1
|
Roemer-Cassiano SN, Wagner F, Evangelista L, Rauchmann BS, Dehsarvi A, Steward A, Dewenter A, Biel D, Zhu Z, Pescoller J, Gross M, Perneczky R, Malpetti M, Ewers M, Schöll M, Dichgans M, Höglinger GU, Brendel M, Jäkel S, Franzmeier N. Amyloid-associated hyperconnectivity drives tau spread across connected brain regions in Alzheimer's disease. Sci Transl Med 2025; 17:eadp2564. [PMID: 39841807 DOI: 10.1126/scitranslmed.adp2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/08/2024] [Accepted: 12/20/2024] [Indexed: 01/24/2025]
Abstract
In Alzheimer's disease (AD), amyloid-β (Aβ) triggers the aggregation and spreading of tau pathology, which drives neurodegeneration and cognitive decline. However, the pathophysiological link between Aβ and tau remains unclear, which hinders therapeutic efforts to attenuate Aβ-related tau accumulation. Aβ has been found to trigger neuronal hyperactivity and hyperconnectivity, and preclinical research has shown that tau spreads across connected neurons in an activity-dependent manner. Here, we hypothesized that neuronal hyperactivity and hypersynchronicity, resulting in functional connectivity increases, constitute a crucial mechanism by which Aβ facilitates the spreading of tau pathology. By combining Aβ positron emission tomography (PET), resting-state functional magnetic resonance imaging, and longitudinal tau-PET in 69 cognitively normal amyloid-negative controls and 140 amyloid-positive patients covering the AD spectrum, we confirmed that Aβ induces hyperconnectivity of temporal lobe tau epicenters to posterior brain regions that are vulnerable to tau accumulation in AD. This was replicated in an independent sample of 55 controls and 345 individuals with preclinical AD and low cortical tau-PET uptake, suggesting that the emergence of Aβ-related hyperconnectivity precedes neocortical tau spreading . Last, using longitudinal tau-PET and mediation analysis, we confirmed that these Aβ-related connectivity increases in tau epicenters to typical tau-vulnerable brain regions in AD mediated the effect of Aβ on faster tau accumulation, unveiling increased connectivity as a potential causal link between the two AD hallmark pathologies. Together, these findings suggest that Aβ promotes tau spreading by eliciting neuronal hyperconnectivity and that targeting Aβ-related neuronal hyperconnectivity may attenuate tau spreading in AD.
Collapse
Affiliation(s)
- Sebastian N Roemer-Cassiano
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Fabian Wagner
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Lisa Evangelista
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Neuroradiology, University Hospital, LMU Munich, 81377 Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Zeyu Zhu
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Julia Pescoller
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mattes Gross
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
- Aging Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, W6 8RP London, UK
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, S10 2HQ Sheffield, UK
| | - Maura Malpetti
- Department of Clinical Neurosciences, University of Cambridge, CB2 0PY Cambridge, UK
| | - Michael Ewers
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Michael Schöll
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Mölndal and Gothenburg, Sweden
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, 405 30 Gothenburg, Sweden
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Günter U Höglinger
- Department of Neurology, University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Munich, 81377 Munich, Germany
| | - Matthias Brendel
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Sarah Jäkel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, 81377 Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, 405 30 Mölndal and Gothenburg, Sweden
| |
Collapse
|
2
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
3
|
Singh N, Nandy SK, Jyoti A, Saxena J, Sharma A, Siddiqui AJ, Sharma L. Protein Kinase C (PKC) in Neurological Health: Implications for Alzheimer's Disease and Chronic Alcohol Consumption. Brain Sci 2024; 14:554. [PMID: 38928554 PMCID: PMC11201589 DOI: 10.3390/brainsci14060554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Protein kinase C (PKC) is a diverse enzyme family crucial for cell signalling in various organs. Its dysregulation is linked to numerous diseases, including cancer, cardiovascular disorders, and neurological problems. In the brain, PKC plays pivotal roles in synaptic plasticity, learning, memory, and neuronal survival. Specifically, PKC's involvement in Alzheimer's Disease (AD) pathogenesis is of significant interest. The dysregulation of PKC signalling has been linked to neurological disorders, including AD. This review elucidates PKC's pivotal role in neurological health, particularly its implications in AD pathogenesis and chronic alcohol addiction. AD, characterised by neurodegeneration, implicates PKC dysregulation in synaptic dysfunction and cognitive decline. Conversely, chronic alcohol consumption elicits neural adaptations intertwined with PKC signalling, exacerbating addictive behaviours. By unravelling PKC's involvement in these afflictions, potential therapeutic avenues emerge, offering promise for ameliorating their debilitating effects. This review navigates the complex interplay between PKC, AD pathology, and alcohol addiction, illuminating pathways for future neurotherapeutic interventions.
Collapse
Affiliation(s)
- Nishtha Singh
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Shouvik Kumar Nandy
- School of Pharmacy, Techno India University, Sector-V, Kolkata 700091, West Bengal, India;
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara 391760, Gujarat, India;
| | - Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara 391760, Gujarat, India;
| | - Aditi Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Hail, Hail 55476, Saudi Arabia
| | - Lalit Sharma
- Department of Pharmacology, School of Pharmaceutical Sciences, Shoolini University of Biotechnology, and Management Sciences, Solan 173229, Himachal Pradesh, India; (N.S.); (A.S.)
| |
Collapse
|
4
|
Zheng H, Sun H, Cai Q, Tai HC. The Enigma of Tau Protein Aggregation: Mechanistic Insights and Future Challenges. Int J Mol Sci 2024; 25:4969. [PMID: 38732197 PMCID: PMC11084794 DOI: 10.3390/ijms25094969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tau protein misfolding and aggregation are pathological hallmarks of Alzheimer's disease and over twenty neurodegenerative disorders. However, the molecular mechanisms of tau aggregation in vivo remain incompletely understood. There are two types of tau aggregates in the brain: soluble aggregates (oligomers and protofibrils) and insoluble filaments (fibrils). Compared to filamentous aggregates, soluble aggregates are more toxic and exhibit prion-like transmission, providing seeds for templated misfolding. Curiously, in its native state, tau is a highly soluble, heat-stable protein that does not form fibrils by itself, not even when hyperphosphorylated. In vitro studies have found that negatively charged molecules such as heparin, RNA, or arachidonic acid are generally required to induce tau aggregation. Two recent breakthroughs have provided new insights into tau aggregation mechanisms. First, as an intrinsically disordered protein, tau is found to undergo liquid-liquid phase separation (LLPS) both in vitro and inside cells. Second, cryo-electron microscopy has revealed diverse fibrillar tau conformations associated with different neurodegenerative disorders. Nonetheless, only the fibrillar core is structurally resolved, and the remainder of the protein appears as a "fuzzy coat". From this review, it appears that further studies are required (1) to clarify the role of LLPS in tau aggregation; (2) to unveil the structural features of soluble tau aggregates; (3) to understand the involvement of fuzzy coat regions in oligomer and fibril formation.
Collapse
Affiliation(s)
| | | | | | - Hwan-Ching Tai
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
5
|
Kim S, Shin SJ, Nam Y, Park YH, Kim BH, Park HH, Kumar V, Yoo DH, Lee YY, Hoe HS, Moon M. Korean red ginseng polysaccharide as a potential therapeutic agent targeting tau pathology in Alzheimer's disease. Int J Biol Macromol 2024; 263:130516. [PMID: 38423419 DOI: 10.1016/j.ijbiomac.2024.130516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/02/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Tau is a microtubule-associated protein that plays a critical role in the stabilization and modulation of neuronal axons. Tau pathology is stronger associated with cognitive decline in patients with Alzheimer's disease (AD) than amyloid beta (Aβ) pathology. Hence, tau targeting is a promising approach for the treatment of AD. Previous studies have demonstrated that the non-saponin fraction with rich polysaccharide (NFP) from Korean red ginseng (KRG) can modulate tau aggregation and exert a therapeutic effect on AD. Therefore, we investigated the efficacy of NFP isolated from KRG on tau pathology in experimental models of AD. Our results showed that NFP from KRG ameliorated deposition and hyperphosphorylation of tau in the brain of 3xTg mice. Moreover, NFP from KRG modulated the aggregation and dissociation of tau K18 in vitro. We demonstrated the alleviatory effects of NFP from KRG on hyperphosphorylated tau and tau kinase in okadaic acid-treated HT22 cells. Furthermore, NFP from KRG mitigated Aβ deposition, neurodegeneration, and neuroinflammation in 3xTg mice. We revealed the neuroprotective effects of NFP from KRG on tau-induced neuronal loss in HT22 cells. Our results indicate that NFP extracted from KRG is a novel therapeutic agent for the treatment of AD associated with tau pathology.
Collapse
Affiliation(s)
- Sujin Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Soo Jung Shin
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yunkwon Nam
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yong Ho Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Byeong-Hyeon Kim
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Hyun Ha Park
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Vijay Kumar
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Doo-Han Yoo
- Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Department of Occupational Therapy, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea
| | - Yong Yook Lee
- The Korean Ginseng Research Institute, Korea Ginseng Corporation, Gajeong-ro 30, Shinseong-dong, Yuseong-gu, Daejeon 34128, Republic of Korea.
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu 41068, Republic of Korea; Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu 42988, Republic of Korea.
| | - Minho Moon
- Department of Biochemistry, College of Medicine, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea; Research Institute for Dementia Science, Konyang University, 158, Gwanjeodong-ro, Seo-gu, Daejeon 35365, Republic of Korea.
| |
Collapse
|
6
|
Soto-Mercado V, Mendivil-Perez M, Velez-Pardo C, Jimenez-Del-Rio M. Neuroprotective Effect of Combined Treatment with Epigallocatechin 3-Gallate and Melatonin on Familial Alzheimer's Disease PSEN1 E280A Cerebral Spheroids Derived from Menstrual Mesenchymal Stromal Cells. J Alzheimers Dis 2024; 99:S51-S66. [PMID: 36846998 DOI: 10.3233/jad-220903] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Background Familial Alzheimer's disease (FAD) is caused by mutations in one or more of 3 genes known as AβPP, PSEN1, and PSEN2. There are currently no effective therapies for FAD. Hence, novel therapeutics are needed. Objective To analyze the effect of treatment with a combination of epigallocatechin-3-gallate (EGCG) and Melatonin (N-acetyl-5-methoxytryptamine, aMT) in a cerebral spheroid (CS) 3D in vitro model of PSEN 1 E280A FAD. Methods We developed a CS in vitro model based on menstrual stromal cells derived from wild-type (WT) and mutant PSEN1 E280A menstrual blood cultured in Fast-N-Spheres V2 medium. Results Beta-tubulin III, choline acetyltransferase, and GFAP in both WT and mutant CSs spontaneously expressed neuronal and astroglia markers when grown in Fast-N-Spheres V2 medium for 4 or 11 days. Mutant PSEN1 CSs had significantly increased levels of intracellular AβPP fragment peptides and concomitant appearance of oxidized DJ-1 as early as 4 days, and phosphorylated tau, decreased ΔΨm, and increased caspase-3 activity were observed on Day 11. Moreover, mutant CSs were unresponsive to acetylcholine. Treatment with a combination of EGCG and aMT decreased the levels of all typical pathological markers of FAD more efficiently than did EGCG or aMT alone, but aMT failed to restore Ca2+ influx in mutant CSs and decreased the beneficial effect of EGCG on Ca2+ influx in mutant CSs. Conclusion Treatment with a combination of EGCG and aMT can be of high therapeutic value due to the high antioxidant capacity and anti-amyloidogenic effect of both compounds.
