1
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. Acta Neuropathol 2024; 148:72. [PMID: 39585417 PMCID: PMC11588930 DOI: 10.1007/s00401-024-02819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/30/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, and frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD, and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI, and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin-T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8 ± 2.4%), MCI (32.8 ± 5.4%), and preclinical AD (28.3 ± 6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6 ± 2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin-T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
Affiliation(s)
- Kaleah Balcomb
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Caitlin Johnston
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tomas Kavanagh
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Dominique Leitner
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical Center, 1750 W Harrison Street, Suite 1000, Chicago, IL, 60612, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Glenda Halliday
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Department of Neurology, Grossman School of Medicine, New York University, New York, NY, 10016, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Margaret Sunde
- School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia
| | - Eleanor Drummond
- Brain and Mind Centre and School of Medical Sciences, University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
2
|
Balcomb K, Johnston C, Kavanagh T, Leitner D, Schneider J, Halliday G, Wisniewski T, Sunde M, Drummond E. SMOC1 colocalizes with Alzheimer's disease neuropathology and delays Aβ aggregation. RESEARCH SQUARE 2024:rs.3.rs-5229472. [PMID: 39574902 PMCID: PMC11581049 DOI: 10.21203/rs.3.rs-5229472/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2024]
Abstract
SMOC1 has emerged as one of the most significant and consistent new biomarkers of early Alzheimer's disease (AD). Recent studies show that SMOC1 is one of the earliest changing proteins in AD, with levels in the cerebrospinal fluid increasing many years before symptom onset. Despite this clear association with disease, little is known about the role of SMOC1 in AD or its function in the brain. Therefore, the aim of this study was to examine the distribution of SMOC1 in human AD brain tissue and to determine if SMOC1 influenced amyloid beta (Aβ) aggregation. The distribution of SMOC1 in human brain tissue was assessed in 3 brain regions (temporal cortex, hippocampus, frontal cortex) using immunohistochemistry in a cohort of 73 cases encompassing advanced AD, mild cognitive impairment (MCI), preclinical AD and cognitively normal controls. The Aβ- and phosphorylated tau-interaction with SMOC1 was assessed in control, MCI and advanced AD human brain tissue using co-immunoprecipitation, and the influence of SMOC1 on Aβ aggregation kinetics was assessed using Thioflavin T assays and electron microscopy. SMOC1 strongly colocalized with a subpopulation of amyloid plaques in AD (43.8±2.4%), MCI (32.8±5.4%) and preclinical AD (28.3±6.4%). SMOC1 levels in the brain strongly correlated with plaque load, irrespective of disease stage. SMOC1 also colocalized with a subpopulation of phosphorylated tau aggregates in AD (9.6±2.6%). Co-immunoprecipitation studies showed that SMOC1 strongly interacted with Aβ in human MCI and AD brain tissue and with phosphorylated tau in human AD brain tissue. Thioflavin T aggregation assays showed that SMOC1 significantly delayed Aβ aggregation in a dose-dependent manner, and electron microscopy confirmed that the Aβ fibrils generated in the presence of SMOC1 had an altered morphology. Overall, our results emphasize the importance of SMOC1 in the onset and progression of AD and suggest that SMOC1 may influence pathology development in AD.
Collapse
|
3
|
Dougan CE, Roberts BL, Crosby AJ, Karatsoreos IN, Peyton SR. Short-term neural and glial response to mild traumatic brain injury in the hippocampus. Biophys J 2024; 123:3346-3354. [PMID: 39091025 PMCID: PMC11480756 DOI: 10.1016/j.bpj.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/28/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
Traumatic brain injury (TBI) is an established risk factor for developing neurodegenerative disease. However, how TBI leads from acute injury to chronic neurodegeneration is limited to postmortem models. There is a lack of connections between in vitro and in vivo TBI models that can relate injury forces to both macroscale tissue damage and brain function at the cellular level. Needle-induced cavitation (NIC) is a technique that can produce small cavitation bubbles in soft tissues, which allows us to relate small strains and strain rates in living tissue to ensuing acute cell death, tissue damage, and tissue remodeling. Here, we applied NIC to mouse brain slices to create a new model of TBI with high spatial and temporal resolution. We specifically targeted the hippocampus, which is a brain region critical for learning and memory and an area in which injury causes cognitive pathologies in humans and rodent models. By combining NIC with patch-clamp electrophysiology, we demonstrate that NIC in the cornu ammonis 3 region of the hippocampus dynamically alters synaptic release onto cornu ammonis 1 pyramidal neurons in a cannabinoid 1 receptor-dependent manner. Further, we show that NIC induces an increase in extracellular matrix protein GFAP associated with neural repair that is mitigated by cannabinoid 1 receptor antagonism. Together, these data lay the groundwork for advanced approaches in understanding how TBI impacts neural function at the cellular level and the development of treatments that promote neural repair in response to brain injury.
Collapse
Affiliation(s)
- Carey E Dougan
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Chemistry and Department of Engineering, Smith College, Northampton, Massachusetts
| | - Brandon L Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Zoology & Physiology, University of Wyoming, Laramie, Wyoming; Department of Animal Science, University of Wyoming, Laramie, Wyoming
| | - Alfred J Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, Massachusetts
| | - Ilia N Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, Massachusetts.
| | - Shelly R Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts; Department of Biomedical Engineering, Tufts University, Medford, Massachusetts.
| |
Collapse
|
4
|
Gutiérrez Rico E, Joseph P, Noutsos C, Poon K. Hypothalamic and hippocampal transcriptome changes in App NL-G-F mice as a function of metabolic and inflammatory dysfunction. Neuroscience 2024; 554:107-117. [PMID: 39002757 DOI: 10.1016/j.neuroscience.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 05/20/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
The progression of Alzheimer's disease (AD) has a silent phase that predates characteristic cognitive decline and eventually leads to active cognitive deficits. Metabolism, diet, and obesity have been correlated to the development of AD but is poorly understood. The hypothalamus is a brain region that exerts homeostatic control on food intake and metabolism and has been noted to be impacted during the active phase of Alzheimer's disease. This study, in using an amyloid overexpression AppNL-G-F mouse model under normal metabolic conditions, examines blood markers in young and old male AppNL-G-F mice (n = 5) that corresponds to the silent and active phases of AD, and bulk gene expression changes in the hypothalamus and the hippocampus. The results show a large panel of inflammatory mediators, leptin, and other proteins that may be involved in weakening the blood brain barrier, to be increased in the young AppNL-G-F mice but not in the old AppNL-G-F mice. There were also several differentially expressed genes in both the hypothalamus and the hippocampus in the young AppNL-G-F mice prior to amyloid plaque formation and cognitive decline that persisted in the old AppNL-G-F mice, including GABRa2 receptor, Wdfy1, and several pseudogenes with unknown function. These results suggests that a larger panel of inflammatory mediators may be used as blood markers to detect silent AD, and that a change in leptin and gene expression in the hypothalamus exist prior to cognitive effects, suggesting a coupling of metabolism with amyloid plaque induced cognitive decline.
Collapse
Affiliation(s)
- Evelyn Gutiérrez Rico
- Tohoku University, Graduate School of Pharmaceutical Sciences, Sendai 980-8578, Japan
| | - Patricia Joseph
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Christos Noutsos
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA
| | - Kinning Poon
- SUNY Old Westbury, 223 Store Hill Rd, Old Westbury, NY 11568, USA.
| |
Collapse
|
5
|
Pramotton FM, Spitz S, Kamm RD. Challenges and Future Perspectives in Modeling Neurodegenerative Diseases Using Organ-on-a-Chip Technology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403892. [PMID: 38922799 PMCID: PMC11348103 DOI: 10.1002/advs.202403892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Indexed: 06/28/2024]
Abstract
Neurodegenerative diseases (NDDs) affect more than 50 million people worldwide, posing a significant global health challenge as well as a high socioeconomic burden. With aging constituting one of the main risk factors for some NDDs such as Alzheimer's disease (AD) and Parkinson's disease (PD), this societal toll is expected to rise considering the predicted increase in the aging population as well as the limited progress in the development of effective therapeutics. To address the high failure rates in clinical trials, legislative changes permitting the use of alternatives to traditional pre-clinical in vivo models are implemented. In this regard, microphysiological systems (MPS) such as organ-on-a-chip (OoC) platforms constitute a promising tool, due to their ability to mimic complex and human-specific tissue niches in vitro. This review summarizes the current progress in modeling NDDs using OoC technology and discusses five critical aspects still insufficiently addressed in OoC models to date. Taking these aspects into consideration in the future MPS will advance the modeling of NDDs in vitro and increase their translational value in the clinical setting.
