1
|
Tiwari A, Paithane U, Friedlein J, Tashiro K, Saulnier O, Barbosa K, Trinh Q, Hall B, Saha S, Soni A, Nakashima T, Bobkov A, Fujimoto LM, Murad R, Maurya S, Saraswat M, Sarmashghi S, Lange JT, Wu S, Masihi MB, Ghosh S, Hemmati G, Chapman O, Hendrikse L, James B, Luebeck J, Eisemann T, Tzaridis T, Rohila D, Leary R, Varshney J, Konety B, Dehm SM, Kawakami Y, Beroukhim R, Largaespada DA, Stein L, Chavez L, Suzuki H, Weiss WA, Zhao J, Deshpande A, Wechsler-Reya RJ, Taylor MD, Bagchi A. Synergistic RAS-MAPK and AKT Activation in MYC-Driven Tumors via Adjacent PVT1 Rearrangements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.17.638454. [PMID: 40027648 PMCID: PMC11870553 DOI: 10.1101/2025.02.17.638454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
MYC-driven (MYC+) cancers are aggressive and often fatal. MYC dysregulation is a key event in these cancers, but overexpression of MYC alone is not always enough to cause cancer. Plasmocytoma Variant Translocation 1 (PVT1), a long non-coding RNA (lncRNA) adjacent to MYC on chromosome 8 is a rearrangement hotspot in many MYC+ cancers. In addition to being co-amplified with MYC, the genomic rearrangement at PVT1 involves translocation, which has had obscure functional consequences. We report that translocation at the PVT1 locus cause asymmetric enrichment of 5'-PVT1 and loss of 3'-PVT1. Despite being classified as a non-coding RNA, the retained 5' region of PVT1 generates a circular RNA (CircPVT1) that codes for the novel peptide we call Firefox (FFX). FFX augments AKT signaling and synergistically activates MYC and mTORC1 in these cells. Further, the 3' end of PVT1, which is lost during the translocation, codes for a tumor-suppressing micropeptide we named as Honeybadger (HNB). We demonstrate that HNB interacts with KRAS and disrupts the activation of KRAS effectors. Loss of HNB leads to activation of RAS/MAPK signaling pathway, and enhances MYC stability by promoting phosphorylation of MYC at Ser62. These findings identify PVT1 as a critical node that synchronizes MYC, AKT, and RAS-MAPK activities in cancer. Our study thus identifies a key mechanism by which rearrangements at the PVT1 locus activate additional oncogenic pathways that synergize with MYC to exacerbate the aggressiveness of MYC+ cancers. This newfound understanding explains the poor prognosis associated with MYC+ cancers and offers potential therapeutic targets that could be leveraged in treatment strategies for these cancers.
Collapse
Affiliation(s)
- Ashutosh Tiwari
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Utkarsha Paithane
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jordan Friedlein
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kojiro Tashiro
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Urology, Jikei University School of Medicine, Tokyo, Japan
| | - Olivier Saulnier
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Karina Barbosa
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Quang Trinh
- Adaptive Oncology, Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Bryan Hall
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shrawantee Saha
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aditi Soni
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Takuma Nakashima
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - Andrey Bobkov
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Lynn Miya Fujimoto
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Rabi Murad
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Svetlana Maurya
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Mayank Saraswat
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Shahab Sarmashghi
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Joshua T. Lange
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
| | - Sihan Wu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- ChEM-H, Stanford University, Stanford, CA, USA
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Meher Beigi Masihi
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Srija Ghosh
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Gazal Hemmati
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Owen Chapman
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, San Diego, CA, USA
| | - Liam Hendrikse
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Brian James
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Jens Luebeck
- Department of Computer Science, University of California San Diego, La Jolla, CA
| | - Tanja Eisemann
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Theophilos Tzaridis
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Deepak Rohila
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Robyn Leary
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Jyotika Varshney
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Badrinath Konety
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
- Rush Medical College, Chicago, IL, USA
- Allina Health Cancer Institute, MN, USA
| | - Scott M. Dehm
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Department of Urology, University of Minnesota, Minneapolis, MN, USA
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Yasuhiko Kawakami
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Rameen Beroukhim
- Department of Medical Oncology and Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Lincoln Stein
- Adaptive Oncology, Ontario Institute for Cancer Research, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Lukas Chavez
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, San Diego, CA, USA
- Rady Children’s Institute for Genomic Medicine, Rady Children’s Hospital and Healthcare Center, San Diego, CA, USA
| | - Hiromichi Suzuki
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, Chuo-ku, Tokyo, 104-0045, Japan
| | - William A Weiss
- Departments of Neurology, Pediatrics, and Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Jianhua Zhao
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Aniruddha Deshpande
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Robert J. Wechsler-Reya
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Michael D. Taylor
- Developmental & Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Baylor College of Medicine
| | - Anindya Bagchi
- Cancer Genome and Epigenetics Program, NCI Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| |
Collapse
|
2
|
Budreika A, Phoenix JT, Kostlan RJ, Deegan CD, Ferrari MG, Young KS, Fanning SW, Kregel S. The Homeobox Transcription Factor NKX3.1 Displays an Oncogenic Role in Castration-Resistant Prostate Cancer Cells. Cancers (Basel) 2025; 17:306. [PMID: 39858088 PMCID: PMC11763476 DOI: 10.3390/cancers17020306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Prostate cancer (PCa) is the second leading cause of cancer-related death in men. The increase in incidence rates of more advanced and aggressive forms of the disease year-to-year fuels urgency to find new therapeutic interventions and bolster already established ones. PCa is a uniquely targetable disease in that it is fueled by male hormones (androgens) that drive tumorigenesis via the androgen receptor or AR. Current standard-of-care therapies directly target AR and its aberrant signaling axis but resistance to these therapies commonly arises, and the mechanisms behind the onset of therapy-resistance are still elusive. Research has shown that even with resistant disease, AR remains the main driver of growth and survival of PCa, and AR target genes and cofactors may help mediate resistance to therapy. Here, we focused on a homeobox transcription factor that exhibits a close relationship with AR-NKX3.1. Though NKX3.1 is traditionally thought of as a tumor suppressor, it has been previously reported to promote cancer cell survival by cooperating with AR. The role of NKX3.1 as a tumor suppressor perhaps in early-stage disease also contradicts its profile as a diagnostic biomarker for advanced prostate cancer. METHODS We investigated the physical interaction between NKX3.1 and AR, a modulated NKX3.1 expression in prostate cancer cells via overexpression and knockdown and assayed subsequent viability and downstream target gene expression. RESULTS We find that the expression of NKX3.1 is maintained in advanced PCa, and it is often elevated because of aberrant AR activity. Transient knockdown experiments across various PCa cell line models reveal NKX3.1 expression is necessary for survival. Similarly, stable overexpression of NKX3.1 in PCa cell lines reveals an androgen insensitive phenotype, suggesting NKX3.1 is sufficient to promote growth in the absence of an AR ligand. CONCLUSIONS Our work provides new insight into NKX3.1's oncogenic influence on PCa and the molecular interplay of these transcription factors in models of late-stage prostate cancer.
Collapse
Affiliation(s)
- Audris Budreika
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - John T. Phoenix
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Raymond J. Kostlan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Carleen D. Deegan
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Marina G. Ferrari
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| | - Kristen S. Young
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
- Integrated Program in Biomedical Science, Biochemistry, Molecular and Cancer Biology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Sean W. Fanning
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| | - Steven Kregel
- Department of Cancer Biology, Cardinal Bernardin Cancer Center, Stritch School of Medicine Health Sciences Division, Loyola University Chicago, 2160 South First Avenue Building 112, Room 205, Maywood, IL 60153, USA; (A.B.); (J.T.P.); (R.J.K.); (C.D.D.); (M.G.F.); (K.S.Y.); (S.W.F.)
| |
Collapse
|
3
|
Dehner CA, Bell RC, Cao Y, He K, Chrisinger JS, Armstrong AE, Yohe M, Shern J, Hirbe AC. Loss of Chromosome 3q Is a Prognostic Marker in Fusion-Negative Rhabdomyosarcoma. JCO Precis Oncol 2023; 7:e2300037. [PMID: 37738543 PMCID: PMC10861018 DOI: 10.1200/po.23.00037] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/05/2023] [Accepted: 07/16/2023] [Indexed: 09/24/2023] Open
Abstract
PURPOSE Soft tissue sarcomas (STS) are rare mesenchymal neoplasms that frequently show complex chromosomal aberrations such as amplifications or deletions of DNA sequences or even whole chromosomes. We recently found that gain of chromosome (chr) 8 is associated with worse overall survival (OS) in STS as a group. We therefore aimed to investigate the overall copy number profile of rhabdomyosarcoma (RMS) to evaluate for prognostic signatures. METHODS Fluorescence in situ hybridization (FISH) testing was performed on a cohort of STS to assess for chr8 gain. Copy number variation (CNV) data from the National Cancer Institute were analyzed to assess for prognostically significant CNV aberrations in FOXO1 fusion-negative (FN)- versus fusion-positive (FP)-RMS. FISH testing was performed on a cohort of FN-RMS to assess for chr3q loss and correlate with outcomes. RESULTS Chr8 gain is a highly prevalent CNV in embryonal RMS and shows slightly improved prognosis. Meanwhile, loss of chr3q was associated with worse outcome in FN-RMS compared with FP-RMS. CONCLUSION The pathogenesis of STS including FN-RMS remains poorly understood, emphasizing the need for new therapeutic advances and adequate risk stratification. Our data demonstrate that loss of chr3q is associated with poor OS in FN-RMS, supporting it as an important tool for risk stratification.
Collapse
Affiliation(s)
- Carina A. Dehner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
- Department of Pathology/Dermatopathology, Indiana University, Indianapolis, IN
| | - Robert C. Bell
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
- Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Yang Cao
- Division of Oncology, Washington University School of Medicine, St Louis, MO
| | - Kevin He
- Division of Oncology, Washington University School of Medicine, St Louis, MO
| | - John S.A. Chrisinger
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO
| | - Amy E. Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St Louis, MO
| | - Marielle Yohe
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jack Shern
- Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Angela C. Hirbe
- Division of Oncology, Washington University School of Medicine, St Louis, MO
| |
Collapse
|
4
|
Alshalalfa M, Nguyen TT, Stopsack KH, Khan A, Franco I, Seldon C, Swami N, Jin W, Meiyappan K, Ton M, Venstrom JM, Dee EC, Mahal BA. Chromosome 8q arm overexpression is associated with worse prostate cancer prognosis. Urol Oncol 2023; 41:106.e17-106.e23. [PMID: 36400666 PMCID: PMC10700008 DOI: 10.1016/j.urolonc.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE Chromosome 8q arm (chr8q) is the most amplified chromosomal segment in advanced metastatic castration-resistant prostate cancer after chXq12. These regions harbor important oncogenes driving prostate cancer progression, including MYC that plays a role in various hallmarks of cancer, including cell cycle progression and immune surveillance. Herein we characterize the co-expression patterns of chr8q genes and their clinical utility in more than 7,000 radical prostatectomy samples. MATERIALS AND METHODS Copy Number alterations of 336 genes on chr8q21 to chr8q24 were extracted from 2 primary prostate cancer cohorts (TCGA, n = 492; MSK-primary, n = 856) and 3 metastatic prostate cancer cohorts (MSK-met, N = 432; MSK-mCSPC, N = 424; SU2CPNAS, n = 444) from cBioPortal. Expression data for the 336 genes was extracted from 6,135 radical prostatectomy samples from Decipher GRID registry. For survival analysis, patients were grouped into top 10% and top 25% by band expression and were compared with the remaining cohort. Hazard ratios were calculated using Cox proportional hazards models. RESULTS Genes on chr8q were highly co-amplified and co-expressed. Copy number alterations and overexpression of chr8q genes in primary disease were associated with higher Gleason scores, increased risk of metastases, and increased prostate cancer specific mortality. Additionally, our data demonstrated high expression of MYC alone was not associated with differences in metastases free survival while high expression of other chr8q bands was associated with decreased metastases free survival. By combining chr8q data with an established genomic classifier like Decipher, we were able to develop a new model that was better at predicting metastases than Decipher alone. CONCLUSIONS Our findings highlight the clinical utility of chr8q data, which can be used to improve prognostication and risk prediction in localized prostate cancer.
