1
|
Almeida FC, Santos A, Jesus T, Coelho A, Quintas-Neves M, Gauthreaux K, Mock CN, Kukull WA, Crary JF, Oliveira TG. Lewy body co-pathology in Alzheimer's disease and primary age-related tauopathy contributes to differential neuropathological, cognitive, and brain atrophy patterns. Alzheimers Dement 2024. [PMID: 39711133 DOI: 10.1002/alz.14191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/10/2024] [Accepted: 07/24/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) co-pathology with Lewy bodies (LB) is frequent and influences clinical manifestations and outcomes. Its significance in primary age-related tauopathy (PART) is unknown. We investigated the influence of LB on cognition and brain atrophy in AD and PART. METHODS We performed a retrospective cohort study in a large sample of autopsied participants with AD neuropathological change (ADNC) with and without LB and PART with and without LB, with corresponding ante mortem magnetic resonance imaging (MRI) data from the National Alzheimer's Coordinating Center dataset. RESULTS LB co-pathology worsened cognitive impairment in both PART and ADNC. On longitudinal follow-up, LB impacted cognitive decline in multiple domains. Additionally, LB influenced brain atrophy on MRI across groups and LB regional staging was different in PART and ADNC, accompanying tauopathy progression. DISCUSSION These results suggest that LB co-pathology is associated with divergent patterns of cognitive impairment, brain atrophy, and regional pathological distribution in PART and AD. HIGHLIGHTS Lewy body (LB) co-pathology is frequent in Alzheimer's disease (AD) with important clinical implications. LB co-pathology is also present in primary age-related tauopathy (PART), but its significance is still understudied. In PART and AD, LB leads to higher cognitive impairment and brain regional atrophy. In PART and AD, LB tends to accompany neurofibrillary tangle progression, suggesting amyloid pathology might be a trigger for regional pathology progression.
Collapse
Affiliation(s)
- Francisco C Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Neuroradiology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Alexandra Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Tiago Jesus
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Center Algoritmi, LASI, University of Minho, Campus Gualtar, Braga, Portugal
| | - Ana Coelho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Miguel Quintas-Neves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Neuroradiology, Hospital de Braga, ULS Braga, Braga, Portugal
| | - Kathryn Gauthreaux
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Charles N Mock
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | - Walter A Kukull
- Department of Epidemiology, National Alzheimer's Coordinating Center, University of Washington, Seattle, Washington, USA
| | - John F Crary
- Neuropathology Brain Bank & Research Core, Department of Pathology, Nash Family Department of Neuroscience, Department of Artificial Intelligence & Human Health, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tiago Gil Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus Gualtar, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
- Department of Neuroradiology, Hospital de Braga, ULS Braga, Braga, Portugal
| |
Collapse
|
2
|
Gawor K, Tomé SO, Vandenberghe R, Van Damme P, Vandenbulcke M, Otto M, von Arnim CAF, Ghebremedhin E, Ronisz A, Ospitalieri S, Blaschko M, Thal DR. Amygdala-predominant α-synuclein pathology is associated with exacerbated hippocampal neuron loss in Alzheimer's disease. Brain Commun 2024; 6:fcae442. [PMID: 39659977 PMCID: PMC11631359 DOI: 10.1093/braincomms/fcae442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/03/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024] Open
Abstract
Misfolded α-synuclein protein accumulates in 43-63% of individuals with symptomatic Alzheimer's disease. Two main patterns of comorbid α-synuclein pathology have been identified: caudo-rostral and amygdala-predominant. α-Synuclein aggregates have been shown to interact with the transactive response DNA-binding protein 43 (TDP-43) and abnormally phosphorylated tau protein. All these proteins accumulate in the amygdala, which is anatomically connected with the hippocampus. However, the specific role of amygdala-predominant α-synuclein pathology in the progression of Alzheimer's disease and hippocampal degeneration remains unclear. In this cross-sectional study, we analysed 291 autopsy brains from both demented and non-demented elderly individuals neuropathologically. Neuronal density in the CA1 region of the hippocampus was assessed for all cases. We semiquantitatively evaluated α-synuclein pathology severity across seven brain regions and calculated a ratio of limbic to brainstem α-synuclein pathology severity, which was used to stratify the cases into two distinct spreading patterns. In the 99 symptomatic Alzheimer's disease cases, we assessed severity of limbic-predominant age-related TDP-43 neuropathological changes and CA1 phosphorylated tau density. We performed triple fluorescence staining of medial temporal lobe samples with antibodies against phosphorylated TDP-43, α-synuclein and phosphorylated tau. Finally, we employed path analysis to determine the association network of various parameters of limbic pathology in Alzheimer's disease cases and CA1 neuronal density. We identified an association between the amygdala-predominant αSyn pathology pattern and decreased neuronal density in the CA1 region. We found that Alzheimer's disease cases with an amygdala-predominant α-synuclein pattern exhibited the highest TDP-43 severity and prevalence of TDP-43 inclusions in the dentate gyrus among all groups, while those with the caudo-rostral pattern had the lowest severity of Alzheimer's disease neuropathological changes. We observed colocalization of TDP-43, aggregated α-synuclein and hyperphosphorylated tau in cytoplasmic inclusions within hippocampal and amygdala neurons of Alzheimer's disease cases. Path analysis modelling suggests that the relationship between amygdala-predominant α-synuclein pathology and CA1 neuron loss is partially mediated by hippocampal tau and TDP-43 aggregates. Our findings suggest that Alzheimer's disease cases with amygdala-predominant α-synuclein pathology may constitute a distinct group with more severe hippocampal damage, a higher TDP-43 burden and potential interactions among α-synuclein, TDP-43 and hyperphosphorylated tau.
Collapse
Affiliation(s)
- Klara Gawor
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven 3000, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
| | - Philip Van Damme
- Department of Neurology, University Hospitals Leuven, Leuven 3000, Belgium
- Laboratory for Neurobiology, Department of Neuroscience, KU Leuven, Leuven 3000, Belgium
| | - Mathieu Vandenbulcke
- Laboratory for Translational Neuropsychiatry, Department of Neuroscience, KU Leuven, Leuven 3000, Belgium
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle 06120, Germany
| | - Christine A F von Arnim
- Department of Neurology, Ulm University, Ulm 89081, Germany
- Department of Geriatrics, University Medical Center Göttingen, Göttingen 37073, Germany
| | - Estifanos Ghebremedhin
- Institute for Clinical Neuroanatomy, Johann Wolfgang Goethe University, Frankfurt am Main 60596, Germany
| | - Alicja Ronisz
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Simona Ospitalieri
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
| | - Matthew Blaschko
- Processing Speech and Images, Department of Electrical Engineering, KU Leuven, Leuven 3000, Belgium
| | - Dietmar Rudolf Thal
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven 3000, Belgium
- Department of Pathology, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
3
|
Woodworth DC, Nguyen KM, Sordo L, Scambray KA, Head E, Kawas CH, Corrada MM, Nelson PT, Sajjadi SA. Evaluating the updated LATE-NC staging criteria using data from NACC. Alzheimers Dement 2024; 20:8359-8373. [PMID: 39352226 DOI: 10.1002/alz.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Limbic-predominant age-related TAR DNA-binding protein of 43 kDa encephalopathy neuropathologic change (LATE-NC) staging criteria were updated in 2023. We evaluated this updated staging using National Alzheimer's Coordinating Center data. METHODS We examined associations of LATE-NC stages with cognition and other neuropathologic changes (NCs), and with cognition while accounting for other NCs, using multilevel regression models. RESULTS Of 1352 participants, 502 (37%) had LATE-NC (23% stage 1a, 6% stage 1b, 58% stage 2, 13% stage 3). LATE-NC stages were associated with cognition, hippocampal sclerosis of aging (HS-A), Alzheimer's disease NC (ADNC), Lewy bodies (LBs), and hippocampal atrophy. While stage 1b was associated with cognition and HS-A consistent with other stages, it was not associated with ADNC or LBs. All LATE-NC stages remained significantly associated with worse cognition when accounting for other NCs. DISCUSSION The updated LATE-NC staging criteria capture variations in early TDP-43 pathology spread which are consequential for cognition and associations with other NCs. HIGHLIGHTS We applied the updated limbic-predominant age-related TAR DNA-binding protein of 43 kDa encephalopathy neuropathologic change (LATE-NC) staging criteria to data from the National Alzheimer's Coordinating Center. LATE-NC stage 1b was identified in 22% of participants with stage 1. In contrast to other LATE-NC stages, stage 1b was not associated with Alzheimer's disease neuropathologic change (ADNC) or Lewy bodies. Stages 1a and 1b were significantly associated with dementia and memory impairment. Stages 1b+ were more strongly tied to dementia than all other neuropathologic changes except high likelihood ADNC.
Collapse
Affiliation(s)
- Davis C Woodworth
- Department of Neurology, University of California, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Katelynn M Nguyen
- Department of Neurology, University of California, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Lorena Sordo
- Department of Neurology, University of California, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, USA
| | - Kiana A Scambray
- Department of Neurology, University of California, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, USA
| | - Claudia H Kawas
- Department of Neurology, University of California, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
- Department of Neurobiology and Behavior, University of California, Irvine, California, USA
| | - María M Corrada
- Department of Neurology, University of California, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, California, USA
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, California, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, California, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, USA
| |
Collapse
|
4
|
Zhou W, Daniels S, Singh V, Menard M, Escobar Galvis ML, Chu HY. α-Synuclein aggregation decreases cortico-amygdala connectivity and impairs social behavior in mice. Neurobiol Dis 2024; 202:106702. [PMID: 39406290 DOI: 10.1016/j.nbd.2024.106702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Abnormal accumulation of insoluble α-synuclein (α-Syn) inclusions in neurons, neurites, and glial cells is the defining neuropathology of synucleinopathies, including Parkinson's disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy. Accumulation of α-Syn inclusions in the amygdala has been well-documented in post-mortem studies of PD and DLB brains, as well as preclinical animal models of these conditions. Though α-Syn pathology is closely associated with neurodegeneration, there is a poor correlation between neuronal loss in the amygdala and the clinical features of PD and DLB. Moreover, functional interaction between the cerebral cortex and the amygdala is critical to regulating emotion, motivation, and social behaviors. The cortico-amygdala functional interaction is likely to be disrupted by the development of α-Syn pathology in the brain. Thus, we hypothesize that neuronal α-Syn inclusions disrupt cortical modulation of the amygdala circuits and are sufficient to drive social behavioral deficits. In the present work, we designed a series of longitudinal studies to rigorously measure the time courses of neurodegeneration, functional impairment of cortico-amygdala connectivity, and development of amygdala-dependent social behavioral deficits to test this hypothesis. We injected α-Syn preformed fibrils (PFFs) into the dorsal striatum to induce α-Syn aggregation in the amygdala and the medial prefrontal cortex (mPFC) of C57BL6 mice of both sexes, followed by a detailed analysis of temporal development of α-Syn pathology, synaptic deficits, and neuronal loss in the amygdala, as well as behavioral deficits at 3-12 months post injections. Development of α-Syn inclusions caused losses of cortical axon terminals and cell death in the basolateral amygdala (BLA) at 6- and 12-months post injections, respectively. At a relatively early stage of 3 months post injections, the connection strength of the mPFC-BLA synapse was decreased in PFFs-injection mice compared to controls. Meanwhile, the PFFs-injected mice showed impaired social interaction behavior, which was rescued by chemogenetic stimulation of mPFC-BLA connections. Altogether, we presented a series of evidence to delineate circuit events in the amygdala associated with the accumulation of α-Syn inclusions in the mouse brain, highlighting that functional impairment of the amygdala is sufficient to cause social behavior deficits. The present work further suggests that early circuit modulation could be an effective approach to alleviate symptoms associated with α-Syn pathology, necessitating studies of functional consequences of α-Syn aggregation.
Collapse
Affiliation(s)
- Wei Zhou
- Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC 20007, USA
| | - Samuel Daniels
- Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA
| | - Vijay Singh
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Marissa Menard
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20852, United States
| | | | - Hong-Yuan Chu
- Department of Neurodegenerative Science, Van Andel Research Institute, Grand Rapids, MI 49503, USA; Department of Pharmacology and Physiology, Georgetown University Medical Center, Washington DC 20007, USA.
| |
Collapse
|
5
|
Beach TG, Serrano GE, Zhang N, Driver-Dunckley ED, Sue LI, Shill HA, Mehta SH, Belden C, Tremblay C, Choudhury P, Atri A, Adler CH. Clinicopathological Heterogeneity of Lewy Body Diseases: The Profound Influence of Comorbid Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.30.24312864. [PMID: 39281742 PMCID: PMC11398443 DOI: 10.1101/2024.08.30.24312864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
In recent years, proposals have been advanced to redefine or reclassify Lewy body disorders by merging the long-established entities of Parkinson's disease (PD), Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). These proposals reject the International DLB Consortium classification system that has evolved over three decades of consensus collaborations between neurologists, neuropsychologists and neuropathologists. While the Consortium's "one year rule" for separating PD and DLB has been criticized as arbitrary, it has been a pragmatic and effective tool for splitting the continuum between the two entities. In addition to the decades of literature supporting the non-homogeneity of PD and DLB, it has become increasingly apparent that Lewy body disorders may fundamentally differ in their etiology. Most PD subjects, as well as most clinically-presenting DLB subjects, might best be classified as having a "primary synucleinopathy" while most clinically-unidentified DLB subjects, who also have concurrent neuropathology-criteria AD (AD/DLB), as well as those with neuropathological AD and amygdala-predominant LBD insufficient for a DLB diagnosis, may best be classified as having a "secondary synucleinopathy. Importantly, the DLB Consortium recognized the importance of comorbid AD pathology by defining "Low", "Intermediate" and "High" subdivisions of DLB based on the relative brain stages of both Lewy body and AD pathology. If the one-year rule for separating PD from DLB, and for then dividing DLB into subtypes based on the presence and severity of comorbid AD pathology, is effective, then the divided groups should statistically differ in important ways. In this study we used the comprehensive clinicopathological database of the Arizona Study of Aging and Neurodegenerative Disorders (AZSAND) to empirically test this hypothesis. Furthermore, we used multivariable statistical models to test the hypothesis that comorbid AD neuropathology is a major predictor of the presence and severity of postmortem Lewy synucleinopathy. The results confirm the clinicopathological heterogeneity of Lewy body disorders as well as the profound influence of comorbid AD pathology.
