1
|
Anello P, Esposito G. Biological effects in normal human fibroblasts following chronic and acute irradiation with both low- and high-LET radiation. Front Public Health 2024; 12:1404748. [PMID: 39502827 PMCID: PMC11534685 DOI: 10.3389/fpubh.2024.1404748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Radiobiological studies at low dose rates allow us to improve our knowledge of the mechanisms by which radiation exerts its effects on biological systems following chronic exposures. Moreover, these studies can complement available epidemiological data on the biological effects of low doses and dose rates of ionizing radiation. Very few studies have simultaneously compared the biological effects of low- and high-LET radiations at the same dose rate for chronic irradiation. Methods We compared, for the first time in the same experiment, the effects of chronic (dose rates as low as ~18 and 5 mGy/h) and acute irradiations on clonogenicity and micronucleus formation in AG1522 normal human skin fibroblasts in the confluent state exposed to doses of low- and high-LET radiation (gamma rays and alpha particles) to investigate any differences due to the different radiation quality and different dose rate (in the dose range 0.006-0.9 Gy for alpha particles and 0.4-2.3 Gy for gamma rays). Results As expected, alpha particles were more effective than gamma rays at inducing cytogenetic damage and reduced clonogenic cell survival. For gamma rays, the cytogenetic damage and the reduction of clonogenic cell survival were greater when the dose was delivered acutely instead of chronically. Instead, for the alpha particles, at the same dose, we found equal cytogenetic damage and reduction of clonogenic cell survival for both chronic and acute exposure (except for the highest doses of 0.4 and 0.9 Gy, where cytogenetic damage is greater at a low dose rate). Conclusion The results of this study may have an impact on space and terrestrial radioprotection of humans at low doses and low dose rates, on biodosimetry, and on the use of ionizing radiation in medicine. These results also provide insights into understanding damage induction and cell reaction mechanisms following chronic exposure (at dose rates as low as 18 and 5 mGy/h) to low- and high-LET radiation.
Collapse
Affiliation(s)
- Pasqualino Anello
- Istituto Superiore di Sanità (ISS), Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione Roma 1, Rome, Italy
| | - Giuseppe Esposito
- Istituto Superiore di Sanità (ISS), Rome, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Sezione Roma 1, Rome, Italy
| |
Collapse
|
2
|
Liu L, Wang H, Ma ZW, Tang FR. Radiosensitivity-related Variation in MicroRNA-34a-5p Levels and Subsequent Neuronal Loss in the Hilus of the Dentate Gyrus after Irradiation at Postnatal Days 10 and 21 in Mice. Radiat Res 2024; 202:677-684. [PMID: 39164012 DOI: 10.1667/rade-23-00248.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
The radiosensitivity of mice differs between postnatal days 10 (P10) and 21(P21); these days mark different stages of brain development. In the present study, Ki67 and doublecotin (DCX) immunostaining and hematoxylin staining was performed, which showed that acute radiation exposure at postnatal day 10 induced higher cell apoptosis and loss in the hilus of the dentate gyrus at day 1 postirradiation than postnatal day 21. MicroRNA (miRNA) sequencing and real-time quantitative reverse transcription PCR (qRT-PCR) analysis indicated the upregulation of miRNA-34a-5p at days 1 and 7 after irradiation at postnatal day 10, but not at postnatal day 21. Down-regulation of T-cell intracytoplasmic antigen-1 pathway (Tia1) was indicated by qRT-PCR at day 1 day but not day 7 after irradiation at postnatal day 10. Neurobehavioral testing in mature mice irradiated at postnatal day 10 demonstrated the impairment of short-term memory in novel object recognition and spatial memory, compared to those irradiated at postnatal day 21. Combined with our previous luciferase assay showing the direct interaction of miRNA34a-5p and Tia1, these findings suggest that radiation-induced abnormal miR-34a-5p/Tial interaction at day 1 after irradiation at postnatal day 10 may be involved in apoptosis of the dentate gyrus hilar, impairment of neurogenesis and subsequent short-term memory loss as observed in the novel object recognition and Barnes maze tests.
