1
|
Ferree PL, Polat M, Nøjgaard JK, Jensen KA. Airborne particulate matter and diesel engine exhaust on infrastructure construction sites in the Copenhagen metropolitan area. Ann Work Expo Health 2024; 68:791-803. [PMID: 39102900 PMCID: PMC11427543 DOI: 10.1093/annweh/wxae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/08/2024] [Indexed: 08/07/2024] Open
Abstract
Diesel engine exhaust (DEE) is carcinogenic and potentially hazardous for those working in close proximity to diesel-powered machines. This study characterizes workplace exposure to DEE and its associated particulate matter (PM) during outdoor construction activities. We sampled at 4 construction sites in the Copenhagen metropolitan area. We used portable constant-flow pumps and quartz-fiber filters to quantify personal exposure to elemental carbon (EC), and used real-time instruments to collect activity-based information about particle number and size distribution, as well as black carbon (BC) concentration. Full-shift measurements of EC concentration ranged from < 0.3 to 6.4 µg/m3. Geometric mean (GM) EC exposure was highest for ground workers (3.4 µg/m3 EC; geometric standard deviation, GSD = 1.3), followed by drilling rig operators (2.6 µg/m3 EC; GSD = 1.4). Exposure for non-drilling-rig machine operators (1.2 µg/m3 EC; GSD = 2.9) did not differ significantly from background (0.9 µg/m3 EC; GSD = 1.7). The maximum 15-min moving average concentration of BC was 17 µg/m3, and the highest recorded peak concentration was 44 µg/m3. In numbers, the particle size distributions were dominated by ultrafine particles ascribed to DEE and occasional welding activities at the sites. The average total particle number concentrations (PNCs) measured in near-field and far-field positions across all worksites were 10,600 (GSD = 3.0) and 6,000 (GSD = 2.8)/cm3, respectively. Sites with active drilling rigs saw significantly higher average total PNCs at their near-field stations (13,600, 32,000, and 9,700/cm3; GSD = 2.4, 3.4, and 2.4) than sites without (4,700/cm3; GSD = 1.6). Overall, the DEE exposures at these outdoor construction sites were below current occupational exposure limits for EC (10 µg/m3 in Denmark; 50 µg/m3 in the European Union), but extended durations of exposure to the observed DEE levels may still be a health risk.
Collapse
Affiliation(s)
- Patrick L Ferree
- The National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark
| | - Merve Polat
- The National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark
| | - Jakob K Nøjgaard
- The National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark
| | - Keld A Jensen
- The National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen DK-2100, Denmark
| |
Collapse
|
2
|
Katende D, Rydz E, Quinn EK, Heer E, Shrestha R, Fazel SS, Peters CE. Overrepresentation of New Workers in Jobs with Multiple Carcinogen Exposures in Canada. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1013. [PMID: 39200624 PMCID: PMC11354117 DOI: 10.3390/ijerph21081013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/02/2024]
Abstract
Background. In Canada, understanding the demographic and job-related factors influencing the prevalence of new workers and their exposure to potential carcinogens is crucial for improving workplace safety and guiding policy interventions. Methods. Logistic regression was performed on the 2017 Labour Force Survey (LFS), to estimate the likelihood of being a new worker based on age, industry, occupation, season, and immigration status. Participants were categorized by sector and occupation using the North American Industry Classification System (NAICS) 2017 Version 1.0 and National Occupational Classification (NOC) system 2016 Version 1.0. Finally, an exposures-per-worker metric was used to highlight the hazardous exposures new workers encounter in their jobs and industries. Results. Individuals younger than 25 years had 3.24 times the odds of being new workers compared to those in the 25-39 age group (adjusted odds ratios (OR) = 3.24, 95% confidence interval (95% CI) = 3.18, 3.31). Recent immigrants (less than 10 years in the country) were more likely to be new workers than those with Canadian citizenship (OR 1.36, 95% CI: 1.32, 1.41). The total workforce exposures-per-worker metric using CAREX Canada data was 0.56. By occupation, new workers were the most overrepresented in jobs in natural resources and agriculture (20.5% new workers), where they also experienced a high exposures-per-worker metric (1.57). Conclusions. Younger workers (under 25 years) and recent immigrants who had arrived 10 or fewer years prior were more likely to be new workers, and were overrepresented in jobs with more frequent hazardous exposures (Construction, Agriculture, and Trades).
Collapse
Affiliation(s)
- Disann Katende
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (D.K.); (E.K.Q.)
| | - Elizabeth Rydz
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (D.K.); (E.K.Q.)
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Emma K. Quinn
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (D.K.); (E.K.Q.)
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Emily Heer
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (D.K.); (E.K.Q.)
| | - Raissa Shrestha
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (D.K.); (E.K.Q.)
| | - Sajjad S. Fazel
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Cheryl E. Peters
- CAREX Canada, School of Population and Public Health, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; (D.K.); (E.K.Q.)
- Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
- BC Centre for Disease Control, Vancouver, BC V5Z 4R4, Canada
- BC Cancer, Vancouver, BC V5Z 4E6, Canada
| |
Collapse
|
3
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. The respiratory health effects of acute in vivo diesel and biodiesel exhaust in a mouse model. CHEMOSPHERE 2024; 362:142621. [PMID: 38880256 DOI: 10.1016/j.chemosphere.2024.142621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/28/2024] [Accepted: 06/14/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Biodiesel, a renewable diesel fuel that can be created from almost any natural fat or oil, is promoted as a greener and healthier alternative to commercial mineral diesel without the supporting experimental data to back these claims. The aim of this research was to assess the health effects of acute exposure to two types of biodiesel exhaust, or mineral diesel exhaust or air as a control in mice. Male BALB/c mice were exposed for 2-hrs to diluted exhaust obtained from a diesel engine running on mineral diesel, Tallow biodiesel or Canola biodiesel. A room air exposure group was used as a control. Twenty-four hours after exposure, a variety of respiratory related end point measurements were assessed, including lung function, responsiveness to methacholine and airway and systemic immune responses. RESULTS Tallow biodiesel exhaust exposure resulted in the greatest number of significant effects compared to Air controls, including increased airway hyperresponsiveness (178.1 ± 31.3% increase from saline for Tallow biodiesel exhaust exposed mice compared to 155.8 ± 19.1 for Air control), increased airway inflammation (63463 ± 13497 cells/mL in the bronchoalveolar lavage of Tallow biodiesel exhaust exposed mice compared to 40561 ± 11800 for Air exposed controls) and indications of immune dysregulation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer significant effects compared to Air controls with a slight increase in airway resistance at functional residual capacity and indications of immune dysregulation. Exposure to mineral diesel exhaust resulted in significant effects between that of the two biodiesels with increased airway hyperresponsiveness and indications of immune dysregulation. CONCLUSION These data show that a single, brief exposure to biodiesel exhaust can result in negative health impacts in a mouse model, and that the biological effects of exposure change depending on the feedstock used to make the biodiesel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia.
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA, 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia; Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA, 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, P.O. Box U1987, Perth, WA, 6845, Australia; Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA, 6009, Australia
| |
Collapse
|
4
|
Martínez-Salinas RI, Sánchez-Moreno I, Morales López JJ, Salvatierra Izaba B, Barba Macías E, Armas-Tizapantzi A, Torres-Dosal A. Genotoxic Effects on Gas Station Attendants in South-southeastern México due to Prolonged and Chronic Exposure to Gasoline. Saf Health Work 2024; 15:236-241. [PMID: 39035798 PMCID: PMC11255961 DOI: 10.1016/j.shaw.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 07/23/2024] Open
Abstract
Background Gasoline, a complex mixture of volatile organic compounds is classified as possibly carcinogenic to humans. Gasoline station attendants, consistently exposed to its hazardous components, may face genotoxic effects. This study aimed to assess the influence of varying work shift durations on DNA damage in gasoline station attendants. Methods Ninety individuals from three locations in southern México were studied. Peripheral blood mononuclear cells (PBMCs) were isolated, and DNA damage was assessed using the comet assay. Demographic, occupational, and lifestyle data were collected. Statistical analyses included t-tests, ANOVA, and Pearson correlation. Results Significant differences in DNA damage parameters were observed between exposed and unexposed groups. The impact of tobacco, alcohol, and exercise on DNA damage was negligible. Extended work shifts (12 and 24 hours) showed heightened DNA damage compared to 8-hour shifts and the unexposed group. A novel finding revealed a modest but significant correlation between DNA damage and job seniority. Conclusion The study highlights the intricate relationship between occupational exposure to gasoline components, DNA damage, and work shift lengths. Extended shifts correlate with heightened genotoxic effects, emphasizing the importance of personalized safety measures. The significant correlation between DNA damage and job seniority introduces occupational longevity as a determinant in the genetic health of gasoline station attendants. This discovery has implications for implementing targeted interventions and preventive strategies to safeguard workers' genetic integrity throughout their years of service. The study calls for further exploration of unconsidered factors in understanding the multifactorial nature of DNA damage in this occupational setting.
Collapse
Affiliation(s)
| | - Irene Sánchez-Moreno
- Departamento de Salud, El Colegio de la Frontera Sur (ECOSUR), Unidad San Cristóbal, México
| | - Juan J. Morales López
- Laboratorios Institucionales de El Colegio de la Frontera Sur (ECOSUR), Unidad San Cristóbal, México
| | | | - Everardo Barba Macías
- Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur (ECOSUR), Unidad Villahermosa, México
| | - Anahí Armas-Tizapantzi
- Departamento de Salud, El Colegio de la Frontera Sur (ECOSUR), Unidad San Cristóbal, México
| | - Arturo Torres-Dosal
- Departamento de Salud, El Colegio de la Frontera Sur (ECOSUR), Unidad San Cristóbal, México
| |
Collapse
|
5
|
Park RM. Risk assessment for conventional diesel exhaust (before 1990) and lung cancer in a cohort of miners. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2024; 44:1413-1429. [PMID: 37876044 DOI: 10.1111/risa.14231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Diesel exhaust in the latter half of the 20th century has been found to be a lung carcinogen. Conventional diesel emissions continue in the transportation, mining, construction, and farming industries. From the Diesel Exhaust in Miners Study, a public-use dataset was used to calculate the excess lifetime risk of lung cancer associated with diesel exposure (1947-1997). Excess rates of lung cancer mortality associated with respirable elemental carbon (REC) and possible other mining exposures (e.g., oil mists, explosives emissions) were investigated using Poisson regression methods. Lung cancer mortality declined with increasing employment duration while increasing with cumulative REC and non-diesel exposures, suggesting a strong worker survivor effect. Attenuation of the REC effect was observed with increasing cumulative exposure. After adjustment for employment duration, the excess rate ratio for lung cancer mortality was 0.67 (95% CI = 0.35-0.99) for a 10-year lagged exposure to 200 μg/m3 REC, a typical below-ground exposure in the study mines. At exposures of 200, 10, and 1 μg/m3 REC, the estimated excess lifetime risks, respectively, were 119, 43, and 8.7 per thousand. Analysis of an inception cohort hired after dieselization commenced produced smaller and less certain estimates of lifetime risk. From exposures to conventional diesel engine exhaust common in occupational groups in the past, the excess lifetime risk of lung cancer was more than 5%. Ambient REC exposures in the general population were estimated to confer lifetime risks of 0.14 to 14 per thousand, depending on assumptions made.
Collapse
|
6
|
Font A, Hedges M, Han Y, Lim S, Bos B, Tremper AH, Green DC. Air quality on UK diesel and hybrid trains. ENVIRONMENT INTERNATIONAL 2024; 187:108682. [PMID: 38669721 DOI: 10.1016/j.envint.2024.108682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024]
Abstract
Concentrations of particulate matter (PM10, PM2.5), ultrafine (UFP), particle number (PNC), black carbon (BC), nitrogen dioxide (NO2) and nitrogen oxides (NOX) were measured in train carriages on diesel and bi-mode trains on inter-city and long-distance journeys in the United Kingdom (UK) using a high-quality mobile measurement system. Air quality on 15 different routes was measured using highly-time resolved data on a total of 119 journeys during three campaigns in winter 2020 and summer 2021; this included 13 different train classes. Each journey was sampled 4-10 times with approximatively 11,000 min of in-train concentrations in total. Mean-journey concentrations were 7.552 µg m-3 (PM10); 3.936 µg m-3 (PM2.5); 333-11,300 # cm-3 (PNC); 225-9,131 # cm-3 (UFP); 0.6-11 µg m-3 (BC); 28-201 µg m-3 (NO2); and 130-3,456 µg m-3 (NOX). The impact of different factors on in-train concentrations was evaluated. The presence of tunnels was the factor with the largest impact on the in-train particle concentrations with enhancements by a factor of 40 greater than baseline for BC, and a factor 6 to 7 for PM and PNC. The engine fuel mode was the factor with the largest impact on NO2 with enhancements of up to 14-times larger when the train run on diesel compared to the times running on electric on hybrid trains. Train classes with an age < 10 years observed the lowest in-train PM, BC and NOX concentrations reflecting improvements in aspects of rail technology in recent years. Air quality on UK diesel trains is higher than ambient concentrations but has lower PM2.5 and PNC than most other transport modes, including subway systems, diesel and petrol cars. This paper adds significantly to the evidence on exposure to poor air quality in transport micro-environments and provides the industry and regulatory bodies with reference-grade measurements on which to establish in-train air quality guidelines.