Collapse
Affiliation(s)
- Francesca Michela Pramotton
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Sarah Spitz
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Roger D. Kamm
- Department of Mechanical Engineering and Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
6
|
Xu H, Long S, Xu C, Li Z, Chen J, Yang B, He Y, Xu Z, Li Z, Wei W, Li X. TNC upregulation promotes glioma tumourigenesis through TDG-mediated active DNA demethylation. Cell Death Discov 2024; 10:347. [PMID: 39090080 PMCID: PMC11294444 DOI: 10.1038/s41420-024-02098-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Gliomas represent the most predominant primary malignant tumor in central nervous system. Thymine DNA glycosylase (TDG) is a central component in active DNA demethylation. However, the specific mechanisms of TDG-mediated active DNA demethylation in gliomas remain unclear. This research indicates TDG expression is overexpressed in gliomas and correlated with poor prognosis. TDG knockdown suppressed the malignant phenotype of gliomas both in vitro and vivo. Notably, RNA-seq analysis revealed a strong association between TDG and tenascin-C (TNC). ChIP-qPCR and MeDIP-qPCR assays were undertaken to confirm that TDG participates in TNC active DNA demethylation process, revealing decreased DNA methylation levels and elevated TNC expression as a result. Silencing TNC expression also suppressed the tumor malignant phenotype in both in vitro and in vivo experiments. Additionally, simultaneous silencing of TNC reduced or even reversed the glioma promotion caused by TDG overexpression. Based on our findings, we conclude that TDG exerts an indispensable role in TNC active DNA demethylation in gliomas. The DNA demethylation process leads to alternations in TNC methylation levels and promotes its expression, thereby contributing to the development of gliomas. These results suggest a novel epigenetic therapeutic strategy targeting active DNA demethylation in gliomas.
Collapse
Affiliation(s)
- Hongyu Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Shengrong Long
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chengshi Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhengwei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jincao Chen
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bin Yang
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yongze He
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyue Xu
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Wei Wei
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xiang Li
- Brain Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, China.
- Medical Research Institute, Wuhan University, Wuhan, China.
- Sino-Italian Ascula Brain Science Joint Laboratory, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Dougan CE, Roberts BL, Crosby AJ, Karatsoreos I, Peyton SR. Acute and Chronic Neural and Glial Response to Mild Traumatic Brain Injury in the Hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.01.587620. [PMID: 38617329 PMCID: PMC11014627 DOI: 10.1101/2024.04.01.587620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Traumatic brain injury (TBI) is an established risk factor for developing neurodegenerative disease. However, how TBI leads from acute injury to chronic neurodegeneration is limited to post-mortem models. There is a lack of connections between in vitro and in vivo TBI models that can relate injury forces to both macroscale tissue damage and brain function at the cellular level. Needle-induced cavitation (NIC) is a technique that can produce small cavitation bubbles in soft tissues, which allows us to relate small strains and strain rates in living tissue to ensuing acute and chronic cell death, tissue damage, and tissue remodeling. Here, we applied NIC to mouse brain slices to create a new model of TBI with high spatial and temporal resolution. We specifically targeted the hippocampus, which is a brain region critical for learning and memory and an area in which injury causes cognitive pathologies in humans and rodent models. By combining NIC with patch-clamp electrophysiology, we demonstrate that NIC in the Cornu Ammonis (CA)3 region of the hippocampus dynamically alters synaptic release onto CA1 pyramidal neurons in a cannabinoid 1 receptor (CB1R)-dependent manner. Further, we show that NIC induces an increase in extracellular matrix proteins associated with neural repair that is mitigated by CB1R antagonism. Together, these data lay the groundwork for advanced approaches in understanding how TBI impacts neural function at the cellular level, and the development of treatments that promote neural repair in response to brain injury.
Collapse
Affiliation(s)
- Carey E. Dougan
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Chemistry and Department of Engineering, Smith College, Northampton, MA 01063
| | - Brandon L. Roberts
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 83072, USA
- Department of Animal Science, University of Wyoming, Laramie, WY 83072, USA
| | - Alfred J. Crosby
- Department of Polymer Science and Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Ilia Karatsoreos
- Neuroscience and Behavior Program, and Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Shelly R. Peyton
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
8
|
Abedsaeidi M, Hojjati F, Tavassoli A, Sahebkar A. Biology of Tenascin C and its Role in Physiology and Pathology. Curr Med Chem 2024; 31:2706-2731. [PMID: 37021423 DOI: 10.2174/0929867330666230404124229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 01/25/2023] [Accepted: 02/10/2023] [Indexed: 04/07/2023]
Abstract
Tenascin-C (TNC) is a multimodular extracellular matrix (ECM) protein hexameric with several molecular forms (180-250 kDa) produced by alternative splicing at the pre-mRNA level and protein modifications. The molecular phylogeny indicates that the amino acid sequence of TNC is a well-conserved protein among vertebrates. TNC has binding partners, including fibronectin, collagen, fibrillin-2, periostin, proteoglycans, and pathogens. Various transcription factors and intracellular regulators tightly regulate TNC expression. TNC plays an essential role in cell proliferation and migration. Unlike embryonic tissues, TNC protein is distributed over a few tissues in adults. However, higher TNC expression is observed in inflammation, wound healing, cancer, and other pathological conditions. It is widely expressed in a variety of human malignancies and is recognized as a pivotal factor in cancer progression and metastasis. Moreover, TNC increases both pro-and anti-inflammatory signaling pathways. It has been identified as an essential factor in tissue injuries such as damaged skeletal muscle, heart disease, and kidney fibrosis. This multimodular hexameric glycoprotein modulates both innate and adaptive immune responses regulating the expression of numerous cytokines. Moreover, TNC is an important regulatory molecule that affects the onset and progression of neuronal disorders through many signaling pathways. We provide a comprehensive overview of the structural and expression properties of TNC and its potential functions in physiological and pathological conditions.
Collapse
Affiliation(s)
- Malihehsadat Abedsaeidi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Farzaneh Hojjati
- Division of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Amin Tavassoli
- Division of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
9
|
Arihisa W, Kondo T, Yamaguchi K, Matsumoto J, Nakanishi H, Kunii Y, Akatsu H, Hino M, Hashizume Y, Sato S, Sato S, Niwa S, Yabe H, Sasaki T, Shigenobu S, Setou M. Lipid-correlated alterations in the transcriptome are enriched in several specific pathways in the postmortem prefrontal cortex of Japanese patients with schizophrenia. Neuropsychopharmacol Rep 2023; 43:403-413. [PMID: 37498306 PMCID: PMC10496066 DOI: 10.1002/npr2.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/21/2023] [Accepted: 06/26/2023] [Indexed: 07/28/2023] Open
Abstract
AIMS Schizophrenia is a chronic relapsing psychiatric disorder that is characterized by many symptoms and has a high heritability. There were studies showing that the phospholipid abnormalities in subjects with schizophrenia (Front Biosci, S3, 2011, 153; Schizophr Bull, 48, 2022, 1125; Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933). Disturbances in prefrontal cortex phospholipid and fatty acid composition have been reported in subjects with schizophrenia (Sci Rep, 7, 2017, 6; Anal Bioanal Chem, 400, 2011, 1933; Schizophr Res, 215, 2020, 493; J Psychiatr Res, 47, 2013, 636; Int J Mol Sci, 22, 2021). For exploring the signaling pathways contributing to the lipid changes in previous study (Sci Rep, 7, 2017, 6), we performed two types of transcriptome analyses in subjects with schizophrenia: an unbiased transcriptome analysis solely based on RNA-seq data and a correlation analysis between levels of gene expression and lipids. METHODS RNA-Seq analysis was performed in the postmortem prefrontal cortex from 10 subjects with schizophrenia and 5 controls. Correlation analysis between the transcriptome and lipidome from 9 subjects, which are the same samples in the previous lipidomics study (Sci Rep, 7, 2017, 6). RESULTS Extraction of differentially expressed genes (DEGs) and further sequence and functional group analysis revealed changes in gene expression levels in phosphoinositide 3-kinase (PI3K)-Akt signaling and the complement system. In addition, a correlation analysis clarified alterations in ether lipid metabolism pathway, which is not found as DEGs in transcriptome analysis alone. CONCLUSIONS This study provided results of the integrated analysis of the schizophrenia-associated transcriptome and lipidome within the PFC and revealed that lipid-correlated alterations in the transcriptome are enriched in specific pathways including ether lipid metabolism pathway.
