plateau. However, the mechanism underlying spontaneous miscarriage is still poorly understood. In the present study, placenta protein markers were identified to elucidate the pathological reasons for yak spontaneous miscarriage through isobaric tags for relative and absolute quantification (iTRAQ) proteomic technology and bioinformatic approaches. Results Subsequently, a total of 415 differentially expressed proteins (DEPs) were identified between aborted and normal placentas. The up-regulated DEPs in the aborted placentas were significantly associated with “spinocerebellar ataxia”, “sphingolipid signalling”, “relaxin signalling”, “protein export”, “protein digestion and absorption” and “aldosterone synthesis and secretion” pathway. While the down-regulated DEPs in the aborted placentas mainly participated in “valine, leucine and isoleucine degradation”, “PPAR signalling”, “peroxisome”, “oxidative phosphorylation”, “galactose metabolism”, “fatty acid degradation”, “cysteine and methionine metabolism” and “citrate cycle” pathway. Conclusions The results implied that the identified DEPs could be considered as placental protein markers for yak miscarriage during late pregnancy, and biomacromolecule metabolic abnormality and oxidative damage might be responsible for the high spontaneous miscarriage rate in yak. These findings provide an important theoretical basis for deciphering the pathologic mechanism of late spontaneous miscarriage in yak. Supplementary Information The online version contains supplementary material available at 10.1186/s12917-022-03354-w.
Collapse
|
26
|
Mazzulla M, Hodson N, West DWD, Kumbhare DA, Moore DR. A non-invasive 13CO2 breath test detects differences in anabolic sensitivity with feeding and heavy resistance exercise in healthy young males: a randomized control trial. Appl Physiol Nutr Metab 2022; 47:860-870. [PMID: 35609328 DOI: 10.1139/apnm-2021-0808] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There are limited tools to measure anabolic sensitivity non-invasively in response to acute physiological stimuli, which represents a challenge for research in free-living settings and vulnerable populations. We tested the ability of a stable isotope breath test to detect changes in leucine oxidation (OX) and leucine retention (intake - OX) across a range of anabolic sensitivities. Healthy males ingested a beverage containing 0.25 g·kg-1 protein and 0.75 g·kg-1 carbohydrate with the leucine content enriched to 5% with L-[1-13C]leucine at rest (FED) or after a bout of resistance exercise (EXFED), with a parallel group consuming only the tracer (FAST). Concurrent primed-constant infusions of L-[5,5,5-2H3]leucine revealed high peripheral bioavailability for FED (~81%), EXFED (~80%), and FAST (~117%). After beverage ingestion, whole-body protein synthesis was greater in FED and EXFED than FAST. OX was greater in FED and EXFED than FAST, with EXFED lower than FED. Leucine retention demonstrated expected physiological differences in anabolic sensitivity (EXFED > FED > FAST). We demonstrated that a non-invasive breath test based on an amino acid (leucine) that is preferentially metabolized in peripheral (muscle) tissues can detect differences in anabolic sensitivity. Future studies could examine this test within a variety of populations experiencing muscle growth or atrophy. Novelty Bullets • An oral L-[1-13C]leucine breath test can detect greater anabolic sensitivity after feeding and resistance exercise. • This tool may be applied in growing (e.g., children) or wasting (e.g. aging) populations where invasive procedures are not possible.
Collapse
Affiliation(s)
| | - Nathan Hodson
- University of Toronto, 7938, Faculty of Kinesiology and Physical Education, Toronto, Ontario, Canada;
| | - Daniel W D West
- University of Toronto, 7938, Toronto, Ontario, Canada.,Toronto Rehabilitation Institute, 7961, Toronto, Ontario, Canada;
| | - Dinesh A Kumbhare
- Toronto Rehabilitation Institute, 7961, Medicine, Toronto, Ontario, Canada.,University of Toronto Faculty of Kinesiology and Physical Education, 177420, Toronto, Ontario, Canada;
| | - Daniel R Moore
- CAN, 7641, Department of Exercise Sciences, Stockholm, Sweden;
| |
Collapse
|
27
|
Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022; 13:856165. [PMID: 35391730 PMCID: PMC8981987 DOI: 10.3389/fmicb.2022.856165] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids.
Collapse
Affiliation(s)
- Gian Mario Cortes
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Angelica Corrias
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
28
|
Park J, Hong J, Seok J, Hong H, Seo H, Kim KJ. Structural studies of a novel auxiliary-domain-containing phenylalanine hydroxylase from Bacillus cereus ATCC 14579. Acta Crystallogr D Struct Biol 2022; 78:586-598. [DOI: 10.1107/s2059798322002674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 11/11/2022] Open
Abstract
Phenylalanine hydroxylase (PAH), which belongs to the aromatic amino-acid hydroxylase family, is involved in protein synthesis and pyomelanine production through the hydroxylation of phenylalanine to tyrosine. In this study, the crystal structure of PAH from Bacillus cereus ATCC 14579 (BcPAH) with an additional 280 amino acids in the C-terminal region was determined. The structure of BcPAH consists of three distinct domains: a core domain with two additional inserted α-helices and two novel auxiliary domains: BcPAH-AD1 and BcPAH-AD2. Structural homologues of BcPAH-AD1 and BcPAH-AD2 are known to be involved in mRNA regulation and protein–protein interactions, and thus it was speculated that BcPAH might utilize the auxiliary domains for interaction with its partner proteins. Furthermore, phylogenetic tree analysis revealed that the three-domain PAHs, including BcPAH, are completely distinctive from both conventional prokaryotic PAHs and eukaryotic PAHs. Finally, biochemical studies of BcPAH showed that BcPAH-AD1 might be important for the structural integrity of the enzyme and that BcPAH-AD2 is related to enzyme stability and/or activity. Investigations into the intracellular functions of the two auxiliary domains and the relationship between these functions and the activity of PAH are required.
Collapse
|
29
|
Taylor EN, Beckmann M, Markey BK, Gordon SV, Hewinson G, Rooke D, Mur LAJ. Metabolomic changes in Mycobacterium avium subsp. paratuberculosis (MAP) challenged Holstein-Friesian cattle highlight the role of serum amino acids as indicators of immune system activation. Metabolomics 2022; 18:21. [PMID: 35320420 PMCID: PMC8942901 DOI: 10.1007/s11306-022-01876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/23/2022] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Paratuberculosis, commonly known as Johne's disease, is a chronic granulomatous infection of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Clinical signs, including reduced milk yields, weight loss and diarrhoea, are typically absent until 2 to 6 years post exposure. OBJECTIVES To identify metabolomic changes profiles of MAP challenged Holstein-Friesian (HF) cattle and correlate identified metabolites to haematological and immunological parameters. METHODS At approximately 6 weeks of age, calves (n = 9) were challenged with 3.8 × 109 cells of MAP (clinical isolate CIT003) on 2 consecutive days. Additional unchallenged calves (n = 9) formed the control group. The study used biobanked serum from cattle sampled periodically from 3- to 33-months post challenge. The assessment of sera using flow infusion electrospray high resolution mass spectrometry (FIE-HRMS) for high throughput, sensitive, non-targeted metabolite fingerprinting highlighted differences in metabolite levels between the two groups. RESULTS In total, 25 metabolites which were differentially accumulated in MAP challenged cattle were identified, including 20 which displayed correlation to haematology parameters, particularly monocyte levels. CONCLUSION The targeted metabolites suggest shifts in amino acid metabolism that could reflect immune system activation linked to MAP and as well as differences in phosphocholine levels which could reflect activation of the Th1 (tending towards pro-inflammatory) immune response. If verified by future work, selected metabolites could be used as biomarkers to diagnose and manage MAP infected cattle.