Collapse
Affiliation(s)
- Anna Font
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom; IMT Nord Europe, Europe, Institut Mines-Télécom, Univ. Lille, Centre for Education, Research and Innovation in Energy Environment (CERI EE), 59000 Lille, France.
| | - Michael Hedges
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom
| | - Yiqun Han
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom
| | - Shanon Lim
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom
| | - Brendan Bos
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom
| | - Anja H Tremper
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom
| | - David C Green
- MRC Centre for Environment and Health, Environmental Research Group, Imperial College, London, W12 0BZ, United Kingdom; NIHR HPRU in Environmental Exposures and Health, Imperial College, London W12 0BZ, United Kingdom
| |
Collapse
|
7
|
Markowitz S, Ringen K, Dement JM, Straif K, Christine Oliver L, Algranti E, Nowak D, Ehrlich R, McDiarmid MA, Miller A. Occupational lung cancer screening: A Collegium Ramazzini statement. Am J Ind Med 2024; 67:289-303. [PMID: 38440821 DOI: 10.1002/ajim.23572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/01/2024] [Indexed: 03/06/2024]
Affiliation(s)
- Steven Markowitz
- Barry Commoner Center for Health & the Environment, Queens College, City University of New York, New York, New York State, USA
| | - Knut Ringen
- CPWR-The Center for Construction Research and Training, Silver Spring, Maryland, USA
| | - John M Dement
- Duke University School of Medicine, Division of Occupational & Environmental Medicine, Durham, North Carolina, USA
| | - Kurt Straif
- ISGlobal, Barcelona, Spain
- Boston College, Chestnut Hill, Massachusetts, USA
| | - L Christine Oliver
- Dalla Lana School of Public Health, Division of Occupational and Environmental Health, University of Toronto, Toronto, Ontario, Canada
| | | | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, LMU Klinikum, LMU Munich, CPC Munich, Comprehensive Pneumology Center Munich, #DZL, Deutsches Zentrum für Lungenforschung, Munich, Germany
| | - Rodney Ehrlich
- Division of occupational Medicine, School of Public Health, University of Cape Town, Cape Town, South Africa
| | - Melissa A McDiarmid
- Division of Occupational & Environmental Medicine, University of Maryland School of Medicine, USA
| | - Albert Miller
- Barry Commoner Center for Health & the Environment, Queens College, City University of New York, New York, New York State, USA
- Department of Medicine, Mount Sinai School of Medicine, New York, New York State, USA
| |
Collapse
|
8
|
Neophytou AM, Ferguson JM, Costello S, Picciotto S, Balmes JR, Koutros S, Silverman DT, Eisen EA. Diesel exhaust and respiratory dust exposure in miners and chronic obstructive pulmonary disease (COPD) mortality in DEMS II. ENVIRONMENT INTERNATIONAL 2024; 185:108528. [PMID: 38422874 PMCID: PMC10961191 DOI: 10.1016/j.envint.2024.108528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Diesel exhaust and respirable dust exposures in the mining industry have not been studied in depth with respect to non-malignant respiratory disease including chronic obstructive pulmonary disease (COPD), with most available evidence coming from other settings. OBJECTIVES To assess the relationship between occupational diesel exhaust and respirable dust exposures and COPD mortality, while addressing issues of survivor bias in exposed miners. METHODS The study population consisted of 11,817 male workers from the Diesel Exhaust in Miners Study II, followed from 1947 to 2015, with 279 observed COPD deaths. We fit Cox proportional hazards models for the relationship between respirable elemental carbon (REC) and respirable dust (RD) exposure and COPD mortality. To address healthy worker survivor bias, we leveraged the parametric g-formula to assess effects of hypothetical interventions on both exposures. RESULTS Cox models yielded elevated estimates for the associations between average intensity of REC and RD and COPD mortality, with hazard ratios (HR) corresponding to an interquartile range width increase in exposure of 1.46 (95 % confidence interval (CI): 1.12, 1.91) and 1.20 (95 % CI: 0.96, 1.49), respectively for each exposure. HRs for cumulative exposures were negative for both REC and RD. Based on results from the parametric g-formula, the risk ratio (RR) for COPD mortality comparing risk under an intervention eliminating REC to the observed risk was 0.85 (95 % CI: 0.55, 1.06), equivalent to an attributable risk of 15 %. The corresponding RR comparing risk under an intervention eliminating RD to the observed risk was 0.93 (95 % CI: 0.56, 1.31). CONCLUSIONS Our findings, based on data from a cohort of nonmetal miners, are suggestive of an increased risk of COPD mortality associated with REC and RD, as well as evidence of survivor bias in this population leading to negative associations between cumulative exposures and COPD mortality in traditional regression analysis.
Collapse
Affiliation(s)
- Andreas M Neophytou
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA.
| | - Jacqueline M Ferguson
- Division of Primary Care and Population Health, Stanford University School of Medicine, Stanford, CA, USA; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Sadie Costello
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - Sally Picciotto
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| | - John R Balmes
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD, USA
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, MD, USA
| | - Ellen A Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
9
|
Issanov A, Aravindakshan A, Puil L, Tammemägi MC, Lam S, Dummer TJB. Risk prediction models for lung cancer in people who have never smoked: a protocol of a systematic review. Diagn Progn Res 2024; 8:3. [PMID: 38347647 PMCID: PMC10863273 DOI: 10.1186/s41512-024-00166-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Lung cancer is one of the most commonly diagnosed cancers and the leading cause of cancer-related death worldwide. Although smoking is the primary cause of the cancer, lung cancer is also commonly diagnosed in people who have never smoked. Currently, the proportion of people who have never smoked diagnosed with lung cancer is increasing. Despite this alarming trend, this population is ineligible for lung screening. With the increasing proportion of people who have never smoked among lung cancer cases, there is a pressing need to develop prediction models to identify high-risk people who have never smoked and include them in lung cancer screening programs. Thus, our systematic review is intended to provide a comprehensive summary of the evidence on existing risk prediction models for lung cancer in people who have never smoked. METHODS Electronic searches will be conducted in MEDLINE (Ovid), Embase (Ovid), Web of Science Core Collection (Clarivate Analytics), Scopus, and Europe PMC and Open-Access Theses and Dissertations databases. Two reviewers will independently perform title and abstract screening, full-text review, and data extraction using the Covidence review platform. Data extraction will be performed based on the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modeling Studies (CHARMS). The risk of bias will be evaluated independently by two reviewers using the Prediction model Risk-of-Bias Assessment Tool (PROBAST) tool. If a sufficient number of studies are identified to have externally validated the same prediction model, we will combine model performance measures to evaluate the model's average predictive accuracy (e.g., calibration, discrimination) across diverse settings and populations and explore sources of heterogeneity. DISCUSSION The results of the review will identify risk prediction models for lung cancer in people who have never smoked. These will be useful for researchers planning to develop novel prediction models, and for clinical practitioners and policy makers seeking guidance for clinical decision-making and the formulation of future lung cancer screening strategies for people who have never smoked. SYSTEMATIC REVIEW REGISTRATION This protocol has been registered in PROSPERO under the registration number CRD42023483824.
Collapse
Affiliation(s)
- Alpamys Issanov
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Atul Aravindakshan
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Lorri Puil
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Martin C Tammemägi
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Stephen Lam
- BC Cancer, Provincial Health Services Authority, Vancouver, BC, Canada
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Trevor J B Dummer
- School of Population and Public Health, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
10
|
LoPiccolo J, Gusev A, Christiani DC, Jänne PA. Lung cancer in patients who have never smoked - an emerging disease. Nat Rev Clin Oncol 2024; 21:121-146. [PMID: 38195910 PMCID: PMC11014425 DOI: 10.1038/s41571-023-00844-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/11/2024]
Abstract
Lung cancer is the most common cause of cancer-related deaths globally. Although smoking-related lung cancers continue to account for the majority of diagnoses, smoking rates have been decreasing for several decades. Lung cancer in individuals who have never smoked (LCINS) is estimated to be the fifth most common cause of cancer-related deaths worldwide in 2023, preferentially occurring in women and Asian populations. As smoking rates continue to decline, understanding the aetiology and features of this disease, which necessitate unique diagnostic and treatment paradigms, will be imperative. New data have provided important insights into the molecular and genomic characteristics of LCINS, which are distinct from those of smoking-associated lung cancers and directly affect treatment decisions and outcomes. Herein, we review the emerging data regarding the aetiology and features of LCINS, particularly the genetic and environmental underpinnings of this disease as well as their implications for treatment. In addition, we outline the unique diagnostic and therapeutic paradigms of LCINS and discuss future directions in identifying individuals at high risk of this disease for potential screening efforts.
Collapse
Affiliation(s)
- Jaclyn LoPiccolo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Alexander Gusev
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Eli and Edythe L. Broad Institute, Cambridge, MA, USA
| | - David C Christiani
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Boston, MA, USA
- Massachusetts General Hospital, Boston, MA, USA
| | - Pasi A Jänne
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- The Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
11
|
Heeb NV, Muñoz M, Haag R, Wyss S, Schönenberger D, Durdina L, Elser M, Siegerist F, Mohn J, Brem BT. Corelease of Genotoxic Polycyclic Aromatic Hydrocarbons and Nanoparticles from a Commercial Aircraft Jet Engine - Dependence on Fuel and Thrust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1615-1624. [PMID: 38206005 PMCID: PMC10809754 DOI: 10.1021/acs.est.3c08152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024]
Abstract
Jet engines are important contributors to global CO2 emissions and release enormous numbers of ultrafine particles into different layers of the atmosphere. As a result, aviation emissions are affecting atmospheric chemistry and promote contrail and cloud formation with impacts on earth's radiative balance and climate. Furthermore, the corelease of nanoparticles together with carcinogenic polycyclic aromatic hydrocarbons (PAHs) affects air quality at airports. We studied exhausts of a widely used turbofan engine (CFM56-7B26) operated at five static thrust levels (idle, 7, 30, 65, and 85%) with conventional Jet A-1 fuel and a biofuel blend composed of hydro-processed esters and fatty acids (HEFA). The particles released, the chemical composition of condensable material, and the genotoxic potential of these exhausts were studied. At ground operation, particle number emissions of 3.5 and 0.5 × 1014 particles/kg fuel were observed with highest genotoxic potentials of 41300 and 8800 ng toxicity equivalents (TEQ)/kg fuel at idle and 7% thrust, respectively. Blending jet fuel with HEFA lowered PAH and particle emissions by 7-34% and 65-67% at idle and 7% thrust, respectively, indicating that the use of paraffin-rich biofuels is an effective measure to reduce the exposure of airport personnel to nanoparticles coated with genotoxic PAHs (Trojan horse effect).
Collapse
Affiliation(s)
- Norbert V. Heeb
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Maria Muñoz
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Regula Haag
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Simon Wyss
- Empa, Swiss Federal
Laboratories for Materials Science and Technology, Laboratory for Air Pollution/Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - David Schönenberger
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Empa, Swiss Federal
Laboratories for Materials Science and Technology, Laboratory for Air Pollution/Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Lukas Durdina
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Miriam Elser
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
- Empa, Swiss Federal
Laboratories for Materials Science and Technology, Automotive Powertrain Technologies Laboratory, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | | | - Joachim Mohn
- Empa, Swiss Federal
Laboratories for Materials Science and Technology, Laboratory for Air Pollution/Environmental Technology, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| | - Benjamin T. Brem
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
12
|
Turner MC, Cogliano V, Guyton K, Madia F, Straif K, Ward EM, Schubauer-Berigan MK. Research Recommendations for Selected IARC-Classified Agents: Impact and Lessons Learned. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:105001. [PMID: 37902675 PMCID: PMC10615125 DOI: 10.1289/ehp12547] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 10/31/2023]
Abstract
BACKGROUND The International Agency for Research on Cancer (IARC) Monographs program assembles expert working groups who publish a critical review and evaluation of data on agents of interest. These comprehensive reviews provide a unique opportunity to identify research needs to address classification uncertainties. A multidisciplinary expert review and workshop held in 2009 identified research gaps and needs for 20 priority occupational chemicals, metals, dusts, and physical agents, with the goal of stimulating advances in epidemiological studies of cancer and carcinogen mechanisms. Overarching issues were also described. OBJECTIVES In this commentary we review the current status of the evidence for the 20 priority agents identified in 2009. We examine whether identified Research Recommendations for each agent were addressed and their potential impact on resolving classification uncertainties. METHODS We reviewed the IARC classifications of each of the 20 priority agents and identified major new epidemiological and human mechanistic studies published since the last evaluation. Information sources were either the published Monograph for agents that have been reevaluated or, for agents not yet reevaluated, Advisory Group reports and literature searches. Findings are described in view of recent methodological developments in Monographs evidence evaluation processes. DISCUSSION The majority of the 20 priority agents were reevaluated by IARC since 2009. The overall carcinogen classifications of 9 agents advanced, and new cancer sites with either "sufficient" or "limited" evidence of carcinogenicity were also identified for 9 agents. Examination of published findings revealed whether evidence gaps and Research Recommendations have been addressed and highlighted remaining uncertainties. During the past decade, new research addressed a range of the 2009 recommendations and supported updated classifications for priority agents. This supports future efforts to systematically apply findings of Monograph reviews to identify research gaps and priorities relevant to evaluation criteria established in the updated IARC Monograph Preamble. https://doi.org/10.1289/EHP12547.
Collapse
Affiliation(s)
- Michelle C. Turner
- Barcelona Institute for Global Health, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Vincent Cogliano
- California Environmental Protection Agency Office of Environmental Health Hazard Assessment, Oakland, California, USA
| | - Kathryn Guyton
- National Academies of Sciences, Engineering, and Medicine, Washington, District of Columbia, USA
| | - Federica Madia
- International Agency for Research on Cancer, Lyon, France
| | - Kurt Straif
- Barcelona Institute for Global Health, Barcelona, Spain
- Boston College, Massachusetts, USA
| | | | | |
Collapse
|
13
|
Choi SH, Ochirpurev B, Toriba A, Won JU, Kim H. Exposure to Benzo[a]pyrene and 1-Nitropyrene in Particulate Matter Increases Oxidative Stress in the Human Body. TOXICS 2023; 11:797. [PMID: 37755807 PMCID: PMC10534303 DOI: 10.3390/toxics11090797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/23/2023] [Accepted: 09/17/2023] [Indexed: 09/28/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have been reported to cause oxidative stress in metabolic processes. This study aimed to evaluate the relationship between exposure to PAHs, including benzo[a]pyrene (BaP) and 1-nitropyrene (1-NP), in the atmosphere and oxidative stress levels in the human body. This study included 44 Korean adults who lived in Cheongju, Republic of Korea. Atmospheric BaP and 1-NP concentrations and urinary 6-hydroxy-1-nitropyrene (6-OHNP), N-acetyl-1-aminopyrene (1-NAAP), and 1-hydroxypyrene (1-OHP) concentrations were measured. The oxidative stress level was assessed by measuring urinary thiobarbituric acid-reactive substances (TBARS) and 8-hydroxydeoxyguanosine (8-OHdG) concentrations. Urinary TBARS and 6-OHNP concentrations significantly differed between winter and summer. BaP exposure was significantly associated with urinary 8-OHdG concentrations in summer. However, atmospheric 1-NP did not show a significant correlation with oxidative stress marker concentrations. Urinary 1-NAAP concentration was a significant determinant for urinary 8-OHdG concentration in summer. Oxidative stress in the body increases in proportion to inhalation exposure to BaP, and more 8-OHdG is produced in the body as the amount of 1-NP, which is metabolized to 1-AP or 1-NAAP, increases.