Collapse
Affiliation(s)
- Wataru Arihisa
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
| | - Takeshi Kondo
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
- International Mass Imaging CenterHamamatsu University School of MedicineShizuokaJapan
- Department of Biochemistry, Faculty of Medicine and Graduate School of MedicineHokkaido UniversitySapporoJapan
| | | | - Junya Matsumoto
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | | | - Yasuto Kunii
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster PsychiatryInternational Research Institute of Disaster Science, Tohoku UniversitySendaiJapan
| | - Hiroyasu Akatsu
- Choju Medical Institute, Fukushimura HospitalToyohashiJapan
- Department of Community‐based Medical Education/Department of Community‐based MedicineNagoya City University Graduate School of Medical ScienceNagoyaJapan
| | - Mizuki Hino
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
- Department of Disaster PsychiatryInternational Research Institute of Disaster Science, Tohoku UniversitySendaiJapan
| | | | - Shumpei Sato
- RIKEN Center for Biosystems Dynamics ResearchOsakaJapan
| | - Shinji Sato
- Business Development, Otsuka Pharmaceutical Co., Ltd. Shinagawa Grand Central TowerTokyoJapan
| | - Shin‐Ichi Niwa
- Department of Psychiatry, Aizu Medical CenterFukushima Medical UniversityFukushimaJapan
| | - Hirooki Yabe
- Department of Neuropsychiatry, School of MedicineFukushima Medical UniversityFukushimaJapan
| | - Takehiko Sasaki
- Department of Biochemical PathophysiologyMedical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | | | - Mitsutoshi Setou
- Department of Cellular and Molecular AnatomyHamamatsu University School of MedicineShizuokaJapan
- International Mass Imaging CenterHamamatsu University School of MedicineShizuokaJapan
- Preeminent Medical Photonics Education & Research CenterHamamatsu University School of MedicineShizuokaJapan
- Department of AnatomyThe University of Hong KongHong KongChina
| |
Collapse
|
10
|
Park JYC, King A, Björk V, English BW, Fedintsev A, Ewald CY. Strategic outline of interventions targeting extracellular matrix for promoting healthy longevity. Am J Physiol Cell Physiol 2023; 325:C90-C128. [PMID: 37154490 DOI: 10.1152/ajpcell.00060.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/28/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023]
Abstract
The extracellular matrix (ECM), composed of interlinked proteins outside of cells, is an important component of the human body that helps maintain tissue architecture and cellular homeostasis. As people age, the ECM undergoes changes that can lead to age-related morbidity and mortality. Despite its importance, ECM aging remains understudied in the field of geroscience. In this review, we discuss the core concepts of ECM integrity, outline the age-related challenges and subsequent pathologies and diseases, summarize diagnostic methods detecting a faulty ECM, and provide strategies targeting ECM homeostasis. To conceptualize this, we built a technology research tree to hierarchically visualize possible research sequences for studying ECM aging. This strategic framework will hopefully facilitate the development of future research on interventions to restore ECM integrity, which could potentially lead to the development of new drugs or therapeutic interventions promoting health during aging.
Collapse
Affiliation(s)
- Ji Young Cecilia Park
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| | - Aaron King
- Foresight Institute, San Francisco, California, United States
| | | | - Bradley W English
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach, Switzerland
| |
Collapse
|
11
|
Hebisch M, Klostermeier S, Wolf K, Boccaccini AR, Wolf SE, Tanzi RE, Kim DY. The Impact of the Cellular Environment and Aging on Modeling Alzheimer's Disease in 3D Cell Culture Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205037. [PMID: 36642841 PMCID: PMC10015857 DOI: 10.1002/advs.202205037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Indexed: 06/13/2023]
Abstract
Creating a cellular model of Alzheimer's disease (AD) that accurately recapitulates disease pathology has been a longstanding challenge. Recent studies showed that human AD neural cells, integrated into three-dimensional (3D) hydrogel matrix, display key features of AD neuropathology. Like in the human brain, the extracellular matrix (ECM) plays a critical role in determining the rate of neuropathogenesis in hydrogel-based 3D cellular models. Aging, the greatest risk factor for AD, significantly alters brain ECM properties. Therefore, it is important to understand how age-associated changes in ECM affect accumulation of pathogenic molecules, neuroinflammation, and neurodegeneration in AD patients and in vitro models. In this review, mechanistic hypotheses is presented to address the impact of the ECM properties and their changes with aging on AD and AD-related dementias. Altered ECM characteristics in aged brains, including matrix stiffness, pore size, and composition, will contribute to disease pathogenesis by modulating the accumulation, propagation, and spreading of pathogenic molecules of AD. Emerging hydrogel-based disease models with differing ECM properties provide an exciting opportunity to study the impact of brain ECM aging on AD pathogenesis, providing novel mechanistic insights. Understanding the role of ECM aging in AD pathogenesis should also improve modeling AD in 3D hydrogel systems.
Collapse
Affiliation(s)
- Matthias Hebisch
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Stefanie Klostermeier
- Institute of Medical PhysicsFriedrich‐Alexander Universität Erlangen‐Nürnberg91052ErlangenGermany
- Max‐Planck‐Zentrum für Physik und Medizin91054ErlangenGermany
| | - Katharina Wolf
- Department of Medicine 1Friedrich‐Alexander‐Universität Erlangen‐Nürnberg91054ErlangenGermany
| | - Aldo R. Boccaccini
- Institute of BiomaterialsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Stephan E. Wolf
- Institute of Glass and CeramicsDepartment of Materials Science and EngineeringFriedrich‐Alexander‐Universität Erlangen‐Nürnberg91058ErlangenGermany
| | - Rudolph E. Tanzi
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| | - Doo Yeon Kim
- Genetics and Aging Research UnitMcCance Center for Brain health, MassGeneral Institute for Neurodegenerative DiseaseMassachusetts General HospitalHarvard Medical SchoolCharlestownMA02129USA
| |
Collapse
|
12
|
Pintér P, Alpár A. The Role of Extracellular Matrix in Human Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms231911085. [PMID: 36232390 PMCID: PMC9569603 DOI: 10.3390/ijms231911085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The dense neuropil of the central nervous system leaves only limited space for extracellular substances free. The advent of immunohistochemistry, soon followed by advanced diagnostic tools, enabled us to explore the biochemical heterogeneity and compartmentalization of the brain extracellular matrix in exploratory and clinical research alike. The composition of the extracellular matrix is critical to shape neuronal function; changes in its assembly trigger or reflect brain/spinal cord malfunction. In this study, we focus on extracellular matrix changes in neurodegenerative disorders. We summarize its phenotypic appearance and biochemical characteristics, as well as the major enzymes which regulate and remodel matrix establishment in disease. The specifically built basement membrane of the central nervous system, perineuronal nets and perisynaptic axonal coats can protect neurons from toxic agents, and biochemical analysis revealed how the individual glycosaminoglycan and proteoglycan components interact with these molecules. Depending on the site, type and progress of the disease, select matrix components can either proactively trigger the formation of disease-specific harmful products, or reactively accumulate, likely to reduce tissue breakdown and neuronal loss. We review the diagnostic use and the increasing importance of medical screening of extracellular matrix components, especially enzymes, which informs us about disease status and, better yet, allows us to forecast illness.