Collapse
Affiliation(s)
| | | | | | | | - Lucia I Sue
- Banner Sun Health Research Institute, Sun City, AZ
| | | | | | | | | | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ
- Harvard & Brigham & Women's, Boston, MA
| | | |
Collapse
|
6
|
Bookheimer TH, Ganapathi AS, Iqbal F, Popa ES, Mattinson J, Bramen JE, Bookheimer SY, Porter VR, Kim M, Glatt RM, Bookheimer AW, Merrill DA, Panos SE, Siddarth P. Beyond the hippocampus: Amygdala and memory functioning in older adults. Behav Brain Res 2024; 471:115112. [PMID: 38871129 DOI: 10.1016/j.bbr.2024.115112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
BACKGROUND Medial temporal lobe atrophy has been linked to decline in neuropsychological measures of explicit memory function. While the hippocampus has long been identified as a critical structure in learning and memory processes, less is known about contributions of the amygdala to these functions. We sought to investigate the relationship between amygdala volume and memory functioning in a clinical sample of older adults with and without cognitive impairment. METHODS A serial clinical sample of older adults that underwent neuropsychological assessment at an outpatient neurology clinic was selected for retrospective chart review. Patients were included in the study if they completed a comprehensive neuropsychological assessment within six months of a structural magnetic resonance imaging scan. Regional brain volumes were quantified using Neuroreader® software. Associations between bilateral hippocampal and amygdala volumes and memory scores, derived from immediate and delayed recall conditions of a verbal story learning task and a visual design reconstruction task, were examined using mixed-effects general linear models, controlling for total intracranial volume, scanner model, age, sex and education. Partial correlation coefficients, adjusted for these covariates, were calculated to estimate the strength of the association between volumes and memory scores. RESULTS A total of 68 (39 F, 29 M) participants were included in the analyses, with a mean (SD) adjusted age of 80.1 (6.0) and educational level of 15.9 (2.5) years. Controlling for age, sex, education, and total intracranial volume, greater amygdala volumes were associated with better verbal and visual memory performance, with effect sizes comparable to hippocampal volume. No significant lateralized effects were observed. Partial correlation coefficients ranged from 0.47 to 0.33 (p<.001). CONCLUSION These findings contribute to a growing body of knowledge identifying the amygdala as a target for further research in memory functioning. This highlights the importance of considering the broader functioning of the limbic system in which multiple subcortical structures contribute to memory processes and decline in older adults.
Collapse
Affiliation(s)
- Tess H Bookheimer
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA.
| | - Aarthi S Ganapathi
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA
| | - Fatima Iqbal
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA
| | - Emily S Popa
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA
| | - Jenna Mattinson
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA
| | - Jennifer E Bramen
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA; Providence Saint John's Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA, USA
| | - Susan Y Bookheimer
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California, 855 Tiverton Dr, Los Angeles, CA, USA
| | - Verna R Porter
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA; Providence Saint John's Health Center, 2121 Santa Monica Blvd, Santa Monica, CA, USA
| | - Mihae Kim
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA; Providence Saint John's Health Center, 2121 Santa Monica Blvd, Santa Monica, CA, USA
| | - Ryan M Glatt
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA; Providence Saint John's Health Center, 2121 Santa Monica Blvd, Santa Monica, CA, USA
| | | | - David A Merrill
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA; Providence Saint John's Health Center, 2121 Santa Monica Blvd, Santa Monica, CA, USA; Providence Saint John's Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California, 855 Tiverton Dr, Los Angeles, CA, USA
| | - Stella E Panos
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA; Providence Saint John's Health Center, 2121 Santa Monica Blvd, Santa Monica, CA, USA
| | - Prabha Siddarth
- Pacific Neuroscience Institute Foundation, Pacific Brain Health Center, 1301 20th St, Suite 250, Santa Monica, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at the University of California, 855 Tiverton Dr, Los Angeles, CA, USA
| |
Collapse
|
7
|
Baiardi S, Hansson O, Levin J, Parchi P. In vivo detection of Alzheimer's and Lewy body disease concurrence: Clinical implications and future perspectives. Alzheimers Dement 2024; 20:5757-5770. [PMID: 38955137 PMCID: PMC11350051 DOI: 10.1002/alz.14039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/27/2024] [Accepted: 05/09/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION The recent introduction of seed amplification assays (SAAs) detecting misfolded α-synuclein, a pathology-specific marker for Lewy body disease (LBD), has allowed the in vivo identification and phenotypic characterization of patients with co-occurring Alzheimer's disease (AD) and LBD since the early clinical or even preclinical stage. METHODS We reviewed studies with an in vivo biomarker-based diagnosis of AD-LBD copathology. RESULTS Studies in large cohorts of cognitively impaired individuals have shown that cerebrospinal fluid (CSF) biomarkers detect the coexistence of AD and LB pathology in approximately 20%-25% of them, independently of the primary clinical diagnosis. Compared to those with pure AD, AD-LBD patients showed worse global cognition, especially in attentive/executive and visuospatial functions, and worse motor functions. In cognitively unimpaired individuals, concurrent AD-LBD pathologies predicted longitudinal cognitive progression with faster worsening of global cognition, memory, and attentive/executive functions. DISCUSSION Future research studies aiming for a better precision medicine approach should develop SAAs further to reach a quantitative evaluation or staging of each underlying pathology using a single biofluid sample. HIGHLIGHTS α-Synuclein seed amplification assays (SAAs) provide a specific marker for Lewy body disease (LBD). SAAs allow for the in vivo identification of co-occurring LBD in patients with Alzheimer's disease (AD). AD-LBD coexist in 20-25% of cognitively impaired elderly individuals, and ∼8% of those asymptomatic. Compared to pure AD, AD-LBD causes a faster worsening of cognitive functions. AD-LBD is associated with worse attentive/executive, memory, visuospatial and motor functions.
Collapse
Affiliation(s)
- Simone Baiardi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| | - Oskar Hansson
- Clinical Memory Research UnitDepartment of Clinical Sciences MalmöFaculty of MedicineLund UniversityLundSweden
- Memory ClinicSkåne University HospitalLundSweden
| | - Johannes Levin
- Department of NeurologyLudwig‐Maximilians‐University MunichMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster of Systems Neurology (SyNergy)MunichGermany
| | - Piero Parchi
- Department of Biomedical and Neuromotor SciencesUniversity of BolognaBolognaItaly
- IRCCS Istituto delle Scienze Neurologiche di BolognaBolognaItaly
| |
Collapse
|
8
|
Rifai OM, Waldron FM, O'Shaughnessy J, Read FL, Gilodi M, Pastore A, Shneider N, Tartaglia GG, Zacco E, Spence H, Gregory JM. Amygdala TDP-43 pathology is associated with behavioural dysfunction and ferritin accumulation in amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596819. [PMID: 38854008 PMCID: PMC11160765 DOI: 10.1101/2024.06.01.596819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Background Cognitive and behavioural symptoms associated with amyotrophic lateral sclerosis and frontotemporal spectrum disorders (ALSFTSD) are thought to be driven, at least in part, by the pathological accumulation of TDP-43. Methods Here we examine post-mortem tissue from six brain regions associated with cognitive and behavioural symptoms in a cohort of 30 people with sporadic ALS (sALS), a proportion of which underwent standardized neuropsychological behavioural assessment as part of the Edinburgh Cognitive ALS Screen (ECAS). Results Overall, the behavioural screen performed as part of the ECAS predicted accumulation of pathological phosphorylated TDP-43 (pTDP-43) with 100% specificity and 86% sensitivity in behaviour-associated brain regions. Notably, of these regions, pathology in the amygdala was the most predictive correlate of behavioural dysfunction in sALS. In the amygdala of sALS patients, we show variation in morphology, cell type predominance, and severity of pTDP-43 pathology. Further, we demonstrate that the presence and severity of intra-neuronal pTDP-43 pathology, but not astroglial pathology, or phosphorylated Tau pathology, is associated with behavioural dysfunction. Cases were also evaluated using a TDP-43 aptamer (TDP-43APT), which revealed that pathology was not only associated with behavioural symptoms, but also with ferritin levels, a measure of brain iron. Conclusions Intra-neuronal pTDP-43 and cytoplasmic TDP-43APT pathology in the amygdala is associated with behavioural symptoms in sALS. TDP-43APT staining intensity is also associated with increased ferritin, regardless of behavioural phenotype, suggesting that ferritin increases may occur upstream of clinical manifestation, in line with early TDP-43APT pathology, representing a potential region-specific imaging biomarker of early disease in ALS.
Collapse
Affiliation(s)
- Olivia M Rifai
- Centre for Discovery Brain Sciences, University of Edinburgh, UK
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, USA
| | | | | | - Fiona L Read
- Institute of Medical Sciences, University of Aberdeen, UK
| | - Martina Gilodi
- RNA System Biology Lab, Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | | | - Neil Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, New York, USA
| | - Gian Gaetano Tartaglia
- RNA System Biology Lab, Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Elsa Zacco
- RNA System Biology Lab, Center for Human Technology, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Holly Spence
- Institute of Medical Sciences, University of Aberdeen, UK
| | | |
Collapse
|
9
|
Nelson PT, Fardo DW, Wu X, Aung KZ, Cykowski MD, Katsumata Y. Limbic-predominant age-related TDP-43 encephalopathy (LATE-NC): Co-pathologies and genetic risk factors provide clues about pathogenesis. J Neuropathol Exp Neurol 2024; 83:396-415. [PMID: 38613823 PMCID: PMC11110076 DOI: 10.1093/jnen/nlae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2024] Open
Abstract
Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is detectable at autopsy in more than one-third of people beyond age 85 years and is robustly associated with dementia independent of other pathologies. Although LATE-NC has a large impact on public health, there remain uncertainties about the underlying biologic mechanisms. Here, we review the literature from human studies that may shed light on pathogenetic mechanisms. It is increasingly clear that certain combinations of pathologic changes tend to coexist in aging brains. Although "pure" LATE-NC is not rare, LATE-NC often coexists in the same brains with Alzheimer disease neuropathologic change, brain arteriolosclerosis, hippocampal sclerosis of aging, and/or age-related tau astrogliopathy (ARTAG). The patterns of pathologic comorbidities provide circumstantial evidence of mechanistic interactions ("synergies") between the pathologies, and also suggest common upstream influences. As to primary mediators of vulnerability to neuropathologic changes, genetics may play key roles. Genes associated with LATE-NC include TMEM106B, GRN, APOE, SORL1, ABCC9, and others. Although the anatomic distribution of TDP-43 pathology defines the condition, important cofactors for LATE-NC may include Tau pathology, endolysosomal pathways, and blood-brain barrier dysfunction. A review of the human phenomenology offers insights into disease-driving mechanisms, and may provide clues for diagnostic and therapeutic targets.
Collapse
Affiliation(s)
- Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky, USA
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - David W Fardo
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Xian Wu
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Khine Zin Aung
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| | - Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas, USA
| | - Yuriko Katsumata
- Department of Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
10
|
Wetering JV, Geut H, Bol JJ, Galis Y, Timmermans E, Twisk JWR, Hepp DH, Morella ML, Pihlstrom L, Lemstra AW, Rozemuller AJM, Jonkman LE, van de Berg WDJ. Neuroinflammation is associated with Alzheimer's disease co-pathology in dementia with Lewy bodies. Acta Neuropathol Commun 2024; 12:73. [PMID: 38715119 PMCID: PMC11075309 DOI: 10.1186/s40478-024-01786-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Neuroinflammation and Alzheimer's disease (AD) co-pathology may contribute to disease progression and severity in dementia with Lewy bodies (DLB). This study aims to clarify whether a different pattern of neuroinflammation, such as alteration in microglial and astroglial morphology and distribution, is present in DLB cases with and without AD co-pathology. METHODS The morphology and load (% area of immunopositivity) of total (Iba1) and reactive microglia (CD68 and HLA-DR), reactive astrocytes (GFAP) and proteinopathies of alpha-synuclein (KM51/pser129), amyloid-beta (6 F/3D) and p-tau (AT8) were assessed in a cohort of mixed DLB + AD (n = 35), pure DLB (n = 15), pure AD (n = 16) and control (n = 11) donors in limbic and neocortical brain regions using immunostaining, quantitative image analysis and confocal microscopy. Regional and group differences were estimated using a linear mixed model analysis. RESULTS Morphologically, reactive and amoeboid microglia were common in mixed DLB + AD, while homeostatic microglia with a small soma and thin processes were observed in pure DLB cases. A higher density of swollen astrocytes was observed in pure AD cases, but not in mixed DLB + AD or pure DLB cases. Mixed DLB + AD had higher CD68-loads in the amygdala and parahippocampal gyrus than pure DLB cases, but did not differ in astrocytic loads. Pure AD showed higher Iba1-loads in the CA1 and CA2, higher CD68-loads in the CA2 and subiculum, and a higher astrocytic load in the CA1-4 and subiculum than mixed DLB + AD cases. In mixed DLB + AD cases, microglial load associated strongly with amyloid-beta (Iba1, CD68 and HLA-DR), and p-tau (CD68 and HLA-DR), and minimally with alpha-synuclein load (CD68). In addition, the highest microglial activity was found in the amygdala and CA2, and astroglial load in the CA4. Confocal microscopy demonstrated co-localization of large amoeboid microglia with neuritic and classic-cored plaques of amyloid-beta and p-tau in mixed DLB + AD cases. CONCLUSIONS In conclusion, microglial activation in DLB was largely associated with AD co-pathology, while astrocytic response in DLB was not. In addition, microglial activity was high in limbic regions, with prevalent AD pathology. Our study provides novel insights into the molecular neuropathology of DLB, highlighting the importance of microglial activation in mixed DLB + AD.
Collapse
Affiliation(s)
- Janna van Wetering
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Hanne Geut
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John J Bol
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Yvon Galis
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Evelien Timmermans
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
| | - Jos W R Twisk
- Department of Epidemiology and Biostatistics, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Dagmar H Hepp
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, Leiden, 2333 ZA, The Netherlands
| | - Martino L Morella
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Lasse Pihlstrom
- Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Afina W Lemstra
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, De Boelelaan 1117, The Netherlands
- Alzheimer Center, Department of Neurology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Annemieke J M Rozemuller
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Laura E Jonkman
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Wilma D J van de Berg
- Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking and Life Sciences O|2 building 13e55, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1118, Amsterdam, 1081 HV, The Netherlands.
- Neurodegeneration, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
11
|
Yan S, Lu J, Zhu H, Tian T, Qin Y, Li Y, Zhu W. The influence of accelerated brain aging on coactivation pattern dynamics in Parkinson's disease. J Neurosci Res 2024; 102:e25357. [PMID: 38803227 DOI: 10.1002/jnr.25357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/27/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024]
Abstract
Aging is widely acknowledged as the primary risk factor for brain degeneration, with Parkinson's disease (PD) tending to follow accelerated aging trajectories. We aim to investigate the impact of structural brain aging on the temporal dynamics of a large-scale functional network in PD. We enrolled 62 PD patients and 32 healthy controls (HCs). The level of brain aging was determined by calculating global and local brain age gap estimates (G-brainAGE and L-brainAGE) from structural images. The neural network activity of the whole brain was captured by identifying coactivation patterns (CAPs) from resting-state functional images. Intergroup differences were assessed using the general linear model. Subsequently, a spatial correlation analysis between the L-brainAGE difference map and CAPs was conducted to uncover the anatomical underpinnings of functional alterations. Compared to HCs (-3.73 years), G-brainAGE was significantly higher in PD patients (+1.93 years), who also exhibited widespread elevation in L-brainAGE. G-brainAGE was correlated with disease severity and duration. PD patients spent less time in CAPs involving activated default mode and the fronto-parietal network (DMN-FPN), as well as the sensorimotor and salience network (SMN-SN), and had a reduced transition frequency from other CAPs to the DMN-FPN and SMN-SN CAPs. Furthermore, the pattern of localized brain age acceleration showed spatial similarities with the SMN-SN CAP. Accelerated structural brain aging in PD adversely affects brain function, manifesting as dysregulated brain network dynamics. These findings provide insights into the neuropathological mechanisms underlying neurodegenerative diseases and imply the possibility of interventions for modifying PD progression by slowing the brain aging process.