Collapse
Affiliation(s)
- Viviana Soto-Mercado
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Miguel Mendivil-Perez
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Carlos Velez-Pardo
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| | - Marlene Jimenez-Del-Rio
- Neuroscience Research Group, Medical Research Institute, Faculty of Medicine, University of Antioquia, SIU Medellin, Colombia
| |
Collapse
|
7
|
Mate de Gerando A, Quittot N, Frosch MP, Hyman BT. Reply: Soluble oligomers or insoluble fibrils? Acta Neuropathol 2023; 146:863-866. [PMID: 37733036 PMCID: PMC10628010 DOI: 10.1007/s00401-023-02634-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023]
Affiliation(s)
- Anastasie Mate de Gerando
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Noe Quittot
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Matthew P Frosch
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Cambridge, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Cambridge, MA, USA.
| |
Collapse
|
8
|
Rodriguez-Jimenez FJ, Ureña-Peralta J, Jendelova P, Erceg S. Alzheimer's disease and synapse Loss: What can we learn from induced pluripotent stem Cells? J Adv Res 2023; 54:105-118. [PMID: 36646419 DOI: 10.1016/j.jare.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/21/2022] [Accepted: 01/08/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Synaptic dysfunction is a major contributor to Alzheimeŕs disease (AD) pathogenesis in addition to the formation of neuritic β-amyloid plaques and neurofibrillary tangles of hyperphosphorylated Tau protein. However, how these features contribute to synaptic dysfunction and axonal loss remains unclear. While years of considerable effort have been devoted to gaining an improved understanding of this devastating disease, the unavailability of patient-derived tissues, considerable genetic heterogeneity, and lack of animal models that faithfully recapitulate human AD have hampered the development of effective treatment options. Ongoing progress in human induced pluripotent stem cell (hiPSC) technology has permitted the derivation of patient- and disease-specific stem cells with unlimited self-renewal capacity. These cells can differentiate into AD-affected cell types, which support studies of disease mechanisms, drug discovery, and the development of cell replacement therapies in traditional and advanced cell culture models. AIM OF REVIEW To summarize current hiPSC-based AD models, highlighting the associated achievements and challenges with a primary focus on neuron and synapse loss. KEY SCIENTIFIC CONCEPTS OF REVIEW We aim to identify how hiPSC models can contribute to understanding AD-associated synaptic dysfunction and axonal loss. hiPSC-derived neural cells, astrocytes, and microglia, as well as more sophisticated cellular organoids, may represent reliable models to investigate AD and identify early markers of AD-associated neural degeneration.
Collapse
Affiliation(s)
- Francisco Javier Rodriguez-Jimenez
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Juan Ureña-Peralta
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| | - Pavla Jendelova
- Institute of Experimental Medicine, Department of Neuroregeneration, Czech Academy of Science, Prague, Czech Republic.
| | - Slaven Erceg
- Stem Cell Therapies in Neurodegenerative Diseases Lab., Centro de Investigación Principe Felipe (CIPF), c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain; Institute of Experimental Medicine, Department of Neuroregeneration, Czech Academy of Science, Prague, Czech Republic; National Stem Cell Bank-Valencia Node, Centro de Investigacion Principe Felipe, c/ Eduardo Primo Yúfera 3, 46012 Valencia, Spain.
| |
Collapse
|
9
|
Lee WP, Wang H, Dombroski B, Cheng PL, Tucci A, Si YQ, Farrell J, Tzeng JY, Leung YY, Malamon J, Wang LS, Vardarajan B, Farrer L, Schellenberg G. Structural Variation Detection and Association Analysis of Whole-Genome-Sequence Data from 16,905 Alzheimer's Diseases Sequencing Project Subjects. RESEARCH SQUARE 2023:rs.3.rs-3353179. [PMID: 37886469 PMCID: PMC10602095 DOI: 10.21203/rs.3.rs-3353179/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Structural variations (SVs) are important contributors to the genetics of human diseases. However, their role in Alzheimer's disease (AD) remains largely unstudied due to challenges in accurately detecting SVs. We analyzed whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (N = 16,905) and identified 400,234 (168,223 high-quality) SVs. Laboratory validation yielded a sensitivity of 82% (85% for high-quality). We found a significant burden of deletions and duplications in AD cases, particularly for singletons and homozygous events. On AD genes, we observed the ultra-rare SVs associated with the disease, including protein-altering SVs in ABCA7, APP, PLCG2, and SORL1. Twenty-one SVs are in linkage disequilibrium (LD) with known AD-risk variants, exemplified by a 5k deletion in complete LD with rs143080277 in NCK2. We also identified 16 SVs associated with AD and 13 SVs linked to AD-related pathological/cognitive endophenotypes. This study highlights the pivotal role of SVs in shaping our understanding of AD genetics.
Collapse
|
10
|
Wang H, Dombroski BA, Cheng PL, Tucci A, Si YQ, Farrell JJ, Tzeng JY, Leung YY, Malamon JS, Wang LS, Vardarajan BN, Farrer LA, Schellenberg GD, Lee WP. Structural Variation Detection and Association Analysis of Whole-Genome-Sequence Data from 16,905 Alzheimer's Diseases Sequencing Project Subjects. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.13.23295505. [PMID: 37745545 PMCID: PMC10516060 DOI: 10.1101/2023.09.13.23295505] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Structural variations (SVs) are important contributors to the genetics of numerous human diseases. However, their role in Alzheimer's disease (AD) remains largely unstudied due to challenges in accurately detecting SVs. Here, we analyzed whole-genome sequencing data from the Alzheimer's Disease Sequencing Project (ADSP, N=16,905 subjects) and identified 400,234 (168,223 high-quality) SVs. We found a significant burden of deletions and duplications in AD cases (OR=1.05, P=0.03), particularly for singletons (OR=1.12, P=0.0002) and homozygous events (OR=1.10, P<0.0004). On AD genes, the ultra-rare SVs, including protein-altering SVs in ABCA7, APP, PLCG2, and SORL1, were associated with AD (SKAT-O P=0.004). Twenty-one SVs are in linkage disequilibrium (LD) with known AD-risk variants, e.g., a deletion (chr2:105731359-105736864) in complete LD (R2=0.99) with rs143080277 (chr2:105749599) in NCK2. We also identified 16 SVs associated with AD and 13 SVs associated with AD-related pathological/cognitive endophenotypes. Our findings demonstrate the broad impact of SVs on AD genetics.
Collapse
Affiliation(s)
- Hui Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Beth A Dombroski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Po-Liang Cheng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Albert Tucci
- Bioinformatics Research Center, North Carolina State University, NC 27695, USA
| | - Ya-Qin Si
- Bioinformatics Research Center, North Carolina State University, NC 27695, USA
| | - John J Farrell
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, MA 02118, USA
| | - Jung-Ying Tzeng
- Bioinformatics Research Center, North Carolina State University, NC 27695, USA
| | - Yuk Yee Leung
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - John S Malamon
- Department of Surgery, Scholl of Medicine, University of Colorado, CO 80045, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Badri N Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, NY 10032, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, NY 10032, USA
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University School of Medicine, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, MA 02118, USA
- Department of Ophthalmology, Boston University School of Medicine, MA 02118, USA
- Department of Biostatistics, Boston University School of Public Health, MA 02118, USA
- Department of Epidemiology, Boston University School of Public Health, MA 02118, USA
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Wan-Ping Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
- Penn Neurodegeneration Genomics Center, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| |
Collapse
|
11
|
Tautou M, Descamps F, Larchanché PE, Buée L, El Bakali J, Melnyk P, Sergeant N. A Polyaminobiaryl-Based β-secretase Modulator Alleviates Cognitive Impairments, Amyloid Load, Astrogliosis, and Neuroinflammation in APPSwe/PSEN1ΔE9 Mice Model of Amyloid Pathology. Int J Mol Sci 2023; 24:ijms24065285. [PMID: 36982363 PMCID: PMC10048993 DOI: 10.3390/ijms24065285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/03/2023] [Accepted: 02/15/2023] [Indexed: 03/12/2023] Open
Abstract
The progress in Alzheimer’s disease (AD) treatment suggests a combined therapeutic approach targeting the two lesional processes of AD, which include amyloid plaques made of toxic Aβ species and neurofibrillary tangles formed of aggregates of abnormally modified Tau proteins. A pharmacophoric design, novel drug synthesis, and structure-activity relationship enabled the selection of a polyamino biaryl PEL24-199 compound. The pharmacologic activity consists of a non-competitive β-secretase (BACE1) modulatory activity in cells. Curative treatment of the Thy-Tau22 model of Tau pathology restores short-term spatial memory, decreases neurofibrillary degeneration, and alleviates astrogliosis and neuroinflammatory reactions. Modulatory effects of PEL24-199 towards APP catalytic byproducts are described in vitro, but whether PEL24-199 can alleviate the Aβ plaque load and associated inflammatory counterparts in vivo remains to be elucidated. We investigated short- and long-term spatial memory, Aβ plaque load, and inflammatory processes in APPSwe/PSEN1ΔE9 PEL24-199 treated transgenic model of amyloid pathology to achieve this objective. PEL24-199 curative treatment induced the recovery of spatial memory and decreased the amyloid plaque load in association with decreased astrogliosis and neuroinflammation. The present results underline the synthesis and selection of a promising polyaminobiaryl-based drug that modulates both Tau and, in this case, APP pathology in vivo via a neuroinflammatory-dependent process.
Collapse
Affiliation(s)
- Marie Tautou
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Florian Descamps
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Paul-Emmanuel Larchanché
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, 59045 Lille, France
| | - Jamal El Bakali
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
| | - Patricia Melnyk
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
- Correspondence: (P.M.); (N.S.); Tel.: +33-663101728 (N.S.)
| | - Nicolas Sergeant
- Univ. Lille, Inserm, CHU Lille, UMRS1172—LilNCog—Lille Neuroscience & Cognition, 59000 Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, 59045 Lille, France
- Correspondence: (P.M.); (N.S.); Tel.: +33-663101728 (N.S.)
| |
Collapse
|
12
|
Abstract
Alzheimer's disease (AD) was described in 1906 as a dementing disease marked by the presence of two types of fibrillar aggregates in the brain: neurofibrillary tangles and senile plaques. The process of aggregation and formation of the aggregates has been a major focus of investigation ever since the discoveries that the tau protein is the predominant protein in tangles and amyloid β is the predominant protein in plaques. The idea that smaller, oligomeric species of amyloid may also be bioactive has now been clearly established. This review examines the possibility that soluble, nonfibrillar, bioactive forms of tau-the "tau we cannot see"-comprise a dominant driver of neurodegeneration in AD.