Collapse
Affiliation(s)
- Panka Pintér
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
| | - Alán Alpár
- Department of Anatomy, Semmelweis University, 1113 Budapest, Hungary
- SE NAP Research Group of Experimental Neuroanatomy and Developmental Biology, Hungarian Academy of Sciences, 1051 Budapest, Hungary
- Correspondence:
| |
Collapse
|
13
|
Fu Z, Zhu G, Luo C, Chen Z, Dou Z, Chen Y, Zhong C, Su S, Liu F. Matricellular protein tenascin C: Implications in glioma progression, gliomagenesis, and treatment. Front Oncol 2022; 12:971462. [PMID: 36033448 PMCID: PMC9413079 DOI: 10.3389/fonc.2022.971462] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/25/2022] [Indexed: 11/24/2022] Open
Abstract
Matricellular proteins are nonstructural extracellular matrix components that are expressed at low levels in normal adult tissues and are upregulated during development or under pathological conditions. Tenascin C (TNC), a matricellular protein, is a hexameric and multimodular glycoprotein with different molecular forms that is produced by alternative splicing and post-translational modifications. Malignant gliomas are the most common and aggressive primary brain cancer of the central nervous system. Despite continued advances in multimodal therapy, the prognosis of gliomas remains poor. The main reasons for such poor outcomes are the heterogeneity and adaptability caused by the tumor microenvironment and glioma stem cells. It has been shown that TNC is present in the glioma microenvironment and glioma stem cell niches, and that it promotes malignant properties, such as neovascularization, proliferation, invasiveness, and immunomodulation. TNC is abundantly expressed in neural stem cell niches and plays a role in neurogenesis. Notably, there is increasing evidence showing that neural stem cells in the subventricular zone may be the cells of origin of gliomas. Here, we review the evidence regarding the role of TNC in glioma progression, propose a potential association between TNC and gliomagenesis, and summarize its clinical applications. Collectively, TNC is an appealing focus for advancing our understanding of gliomas.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ganggui Zhu
- Department of Neurosurgery, Hangzhou First People’s Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Luo
- Department of Neurosurgery, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Zihang Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhangqi Dou
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yike Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Zhong
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Su
- Department of Neurosurgery, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Fuyi Liu
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Fuyi Liu,
| |
Collapse
|
14
|
Zellner A, Müller SA, Lindner B, Beaufort N, Rozemuller AJM, Arzberger T, Gassen NC, Lichtenthaler SF, Kuster B, Haffner C, Dichgans M. Proteomic profiling in cerebral amyloid angiopathy reveals an overlap with CADASIL highlighting accumulation of HTRA1 and its substrates. Acta Neuropathol Commun 2022; 10:6. [PMID: 35074002 PMCID: PMC8785498 DOI: 10.1186/s40478-021-01303-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Cerebral amyloid angiopathy (CAA) is an age-related condition and a major cause of intracerebral hemorrhage and cognitive decline that shows close links with Alzheimer's disease (AD). CAA is characterized by the aggregation of amyloid-β (Aβ) peptides and formation of Aβ deposits in the brain vasculature resulting in a disruption of the angioarchitecture. Capillaries are a critical site of Aβ pathology in CAA type 1 and become dysfunctional during disease progression. Here, applying an advanced protocol for the isolation of parenchymal microvessels from post-mortem brain tissue combined with liquid chromatography tandem mass spectrometry (LC-MS/MS), we determined the proteomes of CAA type 1 cases (n = 12) including a patient with hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D), and of AD cases without microvascular amyloid pathology (n = 13) in comparison to neurologically healthy controls (n = 12). ELISA measurements revealed microvascular Aβ1-40 levels to be exclusively enriched in CAA samples (mean: > 3000-fold compared to controls). The proteomic profile of CAA type 1 was characterized by massive enrichment of multiple predominantly secreted proteins and showed significant overlap with the recently reported brain microvascular proteome of patients with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), a hereditary cerebral small vessel disease (SVD) characterized by the aggregation of the Notch3 extracellular domain. We found this overlap to be largely attributable to the accumulation of high-temperature requirement protein A1 (HTRA1), a serine protease with an established role in the brain vasculature, and several of its substrates. Notably, this signature was not present in AD cases. We further show that HTRA1 co-localizes with Aβ deposits in brain capillaries from CAA type 1 patients indicating a pathologic recruitment process. Together, these findings suggest a central role of HTRA1-dependent protein homeostasis in the CAA microvasculature and a molecular connection between multiple types of brain microvascular disease.
Collapse
Affiliation(s)
- Andreas Zellner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Barbara Lindner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Nathalie Beaufort
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany
| | - Annemieke J M Rozemuller
- Department of Pathology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Thomas Arzberger
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Nils C Gassen
- Research Group Neurohomeostasis, Department of Psychiatry and Psychotherapy, University of Bonn, Bonn, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), Freising, Germany
| | - Christof Haffner
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- Department of Psychiatry and Psychotherapy, School of Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany.
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), Klinikum der Universität München, Ludwig-Maximilians-Universität München, Feodor-Lynen-Straße 17, 81377, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
15
|
Wang YJ, Downey MA, Choi S, Shoup TM, Elmaleh DR. Cromolyn platform suppresses fibrosis and inflammation, promotes microglial phagocytosis and neurite outgrowth. Sci Rep 2021; 11:22161. [PMID: 34772945 PMCID: PMC8589953 DOI: 10.1038/s41598-021-00465-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic neuroinflammation and may perpetuate ongoing fibrotic reactions within the central nervous system. Unfortunately, there is no therapeutic available that treats neurodegenerative inflammation and its sequelae. Here we utilize cromolyn, a mast cell inhibitor with anti-inflammatory capabilities, and its fluorinated analogue F-cromolyn to study fibrosis-related protein regulation and secretion downstream of neuroinflammation and their ability to promote microglial phagocytosis and neurite outgrowth. In this report, RNA-seq analysis shows that administration of the pro-inflammatory cytokine TNF-α to HMC3 human microglia results in a robust upregulation of fibrosis-associated genes. Subsequent treatment with cromolyn and F-cromolyn resulted in reduced secretion of collagen XVIII, fibronectin, and tenascin-c. Additionally, we show that cromolyn and F-cromolyn reduce pro-inflammatory proteins PLP1, PELP1, HSP90, IL-2, GRO-α, Eotaxin, and VEGF-Α, while promoting secretion of anti-inflammatory IL-4 in HMC3 microglia. Furthermore, cromolyn and F-cromolyn augment neurite outgrowth in PC12 neuronal cells in concert with nerve growth factor. Treatment also differentially altered secretion of neurogenesis-related proteins TTL, PROX1, Rab35, and CSDE1 in HMC3 microglia. Finally, iPSC-derived human microglia more readily phagocytose Aβ42 with cromolyn and F-cromolyn relative to controls. We propose the cromolyn platform targets multiple proteins upstream of PI3K/Akt/mTOR, NF-κB, and GSK-3β signaling pathways to affect cytokine, chemokine, and fibrosis-related protein expression.