Collapse
Affiliation(s)
- Mohammed Alshalalfa
- University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL
| | - Tiffany T Nguyen
- University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL
| | - Konrad H Stopsack
- Harvard T.H. Chan School of Public Health, Boston, MA; Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Anwar Khan
- University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL
| | - Idalid Franco
- Department of Radiation Oncology, Dana Farber Cancer Institute/Brigham and Women's Hospital, Boston, MA; Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
| | - Crystal Seldon
- Department of Radiation Oncology, University of Miami/Jackson Memorial Hospital, Miami, FL
| | - Nishwant Swami
- Harvard T.H. Chan School of Public Health, Boston, MA; University of Massachusetts Chan Medical School, Worcester, MA
| | - William Jin
- Department of Radiation Oncology, University of Miami/Jackson Memorial Hospital, Miami, FL
| | - Karthik Meiyappan
- University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL
| | - Minh Ton
- University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL
| | | | | | - Brandon A Mahal
- Department of Radiation Oncology, University of Miami Miller School of Medicine/Sylvester Comprehensive Cancer Center, Miami, FL.
| |
Collapse
|
5
|
Whitlock NC, White ME, Capaldo BJ, Ku AT, Agarwal S, Fang L, Wilkinson S, Trostel SY, Shi ZD, Basuli F, Wong K, Jagoda EM, Kelly K, Choyke PL, Sowalsky AG. Progression of prostate cancer reprograms MYC-mediated lipid metabolism via lysine methyltransferase 2A. Discov Oncol 2022; 13:97. [PMID: 36181613 PMCID: PMC9526773 DOI: 10.1007/s12672-022-00565-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The activities of MYC, the androgen receptor, and its associated pioneer factors demonstrate substantial reprogramming between early and advanced prostate cancer. Although previous studies have shown a shift in cellular metabolic requirements associated with prostate cancer progression, the epigenetic regulation of these processes is incompletely described. Here, we have integrated chromatin immunoprecipitation sequencing (ChIP-seq) and whole-transcriptome sequencing to identify novel regulators of metabolism in advanced prostate tumors characterized by elevated MYC activity. RESULTS Using ChIP-seq against MYC, HOXB13, and AR in LNCaP cells, we observed redistribution of co-bound sites suggestive of differential KMT2A activity as a function of MYC expression. In a cohort of 177 laser-capture microdissected foci of prostate tumors, KMT2A expression was positively correlated with MYC activity, AR activity, and HOXB13 expression, but decreased with tumor grade severity. However, KMT2A expression was negatively correlated with these factors in 25 LuCaP patient-derived xenograft models of advanced prostate cancer and 99 laser-capture microdissected foci of metastatic castration-resistant prostate cancer. Stratified by KMT2A expression, ChIP-seq against AR and HOXB13 in 15 LuCaP patient-derived xenografts showed an inverse association with sites involving genes implicated in lipid metabolism, including the arachidonic acid metabolic enzyme PLA2G4F. LuCaP patient-derived xenograft models grown as organoids recapitulated the inverse association between KMT2A expression and fluorine-18 labeled arachidonic acid uptake in vitro. CONCLUSIONS Our study demonstrates that the epigenetic activity of transcription factor oncogenes exhibits a shift during prostate cancer progression with distinctive phenotypic effects on metabolism. These epigenetically driven changes in lipid metabolism may serve as novel targets for the development of novel imaging agents and therapeutics.
Collapse
Affiliation(s)
- Nichelle C Whitlock
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Margaret E White
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Anson T Ku
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Supreet Agarwal
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Lei Fang
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Scott Wilkinson
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Shana Y Trostel
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Zhen-Dan Shi
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Falguni Basuli
- Chemistry and Synthesis Center, National Heart, Lung and Blood Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Karen Wong
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Elaine M Jagoda
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, NIH, 10 Center Drive, Bethesda, MD, 20892, USA
| | - Adam G Sowalsky
- Laboratory of Genitourinary Cancer Pathogenesis, National Cancer Institute, NIH, 37 Convent Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
7
|
Obinata D, Funakoshi D, Takayama K, Hara M, Niranjan B, Teng L, Lawrence MG, Taylor RA, Risbridger GP, Suzuki Y, Takahashi S, Inoue S. OCT1-target neural gene PFN2 promotes tumor growth in androgen receptor-negative prostate cancer. Sci Rep 2022; 12:6094. [PMID: 35413990 PMCID: PMC9005514 DOI: 10.1038/s41598-022-10099-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Androgen and androgen receptor (AR) targeted therapies are the main treatment for most prostate cancer (PC) patients. Although AR signaling inhibitors are effective, tumors can evade this treatment by transforming to an AR-negative PC via lineage plasticity. OCT1 is a transcription factor interacting with the AR to enhance signaling pathways involved in PC progression, but its role in the emergence of the AR-negative PC is unknown. We performed chromatin immunoprecipitation sequencing (ChIP-seq) in patient-derived castration-resistant AR-negative PC cells to identify genes that are regulated by OCT1. Interestingly, a group of genes associated with neural precursor cell proliferation was significantly enriched. Then, we focused on neural genes STNB1 and PFN2 as OCT1-targets among them. Immunohistochemistry revealed that both STNB1 and PFN2 are highly expressed in human AR-negative PC tissues. Knockdown of SNTB1 and PFN2 by siRNAs significantly inhibited migration of AR-negative PC cells. Notably, knockdown of PFN2 showed a marked inhibitory effect on tumor growth in vivo. Thus, we identified OCT1-target genes in AR-negative PC using a patient-derived model, clinicopathologial analysis and an animal model.
Collapse
Affiliation(s)
- Daisuke Obinata
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan.,Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Daigo Funakoshi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Kenichi Takayama
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Makoto Hara
- Division of Neurology, Department of Medicine, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Birunthi Niranjan
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Linda Teng
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Mitchell G Lawrence
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Renea A Taylor
- Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia.,Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Physiology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia
| | - Gail P Risbridger
- Prostate Cancer Research Group, Monash Biomedicine Discovery Institute Cancer Program, Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cancer Research Division, Peter MacCallum Cancer Centre, 305 Grattan Street, Parkville, VIC, 3000, Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, 305 Grattan Street, Parkville, VIC, 3010, Australia.,Melbourne Urological Research Alliance (MURAL), Monash Biomedicine Discovery Institute Cancer Program, Monash University, Wellington Road, Clayton, VIC, 3800, Australia.,Cabrini Institute, Cabrini Health, 183 Wattletree Road, Malvern, VIC, 3144, Australia
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences Graduate School of Frontier Sciences, University of Tokyo, 5-1-5, Kashiwanoha, Chiba, Chiba, 277-8562, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, 30-1, Ooyaguchikamicho, Itabashi-ku, Tokyo, 173-8610, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan. .,Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka, Saitama, 350-1241, Japan.
| |
Collapse
|
8
|
Mazzu YZ, Liao YR, Nandakumar S, Jehane LE, Koche RP, Rajanala SH, Li R, Zhao H, Gerke TA, Chakraborty G, Lee GSM, Nanjangud GJ, Gopalan A, Chen Y, Kantoff PW. Prognostic and therapeutic significance of COP9 signalosome subunit CSN5 in prostate cancer. Oncogene 2022; 41:671-682. [PMID: 34802033 PMCID: PMC9359627 DOI: 10.1038/s41388-021-02118-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/03/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022]
Abstract
Chromosome 8q gain is associated with poor clinical outcomes in prostate cancer, but the underlying biological mechanisms remain to be clarified. CSN5, a putative androgen receptor (AR) partner that is located on chromosome 8q, is the key subunit of the COP9 signalosome, which deactivates ubiquitin ligases. Deregulation of CSN5 could affect diverse cellular functions that contribute to tumor development, but there has been no comprehensive study of its function in prostate cancer. The clinical significance of CSN5 amplification/overexpression was evaluated in 16 prostate cancer clinical cohorts. Its oncogenic activity was assessed by genetic and pharmacologic perturbations of CSN5 activity in prostate cancer cell lines. The molecular mechanisms of CSN5 function were assessed, as was the efficacy of the CSN5 inhibitor CSN5i-3 in vitro and in vivo. Finally, the transcription cofactor activity of CSN5 in prostate cancer cells was determined. The prognostic significance of CSN5 amplification and overexpression in prostate cancer was independent of MYC amplification. Inhibition of CSN5 inhibited its oncogenic function by targeting AR signaling, DNA repair, multiple oncogenic pathways, and spliceosome regulation. Furthermore, inhibition of CSN5 repressed metabolic pathways, including oxidative phosphorylation and glycolysis in AR-negative prostate cancer cells. Targeting CSN5 with CSN5i-3 showed potent antitumor activity in vitro and in vivo. Importantly, CSN5i-3 synergizes with PARP inhibitors to inhibit prostate cancer cell growth. CSN5 functions as a transcription cofactor to cooperate with multiple transcription factors in prostate cancer. Inhibiting CSN5 strongly attenuates prostate cancer progression and could enhance PARP inhibition efficacy in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Ying Z Mazzu
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Yu-Rou Liao
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Subhiksha Nandakumar
- Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lina E Jehane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard P Koche
- Epigenetics Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Sai Harisha Rajanala
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ruifang Li
- Epigenetics Innovation Lab, Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - HuiYong Zhao
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Goutam Chakraborty
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gwo-Shu Mary Lee
- Department of Medicine, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Gouri J Nanjangud
- Molecular Cytogenetics Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yu Chen
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Philip W Kantoff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
9
|
[EEFSEC knockdown inhibits proliferation, migration and invasion of prostate cancer cells in vitro]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:1787-1794. [PMID: 35012909 PMCID: PMC8752429 DOI: 10.12122/j.issn.1673-4254.2021.12.05] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVE To investigate the role of selenocysteine-tRNA specific eukaryotic elongation factor (EEFSEC) in regulating the proliferation, migration, and invasion of human prostate cancer 22Rv1 cells. METHODS We detected EEFSEC mRNA expression levels in human normal prostate cell line RWPE1 and human prostate cancer cell lines 22Rv1, LNCaP, Vcap and PC-3 using qRT-PCR and EEFSEC protein expression in surgical specimens of prostate cancer and adjacent tissues using Western blotting. 22Rv1 cells were infected with a lentiviral vector carrying EEFSEC shRNA or a control lentivirus and the interference efficiency was determined using Western blotting. XTT assay was used to assess the changes in the viability of the infected cells, and Transwell chamber assay was used to examine the changes in cell migration and invasion. The effect of EEFSEC knockdown on cell cycle progression was determined with flow cytometry and by detecting the expressions of cell cycle proteins using qRT-PCR. RESULTS EEFSEC was significantly upregulated in prostate cancer cells (P < 0.05), and a high expression of EEFSEC was associated with a poor prognosis of the patients with prostate cancer. In 22Rv1 cells, EEFSEC knockdown significantly suppressed the proliferation (P < 0.001), migration (P < 0.001) and invasion (P < 0.001) of the cells, resulted in cell cycle arrest in G0/G1 phase, obviously inhibited the expression of C-myc and CCNB1, and significantly increased the expression of p15. CONCLUSION EEFSEC knockdown can inhibit the proliferation, migration, and invasion of prostate cancer cells in vitro possibly by down-regulating the expression of C-myc.
Collapse
|
10
|
Dovey ZS, Nair SS, Chakravarty D, Tewari AK. Racial disparity in prostate cancer in the African American population with actionable ideas and novel immunotherapies. Cancer Rep (Hoboken) 2021; 4:e1340. [PMID: 33599076 PMCID: PMC8551995 DOI: 10.1002/cnr2.1340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/22/2020] [Accepted: 12/02/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND African Americans (AAs) in the United States are known to have a higher incidence and mortality for Prostate Cancer (PCa). The drivers of this epidemiological disparity are multifactorial, including socioeconomic factors leading to lifestyle and dietary issues, healthcare access problems, and potentially tumor biology. RECENT FINDINGS Although recent evidence suggests once access is equal, AA men have equal outcomes to Caucasian American (CA) men, differences in PCa incidence remain, and there is much to do to reverse disparities in mortality across the USA. A deeper understanding of these issues, both at the clinical and molecular level, can facilitate improved outcomes in the AA population. This review first discusses PCa oncogenesis in the context of its diverse hallmarks before benchmarking key molecular and genomic differences for PCa in AA men that have emerged in the recent literature. Studies have emphasized the importance of tumor microenvironment that contributes to both the unequal cancer burden and differences in clinical outcome between the races. Management of comorbidities like obesity, hypertension, and diabetes will provide an essential means of reducing prostate cancer incidence in AA men. Although requiring further AA specific research, several new treatment strategies such as immune checkpoint inhibitors used in combination PARP inhibitors and other emerging vaccines, including Sipuleucel-T, have demonstrated some proven efficacy. CONCLUSION Genomic profiling to integrate clinical and genomic data for diagnosis, prognosis, and treatment will allow physicians to plan a "Precision Medicine" approach to AA men. There is a pressing need for further research for risk stratification, which may allow early identification of AA men with higher risk disease based on their unique clinical, genomic, and immunological profiles, which can then be mapped to appropriate clinical trials. Treatment options are outlined, with a concise description of recent work in AA specific populations, detailing several targeted therapies, including immunotherapy. Also, a summary of current clinical trials involving AA men is presented, and it is important that policies are adopted to ensure that AA men are actively recruited. Although it is encouraging that many of these explore the lifestyle and educational initiatives and therapeutic interventions, there is much still work to be done to reduce incidence and mortality in AA men and equalize current racial disparities.