Collapse
Affiliation(s)
| | | | - Bryan K Markey
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Stephen V Gordon
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Glyn Hewinson
- Centre of Excellence for Bovine Tuberculosis, Aberystwyth University, Ceredigion, UK
| | | | | |
Collapse
|
30
|
Guerra S, Mocciaro G, Gastaldelli A. Adipose tissue insulin resistance and lipidome alterations as the characterizing factors of non-alcoholic steatohepatitis. Eur J Clin Invest 2022; 52:e13695. [PMID: 34695228 DOI: 10.1111/eci.13695] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/16/2021] [Accepted: 10/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND The prevalence of non-alcoholic fatty liver disease (NAFLD) is now 25% in the general population but increases to more than 55% in subjects with obesity and/or type 2 diabetes. Simple steatosis (NAFL) can develop into more severe forms, that is non-alcoholic steatohepatitis (NASH), cirrhosis and hepatocellular carcinoma leading to death. METHODS In this narrative review, we have discussed the current knowledge in the pathophysiology of fatty liver disease, including both metabolic and non-metabolic factors, insulin resistance, mitochondrial function, as well as the markers of liver damage, giving attention to the alterations in lipid metabolism and production of lipotoxic lipids. RESULTS Insulin resistance, particularly in the adipose tissue, is the main driver of NAFLD due to the excess release of fatty acids. Lipidome analyses have shown that several lipids, including DAGs and ceramides, and especially if they contain saturated lipids, act as bioactive compounds, toxic to the cells. Lipids can also affect mitochondrial function. Not only lipids, but also amino acid metabolism is impaired in NAFL/NASH, and some amino acids, as branched-chain and aromatic amino acids, glutamate, serine and glycine, have been linked to impaired metabolism, insulin resistance and severity of NAFLD and serine is a precursor of ceramides. CONCLUSIONS The measurement of lipotoxic species and adipose tissue dysfunction can help to identify individuals at risk of progression to NASH.
Collapse
Affiliation(s)
- Sara Guerra
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.,Sant'Anna School of Advanced Studies, Pisa, Italy
| | - Gabriele Mocciaro
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy
| | - Amalia Gastaldelli
- Institute of Clinical Physiology (IFC), National Research Council (CNR), Pisa, Italy.,Sant'Anna School of Advanced Studies, Pisa, Italy
| |
Collapse
|
31
|
do Prado Apparecido R, Barros Lopes TI, Braz Alcantara G. NMR-based foodomics of common tubers and roots. J Pharm Biomed Anal 2021; 209:114527. [PMID: 34906919 DOI: 10.1016/j.jpba.2021.114527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/03/2021] [Accepted: 12/07/2021] [Indexed: 01/20/2023]
Abstract
Common roots and tubers such as arracacha, Asterix potato, cassava, potato, sweet potato, taro, and yam are consumed by millions of people. These foods are an integral part of the diet in developing countries and are nutritionally important as energy reserves due to their carbohydrate content. Although many studies have been performed on these foods, comparative chemical profiles have been still poorly evaluated. In this work, we applied nuclear magnetic resonance (NMR) analysis associated with chemometrics to evaluate the chemical composition of extracts obtained in deuterated water from roots and tubers that are commercially consumed in Brazil and the rest of the world. From the 31 metabolites characterized in the extracts, 22 were quantified. Multivariate analyses showed 8 metabolites which were primary responsible for the distinction between samples, including choline, γ-aminobutyrate (GABA), glutamine, asparagine, isoleucine, fructose, glucose, and sucrose. Thus, our work shows important information on the chemical composition in addition to the mere carbohydrate content of these food matrices. This knowledge can provide information about food safety and beneficial nutritional values of the studied tubers and roots, which can be useful to consumers and the food industry.
Collapse
Affiliation(s)
- Rafael do Prado Apparecido
- Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Química, CP 549, CEP 79074-460 Campo Grande, MS, Brazil
| | - Thiago Inácio Barros Lopes
- Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Química, CP 549, CEP 79074-460 Campo Grande, MS, Brazil
| | - Glaucia Braz Alcantara
- Universidade Federal de Mato Grosso do Sul (UFMS), Instituto de Química, CP 549, CEP 79074-460 Campo Grande, MS, Brazil.
| |
Collapse
|
32
|
Yazdanpanah M, Yuan L. A highly accurate mass spectrometry method for the quantification of phenylalanine and tyrosine on dried blood spots: Combination of liquid chromatography, phenylalanine/tyrosine-free blood calibrators and multi-point/dynamic calibration. Clin Biochem 2021; 101:35-41. [PMID: 34896097 DOI: 10.1016/j.clinbiochem.2021.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/03/2021] [Accepted: 12/04/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Measurement of quantitative levels of phenylalanine and tyrosine in blood is an essential test for the diagnosis of and monitoring genetic disorders associated with phenylalanine metabolism, such as phenylketonuria (PKU), tyrosinemia, and defects of tetrahydrobiopterin synthesis and recycling. We developed a highly accurate and fast liquid chromatography with tandem mass spectrometry (LC-MS/MS) method for the quantification of phenylalanine and tyrosine on dried blood spot (DBS). We also designed a performance score system to evaluate various calibration methods in matrix matched material. METHODS Phenylalanine/tyrosine-free whole blood was used to make accurate and stable DBS calibrators. Six calibrators cover the range of 0-1000 µmol/L. Underivatized phenylalanine and tyrosine were extracted and measured by LC-MS/MS. Precision, accuracy, limit of quantification, recovery and carryover were validated. External quality assurance materials were also used to evaluate performance of multi-point calibrations and single-point calibrations. RESULTS The run time was 4.5-minute. Accuracy analysis showed good agreement with reference materials. Precision, recovery, and the lower and upper limit of quantification met the criteria. When phenylalanine and tyrosine concentrations were less than 150 µmol/L, the 5-point calibration without the calibrator of 1000 µmol/L had the best performance. When the concentrations were > 250 µmol/L, the single-point calibration of 500 µmol/L had the best performance. CONCLUSION We developed a simple, fast and highly accurate method for the detection of phenylalanine and tyrosine on DBS, with chromatographic separation and underivatized analysis. Based on the calibration performance, a 6-point calibration method is satisfying for this test. An optional dynamic calibration method, which includes 6-point calibration, 5-point calibration and single-point calibration, can further increase test reliability.