Collapse
Affiliation(s)
- Sun-Haeng Choi
- Department of Occupational and Environmental Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
- Department of Public Health, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Bolormaa Ochirpurev
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Akira Toriba
- Department of Hygienic Chemistry, Graduate School of Biomedical Science, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jong-Uk Won
- Department of Public Health, Graduate School, Yonsei University, Seoul 03722, Republic of Korea
| | - Heon Kim
- Department of Occupational and Environmental Medicine, Chungbuk National University Hospital, Cheongju 28644, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
14
|
Leiter A, Veluswamy RR, Wisnivesky JP. The global burden of lung cancer: current status and future trends. Nat Rev Clin Oncol 2023; 20:624-639. [PMID: 37479810 DOI: 10.1038/s41571-023-00798-3] [Citation(s) in RCA: 203] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. However, lung cancer incidence and mortality rates differ substantially across the world, reflecting varying patterns of tobacco smoking, exposure to environmental risk factors and genetics. Tobacco smoking is the leading risk factor for lung cancer. Lung cancer incidence largely reflects trends in smoking patterns, which generally vary by sex and economic development. For this reason, tobacco control campaigns are a central part of global strategies designed to reduce lung cancer mortality. Environmental and occupational lung cancer risk factors, such as unprocessed biomass fuels, asbestos, arsenic and radon, can also contribute to lung cancer incidence in certain parts of the world. Over the past decade, large-cohort clinical studies have established that low-dose CT screening reduces lung cancer mortality, largely owing to increased diagnosis and treatment at earlier disease stages. These data have led to recommendations that individuals with a high risk of lung cancer undergo screening in several economically developed countries and increased implementation of screening worldwide. In this Review, we provide an overview of the global epidemiology of lung cancer. Lung cancer risk factors and global risk reduction efforts are also discussed. Finally, we summarize lung cancer screening policies and their implementation worldwide.
Collapse
Affiliation(s)
- Amanda Leiter
- Division of Endocrinology, Diabetes, and Bone Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Rajwanth R Veluswamy
- Division of Hematology and Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan P Wisnivesky
- Division of General Internal Medicine, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
15
|
Blechter B, Wong JYY, Hu W, Cawthon R, Downward GS, Portengen L, Zhang Y, Ning B, Rahman ML, Ji BT, Li J, Yang K, Dean Hosgood H, Silverman DT, Huang Y, Rothman N, Vermeulen R, Lan Q. Exposure to smoky coal combustion emissions and leukocyte Alu retroelement copy number. Carcinogenesis 2023; 44:404-410. [PMID: 37119119 PMCID: PMC10414142 DOI: 10.1093/carcin/bgad027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/09/2022] [Accepted: 04/28/2023] [Indexed: 04/30/2023] Open
Abstract
Household air pollution (HAP) from indoor combustion of solid fuel is a global health burden that has been linked to multiple diseases including lung cancer. In Xuanwei, China, lung cancer rate for non-smoking women is among the highest in the world and largely attributed to high levels of polycyclic aromatic hydrocarbons (PAHs) that are produced from combustion of smoky (bituminous) coal. Alu retroelements, repetitive mobile DNA sequences that can somatically multiply and promote genomic instability have been associated with risk of lung cancer and diesel engine exhaust exposure. We conducted analyses for 160 non-smoking women in an exposure assessment study in Xuanwei, China with a repeat sample from 49 subjects. Quantitative PCR was used to measure Alu repeat copy number relative to albumin gene copy number (Alu/ALB ratio). Associations between clusters derived from predicted levels of 43 HAP constituents, 5-methylchrysene (5-MC), a PAH previously associated with lung cancer in Xuanwei and was selected a priori for analysis, and Alu repeats were analyzed using generalized estimating equations. A cluster of 31 PAHs reflecting current exposure was associated with increased Alu copy number (β:0.03 per standard deviation change; 95% confidence interval (CI):0.01,0.04; P-value = 2E-04). One compound within this cluster, 5-MC, was also associated with increased Alu copy number (P-value = 0.02). Our findings suggest that exposure to PAHs due to indoor smoky coal combustion may contribute to genomic instability. Additionally, our study provides further support for 5-MC as a prominent carcinogenic component of smoky coal emissions. Further studies are needed to replicate our findings.
Collapse
Affiliation(s)
- Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Richard Cawthon
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - George S Downward
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, Netherlands
| | - Lützen Portengen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Yongliang Zhang
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Bofu Ning
- Xuanwei Center of Diseases Control, Xuanwei, Yunnan, China
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Jihua Li
- Quijing Center for Diseases Control and Prevention, Quijing, Yunnan, China
| | - Kaiyun Yang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - H Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, NY, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yunchao Huang
- Department of Cardiothoracic Surgery, Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, Yunnan, China
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, Netherlands
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
16
|
Silverman DT, Bassig BA, Lubin J, Graubard B, Blair A, Vermeulen R, Attfield M, Appel N, Rothman N, Stewart P, Koutros S. The Diesel Exhaust in Miners Study (DEMS) II: Temporal Factors Related to Diesel Exhaust Exposure and Lung Cancer Mortality in the Nested Case-Control Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87002. [PMID: 37549095 PMCID: PMC10406174 DOI: 10.1289/ehp11980] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND The Diesel Exhaust in Miners Study (DEMS) was an important contributor to the International Agency for Research on Cancer reclassification of diesel exhaust as a Group I carcinogen and subsequent risk assessment. We extended the DEMS cohort follow-up by 18 y and the nested case-control study to include all newly identified lung cancer deaths and matched controls (DEMS II), nearly doubling the number of lung cancer deaths. OBJECTIVE Our purpose was to characterize the exposure-response relationship with a focus on the effects of timing of exposure and exposure cessation. METHODS We conducted a case-control study of lung cancer nested in a cohort of 12,315 workers in eight nonmetal mines (376 lung cancer deaths, 718 controls). Controls were selected from workers who were alive when the case died, individually matched on mine, sex, race/ethnicity, and birth year (within 5 y). Based on an extensive historical exposure assessment, we estimated respirable elemental carbon (REC), an index of diesel exposure, for each cohort member. Odds ratios (ORs) were estimated by conditional regression analyses controlling for smoking and other confounders. To evaluate time windows of exposure, we evaluated the joint OR patterns for cumulative REC within each of four preselected exposure time windows, < 5 , 5-9, 10-19, and ≥ 20 y prior to death/reference date, and we evaluated the interaction of cumulative exposure across time windows under additive and multiplicative forms for the joint association. RESULTS ORs increased with increasing 15-y lagged cumulative exposure, peaking with a tripling of risk for exposures of ∼ 950 to < 1,700 μ g / m 3 -y [OR = 3.23 ; 95% confidence interval (CI): 1.47, 7.10], followed by a plateau/decline among the heavily exposed (OR = 1.85 ; 95% CI: 0.85, 4.04). Patterns of risk by cumulative REC exposure varied across four exposure time windows (p homogeneity < 0.001 ), with ORs increasing for exposures accrued primarily 10-19 y prior to death (p trend < 0.001 ). Results provided little support for a waning of risk among workers whose exposures ceased for ≥ 20 y. CONCLUSION DEMS II findings provide insight into the exposure-response relationship between diesel exhaust and lung cancer mortality. The pronounced effect of exposures occurring in the window 10-19 y prior to death, the sustained risk 20 or more years after exposure ceases, and the plateau/decline in risk among the most heavily exposed provide direction for future research on the mechanism of diesel-induced carcinogenesis in addition to having important implications for the assessment of risk from diesel exhaust by regulatory agencies. https://doi.org/10.1289/EHP11980.
Collapse
Affiliation(s)
- Debra T. Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Bryan A. Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Jay Lubin
- Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Barry Graubard
- Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Roel Vermeulen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Michael Attfield
- Surveillance Branch, Division of Respiratory Disease Studies, U.S. National Institute for Occupational Safety and Health, Morgantown, West Virginia, USA
| | - Nathan Appel
- Information Management Systems, Inc., Rockville, Maryland, USA
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Patricia Stewart
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| | - Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, U.S. National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Koutros S, Graubard B, Bassig BA, Vermeulen R, Appel N, Hyer M, Stewart PA, Silverman DT. Diesel Exhaust Exposure and Cause-Specific Mortality in the Diesel Exhaust in Miners Study II (DEMS II) Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87003. [PMID: 37549097 PMCID: PMC10406173 DOI: 10.1289/ehp12840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND With the exception of lung cancer, the health effects associated with diesel exhaust for other cancers and nonmalignant health outcomes are not well understood. OBJECTIVES We extended the mortality follow-up of the Diesel Exhaust in Miners Study, a cohort study of 12,315 workers, by 18 y (ending 31 December 2015), more than doubling the number of observed deaths to n = 4,887 , to evaluate associations between mortality and diesel exhaust exposure. METHODS Quantitative estimates of historical exposure to respirable elemental carbon (REC), a surrogate for diesel exhaust, were created for all jobs, by year and facility, using measurements collected from each mine, as well as historical measurements. Standardized mortality ratios (SMRs) and hazard ratios (HRs) were estimated for the entire cohort and by worker location (surface, underground). RESULTS We observed an excess of death for cancers of the lung, trachea, and bronchus (n = 409 ; SMR = 1.24 ; 95% CI: 1.13, 1.37). Among workers who ever worked underground, where the majority of diesel exposure occurred, excess deaths were evident for lung, trachea, and bronchus cancers (n = 266 ; SMR = 1.26 ; 95% CI: 1.11, 1.42). Several nonmalignant diseases were associated with excess mortality among workers ever-employed underground, including ischemic heart disease (SMR = 1.08 ; 95% CI: 1.00, 1.16), cerebrovascular disease (SMR = 1.22 ; 95% CI: 1.04, 1.43), and nonmalignant diseases of the respiratory system (SMR = 1.13 ; 95% CI: 1.01, 1.26). Continuous 15-y lagged cumulative REC exposure < 1,280 μ g / m 3 -y was associated with increased lung cancer risk (HR = 1.93 ; 95% CI: 1.24, 3.03), but the risk declined at the highest exposures (HR = 1.29 ; 95% CI: 0.74, 2.26). We also observed a significant trend in non-Hodgkin lymphoma (NHL) risk with increasing 20-y lagged cumulative REC (HR Tertile 3 vs. Tertile 1 = 3.12 ; 95% CI: 1.00, 9.79; p -trend = 0.031 ). DISCUSSION Increased risks of lung cancer mortality observed in the original study were sustained. Observed associations between diesel exposure and risk of death from NHL and the excesses in deaths for diseases of the respiratory and cardiovascular system, including ischemic heart disease and cerebrovascular disease, warrant further study and provide evidence of the potential widespread public health impact of diesel exposure. https://doi.org/10.1289/EHP12840.
Collapse
Affiliation(s)
- Stella Koutros
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| | - Barry Graubard
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | - Bryan A. Bassig
- Formerly Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of Environmental Epidemiology, Utrecht University, Utrecht, the Netherlands
| | - Nathan Appel
- Information Management Services, Inc. Rockville, Maryland, USA
| | - Marianne Hyer
- Information Management Services, Inc. Rockville, Maryland, USA
| | | | - Debra T. Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Department of Health and Human Services (DHHS), Bethesda, Maryland, USA
| |
Collapse
|
18
|
Wagner GR, Michaels D. Invited Perspective: Diesel Exhaust and Lung Cancer-Delayed Findings Confirmed, but Consequences Continue. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:81301. [PMID: 37549096 PMCID: PMC10406172 DOI: 10.1289/ehp13258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/24/2023] [Accepted: 06/26/2023] [Indexed: 08/09/2023]
Affiliation(s)
- Gregory R. Wagner
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - David Michaels
- Milken Institute School of Public Heath, George Washington University, Washington, District of Columbia, USA
| |
Collapse
|
19
|
Lee PN, Coombs KJ, Hamling JS. Evidence relating cigarette, cigar and pipe smoking to lung cancer and chronic obstructive pulmonary disease: Meta-analysis of recent data from three regions. World J Meta-Anal 2023; 11:228-252. [DOI: 10.13105/wjma.v11.i5.228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND There is a need to have up-to-date information for various diseases on the risk related to the use of different smoked products and the use of other nicotine-containing products. Here, we contribute to the information pool by presenting up-to-date quantitative evidence for North America, Europe and Japan and for both lung cancer and chronic obstructive pulmonary disease (COPD) on the relative risk (RR) relating to current vs never product use for each of the three smoked tobacco products, cigarettes, cigars and pipes.
AIM To estimate lung cancer and COPD current smoking RRs for the three products using recent data for the three regions.
METHODS Publications in English from 2010 to 2020 were considered that, based on epidemiological studies in the three regions, estimated the current smoking RR of lung cancer and/or COPD for one or more of the three products. The studies should involve at least 100 cases of the disease considered, not be restricted to specific lung cancer types or populations with specific medical conditions, and should be of cohort or nested case-control study design or randomized controlled trials. Literature searches were conducted on MEDLINE separately for lung cancer and for COPD, examining titles and abstracts initially, and then full texts. Additional papers were sought from reference lists of selected papers, reviews and meta-analyses. For each study identified, the most recent available data on each product were entered on current smoking, as well as on characteristics of the study and the RR estimates. Combined RR estimates were derived using random-effects meta-analysis. For cigarette smoking, where far more data were available, heterogeneity was studied by a wide range of factors. For cigar and pipe smoking, a more limited heterogeneity analysis was carried out. Results were compared with those from previous meta-analyses published since 2000.