Collapse
Affiliation(s)
- Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Lu
- Department of CT & MRI, The First Affiliated Hospital, College of Medicine, Shihezi University, Shihezi, China
| | - Hongquan Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tian Tian
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Qin
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
12
|
Kang S, Jeon S, Lee YG, Ye BS. Alteration of medial temporal lobe metabolism related to Alzheimer's disease and dementia with lewy bodies. Alzheimers Res Ther 2024; 16:89. [PMID: 38654300 PMCID: PMC11036684 DOI: 10.1186/s13195-024-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Association of medial temporal lobe (MTL) metabolism with Alzheimer's disease (AD) and dementia with Lewy bodies (DLB) has not been evaluated considering their mixed disease (MD). METHODS 131 patients with AD, 133 with DLB, 122 with MD, and 28 normal controls (NCs) underwent neuropsychological tests, assessments for parkinsonism, cognitive fluctuation (CF), and visual hallucinations (VH), and 18F-fluorodeoxyglucose PET to quantify MTL metabolism in the amygdala, hippocampus, and entorhinal cortex. The effects of AD and DLB on MTL metabolism were evaluated using general linear models (GLMs). Associations between MTL metabolism, cognition, and clinical features were evaluated using GLMs or logistic regression models separately performed for the AD spectrum (NC + AD + MD), DLB spectrum (NC + DLB + MD), and disease groups (AD + DLB + MD). Covariates included age, sex, and education. RESULTS AD was associated with hippocampal/entorhinal hypometabolism, whereas DLB was associated with relative amygdalar/hippocampal hypermetabolism. Relative MTL hypermetabolism was associated with lower attention/visuospatial/executive scores and severe parkinsonism in both the AD and DLB spectra and disease groups. Left hippocampal/entorhinal hypometabolism was associated with lower verbal memory scores, whereas right hippocampal hypometabolism was associated with lower visual memory scores in both the AD spectrum and disease groups. Relative MTL hypermetabolism was associated with an increased risk of CF and VH in the disease group, and relative amygdalar hypermetabolism was associated with an increased risk of VH in the DLB spectrum. CONCLUSIONS Entorhinal-hippocampal hypometabolism and relative amygdala-hippocampal hypermetabolism could be characteristics of AD- and DLB-related neurodegeneration, respectively.
Collapse
Affiliation(s)
- Sungwoo Kang
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seun Jeon
- Metabolism-Dementia Research Institute , Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Young-Gun Lee
- Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Byoung Seok Ye
- Department of Neurology, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
13
|
Punzi M, Sestieri C, Picerni E, Chiarelli AM, Padulo C, Delli Pizzi A, Tullo MG, Tosoni A, Granzotto A, Della Penna S, Onofrj M, Ferretti A, Delli Pizzi S, Sensi SL. Atrophy of hippocampal subfields and amygdala nuclei in subjects with mild cognitive impairment progressing to Alzheimer's disease. Heliyon 2024; 10:e27429. [PMID: 38509925 PMCID: PMC10951508 DOI: 10.1016/j.heliyon.2024.e27429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/22/2024] Open
Abstract
The hippocampus and amygdala are the first brain regions to show early signs of Alzheimer's Disease (AD) pathology. AD is preceded by a prodromal stage known as Mild Cognitive Impairment (MCI), a crucial crossroad in the clinical progression of the disease. The topographical development of AD has been the subject of extended investigation. However, it is still largely unknown how the transition from MCI to AD affects specific hippocampal and amygdala subregions. The present study is set to answer that question. We analyzed data from 223 subjects: 75 healthy controls, 52 individuals with MCI, and 96 AD patients obtained from the ADNI. The MCI group was further divided into two subgroups depending on whether individuals in the 48 months following the diagnosis either remained stable (N = 21) or progressed to AD (N = 31). A MANCOVA test evaluated group differences in the volume of distinct amygdala and hippocampal subregions obtained from magnetic resonance images. Subsequently, a stepwise linear discriminant analysis (LDA) determined which combination of magnetic resonance imaging parameters was most effective in predicting the conversion from MCI to AD. The predictive performance was assessed through a Receiver Operating Characteristic analysis. AD patients displayed widespread subregional atrophy. MCI individuals who progressed to AD showed selective atrophy of the hippocampal subiculum and tail compared to stable MCI individuals, who were undistinguishable from healthy controls. Converter MCI showed atrophy of the amygdala's accessory basal, central, and cortical nuclei. The LDA identified the hippocampal subiculum and the amygdala's lateral and accessory basal nuclei as significant predictors of MCI conversion to AD. The analysis returned a sensitivity value of 0.78 and a specificity value of 0.62. These findings highlight the importance of targeted assessments of distinct amygdala and hippocampus subregions to help dissect the clinical and pathophysiological development of the MCI to AD transition.
Collapse
Affiliation(s)
- Miriam Punzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Eleonora Picerni
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Antonio Maria Chiarelli
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Caterina Padulo
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- Department of Humanities, University of Naples Federico II, Naples, 80133, Italy
| | - Andrea Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Maria Giulia Tullo
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Annalisa Tosoni
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Stefania Della Penna
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- UdA-TechLab, Research Center, University “G. D’Annunzio” of Chieti-Pescara, 66100, Chieti, Italy
| | - Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | - Stefano L. Sensi
- Department of Neuroscience, Imaging, and Clinical Sciences, University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
- Molecular Neurology Unit, Center for Advanced Studies and Technology (CAST), University “G. D'Annunzio of Chieti-Pescara”, Chieti, 66100, Italy
| | | |
Collapse
|
14
|
Hung C, Patani R. Elevated 4R tau contributes to endolysosomal dysfunction and neurodegeneration in VCP-related frontotemporal dementia. Brain 2024; 147:970-979. [PMID: 37882537 PMCID: PMC10907086 DOI: 10.1093/brain/awad370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 10/27/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two incurable neurodegenerative diseases that exist on a clinical, genetic and pathological spectrum. The VCP gene is highly relevant, being directly implicated in both FTD and ALS. Here, we investigate the effects of VCP mutations on the cellular homoeostasis of human induced pluripotent stem cell-derived cortical neurons, focusing on endolysosomal biology and tau pathology. We found that VCP mutations cause abnormal accumulation of enlarged endolysosomes accompanied by impaired interaction between two nuclear RNA binding proteins: fused in sarcoma (FUS) and splicing factor, proline- and glutamine-rich (SFPQ) in human cortical neurons. The spatial dissociation of intranuclear FUS and SFPQ correlates with alternative splicing of the MAPT pre-mRNA and increased tau phosphorylation. Importantly, we show that inducing 4R tau expression using antisense oligonucleotide technology is sufficient to drive neurodegeneration in control human neurons, which phenocopies VCP-mutant neurons. In summary, our findings demonstrate that tau hyperphosphorylation, endolysosomal dysfunction, lysosomal membrane rupture, endoplasmic reticulum stress and apoptosis are driven by a pathogenic increase in 4R tau.
Collapse
Affiliation(s)
- Christy Hung
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- UCL Great Ormond Street Institute of Child Health, Zayed Centre for Research into Rare Disease in Children, London WC1N 1DZ, UK
| | - Rickie Patani
- Human Stem Cells and Neurodegeneration Laboratory, The Francis Crick Institute, London NW1 1AT, UK
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
15
|
Stouffer KM, Grande X, Düzel E, Johansson M, Creese B, Witter MP, Miller MI, Wisse LEM, Berron D. Amidst an amygdala renaissance in Alzheimer's disease. Brain 2024; 147:816-829. [PMID: 38109776 PMCID: PMC10907090 DOI: 10.1093/brain/awad411] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/03/2023] [Accepted: 11/27/2023] [Indexed: 12/20/2023] Open
Abstract
The amygdala was highlighted as an early site for neurofibrillary tau tangle pathology in Alzheimer's disease in the seminal 1991 article by Braak and Braak. This knowledge has, however, only received traction recently with advances in imaging and image analysis techniques. Here, we provide a cross-disciplinary overview of pathology and neuroimaging studies on the amygdala. These studies provide strong support for an early role of the amygdala in Alzheimer's disease and the utility of imaging biomarkers of the amygdala in detecting early changes and predicting decline in cognitive functions and neuropsychiatric symptoms in early stages. We summarize the animal literature on connectivity of the amygdala, demonstrating that amygdala nuclei that show the earliest and strongest accumulation of neurofibrillary tangle pathology are those that are connected to brain regions that also show early neurofibrillary tangle accumulation. Additionally, we propose an alternative pathway of neurofibrillary tangle spreading within the medial temporal lobe between the amygdala and the anterior hippocampus. The proposed existence of this pathway is strengthened by novel experimental data on human functional connectivity. Finally, we summarize the functional roles of the amygdala, highlighting the correspondence between neurofibrillary tangle accumulation and symptomatic profiles in Alzheimer's disease. In summary, these findings provide a new impetus for studying the amygdala in Alzheimer's disease and a unique perspective to guide further study on neurofibrillary tangle spreading and the occurrence of neuropsychiatric symptoms in Alzheimer's disease.
Collapse
Affiliation(s)
- Kaitlin M Stouffer
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Xenia Grande
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
- Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, 39106, Magdeburg, Germany
| | - Maurits Johansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 205 02, Lund, Sweden
- Division of Clinical Sciences, Helsingborg, Department of Clinical Sciences Lund, Lund University, 221 84, Lund, Sweden
- Department of Psychiatry, Helsingborg Hospital, 252 23, Helsingborg, Sweden
| | - Byron Creese
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, EX4 4PY, Exeter, UK
- Division of Psychology, Department of Life Sciences, Brunel University London, UB8 3PH, Uxbridge, UK
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, NTNU Norwegian University of Science and Technology, 7491, Trondheim, Norway
- KG. Jebsen Centre for Alzheimer’s Disease, NTNU Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, 21218, USA
- Center for Imaging Science, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Laura E M Wisse
- Diagnostic Radiology, Department of Clinical Sciences Lund, Lund University, 211 84, Lund, Sweden
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), 39120, Magdeburg, Germany
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, 205 02, Lund, Sweden
| |
Collapse
|
16
|
Bentivenga GM, Mammana A, Baiardi S, Rossi M, Ticca A, Magliocchetti F, Mastrangelo A, Poleggi A, Ladogana A, Capellari S, Parchi P. Performance of a seed amplification assay for misfolded alpha-synuclein in cerebrospinal fluid and brain tissue in relation to Lewy body disease stage and pathology burden. Acta Neuropathol 2024; 147:18. [PMID: 38240849 PMCID: PMC10799141 DOI: 10.1007/s00401-023-02663-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024]
Abstract
The development of in vitro seed amplification assays (SAA) detecting misfolded alpha-synuclein (αSyn) in cerebrospinal fluid (CSF) and other tissues has provided a pathology-specific biomarker for Lewy body disease (LBD). However, αSyn SAA diagnostic performance in early pathological stages or low Lewy body (LB) pathology load has only been assessed in small cohorts. Moreover, the relationship between SAA kinetic parameters, the number of αSyn brain seeds and the LB pathology burden assessed by immunohistochemistry has never been systematically investigated. We tested 269 antemortem CSF samples and 138 serially diluted brain homogenates from patients with and without neuropathological evidence of LBD in different stages by the αSyn Real-Time Quaking-Induced Conversion (RT-QuIC) SAA. Moreover, we looked for LB pathology by αSyn immunohistochemistry in a consecutive series of 604 Creutzfeldt-Jakob disease (CJD)-affected brains. αSyn CSF RT-QuIC showed 100% sensitivity in detecting LBD in limbic and neocortical stages. The assay sensitivity was significantly lower in patients in early stages (37.5% in Braak 1 and 2, 73.3% in Braak 3) or with focal pathology (50% in amygdala-predominant). The average number of CSF RT-QuIC positive replicates significantly correlated with LBD stage. Brain homogenate RT-QuIC showed higher sensitivity than immunohistochemistry for the detection of misfolded αSyn. In the latter, the kinetic parameter lag phase (time to reach the positive threshold) strongly correlated with the αSyn seed concentration in serial dilution experiments. Finally, incidental LBD prevalence was 8% in the CJD cohort. The present results indicate that (a) CSF RT-QuIC has high specificity and sufficient sensitivity to detect all patients with LB pathology at Braak stages > 3 and most of those at stage 3; (b) brain deposition of misfolded αSyn precedes the formation of LB and Lewy neurites; (c) αSyn SAA provides "quantitative" information regarding the LB pathology burden, with the lag phase and the number of positive replicates being the most promising variables to be used in the clinical setting.
Collapse
Affiliation(s)
| | - Angela Mammana
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Simone Baiardi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marcello Rossi
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Alice Ticca
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | - Andrea Mastrangelo
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Anna Poleggi
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Anna Ladogana
- Department of Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Sabina Capellari
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Piero Parchi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
- IRCCS, Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy.
| |
Collapse
|
17
|
Thomas JL, Nilaver BI, Lomniczi A, Brown DI, Appleman ML, Kohama SG, Urbanski HF. Pathological Markers of Alzheimer's Disease and Related Dementia in the Rhesus Macaque Amygdala. J Alzheimers Dis Rep 2024; 8:25-32. [PMID: 38229831 PMCID: PMC10790150 DOI: 10.3233/adr-230184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/18/2024] Open
Abstract
Rhesus macaques develop amyloid-β (Aβ) plaques during old age, but it is unclear how extensively they express other pathological hallmarks of dementia. Here we used immunohistochemistry to examine expression of phosphorylated tau (pTau) protein and cytoplasmic inclusions of TAR DNA binding protein 43 kDa (TDP-43) within the amygdala of young and old males, and also in old surgically-menopausal females that were maintained on regular or obesogenic diets. Only one animal, a 23-year-old female, showed pTau expression and none showed TDP-43 inclusions. What genetic and/or environmental factors protect macaques from expressing more severe human neuro-pathologies remains an interesting unresolved question.
Collapse
Affiliation(s)
- Jeremy L. Thomas
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Benjamin I. Nilaver
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Alejandro Lomniczi
- Department of Physiology & Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Donald I. Brown
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
- Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Maria-Luisa Appleman
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Steven G. Kohama
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Henryk F. Urbanski
- Division of Neuroscience, Oregon National Primate Research Center, Beaverton, OR, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
18
|
Ichimata S, Yoshida K, Li J, Rogaeva E, Lang AE, Kovacs GG. The molecular spectrum of amyloid-beta (Aβ) in neurodegenerative diseases beyond Alzheimer's disease. Brain Pathol 2024; 34:e13210. [PMID: 37652560 PMCID: PMC10711260 DOI: 10.1111/bpa.13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/18/2023] [Indexed: 09/02/2023] Open
Abstract
This study investigated the molecular spectrum of amyloid-beta (Aβ) in neurodegenerative diseases beyond Alzheimer's disease (AD). We analyzed Aβ deposition in the temporal cortex and striatum in 116 autopsies, including Lewy body disease (LBD; N = 51), multiple system atrophy (MSA; N = 10), frontotemporal lobar degeneration-TDP-43 (FTLD-TDP; N = 16), and progressive supranuclear palsy (PSP; N = 39). The LBD group exhibited the most Aβ deposition in the temporal cortex and striatum (90/76%, respectively), followed by PSP (69/28%), FTLD-TDP (50/25%), and the MSA group (50/10%). We conducted immunohistochemical analysis using antibodies targeting eight Aβ epitopes in the LBD and PSP groups. Immunohistochemical findings were evaluated semi-quantitatively and quantitatively using digital pathology. Females with LBD exhibited significantly more severe Aβ deposition, particularly Aβ42 and Aβ43 , along with significantly more severe tau pathology. Furthermore, a quantitative analysis of all Aβ peptides in the LBD group revealed an association with the APOE-ε4 genotypes. No significant differences were observed between males and females in the PSP group. Finally, we compared striatal Aβ deposition in cases with LBD (N = 15), AD without α-synuclein pathology (N = 6), and PSP (N = 5). There were no differences in the pan-Aβ antibody (6F/3D)-immunolabeled deposition burden among the three groups, but the deposition burden of peptides with high aggregation capacity, especially Aβ43 , was significantly higher in the AD and LBD groups than in the PSP group. Furthermore, considerable heterogeneity was observed in the composition of Aβ peptides on a case-by-case basis in the AD and LBD groups, whereas it was relatively uniform in the PSP group. Cluster analysis further supported these findings. Our data suggest that the type of concomitant proteinopathies influences the spectrum of Aβ deposition, impacted also by sex and APOE genotypes.