Collapse
Affiliation(s)
- Mehrdad Yazdanpanah
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Libin Yuan
- Department of Pediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
33
|
Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, Brosnan J, Anstee QM, Millet O, Ortiz P, Mato JM, Dufour JF, Orešič M. Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol 2021; 18:835-856. [PMID: 34508238 DOI: 10.1038/s41575-021-00502-9] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide and is often associated with aspects of metabolic syndrome. Despite its prevalence and the importance of early diagnosis, there is a lack of robustly validated biomarkers for diagnosis, prognosis and monitoring of disease progression in response to a given treatment. In this Review, we provide an overview of the contribution of metabolomics and lipidomics in clinical studies to identify biomarkers associated with NAFLD and nonalcoholic steatohepatitis (NASH). In addition, we highlight the key metabolic pathways in NAFLD and NASH that have been identified by metabolomics and lipidomics approaches and could potentially be used as biomarkers for non-invasive diagnostic tests. Overall, the studies demonstrated alterations in amino acid metabolism and several aspects of lipid metabolism including circulating fatty acids, triglycerides, phospholipids and bile acids. Although we report several studies that identified potential biomarkers, few have been validated.
Collapse
Affiliation(s)
- Mojgan Masoodi
- Institute of Clinical Chemistry, Bern University Hospital, Bern, Switzerland.
| | | | - Tuulia Hyötyläinen
- School of Natural Sciences and Technology, Örebro University, Örebro, Sweden
| | - Enara Arretxe
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | | | | | | | - Quentin M Anstee
- Clinical & Translational Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Oscar Millet
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Pablo Ortiz
- OWL Metabolomics, Bizkaia Technology Park, Derio, Spain
| | - Jose M Mato
- Precision Medicine & Metabolism, CIC bioGUNE, CIBERehd, BRTA, Bizkaia Technology Park, Derio, Spain
| | - Jean-Francois Dufour
- University Clinic of Visceral Surgery and Medicine, Inselspital Bern, Bern, Switzerland.,Hepatology, Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Matej Orešič
- School of Medical Sciences, Örebro University, Örebro, Sweden. .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
34
|
Sidhu KS, Amiel E, Budd RC, Matthews DE. Determination of cell volume as part of metabolomics experiments. Am J Physiol Cell Physiol 2021; 321:C947-C953. [PMID: 34613842 PMCID: PMC8714993 DOI: 10.1152/ajpcell.00613.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022]
Abstract
Cells regulate their cell volume, but cell volumes may change in response to metabolic and other perturbations. Many metabolomics experiments use cultured cells to measure changes in metabolites in response to physiological and other experimental perturbations, but the metabolomics workflow by mass spectrometry only determines total metabolite amounts in cell culture extracts. To convert metabolite amount to metabolite concentration requires knowledge of the number and volume of the cells. Measuring only metabolite amount can lead to incorrect or skewed results in cell culture experiments because cell size may change due to experimental conditions independent of change in metabolite concentration. We have developed a novel method to determine cell volume in cell culture experiments using a pair of stable isotopically labeled phenylalanine internal standards incorporated within the normal liquid chromatography-tandem mass spectrometry (LC-MS/MS) metabolomics workflow. This method relies on the flooding-dose technique where the intracellular concentration of a particular compound (in this case phenylalanine) is forced to equal its extracellular concentration. We illustrate the LC-MS/MS technique for two different mammalian cell lines. Although the method is applicable in general for determining cell volume, the major advantage of the method is its seamless incorporation within the normal metabolomics workflow.
Collapse
Affiliation(s)
| | - Eyal Amiel
- Department of Biomedical and Health Sciences, College of Nursing and Health Sciences, The University of Vermont, Burlington, Vermont
| | - Ralph C Budd
- Department of Medicine, The University of Vermont, Burlington, Vermont
| | - Dwight E Matthews
- Department of Chemistry, The University of Vermont, Burlington, Vermont
- Department of Medicine, The University of Vermont, Burlington, Vermont
| |
Collapse
|
35
|
Mok C, Levesque C, Urschel K. Evaluation of threonine requirements in mature horses fed 1:1 ratio of forage to concentrate using the indicator amino acid oxidation technique. Anim Feed Sci Technol 2021. [DOI: 10.1016/j.anifeedsci.2021.115133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
36
|
Short-Term Effect of Induced Alterations in Testosterone Levels on Fasting Plasma Amino Acid Levels in Healthy Young Men. Life (Basel) 2021; 11:life11111276. [PMID: 34833152 PMCID: PMC8619397 DOI: 10.3390/life11111276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 11/10/2021] [Accepted: 11/18/2021] [Indexed: 12/23/2022] Open
Abstract
Long term effect of testosterone (T) deficiency impairs metabolism and is associated with muscle degradation and metabolic disease. The association seems to have a bidirectional nature and is not well understood. The present study aims to investigate the early and unidirectional metabolic effect of induced T changes by measuring fasting amino acid (AA) levels in a human model, in which short-term T alterations were induced. We designed a human model of 30 healthy young males with pharmacologically induced T changes, which resulted in three time points for blood collection: (A) baseline, (B) low T (3 weeks post administration of gonadotropin releasing hormone antagonist) and (C) restored T (2 weeks after injection of T undecanoate). The influence of T on AAs was analyzed by spectrophotometry on plasma samples. Levels of 9 out of 23 AAs, of which 7 were essential AAs, were significantly increased at low T and are restored upon T supplementation. Levels of tyrosine and phenylalanine were most strongly associated to T changes. Short-term effect of T changes suggests an increased protein breakdown that is restored upon T supplementation. Fasting AA levels are able to monitor the early metabolic changes induced by the T fluctuations.