RESULTS Current cigarette smoking: For lung cancer, 44 studies (26 North American, 14 European, three Japanese, and one in multiple continents), gave an overall estimate of 12.14 [95% confidence interval (CI) 10.30-14.30]. The estimates were higher (heterogeneity P < 0.001) for North American (15.15, CI 12.77-17.96) and European studies (12.30, CI 9.77-15.49) than for Japanese studies (3.61, CI 2.87-4.55), consistent with previous evidence of lower RRs for Asia. RRs were higher (P < 0.05) for death (14.85, CI 11.99-18.38) than diagnosis (10.82, CI 8.61-13.60). There was some variation (P < 0.05) by study population, with higher RRs for international and regional studies than for national studies and studies of specific populations. RRs were higher in males, as previously reported, the within-study male/female ratio of RRs being 1.52 (CI 1.20-1.92). RRs did not vary significantly (P ≥ 0.05) by other factors. For COPD, RR estimates were provided by 18 studies (10 North American, seven European, and one Japanese). The overall estimate of 9.19 (CI 6.97-12.13), was based on heterogeneous data (P < 0.001), and higher than reported earlier. There was no (P > 0.1) variation by sex, region or exclusive use, but limited evidence (0.05 < P < 0.1) that RR estimates were greater where cases occurring shortly after baseline were ignored; where bronchiectasis was excluded from the COPD definition; and with greater confounder adjustment. Within-study comparisons showed adjusted RRs exceeded unadjusted RRs. Current cigar smoking: Three studies gave an overall lung cancer RR of 2.73 (CI 2.36-3.15), with no heterogeneity, lower than the 4.67 (CI 3.49-6.25) reported in an earlier review. Only one study gave COPD results, the RR (2.44, CI 0.98-6.05) being imprecise. Current pipe smoking: Four studies gave an overall lung cancer RR of 4.93 (CI 1.97-12.32), close to the 5.20 (CI 3.50-7.73) given earlier. However, the estimates were heterogeneous, with two above 10, and two below 3. Only one study gave COPD results, the RR (1.12, CI 0.29-4.40), being imprecise. For both diseases, the lower RR estimates for cigars and for pipes than for current smoking of cigarettes aligns with earlier published evidence.
CONCLUSION Current cigarette smoking substantially increases lung cancer and COPD risk, more so in North America and Europe than Japan. Limited evidence confirms lower risks for cigars and pipes than cigarettes.
Collapse
Affiliation(s)
- Peter Nicholas Lee
- Medical Statistics and Epidemiology, P.N.Lee Statistics and Computing Ltd., Sutton SM2 5DA, Surrey, United Kingdom
| | - Katharine J Coombs
- Statistics, P.N.Lee Statistics and Computing Ltd, Sutton SM2 5DA, Surrey, United Kingdom
| | - Jan S Hamling
- Statistics, RoeLee Statistics Ltd, Sutton SM2 5DA, United Kingdom
| |
Collapse
|
20
|
Li T, Yang HL, Xu LT, Zhou YT, Min YJ, Yan SC, Zhang YH, Wang XM. Comprehensive treatment strategy for diesel truck exhaust. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:54324-54332. [PMID: 36940033 DOI: 10.1007/s11356-023-26506-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
At present, diesel vehicles still play an irreplaceable role in the traditional energy field in China. Diesel vehicle exhaust contains hydrocarbons, carbon monoxide, nitrogen oxides, and particulate matter, which can lead to haze weather, photochemical smog, and the greenhouse effect; endanger human health; and damage the ecological environment. In 2020, the number of motor vehicles in China reached 372 million, and the number of automobiles reached 281 million, of which 20.92 million are diesel vehicles, accounting for only 5.6% of the number of motor vehicles and 7.4% of the number of automobiles. Nevertheless, diesel vehicles emitted 88.8% of nitrogen oxides and 99% of particulate matter in total vehicle emissions. Diesel vehicles, especially diesel trucks, have become the top priority of motor vehicle pollution control. However, there are few reviews on the comprehensive treatment of diesel vehicle exhaust. This review provides an overview of exhaust gas composition, hazards, and treatment techniques. Phytoremediation, three-way catalytic conversion, rare earth catalytic degradation, and nanoscale TiO2 catalytic degradation are briefly described.
Collapse
Affiliation(s)
- Tian Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Hai-Li Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Le-Tian Xu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yu-Ting Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong-Jun Min
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shi-Cheng Yan
- Ecomaterials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Yong-Hui Zhang
- College of Automobile and Traffic Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiao-Ming Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
21
|
Landwehr KR, Mead-Hunter R, O'Leary RA, Kicic A, Mullins BJ, Larcombe AN. Respiratory Health Effects of In Vivo Sub-Chronic Diesel and Biodiesel Exhaust Exposure. Int J Mol Sci 2023; 24:ijms24065130. [PMID: 36982203 PMCID: PMC10049281 DOI: 10.3390/ijms24065130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Biodiesel, which can be made from a variety of natural oils, is currently promoted as a sustainable, healthier replacement for commercial mineral diesel despite little experimental data supporting this. The aim of our research was to investigate the health impacts of exposure to exhaust generated by the combustion of diesel and two different biodiesels. Male BALB/c mice (n = 24 per group) were exposed for 2 h/day for 8 days to diluted exhaust from a diesel engine running on ultra-low sulfur diesel (ULSD) or Tallow or Canola biodiesel, with room air exposures used as control. A variety of respiratory-related end-point measurements were assessed, including lung function, responsiveness to methacholine, airway inflammation and cytokine response, and airway morphometry. Exposure to Tallow biodiesel exhaust resulted in the most significant health impacts compared to Air controls, including increased airway hyperresponsiveness and airway inflammation. In contrast, exposure to Canola biodiesel exhaust resulted in fewer negative health effects. Exposure to ULSD resulted in health impacts between those of the two biodiesels. The health effects of biodiesel exhaust exposure vary depending on the feedstock used to make the fuel.
Collapse
Affiliation(s)
- Katherine R Landwehr
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| | - Ryan Mead-Hunter
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Rebecca A O'Leary
- Department of Primary Industries and Regional Development, Perth, WA 6151, Australia
| | - Anthony Kicic
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Department of Respiratory and Sleep Medicine, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
- Centre for Cell Therapy and Regenerative Medicine, The University of Western Australia, Perth, WA 6009, Australia
| | - Benjamin J Mullins
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
| | - Alexander N Larcombe
- Occupation, Environment and Safety, School of Population Health, Curtin University, Perth, WA 6845, Australia
- Respiratory Environmental Health, Wal-yan Respiratory Research Centre, Telethon Kids Institute, Perth Children's Hospital, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
22
|
Zheng L, Birch ME, Johnson B, Breitenstein M, Snawder J, Kulkarni P. Correlation between Graphitic Carbon and Elemental Carbon in Diesel Particulate Matter in Workplace Atmospheres. Anal Chem 2023; 95:3283-3290. [PMID: 36724111 PMCID: PMC10245227 DOI: 10.1021/acs.analchem.2c04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We investigated the suitability of the graphitic carbon (GC) content of diesel particulate matter (DPM), measured using Raman spectroscopy, as a surrogate measure of elemental carbon (EC) determined by thermal optical analysis. The Raman spectra in the range of 800-1800 cm-1 (including the D mode at ∼1322 cm-1 and the G mode at ∼1595 cm-1) were used for GC identification and quantification. Comparison of the Raman spectra for two certified DPM standards (NIST SRM 1650 and SRM 2975), two types of diesel engine exhaust soot, and three types of DPM-enriched workplace aerosols show that the uncertainty of GC quantification based on the D peak height, G peak height, and the total peak area below D and G peaks was about 6.0, 6.7, and 6.9%, respectively. The low uncertainty for different aerosol types suggested possible use of GC as a surrogate measure of EC in workplace atmospheres. A calibration curve was constructed using two laboratory-aerosolized DPM standards to describe the relationship between GC measured by a portable Raman spectrometer and the EC concentration determined by NIOSH Method 5040. The calibration curve was then applied to determine GC-based estimates of the EC contents of diesel engine exhaust samples from two vehicles and seven air samples collected at a hydraulic fracturing worksite. The GC-EC estimates obtained through Raman measurements agreed well with those found by NIOSH Method 5040 for the same samples at EC filter loadings below 2.86 μg/cm2. The study shows that using an appropriate sample collection method that avoids high filter mass loadings, onsite measurement of GC by a portable or hand-held Raman spectrometer can provide a useful indicator of EC in workplace aerosol.
Collapse
Affiliation(s)
- Lina Zheng
- Jiangsu Engineering Research Center for Dust Control and Occupational Protection, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
- Department of Occupational Hygiene Engineering, School of Safety Engineering, China University of Mining and Technology, Xuzhou 221116, Jiangsu, P.R. China
| | - M Eileen Birch
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226, United States
| | - Belinda Johnson
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226, United States
| | - Michael Breitenstein
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226, United States
| | - John Snawder
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226, United States
| | - Pramod Kulkarni
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Cincinnati, Ohio 45226, United States
| |
Collapse
|
23
|
Choi SH, Ochirpurev B, Jo HY, Won JU, Toriba A, Kim H. Effects of polycyclic aromatic hydrocarbon exposure on mitochondrial DNA copy number. Hum Exp Toxicol 2023; 42:9603271231216968. [PMID: 37989254 DOI: 10.1177/09603271231216968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Airborne polycyclic aromatic hydrocarbon (PAH) exposure can adversely affect human health by generating reactive oxygen species (ROS) and increasing oxidative stress, which causes changes in mitochondrial DNA copy number (mtDNAcn), a key indicator of mitochondrial damage and dysfunction. This study aimed to determine the effects of atmospheric benzo[a]pyrene (BaP) and 1-nitropyrene (1-NP) exposure on mtDNAcn in humans. One hundred and eight adults living in Cheongju, South Korea, were included in this study. Atmospheric BaP and 1-NP concentrations and urinary 6-hydroxy-1-nitropyrene (6-OHNP), N-acetyl-1-aminopyrene (1-NAAP), and 1-hydroxypyrene concentrations were measured. Blood samples were also collected to assess mtDNAcn. The mean mtDNAcn was 9.74 (SD 4.46). mtDNAcn decreased significantly with age but was not significantly associated with sex, sampling season, or smoking habit. While there was a borderline significant increase in mtDNAcn with increasing ambient total PAH levels, ambient PAH or urinary 1-hydroxypyrene concentrations showed no significant association with mtDNAcn. However, urinary 6-OHNP or 1-NAAP concentrations, 1-NP metabolites, were significantly associated with mtDNAcn. These results suggest that the metabolism of absorbed NPs generates excess ROS, which damages mitochondrial DNA, resulting in increased mtDNAcn.
Collapse
Affiliation(s)
- Sun-Haeng Choi
- Department of Occupational and Environmental Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Bolormaa Ochirpurev
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Hwa Yeong Jo
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| | - Jong-Uk Won
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
| | - Akira Toriba
- Department of Hygienic Chemistry, Graduate School of Biomedical Science, Nagasaki University, Nagasaki, Japan
| | - Heon Kim
- Department of Occupational and Environmental Medicine, Chungbuk National University Hospital, Cheongju, Republic of Korea
- Department of Preventive Medicine, College of Medicine, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
24
|
Luczynski P, Poulin P, Romanowski K, Johnston JC. Tuberculosis and risk of cancer: A systematic review and meta-analysis. PLoS One 2022; 17:e0278661. [PMID: 36584036 PMCID: PMC9803143 DOI: 10.1371/journal.pone.0278661] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 11/22/2022] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Cancer is a major cause of death among people who experience tuberculosis (TB), but little is known about its timing and incidence following TB treatment. Our primary objectives were to estimate the pooled risk of all and site-specific malignancies in people with TB compared to the general population or suitable controls. Our secondary objective was to describe the pooled risk of cancer at different time points following TB diagnosis. METHODS This study was prospectively registered (PROSPERO: CRD42021277819). We systematically searched MEDLINE, Embase, and the Cochrane Database for studies published between 1980 and 2021. We included original observational research articles that estimated cancer risk among people with TB compared to controls. Studies were excluded if they had a study population of fewer than 50 individuals; used cross-sectional, case series, or case report designs; and had a follow-up period of less than 12 months. Random-effects meta-analysis was used to obtain the pooled risk of cancer in the TB population. RESULTS Of the 5,160 unique studies identified, data from 17 studies were included. When compared to controls, the pooled standardized incidence ratios (SIR) of all cancer (SIR 1.62, 95% CI 1.35-1.93, I2 = 97%) and lung cancer (SIR 3.20, 95% CI 2.21-4.63, I2 = 90%) was increased in the TB population. The pooled risk of all cancers and lung cancer was highest within the first year following TB diagnosis (SIR 4.70, 95% CI 1.80-12.27, I2 = 99%) but remained over five years of follow-up. CONCLUSIONS People with TB have an increased risk of both pulmonary and non-pulmonary cancers. Further research on cancer following TB diagnosis is needed to develop effective screening and early detection strategies. Clinicians should have a high index of suspicion for cancer in people with TB, particularly in the first year following TB diagnosis.
Collapse
Affiliation(s)
- Pauline Luczynski
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Philip Poulin
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| | - Kamila Romanowski
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Provincial TB Services, British Columbia Centre for Disease Control, Vancouver, Canada
| | - James C. Johnston
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Provincial TB Services, British Columbia Centre for Disease Control, Vancouver, Canada
| |
Collapse
|
25
|
Su AL, Mesaros CA, Krzeminski J, El-Bayoumy K, Penning TM. Role of Human Aldo-Keto Reductases in the Nitroreduction of 1-Nitropyrene and 1,8-Dinitropyrene. Chem Res Toxicol 2022; 35:2296-2309. [PMID: 36399404 PMCID: PMC9772043 DOI: 10.1021/acs.chemrestox.2c00271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
1-Nitropyrene (1-NP) and 1,8-dinitropyrene (1,8-DNP) are diesel exhaust constituents and are classified by the International Agency for Research on Cancer as probable (Group 2A) or possible (Group 2B) human carcinogens. These nitroarenes undergo metabolic activation by nitroreduction to result in the formation of DNA adducts. Human aldo-keto reductases (AKRs) 1C1-1C3 catalyze the nitroreduction of 3-nitrobenzanthrone (3-nitro-7H-benz[de]anthracen-7-one, 3-NBA), but the extent of AKR contribution toward the nitroreduction of additional nitroarenes, including 1-NP and 1,8-DNP, is currently unknown. In the present study, we investigated the ability of human recombinant AKRs to catalyze 1-NP and 1,8-DNP nitroreduction by measuring the formation of the respective six-electron reduced amine products in discontinuous ultraviolet-reverse phase high-performance liquid chromatography enzymatic assays. We found that AKR1C1-1C3 were able to catalyze the formation of 1-aminopyrene (1-AP) and 1-amino-8-nitropyrene (1,8-ANP) in our reactions with 1-NP and 1,8-DNP, respectively. We determined kinetic parameters (Km, kcat, and kcat/Km) and found that out of the three isoforms, AKR1C1 had the highest catalytic efficiency (kcat/Km) for 1-AP formation, whereas AKR1C3 had the highest catalytic efficiency for 1,8-ANP formation. Use of ultra-performance liquid chromatography high-resolution mass spectrometry verified amine product identity and provided evidence for the formation of nitroso- and hydroxylamino-intermediates in our reactions. Our study expands the role of AKR1C1-1C3, which are expressed in human lung cells, in the metabolic activation of nitroarenes that can lead to DNA adduct formation, mutation, and carcinogenesis.