Collapse
Affiliation(s)
- Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Department of Legal Medicine, Faculty of MedicineUniversity of ToyamaToyamaJapan
| | - Koji Yoshida
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Department of Legal Medicine, Faculty of MedicineUniversity of ToyamaToyamaJapan
| | - Jun Li
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
| | - Anthony E. Lang
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Edmond J Safra Program in Parkinson's Disease and Rossy Program in Progressive Supranuclear PalsyToronto Western HospitalTorontoOntarioCanada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative DiseaseUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoOntarioCanada
- Edmond J Safra Program in Parkinson's Disease and Rossy Program in Progressive Supranuclear PalsyToronto Western HospitalTorontoOntarioCanada
- Laboratory Medicine Program and Krembil Brain InstituteUniversity Health NetworkTorontoOntarioCanada
| |
Collapse
|
19
|
Zhang L, Zhang P, Dong Q, Zhao Z, Zheng W, Zhang J, Hu X, Yao Z, Hu B. Fine-grained features characterize hippocampal and amygdaloid change pattern in Parkinson's disease and discriminate cognitive-deficit subtype. CNS Neurosci Ther 2024; 30:e14480. [PMID: 37849445 PMCID: PMC10805398 DOI: 10.1111/cns.14480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023] Open
Abstract
AIMS To extract vertex-wise features of the hippocampus and amygdala in Parkinson's disease (PD) with mild cognitive impairment (MCI) and normal cognition (NC) and further evaluate their discriminatory efficacy. METHODS High-resolution 3D-T1 data were collected from 68 PD-MCI, 211 PD-NC, and 100 matched healthy controls (HC). Surface geometric features were captured using surface conformal representation, and surfaces were registered to a common template using fluid registration. The statistical tests were performed to detect differences between groups. The disease-discriminatory ability of features was also tested in the ensemble classifiers. RESULTS The amygdala, not the hippocampus, showed significant overall differences among the groups. Compared with PD-NC, the right amygdala in MCI patients showed expansion (anterior cortical, anterior amygdaloid, and accessory basal areas) and atrophy (basolateral ventromedial area) subregions. There was notable atrophy in the right CA1 and hippocampal subiculum of PD-MCI. The accuracy of classifiers with multivariate morphometry statistics as features exceeded 85%. CONCLUSION PD-MCI is associated with multiscale morphological changes in the amygdala, as well as subtle atrophy in the hippocampus. These novel metrics demonstrated the potential to serve as biomarkers for PD-MCI diagnosis. Overall, these findings from this study help understand the role of subcortical structures in the neuropathological mechanisms of PD cognitive impairment.
Collapse
Affiliation(s)
- Lingyu Zhang
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Pengfei Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhouChina
| | - Qunxi Dong
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| | - Ziyang Zhao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Weihao Zheng
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Jing Zhang
- Department of Magnetic ResonanceLanzhou University Second HospitalLanzhouChina
- Gansu Province Clinical Research Center for Functional and Molecular ImagingLanzhouChina
| | - Xiping Hu
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| | - Zhijun Yao
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
| | - Bin Hu
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and EngineeringLanzhou UniversityLanzhouChina
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghaiChina
- Joint Research Center for Cognitive Neurosensor Technology of Lanzhou University & Institute of SemiconductorsChinese Academy of SciencesLanzhouChina
| |
Collapse
|
20
|
Padulo C, Sestieri C, Punzi M, Picerni E, Chiacchiaretta P, Tullo MG, Granzotto A, Baldassarre A, Onofrj M, Ferretti A, Delli Pizzi S, Sensi SL. Atrophy of specific amygdala subfields in subjects converting to mild cognitive impairment. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2023; 9:e12436. [PMID: 38053753 PMCID: PMC10694338 DOI: 10.1002/trc2.12436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 12/07/2023]
Abstract
Introduction Accumulating evidence indicates that the amygdala exhibits early signs of Alzheimer's disease (AD) pathology. However, it is still unknown whether the atrophy of distinct subfields of the amygdala also participates in the transition from healthy cognition to mild cognitive impairment (MCI). Methods Our sample was derived from the AD Neuroimaging Initiative 3 and consisted of 97 cognitively healthy (HC) individuals, sorted into two groups based on their clinical follow-up: 75 who remained stable (s-HC) and 22 who converted to MCI within 48 months (c-HC). Anatomical magnetic resonance (MR) images were analyzed using a semi-automatic approach that combines probabilistic methods and a priori information from ex vivo MR images and histology to segment and obtain quantitative structural metrics for different amygdala subfields in each participant. Spearman's correlations were performed between MR measures and baseline and longitudinal neuropsychological measures. We also included anatomical measurements of the whole amygdala, the hippocampus, a key target of AD-related pathology, and the whole cortical thickness as a test of spatial specificity. Results Compared with s-HC individuals, c-HC subjects showed a reduced right amygdala volume, whereas no significant difference was observed for hippocampal volumes or changes in cortical thickness. In the amygdala subfields, we observed selected atrophy patterns in the basolateral nuclear complex, anterior amygdala area, and transitional area. Macro-structural alterations in these subfields correlated with variations of global indices of cognitive performance (measured at baseline and the 48-month follow-up), suggesting that amygdala changes shape the cognitive progression to MCI. Discussion Our results provide anatomical evidence for the early involvement of the amygdala in the preclinical stages of AD. Highlights Amygdala's atrophy marks elderly progression to mild cognitive impairment (MCI).Amygdala's was observed within the basolateral and amygdaloid complexes.Macro-structural alterations were associated with cognitive decline.No atrophy was found in the hippocampus and cortex.
Collapse
Affiliation(s)
- Caterina Padulo
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Department of HumanitiesUniversity of Naples Federico IINaplesItaly
| | - Carlo Sestieri
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical Technologies (ITAB)“G. d'Annunzio” University, Chieti‐PescaraChietiItaly
| | - Miriam Punzi
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Eleonora Picerni
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Piero Chiacchiaretta
- Department of Innovative Technologies in Medicine and Dentistry“G. d'Annunzio” University of Chieti‐Pescara, ChietiChietiItaly
- Advanced Computing CoreCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Maria Giulia Tullo
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Alberto Granzotto
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Antonello Baldassarre
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Antonio Ferretti
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Stefano Delli Pizzi
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | - Stefano L. Sensi
- Department of Neuroscience, Imaging, and Clinical SciencesUniversity “G. d'Annunzio” of Chieti‐PescaraChietiItaly
- Institute for Advanced Biomedical Technologies (ITAB)“G. d'Annunzio” University, Chieti‐PescaraChietiItaly
- Molecular Neurology UnitCenter for Advanced Studies and Technology (CAST)University “G. d'Annunzio” of Chieti‐PescaraChietiItaly
| | | |
Collapse
|
21
|
Ay U, Yıldırım Z, Erdogdu E, Kiçik A, Ozturk-Isik E, Demiralp T, Gurvit H. Shrinkage of olfactory amygdala connotes cognitive impairment in patients with Parkinson's disease. Cogn Neurodyn 2023; 17:1309-1320. [PMID: 37786655 PMCID: PMC10542039 DOI: 10.1007/s11571-022-09887-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/03/2022] Open
Abstract
During the caudo-rostral progression of Lewy pathology, the amygdala is involved relatively early in Parkinson's disease (PD). However, lesser is known about the volumetric differences at the amygdala subdivisions, although the evidence mainly implicates the olfactory amygdala. We aimed to investigate the volumetric differences between the amygdala's nuclear and sectoral subdivisions in the PD cognitive impairment continuum compared to healthy controls (HC). The volumes of nine nuclei of the amygdala were estimated with FreeSurfer (nuclear parcellation-NP) from T1-weighted images of PD patients with normal cognition (PD-CN), PD with mild cognitive impairment (PD-MCI), PD with dementia (PD-D), and HC. The appropriate nuclei were then merged to obtain three sectors of the amygdala (sectoral parcellation-SP). The nuclear and sectoral volumes were compared among the four groups and between the hyposmic and normosmic PD patients. There was a significant difference in the total amygdala volume among the four groups. In terms of nuclei, the bilateral cortico-amygdaloid transition area (CAT) and sectors superficial cortex-like region (sCLR) volumes of PD-MCI and PD-D were less than those of the PD-CN and HC. A linear discriminant analysis revealed that left CAT and left sCLR volumes classified the PD-CN and cognitively impaired PD (PD-CI: PD-MCI plus PD-D) with 90.7% accuracy according to NP and 85.2% accuracy to SP. Similarly, left CAT and sCLR volumes correctly identified the hyposmic and normosmic PD with 64.8% and 61.1% accuracies. Notably, the left olfactory amygdala volume successfully discriminated cognitive impairment in PD and could be used as neuroimaging-based support for PD-CI diagnosis. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09887-y.
Collapse
Affiliation(s)
- Ulaş Ay
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Laboratory, Istanbul University, 34093 Istanbul, Turkey
- Graduate School of Health Sciences, Istanbul University, 34126 Istanbul, Turkey
| | - Zerrin Yıldırım
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, 34093 Istanbul, Turkey
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Laboratory, Istanbul University, 34093 Istanbul, Turkey
- Department of Neurology, Bagcilar Education and Research Hospital, 34200 Istanbul, Turkey
| | - Emel Erdogdu
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Laboratory, Istanbul University, 34093 Istanbul, Turkey
- Department of Psychology, Faculty of Arts and Sciences, Isik University, 34980 Istanbul, Turkey
| | - Ani Kiçik
- Neuroimaging Unit, Hulusi Behcet Life Sciences Research Laboratory, Istanbul University, 34093 Istanbul, Turkey
- Department of Physiology, Faculty of Medicine, Demiroglu Bilim University, 34394 Istanbul, Turkey
| | - Esin Ozturk-Isik
- Institute of Biomedical Engineering, Bogazici University, 34684 Istanbul, Turkey
| | - Tamer Demiralp
- Department of Physiology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| | - Hakan Gurvit
- Behavioral Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34093 Istanbul, Turkey
| |
Collapse
|
22
|
Gonzalez‐Rodriguez M, Villar‐Conde S, Astillero‐Lopez V, Villanueva‐Anguita P, Ubeda‐Banon I, Flores‐Cuadrado A, Martinez‐Marcos A, Saiz‐Sanchez D. Human amygdala involvement in Alzheimer's disease revealed by stereological and dia-PASEF analysis. Brain Pathol 2023; 33:e13180. [PMID: 37331354 PMCID: PMC10467039 DOI: 10.1111/bpa.13180] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023] Open
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of pathological amyloid-β (Aβ) and Tau proteins. According to the prion-like hypothesis, both proteins can seed and disseminate through brain regions through neural connections and glial cells. The amygdaloid complex (AC) is involved early in the disease, and its widespread connections with other brain regions indicate that it is a hub for propagating pathology. To characterize changes in the AC as well as the involvement of neuronal and glial cells in AD, a combined stereological and proteomic analysis was performed in non-Alzheimer's disease and AD human samples. The synaptic alterations identified by proteomic data analysis could be related to the volume reduction observed in AD by the Cavalieri probe without neuronal loss. The pathological markers appeared in a gradient pattern with the medial region (cortical nucleus, Co) being more affected than lateral regions, suggesting the relevance of connections in the distribution of the pathology among different brain regions. Generalized astrogliosis was observed in every AC nucleus, likely related to deposits of pathological proteins. Astrocytes might mediate phagocytic microglial activation, whereas microglia might play a dual role since protective and toxic phenotypes have been described. These results highlight the potential participation of the amygdala in the disease spreading from/to olfactory areas, the temporal lobe and beyond. Proteomic data are available via ProteomeXchange with identifier PXD038322.
Collapse
Affiliation(s)
- Melania Gonzalez‐Rodriguez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Sandra Villar‐Conde
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Veronica Astillero‐Lopez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Patricia Villanueva‐Anguita
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Isabel Ubeda‐Banon
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Alicia Flores‐Cuadrado
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Alino Martinez‐Marcos
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| | - Daniel Saiz‐Sanchez
- Neuroplasticity and Neurodegeneration Laboratory, CRIB, Ciudad Real Medical SchoolUniversity of Castilla‐La ManchaCiudad RealSpain
| |
Collapse
|
23
|
Libard S, Alafuzoff I. Is islet amyloid polypeptide indeed expressed in the human brain? Neuropathol Appl Neurobiol 2023; 49:e12917. [PMID: 37317631 DOI: 10.1111/nan.12917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/16/2023]
Abstract
AIMS This study aims to study the association between pancreatic islet amyloid polypeptide (IAPP) and Alzheimer's disease neuropathological change (ADNC) in brain biopsies obtained from subjects with idiopathic normal pressure hydrocephalus (iNPH) and in post-mortem (PM) brain samples obtained from aged individuals. METHODS For the immunohistochemical (IHC) analyses, two IAPP antibodies (Abs), monoclonal and polyclonal, and Abs directed towards ADNC were applied. RESULTS The iNPH cohort included 113 subjects. Amyloid-β (Aβ) was detected in 50% and hyperphosphorylated τ (HPτ) in 47% of the cases. Concomitant pathology was seen in 32%. The PM cohort included 77 subjects. Aβ was detected in 69% and HPτ in 91% of the cases. Combined Aβ/HPτ pathology was seen in 62%. Reactivity for the monoclonal IAPP was not detected in the brain tissue in either of the cohorts. Reactivity for the polyclonal IAPP was observed in all 77 PM brain samples. CONCLUSIONS There was no specific expression of IAPP in human brain tissue; hence, an association between IAPP and ADNC is not assessable. Of note, the observed reactivity of the polyclonal IAPP Ab was not reproduced with a specific monoclonal Ab; thus, we considered the observed staining with the polyclonal Ab to be unreliable. When using IHC, several pitfalls, especially the choice of an Ab, always need to be considered. Polyclonal Abs cross-react with other epitopes and proteins, thus leading to false-positive results. This seems to be the case for the polyclonal IAPP Abs in the human brain.