Collapse
|
37
|
Mateo-Otero Y, Fernández-López P, Delgado-Bermúdez A, Nolis P, Roca J, Miró J, Barranco I, Yeste M. Metabolomic fingerprinting of pig seminal plasma identifies in vivo fertility biomarkers. J Anim Sci Biotechnol 2021; 12:113. [PMID: 34772452 PMCID: PMC8588628 DOI: 10.1186/s40104-021-00636-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 09/05/2021] [Indexed: 01/22/2023] Open
Abstract
Background Metabolomic approaches, which include the study of low molecular weight molecules, are an emerging -omics technology useful for identification of biomarkers. In this field, nuclear magnetic resonance (NMR) spectroscopy has already been used to uncover (in) fertility biomarkers in the seminal plasma (SP) of several mammalian species. However, NMR studies profiling the porcine SP metabolome to uncover in vivo fertility biomarkers are yet to be carried out. Thus, this study aimed to evaluate the putative relationship between SP-metabolites and in vivo fertility outcomes. To this end, 24 entire ejaculates (three ejaculates per boar) were collected from artificial insemination (AI)-boars throughout a year (one ejaculate every 4 months). Immediately after collection, ejaculates were centrifuged to obtain SP-samples, which were stored for subsequent metabolomic analysis by NMR spectroscopy. Fertility outcomes from 1525 inseminations were recorded over a year, including farrowing rate, litter size, stillbirths per litter and the duration of pregnancy. Results A total of 24 metabolites were identified and quantified in all SP-samples. Receiver operating characteristic (ROC) curve analysis showed that lactate levels in SP had discriminative capacity for farrowing rate (area under the curve [AUC] = 0.764) while carnitine (AUC = 0.847), hypotaurine (AUC = 0.819), sn-glycero-3-phosphocholine (AUC = 0.833), glutamate (AUC = 0.799) and glucose (AUC = 0.750) showed it for litter size. Similarly, citrate (AUC = 0.743), creatine (AUC = 0.812), phenylalanine (AUC = 0.750), tyrosine (AUC = 0.753) and malonate (AUC = 0.868) levels had discriminative capacity for stillbirths per litter; and malonate (AUC = 0.767) and fumarate (AUC = 0.868) levels for gestation length. Conclusions The assessment of selected SP-metabolites in ejaculates through NMR spectroscopy could be considered as a promising non-invasive tool to predict in vivo fertility outcomes in pigs. Moreover, supplementing AI-doses with specific metabolites should also be envisaged as a way to improve their fertility potential. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00636-5.
Collapse
Affiliation(s)
- Yentel Mateo-Otero
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain.,Department of Biology, Unit of Cell Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Pol Fernández-López
- Centre d'Estudis Avançats de Blanes (CEAB), Spanish Research Council (CSIC), ES-17300, Girona, Spain
| | - Ariadna Delgado-Bermúdez
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain.,Department of Biology, Unit of Cell Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain
| | - Pau Nolis
- Magnetic Nuclear Resonance Facility, Autonomous University of Barcelona, Bellaterra, ES-08193, Cerdanyola del Vallès, Spain
| | - Jordi Roca
- Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, ES-30100, Murcia, Spain
| | - Jordi Miró
- Equine Reproduction Service, Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, Autonomous University of Barcelona, Bellaterra, ES-08193, Cerdanyola del Vallès, Spain
| | - Isabel Barranco
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain. .,Department of Biology, Unit of Cell Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain. .,Department of Veterinary Medical Sciences, University of Bologna, IT-40064 Ozzano dell'Emilia, Bologna, Italy.
| | - Marc Yeste
- Biotechnology of Animal and Human Reproduction (TechnoSperm), Institute of Food and Agricultural Technology, University of Girona, ES-17003, Girona, Spain. .,Department of Biology, Unit of Cell Biology, Faculty of Sciences, University of Girona, ES-17003, Girona, Spain.
| |
Collapse
|
38
|
Maria VL, Licha D, Scott-Fordsmand JJ, Huber CG, Amorim MJB. Multiomics assessment in Enchytraeus crypticus exposed to Ag nanomaterials (Ag NM300K) and ions (AgNO 3) - Metabolomics, proteomics (& transcriptomics). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117571. [PMID: 34438494 DOI: 10.1016/j.envpol.2021.117571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Silver nanomaterials (AgNMs) are broadly used and among the most studied nanomaterials. The underlying molecular mechanisms (e.g. protein and metabolite response) that precede phenotypical effects have been assessed to a much lesser extent. In this paper, we assess differentially expressed proteins (DEPs) and metabolites (DEMs) by high-throughput (HTP) techniques (HPLC-MS/MS with tandem mass tags, reversed-phase (RP) and hydrophilic interaction liquid chromatography (HILIC) with mass spectrometric detection). In a time series (0, 7, 14 days), the standard soil model Enchytraeus crypticus was exposed to AgNM300K and AgNO3 at the reproduction EC20 and EC50. The impact on proteins/metabolites was clearly larger after 14 days. NM300K caused more upregulated DEPs/DEMs, more so at the EC20, whereas AgNO3 caused a dose response increase of DEPs/DEMs. Similar pathways were activated, although often via opposite regulation (up vs down) of DEPs, hence, dissimilar mechanisms underlie the apical observed impact. Affected pathways included e.g. energy and lipid metabolism and oxidative stress. Uniquely affected by AgNO3 was catalase, malate dehydrogenase and ATP-citrate synthase, and heat shock proteins (HSP70) and ferritin were affected by AgNM300K. The gene expression-based data in Adverse Outcome Pathway was confirmed and additional key events added, e.g. regulation of catalase and heat shock proteins were confirmed to be included. Finally, we observed (as we have seen before) that lower concentration of the NM caused higher biological impact. Data was deposited to ProteomeXchange, identifier PXD024444.
Collapse
Affiliation(s)
- Vera L Maria
- Department of Biology, CESAM, University of Aveiro, Aveiro, Portugal.
| | - David Licha
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria.
| | | | - Christian G Huber
- Department of Biosciences, Bioanalytical Research Labs, University of Salzburg, Salzburg, Austria.
| | - Mónica J B Amorim
- Department of Biology, CESAM, University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
39
|
Mose M, Brodersen K, Rittig N, Schmidt J, Jessen N, Mikkelsen UR, Jørgensen JOL, Møller N. Anabolic effects of oral leucine-rich protein with and without β-hydroxybutyrate on muscle protein metabolism in a novel clinical model of systemic inflammation-a randomized crossover trial. Am J Clin Nutr 2021; 114:1159-1172. [PMID: 34081111 DOI: 10.1093/ajcn/nqab148] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 04/09/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND β-lactoglobulin (BLG) stimulates muscle protein synthesis and β-hydroxybutyrate (BHB) inhibits muscle breakdown. Whether combining the 2 can additively attenuate disease-induced muscle loss is unknown. OBJECTIVE Based on previous observations of anticatabolic effects of protein and ketone bodies during inflammation, and using a novel model combining ongoing systemic inflammation, fasting, and immobilization, we tested whether the anticatabolic muscle response to oral amino acids is altered compared with control conditions, as well as whether coadministration of oral BHB and BLG further improves the muscle anabolic response. Muscle net balance (NBphe) was the primary outcome and intramyocellular signals were assessed. METHODS In a randomized crossover design, 8 young men underwent either preconditioning with LPS (prestudy day: 1 ng/kg, study day: 0.5 ng/kg) combined with a 36-h fast and bed rest to mimic catabolic inflammatory disease (CAT) or an overnight fast (control [CTR]) prior to isocaloric nutritional interventions on 3 occasions separated by ∼6 wk (range 42 to 83 d). RESULTS NBphe increased similarly upon all conditions (interaction P = 0.65). From comparable baseline rates, both Rdphe [muscle synthesis, median ratio (95% CI): 0.44 (0.23, 0.86) P = 0.017] and Raphe [muscle breakdown, median ratio (95% CI): 0.46 (0.27, 0.78) P = 0.005] decreased following BHB + BLG compared with BLG. BLG increased Rdphe more under CAT conditions compared with CTR (interaction P = 0.02). CAT increased inflammation, energy expenditure, and lipid oxidation and decreased Rdphe and anabolic signaling [mammalian target of rapamycin (mTOR) and eukaryotic translation initiation factor 4E-binding protein 1 (4EPB1) phosphorylation]. CONCLUSION In contrast to our initial hypothesis, NBphe increased similarly following BLG during CAT and CTR conditions; CAT however, specifically stimulated the BLG-mediated increase in protein synthesis, whereas BHB coadministration did not affect NBphe, but distinctly dampened the BLG-induced increase in muscle amino acid fluxes thereby liberating circulating amino acids for anabolic actions elsewhere.