Collapse
Affiliation(s)
- Bradley Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, Massachusetts, USA;
| |
Collapse
|
13
|
Lin L, Petralia RS, Holtzclaw L, Wang YX, Abebe D, Hoffman DA. Alzheimer's disease/dementia-associated brain pathology in aging DPP6-KO mice. Neurobiol Dis 2022; 174:105887. [PMID: 36209950 PMCID: PMC9617781 DOI: 10.1016/j.nbd.2022.105887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 11/16/2022] Open
Abstract
We have previously reported that the single transmembrane protein Dipeptidyl Peptidase Like 6 (DPP6) impacts neuronal and synaptic development. DPP6-KO mice are impaired in hippocampal-dependent learning and memory and exhibit smaller brain size. Recently, we have described novel structures in hippocampal area CA1 in aging mice, apparently derived from degenerating presynaptic terminals, that are significantly more prevalent in DPP6-KO mice compared to WT mice of the same age and that these structures were observed earlier in development in DPP6-KO mice. These novel structures appear as clusters of large puncta that colocalize NeuN, synaptophysin, and chromogranin A, and also partially label for MAP2, amyloid β, APP, α-synuclein, and phosphorylated tau, with synapsin-1 and VGluT1 labeling on their periphery. In this current study, using immunofluorescence and electron microscopy, we confirm that both APP and amyloid β are prevalent in these structures; and we show with immunofluorescence the presence of similar structures in humans with Alzheimer's disease. Here we also found evidence that aging DPP6-KO mutants show additional changes related to Alzheimer's disease. We used in vivo MRI to show reduced size of the DPP6-KO brain and hippocampus. Aging DPP6-KO hippocampi contained fewer total neurons and greater neuron death and had diagnostic biomarkers of Alzheimer's disease present including accumulation of amyloid β and APP and increase in expression of hyper-phosphorylated tau. The amyloid β and phosphorylated tau pathologies were associated with neuroinflammation characterized by increases in microglia and astrocytes. And levels of proinflammatory or anti-inflammatory cytokines increased in aging DPP6-KO mice. We finally show that aging DPP6-KO mice display circadian dysfunction, a common symptom of Alzheimer's disease. Together these results indicate that aging DPP6-KO mice show symptoms of enhanced neurodegeneration reminiscent of dementia associated with a novel structure resulting from synapse loss and neuronal death. This study continues our laboratory's work in discerning the function of DPP6 and here provides compelling evidence of a direct role of DPP6 in Alzheimer's disease.
Collapse
Affiliation(s)
- Lin Lin
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ronald S Petralia
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lynne Holtzclaw
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya-Xian Wang
- Advanced Imaging Core, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel Abebe
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dax A Hoffman
- Molecular Neurophysiology and Biophysics Section, Program in Developmental Neuroscience, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
Xia C, Wang Q, Liang W, Wang B, Feng Q, Zhou C, Xie Y, Yan Y, Zhao L, Jiang B, Cui W, Liang H. Superhydrophilic nanocomposite adsorbents modified via nitrogen-rich phosphonate-functionalized ionic liquid linkers: enhanced phosphopeptide enrichment and phosphoproteome analysis of tau phosphorylation in the hippocampal lysate of Alzheimer's transgenic mice. J Mater Chem B 2022; 10:7967-7978. [PMID: 36124862 DOI: 10.1039/d2tb01508k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, new graphene-based IMAC nanocomposites for phosphopeptide enrichment were prepared according to the guideline of our new design strategy. Superhydrophilic polyethyleneimine (PEI) was introduced, to which a phosphonate-functionalized ionic liquid (PFIL) was covalently bound, to form superhydrophilic and cationic surface layers with high densities of nitrogen atoms, phosphonate functional groups, and high-loading metal ions. Due to the combined features of superhydrophilicity, flexibility, highly dense metal binding sites, large surface area and excellent size-exclusion effect, the fabricated nanocomposite G@mSiO2@PEI-PFIL-Ti4+ exhibits superior detection sensitivity to enrich phosphopeptides (tryptic β-casein digest, 0.1 fmol), and extraordinary enrichment specificity to enrich phosphopeptides from a digest mixture of β-casein and bovine serum albumin (BSA) (molar ratio, 1 : 12 000). The excellent size-exclusion effect was also observed, and 27 endogenous phosphopeptides were identified in human saliva. All these results could be attributed to the unique superhydrophilic nanocomposite structure with a high density of a cationic linker modified with phosphonate functionality. Moreover, G@mSiO2@PEI-PFIL-Ti4+ adsorbents were used to extract phosphopeptides from the tryptic digests of hippocampal lysates for quantitative phosphoproteome analysis. The preliminary results indicate that 1649 phosphoproteins, 3286 phosphopeptides and 4075 phosphorylation sites were identified. A total of 13 Alzheimer's disease (AD)-related phosphopeptides within tau proteins were detected with a wide coverage from p-Thr111 to p-Ser404, in which the amounts of some phoshopeptides at certain sites in AD transgenic mice were found statistically higher than those in wild type littermates. Besides, phosphorylated neurofilament heavy chains, a potential biomarker for amyotrophic lateral sclerosis and traumatic brain injury, were also identified. Finally, the adsorbent was applied to human cerebrospinal fluid (CSF) and blood samples. 5 unique phosphopeptides of neuroendocrine specific VGF were identified in the CSF, while many phosphopeptides originated from the nervous system were found in the blood sample. All these results suggest that our new IMAC materials exhibit unbiased enrichment ability with superior detection sensitivity and specificity, allowing the global phosphoproteome analysis of complicated biological samples more convincible and indicating the potential use in disease diagnosis.
Collapse
Affiliation(s)
- Chenglong Xia
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Qiyao Wang
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Binbin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Quanshou Feng
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Chenyang Zhou
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yishan Xie
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Yinghua Yan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Bo Jiang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning, 116023, P. R. China
| | - Wei Cui
- Ningbo Key Laboratory of Behavior Neuroscience, Zhejiang Province Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo 315211, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
15
|
López-Ornelas A, Jiménez A, Pérez-Sánchez G, Rodríguez-Pérez CE, Corzo-Cruz A, Velasco I, Estudillo E. The Impairment of Blood-Brain Barrier in Alzheimer's Disease: Challenges and Opportunities with Stem Cells. Int J Mol Sci 2022; 23:ijms231710136. [PMID: 36077533 PMCID: PMC9456198 DOI: 10.3390/ijms231710136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder and its prevalence is increasing. Nowadays, very few drugs effectively reduce AD symptoms and thus, a better understanding of its pathophysiology is vital to design new effective schemes. Presymptomatic neuronal damage caused by the accumulation of Amyloid β peptide and Tau protein abnormalities remains a challenge, despite recent efforts in drug development. Importantly, therapeutic targets, biomarkers, and diagnostic techniques have emerged to detect and treat AD. Of note, the compromised blood-brain barrier (BBB) and peripheral inflammation in AD are becoming more evident, being harmful factors that contribute to the development of the disease. Perspectives from different pre-clinical and clinical studies link peripheral inflammation with the onset and progression of AD. This review aims to analyze the main factors and the contribution of impaired BBB in AD development. Additionally, we describe the potential therapeutic strategies using stem cells for AD treatment.
Collapse
Affiliation(s)
- Adolfo López-Ornelas
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
- Hospital Nacional Homeopático, Hospitales Federales de Referencia, Mexico City 06800, Mexico
| | - Adriana Jiménez
- División de Investigación, Hospital Juárez de México, Mexico City 07760, Mexico
| | - Gilberto Pérez-Sánchez
- Laboratorio de Psicoinmunología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Calzada México-Xochimilco 101, Colonia San Lorenzo Huipulco, Tlalpan, Ciudad de México 14370, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Alejandro Corzo-Cruz
- Laboratorio Traslacional, Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Batalla de Celaya 202, Lomas de Sotelo, Miguel Hidalgo, Ciudad de México 11200, Mexico
| | - Iván Velasco
- Instituto de Fisiología Celular—Neurociencias, Universidad Nacional Autónoma de Mexico, Mexico City 04510, Mexico
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
| | - Enrique Estudillo
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, Mexico City 14269, Mexico
- Correspondence:
| |
Collapse
|
16
|
Rupawala H, Shah K, Davies C, Rose J, Colom-Cadena M, Peng X, Granat L, Aljuhani M, Mizuno K, Troakes C, Perez-Nievas BG, Morgan A, So PW, Hortobagyi T, Spires-Jones TL, Noble W, Giese KP. Cysteine string protein alpha accumulates with early pre-synaptic dysfunction in Alzheimer’s disease. Brain Commun 2022; 4:fcac192. [PMID: 35928052 PMCID: PMC9345313 DOI: 10.1093/braincomms/fcac192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/12/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
In Alzheimer’s disease, synapse loss causes memory and cognitive impairment. However, the mechanisms underlying synaptic degeneration in Alzheimer’s disease are not well understood. In the hippocampus, alterations in the level of cysteine string protein alpha, a molecular co-chaperone at the pre-synaptic terminal, occur prior to reductions in synaptophysin, suggesting that it is a very sensitive marker of synapse degeneration in Alzheimer’s. Here, we identify putative extracellular accumulations of cysteine string alpha protein, which are proximal to beta-amyloid deposits in post-mortem human Alzheimer’s brain and in the brain of a transgenic mouse model of Alzheimer’s disease. Cysteine string protein alpha, at least some of which is phosphorylated at serine 10, accumulates near the core of beta-amyloid deposits and does not co-localize with hyperphosphorylated tau, dystrophic neurites or glial cells. Using super-resolution microscopy and array tomography, cysteine string protein alpha was found to accumulate to a greater extent than other pre-synaptic proteins and at a comparatively great distance from the plaque core. This indicates that cysteine string protein alpha is most sensitive to being released from pre-synapses at low concentrations of beta-amyloid oligomers. Cysteine string protein alpha accumulations were also evident in other neurodegenerative diseases, including some fronto-temporal lobar dementias and Lewy body diseases, but only in the presence of amyloid plaques. Our findings are consistent with suggestions that pre-synapses are affected early in Alzheimer’s disease, and they demonstrate that cysteine string protein alpha is a more sensitive marker for early pre-synaptic dysfunction than traditional synaptic markers. We suggest that cysteine string protein alpha should be used as a pathological marker for early synaptic disruption caused by beta-amyloid.