Collapse
Affiliation(s)
- Zachary S. Dovey
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sujit S. Nair
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Dimple Chakravarty
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ashutosh K. Tewari
- The Department of UrologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
11
|
Iqbal W, Demidova EV, Serrao S, ValizadehAslani T, Rosen G, Arora S. RRM2B Is Frequently Amplified Across Multiple Tumor Types: Implications for DNA Repair, Cellular Survival, and Cancer Therapy. Front Genet 2021; 12:628758. [PMID: 33868369 PMCID: PMC8045241 DOI: 10.3389/fgene.2021.628758] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 02/23/2021] [Indexed: 01/21/2023] Open
Abstract
RRM2B plays a crucial role in DNA replication, repair and oxidative stress. While germline RRM2B mutations have been implicated in mitochondrial disorders, its relevance to cancer has not been established. Here, using TCGA studies, we investigated RRM2B alterations in cancer. We found that RRM2B is highly amplified in multiple tumor types, particularly in MYC-amplified tumors, and is associated with increased RRM2B mRNA expression. We also observed that the chromosomal region 8q22.3–8q24, is amplified in multiple tumors, and includes RRM2B, MYC along with several other cancer-associated genes. An analysis of genes within this 8q-amplicon showed that cancers that have both RRM2B-amplified along with MYC have a distinct pattern of amplification compared to cancers that are unaltered or those that have amplifications in RRM2B or MYC only. Investigation of curated biological interactions revealed that gene products of the amplified 8q22.3–8q24 region have important roles in DNA repair, DNA damage response, oxygen sensing, and apoptosis pathways and interact functionally. Notably, RRM2B-amplified cancers are characterized by mutation signatures of defective DNA repair and oxidative stress, and at least RRM2B-amplified breast cancers are associated with poor clinical outcome. These data suggest alterations in RR2MB and possibly the interacting 8q-proteins could have a profound effect on regulatory pathways such as DNA repair and cellular survival, highlighting therapeutic opportunities in these cancers.
Collapse
Affiliation(s)
- Waleed Iqbal
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,School of Biomedical Engineering, Science and Health Systems, Drexel University College of Engineering, Philadelphia, PA, United States
| | - Elena V Demidova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Samantha Serrao
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Taha ValizadehAslani
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Gail Rosen
- Department of Electrical and Computer Engineering, College of Engineering, Drexel University, Philadelphia, PA, United States
| | - Sanjeevani Arora
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, PA, United States.,Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States
| |
Collapse
|
12
|
Liu W, Hou J, Petkewicz J, Na R, Wang CH, Sun J, Gallagher J, Bogachkov YY, Swenson L, Regner M, Resurreccion WK, Isaacs WB, Brendler CB, Crawford S, Zheng SL, Helfand BT, Xu J. Feasibility and performance of a novel probe panel to detect somatic DNA copy number alterations in clinical specimens for predicting prostate cancer progression. Prostate 2020; 80:1253-1262. [PMID: 32803894 DOI: 10.1002/pros.24057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/03/2020] [Indexed: 11/11/2022]
Abstract
BACKGROUND To assess the feasibility of a novel DNA-based probe panel to detect copy number alterations (CNAs) in prostate tumor DNA and its performance for predicting clinical progression. METHODS A probe panel was developed and optimized to measure CNAs in trace amounts of tumor DNA (2 ng) isolated from formalin-fixed paraffin-embedded tissues. Ten genes previously associated with aggressive disease were targeted. The panel's feasibility and performance were assessed in 175 prostate cancer (PCa) patients who underwent radical prostatectomy with a median 10-year follow-up, including 42 men who developed disease progression (either metastasis and/or PCa-specific death). Association with disease progression was tested using univariable and multivariable analyses. RESULTS The probe panel detected CNAs in all 10 genes in tumor DNA isolated from either diagnostic biopsies or surgical specimens. A four-gene model (PTEN/MYC/BRCA2/CDKN1B) had the strongest association with disease progression; 64.3% of progressors and 22.5% of non-progressors had at least one CNA in these four genes, odds ratio (OR) (95% confidence interval) = 6.21 (2.77-13.87), P = 8.48E-06. The association with disease progression remained significant after adjusting for known clinicopathological variables. Among the seven progressors of the 65 patients with clinically low-risk disease, three (42.9%) had at least one CNA in these four genes. CONCLUSIONS The probe panel can detect CNAs in trace amounts of tumor DNA from biopsies or surgical tissues at the time of diagnosis or surgery. CNAs independently predict metastatic/lethal cancer, particularly among men with clinically low-risk disease at diagnosis. If validated, this may improve current abilities to assess tumor aggressiveness.
Collapse
Affiliation(s)
- Wennuan Liu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Jun Hou
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Jacqueline Petkewicz
- John and Carol Walter Center for Urological Health, NorthShore University HealthSystem, Evanston, Illinois
| | - Rong Na
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Chi-Hsiung Wang
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Jishan Sun
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Johnie Gallagher
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Yedida Y Bogachkov
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - Laura Swenson
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - MaryAnn Regner
- Department of Pathology, NorthShore University HealthSystem, Evanston, Illinois
| | - W Kyle Resurreccion
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
| | - William B Isaacs
- Department of Urology and Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Charles B Brendler
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Susan Crawford
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - S Lilly Zheng
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| | - Brian T Helfand
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
- John and Carol Walter Center for Urological Health, NorthShore University HealthSystem, Evanston, Illinois
| | - Jianfeng Xu
- Program for Personalized Cancer Care, NorthShore University HealthSystem, Evanston, Illinois
- Department of Surgery, NorthShore University HealthSystem, Evanston, Illinois
| |
Collapse
|
13
|
Ross C, Szczepanek K, Lee M, Yang H, Qiu T, Sanford JD, Hunter K. The genomic landscape of metastasis in treatment-naïve breast cancer models. PLoS Genet 2020; 16:e1008743. [PMID: 32463822 PMCID: PMC7282675 DOI: 10.1371/journal.pgen.1008743] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/09/2020] [Accepted: 03/28/2020] [Indexed: 12/24/2022] Open
Abstract
Metastasis remains the principle cause of mortality for breast cancer and presents a critical challenge because secondary lesions are often refractory to conventional treatments. While specific genetic alterations are tightly linked to primary tumor development and progression, the role of genetic alteration in the metastatic process is not well-understood. The theory of tumor evolution postulated by Peter Nowell in 1976 has yet to be proven in the context of metastasis. Therefore, in order to investigate how somatic evolution contributes to breast cancer metastasis, we performed exome, whole genome, and RNA sequencing of matched metastatic and primary tumors from pre-clinical mouse models of breast cancer. Here we show that in a treatment-naïve setting, recurrent single nucleotide variants and copy number variation, but not gene fusion events, play key metastasis-driving roles in breast cancer. For instance, we identified recurrent mutations in Kras, a known driver of colorectal and lung tumorigenesis that has not been previously implicated in breast cancer metastasis. However, in a set of in vivo proof-of-concept experiments we show that the Kras G12D mutation is sufficient to significantly promote metastasis using three syngeneic allograft models. The work herein confirms the existence of metastasis-driving mutations and presents a novel framework to identify actionable metastasis-targeted therapies.
Collapse
Affiliation(s)
- Christina Ross
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Karol Szczepanek
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Maxwell Lee
- Laboratory of Cancer Biology and Genetics, High-Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Howard Yang
- Laboratory of Cancer Biology and Genetics, High-Dimension Data Analysis Group, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Tinghu Qiu
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Jack D. Sanford
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| | - Kent Hunter
- Laboratory of Cancer Biology and Genetics, Metastasis Susceptibility Section, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, United States of America
| |
Collapse
|
14
|
Nassir AM. A piece in prostate cancer puzzle: Future perspective of novel molecular signatures. Saudi J Biol Sci 2020; 27:1148-1154. [PMID: 32256177 PMCID: PMC7105665 DOI: 10.1016/j.sjbs.2020.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 01/26/2020] [Accepted: 02/01/2020] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) has a variable biological potential. It constitutes the second most common cancer amongst men worldwide and the fifth most common cancer in Saudi Arabia. Identifying men at higher risk of developing PCa, differentiating indolent from aggressive disease and predicting the likelihood of progression will improve decision-making and selection for active surveillance protocols. Biomarkers have been utilized for PCa screening and predicting cancer behavior and response to treatment. The prostate specific antigen (PSA) screening helps detect PCa in early stages, while implementing a plan for management and outcome. However, PSA screening is still controversial, due to the risks of over diagnosis and treatment, and its inability to detect a good proportion of advanced tumors. Alternatively, a new era of PCa biomarkers has emerged with higher PCa specificity than PSA and its isoforms hopefully improving screening methods, such as Prostate Health Index (PHI) score, Progensa Prostate Cancer Antigen 3 (PCA3), Mi-Prostate Score (MiPS), Prostate Stem Cell Antigen (PSCA), 4Kscore test, and Urokinase Plasminogen Activation (uPA and uPAR). Few novel biomarkers have shown promise in preliminary results. This review will display promising biomarkers including some important FDA approved ones, highlighting their clinical implication and future place in the PCa puzzle, along with addressing their current limitations.
Collapse
Affiliation(s)
- Anmar M Nassir
- Department of Surgery, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Urology, King Abdullah Medical City, Makkah, Saudi Arabia
| |
Collapse
|
15
|
Lee YR, Chen M, Lee JD, Zhang J, Lin SY, Fu TM, Chen H, Ishikawa T, Chiang SY, Katon J, Zhang Y, Shulga YV, Bester AC, Fung J, Monteleone E, Wan L, Shen C, Hsu CH, Papa A, Clohessy JG, Teruya-Feldstein J, Jain S, Wu H, Matesic L, Chen RH, Wei W, Pandolfi PP. Reactivation of PTEN tumor suppressor for cancer treatment through inhibition of a MYC-WWP1 inhibitory pathway. Science 2019; 364:364/6441/eaau0159. [PMID: 31097636 DOI: 10.1126/science.aau0159] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 10/30/2018] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Activation of tumor suppressors for the treatment of human cancer has been a long sought, yet elusive, strategy. PTEN is a critical tumor suppressive phosphatase that is active in its dimer configuration at the plasma membrane. Polyubiquitination by the ubiquitin E3 ligase WWP1 (WW domain-containing ubiquitin E3 ligase 1) suppressed the dimerization, membrane recruitment, and function of PTEN. Either genetic ablation or pharmacological inhibition of WWP1 triggered PTEN reactivation and unleashed tumor suppressive activity. WWP1 appears to be a direct MYC (MYC proto-oncogene) target gene and was critical for MYC-driven tumorigenesis. We identified indole-3-carbinol, a compound found in cruciferous vegetables, as a natural and potent WWP1 inhibitor. Thus, our findings unravel a potential therapeutic strategy for cancer prevention and treatment through PTEN reactivation.