Collapse
Affiliation(s)
- M Mose
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - K Brodersen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Department of Surgery, Viborg Regional Hospital, Viborg, Denmark
| | - N Rittig
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - J Schmidt
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - N Jessen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Pharmacology, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - J O L Jørgensen
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - N Møller
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
40
|
Wu Y, Yang S, Ma J, Chen Z, Song G, Rao D, Cheng Y, Huang S, Liu Y, Jiang S, Liu J, Huang X, Wang X, Qiu S, Xu J, Xi R, Bai F, Zhou J, Fan J, Zhang X, Gao Q. Spatiotemporal Immune Landscape of Colorectal Cancer Liver Metastasis at Single-Cell Level. Cancer Discov 2021; 12:134-153. [PMID: 34417225 DOI: 10.1158/2159-8290.cd-21-0316] [Citation(s) in RCA: 371] [Impact Index Per Article: 123.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Liver metastasis, the leading cause of colorectal cancer mortality, exhibits a highly heterogeneous and suppressive immune microenvironment. Here, we sequenced 97 matched samples by using single-cell RNA-seq and Spatial Transcriptomics. Strikingly, metastatic microenvironment underwent remarkable spatial reprogramming of immunosuppressive cells such as MRC1+ CCL18+ M2-like macrophages. We further developed scMetabolism, a computational pipeline for quantifying single-cell metabolism, and observed that those macrophages harbored enhanced metabolic activity. Interestingly, neoadjuvant chemotherapy could block this status and restore the antitumor immune balance in responsive patients, while the non-responsive patients deteriorated into a more suppressive one. Our work described the immune evolution of metastasis and uncovered the black box of how tumors respond to neoadjuvant chemotherapy.
Collapse
Affiliation(s)
- Yingcheng Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University
| | - Shuaixi Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University
| | - Jiaqiang Ma
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Zechuan Chen
- Institut Pasteur of Shanghai, The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Guohe Song
- Hepatic oncology, Liver Cancer Institute, Zhongshan Hospital and Shanghai Medical School, Fudan University, Key Laboratory for Carcinogenesis & Cancer Invasion, The Chinese Ministry of Education, Shanghai, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Fudan University
| | - Yifei Cheng
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University
| | - Siyuan Huang
- Academy for Advanced Interdisciplinary Studies, Peking University
| | - Yifei Liu
- Pathology, Affiliated Hospital of Nantong University
| | - Shan Jiang
- The Center for Microbes, Development and Health, Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences
| | - Jinxia Liu
- Affiliated Hospital of Nantong University; School of Medicine, Nantong University
| | - Xiaowu Huang
- Departmemt of liver surgery and tranplantation, Zhongshan Hospital
| | - Xiaoying Wang
- Liver Cancer Institute, Liver Cancer Institute, Fudan University
| | - Shuangjian Qiu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University
| | - Jianmin Xu
- Department of Gastrointestinal Oncology, The Fifth Medical Center, Chinese PLA General Hospital
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, School of Mathematical Sciences and Center for Statistical Science, Peking University
| | - Fan Bai
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University
| | - Jian Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University
| | - Jia Fan
- Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Fudan University
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences
| | - Qiang Gao
- Depart. of Liver Surgery and Transplantation, Liver Cancer Institute, Zhong Shan Hospital and Shanghai Medical School, Fudan University,
| |
Collapse
|
41
|
Lerner JE, Forster I, Hunt BPV. Experimentally derived trophic enrichment and discrimination factors for Chinook salmon, Oncorhynchus tshawytscha. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9092. [PMID: 33788330 DOI: 10.1002/rcm.9092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/08/2021] [Accepted: 03/27/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Stable isotope analysis (SIA) can provide important insights into food web structure and is a widely used tool in ecological conservation and management. It has recently been augmented by compound-specific stable isotope analysis of amino acids (CSIA-AA), an innovation that can provide greater precision when analyzing trophic level and food web connectivity. The utility of SIA rests on confidence in its constituent parameters such as the trophic enrichment factor (TEF). There is increasing emphasis on the need to experimentally derive species and tissue specific TEFs for studies utilizing SIA. Chinook salmon, Oncorhynchus tshawytscha, is a species with high potential for study using SIA due to the difficulty in observing its ecology during its marine phase and the significance of the conservation consequences of recent population declines. METHODS Bulk and amino acid-specific TEFs were determined for juvenile and adult Chinook salmon fed specific diets. Three controlled feeding studies were performed: adult salmon were fed a biofeed, juvenile salmon were fed a biofeed, and juvenile salmon were fed krill. Bulk and compound-specific stable isotope data were collected from diet samples and from salmon muscle tissue after a minimum of 8 weeks of controlled feeding. Bulk isotope signatures were measured using EA-IRMS and CSIA-AA signatures using GC/C-IRMS, allowing the TEFs to be calculated. RESULTS The bulk isotope TEFs were higher than those predicted for similar marine organisms and averaged 3.5‰ for ∆15 N and 1.3‰ for ∆13 C. The TEFs derived for nitrogen isotopes of amino acids were in line with expectations for this approach: the mean value for ∆15 NGlu - ∆15 NPhe was 7.06‰ and, using a multi-AA approach, the value for ∆15 NTrophic - ∆15 NSource was 6.67‰. For carbon isotopes of amino acids, the derived TEFs of Iso, Leu and Phe were near 0‰, as was that of Met, supporting their use of as source amino acids in future CSIA studies. CONCLUSIONS This study presents Chinook salmon-specific TEFs for bulk and amino acid SIA. It supports the application of future research applying SIA to the study of Chinook salmon and validates previous research on species-specific TEFs.