Collapse
Affiliation(s)
- Huzefa Rupawala
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Keshvi Shah
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Caitlin Davies
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Jamie Rose
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Marti Colom-Cadena
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Xianhui Peng
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Lucy Granat
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Manal Aljuhani
- Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Keiko Mizuno
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Beatriz Gomez Perez-Nievas
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool , Liverpool L69 3BX , UK
| | - Po-Wah So
- Department of Neuroimaging, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Tibor Hortobagyi
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
- Department of Neurology, ELKH-DE Cerebrovascular and Neurodegenerative Research Group, University of Debrecen , 4032 Debrecen , Hungary
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh , 1 George Square, Edinburgh EH8 9JZ , UK
| | - Wendy Noble
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| | - Karl Peter Giese
- Department of Basic and Clinical Neuroscience, King’s College London, Institute of Psychiatry, Psychology and Neuroscience , 5 Cutcombe Road, London SE5 9RX , UK
| |
Collapse
|
17
|
Abstract
In 1959, E. G. Gray described two different types of synapses in the brain for the first time: symmetric and asymmetric. Later on, symmetric synapses were associated with inhibitory terminals, and asymmetric synapses to excitatory signaling. The balance between these two systems is critical to maintain a correct brain function. Likewise, the modulation of both types of synapses is also important to maintain a healthy equilibrium. Cerebral circuitry responds differently depending on the type of damage and the timeline of the injury. For example, promoting symmetric signaling following ischemic damage is beneficial only during the acute phase; afterwards, it further increases the initial damage. Synapses can be also altered by players not directly related to them; the chronic and long-term neurodegeneration mediated by tau proteins primarily targets asymmetric synapses by decreasing neuronal plasticity and functionality. Dopamine represents the main modulating system within the central nervous system. Indeed, the death of midbrain dopaminergic neurons impairs locomotion, underlying the devastating Parkinson’s disease. Herein, we will review studies on symmetric and asymmetric synapses plasticity after three different stressors: symmetric signaling under acute damage—ischemic stroke; asymmetric signaling under chronic and long-term neurodegeneration—Alzheimer’s disease; symmetric and asymmetric synapses without modulation—Parkinson’s disease.
Collapse
|
18
|
Ramesh M, Acharya A, Murugan NA, Ila H, Govindaraju T. Thiophene-Based Dual Modulators of Aβ and Tau Aggregation. Chembiochem 2021; 22:3348-3357. [PMID: 34546619 DOI: 10.1002/cbic.202100383] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Indexed: 01/29/2023]
Abstract
Alzheimer's disease is characterized by the accumulation of amyloid beta (Aβ) and Tau aggregates in the brain, which induces various pathological events resulting in neurodegeneration. There have been continuous efforts to develop modulators of the Aβ and Tau aggregation process to halt or modify disease progression. A few small-molecule-based inhibitors that target both Aβ and Tau pathology have been reported. Here, we report the screening of a targeted library of small molecules to modulate Aβ and Tau aggregation together with their in vitro, in silico and cellular studies. In vitro ThT fluorescence assay, dot blot assay, gel electrophoresis and transmission electron microscopy (TEM) results have shown that thiophene-based lead molecules effectively modulate Aβ aggregation and inhibit Tau aggregation. In silico studies performed by employing molecular docking, molecular dynamics and binding-free energy calculations have helped in understanding the mechanism of interaction of the lead thiophene compounds with Aβ and Tau fibril targets. In cellulo studies revealed that the lead candidate is biocompatible and effectively ameliorates neuronal cells from Aβ and Tau-mediated amyloid toxicity.
Collapse
Affiliation(s)
- Madhu Ramesh
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Anand Acharya
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - N Arul Murugan
- Department of Computer Science, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, 10044, Stockholm, Sweden
| | - Hiriyakkanavar Ila
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| | - Thimmaiah Govindaraju
- Bioorganic Chemistry Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P.O., Bengaluru, 560064, Karnataka, India
| |
Collapse
|
19
|
Chuang Y, Van I, Zhao Y, Xu Y. Icariin ameliorate Alzheimer's disease by influencing SIRT1 and inhibiting Aβ cascade pathogenesis. J Chem Neuroanat 2021; 117:102014. [PMID: 34407393 DOI: 10.1016/j.jchemneu.2021.102014] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 12/23/2022]
Abstract
Of all types of dementia, Alzheimer's disease is the type that has the highest proportion of cases and is the cause of substantial medical and economic burden. The mechanism of Alzheimer's disease is closely associated with the aggregation of amyloid-β protein and causes neurotoxicity and extracellular accumulation in the brain and to intracellular neurofibrillary tangles caused by tau protein hyperphosphorylation in the brain tissue. Previous studies have demonstrated that sirtuin1 downregulation is involved in the pathological mechanism of Alzheimer's disease. The decrease of sirtuin1 level would cause Alzheimer's disease by means of promoting the amyloidogenic pathway to generate amyloid-β species and thereby triggering amyloid-β cascade reaction, such as tau protein hyperphosphorylation, neuron autophagy, neuroinflammation, oxidative stress, and neuron apoptosis. Currently, there is no effective treatment for Alzheimer's disease, it is necessary to develop new treatment strategies. According to the theory of traditional Chinese medicine and based on the mechanism of the disease, tonifying the kidneys is one of the principles for the treatment of Alzheimer's disease and Epimedium is a well-known Chinese medicine for tonifying kidney. Therefore, investigating the influence of the components of Epimedium on the pathological characteristics of Alzheimer's disease may provide a reference for the treatment of Alzheimer's disease in the future. In this article, we summarise the effects and mechanism of icariin, the main ingredient extracted from Epimedium, in ameliorating Alzheimer's disease by regulating sirtuin1 to inhibit amyloid-β protein and improve other amyloid-β cascade pathogenesis.
Collapse
Affiliation(s)
- Yaochen Chuang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China; Kiang Wu Nursing College of Macau, Macao, 999078, China
| | - Iatkio Van
- Kiang Wu Nursing College of Macau, Macao, 999078, China.
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, 999078, China.
| |
Collapse
|
20
|
Mukhopadhyay S, Banerjee D. A Primer on the Evolution of Aducanumab: The First Antibody Approved for Treatment of Alzheimer's Disease. J Alzheimers Dis 2021; 83:1537-1552. [PMID: 34366359 DOI: 10.3233/jad-215065] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia with global burden projected to triple by 2050. It incurs significant biopsychosocial burden worldwide with limited treatment options. Aducanumab is the first monoclonal antibody recently approved by the US-FDA for mild AD through the accelerated approval pathway. It is the first molecule to be approved for AD since 2003 and carries with it a therapeutic promise for the future. As the definition of AD has evolved from a pathological entity to a Clinico-biological construct over the years, the amyloid-β (Aβ) pathway has been increasingly implicated in its pathogenesis. The approval of Aducanumab is based on reduction of the Aβ load in the brain, which forms a surrogate marker for this pathway. The research populace has, however, been globally divided by skepticism and hope regarding this approval. Failure to meet clinical endpoints in the trials, alleged transparency issues, cost-effectiveness, potential adverse effects, need for regular monitoring, and critique of 'amyloid cascade hypothesis' itself are the main caveats concerning the antibody. With this controversy in background, this paper critically looks at antibody research in AD therapeutics, evidence, and evolution of Aducanumab as a drug and the potential clinical implications of its use in future. While the efficacy of this monoclonal antibody in AD stands as a test of time, based on the growing evidence it is vital to rethink and explore alternate pathways of pathogenesis (oxidative stress, neuroinflammation, cholesterol metabolism, vascular factors, etc.) as possible therapeutic targets that may help elucidate the enigma of this complex yet progressive and debilitating neurodegenerative disorder.
Collapse
Affiliation(s)
- Sanchari Mukhopadhyay
- Geriatric Unit, Department of Psychiatry, NationalInstitute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Debanjan Banerjee
- Geriatric Unit, Department of Psychiatry, NationalInstitute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| |
Collapse
|
21
|
Oliveira WH, Braga CF, Lós DB, Araújo SMR, França MR, Duarte-Silva E, Rodrigues GB, Rocha SWS, Peixoto CA. Metformin prevents p-tau and amyloid plaque deposition and memory impairment in diabetic mice. Exp Brain Res 2021; 239:2821-2839. [PMID: 34283253 DOI: 10.1007/s00221-021-06176-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 07/12/2021] [Indexed: 01/24/2023]
Abstract
Insulin deficiency or resistance can promote dementia and hallmarks of Alzheimer's disease (AD). The formation of neurofibrillary tangles of p-TAU protein, extracellular Aβ plaques, and neuronal loss is related to the switching off insulin signaling in cognition brain areas. Metformin is a biguanide antihyperglycemic drug used worldwide for the treatment of type 2 diabetes. Some studies have demonstrated that metformin exerts neuroprotective, anti-inflammatory, anti-oxidant, and nootropic effects. This study aimed to evaluate metformin's effects on long-term memory and p-Tau and amyloid β modulation, which are hallmarks of AD in diabetic mice. Swiss Webster mice were distributed in the following experimental groups: control; treated with streptozotocin (STZ) that is an agent toxic to the insulin-producing beta cells; STZ + metformin 200 mg/kg (M200). STZ mice showed significant augmentation of time spent to reach the target box in the Barnes maze, while M200 mice showed a significant time reduction. Moreover, the M200 group showed reduced GFAP immunoreactivity in hippocampal dentate gyrus and CA1 compared with the STZ group. STZ mice showed high p-Tau levels, reduced p-CREB, and accumulation of β-amyloid (Aβ) plaque in hippocampal areas and corpus callosum. In contrast, all these changes were reversed in the M200 group. Protein expressions of p-Tau, p-ERK, pGSK3, iNOS, nNOS, PARP, Cytochrome c, caspase 3, and GluN2A were increased in the parietal cortex of STZ mice and significantly counteracted in M200 mice. Moreover, M200 mice also showed significantly high levels of eNOS, AMPK, and p-AKT expression. In conclusion, metformin improved spatial memory in diabetic mice, which can be associated with reducing p-Tau and β-amyloid (Aβ) plaque load and inhibition of neuronal death.