Collapse
Affiliation(s)
- Anthony L Su
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Clementina A Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jacek Krzeminski
- Department of Pharmacology, Penn State College of Medicine, Pennsylvania State University, Hershey Pennsylvania 17033-2360, United States
| | - Karam El-Bayoumy
- Department of Biochemistry & Molecular Biology, Penn State College of Medicine, Pennsylvania State University, Hershey Pennsylvania 17033-2360, United States
| | - Trevor M Penning
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center of Excellence in Environmental Toxicology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
26
|
Wong JYY, Imani P, Grigoryan H, Bassig BA, Dai Y, Hu W, Blechter B, Rahman ML, Ji BT, Duan H, Niu Y, Ye M, Jia X, Meng T, Bin P, Downward G, Meliefste K, Leng S, Fu W, Yang J, Ren D, Xu J, Zhou B, Hosgood HD, Vermeulen R, Zheng Y, Silverman DT, Rothman N, Rappaport SM, Lan Q. Exposure to diesel engine exhaust and alterations to the Cys34/Lys525 adductome of human serum albumin. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 95:103966. [PMID: 36067935 PMCID: PMC9757949 DOI: 10.1016/j.etap.2022.103966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
We investigated whether exposure to carcinogenic diesel engine exhaust (DEE) was associated with altered adduct levels in human serum albumin (HSA) residues. Nano-liquid chromatography-high resolution mass spectrometry (nLC-HRMS) was used to measure adducts of Cys34 and Lys525 residues in plasma samples from 54 diesel engine factory workers and 55 unexposed controls. An untargeted adductomics and bioinformatics pipeline was used to find signatures of Cys34/Lys525 adductome modifications. To identify adducts that were altered between DEE-exposed and unexposed participants, we used an ensemble feature selection approach that ranks and combines findings from linear regression and penalized logistic regression, then aggregates the important findings with those determined by random forest. We detected 40 Cys34 and 9 Lys525 adducts. Among these findings, we found evidence that 6 Cys34 adducts were altered between DEE-exposed and unexposed participants (i.e., 841.75, 851.76, 856.10, 860.77, 870.43, and 913.45). These adducts were biologically related to antioxidant activity.
Collapse
Affiliation(s)
- Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA.
| | - Partow Imani
- School of Public Health, University of California, Berkeley, CA, USA
| | - Hasmik Grigoryan
- School of Public Health, University of California, Berkeley, CA, USA
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Yufei Dai
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Batel Blechter
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Mohammad L Rahman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Huawei Duan
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Ye
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowei Jia
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Bin
- National Institute of Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - George Downward
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Kees Meliefste
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Shuguang Leng
- Cancer Control and Population Sciences, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA; Division of Epidemiology, Biostatistics, and Preventive Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Dianzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Jun Xu
- School of Public Health, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Baosen Zhou
- China Medical University, Shenyang, Liaoning, China
| | - H Dean Hosgood
- Division of Epidemiology, Albert Einstein College of Medicine, New York, NY, USA
| | - Roel Vermeulen
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
27
|
Lewandowska A, Lewandowski T, Zych B, Papp K, Zrubcová D, Apay SE, Nagórska M. Risk Factors for the Diagnosis of Lung Cancer in Poland: A Large-Scale, Population-Based Case-Control Study. Asian Pac J Cancer Prev 2022; 23:3299-3307. [PMID: 36308352 PMCID: PMC9924324 DOI: 10.31557/apjcp.2022.23.10.3299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE Lung cancer is one of the most common and deadly malignant neoplasms. Currently, it is one of the main causes of cancer deaths worldwide. The study aimed to identify and evaluate patient characteristics, demographic and lifestyle factors that are associated with lung cancer at diagnosis. METHODS The study included 400 patients diagnosed with lung cancer and 400 within the control group. The research was based on a clinical, direct, individual, structured, in-depth and focused interview. Assessment of activity and BMI was used according to WHO recommendations, as well as the expert system. RESULTS The mean age of the patients was 74.53 ± 7.86 years, while in the control group 59.5 (7.93). There was a strong positive relationship between the incidence of tuberculosis and chronic obstructive pulmonary disease and the risk of lung cancer (p <0.001). The risk of lung cancer was significant in the case of smoking 20 or more than 20 cigarettes a day and smoking for more than 20 years (p = 0.01). CONCLUSIONS Active and passive smoking, are a leading risk factor for lung cancer, which shows that understanding of the long-term and fatal effects of smoking is still very low in society. No significant correlation has been found between lifestyle and risk of lung cancer. However, there was a strong positive correlation between tuberculosis and chronic obstructive pulmonary disease and the risk of lung cancer. Occupation is a predisposing factor for lung cancer occurrence.
Collapse
Affiliation(s)
- Anna Lewandowska
- Institute of Healthcare, State School of Technology and Economics, 37-500 Jaroslaw, Poland. ,For Correspondence:
| | - Tomasz Lewandowski
- Institute of Technical Engineering, State School of Technology and Economics in Jaroslaw, 37-500 Jaroslaw, Poland.
| | - Barbara Zych
- Institute of Health Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland.
| | - Katalin Papp
- Faculty of Health, University of Debrecen, Sóstói út 2-4 4400 Nyíregyháza, Hungary.
| | - Dana Zrubcová
- Faculty of Social Sciences and Health Care Constantine the Philosopher, University in Nitra, Kraskova 1 949 74 Nitra, Slovak Republic.
| | - Serap Ejder Apay
- Faculty of Health Science, Midwifery Department, Ataturk University, Bölümü 25240 Erzurum, Turkey.
| | - Małgorzata Nagórska
- Institute of Medical Sciences, Medical College of Rzeszow University, 35-310 Rzeszow, Poland.
| |
Collapse
|
28
|
Xue Y, Wang L, Zhang Y, Zhao Y, Liu Y. Air pollution: A culprit of lung cancer. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128937. [PMID: 35452993 DOI: 10.1016/j.jhazmat.2022.128937] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/30/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Air pollution is a global health problem, especially in the context of rapid economic development and the expansion of urbanization. Herein, we discuss the harmful effects of outdoor and indoor pollution on the lungs. Ambient particulate matters (PMs) from industrial and vehicle exhausts is associated with lung cancer. Workers exposed to asbestos, polycyclic aromatic hydrocarbons (PAHs), and toxic metals are also likely to develop lung cancer. Indoors, cooking fumes, second-hand smoke, and radioactive products from house decoration materials play roles in the development of lung cancer. Bacteria and viruses can also be detrimental to health and are important risk factors in lung inflammation and cancer. Specific effects of lung cancer caused by air pollution are discussed in detail, including inflammation, DNA damage, and epigenetic regulation. In addition, advanced materials for personal protection, as well as the current government policies to prevent air pollution, are summarized. This review provides a basis for future research on the relationship between lung cancer and air pollution.
Collapse
Affiliation(s)
- Yueguang Xue
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Liuxiang Wang
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yiming Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; Henan Institute of advanced technology, Zhengzhou University, Zhengzhou 450052, PR China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510700, PR China.
| | - Ying Liu
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nano safety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, PR China; GBA National Institute for Nanotechnology Innovation, Guangzhou, Guangdong 510700, PR China.
| |
Collapse
|
29
|
Targeting the alternative oxidase (AOX) for human health and food security, a pharmaceutical and agrochemical target or a rescue mechanism? Biochem J 2022; 479:1337-1359. [PMID: 35748702 PMCID: PMC9246349 DOI: 10.1042/bcj20180192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 11/25/2022]
Abstract
Some of the most threatening human diseases are due to a blockage of the mitochondrial electron transport chain (ETC). In a variety of plants, fungi, and prokaryotes, there is a naturally evolved mechanism for such threats to viability, namely a bypassing of the blocked portion of the ETC by alternative enzymes of the respiratory chain. One such enzyme is the alternative oxidase (AOX). When AOX is expressed, it enables its host to survive life-threatening conditions or, as in parasites, to evade host defenses. In vertebrates, this mechanism has been lost during evolution. However, we and others have shown that transfer of AOX into the genome of the fruit fly and mouse results in a catalytically engaged AOX. This implies that not only is the AOX a promising target for combating human or agricultural pathogens but also a novel approach to elucidate disease mechanisms or, in several cases, potentially a therapeutic cure for human diseases. In this review, we highlight the varying functions of AOX in their natural hosts and upon xenotopic expression, and discuss the resulting need to develop species-specific AOX inhibitors.
Collapse
|
30
|
Singh N, Arora N. Diesel exhaust exposure in mice induces pulmonary fibrosis by TGF-β/Smad3 signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150623. [PMID: 34610407 DOI: 10.1016/j.scitotenv.2021.150623] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Epidemiological studies suggest increased risk of lung cancer associated with diesel exhaust (DE) exposure. However, DE-induced lung fibrosis may lead to cancer and needs investigation. OBJECTIVES To study the mechanism involved in the initiation of DE- induced lung fibrosis. METHODS C57BL/6 mice were exposed to DE for 30 min/day for 5 days/weeks for 8 weeks. Pulmonary function test was performed to measure lung function. Mice were euthanized to collect BALF, blood, and lung tissue. BALF was used for cell count and cytokine analysis. Lung tissue slides were stained to examine structural integrity. RNA from lung tissue was used for RT-PCR. Immunoblots were performed to study fibrosis and EMT pathway. RESULTS Mice exposed to DE increase lung resistance and tissue elastance with decrease in inspiratory capacity (p < 0.05) suggesting lung function impairment. BALF showed significantly increased macrophages, neutrophils and monocytes (p < 0.01). Additionally, there was an increase in inflammation and alveolar wall thickening in lungs (p < 0.01) correlates with cellular infiltration. Macrophages had black soot deposition in lung tissue of DE exposed mice. Lung section staining revealed increase in mucus producing goblet cells for clearance of soot in lung. DE exposed lung showed increased collagen deposition and hydroxyproline residue (p < 0.01). Repetitive exposure of DE in mice lead to tissue remodeling in lung, demonstrated by fibrotic foci and smooth muscles. A significant increase in α-SMA and fibronectin (p < 0.05) in lung indicate progression of pulmonary fibrosis. TGF-β/Smad3 signaling was activated with increase in P-smad3 expression in DE exposed mice. Decreased expression of E-cadherin and increased vimentin (p < 0.05) in lungs of DE exposed mice indicate epithelial to mesenchymal transition. CONCLUSION DE exposure to mice induced lung injury and pulmonary fibrosis thereby remodeling tissue. The study demonstrates TGF-β/SMAD3 pathway involvement with an activation of EMT in DE exposed mice.
Collapse
Affiliation(s)
- Naresh Singh
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Naveen Arora
- Allergy and Immunology Section, CSIR-Institute of Genomics and Integrative Biology, Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
31
|
Effect of Ag loading on praseodymium doped ceria catalyst for soot oxidation activity. KOREAN J CHEM ENG 2022. [DOI: 10.1007/s11814-021-0933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Interaction between occupational exposure to diesel exhaust and tobacco smoking in determining lung cancer risk: a meta-analysis. Eur J Cancer Prev 2022; 31:1-6. [PMID: 34545021 DOI: 10.1097/cej.0000000000000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND While an association between exposure to diesel exhaust (DE) and risk of lung cancer has been reported in several studies, its interaction with tobacco smoking in determining lung cancer risk is not well characterized. This study aims at performing a systematic review and meta-analysis of results of epidemiology studies on this. METHODS Studies included in the systematic review were identified from PubMed, Scopus, and Embase, without limitation of year of publication or language. Two reviewers independently reviewed the studies and abstracted relevant data from selected studies, applied a customized quality assessment tool and calculated the relative risks (RRs) and 95% confidence intervals (CIs) for the interaction between DE exposure and tobacco smoking on a multiplicative scale. Next, a random-effects meta-analysis of the interaction RR was conducted. RESULTS Seven studies were included in the meta-analysis, of which two were cohort and five case-control studies. Results on the interaction were heterogeneous (I2 = 45.6%). The summary RR for interaction was 0.79 (95% CI, 0.42-1.46). There was no indication of publication bias. There was no increased risk of lung cancer among non-smoking workers exposed to DE. CONCLUSIONS This meta-analysis suggested a less-than-multiplicative effect between DE exposure and tobacco smoking in determining lung cancer risk, but the hypothesis of multiplicative interaction cannot be rejected. The small number of relevant studies and the high heterogeneity among them prevent from definite conclusions.
Collapse
|
33
|
Rahman ML, Bassig BA, Dai Y, Hu W, Wong JYY, Blechter B, Hosgood HD, Ren D, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Zhou B, Yang J, Ye M, Jia X, Meng T, Bin P, Silverman DT, Vermeulen R, Rothman N, Zheng Y, Lan Q. Proteomic analysis of serum in workers exposed to diesel engine exhaust. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:18-28. [PMID: 34894159 DOI: 10.1002/em.22469] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/25/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
Diesel engine exhaust (DEE) is classified as a Group 1 human carcinogen. Using a targeted proteomics approach, we aimed to identify proteins associated with DEE and characterize these markers to understand the mechanisms of DEE-induced carcinogenicity. In this cross-sectional molecular epidemiology study, we measured elemental carbon (EC) using a personal air monitor and quantified 1317 targeted proteins in the serum using the SOMAScan assay (SOMALogic) among 19 diesel exposed factory workers and 19 unexposed controls. We used linear regressions to identify proteins associated with DEE and examined their exposure-response relationship across levels of EC using linear trend tests. We further examined pathway enrichment of DEE-related proteins using MetaCore. Occupational exposure to DEE was associated with altered levels of 22 serum proteins (permutation p < .01). Of these, 13 proteins (CXCL11, HAPLN1, FLT4, CD40LG, PES1, IGHE.IGK..IGL, TNFSF9, PGD, NAGK, CCL25, CCL4L1, PDXK, and PLA2G1B) showed an exposure-response relationship with EC (p trend < .01), with serum levels of all but PLA2G1B declining with increasing air levels of EC. For instance, C-X-C Motif Chemokine Ligand 11 (CXCL11) showed the most significant association with DEE (β = -0.25; permutation p = .00004), where mean serum levels were 4121.1, 2356.7, and 2298.8 relative fluorescent units among the unexposed, lower exposed (median, range : 56.9, 40.2-62.1 μg/m3 EC), and higher exposed (median, range of EC: 72.9, 66.9-107.7 μg/m3 EC) groups, respectively (p trend = .0005). Pathway analysis suggested that these proteins are enriched in pathways related to inflammation and immune regulation. Our study suggests that DEE exposure is associated with altered serum proteins, which play a role in inflammation and immune regulation.