Collapse
Affiliation(s)
- Jacob E Lerner
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ian Forster
- Pacific Science Enterprise Centre, Fisheries and Oceans Canada, 4160 Marine Drive, West Vancouver, BC, V7V 1H2, Canada
| | - Brian P V Hunt
- Institute for the Oceans and Fisheries, University of British Columbia, AERL, 2202 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, 2020-2207 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Hakai Institute, Tula Foundation, PO Box 309, Heriot Bay, BC, V0P 1H0, Canada
| |
Collapse
|
42
|
Emerging application of metabolomics on Chinese herbal medicine for depressive disorder. Biomed Pharmacother 2021; 141:111866. [PMID: 34225013 DOI: 10.1016/j.biopha.2021.111866] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/20/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Depressive disorder is a kind of emotional disorder that is mainly manifested with spontaneous and persistent low mood. Its etiology is complex and still not fully understood. Metabolomics, an important part of system biology characterized by its integrity and systematicness, analyzes endogenous metabolites of small molecules in vivo and examines the metabolic status of the organism. It is widely used in the field of disease research for its unique advantage in the disease molecular marker discovering Due to fewer adverse reactions and high safety, Chinese herbal medicine (CHM) has great advantages in the treatment of chronic diseases including depression. Metabolomics has been gradually applied to the efficacy evaluation of CHM in treatment of depression and the metabolomics analysis exhibits a systemic metabolic shift in amino acids (such as alanine, glutamic acid, valine, etc.), organic acids (lactic acid, citric acid, stearic acid, palmitic acid, etc.), and sugars, amines, etc. These differential metabolites are mainly involved in energy metabolism, amino acid metabolism, lipid metabolism, etc. In this review, we have exemplified the study of CHM in animals or clinics on the depression, and revealed that CHM treatment has significantly changed the metabolic disorders associated with depression, promoting metabolic network reorganization through restoring of key metabolites, and metabolic pathways, which may be the main mechanism basis of CHM's treatment on depression. Besides, we further envisioned the future application of metabolomics in the study of CHM treatment of depression.
Collapse
|
43
|
Cao J, Balluff B, Arts M, Dubois LJ, van Loon LJC, Hackeng TM, van Eijk HMH, Eijkel G, Heij LR, Soons Z, Olde Damink SWM, Heeren RMA. Mass spectrometry imaging of L-[ring- 13C 6]-labeled phenylalanine and tyrosine kinetics in non-small cell lung carcinoma. Cancer Metab 2021; 9:26. [PMID: 34116702 PMCID: PMC8193875 DOI: 10.1186/s40170-021-00262-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/24/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Metabolic reprogramming is a common phenomenon in tumorigenesis and tumor progression. Amino acids are important mediators in cancer metabolism, and their kinetics in tumor tissue are far from being understood completely. Mass spectrometry imaging is capable to spatiotemporally trace important endogenous metabolites in biological tissue specimens. In this research, we studied L-[ring-13C6]-labeled phenylalanine and tyrosine kinetics in a human non-small cell lung carcinoma (NSCLC) xenografted mouse model using matrix-assisted laser desorption/ionization Fourier-transform ion cyclotron resonance mass spectrometry imaging (MALDI-FTICR-MSI). METHODS We investigated the L-[ring-13C6]-Phenylalanine (13C6-Phe) and L-[ring-13C6]-Tyrosine (13C6-Tyr) kinetics at 10 min (n = 4), 30 min (n = 3), and 60 min (n = 4) after tracer injection and sham-treated group (n = 3) at 10 min in mouse-xenograft lung tumor tissues by MALDI-FTICR-MSI. RESULTS The dynamic changes in the spatial distributions of 19 out of 20 standard amino acids are observed in the tumor tissue. The highest abundance of 13C6-Phe was detected in tumor tissue at 10 min after tracer injection and decreased progressively over time. The overall enrichment of 13C6-Tyr showed a delayed temporal trend compared to 13C6-Phe in tumor caused by the Phe-to-Tyr conversion process. Specifically, 13C6-Phe and 13C6-Tyr showed higher abundances in viable tumor regions compared to non-viable regions. CONCLUSIONS We demonstrated the spatiotemporal intra-tumoral distribution of the essential aromatic amino acid 13C6-Phe and its de-novo synthesized metabolite 13C6-Tyr by MALDI-FTICR-MSI. Our results explore for the first time local phenylalanine metabolism in the context of cancer tissue morphology. This opens a new way to understand amino acid metabolism within the tumor and its microenvironment.
Collapse
Affiliation(s)
- Jianhua Cao
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Benjamin Balluff
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Martijn Arts
- Department of General Surgery (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ludwig J Dubois
- The M-Lab, Department of Precision Medicine (GROW), Maastricht University, Maastricht, The Netherlands
| | - Luc J C van Loon
- Department of Human Biology (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Tilman M Hackeng
- Department of Biochemistry (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Hans M H van Eijk
- Department of General Surgery (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Gert Eijkel
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands
| | - Lara R Heij
- Department of General Surgery (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany.,Institute of Pathology, University Hospital RWTH Aachen, Aachen, Germany
| | - Zita Soons
- Department of General Surgery (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Joint Research Center for Computational Biomedicine , RWTH Aachen University Hospital , Aachen, Germany
| | - Steven W M Olde Damink
- Department of General Surgery (NUTRIM), Maastricht University, Maastricht, The Netherlands.,Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, Aachen, Germany
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging institute (M4I), Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, The Netherlands.
| |
Collapse
|
44
|
Subchronic Tolerance Trials of Graded Oral Supplementation with Phenylalanine or Serine in Healthy Adults. Nutrients 2021; 13:nu13061976. [PMID: 34201370 PMCID: PMC8227932 DOI: 10.3390/nu13061976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/05/2021] [Indexed: 12/12/2022] Open
Abstract
Phenylalanine and serine are amino acids used in dietary supplements and nutritional products consumed by healthy consumers; however, the safe level of phenylalanine or serine supplementation is unknown. The objective of this study was to conduct two 4-week clinical trials to evaluate the safety and tolerability of graded dosages of oral phenylalanine and oral serine. Healthy male adults (n = 60, 38.2 ± 1.8y) completed graded dosages of either phenylalanine or serine supplement (3, 6, 9 and 12 g/d) for 4 weeks with 2-week wash-out periods in between. Primary outcomes included vitals, a broad spectrum of circulating biochemical analytes, body weight, sleep quality and mental self-assessment. At low dosages, minor changes in serum electrolytes and plasma non-essential amino acids glutamine and aspartic acid concentrations were observed. Serine increased its plasma concentrations at high supplemental dosages (9 and 12 g/day), and phenylalanine increased plasma tyrosine concentrations at 12 g/day, but those changes were not considered toxicologically relevant. No other changes in measured parameters were observed, and study subjects tolerated 4-week-long oral supplementation of phenylalanine or serine without treatment-related adverse events. A clinical, no-observed-adverse-effect-level (NOAEL) of phenylalanine and serine supplementation in healthy adult males was determined to be 12 g/day.