Collapse
Affiliation(s)
- Yu-Ru Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ming Chen
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jonathan D Lee
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jinfang Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Shu-Yu Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Hao Chen
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tomoki Ishikawa
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Shang-Yin Chiang
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Jesse Katon
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yang Zhang
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Yulia V Shulga
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Assaf C Bester
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jacqueline Fung
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Emanuele Monteleone
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Molecular Biotechnology and Health Sciences, and GenoBiToUS, Genomics and Bioinformatics Service, University of Turin, Turin, Italy
| | - Lixin Wan
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.,Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Chen Shen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Chih-Hung Hsu
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.,Department of Public Health, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Antonella Papa
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia
| | - John G Clohessy
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA.,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Preclinical Murine Pharmacogenetics Facility and Mouse Hospital, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Julie Teruya-Feldstein
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Suresh Jain
- Intonation Research Laboratories, Hyderabad, India
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115
| | - Lydia Matesic
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Ruey-Hwa Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106, Taiwan
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Pier Paolo Pandolfi
- Cancer Research Institute, Beth Israel Deaconess Cancer Center, Harvard Medical School, Boston, MA 02215, USA. .,Department of Medicine and Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
16
|
Jiang Y, Lin X, Kapoor A, He L, Wei F, Gu Y, Mei W, Zhao K, Yang H, Tang D. FAM84B promotes prostate tumorigenesis through a network alteration. Ther Adv Med Oncol 2019; 11:1758835919846372. [PMID: 31205500 PMCID: PMC6535720 DOI: 10.1177/1758835919846372] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/13/2019] [Indexed: 01/04/2023] Open
Abstract
Background: The aim of this study was to investigate the contributions of FAM84B in prostate tumorigenesis and progression. Methods: A FAM84B mutant with deletion of its HRASLS domain (ΔHRASLS) was constructed. DU145 prostate cancer (PC) cells stably expressing an empty vector (EV), FAM84B, or FAM84B (ΔHRASLS) were produced. These lines were examined for proliferation, invasion, and growth in soft agar in vitro. DU145 EV and FAM84B cells were investigated for tumor growth and lung metastasis in NOD/SCID mice. The transcriptome of DU145 EV xenografts (n = 2) and DU145 FAM84B tumors (n = 2) was determined using RNA sequencing, and analyzed for pathway alterations. The FAM84B-affected network was evaluated for an association with PC recurrence. Results: FAM84B but not FAM84B (ΔHRASLS) increased DU145 cell invasion and growth in soft agar. Co-immunoprecipitation and co-localization analyses revealed an interaction between FAM84B and FAM84B (ΔHRASLS), suggesting an intramolecular association among FAM84B molecules. FAM84B significantly enhanced DU145 cell-derived xenografts and lung metastasis. In comparison with DU145 EV cell-produced tumors, those generated by DU145 FAM84B cells showed a large number of differentially expressed genes (DEGs; n = 4976). A total of 51 pathways were enriched in these DEGs, which function in the Golgi-to-endoplasmic reticulum processes, cell cycle checkpoints, mitochondrial events, and protein translation. A novel 27-gene signature (SigFAM) was derived from these DEGs; SigFAM robustly stratifies PC recurrence in two large PC populations (n = 490, p = 0; n = 140, p = 4e−11), and remains an independent risk factor of PC recurrence after adjusting for age at diagnosis, Gleason scores, surgical margin, and tumor stages. Conclusions: FAM84B promotes prostate tumorigenesis through a complex network that predicts PC recurrence.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, ON. Canada Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Hamilton Urologic Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Xiaozeng Lin
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital/Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Anil Kapoor
- Father Sean O'Sullivan Research Institute, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Lizhi He
- Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - Fengxiang Wei
- The Genetics Laboratory, Longgang District Maternity and Child Healthcare Hospital, Longgang District, Shenzhen, Guangdong, China
| | - Yan Gu
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital/Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Wenjuan Mei
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada Department of Nephrology, The First Affiliated Hospital of Nanchang University, Jiangxi, China
| | - Kuncheng Zhao
- Department of Medicine, McMaster University, Hamilton, ON, Canada Father Sean O'Sullivan Research Institute, St. Joseph's Hospital/Hamilton Center for Kidney Research, St. Joseph's Hospital, Hamilton, ON, Canada Urological Cancer Center for Research and Innovation (UCCRI), St. Joseph's Hospital, Hamilton, ON, Canada
| | - Huixiang Yang
- Department of Gastroenterology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Damu Tang
- Department of Medicine, McMaster University, T3310, St. Joseph's Hospital, 50 Charlton Avenue East, Hamilton, ON, L8N 4A6, Canada
| |
Collapse
|
17
|
Ballabio S, Craparotta I, Paracchini L, Mannarino L, Corso S, Pezzotta MG, Vescio M, Fruscio R, Romualdi C, Dainese E, Ceppi L, Calura E, Pileggi S, Siravegna G, Pattini L, Martini P, Delle Marchette M, Mangioni C, Ardizzoia A, Pellegrino A, Landoni F, D'Incalci M, Beltrame L, Marchini S. Multisite analysis of high-grade serous epithelial ovarian cancers identifies genomic regions of focal and recurrent copy number alteration in 3q26.2 and 8q24.3. Int J Cancer 2019; 145:2670-2681. [PMID: 30892690 DOI: 10.1002/ijc.32288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 01/08/2023]
Abstract
High-grade serous epithelial ovarian cancer (HGS-EOC) is a systemic disease, with marked intra and interpatient tumor heterogeneity. The issue of spatial and temporal heterogeneity has long been overlooked, hampering the possibility to identify those genomic alterations that persist, before and after therapy, in the genome of all tumor cells across the different anatomical districts. This knowledge is the first step to clarify those molecular determinants that characterize the tumor biology of HGS-EOC and their route toward malignancy. In our study, -omics data were generated from 79 snap frozen matched tumor biopsies, withdrawn before and after chemotherapy from 24 HGS-EOC patients, gathered together from independent cohorts. The landscape of somatic copy number alterations depicts a more homogenous and stable genomic portrait than the single nucleotide variant profile. Genomic identification of significant targets in cancer analysis identified two focal and minimal common regions (FMCRs) of amplification in the cytoband 3q26.2 (region α, 193 kb long) and 8q24.3 (region β, 495 kb long). Analysis in two external databases confirmed regions α and β are features of HGS-EOC. The MECOM gene is located in region α, and 15 genes are in region β. No functional data are yet available for the genes in the β region. In conclusion, we have identified for the first time two FMCRs of amplification in HGS-EOC, opening up a potential biological role in its etiopathogenesis.
Collapse
Affiliation(s)
- Sara Ballabio
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Ilaria Craparotta
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Lara Paracchini
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Laura Mannarino
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Silvia Corso
- Department of Surgery, Manzoni Hospital, Lecco, Italy
| | | | - Martina Vescio
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy.,Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Robert Fruscio
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | | | - Lorenzo Ceppi
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Enrica Calura
- Department of Biology, University of Padova, Padova, Italy
| | - Silvana Pileggi
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Giulia Siravegna
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Torino, Italy.,Department of Oncology, University of Torino, Candiolo, Torino, Italy
| | - Linda Pattini
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
| | - Paolo Martini
- Department of Biology, University of Padova, Padova, Italy
| | - Martina Delle Marchette
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | | | | | - Fabio Landoni
- Clinic of Obstetrics and Gynaecology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | - Maurizio D'Incalci
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Luca Beltrame
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| | - Sergio Marchini
- Department of Oncology, Istituto di Ricerche Farmacologiche "Mario Negri" IRCCS, Milano, Italy
| |
Collapse
|
18
|
MicroRNA-1205, encoded on chromosome 8q24, targets EGLN3 to induce cell growth and contributes to risk of castration-resistant prostate cancer. Oncogene 2019; 38:4820-4834. [PMID: 30808975 PMCID: PMC6565506 DOI: 10.1038/s41388-019-0760-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/06/2019] [Accepted: 02/12/2019] [Indexed: 12/27/2022]
Abstract
The chromosome 8q24.21 locus, which contains the proto-oncogene c-MYC, long non-coding RNA PVT1, and microRNAs (miRs), is the most commonly amplified region in human prostate cancer. A long-range interaction of genetic variants with c-MYC or long non-coding PVT1 at this locus contributes to the genetic risk of prostate cancer. At this locus is a cluster of genes for six miRs (miR-1204, −1205, −1206, −1207–3p, −1207–5p, and −1208), but their functional role remains elusive. Here, the copy numbers and expressions of miRs-1204~1208 were investigated using quantitative PCR for prostate cancer cell lines and primary tumors. The data revealed that copy numbers and expression of miR-1205 were increased in both castration-resistant prostate cancer cell lines and in primary tumors. In castration-resistant prostate cancer specimens, the copy number at the miR-1205 locus correlated with expression of miR-1205. Furthermore, functional analysis with an miR-1205 mimic, an miR-1205 inhibitor, and CRISPR/Cas9 knockout revealed that, in human prostate cancer cells, miR-1205 promoted cell proliferation and cell cycle progression and inhibited hydrogen peroxide-induced apoptosis. In these cells, miR-1205 downregulated expression of the Egl-9 family hypoxia inducible factor 3 (EGLN3) gene and targeted a site in its 3’-untranslated region to downregulate its transcriptional activity. Thus, by targeting EGLN3, miR-1205 has an oncogenic role and may contribute to the genetic risk of castration-resistant prostate cancer.
Collapse
|
19
|
Markowski MC, Hubbard GK, Hicks JL, Zheng Q, King A, Esopi D, Rege A, Yegnasubramanian S, Bieberich CJ, De Marzo AM. Characterization of novel cell lines derived from a MYC-driven murine model of lethal metastatic adenocarcinoma of the prostate. Prostate 2018; 78:992-1000. [PMID: 29851094 PMCID: PMC9844589 DOI: 10.1002/pros.23657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/07/2018] [Indexed: 01/19/2023]
Abstract
BACKGROUND Loss or mutation of PTEN alleles at 10q23 in combination with 8q24 amplification (encompassing MYC) are common findings in aggressive, human prostate cancer. Our group recently developed a transgenic murine model of prostate cancer involving prostate-specific Pten deletion and forced expression of MYC under the control of the Hoxb13 promoter. MYC overexpression cooperated with Pten loss to recapitulate lethal, human prostate cancer. METHOD We now report on the generation of two mouse prostate cancer cell lines, BMPC1 and BMPC2, derived from a lymph node, and liver metastasis, respectively. RESULTS Both cell lines demonstrate a phenotype consistent with adenocarcinoma and grew under standard tissue culture conditions. Androgen receptor (AR) protein expression is minimal (BMPC1) or absent (BMPC2) consistent with AR loss observed in the BMPC mouse model of invasive adenocarcinoma. Growth in media containing charcoal-stripped serum resulted in an increase in AR mRNA in BMPC1 cells with no effect on protein expression, unless androgens were added, in which case AR protein was stabilized, and showed nuclear localization. AR expression in BMPC2 cells was not effected by growth media or treatment with androgens. Treatment with an anti-androgen/castration or androgen supplemented media did not affect in vitro or in vivo growth of either cell line, irrespective of nuclear AR detection. DISCUSSION These cell lines are a novel model of androgen-insensitive prostatic adenocarcinoma driven by MYC over-expression and Pten loss.
Collapse
Affiliation(s)
- Mark C. Markowski
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Gretchen K. Hubbard
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica L. Hicks
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qizhi Zheng
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexia King
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Esopi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Apurv Rege
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | | | - Charles J. Bieberich
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland
| | - Angelo M. De Marzo
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Urology, Johns Hopkins University School, Baltimore, Maryland
| |
Collapse
|
20
|
Calcium and Nuclear Signaling in Prostate Cancer. Int J Mol Sci 2018; 19:ijms19041237. [PMID: 29671777 PMCID: PMC5979488 DOI: 10.3390/ijms19041237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 02/06/2023] Open
Abstract
Recently, there have been a number of developments in the fields of calcium and nuclear signaling that point to new avenues for a more effective diagnosis and treatment of prostate cancer. An example is the discovery of new classes of molecules involved in calcium-regulated nuclear import and nuclear calcium signaling, from the G protein-coupled receptor (GPCR) and myosin families. This review surveys the new state of the calcium and nuclear signaling fields with the aim of identifying the unifying themes that hold out promise in the context of the problems presented by prostate cancer. Genomic perturbations, kinase cascades, developmental pathways, and channels and transporters are covered, with an emphasis on nuclear transport and functions. Special attention is paid to the molecular mechanisms behind prostate cancer progression to the malignant forms and the unfavorable response to anti-androgen treatment. The survey leads to some new hypotheses that connect heretofore disparate results and may present a translational interest.