Collapse
Affiliation(s)
- Mohammad L Rahman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Bryan A Bassig
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Yufei Dai
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Jason Y Y Wong
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Batel Blechter
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - H Dean Hosgood
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Danzhi Ren
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Huawei Duan
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yong Niu
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Xu
- School of Public Health, Li Ka Shing (LKS) Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention, Chaoyang, Liaoning, China
| | - Meng Ye
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaowei Jia
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Meng
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ping Bin
- Key laboratory of Chemical Safety and Health, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland, USA
| |
Collapse
|
34
|
Cheng ES, Weber M, Steinberg J, Yu XQ. Lung cancer risk in never-smokers: An overview of environmental and genetic factors. Chin J Cancer Res 2021; 33:548-562. [PMID: 34815629 PMCID: PMC8580800 DOI: 10.21147/j.issn.1000-9604.2021.05.02] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/17/2021] [Indexed: 01/22/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality globally, accounting for 1.8 million deaths in 2020. While the vast majority are caused by tobacco smoking, 15%-25% of all lung cancer cases occur in lifelong never-smokers. The International Agency for Research on Cancer (IARC) has classified multiple agents with sufficient evidence for lung carcinogenesis in humans, which include tobacco smoking, as well as several environmental exposures such as radon, second-hand tobacco smoke, outdoor air pollution, household combustion of coal and several occupational hazards. However, the IARC evaluation had not been stratified based on smoking status, and notably lung cancer in never-smokers (LCINS) has different epidemiological, clinicopathologic and molecular characteristics from lung cancer in ever-smokers. Among several risk factors proposed for the development of LCINS, environmental factors have the most available evidence for their association with LCINS and their roles cannot be overemphasized. Additionally, while initial genetic studies largely focused on lung cancer as a whole, recent studies have also identified genetic risk factors for LCINS. This article presents an overview of several environmental factors associated with LCINS, and some of the emerging evidence for genetic factors associated with LCINS. An increased understanding of the risk factors associated with LCINS not only helps to evaluate a never-smoker's personal risk for lung cancer, but also has important public health implications for the prevention and early detection of the disease. Conclusive evidence on causal associations could inform longer-term policy reform in a range of areas including occupational health and safety, urban design, energy use and particle emissions, and the importance of considering the impacts of second-hand smoke in tobacco control policy.
Collapse
Affiliation(s)
- Elvin S Cheng
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Marianne Weber
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Julia Steinberg
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| | - Xue Qin Yu
- The Daffodil Centre, the University of Sydney, a joint venture with Cancer Council NSW, Sydney, NSW 2011, Australia
| |
Collapse
|
35
|
Wong JY, Vermeulen R, Dai Y, Hu W, Martin WK, Warren SH, Liberatore HK, Ren D, Duan H, Niu Y, Xu J, Fu W, Meliefste K, Yang J, Ye M, Jia X, Meng T, Bassig BA, Hosgood HD, Choi J, Rahman ML, Walker DI, Zheng Y, Mumford J, Silverman DT, Rothman N, DeMarini DM, Lan Q. Elevated urinary mutagenicity among those exposed to bituminous coal combustion emissions or diesel engine exhaust. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:458-470. [PMID: 34331495 PMCID: PMC8511344 DOI: 10.1002/em.22455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Urinary mutagenicity reflects systemic exposure to complex mixtures of genotoxic/carcinogenic agents and is linked to tumor development. Coal combustion emissions (CCE) and diesel engine exhaust (DEE) are associated with cancers of the lung and other sites, but their influence on urinary mutagenicity is unclear. We investigated associations between exposure to CCE or DEE and urinary mutagenicity. In two separate cross-sectional studies of nonsmokers, organic extracts of urine were evaluated for mutagenicity levels using strain YG1041 in the Salmonella (Ames) mutagenicity assay. First, we compared levels among 10 female bituminous (smoky) coal users from Laibin, Xuanwei, China, and 10 female anthracite (smokeless) coal users. We estimated exposure-response relationships using indoor air concentrations of two carcinogens in CCE relevant to lung cancer, 5-methylchrysene (5MC), and benzo[a]pyrene (B[a]P). Second, we compared levels among 20 highly exposed male diesel factory workers and 15 unexposed male controls; we evaluated exposure-response relationships using elemental carbon (EC) as a DEE-surrogate. Age-adjusted linear regression was used to estimate associations. Laibin smoky coal users had significantly higher average urinary mutagenicity levels compared to smokeless coal users (28.4 ± 14.0 SD vs. 0.9 ± 2.8 SD rev/ml-eq, p = 2 × 10-5 ) and a significant exposure-response relationship with 5MC (p = 7 × 10-4 ). DEE-exposed workers had significantly higher urinary mutagenicity levels compared to unexposed controls (13.0 ± 10.1 SD vs. 5.6 ± 4.4 SD rev/ml-eq, p = .02) and a significant exposure-response relationship with EC (p-trend = 2 × 10-3 ). Exposure to CCE and DEE is associated with urinary mutagenicity, suggesting systemic exposure to mutagens, potentially contributing to cancer risk and development at various sites.
Collapse
Affiliation(s)
- Jason Y.Y. Wong
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville,
Maryland
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Division of
Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
| | - Yufei Dai
- Key Laboratory of Chemical Safety and Health, National
Institute of Occupational Health and Poison Control, Chinese Center for Disease
Control and Prevention, Beijing, China
| | - Wei Hu
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville,
Maryland
| | - W. Kyle Martin
- Curriculum in Toxicology and Environmental Medicine,
University of North Carolina, Chapel Hill, North Carolina
| | - Sarah H. Warren
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina
| | - Hannah K. Liberatore
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina
| | - Dianzhi Ren
- Chaoyang Center for Disease Control and Prevention,
Chaoyang, Liaoning, China
| | - Huawei Duan
- Key Laboratory of Chemical Safety and Health, National
Institute of Occupational Health and Poison Control, Chinese Center for Disease
Control and Prevention, Beijing, China
| | - Yong Niu
- Key Laboratory of Chemical Safety and Health, National
Institute of Occupational Health and Poison Control, Chinese Center for Disease
Control and Prevention, Beijing, China
| | - Jun Xu
- Hong Kong University, Hong Kong
| | - Wei Fu
- Chaoyang Center for Disease Control and Prevention,
Chaoyang, Liaoning, China
| | - Kees Meliefste
- Institute for Risk Assessment Sciences, Division of
Environmental Epidemiology, Utrecht University, Utrecht, The Netherlands
| | - Jufang Yang
- Chaoyang Center for Disease Control and Prevention,
Chaoyang, Liaoning, China
| | - Meng Ye
- Key Laboratory of Chemical Safety and Health, National
Institute of Occupational Health and Poison Control, Chinese Center for Disease
Control and Prevention, Beijing, China
| | - Xiaowei Jia
- Key Laboratory of Chemical Safety and Health, National
Institute of Occupational Health and Poison Control, Chinese Center for Disease
Control and Prevention, Beijing, China
| | - Tao Meng
- Key Laboratory of Chemical Safety and Health, National
Institute of Occupational Health and Poison Control, Chinese Center for Disease
Control and Prevention, Beijing, China
| | - Bryan A. Bassig
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville,
Maryland
| | - H. Dean Hosgood
- Division of Epidemiology, Albert Einstein College of
Medicine, New York, New York
| | - Jiyeon Choi
- Laboratory of Translational Genomics, Division of Cancer
Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Mohammad L. Rahman
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville,
Maryland
| | - Douglas I. Walker
- Department of Environmental Medicine and Public Health,
Icahn School of Medicine at Mount Sinai, New York, New York
| | - Yuxin Zheng
- Key Laboratory of Chemical Safety and Health, National
Institute of Occupational Health and Poison Control, Chinese Center for Disease
Control and Prevention, Beijing, China
| | - Judy Mumford
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina
| | - Debra T. Silverman
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville,
Maryland
| | - Nathaniel Rothman
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville,
Maryland
| | - David M. DeMarini
- Office of Research and Development, U.S. Environmental
Protection Agency, Research Triangle Park, North Carolina
| | - Qing Lan
- Occupational and Environmental Epidemiology Branch,
Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville,
Maryland
| |
Collapse
|
36
|
Faber SC, McNabb NA, Ariel P, Aungst ER, McCullough SD. Exposure Effects Beyond the Epithelial Barrier: Transepithelial Induction of Oxidative Stress by Diesel Exhaust Particulates in Lung Fibroblasts in an Organotypic Human Airway Model. Toxicol Sci 2021; 177:140-155. [PMID: 32525552 DOI: 10.1093/toxsci/kfaa085] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In vitro bronchial epithelial monoculture models have been pivotal in defining the adverse effects of inhaled toxicant exposures; however, they are only representative of one cellular compartment and may not accurately reflect the effects of exposures on other cell types. Lung fibroblasts exist immediately beneath the bronchial epithelial barrier and play a central role in lung structure and function, as well as disease development and progression. We tested the hypothesis that in vitro exposure of a human bronchial epithelial cell barrier to the model oxidant diesel exhaust particulates caused transepithelial oxidative stress in the underlying lung fibroblasts using a human bronchial epithelial cell and lung fibroblast coculture model. We observed that diesel exhaust particulates caused transepithelial oxidative stress in underlying lung fibroblasts as indicated by intracellular accumulation of the reactive oxygen species hydrogen peroxide, oxidation of the cellular antioxidant glutathione, activation of NRF2, and induction of oxidative stress-responsive genes. Further, targeted antioxidant treatment of lung fibroblasts partially mitigated the oxidative stress response gene expression in adjacent human bronchial epithelial cells during diesel exhaust particulate exposure. This indicates that exposure-induced oxidative stress in the airway extends beyond the bronchial epithelial barrier and that lung fibroblasts are both a target and a mediator of the adverse effects of inhaled chemical exposures despite being separated from the inhaled material by an epithelial barrier. These findings illustrate the value of coculture models and suggest that transepithelial exposure effects should be considered in inhalation toxicology research and testing.
Collapse
Affiliation(s)
- Samantha C Faber
- Curriculum in Toxicology and Environmental Medicine, UNC Chapel Hill, Chapel Hill, North Carolina 27599
| | - Nicole A McNabb
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| | - Pablo Ariel
- Microscopy Services Laboratory, Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Emily R Aungst
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| | - Shaun D McCullough
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Chapel Hill, North Carolina 27599
| |
Collapse
|
37
|
High-Ambient Air Pollution Exposure Among Never Smokers Versus Ever Smokers With Lung Cancer. J Thorac Oncol 2021; 16:1850-1858. [PMID: 34256112 DOI: 10.1016/j.jtho.2021.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Air pollution may play an important role in the development of lung cancer in people who have never smoked, especially among East Asian women. The aim of this study was to compare cumulative ambient air pollution exposure between ever and never smokers with lung cancer. METHODS A consecutive case series of never and ever smokers with newly diagnosed lung cancer were compared regarding their sex, race, and outdoor and household air pollution exposure. Using individual residential history, cumulative exposure to outdoor particulate matter (PM2.5) in a period of 20 years was quantified with a high-spatial resolution global exposure model. RESULTS Of the 1005 patients with lung cancer, 56% were females and 33% were never smokers. Compared with ever smokers with lung cancer, never smokers with lung cancer were significantly younger, more frequently Asian, less likely to have chronic obstructive pulmonary disease or a family history of lung cancer, and had higher exposure to outdoor PM2.5 but lower exposure to secondhand smoke. Multivariable logistic regression analysis revealed a significant association with never-smoking patients with lung cancer and being female (OR = 4.01, 95% confidence interval [CI]: 2.76-5.82, p < 0.001), being Asian (ORAsian versus non-Asian = 6.48, 95% CI: 4.42-9.50, p < 0.001), and having greater exposure to air pollution (ORln_PM2.5 = 1.79, 95% CI: 1.10-7.2.90, p = 0.019). CONCLUSIONS Compared with ever-smoking patients with lung cancer, never-smoking patients had strong associations with being female, being Asian, and having air pollution exposures. Our results suggest that incorporation of cumulative exposure to ambient air pollutants be considered when assessing lung cancer risk in combination with traditional risk factors.
Collapse
|
38
|
García-Valdivieso G, Arenas-Sánchez E, Horta-Fraijo P, Simakov A, Navarro-Contreras HR, Acosta B. Ag@ZnO/MWCNT ternary nanocomposite as an active and stable catalyst for the 4-nitrophenol reduction in water. NANOTECHNOLOGY 2021; 32:315713. [PMID: 33873162 DOI: 10.1088/1361-6528/abf96b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/19/2021] [Indexed: 06/12/2023]
Abstract
The nitroaromatic compounds, known as organic pollutants, have arising attention due to their carcinogenic character, highly dangerous to human health. In this work, the Ag@ZnO/MWCNT ternary nanocomposite synthesized via conjugation of sonochemical and solvothermal treatments manifests high performance in the reduction of 4-nitrophenol in the aqueous media (TOF value of 246 min-1μmol metal-1). The incorporation of MWCNT onto the nanocomposite structure favored the reusing of the catalysts even after eight consecutive catalytic runs without catalysts cleaning nor product removal. Obtained samples were characterized by XRD, TEM, UV-vis, Raman and FTIR spectroscopies. It was found that ultrasonic treatment at relatively moderate conditions leads to functionalization of MWCNT, the appearance of C=C and OH groups and change of electronic properties of Ag@ZnO/MWCNT composite which provide its stable material dispersion in aqueous solution and high catalytic performance in the 4-nitrophenol reduction. This technique may be effectively applied for the functionalization of carbon including materials for their usage in an aqueous media.