Collapse
Affiliation(s)
- Wilma Helena Oliveira
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil.,Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil
| | - Clarissa Figueiredo Braga
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil
| | - Deniele Bezerra Lós
- Postgraduate Program in Biotechnology/Northeast Network in Biotechnology (RENORBIO), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Shyrlene Meiry Rocha Araújo
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil
| | - MariaEduarda Rocha França
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil.,Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil.,Postgraduate Program in Biotechnology/Northeast Network in Biotechnology (RENORBIO), Federal University of Pernambuco (UFPE), Recife, PE, Brazil.,Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil.,Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil
| | - Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil.,Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil
| | - Gabriel Barros Rodrigues
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil.,Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil
| | - Sura Wanessa Santos Rocha
- Postgraduate Program in Biological Sciences/Center of Biosciences, Federal University of Pernambuco (UFPE), Recife, PE, CEP 50670-420, Brazil
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), FIOCRUZ, Av. Moraes Rego S/N, Recife, PE, Brazil. .,Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Rio de Janeiro, Brazil.
| |
Collapse
|
22
|
Yin X, Zhao C, Qiu Y, Zhou Z, Bao J, Qian W. Dendritic/Post-synaptic Tau and Early Pathology of Alzheimer's Disease. Front Mol Neurosci 2021; 14:671779. [PMID: 34248498 PMCID: PMC8270001 DOI: 10.3389/fnmol.2021.671779] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/27/2021] [Indexed: 01/21/2023] Open
Abstract
Microtubule-associated protein tau forms insoluble neurofibrillary tangles (NFTs), which is one of the major histopathological hallmarks of Alzheimer's disease (AD). Many studies have demonstrated that tau causes early functional deficits prior to the formation of neurofibrillary aggregates. The redistribution of tau from axons to the somatodendritic compartment of neurons and dendritic spines causes synaptic impairment, and then leads to the loss of synaptic contacts that correlates better with cognitive deficits than amyloid-β (Aβ) aggregates do in AD patients. In this review, we discuss the underlying mechanisms by which tau is mislocalized to dendritic spines and contributes to synaptic dysfunction in AD. We also discuss the synergistic effects of tau and oligomeric forms of Aβ on promoting synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Xiaomin Yin
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China.,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Chenhao Zhao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Yanyan Qiu
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Junze Bao
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China
| | - Wei Qian
- Department of Biochemistry and Molecular Biology, Medical School, Nantong University, Nantong, China.,Jiangsu Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
23
|
Mercerón-Martínez D, Ibaceta-González C, Salazar C, Almaguer-Melian W, Bergado-Rosado JA, Palacios AG. Alzheimer’s Disease, Neural Plasticity, and Functional Recovery. J Alzheimers Dis 2021; 82:S37-S50. [DOI: 10.3233/jad-201178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Alzheimer’s disease (AD) is the most common and devastating neurodegenerative condition worldwide, characterized by the aggregation of amyloid-β and phosphorylated tau protein, and is accompanied by a progressive loss of learning and memory. A healthy nervous system is endowed with synaptic plasticity, among others neural plasticity mechanisms, allowing structural and physiological adaptations to changes in the environment. This neural plasticity modification sustains learning and memory, and behavioral changes and is severely affected by pathological and aging conditions, leading to cognitive deterioration. This article reviews critical aspects of AD neurodegeneration as well as therapeutic approaches that restore neural plasticity to provide functional recoveries, including environmental enrichment, physical exercise, transcranial stimulation, neurotrophin involvement, and direct electrical stimulation of the amygdala. In addition, we report recent behavioral results in Octodon degus, a promising natural model for the study of AD that naturally reproduces the neuropathological alterations observed in AD patients during normal aging, including neuronal toxicity, deterioration of neural plasticity, and the decline of learning and memory.
Collapse
Affiliation(s)
- Daymara Mercerón-Martínez
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Claudia Salazar
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - William Almaguer-Melian
- Experimental Electrophysiology Lab, International Center for Neurological Restoration (CIREN), Havana City, Cuba
| | | | - Adrian G. Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
24
|
Lee H, Jeon SG, Kim J, Kang RJ, Kim S, Han K, Park H, Kim K, Sung YM, Nam HY, Koh YH, Song M, Suk K, Hoe H. Ibrutinib modulates Aβ/tau pathology, neuroinflammation, and cognitive function in mouse models of Alzheimer's disease. Aging Cell 2021; 20:e13332. [PMID: 33709472 PMCID: PMC7963331 DOI: 10.1111/acel.13332] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 12/23/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated that ibrutinib modulates LPS‐induced neuroinflammation in vitro and in vivo, but its effects on the pathology of Alzheimer's disease (AD) and cognitive function have not been investigated. Here, we investigated the effects of ibrutinib in two mouse models of AD. In 5xFAD mice, ibrutinib injection significantly reduced Aβ plaque levels by promoting the non‐amyloidogenic pathway of APP cleavage, decreased Aβ‐induced neuroinflammatory responses, and significantly downregulated phosphorylation of tau by reducing levels of phosphorylated cyclin‐dependent kinase‐5 (p‐CDK5). Importantly, tau‐mediated neuroinflammation and tau phosphorylation were also alleviated by ibrutinib injection in PS19 mice. In 5xFAD mice, ibrutinib improved long‐term memory and dendritic spine number, whereas in PS19 mice, ibrutinib did not alter short‐ and long‐term memory but promoted dendritic spinogenesis. Interestingly, the induction of dendritic spinogenesis by ibrutinib was dependent on the phosphorylation of phosphoinositide 3‐kinase (PI3K). Overall, our results suggest that ibrutinib modulates AD‐associated pathology and cognitive function and may be a potential therapy for AD.
Collapse
Affiliation(s)
- Hyun‐ju Lee
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Seong Gak Jeon
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Jieun Kim
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Ri Jin Kang
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Seong‐Min Kim
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
- Medical Device Development Center Daegu‐Gyeongbuk Medical Innovation Foundation (DGMIF) Daegu Korea
| | - Kyung‐Min Han
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - HyunHee Park
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Ki‐taek Kim
- Department of Life Sciences Yeungnam University Gyeongsan Korea
| | - You Me Sung
- Korea Mouse Phenotyping Center (KMPC) Seoul National University Seoul Korea
| | - Hye Yeon Nam
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
| | - Young Ho Koh
- Center for Biomedical Sciences Center for Infectious Diseases Division of Brain Disease Korea National Institute of Health Heungdeok‐gu Korea
| | - Minseok Song
- Department of Life Sciences Yeungnam University Gyeongsan Korea
| | - Kyoungho Suk
- Department of Pharmacology Brain Science & Engineering Institute School of Medicine Kyungpook National University Daegu Korea
| | - Hyang‐Sook Hoe
- Department of Neural Development and Disease Korea Brain Research Institute (KBRI) Daegu Korea
- Department of Brain and Cognitive Sciences Daegu Gyeongbuk Institute of Science & Technology Daegu Korea
| |
Collapse
|
25
|
Maturation of neuronal AD-tau pathology involves site-specific phosphorylation of cytoplasmic and synaptic tau preceding conformational change and fibril formation. Acta Neuropathol 2021; 141:173-192. [PMID: 33427938 DOI: 10.1007/s00401-020-02251-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/14/2022]
Abstract
In Alzheimer's disease (AD), tau-protein undergoes a multi-step process involving the transition from a natively unfolded monomer to large, aggregated structures such as neurofibrillary tangles (NFTs). However, it is not yet clear which events initiate the early preclinical phase of AD tauopathy and whether they have impact on the propagation of tau pathology in later disease stages. To address this question, we analyzed the distribution of tau species phosphorylated at T231, S396/S404 and S202/T205, conformationally modified at the MC1 epitope and fibrillary tau detected by the Gallyas method (Gallyas-tau), in the brains of 15 symptomatic and 20 asymptomatic cases with AD pathology as well as of 19 nonAD cases. As initial tau lesions, we identified phosphorylated-T231-tau diffusely distributed within the somatodendritic compartment (IC-tau) and phosphorylated-S396/pS404-tau in axonal lesions of the white matter and in the neuropil (IN-tau). The subcellular localization of pT231-tau in the cell body and pS396/pS404-tau in the presynapse was confirmed in hP301L mutant Drosophila larvae. Phosphorylated-S202/T205-tau, MC1-tau and Gallyas-tau were negative for these lesions. IC- and IN-tau were observed in all analyzed regions of the human brain, including early affected regions in nonAD cases (entorhinal cortex) and late affected regions in symptomatic AD cases (cerebellum), indicating that tau pathology initiation follows similar processes when propagating into previously unaffected regions. Furthermore, a sequence of AD-related maturation of tau-aggregates was observed, initiated by the appearance of IC- and IN-tau, followed by the formation of pretangles exhibiting pT231-tau, pS396/pS404-tau and pS202/pT205-tau, then by MC1-conformational tau, and, finally, by the formation of Gallyas-positive NFTs. Since cases classified as nonAD [Braak NFT stages < I (including a-1b)] already showed IC- and IN-tau, our findings suggest that these lesions are a prerequisite for the development of AD.
Collapse
|
26
|
Exosomal tau with seeding activity is released from Alzheimer's disease synapses, and seeding potential is associated with amyloid beta. J Transl Med 2021; 101:1605-1617. [PMID: 34462532 PMCID: PMC8590975 DOI: 10.1038/s41374-021-00644-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 01/23/2023] Open
Abstract
Synaptic transfer of tau has long been hypothesized from the human pathology pattern and has been demonstrated in vitro and in vivo, but the precise mechanisms remain unclear. Extracellular vesicles such as exosomes have been suggested as a mechanism, but not all tau is exosomal. The present experiments use a novel flow cytometry assay to quantify depolarization of synaptosomes by KCl after loading with FM2-10, which induces a fluorescence reduction associated with synaptic vesicle release; the degree of reduction in cryopreserved human samples equaled that seen in fresh mouse synaptosomes. Depolarization induced the release of vesicles in the size range of exosomes, along with tetraspanin markers of extracellular vesicles. A number of tau peptides were released, including tau oligomers; released tau was primarily unphosphorylated and C-terminal truncated, with Aβ release just above background. When exosomes were immunopurified from release supernatants, a prominent tau band showed a dark smeared appearance of SDS-stable oligomers along with the exosomal marker syntenin-1, and these exosomes induced aggregation in the HEK tau biosensor assay. However, the flow-through did not seed aggregation. Size exclusion chromatography of purified released exosomes shows faint signals from tau in the same fractions that show a CD63 band, an exosomal size signal, and seeding activity. Crude synaptosomes from control, tauopathy, and AD cases demonstrated lower seeding in tauopathy compared to AD that is correlated with the measured Aβ42 level. These results show that AD synapses release exosomal tau that is C-terminal-truncated, oligomeric, and with seeding activity that is enhanced by Aβ. Taken together with previous findings, these results are consistent with a direct prion-like heterotypic seeding of tau by Aβ within synaptic terminals, with subsequent loading of aggregated tau onto exosomes that are released and competent for tau seeding activity.