Collapse
|
21
|
In-Silico Integration Approach to Identify a Key miRNA Regulating a Gene Network in Aggressive Prostate Cancer. Int J Mol Sci 2018; 19:ijms19030910. [PMID: 29562723 PMCID: PMC5877771 DOI: 10.3390/ijms19030910] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/12/2022] Open
Abstract
Like other cancer diseases, prostate cancer (PC) is caused by the accumulation of genetic alterations in the cells that drives malignant growth. These alterations are revealed by gene profiling and copy number alteration (CNA) analysis. Moreover, recent evidence suggests that also microRNAs have an important role in PC development. Despite efforts to profile PC, the alterations (gene, CNA, and miRNA) and biological processes that correlate with disease development and progression remain partially elusive. Many gene signatures proposed as diagnostic or prognostic tools in cancer poorly overlap. The identification of co-expressed genes, that are functionally related, can identify a core network of genes associated with PC with a better reproducibility. By combining different approaches, including the integration of mRNA expression profiles, CNAs, and miRNA expression levels, we identified a gene signature of four genes overlapping with other published gene signatures and able to distinguish, in silico, high Gleason-scored PC from normal human tissue, which was further enriched to 19 genes by gene co-expression analysis. From the analysis of miRNAs possibly regulating this network, we found that hsa-miR-153 was highly connected to the genes in the network. Our results identify a four-gene signature with diagnostic and prognostic value in PC and suggest an interesting gene network that could play a key regulatory role in PC development and progression. Furthermore, hsa-miR-153, controlling this network, could be a potential biomarker for theranostics in high Gleason-scored PC.
Collapse
|
22
|
Deletion of 8p is an independent prognostic parameter in prostate cancer. Oncotarget 2018; 8:379-392. [PMID: 27880722 PMCID: PMC5352127 DOI: 10.18632/oncotarget.13425] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 11/12/2016] [Indexed: 11/25/2022] Open
Abstract
Deletion of chromosome 8p is the second most frequent genomic alteration in prostate cancer. To better understand its clinical significance, 8p deletion was analyzed by fluorescence in-situ hybridization on a prostate cancer tissue microarray. 8p deletion was found in 2,581 of 7,017 cancers (36.8%), and was linked to unfavorable tumor phenotype. 8p deletion increased from 29.5% in 4,456 pT2 and 47.8% in 1,598 pT3a to 53.0% in 931 pT3b-pT4 cancers (P < 0,0001). Deletions of 8p were detected in 25.5% of 1,653 Gleason ≤ 3 + 3, 36.6% of 3,880 Gleason 3 + 4, 50.2% of 1,090 Gleason 4 + 3, and 51.1% of 354 Gleason ≥ 4 + 4 tumors (P < 0,0001). 8p deletions were strongly linked to biochemical recurrence (P < 0.0001) independently from established pre- and postoperative prognostic factors (P = 0.0100). However, analysis of morphologically defined subgroups revealed, that 8p deletion lacked prognostic significance in subgroups with very good (Gleason ≤ 3 + 3, 3 + 4 with ≤ 5% Gleason 4) or very poor prognosis (pT3b, Gleason ≥ 8, pN1). 8p deletions were markedly more frequent in cancers with (53.5%) than without PTEN deletions (36.4%; P < 0,0001) and were slightly more frequent in ERG-positive (40.9%) than in ERG-negative cancers (34.7%, P < 0.0001) due to the association with the ERG-associated PTEN deletion. Cancers with 8p/PTEN co-deletions had a strikingly worse prognosis than cancers with deletion of PTEN or 8p alone (P ≤ 0.0003). In summary, 8p deletion is an independent prognostic parameter in prostate cancer that may act synergistically with PTEN deletions. Even statistically independent prognostic biomarkers like 8p may have limited clinical impact in morphologically well defined high or low risk cancers.
Collapse
|
23
|
Pettersson A, Gerke T, Penney KL, Lis RT, Stack EC, Pértega-Gomes N, Zadra G, Tyekucheva S, Giovannucci EL, Mucci LA, Loda M. MYC Overexpression at the Protein and mRNA Level and Cancer Outcomes among Men Treated with Radical Prostatectomy for Prostate Cancer. Cancer Epidemiol Biomarkers Prev 2018; 27:201-207. [PMID: 29141848 PMCID: PMC5831163 DOI: 10.1158/1055-9965.epi-17-0637] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/22/2017] [Accepted: 11/09/2017] [Indexed: 12/16/2022] Open
Abstract
Background: The proto-oncogene MYC is implicated in prostate cancer progression. Whether MYC tumor expression at the protein or mRNA level is associated with poorer prognosis has not been well studied.Methods: We conducted a cohort study including 634 men from the Physicians' Health Study and Health Professionals Follow-up Study treated with radical prostatectomy for prostate cancer in 1983-2004 and followed up for a median of 13.7 years. MYC protein expression was evaluated using IHC, and we used Cox regression to calculate HRs and 95% confidence intervals (CIs) of its association with lethal prostate cancer (distant metastases/prostate cancer-related death). We assessed the association between MYC mRNA expression and lethal prostate cancer in a case-control study, including 113 lethal cases and 291 indolent controls.Results: MYC nuclear protein expression was present in 97% of tumors. MYC protein expression was positively correlated with tumor proliferation rate (r = 0.37; P < 0.001) and negatively correlated with apoptotic count (r = -0.17; P < 0.001). There were no significant associations between MYC protein expression and stage, grade, or PSA level at diagnosis. The multivariable HR for lethal prostate cancer among men in the top versus bottom quartile of MYC protein expression was 1.09 (95% CI, 0.50-2.35). There was no significant association between MYC mRNA expression and lethal prostate cancer.Conclusions: Neither MYC protein overexpression nor MYC mRNA overexpression are strong prognostic markers in men treated with radical prostatectomy for prostate cancer.Impact: This is the largest study to examine the prognostic role of MYC protein and mRNA expression in prostate cancer. Cancer Epidemiol Biomarkers Prev; 27(2); 201-7. ©2017 AACR.
Collapse
Affiliation(s)
- Andreas Pettersson
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Clinical Epidemiology Unit, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Travis Gerke
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, Florida
| | - Kathryn L Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rosina T Lis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Edward C Stack
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Nelma Pértega-Gomes
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Giorgia Zadra
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Svitlana Tyekucheva
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Departments of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Edward L Giovannucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
24
|
Hovelson DH, Liu CJ, Wang Y, Kang Q, Henderson J, Gursky A, Brockman S, Ramnath N, Krauss JC, Talpaz M, Kandarpa M, Chugh R, Tuck M, Herman K, Grasso CS, Quist MJ, Feng FY, Haakenson C, Langmore J, Kamberov E, Tesmer T, Husain H, Lonigro RJ, Robinson D, Smith DC, Alva AS, Hussain MH, Chinnaiyan AM, Tewari M, Mills RE, Morgan TM, Tomlins SA. Rapid, ultra low coverage copy number profiling of cell-free DNA as a precision oncology screening strategy. Oncotarget 2017; 8:89848-89866. [PMID: 29163793 PMCID: PMC5685714 DOI: 10.18632/oncotarget.21163] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 09/08/2017] [Indexed: 12/11/2022] Open
Abstract
Current cell-free DNA (cfDNA) next generation sequencing (NGS) precision oncology workflows are typically limited to targeted and/or disease-specific applications. In advanced cancer, disease burden and cfDNA tumor content are often elevated, yielding unique precision oncology opportunities. We sought to demonstrate the utility of a pan-cancer, rapid, inexpensive, whole genome NGS of cfDNA approach (PRINCe) as a precision oncology screening strategy via ultra-low coverage (~0.01x) tumor content determination through genome-wide copy number alteration (CNA) profiling. We applied PRINCe to a retrospective cohort of 124 cfDNA samples from 100 patients with advanced cancers, including 76 men with metastatic castration-resistant prostate cancer (mCRPC), enabling cfDNA tumor content approximation and actionable focal CNA detection, while facilitating concordance analyses between cfDNA and tissue-based NGS profiles and assessment of cfDNA alteration associations with mCRPC treatment outcomes. Therapeutically relevant focal CNAs were present in 42 (34%) cfDNA samples, including 36 of 93 (39%) mCRPC patient samples harboring AR amplification. PRINCe identified pre-treatment cfDNA CNA profiles facilitating disease monitoring. Combining PRINCe with routine targeted NGS of cfDNA enabled mutation and CNA assessment with coverages tuned to cfDNA tumor content. In mCRPC, genome-wide PRINCe cfDNA and matched tissue CNA profiles showed high concordance (median Pearson correlation = 0.87), and PRINCe detectable AR amplifications predicted reduced time on therapy, independent of therapy type (Kaplan-Meier log-rank test, chi-square = 24.9, p < 0.0001). Our screening approach enables robust, broadly applicable cfDNA-based precision oncology for patients with advanced cancer through scalable identification of therapeutically relevant CNAs and pre-/post-treatment genomic profiles, enabling cfDNA- or tissue-based precision oncology workflow optimization.
Collapse
Affiliation(s)
- Daniel H. Hovelson
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chia-Jen Liu
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yugang Wang
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Qing Kang
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
| | - James Henderson
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Amy Gursky
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Scott Brockman
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Nithya Ramnath
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
| | - John C. Krauss
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
| | - Moshe Talpaz
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
| | - Malathi Kandarpa
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
| | - Rashmi Chugh
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
| | - Missy Tuck
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kirk Herman
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
| | - Catherine S. Grasso
- Division of Hematology-Oncology, University of California, Los Angeles and the Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
- The Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Michael J. Quist
- Division of Hematology-Oncology, University of California, Los Angeles and the Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
- The Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA
| | - Felix Y. Feng
- Departments of Radiation Oncology, Urology, and Medicine, University of California at San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Hatim Husain
- Medical Oncology, University of California, San Diego Moore's Cancer Center, San Diego, CA, USA
| | - Robert J. Lonigro
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Dan Robinson
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - David C. Smith
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ajjai S. Alva
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maha H. Hussain
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Present address: Division of Hematology/Oncology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Arul M. Chinnaiyan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Division of Hematology-Oncology, University of California, Los Angeles and the Jonsson Comprehensive Cancer Center, Los Angeles, CA, USA
| | - Muneesh Tewari
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine (Hematology/Oncology), University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Biointerfaces Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Todd M. Morgan
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Scott A. Tomlins
- Michigan Center for Translational Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
25
|
Saha A, Ahn S, Blando J, Su F, Kolonin MG, DiGiovanni J. Proinflammatory CXCL12-CXCR4/CXCR7 Signaling Axis Drives Myc-Induced Prostate Cancer in Obese Mice. Cancer Res 2017; 77:5158-5168. [PMID: 28687617 DOI: 10.1158/0008-5472.can-17-0284] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/07/2017] [Accepted: 07/03/2017] [Indexed: 01/11/2023]
Abstract
Obesity is a prognostic risk factor in the progression of prostate cancer; however, the molecular mechanisms involved are unclear. In this study, we provide preclinical proof of concept for the role of a proinflammatory CXCL12-CXCR4/CXCR7 signaling axis in an obesity-driven mouse model of myc-induced prostate cancer. Analysis of the stromal vascular fraction from periprostatic white adipose tissue from obese HiMyc mice at 6 months of age revealed a dramatic increase in mRNAs encoding various chemokines, cytokines, growth factors, and angiogenesis mediators, with CXCL12 among the most significantly upregulated genes. Immunofluorescence staining of ventral prostate tissue from obese HiMyc mice revealed high levels of CXCL12 in the stromal compartment as well as high staining for CXCR4 and CXCR7 in the epithelial compartment of tumors. Prostate cancer cell lines derived from HiMyc tumors (HMVP2 and derivative cell lines) displayed increased protein expression of both CXCR4 and CXCR7 compared with protein lysates from a nontumorigenic prostate epithelial cell line (NMVP cells). CXCL12 treatment stimulated migration and invasion of HMVP2 cells but not NMVP cells. These effects of CXCL12 on HMVP2 cells were inhibited by the CXCR4 antagonist AMD3100 as well as knockdown of either CXCR4 or CXCR7. CXCL12 treatment also produced rapid activation of STAT3, NFκB, and MAPK signaling in HMVP2 cells, which was again attenuated by either AMD3100 or knockdown of CXCR4 or CXCR7. Collectively, these data suggest that CXCL12 secreted by stromal cells activates invasiveness of prostate cancer cells and may play a role in driving tumor progression in obesity. Targeting the CXCL12-CXCR4/CXCR7 axis could lead to novel approaches for offsetting the effects of obesity on prostate cancer progression. Cancer Res; 77(18); 5158-68. ©2017 AACR.