Collapse
Affiliation(s)
- Sylwia Libard
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| | - Irina Alafuzoff
- Department of Pathology, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
24
|
Stouffer KM, Chen C, Kulason S, Xu E, Witter MP, Ceritoglu C, Albert MS, Mori S, Troncoso J, Tward DJ, Miller MI. Early amygdala and ERC atrophy linked to 3D reconstruction of rostral neurofibrillary tau tangle pathology in Alzheimer's disease. Neuroimage Clin 2023; 38:103374. [PMID: 36934675 PMCID: PMC10034129 DOI: 10.1016/j.nicl.2023.103374] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Previous research has emphasized the unique impact of Alzheimer's Disease (AD) pathology on the medial temporal lobe (MTL), a reflection that tau pathology is particularly striking in the entorhinal and transentorhinal cortex (ERC, TEC) early in the course of disease. However, other brain regions are affected by AD pathology during its early phases. Here, we use longitudinal diffeomorphometry to measure the atrophy rate from MRI of the amygdala compared with that in the ERC and TEC in cognitively unimpaired (CU) controls, CU individuals who progressed to mild cognitive impairment (MCI), and individuals with MCI who progressed to dementia of the AD type (DAT), using a dataset from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Our results show significantly higher atrophy rates of the amygdala in both groups of 'converters' (CU→MCI, MCI→DAT) compared to controls, with rates of volume loss comparable to rates of thickness loss in the ERC and TEC. We localize atrophy within the amygdala within each of these groups using fixed effects modeling. Controlling for the familywise error rate highlights the medial regions of the amygdala as those with significantly higher atrophy in both groups of converters than in controls. Using our recently developed method, referred to as Projective LDDMM, we map measures of neurofibrillary tau tangles (NFTs) from digital pathology to MRI atlases and reconstruct dense 3D spatial distributions of NFT density within regions of the MTL. The distribution of NFTs is consistent with the spatial distribution of MR measured atrophy rates, revealing high densities (and atrophy) in the amygdala (particularly medial), ERC, and rostral third of the MTL. The similarity of the location of NFTs in AD and shape changes in a well-defined clinical population suggests that amygdalar atrophy rate, as measured through MRI may be a viable biomarker for AD.
Collapse
Affiliation(s)
- Kaitlin M Stouffer
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore 21218, MD, USA.
| | - Claire Chen
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore 21218, MD, USA
| | - Sue Kulason
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore 21218, MD, USA
| | - Eileen Xu
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore 21218, MD, USA
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| | - Can Ceritoglu
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore 21218, MD, USA
| | - Marilyn S Albert
- Departments of Neurology, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore 21205, MD, USA
| | - Susumu Mori
- Department of Radiology, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore 21205, MD, USA
| | - Juan Troncoso
- Department of Pathology, Johns Hopkins School of Medicine, 733 N Broadway, Baltimore 21205, MD, USA
| | - Daniel J Tward
- Departments of Computational Medicine and Neurology, University of California, Los Angeles, UCLA Brain Mapping Center, 660 Charles E. Young Drive South, Los Angeles 90095, CA, USA
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore 21218, MD, USA
| |
Collapse
|
25
|
Heinzinger N, Maass A, Berron D, Yakupov R, Peters O, Fiebach J, Villringer K, Preis L, Priller J, Spruth EJ, Altenstein S, Schneider A, Fliessbach K, Wiltfang J, Bartels C, Jessen F, Maier F, Glanz W, Buerger K, Janowitz D, Perneczky R, Rauchmann BS, Teipel S, Killimann I, Göerß D, Laske C, Munk MH, Spottke A, Roy N, Heneka MT, Brosseron F, Dobisch L, Ewers M, Dechent P, Haynes JD, Scheffler K, Wolfsgruber S, Kleineidam L, Schmid M, Berger M, Düzel E, Ziegler G. Exploring the ATN classification system using brain morphology. Alzheimers Res Ther 2023; 15:50. [PMID: 36915139 PMCID: PMC10009950 DOI: 10.1186/s13195-023-01185-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 02/08/2023] [Indexed: 03/16/2023]
Abstract
BACKGROUND The NIA-AA proposed amyloid-tau-neurodegeneration (ATN) as a classification system for AD biomarkers. The amyloid cascade hypothesis (ACH) implies a sequence across ATN groups that patients might undergo during transition from healthy towards AD: A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+. Here we assess the evidence for monotonic brain volume decline for this particular (amyloid-conversion first, tau-conversion second, N-conversion last) and alternative progressions using voxel-based morphometry (VBM) in a large cross-sectional MRI cohort. METHODS We used baseline data of the DELCODE cohort of 437 subjects (127 controls, 168 SCD, 87 MCI, 55 AD patients) which underwent lumbar puncture, MRI scanning, and neuropsychological assessment. ATN classification was performed using CSF-Aβ42/Aβ40 (A+/-), CSF phospho-tau (T+/-), and adjusted hippocampal volume or CSF total-tau (N+/-). We compared voxel-wise model evidence for monotonic decline of gray matter volume across various sequences over ATN groups using the Bayesian Information Criterion (including also ROIs of Braak stages). First, face validity of the ACH transition sequence A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+ was compared against biologically less plausible (permuted) sequences among AD continuum ATN groups. Second, we evaluated evidence for 6 monotonic brain volume progressions from A-T-N- towards A+T+N+ including also non-AD continuum ATN groups. RESULTS The ACH-based progression A-T-N-➔A+T-N-➔A+T+N-➔A+T+N+ was consistent with cognitive decline and clinical diagnosis. Using hippocampal volume for operationalization of neurodegeneration (N), ACH was most evident in 9% of gray matter predominantly in the medial temporal lobe. Many cortical regions suggested alternative non-monotonic volume progressions over ACH progression groups, which is compatible with an early amyloid-related tissue expansion or sampling effects, e.g., due to brain reserve. Volume decline in 65% of gray matter was consistent with a progression where A status converts before T or N status (i.e., ACH/ANT) when compared to alternative sequences (TAN/TNA/NAT/NTA). Brain regions earlier affected by tau tangle deposition (Braak stage I-IV, MTL, limbic system) present stronger evidence for volume decline than late Braak stage ROIs (V/VI, cortical regions). Similar findings were observed when using CSF total-tau for N instead. CONCLUSION Using the ATN classification system, early amyloid status conversion (before tau and neurodegeneration) is associated with brain volume loss observed during AD progression. The ATN system and the ACH are compatible with monotonic progression of MTL atrophy. TRIAL REGISTRATION DRKS00007966, 04/05/2015, retrospectively registered.
Collapse
Affiliation(s)
- Nils Heinzinger
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany. .,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany.
| | - Anne Maass
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - David Berron
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Jochen Fiebach
- Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
| | - Kersten Villringer
- Center for Stroke Research Berlin, Charité-Universitätsmedizin, Berlin, Germany
| | - Lukas Preis
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany.,Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany.,University of Edinburgh and UK DRI, Edinburgh, UK
| | - Eike Jacob Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité, Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Jens Wiltfang
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany.,Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany.,Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Franziska Maier
- Department of Psychiatry, Medical Faculty, University of Cologne, Cologne, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.,Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, UK
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Ingo Killimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany.,Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Doreen Göerß
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Matthias H Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany.,Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurology, University of Bonn, Bonn, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Michael T Heneka
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Frederic Brosseron
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Peter Dechent
- MR-Research in Neurosciences, Department of Cognitive Neurology, Georg-August-University Göttingen, Göttingen, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin, Berlin, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Matthias Schmid
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Institute for Medical Biometry, University Hospital Bonn, Bonn, Germany
| | - Moritz Berger
- Institute for Medical Biometry, University Hospital Bonn, Bonn, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), University Hospital Magdeburg, Otto-von-Guericke University, Leipziger Str. 44, 39120, Magdeburg, Germany
| | | |
Collapse
|
26
|
Ichimata S, Kim A, Nishida N, Kovacs GG. Lack of difference between amyloid-beta burden at gyral crests and sulcal depths in diverse neurodegenerative diseases. Neuropathol Appl Neurobiol 2023; 49:e12869. [PMID: 36527296 DOI: 10.1111/nan.12869] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/09/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
AIMS The aim of this study is to clarify whether there is a difference in amyloid-beta burden between gyral crests (GCs) and sulcal depths (SDs) in different neurodegenerative proteinopathies. METHODS We analysed the burden and distribution of amyloid-beta deposition in post-mortem brain samples from 138 autopsies, including Alzheimer's disease (n = 30), Down's syndrome (n = 11), Lewy body disease (LBD; n = 53), multiple system atrophy (n = 8) and progressive supranuclear palsy (n = 36). We applied quantitative amyloid-beta burden analysis to compare amyloid-beta deposition in both GCs and SDs. We also evaluated the prevalence of amyloid-beta plaques in both regions in samples exhibiting high or low amounts of amyloid-beta pathology. RESULTS Amyloid-beta burden was evaluated in 67 and 84 samples of the frontal and temporal cortices, respectively. We did not find significant differences in the amyloid-beta burden between GCs and SDs in these regions in any examined disease. In addition, amyloid-beta plaques were almost evenly distributed in both regions in cases with low amounts of amyloid-beta pathology. Females in the LBD group showed significantly higher amyloid-beta burden than males (temporal cortex, p < 0.01). Furthermore, only one LBD case showed SD-predominant deposition associated with the coarse-grained plaques. CONCLUSIONS We have shown that amyloid-beta is almost evenly distributed in both GCs and SDs in the frontal and temporal lobes from the early stage, in diverse neurodegenerative diseases. Sex may contribute to differences in the amyloid-beta burden. The coarse-grained plaque may show SD-predominant neuritic tau deposition that must be carefully distinguished from chronic traumatic encephalopathy-related SD tau pathology.
Collapse
Affiliation(s)
- Shojiro Ichimata
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ain Kim
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
| | - Naoki Nishida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.,Edmond J. Safra Program in Parkinson's Disease, Rossy Program for PSP Research and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, ON, Canada.,Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, ON, Canada
| |
Collapse
|
27
|
Nelson PT, Lee EB, Cykowski MD, Alafuzoff I, Arfanakis K, Attems J, Brayne C, Corrada MM, Dugger BN, Flanagan ME, Ghetti B, Grinberg LT, Grossman M, Grothe MJ, Halliday GM, Hasegawa M, Hokkanen SRK, Hunter S, Jellinger K, Kawas CH, Keene CD, Kouri N, Kovacs GG, Leverenz JB, Latimer CS, Mackenzie IR, Mao Q, McAleese KE, Merrick R, Montine TJ, Murray ME, Myllykangas L, Nag S, Neltner JH, Newell KL, Rissman RA, Saito Y, Sajjadi SA, Schwetye KE, Teich AF, Thal DR, Tomé SO, Troncoso JC, Wang SHJ, White CL, Wisniewski T, Yang HS, Schneider JA, Dickson DW, Neumann M. LATE-NC staging in routine neuropathologic diagnosis: an update. Acta Neuropathol 2023; 145:159-173. [PMID: 36512061 PMCID: PMC9849315 DOI: 10.1007/s00401-022-02524-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
An international consensus report in 2019 recommended a classification system for limbic-predominant age-related TDP-43 encephalopathy neuropathologic changes (LATE-NC). The suggested neuropathologic staging system and nomenclature have proven useful for autopsy practice and dementia research. However, some issues remain unresolved, such as cases with unusual features that do not fit with current diagnostic categories. The goal of this report is to update the neuropathologic criteria for the diagnosis and staging of LATE-NC, based primarily on published data. We provide practical suggestions about how to integrate available genetic information and comorbid pathologies [e.g., Alzheimer's disease neuropathologic changes (ADNC) and Lewy body disease]. We also describe recent research findings that have enabled more precise guidance on how to differentiate LATE-NC from other subtypes of TDP-43 pathology [e.g., frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS)], and how to render diagnoses in unusual situations in which TDP-43 pathology does not follow the staging scheme proposed in 2019. Specific recommendations are also made on when not to apply this diagnostic term based on current knowledge. Neuroanatomical regions of interest in LATE-NC are described in detail and the implications for TDP-43 immunohistochemical results are specified more precisely. We also highlight questions that remain unresolved and areas needing additional study. In summary, the current work lays out a number of recommendations to improve the precision of LATE-NC staging based on published reports and diagnostic experience.
Collapse
Affiliation(s)
- Peter T Nelson
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA.
| | - Edward B Lee
- University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Konstantinos Arfanakis
- Rush University Medical Center, Chicago, IL, USA
- Illinois Institute of Technology, Chicago, IL, USA
| | | | | | | | | | | | | | | | | | - Michel J Grothe
- Unidad de Trastornos del Movimiento, Servicio de Neurología Y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | | | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | | | | | | | | | | | | | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Laboratory Medicine Program, University Health Network, Toronto, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Qinwen Mao
- University of Utah, Salt Lake City, UT, USA
| | | | | | | | | | - Liisa Myllykangas
- University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Sukriti Nag
- Rush University Medical Center, Chicago, IL, USA
| | - Janna H Neltner
- University of Kentucky, Rm 575 Todd Building, Lexington, KY, USA
| | | | | | - Yuko Saito
- Tokyo Metropolitan Geriatric Hospital & Institute of Gerontology, Tokyo, Japan
| | | | | | | | - Dietmar R Thal
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
- Department of Pathology, University Hospital Leuven, Leuven, Belgium
| | - Sandra O Tomé
- Laboratory for Neuropathology, Department of Imaging and Pathoogy, and Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | | | | | - Charles L White
- University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Hyun-Sik Yang
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, BostonBoston, MAMA, USA
| | | | | | | |
Collapse
|
28
|
Vizcarra JC, Teich AF, Dugger BN, Gutman DA. Survey of Neuroanatomic Sampling and Staining Procedures in Alzheimer Disease Research Center Brain Banks. FREE NEUROPATHOLOGY 2023; 4:4-6. [PMID: 37347036 PMCID: PMC10280272 DOI: 10.17879/freeneuropathology-2023-4696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 03/28/2023] [Indexed: 06/23/2023]
Abstract
The collection of post-mortem brain tissue has been a core function of the Alzheimer Disease Research Center's (ADRCs) network located within the United States since its inception. Individual brain banks and centers follow detailed protocols to record, store, and manage complex datasets that include clinical data, demographics, and when post-mortem tissue is available, a detailed neuropathological assessment. Since each institution often has specific research foci, there can be variability in tissue collection and processing workflows. While published guidelines exist for select diseases, such as those put forth by the National Institute on Aging and Alzheimer Association (NIA-AA), it is of importance to denote the current practices across institutions. To this end a survey was developed and sent to United States based brain bank leaders, collecting data on brain region sampling, including anatomic landmarks used, staining (including antibodies used), as well as whole-slide-image scanning hardware. We distributed this survey to 40 brain banks and obtained a response rate of 95% (38 / 40). Most brain banks followed guidelines defined by the NIA-AA, having H&E staining in all recommended regions and targeted region-based amyloid beta, tau, and alpha-synuclein immunohistochemical staining. However, sampling consistency varied related to key anatomic landmarks/locations in select regions, such as the striatum, periventricular white matter, and parietal cortex. This study highlights the diversity and similarities amongst brain banks and discusses considerations when amalgamating data/samples across multiple centers. This survey aids in establishing benchmarks to enhance dialogues on divergent workflows in a feasible way.