Collapse
Affiliation(s)
| | | | - Sungwoon Choi
- Department of New Drug Discovery, Chungnam National University, Daejeon, South Korea
| | - Timothy M Shoup
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA
| | - David R Elmaleh
- AZTherapies, Inc., Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129-2060, USA.
| |
Collapse
|
16
|
Proteomic and metabolic profiling of chronic patients with schizophrenia induced by a physical activity program: Pilot study. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2021; 14:125-138. [PMID: 34384726 DOI: 10.1016/j.rpsmen.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/09/2020] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Schizophrenia is a chronic illness often accompanied by metabolic disorders, diabetes, obesity and cardiovascular problems often associated with unhealthy lifestyles, as well as neuroendocrine problems caused by the disease itself. Lifestyle changes, such as regular physical exercise, have a positive effect on metabolic disorders and mental health, although the molecular changes that occur in this type of patient and how they explain the changes in their response are unknown. This study wants to analyze in a novel way the proteins and molecular pathways involved in critical plasmatic proteins in plasma to reveal the pathways involved in the implementation of physical exercise and the changes that occur among patients who participate in such programs with those who leave. METHODS Twenty-one patients with chronic schizophrenia underwent a daily, 6-month aerobic training program. We divided them into a group that completed the program (12 patients) and a second group that left the training program (9 patients). The biochemical and clinical data of each patient were analyzed and the proteomic profile of the plasma was studied using ESI-LC-MS/MS. RESULTS Proteomic analysis recognizes 21.165 proteins and peptides in each patient, of which we identified 1.812 proteins that varied between both groups linked to the metabolic and biological regulation pathways. After clinical analysis of each patient we found significant differences in weight, BMI, abdominal perimeter, diastolic blood pressure, and HDL cholesterol levels. The main change that vertebrates both groups is the Self-Assessment Anhedonia Scale, where we detected higher levels in the dropout group (no physical activity) compared to the active group. CONCLUSION The benefits of physical exercise are clear in chronic patients with schizophrenia, as it substantially improves their BMI, as well as their clinical and biochemical parameters. However, our study reveals the biological and molecular pathways that affect physical exercise in schizophrenia, such as important metabolic proteins such as ApoE and ApoC, proteins involved in neuronal regulation such as tenascin and neurotrophins, neuroinflammatory regulatory pathways such as lipocalin-2 and protein 14-3-3, as well as cytoskeleton proteins of cells such as spectrins and annexines. Understanding these molecular mechanisms opens the door to future therapies in the chronicity of schizophrenia.
Collapse
|
17
|
Tucić M, Stamenković V, Andjus P. The Extracellular Matrix Glycoprotein Tenascin C and Adult Neurogenesis. Front Cell Dev Biol 2021; 9:674199. [PMID: 33996833 PMCID: PMC8117239 DOI: 10.3389/fcell.2021.674199] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Tenascin C (TnC) is a glycoprotein highly expressed in the extracellular matrix (ECM) during development and in the adult central nervous system (CNS) in regions of active neurogenesis, where neuron development is a tightly regulated process orchestrated by extracellular matrix components. In addition, newborn cells also communicate with glial cells, astrocytes and microglia, indicating the importance of signal integration in adult neurogenesis. Although TnC has been recognized as an important molecule in the regulation of cell proliferation and migration, complete regulatory pathways still need to be elucidated. In this review we discuss the formation of new neurons in the adult hippocampus and the olfactory system with specific reference to TnC and its regulating functions in this process. Better understanding of the ECM signaling in the niche of the CNS will have significant implications for regenerative therapies.
Collapse
Affiliation(s)
- Milena Tucić
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Vera Stamenković
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Pavle Andjus
- Center for Laser Microscopy, Institute for Physiology and Biochemistry "Jean Giaja", Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
18
|
Sutter PA, Rouillard ME, Alshawi SA, Crocker SJ. Extracellular matrix influences astrocytic extracellular vesicle function in wound repair. Brain Res 2021; 1763:147462. [PMID: 33811843 DOI: 10.1016/j.brainres.2021.147462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023]
Abstract
Astrocytic injury responses are known to be influenced by the extracellular matrix (ECM). Astrocytes are also recognized as a source of extracellular vesicles (EVs) that can impact the activity and function of other astrocytes and cell types. Whether the ECM influences the function of astrocytic EVs in the context of wound recovery has not been previously studied. We report EVs from astrocytes cultured on varied ECM substrates are sufficient to elicit distinct injury responses in naive astrocytes that recapitulate the effects of the ECM of origin. When compared with wound recovery on control substrates, EVs from ECM-exposed astrocytes elicited accelerated rates of wound recovery that varied based on each ECM. When EVs were collected from IL-1β treated and ECM-exposed astrocyte cultures, we found that IL-1β arrested wound recovery in naive astrocytes treated with EVs from astrocytes cultured on ECM but adding EVs from IL-1β treated Tenascin-c-cultured astrocytes increased wound recovery. To confirm that ECM was a primary influence on these astrocytic EV functions, we tested the contribution of β1-integrin, a major integrin receptor for the ECM molecules tested in this study. We found that the β1-integrin inhibitor Ha2/5, resulted in EVs that significantly attenuated the wound recovery of naive astrocytes. This provides new information on the importance of culture substrates on astrocytic responses, EV functions and injury responses that may impact the understanding of astroglial responses related to ECM compositional differences in diverse physiological states.
Collapse
Affiliation(s)
- Pearl A Sutter
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Megan E Rouillard
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Sarah A Alshawi
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States
| | - Stephen J Crocker
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, United States; Department of Immunology, University of Connecticut School of Medicine, Farmington, CT, United States.
| |
Collapse
|
19
|
Peng R, Li Y. Associations Between Tenascin-C and Testosterone Deficiency in Men with Major Depressive Disorder: A Cross-Sectional Retrospective Study. J Inflamm Res 2021; 14:897-905. [PMID: 33758529 PMCID: PMC7981168 DOI: 10.2147/jir.s298270] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background Elevated levels of tenascin-C are linked to increased risk and severity of major depressive disorder (MDD), while testosterone shows a protective effect. The present study explored associations between serum levels of tenascin-C and testosterone in Chinese men with MDD. Methods Testosterone and tenascin-C levels were measured in sera of 412 men with MDD and 237 age- and sex-matched controls. Serum levels of thyroid hormone, lipids, and high-sensitivity C-reactive protein (hs-CRP) were also quantified. Potential associations were examined using covariance, subgroup analysis, and multivariate linear regression analyses. Results Significantly higher concentrations of tenascin-C were detected in sera of subjects with MDD than in controls. Among subjects with MDD, testosterone concentrations inversely correlated with tenascin-C levels. This relationship was observed when patients were stratified by age at onset; duration or severity of depression; or concentration of thyroid hormones, low- or high-density lipoprotein, or hs-CRP. The negative association remained even when the statistical model was adjusted for age, smoking status, alcohol use, and body mass index. Linear regression with bootstrap resampling confirmed that high tenascin-C levels inversely correlated with testosterone levels. Conclusion In men with MDD, high tenascin-C concentrations correlate with testosterone deficiency. The combination of elevated tenascin-C and testosterone deficiency may be associated with MDD progression.
Collapse
Affiliation(s)
- Rui Peng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| |
Collapse
|
20
|
Proteomic and metabolic profiling of chronic patients with schizophrenia induced by a physical activity program: Pilot study. REVISTA DE PSIQUIATRIA Y SALUD MENTAL 2020. [PMID: 33264672 DOI: 10.1016/j.rpsm.2020.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
INTRODUCTION Schizophrenia is a chronic illness often accompanied by metabolic disorders, diabetes, obesity and cardiovascular problems often associated with unhealthy lifestyles, as well as neuroendocrine problems caused by the disease itself. Lifestyle changes, such as regular physical exercise, have a positive effect on metabolic disorders and mental health, although the molecular changes that occur in this type of patient and how they explain the changes in their response are unknown. This study wants to analyze in a novel way the proteins and molecular pathways involved in critical plasmatic proteins in plasma to reveal the pathways involved in the implementation of physical exercise and the changes that occur among patients who participate in such programs with those who leave. METHODS Twenty-one patients with chronic schizophrenia underwent a daily, 6-month aerobic training program. We divided them into a group that completed the program (12 patients) and a second group that left the training program (9 patients). The biochemical and clinical data of each patient were analyzed and the proteomic profile of the plasma was studied using ESI-LC-MS/MS. RESULTS Proteomic analysis recognizes 21.165 proteins and peptides in each patient, of which we identified 1,812 proteins that varied between both groups linked to the metabolic and biological regulation pathways. After clinical analysis of each patient we found significant differences in weight, BMI, abdominal perimeter, diastolic blood pressure, and HDL cholesterol levels. The main change that vertebrates both groups is the Self-Assessment Anhedonia Scale, where we detected higher levels in the dropout group (no physical activity) compared to the active group. CONCLUSION The benefits of physical exercise are clear in chronic patients with schizophrenia, as it substantially improves their BMI, as well as their clinical and biochemical parameters. However, our study reveals the biological and molecular pathways that affect physical exercise in schizophrenia, such as important metabolic proteins such as ApoE and ApoC, proteins involved in neuronal regulation such as tenascin and neurotrophins, neuroinflammatory regulatory pathways such as lipocalin-2 and protein 14-3-3, as well as cytoskeleton proteins of cells such as spectrins and annexines. Understanding these molecular mechanisms opens the door to future therapies in the chronicity of schizophrenia.