Collapse
Affiliation(s)
- Achinto Saha
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Songyeon Ahn
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Jorge Blando
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas
| | - Fei Su
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - Mikhail G Kolonin
- The Brown Foundation Institute of Molecular Medicine for the Prevention of Disease, The University of Texas Health Sciences Center at Houston, Houston, Texas
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
26
|
Mangiola S, Hong MKH, Cmero M, Kurganovs N, Ryan A, Costello AJ, Corcoran NM, Macintyre G, Hovens CM. Comparing nodal versus bony metastatic spread using tumour phylogenies. Sci Rep 2016; 6:33918. [PMID: 27653089 PMCID: PMC5031992 DOI: 10.1038/srep33918] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023] Open
Abstract
The role of lymph node metastases in distant prostate cancer dissemination and lethality is ill defined. Patients with metastases restricted to lymph nodes have a better prognosis than those with distant metastatic spread, suggesting the possibility of distinct aetiologies. To explore this, we traced patterns of cancer dissemination using tumour phylogenies inferred from genome-wide copy-number profiling of 48 samples across 3 patients with lymph node metastatic disease and 3 patients with osseous metastatic disease. Our results show that metastatic cells in regional lymph nodes originate from evolutionary advanced extraprostatic tumour cells rather than less advanced central tumour cell populations. In contrast, osseous metastases do not exhibit such a constrained developmental lineage, arising from either intra or extraprostatic tumour cell populations, at early and late stages in the evolution of the primary. Collectively, this comparison suggests that lymph node metastases may not be an intermediate developmental step for distant osseous metastases, but rather represent a distinct metastatic lineage.
Collapse
Affiliation(s)
- Stefano Mangiola
- Departments of Urology and Surgery, Royal Melbourne Hospital and University of Melbourne, Parkville 3050 Victoria, Australia.,Centre for Neural Engineering, 203 Bouverie St, Carlton 3053, Victoria, Australia
| | - Matthew K H Hong
- Departments of Urology and Surgery, Royal Melbourne Hospital and University of Melbourne, Parkville 3050 Victoria, Australia
| | - Marek Cmero
- Departments of Urology and Surgery, Royal Melbourne Hospital and University of Melbourne, Parkville 3050 Victoria, Australia.,Centre for Neural Engineering, 203 Bouverie St, Carlton 3053, Victoria, Australia
| | - Natalie Kurganovs
- Departments of Urology and Surgery, Royal Melbourne Hospital and University of Melbourne, Parkville 3050 Victoria, Australia
| | - Andrew Ryan
- TissuPath Specialist Pathology, Mount Waverley 3149, Victoria, Australia
| | - Anthony J Costello
- Departments of Urology and Surgery, Royal Melbourne Hospital and University of Melbourne, Parkville 3050 Victoria, Australia.,The Epworth Prostate Centre, Epworth Hospital, Richmond 3121, Victoria, Australia
| | - Niall M Corcoran
- Departments of Urology and Surgery, Royal Melbourne Hospital and University of Melbourne, Parkville 3050 Victoria, Australia.,The Epworth Prostate Centre, Epworth Hospital, Richmond 3121, Victoria, Australia
| | - Geoff Macintyre
- Centre for Neural Engineering, 203 Bouverie St, Carlton 3053, Victoria, Australia.,Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge CB2 0RE, UK
| | - Christopher M Hovens
- Departments of Urology and Surgery, Royal Melbourne Hospital and University of Melbourne, Parkville 3050 Victoria, Australia.,The Epworth Prostate Centre, Epworth Hospital, Richmond 3121, Victoria, Australia
| |
Collapse
|
27
|
Abstract
Although most prostate cancer (PCa) cases are not life-threatening, approximately 293 000 men worldwide die annually due to PCa. These lethal cases are thought to be caused by coordinated genomic alterations that accumulate over time. Recent genome-wide analyses of DNA from subjects with PCa have revealed most, if not all, genetic changes in both germline and PCa tumor genomes. In this article, I first review the major, somatically acquired genomic characteristics of various subtypes of PCa. I then recap key findings on the relationships between genomic alterations and clinical parameters, such as biochemical recurrence or clinical relapse, metastasis and cancer-specific mortality. Finally, I outline the need for, and challenges with, validation of recent findings in prospective studies for clinical utility. It is clearer now than ever before that the landscape of somatically acquired aberrations in PCa is highlighted by DNA copy number alterations (CNAs) and TMPRSS2-ERG fusion derived from complex rearrangements, numerous single nucleotide variations or mutations, tremendous heterogeneity, and continuously punctuated evolution. Genome-wide CNAs, PTEN loss, MYC gain in primary tumors, and TP53 loss/mutation and AR amplification/mutation in advanced metastatic PCa have consistently been associated with worse cancer prognosis. With this recently gained knowledge, it is now an opportune time to develop DNA-based tests that provide more accurate patient stratification for prediction of clinical outcome, which will ultimately lead to more personalized cancer care than is possible at present.
Collapse
Affiliation(s)
- Wennuan Liu
- Program for Personalized Cancer Care, Research Institute, NorthShore University HealthSystem, Evanston, IL, USA
| |
Collapse
|
28
|
MicroRNA-449a enhances radiosensitivity by downregulation of c-Myc in prostate cancer cells. Sci Rep 2016; 6:27346. [PMID: 27250340 PMCID: PMC4890029 DOI: 10.1038/srep27346] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 05/18/2016] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRNAs) have been reported to be involved in DNA damage response induced by ionizing radiation (IR). c-Myc is reduced when cells treated with IR or other DNA damaging agents. It is unknown whether miRNAs participate in c-Myc downregulation in response to IR. In the present study, we found that miR-449a enhanced radiosensitivity in vitro and in vivo by targeting c-Myc in prostate cancer (LNCaP) cells. MiR-449a was upregulated and c-Myc was downregulated in response to IR in LNCaP cells. Overexpression of miR-449a or knockdown of c-Myc promoted the sensitivity of LNCaP cells to IR. By establishing c-Myc as a direct target of miR-449a, we revealed that miR-449a enhanced radiosensitivity by repressing c-Myc expression in LNCaP cells. Furthermore, we showed that miR-449a enhanced radiation-induced G2/M phase arrest by directly downregulating c-Myc, which controlled the Cdc2/CyclinB1 cell cycle signal by modulating Cdc25A. These results highlight an unrecognized mechanism of miR-449a-mediated c-Myc regulation in response to IR and may provide alternative therapeutic strategies for the treatment of prostate cancer.
Collapse
|
29
|
Lindquist KJ, Paris PL, Hoffmann TJ, Cardin NJ, Kazma R, Mefford JA, Simko JP, Ngo V, Chen Y, Levin AM, Chitale D, Helfand BT, Catalona WJ, Rybicki BA, Witte JS. Mutational Landscape of Aggressive Prostate Tumors in African American Men. Cancer Res 2016; 76:1860-8. [PMID: 26921337 DOI: 10.1158/0008-5472.can-15-1787] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 12/31/2015] [Indexed: 12/20/2022]
Abstract
Prostate cancer is the most frequently diagnosed and second most fatal nonskin cancer among men in the United States. African American men are two times more likely to develop and die of prostate cancer compared with men of other ancestries. Previous whole genome or exome tumor-sequencing studies of prostate cancer have primarily focused on men of European ancestry. In this study, we sequenced and characterized somatic mutations in aggressive (Gleason ≥7, stage ≥T2b) prostate tumors from 24 African American patients. We describe the locations and prevalence of small somatic mutations (up to 50 bases in length), copy number aberrations, and structural rearrangements in the tumor genomes compared with patient-matched normal genomes. We observed several mutation patterns consistent with previous studies, such as large copy number aberrations in chromosome 8 and complex rearrangement chains. However, TMPRSS2-ERG gene fusions and PTEN losses occurred in only 21% and 8% of the African American patients, respectively, far less common than in patients of European ancestry. We also identified mutations that appeared specific to or more common in African American patients, including a novel CDC27-OAT gene fusion occurring in 17% of patients. The genomic aberrations reported in this study warrant further investigation of their biologic significant role in the incidence and clinical outcomes of prostate cancer in African Americans. Cancer Res; 76(7); 1860-8. ©2016 AACR.
Collapse
Affiliation(s)
- Karla J Lindquist
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Pamela L Paris
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Thomas J Hoffmann
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California. Institute for Human Genetics, University of California San Francisco, San Francisco, California
| | - Niall J Cardin
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Rémi Kazma
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Joel A Mefford
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California
| | - Jeffrey P Simko
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Vy Ngo
- Department of Urology, University of California San Francisco, San Francisco, California
| | - Yalei Chen
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Albert M Levin
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Dhananjay Chitale
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - Brian T Helfand
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - William J Catalona
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Benjamin A Rybicki
- Department of Public Health Sciences, Henry Ford Health System, Detroit, Michigan
| | - John S Witte
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California. Department of Urology, University of California San Francisco, San Francisco, California. Institute for Human Genetics, University of California San Francisco, San Francisco, California. Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California.
| |
Collapse
|
30
|
Silva MP, Barros-Silva JD, Vieira J, Lisboa S, Torres L, Correia C, Vieira-Coimbra M, Martins AT, Jerónimo C, Henrique R, Paulo P, Teixeira MR. NCOA2 is a candidate target gene of 8q gain associated with clinically aggressive prostate cancer. Genes Chromosomes Cancer 2016; 55:365-74. [PMID: 26799514 DOI: 10.1002/gcc.22340] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 11/16/2015] [Accepted: 11/30/2015] [Indexed: 12/28/2022] Open
Abstract
Prostate carcinomas harboring 8q gains are associated with poor clinical outcome, but the target genes of this genomic alteration remain to be unveiled. In this study, we aimed to identify potential 8q target genes associated with clinically aggressive prostate cancer (PCa) using fluorescence in situ hybridization (FISH), genome-wide mRNA expression, and protein expression analyses. Using FISH, we first characterized the relative copy number of 8q (assessed with MYC flanking probes) of a series of 50 radical prostatectomy specimens, with available global gene expression data and typed for E26 transformation specific (ETS) rearrangements, and then compared the gene expression profile of PCa subsets with and without 8q24 gain using Significance Analysis of Microarrays. In the subset of tumors with ERG fusion genes (ERG+), five genes were identified as significantly overexpressed (false discovery rate [FDR], ≤ 5%) in tumors with relative 8q24 gain, namely VN1R1, ZNF417, CDON, IKZF2, and NCOA2. Of these, only NCOA2 is located in 8q (8q13.3), showing a statistically higher mRNA expression in the subgroup with relative 8q gain, both in the ERG+ subgroup and in the whole series (P = 0.000152 and P = 0.008, respectively). Combining all the cases with NCOA2 overexpression, either at the mRNA or at the protein level, we identified a group of tumors with NCOA2 copy-number increase, independently of ETS status and relative 8q24 gain. Furthermore, for the first time, we detected a structural rearrangement involving NCOA2 in PCa. These findings warrant further studies with larger series to evaluate if NCOA2 relative copy-number gain presents prognostic value independently of the well-established poor prognosis associated with MYC relative copy-number gain.
Collapse
Affiliation(s)
- Maria P Silva
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - João D Barros-Silva
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Joana Vieira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Susana Lisboa
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Lurdes Torres
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Cecília Correia
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Márcia Vieira-Coimbra
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Ana T Martins
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Paula Paulo
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal
| | - Manuel R Teixeira
- Department of Genetics, Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Cancer Genetics Group, IPO-Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO-Porto), Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
31
|
Schrecengost RS, Keller SN, Schiewer MJ, Knudsen KE, Smith CD. Downregulation of Critical Oncogenes by the Selective SK2 Inhibitor ABC294640 Hinders Prostate Cancer Progression. Mol Cancer Res 2015; 13:1591-601. [PMID: 26271487 DOI: 10.1158/1541-7786.mcr-14-0626] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 07/30/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED The bioactive sphingolipid sphingosine-1-phosphate (S1P) drives several hallmark processes of cancer, making the enzymes that synthesize S1P, that is, sphingosine kinase 1 and 2 (SK1 and SK2), important molecular targets for cancer drug development. ABC294640 is a first-in-class SK2 small-molecule inhibitor that effectively inhibits cancer cell growth in vitro and in vivo. Given that AR and Myc are two of the most widely implicated oncogenes in prostate cancer, and that sphingolipids affect signaling by both proteins, the therapeutic potential for using ABC294640 in the treatment of prostate cancer was evaluated. This study demonstrates that ABC294640 abrogates signaling pathways requisite for prostate cancer growth and proliferation. Key findings validate that ABC294640 treatment of early-stage and advanced prostate cancer models downregulate Myc and AR expression and activity. This corresponds with significant inhibition of growth, proliferation, and cell-cycle progression. Finally, oral administration of ABC294640 was found to dramatically impede xenograft tumor growth. Together, these pre-clinical findings support the hypotheses that SK2 activity is required for prostate cancer function and that ABC294640 represents a new pharmacological agent for treatment of early stage and aggressive prostate cancer. IMPLICATIONS Sphingosine kinase inhibition disrupts multiple oncogenic signaling pathways that are deregulated in prostate cancer.