Collapse
|
27
|
Yasuno F, Nakamura A, Kato T, Iwata K, Sakurai T, Arahata Y, Washimi Y, Hattori H, Ito K. An evaluation of the amyloid cascade model using in vivo positron emission tomographic imaging. Psychogeriatrics 2021; 21:14-23. [PMID: 32783314 DOI: 10.1111/psyg.12589] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 12/14/2022]
Abstract
AIM The amyloid cascade hypothesis posits that the accumulation of amyloid β (Aβ) is the triggering factor for Alzheimer's disease, which consecutively induces aggregation of tau, synaptic loss, and cell death. Most experimental and clinical evidence supports this model, but the available data are largely qualitative. Here, we tested the amyloid cascade hypothesis by using in vivo evaluation of positron emission tomography and magnetic resonance imaging. METHODS Path analysis was used to estimate the relationships among Aβ accumulation (PiB standardized uptake value ratio (SUVR)), tau aggregation and its related neuroinflammation (THK5351 SUVR), grey matter atrophy in the medial temporal region, and memory function in Aβ-positive subjects. We also performed additional regression analyses to evaluate the effect of Aβ on the toxicity of tau aggregation/neuroinflammation. RESULTS Path analysis supported our hypothesized model: Aβ accumulation affected tau aggregation/neuroinflammation in the medial temporal region, and these pathological changes caused of the grey matter atrophy and memory dysfunction. In separate regression analyses, THK5351 SUVR had a significant effect on grey matter atrophy only in PiB-positive subjects. The analysis of the interaction effect showed that the effects of THK5351 SUVR on grey matter atrophy were significantly different between PiB-positive and PiB-negative groups. When we included the effect of being an apolipoprotein E ε4 carrier as a covariate, the interaction effect remained significant. CONCLUSION Our in vivo evaluation of positron emission tomographic and magnetic resonance imaging data supported the amyloid cascade hypothesis. In addition, it indicated that Aβ not only accelerates tau aggregation/neuroinflammation but promotes its toxicity. Our findings showed the importance of understanding the role and therapeutic potential of the interaction between amyloid and tau aggregation/neuroinflammation in Alzheimer's disease.
Collapse
Affiliation(s)
- Fumihiko Yasuno
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.,National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Akinori Nakamura
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Kato
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.,National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kaori Iwata
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Takashi Sakurai
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yutaka Arahata
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Yukihiko Washimi
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Hideyuki Hattori
- National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Kengo Ito
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Japan.,National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
28
|
Alzheimer's disease: Recent treatment strategies. Eur J Pharmacol 2020; 887:173554. [DOI: 10.1016/j.ejphar.2020.173554] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/03/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022]
|
29
|
Owlett L, Belcher EK, Dionisio-Santos DA, Williams JP, Olschowka JA, O'Banion MK. Space radiation does not alter amyloid or tau pathology in the 3xTg mouse model of Alzheimer's disease. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:89-98. [PMID: 34756235 DOI: 10.1016/j.lssr.2020.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/25/2020] [Accepted: 08/02/2020] [Indexed: 05/27/2023]
Abstract
Space radiation is comprised of highly charged ions (HZE particles) and protons that are able to pass through matter and cause radiation-induced injury, including neuronal damage and degeneration, glial activation, and oxidative stress. Previous work demonstrated a worsening of Alzheimer's disease pathology in the APP/PS1 transgenic mouse model, however effects of space radiation on tau pathology have not been studied. To determine whether tau pathology is altered by HZE particle or proton irradiation, we exposed 3xTg mice, which acquire both amyloid plaque and tau pathology with age, to iron, silicon, or solar particle event (SPE) irradiation at 9 months of age and evaluated behavior and brain pathology at 16 months of age. We found no differences in performance in fear conditioning and novel object recognition tasks between groups of mice exposed to sham, iron (10 and 100 cGy), silicon (10 and 100 cGy), or solar particle event radiation (200 cGy), though female mice had higher freezing responses than males. 200 cGy SPE irradiated female mice had fewer plaques than sham-irradiated females but had no differences in tau pathology. Overall, females had worse amyloid and tau pathology at 16 months of age and demonstrated a reduced neuroinflammatory gene expression response to radiation. These findings uncover differences between mouse models following radiation injury and corroborate prior reports of sex differences within the 3xTg mouse model.
Collapse
Affiliation(s)
- Laura Owlett
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - Elizabeth K Belcher
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - Dawling A Dionisio-Santos
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - Jacqueline P Williams
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Box EHSC, Rochester, NY, 14642, USA
| | - John A Olschowka
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA; Del Monte Neuroscience Institute, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA; Del Monte Neuroscience Institute, University of Rochester Medical Center, 601 Elmwood Ave, Box 603, Rochester, NY, 14642, USA; Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY, 14642, USA.
| |
Collapse
|
30
|
Andreychuk YV, Zadorsky SP, Zhuk AS, Stepchenkova EI, Inge-Vechtomov SG. Relationship between Type I and Type II Template Processes: Amyloids and Genome Stability. Mol Biol 2020. [DOI: 10.1134/s0026893320050027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Elsworthy RJ, Aldred S. Depression in Alzheimer's Disease: An Alternative Role for Selective Serotonin Reuptake Inhibitors? J Alzheimers Dis 2020; 69:651-661. [PMID: 31104017 DOI: 10.3233/jad-180780] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Depression is a common co-morbidity seen in people with Alzheimer's disease (AD). However, the successful treatment of depressive symptoms in people with AD is rarely seen. In fact, multiple randomized controlled trials have shown selective serotonin reuptake inhibitors (SSRIs), the current best recommended treatment for depression, to be ineffective in treating depressive symptoms in people with AD. One explanation for this lack of treatment effect may be that depressive symptoms can reflect the progression of AD, rather than clinical depression and are a consequence of more severe neurodegeneration. This raises several questions regarding not only the efficacy of SSRIs in the treatment of depression in people with AD but also regarding the accuracy of diagnosis of depression in AD. However, there may be a rationale for the prescription of SSRIs in early AD. Even in the absence of depression, SSRIs have been shown to slow the conversion from mild cognitive impairment to AD. This may be attributed to the effect of SSRIs on the processing of amyloid-β precursor protein, which may cause a reduction in the accumulation of amyloid-β. Thus, although SSRIs may lack efficacy in treating depression in people with AD, they may hold therapeutic potential for treating and delaying the progression of AD especially if treatment begins in the early stages of AD. This article reviews the current consensus for SSRI treatment of depression in people with AD and highlights the possibility of SSRIs being a treatment option for delaying the progression of AD.
Collapse
Affiliation(s)
- Richard J Elsworthy
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, UK
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, UK
| |
Collapse
|
32
|
Abey A, Davies D, Goldsbury C, Buckland M, Valenzuela M, Duncan T. Distribution of tau hyperphosphorylation in canine dementia resembles early Alzheimer's disease and other tauopathies. Brain Pathol 2020; 31:144-162. [PMID: 32810333 PMCID: PMC8018065 DOI: 10.1111/bpa.12893] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/05/2020] [Accepted: 08/12/2020] [Indexed: 12/18/2022] Open
Abstract
Some aged community dogs acquire a degenerative syndrome termed Canine Cognitive Dysfunction (CCD) that resembles human dementia because of Alzheimer’s Disease (AD), with comparable cognitive and behavioral deficits. Dogs also have similar neuroanatomy, share our domestic environment and develop amyloid‐β plaques, making them likely a valuable ecological model of AD. However, prior investigations have demonstrated a lack of neurofibrillary tau pathology in aged dogs, an important hallmark of AD, though elevated phosphorylated tau (p‐tau) at the Serine 396 (S396) epitope has been reported in CCD. Here using enhanced immunohistochemical methods, we investigated p‐tau in six CCD brains and six controls using the AT8 antibody (later stage neurofibrillary pathology), and an antibody against S396 p‐tau (earlier stage tau dysfunction). For the first time, we systematically assessed the Papez circuit and regions associated with Braak staging and found that all CCD dogs displayed elevated S396 p‐tau labeling throughout the circuit. The limbic thalamus was particularly implicated, with a similar labeling pattern to that reported for AD neurofibrillary pathology, especially the anterior nuclei, while the hippocampus exhibited dysfunction confined to synaptic layers and efferent pathways. The cingulate and temporal lobes displayed significantly greater tauopathy than the frontal and occipital cortices, also reflective of early Braak staging patterns in AD. Immunofluorescence confirmed that S396 was accumulating within neuronal axons, somata and oligodendrocytes. We also observed AT8 labeling in one CCD brain, near the transentorhinal cortex in layer II neurons, one of the first regions to be affected in AD. Together, these data demonstrate a concordance in regional distribution of tauopathy between CCD and AD, most evident in the limbic thalamus, an important step in further validating CCD as a translational model for human AD and understanding early AD pathogenic mechanisms.
Collapse
Affiliation(s)
- Ajantha Abey
- Regenerative Neuroscience Group, The Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Danielle Davies
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Alzheimer's Disease Cell Biology Research Lab, The Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Claire Goldsbury
- Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Alzheimer's Disease Cell Biology Research Lab, The Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Michael Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia.,Sydney Medical School, Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Michael Valenzuela
- Regenerative Neuroscience Group, The Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,School of Psychiatry, Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Thomas Duncan
- Regenerative Neuroscience Group, The Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, Australia.,Discipline of Anatomy and Histology, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.,Department of Anatomy, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
33
|
Heckmann BL, Teubner BJW, Boada-Romero E, Tummers B, Guy C, Fitzgerald P, Mayer U, Carding S, Zakharenko SS, Wileman T, Green DR. Noncanonical function of an autophagy protein prevents spontaneous Alzheimer's disease. SCIENCE ADVANCES 2020; 6:eabb9036. [PMID: 32851186 PMCID: PMC7428329 DOI: 10.1126/sciadv.abb9036] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/02/2020] [Indexed: 05/02/2023]
Abstract
Noncanonical functions of autophagy proteins have been implicated in neurodegenerative conditions, including Alzheimer's disease (AD). The WD domain of the autophagy protein Atg16L is dispensable for canonical autophagy but required for its noncanonical functions. Two-year-old mice lacking this domain presented with robust β-amyloid (Aβ) pathology, tau hyperphosphorylation, reactive microgliosis, pervasive neurodegeneration, and severe behavioral and memory deficiencies, consistent with human disease. Mechanistically, we found this WD domain was required for the recycling of Aβ receptors in primary microglia. Pharmacologic suppression of neuroinflammation reversed established memory impairment and markers of disease pathology in this novel AD model. Therefore, loss of the Atg16L WD domain drives spontaneous AD in mice, and inhibition of neuroinflammation is a potential therapeutic approach for treating neurodegeneration and memory loss. A decline in expression of ATG16L in the brains of human patients with AD suggests the possibility that a similar mechanism may contribute in human disease.