Collapse
Affiliation(s)
- Guadalupe García-Valdivieso
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Eduardo Arenas-Sánchez
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Patricia Horta-Fraijo
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Andrey Simakov
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Km. 107 Carretera Tijuana a Ensenada, C.P. 22860, Ensenada, Baja California, Mexico
| | - Hugo R Navarro-Contreras
- Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| | - Brenda Acosta
- Cátedra-CONACYT, Coordinación para la Innovación y la Aplicación de la Ciencia y la Tecnología, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona #550, Col. Lomas 2a. Sección, CP 78210, San Luis Potosí, SLP, Mexico
| |
Collapse
|
39
|
Ciabattini M, Rizzello E, Lucaroni F, Palombi L, Boffetta P. Systematic review and meta-analysis of recent high-quality studies on exposure to particulate matter and risk of lung cancer. ENVIRONMENTAL RESEARCH 2021; 196:110440. [PMID: 33181136 DOI: 10.1016/j.envres.2020.110440] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Several aspects of the association between exposure to air pollution and risk of lung cancer remain unclear. OBJECTIVE We aimed at performing a meta-analysis of high-quality cohort studies on exposure to particulate matter (PM) 10 and PM2.5 and risk of lung cancer. METHODS We identified cohort studies published since 2004, that reported risk estimates of lung cancer for exposure to PM2.5 and PM10 adjusted for tobacco smoking and socioeconomic status, and conducted a meta-analysis based on random-effects models, including stratification by outcome, sex, country, tobacco smoking, and age. RESULTS Results on PM2.5 exposure were available from 15 studies; the summary relative risk (RR) for an increase of 10 μg/m3 was 1.16 (95% confidence interval [CI] 1.09, 1.23). The corresponding RR for PM10 exposure was 1.23 (95 CI 1.05, 1.40; seven studies). A higher risk was suggested in studies based on lung cancer mortality and in studies conducted in East Asia, while no difference was shown according to sex, smoking status or age. There was no suggestion of publication bias. CONCLUSIONS Our meta-analysis supported the hypothesis of an association between exposure to PM2.5 or PM10 and risk of lung cancer, and provided evidence that the magnitude of the risk might be higher than previously estimated, and might be modified by outcome and geographic region.
Collapse
Affiliation(s)
- Marco Ciabattini
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Emanuele Rizzello
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Lucaroni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Leonardo Palombi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Boffetta
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy; Stony Brook Cancer Center, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
40
|
Vermeulen R, Portengen L, Lubin J, Stewart P, Blair A, Attfield MD, Silverman DT. The impact of alternative historical extrapolations of diesel exhaust exposure and radon in the Diesel Exhaust in Miners Study (DEMS). Int J Epidemiol 2021; 49:459-466. [PMID: 31539056 PMCID: PMC7266543 DOI: 10.1093/ije/dyz189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2019] [Indexed: 11/28/2022] Open
Abstract
Background Previous results from the Diesel Exhaust in Miners Study (DEMS) demonstrated a positive exposure–response relation between lung cancer and respirable elemental carbon (REC), a key surrogate for diesel exhaust exposure. Two issues have been raised regarding DEMS: (i) the use of historical carbon monoxide (CO) measurements to calibrate models used for estimating historical exposures to REC in the DEMS exposure assessment; and (ii) potential confounding by radon. Methods We developed alternative REC estimates using models that did not rely on CO for calibration, but instead relied on estimated use of diesel equipment, mine ventilation rates and changes in diesel engine emission rates over time. These new REC estimates were used to quantify cumulative REC exposure for each subject in the nested case-control study. We conducted conditional logistic regression to estimate odds ratios (ORs) and 95% confidence intervals for lung cancer. To evaluate the impact of including radon as a potential confounder, we estimated ORs for average REC intensity adjusted for cumulative radon exposure in underground miners. Results Validation of the new REC exposure estimates indicated that they overestimated historical REC by 200–400%, compared with only 10% for the original estimates. Effect estimates for lung cancer using these alternative REC exposures or adjusting for radon typically changed by <10% when compared with the original estimates. Conclusions These results emphasize the robustness of the DEMS findings, support the use of CO for model calibration and confirm that radon did not confound the DEMS estimates of the effect of diesel exposure on lung cancer mortality.
Collapse
Affiliation(s)
- Roel Vermeulen
- Formerly, National Cancer Institute, Rockville, MD, USA.,Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Jay Lubin
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Patricia Stewart
- Formerly, National Cancer Institute, Rockville, MD, USA.,Stewart Exposure Assessments, LLC, Arlington, VA, USA
| | - Aaron Blair
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Michael D Attfield
- Formerly, National Institute for Occupational Safety and Health, Morgantown, WA, USA
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
41
|
Abstract
Selected occupational populations are at the highest risk of lung cancer, because they smoke at increased rates and are concurrently exposed to workplace lung carcinogens. Low-dose computed tomography (CT)-based lung cancer screening has an enormous potential to reduce lung cancer mortality in these populations, as shown both in the lung cancer screening studies in the general population and in studies of workers at high risk of lung cancer. Pulmonologists can play a key role in identifying workers at high risk of lung cancer and ensuring that they are offered annual low-dose CT scans for early lung cancer detection.
Collapse
Affiliation(s)
- Steven B Markowitz
- Barry Commoner Center for Health and the Environment, Queens College, City University of New York, 65-30 Kissena Boulevard, Remsen Hall, Queens, NY 11367, USA.
| | - Brittany Dickens
- Barry Commoner Center for Health and the Environment, Queens College, City University of New York, 65-30 Kissena Boulevard, Remsen Hall, Queens, NY 11367, USA
| |
Collapse
|
42
|
Blechter B, Wong JYY, Agnes Hsiung C, Hosgood HD, Yin Z, Shu XO, Zhang H, Shi J, Song L, Song M, Zheng W, Wang Z, Caporaso N, Burdette L, Yeager M, Berndt SI, Teresa Landi M, Chen CJ, Chang GC, Hsiao CF, Tsai YH, Chen KY, Huang MS, Su WC, Chen YM, Chien LH, Chen CH, Yang TY, Wang CL, Hung JY, Lin CC, Perng RP, Chen CY, Chen KC, Li YJ, Yu CJ, Chen YS, Chen YH, Tsai FY, Jie Seow W, Bassig BA, Hu W, Ji BT, Wu W, Guan P, He Q, Gao YT, Cai Q, Chow WH, Xiang YB, Lin D, Wu C, Wu YL, Shin MH, Hong YC, Matsuo K, Chen K, Pik Wong M, Lu D, Jin L, Wang JC, Seow A, Wu T, Shen H, Fraumeni JF, Yang PC, Chang IS, Zhou B, Chanock SJ, Rothman N, Chatterjee N, Lan Q. Sub-multiplicative interaction between polygenic risk score and household coal use in relation to lung adenocarcinoma among never-smoking women in Asia. ENVIRONMENT INTERNATIONAL 2021; 147:105975. [PMID: 33385923 PMCID: PMC8378844 DOI: 10.1016/j.envint.2020.105975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/07/2020] [Accepted: 07/10/2020] [Indexed: 06/01/2023]
Abstract
We previously identified 10 lung adenocarcinoma susceptibility loci in a genome-wide association study (GWAS) conducted in the Female Lung Cancer Consortium in Asia (FLCCA), the largest genomic study of lung cancer among never-smoking women to date. Furthermore, household coal use for cooking and heating has been linked to lung cancer in Asia, especially in Xuanwei, China. We investigated the potential interaction between genetic susceptibility and coal use in FLCCA. We analyzed GWAS-data from Taiwan, Shanghai, and Shenyang (1472 cases; 1497 controls), as well as a separate study conducted in Xuanwei (152 cases; 522 controls) for additional analyses. We summarized genetic susceptibility using a polygenic risk score (PRS), which was the weighted sum of the risk-alleles from the 10 previously identified loci. We estimated associations between a PRS, coal use (ever/never), and lung adenocarcinoma with multivariable logistic regression models, and evaluated potential gene-environment interactions using likelihood ratio tests. There was a strong association between continuous PRS and lung adenocarcinoma among never coal users (Odds Ratio (OR) = 1.69 (95% Confidence Interval (CI) = 1.53, 1.87), p=1 × 10-26). This effect was attenuated among ever coal users (OR = 1.24 (95% CI: 1.03, 1.50), p = 0.02, p-interaction = 6 × 10-3). We observed similar attenuation among coal users from Xuanwei. Our study provides evidence that genetic susceptibility to lung adenocarcinoma among never-smoking Asian women is weaker among coal users. These results suggest that lung cancer pathogenesis may differ, at least partially, depending on exposure to coal combustion products. Notably, these novel findings are among the few instances of sub-multiplicative gene-environment interactions in the cancer literature.
Collapse
Affiliation(s)
- Batel Blechter
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Jason Y Y Wong
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Chao Agnes Hsiung
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - H Dean Hosgood
- Department of Epidemiology & Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Han Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Minsun Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA; Department of Statistics, Sookmyung Women's University, Seoul, Republic of Korea
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA; Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Neil Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Laurie Burdette
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA; Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Frederick, MD, USA; Leidos Biomedical Research, Inc., Frederick, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Maria Teresa Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Chien-Jen Chen
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Gee-Chen Chang
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chin-Fu Hsiao
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Ying-Huang Tsai
- Division of Pulmonary and Critical Care Medicine, Chiayi Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Kuan-Yu Chen
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Ming-Shyan Huang
- Department of Internal Medicine, E-Da Cancer Hospital, School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Wu-Chou Su
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Li-Hsin Chien
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Chung-Hsing Chen
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chih-Liang Wang
- Department of Pulmonary and Critical Care, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Jen-Yu Hung
- Department of Internal Medicine, Kaohsiung Medical University Hospital, School of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Chung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Reury-Perng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chih-Yi Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan; Division of Thoracic Surgery, Department of Surgery, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Kun-Chieh Chen
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yao-Jen Li
- Genomic Research Center, Academia Sinica, Taipei, Taiwan
| | - Chong-Jen Yu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Song Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Ying-Hsiang Chen
- Institute of Population Health Sciences, National Health Research Institutes, Zhunan, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Wei Jie Seow
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan A Bassig
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wei Hu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Bu-Tian Ji
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Wei Wu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Peng Guan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Qincheng He
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, People's Republic of China
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center and Vanderbilt-Ingram Cancer Center, Nashville, TN, USA
| | - Wong-Ho Chow
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yong-Bing Xiang
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, People's Republic of China
| | - Dongxin Lin
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Chen Wu
- Department of Etiology & Carcinogenesis and State Key Laboratory of Molecular Oncology, Cancer Institute and Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Medical Research Center and Cancer Center of Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Min-Ho Shin
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Keitaro Matsuo
- Division of Molecular Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China
| | - Maria Pik Wong
- Department of Pathology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Daru Lu
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Jiu-Cun Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China; State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Adeline Seow
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Tangchun Wu
- Department of Occupational and Environmental Health and Ministry of Education Key Lab for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Hongbing Shen
- Department of Epidemiology and Biostatistics, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China; Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, People's Republic of China
| | - Joseph F Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - I-Shou Chang
- National Institute of Cancer Research, National Health Research Institutes, Zhunan, Taiwan
| | - Baosen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, People's Republic of China
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nilanjan Chatterjee
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Qing Lan
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| |
Collapse
|
43
|
Violi A, Cormier S, Gullett B, Jansson S, Lomnicki S, Luyet C, Mayer A, Zimmermann R. Combustion by-products and their health effects: Summary of the 16th international congress. FUEL (LONDON, ENGLAND) 2021; 283:118562. [PMID: 33446939 PMCID: PMC7802799 DOI: 10.1016/j.fuel.2020.118562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The 16th International Congress on Combustion By-Products and their Health Effects (PIC2019) was held in Ann Arbor, Michigan, from July 10 to 12, 2019. For the last 28 years, this conference has served as an interdisciplinary platform for the discussion of the formation, environmental fate, health effects, policy, and remediation of combustion by-products. The technical areas for PIC2019 included mobile and stationary sources in urban environments, open fires, indoor air pollution, and halogenated pollutants. The congress was sponsored by the National Institute of Environmental Health Sciences (NIEHS), the U.S. EPA, the School of Public Health at the University of Michigan, the Civil and Environmental Engineering Department at the University of Michigan, the Mechanical Engineering Department at the University of Michigan, the Aerospace Engineering Department at the University of Michigan, and the Climate and Space Sciences and Engineering Department at the University of Michigan. Special features of the conference included a career path and round table discussion on translating research and engaging communities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Andreas Mayer
- Technik Termische Maschinen (TTM), Niederrohrdorf, Switzerland
| | | |
Collapse
|
44
|
Syafiuddin A, Chong JH, Yuniarto A, Hadibarata T. The current scenario and challenges of biodiesel production in Asian countries: A review. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100608] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Steenland K, Schubauer-Berigan M, Vermeulen R, Lunn R, Straif K, Zahm S, Stewart P, Arroyave W, Mehta S, Pearce N. Risk of Bias Assessments and Evidence Syntheses for Observational Epidemiologic Studies of Environmental and Occupational Exposures: Strengths and Limitations. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:95002. [PMID: 32924579 PMCID: PMC7489341 DOI: 10.1289/ehp6980] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Increasingly, risk of bias tools are used to evaluate epidemiologic studies as part of evidence synthesis (evidence integration), often involving meta-analyses. Some of these tools consider hypothetical randomized controlled trials (RCTs) as gold standards. METHODS We review the strengths and limitations of risk of bias assessments, in particular, for reviews of observational studies of environmental exposures, and we also comment more generally on methods of evidence synthesis. RESULTS Although RCTs may provide a useful starting point to think about bias, they do not provide a gold standard for environmental studies. Observational studies should not be considered inherently biased vs. a hypothetical RCT. Rather than a checklist approach when evaluating individual studies using risk of bias tools, we call for identifying and quantifying possible biases, their direction, and their impacts on parameter estimates. As is recognized in many guidelines, evidence synthesis requires a broader approach than simply evaluating risk of bias in individual studies followed by synthesis of studies judged unbiased, or with studies given more weight if judged less biased. It should include the use of classical considerations for judging causality in human studies, as well as triangulation and integration of animal and mechanistic data. CONCLUSIONS Bias assessments are important in evidence synthesis, but we argue they can and should be improved to address the concerns we raise here. Simplistic, mechanical approaches to risk of bias assessments, which may particularly occur when these tools are used by nonexperts, can result in erroneous conclusions and sometimes may be used to dismiss important evidence. Evidence synthesis requires a broad approach that goes beyond assessing bias in individual human studies and then including a narrow range of human studies judged to be unbiased in evidence synthesis. https://doi.org/10.1289/EHP6980.