Collapse
Affiliation(s)
| | - Staci N Keller
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania
| | - Matthew J Schiewer
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Karen E Knudsen
- Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Urology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania. Department of Radiation Oncology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Charles D Smith
- Apogee Biotechnology Corporation, Hummelstown, Pennsylvania.
| |
Collapse
|
32
|
Duskova K, Vesely S. Prostate Specific Antigen. Current clinical application and future prospects. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2015; 159:18-26. [DOI: 10.5507/bp.2014.046] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 08/29/2014] [Indexed: 11/23/2022] Open
|
33
|
Fawzy MS, Mohamed RH, Elfayoumi ARR. Prostate stem cell antigen (PSCA) mRNA expression in peripheral blood in patients with benign prostatic hyperplasia and/or prostate cancer. Med Oncol 2015; 32:74. [DOI: 10.1007/s12032-015-0529-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 02/13/2015] [Indexed: 12/25/2022]
|
34
|
In vivo quantitative phosphoproteomic profiling identifies novel regulators of castration-resistant prostate cancer growth. Oncogene 2014; 34:2764-76. [PMID: 25065596 DOI: 10.1038/onc.2014.206] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
Prostate cancer remains a leading cause of cancer-related mortality worldwide owing to our inability to treat effectively castration-resistant tumors. To understand the signaling mechanisms sustaining castration-resistant growth, we implemented a mass spectrometry-based quantitative proteomic approach and use it to compare protein phosphorylation in orthotopic xenograft tumors grown in either intact or castrated mice. This investigation identified changes in phosphorylation of signaling proteins such as MEK, LYN, PRAS40, YAP1 and PAK2, indicating the concomitant activation of several oncogenic pathways in castration-resistant tumors, a notion that was confirmed by tumor transcriptome analysis. Further analysis demonstrated that the activation of mTORC1, PAK2 and the increased levels of YAP1 in castration-resistant tumors can be explained by the loss of androgen inhibitory actions. The analysis of clinical samples demonstrated elevated levels of PAK2 and YAP1 in castration-resistant tumors, whereas knockdown experiments in androgen-independent cells demonstrated that both YAP1 and PAK2 regulate cell colony formation and cell invasion activity. PAK2 also influenced cell proliferation and mitotic timing. Interestingly, these phenotypic changes occur in the absence of obvious alterations in the activity of AKT, MAPK or mTORC1 pathways, suggesting that PAK2 and YAP1 may represent novel targets for the treatment of castration-resistant prostate cancer. Pharmacologic inhibitors of PAK2 (PF-3758309) and YAP1 (Verteporfin) were able to inhibit the growth of androgen-independent PC3 xenografts. This work demonstrates the power of applying high-resolution mass spectrometry in the proteomic profiling of tumors grown in vivo for the identification of novel and clinically relevant regulatory proteins.
Collapse
|
35
|
Wee ZN, Li Z, Lee PL, Lee ST, Lim YP, Yu Q. EZH2-mediated inactivation of IFN-γ-JAK-STAT1 signaling is an effective therapeutic target in MYC-driven prostate cancer. Cell Rep 2014; 8:204-16. [PMID: 24953652 DOI: 10.1016/j.celrep.2014.05.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/04/2014] [Accepted: 05/22/2014] [Indexed: 12/16/2022] Open
Abstract
Although small-molecule targeting of EZH2 appears to be effective in lymphomas carrying EZH2 activating mutations, finding similar approaches to target EZH2-overexpressing epithelial tumors remains challenging. In MYC-driven, but not PI3K-driven prostate cancer, we show that interferon-γ receptor 1 (IFNGR1) is directly repressed by EZH2 in a MYC-dependent manner and is downregulated in a subset of metastatic prostate cancers. EZH2 knockdown restored the expression of IFNGR1 and, when combined with IFN-γ treatment, led to strong activation of IFN-JAK-STAT1 tumor-suppressor signaling and robust apoptosis. Pharmacologic depletion of EZH2 by the histone-methylation inhibitor DZNep mimicked the effects of EZH2 knockdown on IFNGR1 induction and delivered a remarkable synergistic antitumor effect with IFN-γ. In contrast, although they efficiently depleted histone Lysine 27 trimethylation, EZH2 catalytic inhibitors failed to mimic EZH2 depletion. Thus, EZH2-inactivated IFN signaling may represent a therapeutic target, and patients with advanced prostate cancer driven by MYC may benefit from the combination of EZH2 and IFN-γ-targeted therapy.
Collapse
Affiliation(s)
- Zhen Ning Wee
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Zhimei Li
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore
| | - Puay Leng Lee
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore
| | - Shuet Theng Lee
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore
| | - Yoon Pin Lim
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Qiang Yu
- Cancer Therapeutics & Stratified Oncology, Genome Institute of Singapore, Agency for Science, Technology, and Research (A(∗)STAR), Biopolis, Singapore 138672, Singapore; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Cancer and Stem Cell Biology, DUKE-NUS Graduate Medical School of Singapore, Singapore 169857, Singapore.
| |
Collapse
|
36
|
PVT1 dependence in cancer with MYC copy-number increase. Nature 2014; 512:82-6. [PMID: 25043044 DOI: 10.1038/nature13311] [Citation(s) in RCA: 562] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2013] [Accepted: 04/08/2014] [Indexed: 12/22/2022]
Abstract
'Gain' of supernumerary copies of the 8q24.21 chromosomal region has been shown to be common in many human cancers and is associated with poor prognosis. The well-characterized myelocytomatosis (MYC) oncogene resides in the 8q24.21 region and is consistently co-gained with an adjacent 'gene desert' of approximately 2 megabases that contains the long non-coding RNA gene PVT1, the CCDC26 gene candidate and the GSDMC gene. Whether low copy-number gain of one or more of these genes drives neoplasia is not known. Here we use chromosome engineering in mice to show that a single extra copy of either the Myc gene or the region encompassing Pvt1, Ccdc26 and Gsdmc fails to advance cancer measurably, whereas a single supernumerary segment encompassing all four genes successfully promotes cancer. Gain of PVT1 long non-coding RNA expression was required for high MYC protein levels in 8q24-amplified human cancer cells. PVT1 RNA and MYC protein expression correlated in primary human tumours, and copy number of PVT1 was co-increased in more than 98% of MYC-copy-increase cancers. Ablation of PVT1 from MYC-driven colon cancer line HCT116 diminished its tumorigenic potency. As MYC protein has been refractory to small-molecule inhibition, the dependence of high MYC protein levels on PVT1 long non-coding RNA provides a much needed therapeutic target.
Collapse
|
37
|
Turgeman L, Fixler D. The influence of dead time related distortions on live cell fluorescence lifetime imaging (FLIM) experiments. JOURNAL OF BIOPHOTONICS 2014; 7:442-452. [PMID: 23674214 DOI: 10.1002/jbio.201300018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/10/2013] [Accepted: 04/23/2013] [Indexed: 06/02/2023]
Abstract
Recent developments in the field of fluorescence lifetime imaging microscopy (FLIM) techniques allow the use of high repetition rate light sources in live cell experiments. For light sources with a repetition rate of 20-100 MHz, the time-correlated single photon counting (TCSPC) FLIM systems suffer serious dead time related distortions, known as "inter-pulse pile-up". The objective of this paper is to present a new method to quantify the level of signal distortion in TCSPC FLIM experiments, in order to determine the most efficient laser repetition rate for different FLT ranges. Optimization of the F -value, which is the relation between the relative standard deviation (RSD) in the measured FLT to the RSD in the measured fluorescence intensity (FI), allows quantification of the level of FI signal distortion, as well as determination of the correct FLT of the measurement. It is shown that by using a very high repetition rate (80 MHz) for samples characterized by high real FLT's (4-5 ns), virtual short FLT components are added to the FLT histogram while a F -value that is higher than 1 is obtained. For samples characterized with short real FLT's, virtual long FLT components are added to the FLT histogram with the lower repetition rate (20-50 MHz), while by using a higher repetition rate (80 MHz) the "inter-pulse pile-up" is eliminated as the F -value is close to 1.
Collapse
Affiliation(s)
- Lior Turgeman
- Faculty of Engineering and Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat Gan, 52900, Israel
| | | |
Collapse
|
38
|
Coskunpinar E, Oltulu Y, Orhan K, Tiryakioglu N, Kanliada D, Akbas F. Identification of a differential expression signature associated with tumorigenesis and metastasis of laryngeal carcinoma. Gene 2014; 534:183-8. [DOI: 10.1016/j.gene.2013.10.063] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Revised: 10/22/2013] [Accepted: 10/29/2013] [Indexed: 01/05/2023]
|
39
|
Feik E, Schweifer N, Baierl A, Sommergruber W, Haslinger C, Hofer P, Maj-Hes A, Madersbacher S, Gsur A. Integrative analysis of prostate cancer aggressiveness. Prostate 2013; 73:1413-26. [PMID: 23813660 DOI: 10.1002/pros.22688] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 04/22/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Clinical management of prostate cancer (PC) is still highly demanding on the identification of robust biomarkers which will allow a more precise prediction of disease progression. METHODS We profiled both mRNA expression and DNA copy number alterations (CNAs) from laser capture microdissected cells from 31 PC patients and 17 patients with benign prostatic hyperplasia using Affymetrix GeneChip® technology. PC patients were subdivided into an aggressive (Gleason Score 8 or higher, and/or T3/T4 and/or N+/M+) and non-aggressive (all others) form of PC. Furthermore, we correlated the two datasets, as genes whose varied expression is due to a chromosomal alteration, may suggest a causal implication of these genes in the disease. All statistical analyses were performed in R version 2.15.0 and Bioconductor version 1.8.1., respectively. RESULTS We confirmed several common altered chromosomal regions as well as recently discovered loci such as deletions on chromosomes 3p14.1-3p13 and 13q13.3-13q14.11 supporting a possible role for RYBP, RGC32, and ELF1 in tumor suppression. Integrative analysis of expression and CN data combined with data retrieved from online databases propose PTP4A3 and ELF1 as possible factors for tumor progression. CONCLUSIONS Copy number data analysis revealed some significant differences between aggressive and non-aggressive tumors, while gene expression data alone could not define an aggressive group of patients. The assessment of CNA may have diagnostic and prognostic value in PC.
Collapse
Affiliation(s)
- Elisabeth Feik
- Department of Medicine I, Division: Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
Prostate cancer (PCa) is the most commonly diagnosed noncutaneous malignancy and second leading cause of cancer-related deaths in US males. Clinically, locally confined disease is treated surgically and/or with radiation therapy. Invasive disease, however, must be treated with pharmacological inhibitors of androgen receptor (AR) activity, since disease progression is fundamentally reliant on AR activation. However, despite initially effective treatment options, recurrent castration-resistant PCa (CRPC) often occurs due to aberrant reactivation of AR. Additionally, it is appreciated that many other signaling molecules, such as transcription factors, oncogenes, and tumor suppressors, are often perturbed and significantly contribute to PCa initiation and progression to incurable disease. Understanding the interplay between AR signaling and other signaling networks altered in PCa will advance therapeutic approaches. Overall, comprehension of the molecular composition promoting neoplastic growth and formation of CRPC is paramount for developing durable treatment options.
Collapse
Affiliation(s)
- Randy Schrecengost
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | |
Collapse
|
41
|
Abstract
Prostate cancer (PCa), a highly heterogeneous disease, is the one of the leading cause of morbidity and mortality in the developed countries. Historically used biomarkers such as prostatic acid phosphatase (PAP), serum prostate-specific antigen (PSA), and its precursor have not stood the challenge of sensitivity and specificity. At present, there is need to re-evaluate the approach to diagnose and monitor PCa. To this end, molecular markers that can accurately identify men with PCa at an early stage, and those who would benefit from early therapeutic intervention, are the need of the hour. There has been unprecedented progress in the development of new PCa biomarkers through advancements in proteomics, tissue DNA and protein/RNA microarray, identification of microRNA, isolation of circulating tumor cells, and tumor immunohistochemistry. This review will examine the current status of prostate cancer biomarkers with emphasis on emerging biomarkers by evaluating their diagnostic and prognostic potentials.