Collapse
|
45
|
Yong K, Luo ZZ, Luo Q, Yang QW, Huang YX, Zhao XX, Zhang Y, Cao SZ. Plasma metabolome alteration in dairy cows with left displaced abomasum before and after surgical correction. J Dairy Sci 2021; 104:8177-8187. [PMID: 33865591 DOI: 10.3168/jds.2020-19761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/12/2021] [Indexed: 12/12/2022]
Abstract
Left displaced abomasum (LDA) leads to substantial changes in the metabolism of dairy cows. Surgical correction of LDA can rapidly improve the health of cows; however, changes in metabolism following surgery are rarely described. To investigate the changes of plasma metabolome in cows with LDA before and after surgical correction, blood samples were collected from 10 healthy postpartum cows and 10 cows with LDA on the day of diagnosis, then again from the LDA cows 14 d after surgery. Serum nonesterified fatty acid, β-hydroxybutyric acid, cortisol and histamine concentration, and antioxidant enzyme (superoxide dismutase and glutathione peroxidase) activities were evaluated, and the metabolic profile in plasma was analyzed using ultra-high-performance liquid chromatography time-of-flight mass spectrometry. The results demonstrated that cows with LDA experienced severe negative energy balance and oxidative stress, which can be improved by surgical correction. The metabolic profile was analyzed using multidimensional and univariate statistical analyses, and different metabolites were identified. In total, 102 metabolites differed between cows with LDA and healthy cows. After surgical correction, 65 metabolites changed in cows with LDA, compared with these cows during the LDA event. Following surgical correction, AA levels tended to increase, and lipid levels tended to decrease in cows with LDA. Pathway analysis indicated marked changes in linoleic acid metabolism, Arg biosynthesis, and Gly, Ser, and Thr metabolism in cows at the onset of LDA and following surgical correction. Surgical treatment reversed the changes in AA and lipid metabolism in cows with LDA.
Collapse
Affiliation(s)
- K Yong
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; Department of Animal Husbandry and Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, China
| | - Z Z Luo
- Department of Animal Husbandry and Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, China; Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Q Luo
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China
| | - Q W Yang
- Department of Animal Husbandry and Veterinary Medicine, College of Animal Science and Technology, Chongqing Three Gorges Vocational College, Chongqing 404100, China
| | - Y X Huang
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - X X Zhao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Y Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| | - S Z Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
46
|
Paredes F, Williams HC, San Martin A. Metabolic adaptation in hypoxia and cancer. Cancer Lett 2021; 502:133-142. [PMID: 33444690 PMCID: PMC8158653 DOI: 10.1016/j.canlet.2020.12.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/17/2022]
Abstract
The ability of tumor cells to adapt to changes in oxygen tension is essential for tumor development. Low oxygen concentration influences cellular metabolism and, thus, affects proliferation, migration, and invasion. A focal point of the cell's adaptation to hypoxia is the transcription factor HIF1α (hypoxia-inducible factor 1 alpha), which affects the expression of specific gene networks involved in cellular energetics and metabolism. This review illustrates the mechanisms by which HIF1α-induced metabolic adaptation promotes angiogenesis, participates in the escape from immune recognition, and increases cancer cell antioxidant capacity. In addition to hypoxia, metabolic inhibition of 2-oxoglutarate-dependent dioxygenases regulates HIF1α stability and transcriptional activity. This phenomenon, known as pseudohypoxia, is frequently used by cancer cells to promote glycolytic metabolism to support biomass synthesis for cell growth and proliferation. In this review, we highlight the role of the most important metabolic intermediaries that are at the center of cancer's biology, and in particular, the participation of these metabolites in HIF1α retrograde signaling during the establishment of pseudohypoxia. Finally, we will discuss how these changes affect both the development of cancers and their resistance to treatment.
Collapse
Affiliation(s)
- Felipe Paredes
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Holly C Williams
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA
| | - Alejandra San Martin
- Department of Medicine, Division of Cardiology, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
47
|
Applications of stable isotopes in MALDI imaging: current approaches and an eye on the future. Anal Bioanal Chem 2021; 413:2637-2653. [PMID: 33532914 DOI: 10.1007/s00216-021-03189-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/30/2020] [Accepted: 01/20/2021] [Indexed: 02/07/2023]
Abstract
Matrix-assisted laser desorption/ionisation-imaging mass spectrometry (MALDI-IMS) is now an established imaging modality with particular utility in the study of biological, biomedical and pathological processes. In the first instance, the use of stable isotopically labelled (SIL) compounds in MALDI-IMS has addressed technical barriers to increase the accuracy and versatility of this technique. This has undoubtedly enhanced our ability to interpret the two-dimensional ion intensity distributions produced from biological tissue sections. Furthermore, studies using delivery of SIL compounds to live tissues have begun to decipher cell, tissue and inter-tissue metabolism while maintaining spatial resolution. Here, we review both the technical and biological applications of SIL compounds in MALDI-IMS, before using the uptake and metabolism of glucose in bovine ocular lens tissue to illustrate the current limitations of SIL compound use in MALDI-IMS. Finally, we highlight recent instrumentation advances that may further enhance our ability to use SIL compounds in MALDI-IMS to understand biological and pathological processes. Graphical Abstract.
Collapse
|
48
|
Cheng CW, Liu MH, Tang HY, Cheng ML, Wang CH. Factors associated with elevated plasma phenylalanine in patients with heart failure. Amino Acids 2021; 53:149-157. [PMID: 33398528 DOI: 10.1007/s00726-020-02933-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023]
Abstract
Elevated phenylalanine has been observed in patients with advanced heart failure (HF) and in community cohorts at risk of HF, and has been shown to have prognostic value. This study aimed to explore the factors associated with elevated phenylalanine in HF patients. Mass spectrometry was performed on blood from 669 participants, including 75 normal controls and 594 HF patients (stages A, B, and C). We measured phenylalanine and associated degradation products on the catecholamine pathway, C-reactive protein, valerylcarnitine, methionine sulfoxide, estimated glomerular filtration rate (eGFR), and B-type natriuretic peptide. Longitudinal analysis was conducted on 61 stage C HF patients who had recovered systolic function after 1 year. Phenylalanine and tyrosine levels increased from normal through stages A, B and C. Cross-sectional analysis in patients at stage C showed that phenylalanine levels were related to total bilirubin, eGFR, valerylcarnitine, methionine sulfoxide, C-reactive protein, and male gender. Longitudinal analysis in the patients at stage C with recovered systolic function after 1 year revealed that phenylalanine, tyrosine, methionine sulfoxide, total bilirubin, and C-reactive protein levels significantly decreased from baseline to 12 months. Based on a generalized estimating equations analysis model with time interaction considered, the only significant factor associated with changes in phenylalanine was changes in C-reactive protein concentrations from baseline to 12 months [B (coefficient) = 0.81, P < 0.001] after adjusting for methionine sulfoxide and total bilirubin levels. In conclusion, phenylalanine levels respond sensitively to HF improvement. Our findings suggest that inflammation plays a pivotal role in the elevation of phenylalanine levels in patients with HF.