Collapse
|
21
|
Hanmin C, Xiangyue Z, Lenahan C, Ling W, Yibo O, Yue H. Pleiotropic Role of Tenascin-C in Central Nervous System Diseases: From Basic to Clinical Applications. Front Neurol 2020; 11:576230. [PMID: 33281711 PMCID: PMC7691598 DOI: 10.3389/fneur.2020.576230] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022] Open
Abstract
The extracellular matrix is composed of a variety of macromolecular substances secreted by cells, which form a complex network that supports and connects tissue structures, regulates the morphogenesis of tissues, and maintains the physiological activities of cells. Tenascin-C, a secreted extracellular matrix glycoprotein, is abundantly expressed after exposure to pathological stimuli. It plays an important regulatory role in brain tumors, vascular diseases, and neurodegenerative diseases by mediating inflammatory responses, inducing brain damage, and promoting cell proliferation, migration, and angiogenesis through multiple signaling pathways. Therefore, tenascin-C may become a potential therapeutic target for intracranial diseases. Here, we review and discuss the latest literature regarding tenascin-C, and we comprehensively explain the role and clinical significance of tenascin-C in intracranial diseases.
Collapse
Affiliation(s)
- Chen Hanmin
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhou Xiangyue
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cameron Lenahan
- Burrell College of Osteopathic Medicine, Las Cruces, NM, United States
| | - Wang Ling
- Department of Operating Room, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ou Yibo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - He Yue
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
22
|
Wiemann S, Reinhard J, Reinehr S, Cibir Z, Joachim SC, Faissner A. Loss of the Extracellular Matrix Molecule Tenascin-C Leads to Absence of Reactive Gliosis and Promotes Anti-inflammatory Cytokine Expression in an Autoimmune Glaucoma Mouse Model. Front Immunol 2020; 11:566279. [PMID: 33162981 PMCID: PMC7581917 DOI: 10.3389/fimmu.2020.566279] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Previous studies demonstrated that retinal damage correlates with a massive remodeling of extracellular matrix (ECM) molecules and reactive gliosis. However, the functional significance of the ECM in retinal neurodegeneration is still unknown. In the present study, we used an intraocular pressure (IOP) independent experimental autoimmune glaucoma (EAG) mouse model to examine the role of the ECM glycoprotein tenascin-C (Tnc). Wild type (WT ONA) and Tnc knockout (KO ONA) mice were immunized with an optic nerve antigen (ONA) homogenate and control groups (CO) obtained sodium chloride (WT CO, KO CO). IOP was measured weekly and electroretinographies were recorded at the end of the study. Ten weeks after immunization, we analyzed retinal ganglion cells (RGCs), glial cells, and the expression of different cytokines in retina and optic nerve tissue in all four groups. IOP and retinal function were comparable in all groups. Although RGC loss was less severe in KO ONA, WT as well as KO mice displayed a significant cell loss after immunization. Compared to KO ONA, less βIII-tubulin+ axons, and downregulated oligodendrocyte markers were noted in WT ONA optic nerves. In retina and optic nerve, we found an enhanced GFAP+ staining area of astrocytes in immunized WT. A significantly higher number of retinal Iba1+ microglia was found in WT ONA, while a lower number of Iba1+ cells was observed in KO ONA. Furthermore, an increased expression of the glial markers Gfap, Iba1, Nos2, and Cd68 was detected in retinal and optic nerve tissue of WT ONA, whereas comparable levels were observed in KO ONA. In addition, pro-inflammatory Tnfa expression was upregulated in WT ONA, but downregulated in KO ONA. Vice versa, a significantly increased anti-inflammatory Tgfb1 expression was measured in KO ONA animals. We conclude that Tnc plays an important role in glial and inflammatory response during retinal neurodegeneration. Our results provide evidence that Tnc is involved in glaucomatous damage by regulating retinal glial activation and cytokine release. Thus, this transgenic EAG mouse model for the first time offers the possibility to investigate IOP-independent glaucomatous damage in direct relation to ECM remodeling.
Collapse
Affiliation(s)
- Susanne Wiemann
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr University Bochum, Bochum, Germany
| | - Zülal Cibir
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
23
|
Hasanzadeh Z, Nourazarian A, Nikanfar M, Laghousi D, Vatankhah AM, Sadrirad S. Evaluation of the Serum Dkk-1, Tenascin-C, Oxidative Stress Markers Levels and Wnt Signaling Pathway Genes Expression in Patients with Alzheimer's Disease. J Mol Neurosci 2020; 71:879-887. [PMID: 32935274 DOI: 10.1007/s12031-020-01710-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 11/28/2022]
Abstract
Early diagnosis of Alzheimer's disease (AD) using potential biomarkers may help with implementing early therapeutic interventions, monitoring, and ultimately disease treatment. The current study aimed to evaluate serum levels of DKK-1, TNC, and oxidative stress markers, as well as analyzing the expression of LRP6, GSK3A, and GSK3B genes in patients with AD. Serum levels of DKK-1, TNC, TOS, TAC, and MDA were measured in 40 AD patients and 40 healthy individuals. Additionally, the relative expressions of LRP6, GSK3A, and GSK3B genes in whole blood were evaluated. Receiver operating characteristic (ROC) analysis was used to investigate the incremental diagnostic value of each factor in the study groups. Mean serum levels of DKK-1, TNC, TOS, TAC, and MDA were significantly higher in the AD group compared to the healthy group (p < 0.001). Moreover, a significant difference was observed in the expression of LRP6 and GSK3A genes (p < 0.001) between patients and healthy groups. However, the expression of GSK3B did not significantly differ between the two groups (p > 0.05). With considerable sensitivity and specificity, ROC analysis demonstrated the diagnostic efficacy of DKK-1 and TNC serum levels in AD within an area under the ROC curve of ≥ 0.98 (p ˂ 0.001). The results showed that evaluating serum levels of DKK-1 and TNC, as well as assessing the expression of LRP6, could be utilized for diagnosis and monitoring of AD patients.
Collapse
Affiliation(s)
- Zahra Hasanzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Delara Laghousi
- Social Determinants of Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Somayeh Sadrirad
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
24
|
Minta K, Portelius E, Janelidze S, Hansson O, Zetterberg H, Blennow K, Andreasson U. Cerebrospinal Fluid Concentrations of Extracellular Matrix Proteins in Alzheimer's Disease. J Alzheimers Dis 2020; 69:1213-1220. [PMID: 31156172 DOI: 10.3233/jad-190187] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Brevican, neurocan, tenascin-C, and tenascin-R are extracellular matrix (ECM) proteins that are mainly expressed in the brain. They play important roles in proliferation and migration of neurons and other cell types in the brain. These ECM proteins may also be involved in various pathologies, including reactive gliosis. OBJECTIVE The aim of the study was to investigate if ECM protein concentrations in cerebrospinal fluid (CSF) are linked to the neurodegenerative process in Alzheimer's disease (AD). METHODS Lumbar CSF samples from a non-AD control group (n = 50) and a clinically diagnosed AD group (n = 42), matched for age and gender, were analyzed using commercially available ELISAs detecting ECM proteins. Mann-Whitney U test was used to examine group differences, while Spearman's rho test was used for correlations. RESULTS Brevican, neurocan, tenascin-R, and tenascin-C concentrations in AD patients did not differ compared to healthy controls or when the groups were dichotomized based on the Aβ42/40 cut-off. CSF tenascin-C and tenascin-R concentrations were significantly higher in women than in men in the AD group (p = 0.02). CONCLUSION ECM proteins do not reflect AD-pathology in CSF. CSF tenascin-C and tenascin-R upregulation in women possibly reveal sexual dimorphism in the central nervous system immunity during AD.