Collapse
Affiliation(s)
- Tapan Bhavsar
- Department of Pathology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
42
|
Mazaris E, Tsiotras A. Molecular pathways in prostate cancer. Nephrourol Mon 2013; 5:792-800. [PMID: 24282788 PMCID: PMC3830904 DOI: 10.5812/numonthly.9430] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/17/2012] [Indexed: 01/02/2023] Open
Abstract
Objectives Prostate cancer is a prevalent disease with a high impact on patients’ morbidity and mortality. Despite efforts to profile prostate cancer, the genetic alterations and biological processes that correlate with disease progression remain partially elusive. The purpose of this study is to review the recent evidence relating to the initiation and progression of prostate cancer in relation to the familial correlation of the disease, the genetic aberrations resulting in prostate cancer and the new molecular biology data regarding prostate cancer. Materials and Methods A Medline database search identified all the existing publications on the molecular events associated with the pathogenesis and evolution of prostate cancer. Particular emphasis was given on the specific genetic phenomena associated with prostate cancer. Results Like other cancers, prostate cancer is caused by an accumulation of genetic alterations in a cell that drives it to malignant growth. Specific genes and gene alterations have been suggested to play a role in its development and progression. Aneuploidy, loss of heterozygosity, gene mutations, hypermethylation and inactivation of specific tumour suppressor genes such as GSTpi, APC, MDR1, GPX3 and others have been detected in prostate cancers, but generally only at a low or moderate frequency. The androgen receptor (AR) signalling pathway may play a crucial role in the early development of prostate cancer, as well as in the development of androgen-independent disease that fails to respond to hormone deprivation therapies. Other alterations linked to the transition to hormone-independence include amplification of MYC and increased expression of ERBB2 and BCL2. Inflammatory changes may also contribute to the development of prostate cancer. Conclusion The identification of specific molecular markers for prostate cancer may lead to its earliest detection and better prediction of its behavior. The better understanding of the molecular events affecting prostate cancer progression may result in the introduction of new drugs to target these events thus providing a potential cure and a tool for prevention of this very common disease.
Collapse
Affiliation(s)
| | - Alexios Tsiotras
- Urology Department, Lister Hospital, Stevenage, United Kingdom
- Corresponding author: Alexios Tsiotras, Urology Department, Lister Hospital, Stevenage, United Kingdom. Tel: +44-7580348549, Fax: +44-1438515601, E-mail:
| |
Collapse
|
43
|
Fromont G, Godet J, Peyret A, Irani J, Celhay O, Rozet F, Cathelineau X, Cussenot O. 8q24 amplification is associated with Myc expression and prostate cancer progression and is an independent predictor of recurrence after radical prostatectomy. Hum Pathol 2013; 44:1617-23. [PMID: 23574779 DOI: 10.1016/j.humpath.2013.01.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Revised: 01/14/2013] [Accepted: 01/15/2013] [Indexed: 01/03/2023]
Abstract
Genomic alterations affecting the 8q24 region are frequent in prostate cancer. Together with the oncogene MYC, other genes located in the surrounding of the amplified region could also be candidate targets. Tissue microarrays were constructed with prostate cancer tissues from (1) a case-control population of patients treated by radical prostatectomy (n = 242; 121 cases with biochemical relapse matched with 121 cancers with identical clinicopathologic features but without relapse), (2) castration-resistant disease (n = 55), and (3) metastatic cancers (n = 28). Fluorescence in situ hybridization and immunohistochemistry were used on tissue microarrays and slides to analyze, respectively, the amplification status of 8q24 and protein expression of genes located at 8q24. Amplification at the MYC locus was observed in 29% of cases and was closely associated with both disease progression (from 15% in pT2 tumors to 53% in metastasis; P = .001), and Gleason score (from <3% in Gleason 6 tumors to 66% in Gleason 8 and more tumors; P < .0001). The expression of genes located at 8q24 did not correlated with the amplification status, except for the Myc protein (P = .002). MYC amplification status but not Myc protein expression was significantly predictive of biochemical recurrence after prostatectomy, together with the proliferation marker Ki-67 and independently from known prognostic factors, including TNM stage and Gleason score. The MYC amplification status could constitute a useful prognostic tool for patients treated by radical prostatectomy, particularly for those with d'Amico intermediate risk, whose clinical behavior is currently difficult to predict.
Collapse
Affiliation(s)
- Gaelle Fromont
- Department of Pathology, CHU/Universite de Poitiers, 86000 Poitiers, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Genetically engineered mouse models of prostate cancer. Mol Oncol 2013; 7:190-205. [PMID: 23481269 DOI: 10.1016/j.molonc.2013.02.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 02/06/2013] [Indexed: 11/24/2022] Open
Abstract
Despite major improvement in treatment of early stage localised prostate cancer, the distinction between indolent tumors and those that will become aggressive, as well as the lack of efficient therapies of advanced prostate cancer, remain major health problems. Genetically engineered mice (GEM) have been extensively used to investigate the molecular and cellular mechanisms underlying prostate tumor initiation and progression, and to evaluate new therapies. Moreover, the recent development of conditional somatic mutagenesis in the mouse prostate offers the possibility to generate new models that more faithfully reproduce the human disease, and thus should contribute to improve diagnosis and treatments. The strengths and weaknesses of various models will be discussed, as well as future opportunities.
Collapse
|
45
|
Kachroo N, Gnanapragasam VJ. The role of treatment modality on the utility of predictive tissue biomarkers in clinical prostate cancer: a systematic review. J Cancer Res Clin Oncol 2013; 139:1-24. [PMID: 23187933 DOI: 10.1007/s00432-012-1351-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 11/02/2012] [Indexed: 01/25/2023]
Abstract
BACKGROUND Tissue biomarkers could pivotally improve clinical outcome prediction following prostate cancer therapy. Clinically, prostate cancer is managed by diverse treatment modalities whose individual influence on a biomarker's predictive ability is not well understood and poorly investigated in the literature. OBJECTIVE We conducted a systematic review to assess the predictive value of biomarkers in different treatment contexts in prostate cancer. STUDY METHODOLOGY A literature search was performed using the MeSH headings "prostate neoplasms" and "biological markers". Rigorous selection criteria identified studies correlating expression with clinical outcomes from primary androgen deprivation therapy (ADT), radical prostatectomy and radiotherapy (± neoadjuvant ADT). STUDY RESULTS Of 10,668 studies identified, 481 papers matched initial inclusion criteria. Following rescreening, 384 studies identified 236 individual tissue biomarkers, of which 29 were predictive on multivariate analysis in at least 2 independent cohorts. The majority were only tested in surgical cohorts. Only 8 predictive biomarkers were tested across all 3 treatments with Ki67 identified as universal predictive marker. p16 showed potential for treatment stratification between surgery and radiotherapy but needs further validation in independent studies. CONCLUSIONS Despite years of research, very few tissue biomarkers retain predictive value in independent validation across therapy context. Currently, none have conclusive ability to help treatment selection. Future biomarker research should consider the therapy context and use uniform methodology and evaluation criteria.
Collapse
Affiliation(s)
- Naveen Kachroo
- Translational Prostate Cancer Group, Hutchison MRC Research Centre, University of Cambridge, Hills Road, Cambridge CB2 0XZ, UK
| | | |
Collapse
|
46
|
Ju X, Ertel A, Casimiro MC, Yu Z, Meng H, McCue PA, Walters R, Fortina P, Lisanti MP, Pestell RG. Novel oncogene-induced metastatic prostate cancer cell lines define human prostate cancer progression signatures. Cancer Res 2012. [PMID: 23204233 DOI: 10.1158/0008-5472.can-12-2133] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Herein, murine prostate cancer cell lines, generated via selective transduction with a single oncogene (c-Myc, Ha-Ras, and v-Src), showed oncogene-specific prostate cancer molecular signatures that were recapitulated in human prostate cancer and developed lung metastasis in immune-competent mice. Interrogation of two independent retrospective cohorts of patient samples using the oncogene signature showed an ability to distinguish tumor from normal prostate with a predictive value for prostate cancer of 98% to 99%. In a blinded study, the signature algorithm showed independent substratification of reduced recurrence-free survival by Kaplan-Meier analysis. The generation of new oncogene-specific prostate cancer cell lines that recapitulate human prostate cancer gene expression, which metastasize in immune-competent mice, are a valuable new resource for testing targeted therapy, whereas the molecular signatures identified herein provides further value over current gene signature markers of prediction and outcome.
Collapse
Affiliation(s)
- Xiaoming Ju
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
CONCLUDING REMARKS. Cancer Biomark 2012. [DOI: 10.1201/b14318-11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Han T, Shang D, Xu X, Tian Y. Gene expression profiling of the synergy of 5-aza-2'-deoxycytidine and paclitaxel against renal cell carcinoma. World J Surg Oncol 2012; 10:183. [PMID: 22950635 PMCID: PMC3481426 DOI: 10.1186/1477-7819-10-183] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/08/2012] [Indexed: 12/11/2022] Open
Abstract
Background Renal cell carcinoma (RCC) is one of the most common kidney cancers and is highly resistant to chemotherapy. We previously demonstrated that 5-aza-2′-deoxycytidine (DAC) could significantly increase the susceptibility of renal cell carcinoma (RCC) cells to paclitaxel (PTX) treatment in vitro, and showed the synergy of DAC and PTX against RCC. The purpose of this study is to investigated the gene transcriptional alteration and investigate possible molecular mechanism and pathways implicated in the synergy of DAC and PTX against RCC. Methods cDNA microarray was performed and coupled with real-time PCR to identify critical genes in the synergistic mechanism of both agents against RCC cells. Various patterns of gene expression were observed by cluster analysis. IPA software was used to analyze possible biological pathways and to explore the inter-relationships between interesting network genes. Results We found that lymphoid enhancer-binding factor 1 (LEF1), transforming growth factor β-induced (TGFBI), C-X-C motif ligand 5 (CXCL5) and myelocytomatosis viral related oncogene (c-myc) may play a pivotal role in the synergy of DAC and PTX. The PI3K/Akt pathway and other pathways associated with cyclins, DNA replication and cell cycle/mitotic regulation were also associated with the synergy of DAC and PTX against RCC. Conclusion The activation of PI3K/Akt-LEF1/β-catenin pathway could be suppressed synergistically by two agents and that PI3K/Akt-LEF1/β-catenin pathway is participated in the synergy of two agents.
Collapse
Affiliation(s)
- Tiandong Han
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, 95 Yong-An Road, Beijing 100050, China
| | | | | | | |
Collapse
|
49
|
Wang J, Kobayashi T, Floc'h N, Kinkade CW, Aytes A, Dankort D, Lefebvre C, Mitrofanova A, Cardiff RD, McMahon M, Califano A, Shen MM, Abate-Shen C. B-Raf activation cooperates with PTEN loss to drive c-Myc expression in advanced prostate cancer. Cancer Res 2012; 72:4765-76. [PMID: 22836754 DOI: 10.1158/0008-5472.can-12-0820] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Both the PI3K → Akt → mTOR and mitogen-activated protein kinase (MAPK) signaling pathways are often deregulated in prostate tumors with poor prognosis. Here we describe a new genetically engineered mouse model of prostate cancer in which PI3K-Akt-mTOR signaling is activated by inducible disruption of PTEN, and extracellular signal-regulated kinase 1/2 (ERK1/2) MAPK signaling is activated by inducible expression of a BRAF(V600E) oncogene. These tissue-specific compound mutant mice develop lethal prostate tumors that are inherently resistant to castration. These tumors bypass cellular senescence and disseminate to lymph nodes, bone marrow, and lungs where they form overt metastases in approximately 30% of the cases. Activation of PI3K → Akt → mTOR and MAPK signaling pathways in these prostate tumors cooperate to upregulate c-Myc. Accordingly, therapeutic treatments with rapamycin and PD0325901 to target these pathways, respectively, attenuate c-Myc levels and reduce tumor and metastatic burden. Together, our findings suggest a generalized therapeutic approach to target c-Myc activation in prostate cancer by combinatorial targeting of the PI3K → Akt → mTOR and ERK1/2 MAPK signaling pathways.
Collapse
Affiliation(s)
- Jingqiang Wang
- Department of Urology and Pathology and Cell Biology, Columbia University Medical Center, New York, New York 10031, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Abstract
Clinical outcomes in prostate cancer are heterogeneous, and given the high prevalence of the disease, there is a pressing need to identify clinically useful markers of prognosis. Many clinical, pathological, molecular, and genetic factors have been investigated in this capacity, although relatively few are routinely used. With a growing understanding of the molecular pathogenesis of prostate cancer, there is the potential that the next generation of makers will prove sufficiently robust to guide the optimal management of men with prostate cancer. Here, we review the various clinical and molecular prognostic determinants in prostate cancer.
Collapse
|