Collapse
Affiliation(s)
- Juan C. Vizcarra
- Department of Biomedical Engineering, Emory University & Georgia Institute of Technology, Atlanta, USA
| | - Andrew F. Teich
- Department of Pathology and Cell Biology, Department of Neurology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, New York, USA
| | - Brittany N. Dugger
- Department of Pathology and Laboratory Medicine, University of California-Davis, Sacramento, California, USA
| | - David A. Gutman
- Department of Neuropathology, Emory University, Atlanta, Georgia, USA
| | | |
Collapse
|
29
|
Arnold MR, Coughlin DG, Brumbach BH, Smirnov DS, Concha-Marambio L, Farris CM, Ma Y, Kim Y, Wilson EN, Kaye JA, Hiniker A, Woltjer RL, Galasko DR, Quinn JF. α-Synuclein Seed Amplification in CSF and Brain from Patients with Different Brain Distributions of Pathological α-Synuclein in the Context of Co-Pathology and Non-LBD Diagnoses. Ann Neurol 2022; 92:650-662. [PMID: 35808984 PMCID: PMC9489647 DOI: 10.1002/ana.26453] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE The purpose of this study was to determine the sensitivity and specificity of α-synuclein seed amplification assay (αSyn-SAA) in antemortem and postmortem cerebrospinal fluid (CSF) of autopsy-confirmed patients with different distributions of pathological αSyn, co-pathologies, and clinical diagnoses. METHODS The αSyn-SAA was used to test antemortem CSF samples from 119 subjects with a variety of clinical syndromes and standardized neuropathological examinations from Oregon Health and Science University (OHSU) and University of California San Diego (UCSD; 56 additional postmortem CSF samples available). The αSyn-SAA was also applied to frontal cortex and amygdala homogenates. Sensitivity and specificity were compared across distributions of αSyn pathology. Clinical data and co-pathologies were compared across αSyn-SAA positive and negative groups. RESULTS Fifty-three individuals without and 66 with αSyn-pathology (neocortical [n = 38], limbic [n = 7], and amygdala-predominant [n = 21]) were included. There was a sensitivity of 97.8% and specificity of 98.1% of the αSyn-SAA to identify patients with limbic/neocortical pathology from antemortem CSF. Sensitivity to detect amygdala-predominant pathology was only 14.3%. Postmortem CSF and brain tissue αSyn-SAA analyses also showed higher assay positivity in samples from limbic/neocortical cases. INTERPRETATION CSF αSyn-SAA reliably identifies αSyn seeds in patients with diffuse αSyn pathology in the context of co-pathology and non-Lewy body disease (LBD) diagnoses. The analysis of brain homogenates suggests that pathological αSyn in the amygdala might differ from pathological αSyn in the frontal cortex. The αSyn-SAA might facilitate the differential diagnosis of dementias with mixed pathologies. ANN NEUROL 2022;92:650-662.
Collapse
Affiliation(s)
- Moriah R. Arnold
- Medical Scientist Training Program, Oregon Health and Science University
| | | | | | | | | | | | | | | | - Yongya Kim
- Department of Neurosciences, University of California San Diego
| | - Edward N. Wilson
- Department of Neurology & Neurological Sciences, Stanford University
| | - Jeffrey A. Kaye
- Department of Neurology, Oregon Health and Science University
| | - Annie Hiniker
- Department of Pathology, University of California San Diego
| | | | - Doug R. Galasko
- Department of Neurosciences, University of California San Diego
| | - Joseph F. Quinn
- Department of Neurology, Oregon Health and Science University
- Portland VA Medical Center, Parkinson’s Disease Research Education and Clinical Care Center (PADRECC)
| |
Collapse
|
30
|
Imaging the Limbic System in Parkinson's Disease-A Review of Limbic Pathology and Clinical Symptoms. Brain Sci 2022; 12:brainsci12091248. [PMID: 36138984 PMCID: PMC9496800 DOI: 10.3390/brainsci12091248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/05/2022] [Accepted: 09/13/2022] [Indexed: 01/09/2023] Open
Abstract
The limbic system describes a complex of brain structures central for memory, learning, as well as goal directed and emotional behavior. In addition to pathological studies, recent findings using in vivo structural and functional imaging of the brain pinpoint the vulnerability of limbic structures to neurodegeneration in Parkinson's disease (PD) throughout the disease course. Accordingly, dysfunction of the limbic system is critically related to the symptom complex which characterizes PD, including neuropsychiatric, vegetative, and motor symptoms, and their heterogeneity in patients with PD. The aim of this systematic review was to put the spotlight on neuroimaging of the limbic system in PD and to give an overview of the most important structures affected by the disease, their function, disease related alterations, and corresponding clinical manifestations. PubMed was searched in order to identify the most recent studies that investigate the limbic system in PD with the help of neuroimaging methods. First, PD related neuropathological changes and corresponding clinical symptoms of each limbic system region are reviewed, and, finally, a network integration of the limbic system within the complex of PD pathology is discussed.
Collapse
|
31
|
α-Synuclein molecular behavior and nigral proteomic profiling distinguish subtypes of Lewy body disorders. Acta Neuropathol 2022; 144:167-185. [PMID: 35748929 DOI: 10.1007/s00401-022-02453-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/01/2022]
Abstract
Lewy body disorders (LBD), characterized by the deposition of misfolded α-synuclein (α-Syn), are clinically heterogeneous. Although the distribution of α-Syn correlates with the predominant clinical features, the burden of pathology does not fully explain the observed variability in clinical presentation and rate of disease progression. We hypothesized that this heterogeneity might reflect α-Syn molecular diversity, between both patients and different brain regions. Using an ultra-sensitive assay, we evaluated α-Syn seeding in 8 brain regions from 30 LBD patients with different clinical phenotypes and disease durations. Comparing seeding across the clinical phenotypes revealed that hippocampal α-Syn from patients with a cognitive-predominant phenotype had significantly higher seeding capacity than that derived from patients with a motor-predominant phenotype, whose nigral-derived α-Syn in turn had higher seeding capacity than that from cognitive-predominant patients. Interestingly, α-Syn from patients with rapid disease progression (< 3 years to development of advanced disease) had the highest nigral seeding capacity of all the patients included. To validate these findings and explore factors underlying seeding heterogeneity, we performed in vitro toxicity assays, and detailed neuropathological and biochemical examinations. Furthermore, and for the first time, we performed a proteomic-wide profiling of the substantia nigra from 5 high seeder and 5 low seeder patients. The proteomic data suggests a significant disruption in mitochondrial function and lipid metabolism in high seeder cases compared to the low seeders. These observations suggest that distinct molecular populations of α-Syn may contribute to heterogeneity in phenotypes and progression rates in LBD and imply that effective therapeutic strategies might need to be directed at an ensemble of differently misfolded α-Syn species, with the relative contribution of their differing impacts accounting for heterogeneity in the neurodegenerative process.
Collapse
|
32
|
Forrest SL, Wagner S, Kim A, Kovacs GG. Association of glial tau pathology and LATE-NC in the ageing brain. Neurobiol Aging 2022; 119:77-88. [DOI: 10.1016/j.neurobiolaging.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/20/2022] [Accepted: 07/27/2022] [Indexed: 11/25/2022]
|
33
|
Chen L, Nagaraja C, Daniels S, Fisk ZA, Dvorak R, Meyerdirk L, Steiner JA, Escobar Galvis ML, Henderson MX, Rousseaux MWC, Brundin P, Chu HY. Synaptic location is a determinant of the detrimental effects of α-Synuclein pathology to glutamatergic transmission in the basolateral amygdala. eLife 2022; 11:78055. [PMID: 35775627 PMCID: PMC9286736 DOI: 10.7554/elife.78055] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 06/27/2022] [Indexed: 11/22/2022] Open
Abstract
The presynaptic protein α-synuclein (αSyn) has been suggested to be involved in the pathogenesis of Parkinson’s disease (PD). In PD, the amygdala is prone to develop insoluble αSyn aggregates, and it has been suggested that circuit dysfunction involving the amygdala contributes to the psychiatric symptoms. Yet, how αSyn aggregates affect amygdala function is unknown. In this study, we examined αSyn in glutamatergic axon terminals and the impact of its aggregation on glutamatergic transmission in the basolateral amygdala (BLA). We found that αSyn is primarily present in the vesicular glutamate transporter 1-expressing (vGluT1+) terminals in the mouse BLA, which is consistent with higher levels of αSyn expression in vGluT1+ glutamatergic neurons in the cerebral cortex relative to the vGluT2+ glutamatergic neurons in the thalamus. We found that αSyn aggregation selectively decreased the cortico-BLA, but not the thalamo-BLA, transmission; and that cortico-BLA synapses displayed enhanced short-term depression upon repetitive stimulation. In addition, using confocal microscopy, we found that vGluT1+ axon terminals exhibited decreased levels of soluble αSyn, which suggests that lower levels of soluble αSyn might underlie the enhanced short-term depression of cortico-BLA synapses. In agreement with this idea, we found that cortico-BLA synaptic depression was also enhanced in αSyn knockout mice. In conclusion, both basal and dynamic cortico-BLA transmission were disrupted by abnormal aggregation of αSyn and these changes might be relevant to the perturbed cortical control of the amygdala that has been suggested to play a role in psychiatric symptoms in PD.
Collapse
Affiliation(s)
- Liqiang Chen
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | - Chetan Nagaraja
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | - Samuel Daniels
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | - Zoe A Fisk
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Rachel Dvorak
- Department of Neurodegenerative Science, Van Andel Institute, GRand Rapids, United States
| | - Lindsay Meyerdirk
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | - Jennifer A Steiner
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | | | - Michael X Henderson
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| | - Maxime W C Rousseaux
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | - Patrik Brundin
- Pharma Research and Early Development (pRED), F. Hoffmann-La Roche, Little Falls, United States
| | - Hong-Yuan Chu
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, United States
| |
Collapse
|
34
|
Neuronal Rubicon Represses Extracellular APP/Amyloid β Deposition in Alzheimer's Disease. Cells 2022; 11:cells11121860. [PMID: 35740989 PMCID: PMC9221152 DOI: 10.3390/cells11121860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 05/25/2022] [Indexed: 02/04/2023] Open
Abstract
Alzheimer’s disease (AD) is the most prevalent age-associated neurodegenerative disease. A decrease in autophagy during aging contributes to brain disorders by accumulating potentially toxic substrates in neurons. Rubicon is a well-established inhibitor of autophagy in all cells. However, Rubicon participates in different pathways depending on cell type, and little information is currently available on neuronal Rubicon’s role in the AD context. Here, we investigated the cell-specific expression of Rubicon in postmortem brain samples from AD patients and 5xFAD mice and its impact on amyloid β burden in vivo and neuroblastoma cells. Further, we assessed Rubicon levels in human-induced pluripotent stem cells (hiPSCs), derived from early-to-moderate AD and in postmortem samples from severe AD patients. We found increased Rubicon levels in AD-hiPSCs and postmortem samples and a notable Rubicon localization in neurons. In AD transgenic mice lacking Rubicon, we observed intensified amyloid β burden in the hippocampus and decreased Pacer and p62 levels. In APP-expressing neuroblastoma cells, increased APP/amyloid β secretion in the medium was found when Rubicon was absent, which was not observed in cells depleted of Atg5, essential for autophagy, or Rab27a, required for exosome secretion. Our results propose an uncharacterized role of Rubicon on APP/amyloid β homeostasis, in which neuronal Rubicon is a repressor of APP/amyloid β secretion, defining a new way to target AD and other similar diseases therapeutically.
Collapse
|
35
|
Unique seeding profiles and prion-like propagation of synucleinopathies are highly dependent on the host in human α-synuclein transgenic mice. Acta Neuropathol 2022; 143:663-685. [PMID: 35488930 DOI: 10.1007/s00401-022-02425-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/22/2022]
Abstract
α-synuclein (αSyn) is an intrinsically disordered protein which can undergo structural transformations, resulting in the formation of stable, insoluble fibrils. αSyn amyloid-type nucleation can be induced by misfolded 'seeds' serving as a conformational template, tantamount to the prion-like mechanism. Accumulation of αSyn inclusions is a key feature of dementia with Lewy bodies (DLB) and multiple system atrophy (MSA), and are found as additional pathology in Alzheimer's disease (AD) such as AD with amygdala predominant Lewy bodies (AD/ALB). While these disorders accumulate the same pathological protein, they exhibit heterogeneity in clinical and histological features; however, the mechanism(s) underlying this variability remains elusive. Accruing data from human autopsy studies, animal inoculation modeling, and in vitro characterization experiments, have lent credence to the hypothesis that conformational polymorphism of the αSyn amyloid-type fibril structure results in distinct "strains" with categorical infectivity traits. Herein, we directly compare the seeding abilities and outcome of human brain lysates from these diseases, as well as recombinant preformed human αSyn fibrils by the intracerebral inoculation of transgenic mice overexpressing either human wild-type αSyn or human αSyn with the familial A53T mutation. Our study has revealed that the initiating inoculum heavily dictates the phenotypic and pathological course of disease. Interestingly, we have also established relevant host-dependent distinctions between propagation profiles, including burden and spread of inclusion pathology throughout the neuroaxis, as well as severity of neurological symptoms. These findings provide compelling evidence supporting the hypothesis that diverse prion-type conformers may explain the variability seen in synucleinopathies.
Collapse
|
36
|
Nass SR, Ohene-Nyako M, Hahn YK, Knapp PE, Hauser KF. Neurodegeneration Within the Amygdala Is Differentially Induced by Opioid and HIV-1 Tat Exposure. Front Neurosci 2022; 16:804774. [PMID: 35600626 PMCID: PMC9115100 DOI: 10.3389/fnins.2022.804774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Opioid use disorder (OUD) is a critical problem that contributes to the spread of HIV and may intrinsically worsen neuroHIV. Despite the advent of combined antiretroviral therapies (cART), about half of persons infected with HIV (PWH) experience cognitive and emotional deficits that can be exacerbated by opioid abuse. HIV-1 Tat is expressed in the central nervous system (CNS) of PWH on cART and is thought to contribute to neuroHIV. The amygdala regulates emotion and memories associated with fear and stress and is important in addiction behavior. Notwithstanding its importance in emotional saliency, the effects of HIV and opioids in the amygdala are underexplored. To assess Tat- and morphine-induced neuropathology within the amygdala, male Tat transgenic mice were exposed to Tat for 8 weeks and administered saline and/or escalating doses of morphine twice daily (s.c.) during the last 2 weeks of Tat exposure. Eight weeks of Tat exposure decreased the acoustic startle response and the dendritic spine density in the basolateral amygdala, but not the central nucleus of the amygdala. In contrast, repeated exposure to morphine alone, but not Tat, increased the acoustic startle response and whole amygdalar levels of amyloid-β (Aβ) monomers and oligomers and tau phosphorylation at Ser396, but not neurofilament light chain levels. Co-exposure to Tat and morphine decreased habituation and prepulse inhibition to the acoustic startle response and potentiated the morphine-induced increase in Aβ monomers. Together, our findings indicate that sustained Tat and morphine exposure differentially promote synaptodendritic degeneration within the amygdala and alter sensorimotor processing.