Collapse
Affiliation(s)
- Chi-Wen Cheng
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taiwan.,Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Min-Hui Liu
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taiwan.,Department of Nursing, Ching Kuo Institute of Management and Health, Keelung, Taiwan
| | - Hsiang-Yu Tang
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.,Department and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Clinical Metabolomics Core Laboratory, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Chao-Hung Wang
- Division of Cardiology, Department of Internal Medicine, Heart Failure Research Center, Chang Gung Memorial Hospital, 222 Mai Chin Road, Keelung, Taiwan. .,Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
49
|
Amin A, Frampton J, Liu Z, Franco-Becker G, Norton M, Alaa A, Li JV, Murphy KG. Differential effects of L- and D-phenylalanine on pancreatic and gastrointestinal hormone release in humans: A randomized crossover study. Diabetes Obes Metab 2021; 23:147-157. [PMID: 32991046 DOI: 10.1111/dom.14204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/16/2022]
Abstract
AIM To investigate the effects of L-phenylalanine on gastroenteropancreatic hormone release, glucose levels, subjective appetite and energy intake in humans, and to determine whether these effects were stereoisomer-specific by comparing them with D-phenylalanine. MATERIALS AND METHODS A dose-finding, non-randomized, unblinded, crossover study was conducted during October-December 2017 at the NIHR Imperial Clinical Research Facility in five participants, in which the tolerability of escalating doses of oral L-phenylalanine was assessed (0, 3, 6 and 10 g). Also, an acute, randomized, double-blind, placebo-controlled crossover study was conducted during January-May 2018 at the NIHR Imperial Clinical Research Facility in 11 participants, in which the effects of oral 10 g L-phenylalanine relative to D-phenylalanine and placebo on gastroenteropancreatic hormone (insulin, glucagon, glucose-dependent insulinotropic polypeptide [GIP], peptide tyrosine tyrosine [PYY], glucagon-like peptide-1) and glucose concentrations, visual analogue scales for subjective appetite and energy intake at an ad libitum meal served 70 minutes postingestion, were investigated. RESULTS L-phenylalanine was well-tolerated and increased insulin and glucagon concentrations prior to meal ingestion at several time points relative to placebo and D-phenylalanine (P < .05). L-phenylalanine also increased GIP concentrations relative to D-phenylalanine (P = .0420) and placebo (P = .0249) 70 minutes following ingestion. L-phenylalanine reduced postprandial glucose area under the curve (AUC)70-150mins relative to placebo (P = .0317) but did not affect subjective appetite or energy intake (P > .05). D-phenylalanine increased postprandial PYY AUC70-150mins concentrations relative to placebo (P = .0002). CONCLUSIONS Ingestion of L-phenylalanine, but not D-phenylalanine, increases insulin, glucagon and GIP concentrations without appearing to have a marked effect on appetite.
Collapse
Affiliation(s)
- Anjali Amin
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - James Frampton
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Zhigang Liu
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Georgia Franco-Becker
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Mariana Norton
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Aos Alaa
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Jia V Li
- Section for Nutrition Research, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| | - Kevin G Murphy
- Section of Endocrinology and Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
50
|
Draicchio F, van Vliet S, Ancu O, Paluska SA, Wilund KR, Mickute M, Sathyapalan T, Renshaw D, Watt P, Sylow L, Burd NA, Mackenzie RW. Integrin-associated ILK and PINCH1 protein content are reduced in skeletal muscle of maintenance haemodialysis patients. J Physiol 2020; 598:5701-5716. [PMID: 32969494 DOI: 10.1113/jp280441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022] Open
Abstract
KEY POINTS Patients with renal failure undergoing maintenance haemodialysis are associated with insulin resistance and protein metabolism dysfunction. Novel research suggests that disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in haemodialysis. ILK, PINCH1 and pFAKTyr397 were significantly decreased in haemodialysis compared to controls, whereas Rac1 and Akt2 showed no different between groups. Rac1 deletion in the Rac1 knockout model did not alter the expression of integrin-associated proteins. Phenylalanine kinetics were reduced in the haemodialysis group at 30 and 60 min post meal ingestion compared to controls; both groups showed similar levels of insulin sensitivity and β-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in haemodialysis patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients. ABSTRACT Muscle atrophy, insulin resistance and reduced muscle phosphoinositide 3-kinase-Akt signalling are common characteristics of patients undergoing maintenance haemodialysis (MHD). Disruption to the transmembrane protein linkage between the cytoskeleton and the extracellular matrix in skeletal muscle may contribute to reduced amino acid metabolism and insulin resistance in MHD patients. Eight MHD patients (age: 56 ± 5 years: body mass index: 32 ± 2 kg m-2 ) and non-diseased controls (age: 50 ± 2 years: body mass index: 31 ± 1 kg m-2 ) received primed continuous l-[ring-2 H5 ]phenylalanine before consuming a mixed meal. Phenylalanine metabolism was determined using two-compartment modelling. Muscle biopsies were collected prior to the meal and at 300 min postprandially. In a separate experiment, skeletal muscle tissue from muscle-specific Rac1 knockout (Rac1 mKO) was harvested to investigate whether Rac1 depletion disrupted the cytoskeleton-integrin linkage, allowing for cross-model examination of proteins of interest. ILK, PINCH1 and pFAKTyr397 were significantly lower in MHD (P < 0.01). Rac1 and Akt showed no difference between groups for the human trial. Rac1 deletion in the Rac1 mKO model did not alter the expression of integrin-associated proteins. Phenylalanine rates of appearance and disappearance, as well as metabolic clearance rates, were lower in the MHD group at 30 and 60 min post meal ingestion compared to controls (P < 0.05). Both groups showed similar levels of insulin sensitivity and β-cell function. Key proteins in the integrin-cytoskeleton linkage are reduced in MHD patients, suggesting for the first time that integrin-associated proteins dysfunction may contribute to reduced phenylalanine flux without affecting insulin resistance in haemodialysis patients.
Collapse
Affiliation(s)
- Fulvia Draicchio
- Department of Life Sciences, Sport and Exercise Science Research Center, University of Roehampton, London, UK
| | - Stephan van Vliet
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Oana Ancu
- Department of Life Sciences, Sport and Exercise Science Research Center, University of Roehampton, London, UK
| | - Scott A Paluska
- Department of Family Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Kenneth R Wilund
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Monika Mickute
- Leicester Diabetes Center, Leicester General Hospital, Leicester, UK
| | | | - Derek Renshaw
- Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK
| | - Peter Watt
- Sport and Exercise Science and Sports Medicine research and enterprise group, Welkin Laboratories, University of Brighton, Eastbourne, UK
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sport, August Krogh Bygningen, University of Copenhagen, Denmark
| | - Nicholas A Burd
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Richard Wa Mackenzie
- Department of Life Sciences, Sport and Exercise Science Research Center, University of Roehampton, London, UK
| |
Collapse
|