Collapse
Affiliation(s)
- Bradlee L. Heckmann
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Brett J. W. Teubner
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Emilio Boada-Romero
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Bart Tummers
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Clifford Guy
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Patrick Fitzgerald
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ulrike Mayer
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Simon Carding
- Quadram Institute of Bioscience, Norwich, Norfolk, UK
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Thomas Wileman
- Quadram Institute of Bioscience, Norwich, Norfolk, UK
- Norwich Medical School, University of East Anglia, Norwich, Norfolk, UK
| | - Douglas R. Green
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
34
|
Jellinger KA. Neuropathological assessment of the Alzheimer spectrum. J Neural Transm (Vienna) 2020; 127:1229-1256. [PMID: 32740684 DOI: 10.1007/s00702-020-02232-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer disease (AD), the most common form of dementia globally, classically defined a clinicopathological entity, is a heterogenous disorder with various pathobiological subtypes, currently referred to as Alzheimer continuum. Its morphological hallmarks are extracellular parenchymal β-amyloid (amyloid plaques) and intraneuronal (tau aggregates forming neurofibrillary tangles) lesions accompanied by synaptic loss and vascular amyloid deposits, that are essential for the pathological diagnosis of AD. In addition to "classical" AD, several subtypes with characteristic regional patterns of tau pathology have been described that show distinct clinical features, differences in age, sex distribution, biomarker levels, and patterns of key network destructions responsible for cognitive decline. AD is a mixed proteinopathy (amyloid and tau), frequently associated with other age-related co-pathologies, such as cerebrovascular lesions, Lewy and TDP-43 pathologies, hippocampal sclerosis, or argyrophilic grain disease. These and other co-pathologies essentially influence the clinical picture of AD and may accelerate disease progression. The purpose of this review is to provide a critical overview of AD pathology, its defining pathological substrates, and the heterogeneity among the Alzheimer spectrum entities that may provide a broader diagnostic coverage of this devastating disorder as a basis for implementing precision medicine approaches and for ultimate development of successful disease-modifying drugs for AD.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
35
|
Targeting Aggrephagy for the Treatment of Alzheimer's Disease. Cells 2020; 9:cells9020311. [PMID: 32012902 PMCID: PMC7072705 DOI: 10.3390/cells9020311] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/25/2020] [Accepted: 01/26/2020] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD) is one of the most common neurodegenerative diseases in older individuals with specific neuropsychiatric symptoms. It is a proteinopathy, pathologically characterized by the presence of misfolded protein (Aβ and Tau) aggregates in the brain, causing progressive dementia. Increasing studies have provided evidence that the defect in protein-degrading systems, especially the autophagy-lysosome pathway (ALP), plays an important role in the pathogenesis of AD. Recent studies have demonstrated that AD-associated protein aggregates can be selectively recognized by some receptors and then be degraded by ALP, a process termed aggrephagy. In this study, we reviewed the role of aggrephagy in AD development and discussed the strategy of promoting aggrephagy using small molecules for the treatment of AD.
Collapse
|
36
|
Hesse R, Hurtado ML, Jackson RJ, Eaton SL, Herrmann AG, Colom-Cadena M, Tzioras M, King D, Rose J, Tulloch J, McKenzie CA, Smith C, Henstridge CM, Lamont D, Wishart TM, Spires-Jones TL. Comparative profiling of the synaptic proteome from Alzheimer's disease patients with focus on the APOE genotype. Acta Neuropathol Commun 2019; 7:214. [PMID: 31862015 PMCID: PMC6925519 DOI: 10.1186/s40478-019-0847-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Degeneration of synapses in Alzheimer's disease (AD) strongly correlates with cognitive decline, and synaptic pathology contributes to disease pathophysiology. We recently observed that the strongest genetic risk factor for sporadic AD, apolipoprotein E epsilon 4 (APOE4), is associated with exacerbated synapse loss and synaptic accumulation of oligomeric amyloid beta in human AD brain. To begin to understand the molecular cascades involved in synapse loss in AD and how this is mediated by APOE, and to generate a resource of knowledge of changes in the synaptic proteome in AD, we conducted a proteomic screen and systematic in silico analysis of synaptoneurosome preparations from temporal and occipital cortices of human AD and control subjects with known APOE gene status. We examined brain tissue from 33 subjects (7-10 per group). We pooled tissue from all subjects in each group for unbiased proteomic analyses followed by validation with individual case samples. Our analysis identified over 5500 proteins in human synaptoneurosomes and highlighted disease, brain region, and APOE-associated changes in multiple molecular pathways including a decreased abundance in AD of proteins important for synaptic and mitochondrial function and an increased abundance of proteins involved in neuroimmune interactions and intracellular signaling.
Collapse
|
37
|
Pickett EK, Herrmann AG, McQueen J, Abt K, Dando O, Tulloch J, Jain P, Dunnett S, Sohrabi S, Fjeldstad MP, Calkin W, Murison L, Jackson RJ, Tzioras M, Stevenson A, d'Orange M, Hooley M, Davies C, Colom-Cadena M, Anton-Fernandez A, King D, Oren I, Rose J, McKenzie CA, Allison E, Smith C, Hardt O, Henstridge CM, Hardingham GE, Spires-Jones TL. Amyloid Beta and Tau Cooperate to Cause Reversible Behavioral and Transcriptional Deficits in a Model of Alzheimer's Disease. Cell Rep 2019; 29:3592-3604.e5. [PMID: 31825838 PMCID: PMC6915767 DOI: 10.1016/j.celrep.2019.11.044] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/16/2019] [Accepted: 11/11/2019] [Indexed: 02/08/2023] Open
Abstract
A key knowledge gap blocking development of effective therapeutics for Alzheimer's disease (AD) is the lack of understanding of how amyloid beta (Aβ) peptide and pathological forms of the tau protein cooperate in causing disease phenotypes. Within a mouse tau-deficient background, we probed the molecular, cellular, and behavioral disruption triggered by the influence of wild-type human tau on human Aβ-induced pathology. We find that Aβ and tau work cooperatively to cause a hyperactivity behavioral phenotype and to cause downregulation of transcription of genes involved in synaptic function. In both our mouse model and human postmortem tissue, we observe accumulation of pathological tau in synapses, supporting the potential importance of synaptic tau. Importantly, tau reduction in the mice initiated after behavioral deficits emerge corrects behavioral deficits, reduces synaptic tau levels, and substantially reverses transcriptional perturbations, suggesting that lowering synaptic tau levels may be beneficial in AD.
Collapse
Affiliation(s)
- Eleanor K Pickett
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Abigail G Herrmann
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Jamie McQueen
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Kimberly Abt
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Owen Dando
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Jane Tulloch
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Pooja Jain
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Sophie Dunnett
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Sadaf Sohrabi
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Maria P Fjeldstad
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Will Calkin
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Leo Murison
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Rosemary J Jackson
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Makis Tzioras
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Anna Stevenson
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Marie d'Orange
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Monique Hooley
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Caitlin Davies
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Marti Colom-Cadena
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Alejandro Anton-Fernandez
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Declan King
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Iris Oren
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Jamie Rose
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Chris-Anne McKenzie
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Elizabeth Allison
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Colin Smith
- Centre for Clinical Brain Sciences and Sudden Death Brain Bank, University of Edinburgh, Edinburgh EH16 4SB, UK
| | - Oliver Hardt
- McGill University Department of Psychology, Montreal QC H3A 1B1, Canada; The University of Edinburgh Simons Initiative for the Developing Brain, George Square, Edinburgh EH8 9JZ, UK
| | - Christopher M Henstridge
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK
| | - Giles E Hardingham
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK
| | - Tara L Spires-Jones
- The University of Edinburgh Centre for Discovery Brain Sciences, 1 George Square, Edinburgh EH8 9JZ, UK; UK Dementia Research Institute at Edinburgh, George Square, Edinburgh EH8 9JZ, UK.
| |
Collapse
|
38
|
Ercan-Herbst E, Ehrig J, Schöndorf DC, Behrendt A, Klaus B, Gomez Ramos B, Prat Oriol N, Weber C, Ehrnhoefer DE. A post-translational modification signature defines changes in soluble tau correlating with oligomerization in early stage Alzheimer's disease brain. Acta Neuropathol Commun 2019; 7:192. [PMID: 31796124 PMCID: PMC6892178 DOI: 10.1186/s40478-019-0823-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/29/2019] [Indexed: 02/07/2023] Open
Abstract
Tau is a microtubule-binding protein that can receive various post-translational modifications (PTMs) including phosphorylation, methylation, acetylation, glycosylation, nitration, sumoylation and truncation. Hyperphosphorylation of tau is linked to its aggregation and the formation of neurofibrillary tangles (NFTs), which are a hallmark of Alzheimer's disease (AD). While more than 70 phosphorylation sites have been detected previously on NFT tau, studies of oligomeric and detergent-soluble tau in human brains during the early stages of AD are lacking. Here we apply a comprehensive electrochemiluminescence ELISA assay to analyze twenty-five different PTM sites as well as tau oligomerization in control and sporadic AD brain. The samples were classified as Braak stages 0-I, II or III-IV, corresponding to the progression of microscopically detectable tau pathology throughout different brain regions. We found that soluble tau multimers are strongly increased at Braak stages III-IV in all brain regions under investigation, including the temporal cortex, which does not contain NFTs or misfolded oligomers at this stage of pathology. We additionally identified five phosphorylation sites that are specifically and consistently increased across the entorhinal cortex, hippocampus and temporal cortex in the same donors. Three of these sites correlate with tau multimerization in all three brain regions, but do not overlap with the epitopes of phospho-sensitive antibodies commonly used for the immunohistochemical detection of NFTs. Our results thus suggest that soluble multimers are characterized by a small set of specific phosphorylation events that differ from those dominating in mature NFTs. These findings shed light on early PTM changes of tau during AD pathogenesis in human brains.
Collapse
Affiliation(s)
- Ebru Ercan-Herbst
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Jens Ehrig
- B CUBE - Center for Molecular Bioengineering, Technische Universitaet Dresden, 01307, Dresden, Germany
| | - David C Schöndorf
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Annika Behrendt
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Bernd Klaus
- Centre for Statistical Data Analysis, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Borja Gomez Ramos
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
- Present address: Life Sciences Research Unit, University of Luxembourg, L-4367, Belvaux, Luxembourg
- Present address: Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362, Esch-sur-Alzette, Luxembourg
| | - Nuria Prat Oriol
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Christian Weber
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany
| | - Dagmar E Ehrnhoefer
- BioMed X Innovation Center, Im Neuenheimer Feld 515, 69120, Heidelberg, Germany.
| |
Collapse
|
39
|
Nam Y, Joo B, Lee JY, Han KM, Ryu KY, Koh YH, Kim J, Koo JW, We YM, Hoe HS. ALWPs Improve Cognitive Function and Regulate Aβ Plaque and Tau Hyperphosphorylation in a Mouse Model of Alzheimer's Disease. Front Mol Neurosci 2019; 12:192. [PMID: 31474828 PMCID: PMC6707392 DOI: 10.3389/fnmol.2019.00192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 07/24/2019] [Indexed: 01/21/2023] Open
Abstract
Recently, we reported that ALWPs, which we developed by combining Liuwei Dihuang pills (LWPs) with antler, regulate the LPS-induced neuroinflammatory response and rescue LPS-induced short- and long-term memory impairment in wild-type (WT) mice. In the present study, we examined the effects of ALWPs on Alzheimer’s disease (AD) pathology and cognitive function in WT mice as well as 5x FAD mice (a mouse model of AD). We found that administration of ALWPs significantly reduced amyloid plaque levels in 5x FAD mice and significantly decreased amyloid β (Aβ) levels in amyloid precursor protein (APP)-overexpressing H4 cells. In addition, ALWPs administration significantly suppressed tau hyperphosphorylation in 5x FAD mice. Oral administration of ALWPs significantly improved long-term memory in scopolamine (SCO)-injected WT mice and 5x FAD mice by altering dendritic spine density. Importantly, ALWPs promoted spinogenesis in primary hippocampal neurons and WT mice and modulated the dendritic spine number in an extracellular signal-regulated kinase (ERK)-dependent manner. Taken together, our results suggest that ALWPs are a candidate therapeutic drug for AD that can modulate amyloid plaque load, tau phosphorylation, and synaptic/cognitive function.