Collapse
Affiliation(s)
- Kyle Steenland
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - R. Vermeulen
- Institute for Risk Assessment Science, University of Utrecht, Utrecht, Netherlands
| | - R.M. Lunn
- Division of the National Toxicology Program (NTP), NIEHS, Research Triangle Park, North Carolina, USA
| | - K. Straif
- Global Observatory on Pollution and Health, Boston College, Boston, Massachusetts, USA
- ISGlobal, Barcelona, Spain
| | - S. Zahm
- Shelia Zahm Consulting, Hermon, Maine, USA
| | - P. Stewart
- Stewart Exposure Assessments, LLC, Arlington, Virginia, USA
| | - W.D. Arroyave
- Integrated Laboratory Systems, Morrisville, North Carolina, USA
| | - S.S. Mehta
- Division of the National Toxicology Program (NTP), NIEHS, Research Triangle Park, North Carolina, USA
| | - N. Pearce
- London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
46
|
Ge C, Peters S, Olsson A, Portengen L, Schüz J, Almansa J, Ahrens W, Bencko V, Benhamou S, Boffetta P, Bueno-de-Mesquita B, Caporaso N, Consonni D, Demers P, Fabiánová E, Fernández-Tardón G, Field J, Forastiere F, Foretova L, Guénel P, Gustavsson P, Janout V, Jöckel KH, Karrasch S, Teresa Landi M, Lissowska J, Luce D, Mates D, McLaughlin J, Merletti F, Mirabelli D, Pándics T, Parent MÉ, Plato N, Pohlabeln H, Richiardi L, Siemiatycki J, Świątkowska B, Tardón A, Wichmann HE, Zaridze D, Straif K, Kromhout H, Vermeulen R. Diesel Engine Exhaust Exposure, Smoking, and Lung Cancer Subtype Risks. A Pooled Exposure-Response Analysis of 14 Case-Control Studies. Am J Respir Crit Care Med 2020; 202:402-411. [PMID: 32330395 PMCID: PMC7465091 DOI: 10.1164/rccm.201911-2101oc] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 04/24/2020] [Indexed: 11/16/2022] Open
Abstract
Rationale: Although the carcinogenicity of diesel engine exhaust has been demonstrated in multiple studies, little is known regarding exposure-response relationships associated with different exposure subgroups and different lung cancer subtypes.Objectives: We expanded on a previous pooled case-control analysis on diesel engine exhaust and lung cancer by including three additional studies and quantitative exposure assessment to evaluate lung cancer and subtype risks associated with occupational exposure to diesel exhaust characterized by elemental carbon (EC) concentrations.Methods: We used a quantitative EC job-exposure matrix for exposure assessment. Unconditional logistic regression models were used to calculate lung cancer odds ratios and 95% confidence intervals (CIs) associated with various metrics of EC exposure. Lung cancer excess lifetime risks (ELR) were calculated using life tables accounting for all-cause mortality. Additional stratified analyses by smoking history and lung cancer subtypes were performed in men.Measurements and Main Results: Our study included 16,901 lung cancer cases and 20,965 control subjects. In men, exposure response between EC and lung cancer was observed: odds ratios ranged from 1.09 (95% CI, 1.00-1.18) to 1.41 (95% CI, 1.30-1.52) for the lowest and highest cumulative exposure groups, respectively. EC-exposed men had elevated risks in all lung cancer subtypes investigated; associations were strongest for squamous and small cell carcinomas and weaker for adenocarcinoma. EC lung cancer exposure response was observed in men regardless of smoking history, including in never-smokers. ELR associated with 45 years of EC exposure at 50, 20, and 1 μg/m3 were 3.0%, 0.99%, and 0.04%, respectively, for both sexes combined.Conclusions: We observed a consistent exposure-response relationship between EC exposure and lung cancer in men. Reduction of workplace EC levels to background environmental levels will further reduce lung cancer ELR in exposed workers.
Collapse
Affiliation(s)
- Calvin Ge
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Susan Peters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ann Olsson
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Lützen Portengen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Joachim Schüz
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Josué Almansa
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Wolfgang Ahrens
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Vladimir Bencko
- Institute of Hygiene and Epidemiology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | | | - Paolo Boffetta
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Bas Bueno-de-Mesquita
- The National Institute for Public Health and Environmental Protection, Bilthoven, the Netherlands
| | | | - Dario Consonni
- Epidemiology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Paul Demers
- Occupational Cancer Research Centre, Cancer Care Ontario, Toronto, Ontario, Canada
| | - Eleonóra Fabiánová
- Regional Authority of Public Health, Banská Bystrica, Slovakia
- Faculty of Health, Catholic University, Ružomberok, Slovakia
| | - Guillermo Fernández-Tardón
- Fundación para la Investigación e Innovación Biomédica en el Principado de Asturias – Instituto de Investigación Sanitaria del Principado (FINBA-ISPA), Faculty of Medicine, University of Oviedo and Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Oviedo, Spain
| | - John Field
- Roy Castle Lung Cancer Research Programme, Cancer Research Centre, University of Liverpool, Liverpool, United Kingdom
| | - Francesco Forastiere
- Consiglio Nazionale delle Ricerche-Istituto per la Ricerca e l’Innovazione Biomedica (CNR-Irib), Palermo, Italy
| | | | - Pascal Guénel
- Center for research in Epidemiology and Population Health (CESP), Cancer and Environment team, Inserm U1018, University Paris-Sud, University Paris-Saclay, Villejuif, France
| | - Per Gustavsson
- The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc, Czech Republic
| | - Karl-Heinz Jöckel
- Institute for Medical Informatics, Biometry and Epidemiology, University of Duisburg-Essen, Essen, Germany
| | - Stefan Karrasch
- Institute and Outpatient Clinic for Occupational, Social and Environmental Medicine, Inner City Clinic, University Hospital of Munich, Ludwig-Maximilians-Universität, Munich, Germany
- Institute of Epidemiology, Helmholtz Zentrum München – German Research Center for Environmental Health, Neuherberg, Germany
- Comprehensive Pneumology Center Munich (CPC-M), Member of the German Center for Lung Research, Munich, Neuherberg, Germany
| | | | - Jolanta Lissowska
- The M. Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Danièle Luce
- Univ Rennes, Inserm, Ecole des hautes études en santé publique (EHESP), Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, Pointe-à-Pitre, France
| | - Dana Mates
- National Institute of Public Health, Bucharest, Romania
| | - John McLaughlin
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Franco Merletti
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and ll Centro di Riferimento per l’Epidemiologia e la Prevenzione Oncologica in Piemonte (CPO-Piemonte), Torino, Italy
| | - Dario Mirabelli
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and ll Centro di Riferimento per l’Epidemiologia e la Prevenzione Oncologica in Piemonte (CPO-Piemonte), Torino, Italy
| | | | - Marie-Élise Parent
- Institut national de la recherche scientifique, University of Quebec, Laval, Quebec, Canada
| | - Nils Plato
- The Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Hermann Pohlabeln
- Leibniz Institute for Prevention Research and Epidemiology - BIPS, Bremen, Germany
| | - Lorenzo Richiardi
- Cancer Epidemiology Unit, Department of Medical Sciences, University of Turin and ll Centro di Riferimento per l’Epidemiologia e la Prevenzione Oncologica in Piemonte (CPO-Piemonte), Torino, Italy
| | - Jack Siemiatycki
- University of Montreal Hospital Research Centre, University of Montreal, Montreal, Quebec, Canada
| | | | - Adonina Tardón
- Fundación para la Investigación e Innovación Biomédica en el Principado de Asturias – Instituto de Investigación Sanitaria del Principado (FINBA-ISPA), Faculty of Medicine, University of Oviedo and Centro de Investigación Biomédica en Red Epidemiología y Salud Pública (CIBERESP), Oviedo, Spain
| | - Heinz-Erich Wichmann
- Institut für Medizinische Informatik Biometrie Epidemiologie, Ludwig Maximilians University, Munich, Germany
- Institut für Epidemiologie, Deutsches Forschungszentrum für Gesundheit und Umwelt, Neuherberg, Germany; and
| | | | - Kurt Straif
- International Agency for Research on Cancer (IARC/WHO), Lyon, France
| | - Hans Kromhout
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
47
|
Affiliation(s)
- David C Christiani
- Department of Environmental HealthandDepartment of EpidemiologyHarvard T.H. Chan School of Public HealthBoston, Massachusettsand
- Department of MedicineMassachusetts General Hospital/Harvard Medical SchoolBoston, Massachusetts
| |
Collapse
|
48
|
Zheng F, Gonçalves FM, Abiko Y, Li H, Kumagai Y, Aschner M. Redox toxicology of environmental chemicals causing oxidative stress. Redox Biol 2020; 34:101475. [PMID: 32336668 PMCID: PMC7327986 DOI: 10.1016/j.redox.2020.101475] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/18/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Living organisms are surrounded with heavy metals such as methylmercury, manganese, cobalt, cadmium, arsenic, as well as pesticides such as deltamethrin and paraquat, or atmospheric pollutants such as quinone. Extensive studies have demonstrated a strong link between environmental pollutants and human health. Redox toxicity is proposed as one of the main mechanisms of chemical-induced pathology in humans. Acting as both a sensor of oxidative stress and a positive regulator of antioxidants, the nuclear factor erythroid 2-related factor 2 (NRF2) has attracted recent attention. However, the role NRF2 plays in environmental pollutant-induced toxicity has not been systematically addressed. Here, we characterize NRF2 function in response to various pollutants, such as metals, pesticides and atmospheric quinones. NRF2 related signaling pathways and epigenetic regulations are also reviewed.
Collapse
Affiliation(s)
- Fuli Zheng
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China; Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| | - Filipe Marques Gonçalves
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States
| | - Yumi Abiko
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan
| | - Huangyuan Li
- Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou, Fujian, 350122, China.
| | - Yoshito Kumagai
- Environmental Biology Laboratory, Faculty of Medicine, University of Tsukuba, Tsukuba, 305-8575, Japan.
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue, Bronx, NY, 10461, United States.
| |
Collapse
|
49
|
Nanodomains in cardiopulmonary disorders and the impact of air pollution. Biochem Soc Trans 2020; 48:799-811. [PMID: 32597478 PMCID: PMC7329344 DOI: 10.1042/bst20190250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 12/29/2022]
Abstract
Air pollution is a major environmental threat and each year about 7 million people reported to die as a result of air pollution. Consequently, exposure to air pollution is linked to increased morbidity and mortality world-wide. Diesel automotive engines are a major source of urban air pollution in the western societies encompassing particulate matter and diesel exhaust particles (DEP). Air pollution is envisioned as primary cause for cardiovascular dysfunction, such as ischemic heart disease, cardiac dysrhythmias, heart failure, cerebrovascular disease and stroke. Air pollution also causes lung dysfunction, such as chronic obstructive pulmonary disease (COPD), asthma, idiopathic pulmonary fibrosis (IPF), and specifically exacerbations of these diseases. DEP induces inflammation and reactive oxygen species production ultimately leading to mitochondrial dysfunction. DEP impair structural cell function and initiate the epithelial-to-mesenchymal transition, a process leading to dysfunction in endothelial as well as epithelial barrier, hamper tissue repair and eventually leading to fibrosis. Targeting cyclic adenosine monophosphate (cAMP) has been implicated to alleviate cardiopulmonary dysfunction, even more intriguingly cAMP seems to emerge as a potent regulator of mitochondrial metabolism. We propose that targeting of the mitochondrial cAMP nanodomain bear the therapeutic potential to diminish air pollutant — particularly DEP — induced decline in cardiopulmonary function.
Collapse
|
50
|
Idavain J, Lang K, Tomasova J, Lang A, Orru H. Cancer Incidence Trends in the Oil Shale Industrial Region in Estonia. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E3833. [PMID: 32481656 PMCID: PMC7312168 DOI: 10.3390/ijerph17113833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/15/2020] [Accepted: 05/23/2020] [Indexed: 02/07/2023]
Abstract
Large oil shale resources are found in Eastern Estonia, where the mineral resource is mined, excavated, and used for electricity generation and shale oil extraction. During industrial activities in the last 100 years, pollutants have been emitted in large amounts, some of which are toxic and carcinogenic. The current study aims to analyse time trends in cancer incidence in the oil shale industry-affected areas and compare them with overall cancer incidence rates and trends in Estonia. We analysed Estonian Cancer Registry data on selected cancer sites that have been previously indicated to have relationships with industrial activities like oil shale extraction. We included lung cancer, kidney cancer, urinary bladder cancer, leukaemia, breast cancer, and non-Hodgkin's lymphoma. A statistically significantly higher lung cancer age-standardized incidence rate (ASIR) was found during the study period (1992-2015) only in males in the oil shale areas as compared to males in Estonia overall: 133.6 and 95.5 per 100,000, respectively. However, there appeared to be a statistically significant (p < 0.05) decrease in the lung cancer ASIR in males in the oil shale areas (overall decrease 28.9%), whereas at the same time, there was a significant increase (p < 0.05) in non-oil shale areas (13.3%) and in Estonia overall (1.5%). Other cancer sites did not show higher ASIRs in the oil shale industrial areas compared to other areas in Estonia. Possible explanations could be improved environmental quality, socio-economic factors, and other morbidities.
Collapse
Affiliation(s)
- Jane Idavain
- Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (K.L.); (H.O.)
- Department of Health Statistics, National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia
| | - Katrin Lang
- Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (K.L.); (H.O.)
| | - Jelena Tomasova
- Estonian Health Board, Paldiski mnt 81, 10617 Tallinn, Estonia;
| | - Aavo Lang
- Institute of Biomedicine and Translational Medicine, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia;
| | - Hans Orru
- Institute of Family Medicine and Public Health, Faculty of Medicine, University of Tartu, Ravila 19, 50411 Tartu, Estonia; (K.L.); (H.O.)
- Department of Public Health and Clinical Medicine, Umea University, SE-901 87 Umea, Sweden
| |
Collapse
|