Collapse
Affiliation(s)
- Sara R. Nass
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael Ohene-Nyako
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Yun K. Hahn
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Pamela E. Knapp
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
| | - Kurt F. Hauser
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
- Institute for Drug and Alcohol Studies, Virginia Commonwealth University, Richmond, VA, United States
- *Correspondence: Kurt F. Hauser,
| |
Collapse
|
37
|
Cykowski MD, Arumanayagam AS, Powell SZ, Rivera AL, Abner EL, Roman GC, Masdeu JC, Nelson PT. Patterns of amygdala region pathology in LATE-NC: subtypes that differ with regard to TDP-43 histopathology, genetic risk factors, and comorbid pathologies. Acta Neuropathol 2022; 143:531-545. [PMID: 35366087 PMCID: PMC9038848 DOI: 10.1007/s00401-022-02416-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 12/12/2022]
Abstract
Transactive response (TAR) DNA-binding protein 43 kDa (TDP-43) pathology is a hallmark of limbic-predominant age-related TDP-43 encephalopathy (LATE). The amygdala is affected early in the evolution of LATE neuropathologic change (LATE-NC), and heterogeneity of LATE-NC in amygdala has previously been observed. However, much remains to be learned about how LATE-NC originates and progresses in the brain. To address this, we assessed TDP-43 and other pathologies in the amygdala region of 184 autopsied subjects (median age = 85 years), blinded to clinical diagnoses, other neuropathologic diagnoses, and risk genotype information. As previously described, LATE-NC was associated with older age at death, cognitive impairment, and the TMEM106B risk allele. Pathologically, LATE-NC was associated with comorbid hippocampal sclerosis (HS), myelin loss, and vascular disease in white matter (WM). Unbiased hierarchical clustering of TDP-43 inclusion morphologies revealed discernable subtypes of LATE-NC with distinct clinical, genetic, and pathologic associations. The most common patterns were: Pattern 1, with lamina II TDP-43 + processes and preinclusion pathology in cortices of the amygdala region, and frequent LATE-NC Stage 3 with HS; Pattern 2, previously described as type-β, with neurofibrillary tangle-like TDP-43 neuronal cytoplasmic inclusions (NCIs), high Alzheimer's disease neuropathologic change (ADNC), frequent APOE ε4, and usually LATE-NC Stage 2; Pattern 3, with round NCIs and thick neurites in amygdala, younger age at death, and often comorbid Lewy body disease; and Pattern 4 (the most common pattern), with tortuous TDP-43 processes in subpial and WM regions, low ADNC, rare HS, and lower dementia probability. TDP-43 pathology with features of patterns 1 and 2 were often comorbid in the same brains. Early and mild TDP-43 pathology was often best described to be localized in the "amygdala region" rather than the amygdala proper. There were also important shared attributes across patterns. For example, all four patterns were associated with the TMEM106B risk allele. Each pattern also demonstrated the potential to progress to higher LATE-NC stages with confluent anatomical and pathological patterns, and to contribute to dementia. Although LATE-NC showed distinct patterns of initiation in amygdala region, there was also apparent shared genetic risk and convergent pathways of clinico-pathological evolution.
Collapse
Affiliation(s)
- Matthew D Cykowski
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA.
- Methodist Neurological Institute Department of Neurology, Houston Methodist Hospital, Weil Cornell Medicine, Houston, TX, 77030, USA.
| | | | - Suzanne Z Powell
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Andreana L Rivera
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Erin L Abner
- Sanders-Brown Center On Aging, University of Kentucky, University of Kentucky, Lexington, KY, 40536, USA
- Department of Epidemiology, University of Kentucky, Lexington, KY, 40536, USA
| | - Gustavo C Roman
- Methodist Neurological Institute Department of Neurology, Houston Methodist Hospital, Weil Cornell Medicine, Houston, TX, 77030, USA
- Nantz National Alzheimer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Joseph C Masdeu
- Methodist Neurological Institute Department of Neurology, Houston Methodist Hospital, Weil Cornell Medicine, Houston, TX, 77030, USA
- Nantz National Alzheimer Center, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Peter T Nelson
- Sanders-Brown Center On Aging, University of Kentucky, University of Kentucky, Lexington, KY, 40536, USA
- Department of Pathology, University of Kentucky, Lexington, KY, 40536, USA
| |
Collapse
|
38
|
Kawles A, Nishihira Y, Feldman A, Gill N, Minogue G, Keszycki R, Coventry C, Spencer C, Lilek J, Ajroud K, Coppola G, Rademakers R, Rogalski E, Weintraub S, Zhang H, Flanagan ME, Bigio EH, Mesulam MM, Geula C, Mao Q, Gefen T. Cortical and subcortical pathological burden and neuronal loss in an autopsy series of FTLD-TDP-type C. Brain 2022; 145:1069-1078. [PMID: 34919645 PMCID: PMC9050539 DOI: 10.1093/brain/awab368] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/11/2021] [Accepted: 08/29/2021] [Indexed: 10/31/2023] Open
Abstract
The TDP-43 type C pathological form of frontotemporal lobar degeneration is characterized by the presence of immunoreactive TDP-43 short and long dystrophic neurites, neuronal cytoplasmic inclusions, neuronal loss and gliosis and the absence of neuronal intranuclear inclusions. Frontotemporal lobar degeneration-TDP-type C cases are commonly associated with the semantic variant of primary progressive aphasia or behavioural variant frontotemporal dementia. Here, we provide detailed characterization of regional distributions of pathological TDP-43 and neuronal loss and gliosis in cortical and subcortical regions in 10 TDP-type C cases and investigate the relationship between inclusions and neuronal loss and gliosis. Specimens were obtained from the first 10 TDP-type C cases accessioned from the Northwestern Alzheimer's Disease Research Center (semantic variant of primary progressive aphasia, n = 7; behavioural variant frontotemporal dementia, n = 3). A total of 42 cortical (majority bilateral) and subcortical regions were immunostained with a phosphorylated TDP-43 antibody and/or stained with haematoxylin-eosin. Regions were evaluated for atrophy, and for long dystrophic neurites, short dystrophic neurites, neuronal cytoplasmic inclusions, and neuronal loss and gliosis using a semiquantitative 5-point scale. We calculated a 'neuron-to-inclusion' score (TDP-type C mean score - neuronal loss and gliosis mean score) for each region per case to assess the relationship between TDP-type C inclusions and neuronal loss and gliosis. Primary progressive aphasia cases demonstrated leftward asymmetry of cortical atrophy consistent with the aphasic phenotype. We also observed abundant inclusions and neurodegeneration in both cortical and subcortical regions, with certain subcortical regions emerging as particularly vulnerable to dystrophic neurites (e.g. amygdala, caudate and putamen). Interestingly, linear mixed models showed that regions with lowest TDP-type C pathology had high neuronal dropout, and conversely, regions with abundant pathology displayed relatively preserved neuronal densities (P < 0.05). This inverse relationship between the extent of TDP-positive inclusions and neuronal loss may reflect a process whereby inclusions disappear as their associated neurons are lost. Together, these findings offer insight into the putative substrates of neurodegeneration in unique dementia syndromes.
Collapse
Affiliation(s)
- Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yasushi Nishihira
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alex Feldman
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nathan Gill
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christina Coventry
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Callen Spencer
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jaclyn Lilek
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Kaouther Ajroud
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Giovanni Coppola
- Department of Psychiatry and Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Emily Rogalski
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sandra Weintraub
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Hui Zhang
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Eileen H Bigio
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - M -Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qinwen Mao
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
39
|
Ichimata S, Yoshida K, Visanji NP, Lang AE, Nishida N, Kovacs GG. Patterns of Mixed Pathologies in Down Syndrome. J Alzheimers Dis 2022; 87:595-607. [DOI: 10.3233/jad-215675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background: Down syndrome (DS) is frequently associated with Alzheimer’s disease (AD)-related neuropathological changes. There are few observations on the spectrum of mixed proteinopathies in DS patients. Objective: This study aimed to evaluate multiple disease-associated proteinopathies in a series of DS cases. Methods: We analyzed the distribution of neurodegenerative disease associated proteins in postmortem brain samples from 11 DS cases (6 females, median age 57, range 38–66 years). Sections were stained for phosphorylated tau, 3-repeat and 4-repeat tau, amyloid-β, alpha synuclein, phosphorylated TDP-43, and P62. A comprehensive anatomical mapping and staging were applied for all proteins. Results: Tau and amyloid-β pathology was prevalent in all cases and compatible with that typically seen in AD with some subtle deviations. Four of 11 cases presented with Lewy-related pathology (LRP). Two cases followed the Braak staging (stage 4 and 5) whereas 2 cases presented with an atypical distribution. Two cases showed limbic predominant age-related TDP-43 encephalopathy (LATE) (stage 1 and stage 2) neuropathologic change. Two cases exhibited aging-related tau astrogliopathy (ARTAG). Conclusion: In addition to subtle deviations from AD regarding the morphology of Aβ deposition and distribution of neuronal tau pathology, we find that the spectrum of mixed-pathologies in DS show distinctive features such as deviations from the Braak staging of LRP and that LATE neuropathologic change and ARTAG pathology can be seen in individuals younger than in sporadic AD cases. Our observations support the notion that DS has distinctive pathogenic pathways from sporadic AD.
Collapse
Affiliation(s)
- Shojiro Ichimata
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Koji Yoshida
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Naomi P. Visanji
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Edmund J Safra Program in Parkinson’s Disease and Rossy Program in Progressive Supranuclear Palsy, Toronto Western Hospital, Toronto, Canada
| | - Anthony E. Lang
- Edmund J Safra Program in Parkinson’s Disease and Rossy Program in Progressive Supranuclear Palsy, Toronto Western Hospital, Toronto, Canada
| | - Naoki Nishida
- Department of Legal Medicine, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Gabor G. Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
- Edmund J Safra Program in Parkinson’s Disease and Rossy Program in Progressive Supranuclear Palsy, Toronto Western Hospital, Toronto, Canada
| |
Collapse
|
40
|
Gal J, Katsumata Y, Zhu H, Srinivasan S, Chen J, Johnson LA, Wang WX, Golden LR, Wilcock DM, Jicha GA, Cykowski MD, Nelson PT. Apolipoprotein E Proteinopathy Is a Major Dementia-Associated Pathologic Biomarker in Individuals with or without the APOE Epsilon 4 Allele. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:564-578. [PMID: 34954207 PMCID: PMC8895423 DOI: 10.1016/j.ajpath.2021.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/27/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022]
Abstract
The amygdala is vulnerable to multiple or "mixed" mis-aggregated proteins associated with neurodegenerative conditions that can manifest clinically with amnestic dementia; the amygdala region is often affected even at earliest disease stages. With the original intent of identifying novel dementia-associated proteins, the detergent-insoluble proteome was characterized from the amygdalae of 40 participants from the University of Kentucky Alzheimer's Disease Center autopsy cohort. These individuals encompassed a spectrum of clinical conditions (cognitively normal to severe amnestic dementia). Polypeptides from the detergent-insoluble fraction were interrogated using liquid chromatography-electrospray ionization-tandem mass spectrometry. As anticipated, portions of peptides previously associated with neurologic diseases were enriched from subjects with dementia. Among all detected peptides, Apolipoprotein E (ApoE) stood out: even more than the expected Tau, APP/Aβ, and α-Synuclein peptides, ApoE peptides were strongly enriched in dementia cases, including from individuals lacking the APOE ε4 genotype. The amount of ApoE protein detected in detergent-insoluble fractions was robustly associated with levels of complement proteins C3 and C4. Immunohistochemical staining of APOE ε3/ε3 subjects' amygdalae confirmed ApoE co-localization with C4 in amyloid plaques. Thus, analyses of human amygdala proteomics indicate that rather than being only an "upstream" genetic risk factor, ApoE is an aberrantly aggregated protein in its own right, and show that the ApoE protein may play active disease-driving mechanistic roles in persons lacking the APOE ε4 allele.
Collapse
Affiliation(s)
- Jozsef Gal
- Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, Kentucky,Department of Neuroscience, University of Kentucky, Lexington, Kentucky
| | - Yuriko Katsumata
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Haining Zhu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky,Research & Development, Lexington VA Medical Center, Lexington, Kentucky
| | - Sukanya Srinivasan
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Jing Chen
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky
| | - Lance Allen Johnson
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky
| | - Wang-Xia Wang
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Pathology, University of Kentucky, Lexington, Kentucky
| | | | - Donna M. Wilcock
- Department of Neuroscience, University of Kentucky, Lexington, Kentucky,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Physiology, University of Kentucky, Lexington, Kentucky
| | - Gregory A. Jicha
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky,Department of Neurology, University of Kentucky, Lexington, Kentucky
| | | | - Peter Tobias Nelson
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky; Department of Pathology, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
41
|
Ferguson LA, Leal SL. Interactions of Emotion and Memory in the Aging Brain: Neural and Psychological Correlates. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-021-00245-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Wegiel J, Flory M, Kuchna I, Nowicki K, Wegiel J, Ma SY, Zhong N, Bobrowicz TW, de Leon M, Lai F, Silverman WP, Wisniewski T. Developmental deficits and staging of dynamics of age associated Alzheimer's disease neurodegeneration and neuronal loss in subjects with Down syndrome. Acta Neuropathol Commun 2022; 10:2. [PMID: 34983655 PMCID: PMC8728914 DOI: 10.1186/s40478-021-01300-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022] Open
Abstract
The increased life expectancy of individuals with Down syndrome (DS) is associated with increased prevalence of trisomy 21-linked early-onset Alzheimer's disease (EOAD) and dementia. The aims of this study of 14 brain regions including the entorhinal cortex, hippocampus, basal ganglia, and cerebellum in 33 adults with DS 26-72 years of age were to identify the magnitude of brain region-specific developmental neuronal deficits contributing to intellectual deficits, to apply this baseline to identification of the topography and magnitude of neurodegeneration and neuronal and volume losses caused by EOAD, and to establish age-based staging of the pattern of genetically driven neuropathology in DS. Both DS subject age and stage of dementia, themselves very strongly correlated, were strong predictors of an AD-associated decrease of the number of neurons, considered a major contributor to dementia. The DS cohort was subclassified by age as pre-AD stage, with 26-41-year-old subjects with a full spectrum of developmental deficit but with very limited incipient AD pathology, and 43-49, 51-59, and 61-72-year-old groups with predominant prevalence of mild, moderately severe, and severe dementia respectively. This multiregional study revealed a 28.1% developmental neuronal deficit in DS subjects 26-41 years of age and 11.9% AD-associated neuronal loss in DS subjects 43-49 years of age; a 28.0% maximum neuronal loss at 51-59 years of age; and a 11.0% minimum neuronal loss at 61-72 years of age. A total developmental neuronal deficit of 40.8 million neurons and AD-associated neuronal loss of 41.6 million neurons reflect a comparable magnitude of developmental neuronal deficit contributing to intellectual deficits, and AD-associated neuronal loss contributing to dementia. This highly predictable pattern of pathology indicates that successful treatment of DS subjects in the fourth decade of life may prevent AD pathology and functional decline.