Collapse
Affiliation(s)
- Lian Liu
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Hong Wang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602, Singapore
| | - Zhao Wu Ma
- The School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, 138602, Singapore
| |
Collapse
|
3
|
Palma-Rojo E, Barquinero JF, Pérez-Alija J, González JR, Armengol G. Differential biological effect of low doses of ionizing radiation depending on the radiosensitivity in a cell line model. Int J Radiat Biol 2024; 100:1527-1540. [PMID: 39288264 DOI: 10.1080/09553002.2024.2400514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/18/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
PURPOSE Exposure to low doses (LD) of ionizing radiation (IR), such as the ones employed in computed tomography (CT) examination, can be associated with cancer risk. However, cancer development could depend on individual radiosensitivity. In the present study, we evaluated the differences in the response to a CT-scan radiation dose of 20 mGy in two lymphoblastoid cell lines with different radiosensitivity. MATERIALS AND METHODS Several parameters were studied: gene expression, DNA damage, and its repair, as well as cell viability, proliferation, and death. Results were compared with those after a medium dose of 500 mGy. RESULTS After 20 mGy of IR, the radiosensitive (RS) cell line showed an increase in DNA damage, and higher cell proliferation and apoptosis, whereas the radioresistant (RR) cell line was insensitive to this LD. Interestingly, the RR cell line showed a higher expression of an antioxidant gene, which could be used by the cells as a protective mechanism. After a dose of 500 mGy, both cell lines were affected by IR but with significant differences. The RS cells presented an increase in DNA damage and apoptosis, but a decrease in cell proliferation and cell viability, as well as less antioxidant response. CONCLUSIONS A differential biological effect was observed between two cell lines with different radiosensitivity, and these differences are especially interesting after a CT scan dose. If this is confirmed by further studies, one could think that individuals with radiosensitivity-related genetic variants may be more vulnerable to long-term effects of IR, potentially increasing cancer risk after LD exposure.
Collapse
Affiliation(s)
- Elia Palma-Rojo
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Joan-Francesc Barquinero
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| | - Jaime Pérez-Alija
- Servei de Radiofísica i Radioprotecció, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalonia, Spain
| | - Juan R González
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
| | - Gemma Armengol
- Unitat d'Antropologia Biològica, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, Spain
| |
Collapse
|
4
|
Tang FR. Health Effect of Low-Dose-Rate Irradiation with Cumulative Threshold Dose: A Promising Area to Explore in Nuclear Emergency and Environmental Contamination. Cells 2024; 13:1521. [PMID: 39329705 PMCID: PMC11429844 DOI: 10.3390/cells13181521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/28/2024] Open
Abstract
Humans live in an environment in which they are constantly exposed to meagre dose rates of radiation [...].
Collapse
Affiliation(s)
- Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore 118415, Singapore
| |
Collapse
|
5
|
Wilson C, Adams GG, Patel P, Windham K, Ennis C, Caffrey E. A Review of Recent Low-dose Research and Recommendations for Moving Forward. HEALTH PHYSICS 2024; 126:386-396. [PMID: 38568156 DOI: 10.1097/hp.0000000000001808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
ABSTRACT The linear no-threshold (LNT) model has been the regulatory "law of the land" for decades. Despite the long-standing use of LNT, there is significant ongoing scientific disagreement on the applicability of LNT to low-dose radiation risk. A review of the low-dose risk literature of the last 10 y does not provide a clear answer, but rather the body of literature seems to be split between LNT, non-linear risk functions (e.g., supra- or sub-linear), and hormetic models. Furthermore, recent studies have started to explore whether radiation can play a role in the development of several non-cancer effects, such as heart disease, Parkinson's disease, and diabetes, the mechanisms of which are still being explored. Based on this review, there is insufficient evidence to replace LNT as the regulatory model despite the fact that it contributes to public radiophobia, unpreparedness in radiation emergency response, and extreme cleanup costs both following radiological or nuclear incidents and for routine decommissioning of nuclear power plants. Rather, additional research is needed to further understand the implications of low doses of radiation. The authors present an approach to meaningfully contribute to the science of low-dose research that incorporates machine learning and Edisonian approaches to data analysis.