Collapse
Affiliation(s)
- Karolina Minta
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden
| | - Erik Portelius
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Shorena Janelidze
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Sweden
| | - Oskar Hansson
- Department of Clinical Sciences, Clinical Memory Research Unit, Lund University, Sweden.,Memory Clinic, Skåne University Hospital, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Ulf Andreasson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
25
|
Immunomodulatory role of the extracellular matrix protein tenascin-C in neuroinflammation. Biochem Soc Trans 2020; 47:1651-1660. [PMID: 31845742 DOI: 10.1042/bst20190081] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/14/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) consists of a dynamic network of various macromolecules that are synthesized and released by surrounding cells into the intercellular space. Glycoproteins, proteoglycans and fibrillar proteins are main components of the ECM. In addition to general functions such as structure and stability, the ECM controls several cellular signaling pathways. In this context, ECM molecules have a profound influence on intracellular signaling as receptor-, adhesion- and adaptor-proteins. Due to its various functions, the ECM is essential in the healthy organism, but also under pathological conditions. ECM constituents are part of the glial scar, which is formed in several neurodegenerative diseases that are accompanied by the activation and infiltration of glia as well as immune cells. Remodeling of the ECM modulates the release of pro- and anti-inflammatory cytokines affecting the fate of immune, glial and neuronal cells. Tenascin-C is an ECM glycoprotein that is expressed during embryonic central nervous system (CNS) development. In adults it is present at lower levels but reappears under pathological conditions such as in brain tumors, following injury and in neurodegenerative disorders and is highly associated with glial reactivity as well as scar formation. As a key modulator of the immune response during neurodegeneration in the CNS, tenascin-C is highlighted in this mini-review.
Collapse
|
26
|
Owen MC, Gnutt D, Gao M, Wärmländer SKTS, Jarvet J, Gräslund A, Winter R, Ebbinghaus S, Strodel B. Effects of in vivo conditions on amyloid aggregation. Chem Soc Rev 2019; 48:3946-3996. [PMID: 31192324 DOI: 10.1039/c8cs00034d] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
One of the grand challenges of biophysical chemistry is to understand the principles that govern protein misfolding and aggregation, which is a highly complex process that is sensitive to initial conditions, operates on a huge range of length- and timescales, and has products that range from protein dimers to macroscopic amyloid fibrils. Aberrant aggregation is associated with more than 25 diseases, which include Alzheimer's, Parkinson's, Huntington's, and type II diabetes. Amyloid aggregation has been extensively studied in the test tube, therefore under conditions that are far from physiological relevance. Hence, there is dire need to extend these investigations to in vivo conditions where amyloid formation is affected by a myriad of biochemical interactions. As a hallmark of neurodegenerative diseases, these interactions need to be understood in detail to develop novel therapeutic interventions, as millions of people globally suffer from neurodegenerative disorders and type II diabetes. The aim of this review is to document the progress in the research on amyloid formation from a physicochemical perspective with a special focus on the physiological factors influencing the aggregation of the amyloid-β peptide, the islet amyloid polypeptide, α-synuclein, and the hungingtin protein.
Collapse
Affiliation(s)
- Michael C Owen
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic
| | - David Gnutt
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany and Lead Discovery Wuppertal, Bayer AG, 42096 Wuppertal, Germany
| | - Mimi Gao
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany and Sanofi-Aventis Deutschland GmbH, R&D, Industriepark Höchst, 65926 Frankfurt, Germany
| | - Sebastian K T S Wärmländer
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Jüri Jarvet
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department of Biochemistry and Biophysics, Stockholm University, Svante Arrhenius väg 16C, 106 91 Stockholm, Sweden
| | - Roland Winter
- Faculty of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Str. 4a, 44227 Dortmund, Germany
| | - Simon Ebbinghaus
- Institute of Physical and Theoretical Chemistry, TU Braunschweig, Rebenring 56, 38106 Braunschweig, Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry, Forschungszentrum Jülich, 42525 Jülich, Germany. and Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany
| |
Collapse
|
27
|
Roll L, Faissner A. Tenascins in CNS lesions. Semin Cell Dev Biol 2019; 89:118-124. [DOI: 10.1016/j.semcdb.2018.09.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/03/2018] [Accepted: 09/27/2018] [Indexed: 02/06/2023]
|
28
|
Verma SS, Lucas A, Zhang X, Veturi Y, Dudek S, Li B, Li R, Urbanowicz R, Moore JH, Kim D, Ritchie MD. Collective feature selection to identify crucial epistatic variants. BioData Min 2018; 11:5. [PMID: 29713383 PMCID: PMC5907720 DOI: 10.1186/s13040-018-0168-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/04/2018] [Indexed: 01/17/2023] Open
Abstract
Background Machine learning methods have gained popularity and practicality in identifying linear and non-linear effects of variants associated with complex disease/traits. Detection of epistatic interactions still remains a challenge due to the large number of features and relatively small sample size as input, thus leading to the so-called "short fat data" problem. The efficiency of machine learning methods can be increased by limiting the number of input features. Thus, it is very important to perform variable selection before searching for epistasis. Many methods have been evaluated and proposed to perform feature selection, but no single method works best in all scenarios. We demonstrate this by conducting two separate simulation analyses to evaluate the proposed collective feature selection approach. Results Through our simulation study we propose a collective feature selection approach to select features that are in the "union" of the best performing methods. We explored various parametric, non-parametric, and data mining approaches to perform feature selection. We choose our top performing methods to select the union of the resulting variables based on a user-defined percentage of variants selected from each method to take to downstream analysis. Our simulation analysis shows that non-parametric data mining approaches, such as MDR, may work best under one simulation criteria for the high effect size (penetrance) datasets, while non-parametric methods designed for feature selection, such as Ranger and Gradient boosting, work best under other simulation criteria. Thus, using a collective approach proves to be more beneficial for selecting variables with epistatic effects also in low effect size datasets and different genetic architectures. Following this, we applied our proposed collective feature selection approach to select the top 1% of variables to identify potential interacting variables associated with Body Mass Index (BMI) in ~ 44,000 samples obtained from Geisinger's MyCode Community Health Initiative (on behalf of DiscovEHR collaboration). Conclusions In this study, we were able to show that selecting variables using a collective feature selection approach could help in selecting true positive epistatic variables more frequently than applying any single method for feature selection via simulation studies. We were able to demonstrate the effectiveness of collective feature selection along with a comparison of many methods in our simulation analysis. We also applied our method to identify non-linear networks associated with obesity.
Collapse
Affiliation(s)
- Shefali S Verma
- 1Biomedical and Translational Bioinformatics Institute, Geisinger Health System, 100 N Academy Avenue, Danville, PA 17822 USA.,2Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA USA.,3Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Anastasia Lucas
- 1Biomedical and Translational Bioinformatics Institute, Geisinger Health System, 100 N Academy Avenue, Danville, PA 17822 USA.,3Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Xinyuan Zhang
- 2Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA USA.,3Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Yogasudha Veturi
- 1Biomedical and Translational Bioinformatics Institute, Geisinger Health System, 100 N Academy Avenue, Danville, PA 17822 USA.,3Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Scott Dudek
- 1Biomedical and Translational Bioinformatics Institute, Geisinger Health System, 100 N Academy Avenue, Danville, PA 17822 USA.,3Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Binglan Li
- 2Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA USA.,3Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Ruowang Li
- 3Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Ryan Urbanowicz
- 3Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Jason H Moore
- 3Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| | - Dokyoon Kim
- 1Biomedical and Translational Bioinformatics Institute, Geisinger Health System, 100 N Academy Avenue, Danville, PA 17822 USA
| | - Marylyn D Ritchie
- 1Biomedical and Translational Bioinformatics Institute, Geisinger Health System, 100 N Academy Avenue, Danville, PA 17822 USA.,2Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA USA.,3Institute for Biomedical Informatics, University of Pennsylvania, Perelman School of Medicine, Richards Building, 3700 Hamilton Walk, Philadelphia, PA 19104 USA
| |
Collapse
|
29
|
Maciukiewicz M, Marshe VS, Hauschild AC, Foster JA, Rotzinger S, Kennedy JL, Kennedy SH, Müller DJ, Geraci J. GWAS-based machine learning approach to predict duloxetine response in major depressive disorder. J Psychiatr Res 2018; 99:62-68. [PMID: 29407288 DOI: 10.1016/j.jpsychires.2017.12.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 10/31/2017] [Accepted: 12/14/2017] [Indexed: 12/22/2022]
Abstract
Major depressive disorder (MDD) is one of the most prevalent psychiatric disorders and is commonly treated with antidepressant drugs. However, large variability is observed in terms of response to antidepressants. Machine learning (ML) models may be useful to predict treatment outcomes. A sample of 186 MDD patients received treatment with duloxetine for up to 8 weeks were categorized as "responders" based on a MADRS change >50% from baseline; or "remitters" based on a MADRS score ≤10 at end point. The initial dataset (N = 186) was randomly divided into training and test sets in a nested 5-fold cross-validation, where 80% was used as a training set and 20% made up five independent test sets. We performed genome-wide logistic regression to identify potentially significant variants related to duloxetine response/remission and extracted the most promising predictors using LASSO regression. Subsequently, classification-regression trees (CRT) and support vector machines (SVM) were applied to construct models, using ten-fold cross-validation. With regards to response, none of the pairs performed significantly better than chance (accuracy p > .1). For remission, SVM achieved moderate performance with an accuracy = 0.52, a sensitivity = 0.58, and a specificity = 0.46, and 0.51 for all coefficients for CRT. The best performing SVM fold was characterized by an accuracy = 0.66 (p = .071), sensitivity = 0.70 and a sensitivity = 0.61. In this study, the potential of using GWAS data to predict duloxetine outcomes was examined using ML models. The models were characterized by a promising sensitivity, but specificity remained moderate at best. The inclusion of additional non-genetic variables to create integrated models may improve prediction.