Collapse
Affiliation(s)
- Jerzy Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Michael Flory
- New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY USA
| | - Izabela Kuchna
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Krzysztof Nowicki
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Jarek Wegiel
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Shuang Yong Ma
- Department of Developmental Neurobiology, NYS Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314 USA
| | - Nanbert Zhong
- New York State Institute for Basic Research in Developmental Disabilities (IBR), Staten Island, NY USA
| | | | - Mony de Leon
- Department of Radiology, Weill Cornell Medicine, New York, NY USA
| | - Florence Lai
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Wayne P. Silverman
- Department of Pediatrics, Irvine Medical Center, University of California, Irvine, CA USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, NYU Grossman School of Medicine, New York, NY 10016 USA
| |
Collapse
|
43
|
Abstract
The key pathological hallmarks-extracellular plaques and intracellular neurofibrillary tangles (NFT)-described by Alois Alzheimer in his seminal 1907 article are still central to the postmortem diagnosis of Alzheimer's disease (AD), but major advances in our understanding of the underlying pathophysiology as well as significant progress in clinical diagnosis and therapy have changed the perspective and importance of neuropathologic evaluation of the brain. The notion that the pathological processes underlying AD already start decades before symptoms are apparent in patients has brought a major change reflected in the current neuropathological classification of AD neuropathological changes (ADNC). The predictable progression of beta-amyloid (Aβ) plaque pathology from neocortex, over limbic structures, diencephalon, and basal ganglia, to brainstem and cerebellum is captured in phases described by Thal and colleagues. The progression of NFT pathology from the transentorhinal region to the limbic system and ultimately the neocortex is described in stages proposed by Braak and colleagues. The density of neuritic plaque pathology is determined by criteria defined by the Consortium to establish a registry for Alzheimer's diseases (CERAD). While these changes neuropathologically define AD, it becomes more and more apparent that the majority of patients present with a multitude of additional pathological changes which are possible contributing factors to the clinical presentation and disease progression. The impact of co-existing Lewy body pathology has been well studied, but the importance of more recently described pathologies including limbic-predominant age-related TDP-43 encephalopathy (LATE), chronic traumatic encephalopathy (CTE), and aging-related tau astrogliopathy (ARTAG) still needs to be evaluated in large cohort studies. In addition, it is apparent that vascular pathology plays an important role in the AD patient population, but a lack of standardized reporting criteria has hampered progress in elucidating the importance of these changes for clinical presentation and disease progression. More recently a key role was ascribed to the immune response to pathological protein aggregates, and it will be important to analyze these changes systematically to better understand the temporal and spatial distribution of the immune response in AD and elucidate their importance for the disease process. Advances in digital pathology and technologies such as single cell sequencing and digital spatial profiling have opened novel avenues for improvement of neuropathological diagnosis and advancing our understanding of underlying molecular processes. Finally, major strides in biomarker-based diagnosis of AD and recent advances in targeted therapeutic approaches may have shifted the perspective but also highlight the continuous importance of postmortem analysis of the brain in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jorge A Trejo-Lopez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
44
|
Visanji NP, Kovacs GG, Lang AE. The Discovery of α-Synuclein in Lewy Pathology of Parkinson's Disease: The Inspiration of a Revolution. Mov Disord Clin Pract 2021; 8:1189-1193. [PMID: 34765684 DOI: 10.1002/mdc3.13312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022] Open
Affiliation(s)
- Naomi P Visanji
- Edmond J. Safra program in Parkinson's disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital Toronto Ontario Canada.,Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
| | - Gabor G Kovacs
- Edmond J. Safra program in Parkinson's disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital Toronto Ontario Canada.,Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada.,Tanz Centre for Research in Neurodegenerative Disease University of Toronto Toronto Ontario Canada
| | - Anthony E Lang
- Edmond J. Safra program in Parkinson's disease and the Morton and Gloria Shulman Movement Disorders Clinic Toronto Western Hospital Toronto Ontario Canada.,Department of Laboratory Medicine and Pathobiology University of Toronto Toronto Ontario Canada
| |
Collapse
|
45
|
Distinct amyloid and tau PET signatures are associated with diverging clinical and imaging trajectories in patients with amnestic syndrome of the hippocampal type. Transl Psychiatry 2021; 11:498. [PMID: 34588422 PMCID: PMC8481505 DOI: 10.1038/s41398-021-01628-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/04/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
We aimed to investigate the amyloid and tau PET imaging signatures of patients with amnestic syndrome of the hippocampal type (ASHT) and study their clinical and imaging progression according to their initial PET imaging status. Thirty-six patients with a progressive ASHT and 30 controls underwent a complete neuropsychological assessment, 3 T brain MRI, [11C]-PiB and [18F]-Flortaucipir PET imaging. Subjects were clinically followed-up annually over 2 years, with a second 3 T MRI (n = 27 ASHT patients, n = 28 controls) and tau-PET (n = 20 ASHT patients) at the last visit. At baseline, in accordance with the recent biological definition of Alzheimer's disease (AD), the AD PET signature was defined as the combination of (i) positive cortical amyloid load, and (ii) increased tau tracer binding in the entorhinal cortices and at least one of the following regions: amygdala, parahippocampal gyri, fusiform gyri. Patients who did not meet these criteria were considered to have a non-AD pathology (SNAP). Twenty-one patients were classified as AD and 15 as SNAP. We found a circumscribed tau tracer retention in the entorhinal cortices and/or amygdala in 5 amyloid-negative SNAP patients. At baseline, the SNAP patients were older and had lower ApoE ε4 allele frequency than the AD patients, but both groups did not differ regarding the neuropsychological testing and medial temporal lobe atrophy. During the 2-year follow-up, the episodic memory and language decline, as well as the temporo-parietal atrophy progression, were more pronounced in the AD sub-group, while the SNAP patients had a more pronounced progression of atrophy in the frontal lobes. Longitudinal tau tracer binding increased in AD patients but remained stable in SNAP patients. At baseline, distinct amyloid and tau PET signatures differentiated early AD and SNAP patients despite identical cognitive profiles characterized by an isolated ASHT and a similar degree of medial temporal atrophy. During the longitudinal follow-up, AD and SNAP patients diverged regarding clinical and imaging progression. Among SNAP patients, tau PET imaging could detect a tauopathy restricted to the medial temporal lobes, which was possibly explained by primary age-related tauopathy.
Collapse
|
46
|
Identifying Biomarkers of Alzheimer's Disease via a Novel Structured Sparse Canonical Correlation Analysis Approach. J Mol Neurosci 2021; 72:323-335. [PMID: 34570360 DOI: 10.1007/s12031-021-01915-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 02/05/2023]
Abstract
Using correlation analysis to study the potential connection between brain genetics and imaging has become an effective method to understand neurodegenerative diseases. Sparse canonical correlation analysis (SCCA) makes it possible to study high-dimensional genetic information. The traditional SCCA methods can only process single-modal genetic and image data, which to some extent weaken the close connection of the brain's biological network. In some recently proposed multimodal SCCA methods, due to the limitations of penalty items, the pre-processed data needs to be further filtered to make the dimensions uniform, which may destroy the potential association of data in the same modal. In this research, in order to combine data between different modalities and to ensure that the chain relationship or graph network relationship within the same modality will not be destroyed, the original generalized fused lasso penalty was replaced with the fused pairwise group lasso (FGL) and the graph-guided pairwise group lasso (GGL) based on the method of joint sparse canonical correlation analysis (JSCCA). We used prior knowledge to construct a supervised bivariate learning model and use linear regression to select quantitative traits (QTs) of images that are strongly correlated with the Mini-mental State Examination (MMSE) scores. Compared with FGL-SCCA, the model we constructed obtained a higher gene-ROI correlation coefficient and identified more significant biomarkers, providing a theoretical basis for further understanding the complex pathology of neurodegenerative diseases.
Collapse
|
47
|
Hass EW, Sorrentino ZA, Xia Y, Lloyd GM, Trojanowski JQ, Prokop S, Giasson BI. Disease-, region- and cell type specific diversity of α-synuclein carboxy terminal truncations in synucleinopathies. Acta Neuropathol Commun 2021; 9:146. [PMID: 34454615 PMCID: PMC8403399 DOI: 10.1186/s40478-021-01242-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/14/2022] Open
Abstract
Synucleinopathies, including Parkinson's disease (PD), Lewy body dementia (LBD), Alzheimer's disease with amygdala restricted Lewy bodies (AD/ALB), and multiple system atrophy (MSA) comprise a spectrum of neurodegenerative disorders characterized by the presence of distinct pathological α-synuclein (αSyn) inclusions. Experimental and pathological studies support the notion that αSyn aggregates contribute to cellular demise and dysfunction with disease progression associated with a prion-like spread of αSyn aggregates via conformational templating. The initiating event(s) and factors that contribute to diverse forms of synucleinopathies remain poorly understood. A major post-translational modification of αSyn associated with pathological inclusions is a diverse array of specific truncations within the carboxy terminal region. While these modifications have been shown experimentally to induce and promote αSyn aggregation, little is known about their disease-, region- and cell type specific distribution. To this end, we generated a series of monoclonal antibodies specific to neo-epitopes in αSyn truncated after residues 103, 115, 119, 122, 125, and 129. Immunocytochemical investigations using these new tools revealed striking differences in the αSyn truncation pattern between different synucleinopathies, brain regions and specific cellular populations. In LBD, neuronal inclusions in the substantia nigra and amygdala were positive for αSyn cleaved after residues 103, 119, 122, and 125, but not 115. In contrast, in the same patients' brain αSyn cleaved at residue 115, as well as 103, 119 and 122 were abundant in the dorsal motor nucleus of the vagus. In patients with AD/ALB, these modifications were only weakly or not detected in amygdala αSyn inclusions. αSyn truncated at residues 103, 115, 119, and 125 was readily present in MSA glial cytoplasmic inclusions, but 122 cleaved αSyn was only weakly or not present. Conversely, MSA neuronal pathology in the pontine nuclei was strongly reactive to the αSyn x-122 neo-epitope but did not display any reactivity for αSyn 103 cleavage. These studies demonstrate significant disease-, region- and cell type specific differences in carboxy terminal αSyn processing associated with pathological inclusions that likely contributes to their distinct strain-like prion properties and promotes the diversity displayed in the degrees of these insidious diseases.
Collapse
Affiliation(s)
- Ethan W Hass
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Zachary A Sorrentino
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Yuxing Xia
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Grace M Lloyd
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, AD Center Core (ADCC), Center for Neurodegenerative Disease Research, PENN) School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
- Department of Pathology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, College of Medicine, University of Florida, BMS J483/CTRND, 1275 Center Drive, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
48
|
Perez-Gonzalez J, Jiménez-Ángeles L, Rojas Saavedra K, Barbará Morales E, Medina-Bañuelos V. Mild cognitive impairment classification using combined structural and diffusion imaging biomarkers. Phys Med Biol 2021; 66. [PMID: 34167090 DOI: 10.1088/1361-6560/ac0e77] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/24/2021] [Indexed: 11/11/2022]
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disorder preceded by a prodromal stage called mild cognitive impairment (MCI). Early diagnosis of MCI is crucial for delaying the progression and optimizing the treatment. In this study we propose a random forest (RF) classifier to distinguish between MCI and healthy control subjects (HC), identifying the most relevant features computed from structural T1-weighted and diffusion-weighted magnetic resonance images (sMRI and DWI), combined with neuro-psychological scores. To train the RF we used a set of 60 subjects (HC = 30, MCI = 30) drawn from the Alzheimer's disease neuroimaging initiative database, while testing with unseen data was carried out on a 23-subjects Mexican cohort (HC = 12, MCI = 11). Features from hippocampus, thalamus and amygdala, for left and right hemispheres were fed to the RF, with the most relevant being previously selected by applying extra trees classifier and the mean decrease in impurity index. All the analyzed brain structures presented changes in sMRI and DWI features for MCI, but those computed from sMRI contribute the most to distinguish from HC. However, sMRI+DWI improves classification performance in training area under the receiver operating characteristic curve (AUROC = 93.5 ± 8%, accuracy = 88.8 ± 9%) and testing with unseen data (AUROC = 93.79%, accuracy = 91.3%), having a better performance when neuro-psychological scores were included. Compared to other classifiers the proposed RF provide the best performance for HC/MCI discrimination and the application of a feature selection step improves its performance. These findings imply that multimodal analysis gives better results than unimodal analysis and hence may be a useful tool to assist in early MCI diagnosis.
Collapse
Affiliation(s)
- Jorge Perez-Gonzalez
- Unidad Académica del Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas en el Estado de Yucatán, UNAM, Yucatán, México
| | - Luis Jiménez-Ángeles
- Department of Biomedical Systems Engineering, Engineering Faculty, UNAM, Mexico City, México
| | - Karla Rojas Saavedra
- Health Sciences Department, Universidad del Valle de México, Mexico City, México
| | | | | |
Collapse
|
49
|
Wang DW, Ding SL, Bian XL, Zhou SY, Yang H, Wang P. Diagnostic value of amygdala volume on structural magnetic resonance imaging in Alzheimer’s disease. World J Clin Cases 2021; 9:4627-4636. [PMID: 34222429 PMCID: PMC8223829 DOI: 10.12998/wjcc.v9.i18.4627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The main clinical manifestation of Alzheimer’s disease (AD) is memory loss, which can be accompanied by neuropsychiatric symptoms at different stages of the disease. Amygdala is closely related to emotion and memory.
AIM To evaluate the diagnostic value of amygdala on structural magnetic resonance imaging (sMRI) for AD.
METHODS In this study, 22 patients with AD and 26 controls were enrolled. Their amygdala volumes were measured by sMRI and analyzed using an automatic analysis software.
RESULTS The bilateral amygdala volumes of AD patients were significantly lower than those of the controls and were positively correlated with the hippocampal volumes. Receiver operating characteristic curve analyses showed that the sensitivity of the left and right amygdala volumes in diagnosing AD was 80.8% and 88.5%, respectively. Subgroup analyses showed that amygdala atrophy was more serious in AD patients with neuropsychiatric symptoms, which mainly included irritability (22.73%), sleep difficulties (22.73%), apathy (18.18%), and hallucination (13.64%).
CONCLUSION Amygdala volumes measured by sMRI can be used to diagnose AD, and amygdala atrophy is more serious in patients with neuropsychiatric symptoms.
Collapse
Affiliation(s)
- De-Wei Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Shou-Luan Ding
- Center for Evidence-Based Medicine, Institute of Medical Sciences, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Xian-Li Bian
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Shi-Yue Zhou
- Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Hui Yang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| | - Ping Wang
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250033, Shandong Province, China
| |
Collapse
|
50
|
Rábano A, Guerrero Márquez C, Juste RA, Geijo MV, Calero M. Medial Temporal Lobe Involvement in Human Prion Diseases: Implications for the Study of Focal Non Prion Neurodegenerative Pathology. Biomolecules 2021; 11:biom11030413. [PMID: 33802224 PMCID: PMC7998497 DOI: 10.3390/biom11030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 01/29/2023] Open
Abstract
Human prion and non-prion neurodegenerative diseases share pathogenic mechanisms and neuropathological features. The lesion profile of a particular entity results from specific involvement of vulnerable neuron populations and connectivity circuits by a pathogenic protein isoform with strain-like properties. The lesion profile of the medial temporal lobe (MTL) was studied in postmortem tissue of 143 patients with human prion disease (HPD) including sporadic, genetic, and acquired forms. Most cases (90%) were classified according to PrPres type and/or PRNP codon 129 status, in addition to a full neuropathological profile. Mixed histotypes represented 29.4% of total sporadic Creutzfeldt-Jakob disease (sCJD) cases. An intensity score of involvement including spongiosis and astrogliosis was determined for the amygdala, presubiculum, subiculum, entorhinal cortex, CA1 to CA4 sectors of the hippocampal cortex, and dentate gyrus. Connectivity hubs within the MTL presented the highest scores. Diverse lesion profiles were obtained for different types and subtypes of HPD. Impact of mixed PrPres types on the MTL lesion profile was higher for sCJDMV2K cases than in other histotypes. Differences between MTL profiles was globally consistent with current evidence on specific strains in HPD. These results may be relevant for the analysis of possible strain effects in focal non-prion neurodegenerative conditions limited to the MTL.
Collapse
Affiliation(s)
- Alberto Rábano
- Neuropathology Department, Alzheimer’s Disease Research Unit, CIEN Foundation, Institute of Health Carlos III, Queen Sofía Foundation Alzheimer Research Center, 28031 Madrid, Spain
- CIEN Foundation and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, 28031 Madrid, Spain;
- Correspondence:
| | - Carmen Guerrero Márquez
- Neurological Tissue Bank—HUFA Biobank, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain;
| | - Ramón A. Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia P812, 48160 Derio, Spain; (R.A.J.); (M.V.G.)
| | - María V. Geijo
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia P812, 48160 Derio, Spain; (R.A.J.); (M.V.G.)
| | - Miguel Calero
- CIEN Foundation and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, 28031 Madrid, Spain;
- Chronic Disease Program, Institute of Health Carlos III, 28222 Madrid, Spain
| |
Collapse
|