Collapse
Affiliation(s)
- Charles Wilson
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Grace G Adams
- Gryphon Scientific, LLC, 6930 Carrol Ave., Suite 810, Takoma Park, MD 20912
| | - Pooja Patel
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Kiran Windham
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Colby Ennis
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| | - Emily Caffrey
- University of Alabama at Birmingham, School of Health Professions, Clinical and Diagnostic Sciences, Health Physics Program
| |
Collapse
|
6
|
Ma T, Li K, Sang W, Liu X, Luo Q, Peng Y, Wang M, Luo X, Fang J, Wang H, Wang T, Zuo C. Low-dose-rate induces more severe cognitive impairment than high-dose-rate in rats exposed to chronic low-dose γ-radiation. Front Public Health 2024; 12:1387330. [PMID: 38841686 PMCID: PMC11150688 DOI: 10.3389/fpubh.2024.1387330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 05/07/2024] [Indexed: 06/07/2024] Open
Abstract
Background Owing to the long penetration depth of gamma (γ)-rays, individuals working in ionizing radiation environments are chronically exposed to low-dose γ-radiation, resulting in cognitive changes. Dose rate significantly affects radiation-induced biological effects; however, its role in chronic low-dose γ-irradiation-induced cognitive impairment remains unclear. We aimed to investigate whether chronic low-dose γ-irradiation at low-dose-rate (LDR) could induce cognitive impairment and to compare the cognitive alteration caused by chronic low-dose γ-irradiation at LDR and high-dose-rate (HDR). Methods The rats were exposed to γ-irradiation at a LDR of 6 mGy/h and a HDR of 20 mGy/h for 30 days (5 h/day). Functional imaging was performed to assess the brain inflammation and blood-brain barrier (BBB) destruction of rats. Histological and immunofluorescence analyses were used to reveal the neuron damage and the activation of microglia and astrocytes in the hippocampus. RNA sequencing was conducted to investigate changes in gene expression in hippocampus. Results The rats in the LDR group exhibited more persistent cognitive impairment than those in the HDR group. Furthermore, irradiated rats showed brain inflammation and a compromised BBB. Histologically, the number of hippocampal neurons were comparable in the LDR group but were markedly decreased in the HDR. Additionally, activated M1-like microglia and A1-like astrocytes were observed in the hippocampus of rats in the LDR group; however, only M1-like microglia were activated in the HDR group. Mechanistically, the PI3K-Akt signaling pathway contributed to the different cognitive function change between the LDR group and HDR group. Conclusion Compared with chronic low-dose γ-irradiation at HDR, LDR induced more severe cognitive impairment which might involve PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Tianbao Ma
- School of Medicine, Shanghai University, Shanghai, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Kexian Li
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Wenjuan Sang
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Xingyu Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Qun Luo
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Ye Peng
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Mingxing Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xiu Luo
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Jingjing Fang
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Haijun Wang
- Naval Medical Center, Naval Medical University, Shanghai, China
| | - Tao Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Changjing Zuo
- School of Medicine, Shanghai University, Shanghai, China
- Department of Nuclear Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
7
|
Alessio N, Ambrosino A, Boggi A, Aprile D, Pinto I, Galano G, Galderisi U, Di Bernardo G. Germicidal lamps using UV-C radiation may pose health safety issues: a biomolecular analysis of their effects on apoptosis and senescence. Aging (Albany NY) 2024; 16:7511-7522. [PMID: 38700499 PMCID: PMC11131978 DOI: 10.18632/aging.205787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2024] [Indexed: 05/05/2024]
Abstract
The battle against the COVID-19 pandemic has spurred a heightened state of vigilance in global healthcare, leading to the proliferation of diverse sanitization methods. Among these approaches, germicidal lamps utilizing ultraviolet (UV) rays, particularly UV-C (wavelength ranging from 280 to 100 nm), have gained prominence for domestic use. These light-emitting diode (LED) lamps are designed to sanitize the air, objects, and surfaces. However, the prevailing concern is that these UV lamps are often introduced into the market without adequate accompanying information to ensure their safe utilization. Importantly, exposure to absorbed UV light can potentially trigger adverse biological responses, encompassing cell death and senescence. Our research encompassed a series of investigations aimed at comprehending the biological repercussions of UV-C radiation exposure from readily available domestic lamps. Our focus centered on epithelial retinal cells, keratinocytes, and fibroblasts, components of the skin and ocular targets frequently exposed to UV irradiation. Our findings underscore the potential harm associated with even brief exposure to UV, leading to irreversible and detrimental alterations in both skin cells and retinal cells of the eye. Notably, epithelial retinal cells exhibited heightened sensitivity, marked by substantial apoptosis. In contrast, keratinocytes demonstrated resilience to apoptosis even at elevated UV doses, though they were prone to senescence. Meanwhile, fibroblasts displayed a gradual amplification of both senescence and apoptosis as radiation doses escalated. In summary, despite the potential benefits offered by UV-C in deactivating pathogens like SARS-CoV-2, it remains evident that the concurrent risks posed by UV-C to human health cannot be ignored.