Collapse
Affiliation(s)
- Malgorzata Maciukiewicz
- Pharmacogenetic Research Clinic, Center for Addiction and Mental Health, Toronto, ON, Canada
| | - Victoria S Marshe
- Pharmacogenetic Research Clinic, Center for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Anne-Christin Hauschild
- IBM Life Sciences Discovery Centre, Princess Margaret Cancer Centre, Toronto, ON, Canada; Department of Computer Science, University of Toronto, Toronto, ON, Canada; University Health Network, Toronto, ON, Canada
| | - Jane A Foster
- University Health Network, Toronto, ON, Canada; Department of Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Susan Rotzinger
- University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - James L Kennedy
- Pharmacogenetic Research Clinic, Center for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Sidney H Kennedy
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; University Health Network, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, St. Michael's Hospital, Toronto, ON, Canada
| | - Daniel J Müller
- Pharmacogenetic Research Clinic, Center for Addiction and Mental Health, Toronto, ON, Canada; Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| | - Joseph Geraci
- Department of Molecular Medicine, Queen's University, Kingston, ON, Canada
| |
Collapse
|
30
|
Morellini F, Malyshev A, Volgushev M, Chistiakova M, Papashvili G, Fellini L, Kleene R, Schachner M, Dityatev A. Impaired Fear Extinction Due to a Deficit in Ca 2+ Influx Through L-Type Voltage-Gated Ca 2+ Channels in Mice Deficient for Tenascin-C. Front Integr Neurosci 2017; 11:16. [PMID: 28824389 PMCID: PMC5539374 DOI: 10.3389/fnint.2017.00016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/18/2017] [Indexed: 12/02/2022] Open
Abstract
Mice deficient in the extracellular matrix glycoprotein tenascin-C (TNC−/−) express a deficit in specific forms of hippocampal synaptic plasticity, which involve the L-type voltage-gated Ca2+ channels (L-VGCCs). The mechanisms underlying this deficit and its functional implications for learning and memory have not been investigated. In line with previous findings, we report on impairment in theta-burst stimulation (TBS)-induced long-term potentiation (LTP) in TNC−/− mice in the CA1 hippocampal region and its rescue by the L-VGCC activator Bay K-8644. We further found that the overall pattern of L-VGCC expression in the hippocampus in TNC−/− mice was normal, but Western blot analysis results uncovered upregulated expression of the Cav1.2 and Cav1.3 α-subunits of L-VGCCs. However, these L-VGCCs were not fully functional in TNC−/− mice, as demonstrated by Ca2+ imaging, which revealed a reduction of nifedipine-sensitive Ca2+ transients in CA1 pyramidal neurons. TNC−/− mice showed normal learning and memory in the contextual fear conditioning paradigm but impaired extinction of conditioned fear responses. Systemic injection of the L-VGCC blockers nifedipine and diltiazem into wild-type mice mimicked the impairment of fear extinction observed in TNC−/− mice. The deficiency in TNC−/− mice substantially occluded the effects of these drugs. Our results suggest that TNC-mediated modulation of L-VGCC activity is essential for fear extinction.
Collapse
Affiliation(s)
- Fabio Morellini
- Institute for Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany.,Research Group Behavioral Biology, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany
| | - Aleksey Malyshev
- Department of Neurophysiology, Ruhr-University BochumBochum, Germany.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscow, Russia
| | - Maxim Volgushev
- Department of Neurophysiology, Ruhr-University BochumBochum, Germany.,Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscow, Russia.,Department of Psychological Sciences, University of ConnecticutStorrs, CT, United States
| | - Marina Chistiakova
- Department of Neurophysiology, Ruhr-University BochumBochum, Germany.,Department of Psychological Sciences, University of ConnecticutStorrs, CT, United States
| | - Giorgi Papashvili
- Institute for Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany
| | - Laetitia Fellini
- Institute for Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany
| | - Ralf Kleene
- Institute for Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany
| | - Melitta Schachner
- Center for Neuroscience, Shantou University Medical CollegeShantou, China.,Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers UniversityPiscataway, NJ, United States
| | - Alexander Dityatev
- Institute for Biosynthesis of Neural Structures, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-EppendorfHamburg, Germany.,Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE)Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke UniversityMagdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS)Magdeburg, Germany
| |
Collapse
|
31
|
Proteomic differences in amyloid plaques in rapidly progressive and sporadic Alzheimer's disease. Acta Neuropathol 2017; 133:933-954. [PMID: 28258398 DOI: 10.1007/s00401-017-1691-0] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 12/16/2022]
Abstract
Rapidly progressive Alzheimer's disease (rpAD) is a particularly aggressive form of Alzheimer's disease, with a median survival time of 7-10 months after diagnosis. Why these patients have such a rapid progression of Alzheimer's disease is currently unknown. To further understand pathological differences between rpAD and typical sporadic Alzheimer's disease (sAD) we used localized proteomics to analyze the protein differences in amyloid plaques in rpAD and sAD. Label-free quantitative LC-MS/MS was performed on amyloid plaques microdissected from rpAD and sAD patients (n = 22 for each patient group) and protein expression differences were quantified. On average, 913 ± 30 (mean ± SEM) proteins were quantified in plaques from each patient and 279 of these proteins were consistently found in plaques from every patient. We found significant differences in protein composition between rpAD and sAD plaques. We found that rpAD plaques contained significantly higher levels of neuronal proteins (p = 0.0017) and significantly lower levels of astrocytic proteins (p = 1.08 × 10-6). Unexpectedly, cumulative protein differences in rpAD plaques did not suggest accelerated typical sAD. Plaques from patients with rpAD were particularly abundant in synaptic proteins, especially those involved in synaptic vesicle release, highlighting the potential importance of synaptic dysfunction in the accelerated development of plaque pathology in rpAD. Combined, our data provide new direct evidence that amyloid plaques do not all have the same protein composition and that the proteomic differences in plaques could provide important insight into the factors that contribute to plaque development. The cumulative protein differences in rpAD plaques suggest rpAD may be a novel subtype of Alzheimer's disease.
Collapse
|
32
|
Tenascin-C is associated with cored amyloid-β plaques in Alzheimer disease and pathology burdened cognitively normal elderly. J Neuropathol Exp Neurol 2016; 75:1190. [PMID: 27941141 PMCID: PMC7373169 DOI: 10.1093/jnen/nlw107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
33
|
Role of Matricellular Proteins in Disorders of the Central Nervous System. Neurochem Res 2016; 42:858-875. [DOI: 10.1007/s11064-016-2088-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 12/15/2022]
|