Collapse
Affiliation(s)
- Youngpyo Nam
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Bitna Joo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Ju-Young Lee
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Kyung-Min Han
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Ka-Young Ryu
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Young Ho Koh
- Center for Biomedical Sciences, Center for Infectious Diseases, Division of Brain Disease, Korea National Institute of Health, Heungdeok-gu, South Korea
| | - Jeongyeon Kim
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea
| | - Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Young-Man We
- College of Korean Medicine, Wonkwang University, Iksan, South Korea
| | - Hyang-Sook Hoe
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), Daegu, South Korea.,Department of Brain & Cognitive Sciences, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| |
Collapse
|
40
|
Jackson J, Jambrina E, Li J, Marston H, Menzies F, Phillips K, Gilmour G. Targeting the Synapse in Alzheimer's Disease. Front Neurosci 2019; 13:735. [PMID: 31396031 PMCID: PMC6664030 DOI: 10.3389/fnins.2019.00735] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023] Open
Abstract
Dynamic gain and loss of synapses is fundamental to healthy brain function. While Alzheimer's Disease (AD) treatment strategies have largely focussed on beta-amyloid and tau protein pathologies, the synapse itself may also be a critical endpoint to consider regarding disease modification. Disruption of mechanisms of neuronal plasticity, eventually resulting in a net loss of synapses, is implicated as an early pathological event in AD. Synaptic dysfunction therefore may be a final common biological mechanism linking protein pathologies to disease symptoms. This review summarizes evidence supporting the idea of early neuroplastic deficits being prevalent in AD. Changes in synaptic density can occur before overt neurodegeneration and should not be considered to uniformly decrease over the course of the disease. Instead, synaptic levels are influenced by an interplay between processes of degeneration and atrophy, and those of maintenance and compensation at regional and network levels. How these neuroplastic changes are driven by amyloid and tau pathology are varied. A mixture of direct effects of amyloid and tau on synaptic integrity, as well as indirect effects on processes such as inflammation and neuronal energetics are likely to be at play here. Focussing on the synapse and mechanisms of neuroplasticity as therapeutic opportunities in AD raises some important conceptual and strategic issues regarding translational research, and how preclinical research can inform clinical studies. Nevertheless, substrates of neuroplasticity represent an emerging complementary class of drug target that would aim to normalize synapse dynamics and restore cognitive function in the AD brain and in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Johanna Jackson
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| | - Enrique Jambrina
- Lilly Research Laboratories, Eli Lilly and Company, Alcobendas, Spain
| | - Jennifer Li
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| | - Hugh Marston
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| | - Fiona Menzies
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| | - Keith Phillips
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| | - Gary Gilmour
- Lilly Research Centre, Eli Lilly and Company, Windlesham, United Kingdom
| |
Collapse
|
41
|
Holubová M, Hrubá L, Popelová A, Bencze M, Pražienková V, Gengler S, Kratochvílová H, Haluzík M, Železná B, Kuneš J, Hölscher C, Maletínská L. Liraglutide and a lipidized analog of prolactin-releasing peptide show neuroprotective effects in a mouse model of β-amyloid pathology. Neuropharmacology 2018; 144:377-387. [PMID: 30428311 DOI: 10.1016/j.neuropharm.2018.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 12/27/2022]
Abstract
Obesity and type 2 diabetes mellitus (T2DM) are important risk factors for Alzheimer's disease (AD). Drugs originally developed for T2DM treatment, e.g., analog of glucagon-like peptide 1 liraglutide, have shown neuroprotective effects in mouse models of AD. We previously examined the neuroprotective properties of palm11-PrRP31, an anorexigenic and glucose-lowering analog of prolactin-releasing peptide, in a mouse model of AD-like Tau pathology, THY-Tau22 mice. Here, we demonstrate the neuroprotective effects of palm11-PrRP31 in double transgenic APP/PS1 mice, a model of AD-like β-amyloid (Aβ) pathology. The 7-8-month-old APP/PS1 male mice were subcutaneously injected with liraglutide or palm11-PrRP31 for 2 months. Both the liraglutide and palm11-PrRP31 treatments reduced the Aβ plaque load in the hippocampus. Palm11-PrRP31 also significantly reduced hippocampal microgliosis, consistent with our observations of a reduced Aβ plaque load, and reduced cortical astrocytosis, similar to the treatment with liraglutide. Palm11-PrRP31 also tended to increase neurogenesis, as indicated by the number of doublecortin-positive cells in the hippocampus. After the treatment with both anorexigenic compounds, we observed a significant decrease in Tau phosphorylation at Thr231, one of the first epitopes phosphorylated in AD. This effect was probably caused by elevated activity of protein phosphatase 2A subunit C, the main Tau phosphatase. Both liraglutide and palm11-PrRP31 reduced the levels of caspase 3, which has multiple roles in the pathogenesis of AD. Palm11-PrRP31 increased protein levels of the pre-synaptic marker synaptophysin, suggesting that palm11-PrRP31 might help preserve synapses. These results indicate that palm11-PrRP31 has promising potential for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Martina Holubová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
| | - Lucie Hrubá
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
| | - Andrea Popelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
| | - Michal Bencze
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Veronika Pražienková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
| | - Simon Gengler
- Biomedical and Life Science, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, LA1 4YW, United Kingdom
| | - Helena Kratochvílová
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21, Prague 4, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08, Prague 2, Czech Republic
| | - Martin Haluzík
- Centre for Experimental Medicine, Institute for Clinical and Experimental Medicine, 140 21, Prague 4, Czech Republic; Department of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University in Prague and General University Hospital, 128 08, Prague 2, Czech Republic
| | - Blanka Železná
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic
| | - Jaroslav Kuneš
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic; Institute of Physiology of the Czech Academy of Sciences, 142 20, Prague 4, Czech Republic
| | - Christian Hölscher
- Biomedical and Life Science, Faculty of Health and Medicine, Lancaster University, Bailrigg, Lancaster, LA1 4YW, United Kingdom
| | - Lenka Maletínská
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
42
|
Wang L, Zhang Y, Zhao Y, Marshall C, Wu T, Xiao M. Deep cervical lymph node ligation aggravates AD-like pathology of APP/PS1 mice. Brain Pathol 2018; 29:176-192. [PMID: 30192999 DOI: 10.1111/bpa.12656] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/28/2018] [Indexed: 12/17/2022] Open
Abstract
The imbalance between production and clearance of amyloid-beta (Aβ) is a key step in the onset and development of Alzheimer's disease (AD). Therefore, reducing Aβ accumulation in the brain is a promising therapeutic strategy for AD. The recently discovered glymphatic system and meningeal lymphatic vasculature have been shown to be critical for the elimination of interstitial waste products, especially Aβ, from the brain. In the present study, ligation of deep cervical lymph nodes was performed to block drainage of this system and explore the consequences on Aβ-related pathophysiology. Five-month-old APP/PS1 mice and their wild-type littermates received deep cervical lymphatic node ligation. One month later, behavioral testing and pathological analysis were conducted. Results demonstrated that ligation of dcLNs exacerbated AD-like phenotypes of APP/PS1 mice, showing more severe brain Aβ accumulation, neuroinflammation, synaptic protein loss, impaired polarization of aquaporin-4 and deficits in cognitive and exploratory behaviors. These results suggest that brain lymphatic clearance malfunction is one of the deteriorating factors in the progression of AD, and restoring its function is a potential therapeutic target against AD.
Collapse
Affiliation(s)
- Linmei Wang
- Jiangsu Province, Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanli Zhang
- Jiangsu Province, Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Zhao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Charles Marshall
- Department of Rehabilitation Sciences, University of Kentucky Center of Excellence in Rural Health, Hazard, KY
| | - Ting Wu
- Department of Neurology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Ming Xiao
- Jiangsu Province, Key Laboratory of Neurodegeneration, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
43
|
Gan SY, Wong LZ, Wong JW, Tan EL. Fucosterol exerts protection against amyloid β-induced neurotoxicity, reduces intracellular levels of amyloid β and enhances the mRNA expression of neuroglobin in amyloid β-induced SH-SY5Y cells. Int J Biol Macromol 2018; 121:207-213. [PMID: 30300695 DOI: 10.1016/j.ijbiomac.2018.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that leads to progressive loss of neurons which often results in deterioration of memory and cognitive function. The development of AD is highly associated with the formation of senile plaques and neurofibrillary tangles. Amyloid β (Aβ) induces neurotoxicity and contributes to the development of AD. Recent evidences also highlighted the importance of neuroglobin (Ngb) in ameliorating AD. This study assessed the ability of fucosterol, a phytosterol found in brown alga, in protecting SH-SY5Y cells against Aβ-induced neurotoxicity. Its effects on the mRNA levels of APP and Ngb as well as the intracellular Aβ levels were also determined in Aβ-induced SH-SY5Y cells. SH-SY5Y cells were exposed to fucosterol prior to Aβ treatment. The effect on apoptosis was determined using Annexin V FITC staining and mRNA expression was studied using RT-PCR. Flow cytometry confirmed the protective effects of fucosterol on SH-SY5Y cells against Aβ-induced apoptosis. Pretreatment with fucosterol increased the Ngb mRNA levels but reduced the levels of APP mRNA and intracellular Aβ in Aβ-induced SH-SY5Y cells. These observations demonstrated the protective properties of fucosterol against Aβ-induced neurotoxicity in neuronal cells.
Collapse
Affiliation(s)
- Sook Yee Gan
- Department of Life Science, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Li Zhe Wong
- School of Postgraduate Studies, International Medical University, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Jia Wun Wong
- BPharm, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Eng Lai Tan
- Department of Life Science, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|