Collapse
Affiliation(s)
- Nicola Alessio
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Alessia Ambrosino
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Andrea Boggi
- Physical Agents Sector, Regional Public Health Laboratory, Siena 53100, Italy
| | - Domenico Aprile
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
| | - Iole Pinto
- Physical Agents Sector, Regional Public Health Laboratory, Siena 53100, Italy
| | - Giovanni Galano
- ASL Napoli 1 Centro P.S.I. Napoli Est-Barra, Naples 80147, Italy
| | - Umberto Galderisi
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| | - Giovanni Di Bernardo
- Biotechnology and Molecular Biology Section, Department of Experimental Medicine, School of Medicine, University of Campania Luigi Vanvitelli, Naples 80138, Italy
- Center for Biotechnology, Sbarro Institute for Cancer Research and Molecular Medicine, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
8
|
Rea M, Kimmerer G, Mittendorf S, Xiong X, Green M, Chandler D, Saintilnord W, Blackburn J, Gao T, Fondufe-Mittendorf YN. A dynamic model of inorganic arsenic-induced carcinogenesis reveals an epigenetic mechanism for epithelial-mesenchymal plasticity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123586. [PMID: 38467368 PMCID: PMC11005477 DOI: 10.1016/j.envpol.2024.123586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Greg Kimmerer
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Shania Mittendorf
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Xiaopeng Xiong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Meghan Green
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Wesley Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | | |
Collapse
|
9
|
Grison S, Braga-Tanaka II, Baatout S, Klokov D. In utero exposure to ionizing radiation and metabolic regulation: perspectives for future multi- and trans-generation effects studies. Int J Radiat Biol 2024; 100:1283-1296. [PMID: 38180060 DOI: 10.1080/09553002.2023.2295293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The radiation protection community has been particularly attentive to the risks of delayed effects on offspring from low dose or low dose-rate exposures to ionizing radiation. Despite this, the current epidemiologic studies and scientific data are still insufficient to provide the necessary evidence for improving risk assessment guidelines. This literature review aims to inform future studies on multigenerational and transgenerational effects. It primarily focuses on animal studies involving in utero exposure and discusses crucial elements for interpreting the results. These elements include in utero exposure scenarios relative to the developmental stages of the embryo/fetus, and the primary biological mechanisms responsible for transmitting heritable or hereditary effects to future generations. The review addresses several issues within the contexts of both multigenerational and transgenerational effects, with a focus on hereditary perspectives. CONCLUSIONS Knowledge consolidation in the field of Developmental Origins of Health and Disease (DOHaD) has led us to propose a new study strategy. This strategy aims to address the transgenerational effects of in utero exposure to low dose and low dose-rate radiation. Within this concept, there is a possibility that disruption of epigenetic programming in embryonic and fetal cells may occur. This disruption could lead to metabolic dysfunction, which in turn may cause abnormal responses to future environmental challenges, consequently increasing disease risk. Lastly, we discuss methodological limitations in our studies. These limitations are related to cohort size, follow-up time, model radiosensitivity, and analytical techniques. We propose scientific and analytical strategies for future research in this field.
Collapse
Affiliation(s)
- Stéphane Grison
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Ignacia Iii Braga-Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), Rokkasho Kamikita, Aomori, Japan
| | - Sarah Baatout
- Belgian Nuclear Research Centre, SCK CEN, Institute of Nuclear Medical Applications, Mol, Belgium
- Department of Molecular Biotechnology (BW25) and Department of Human Structure and Repair (GE38), Ghent University, Ghent, Belgium
| | - Dmitry Klokov
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
- Department of Microbiology, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
10
|
Lojek NM, Williams VA, Rogers AM, Sajo E, Black BJ, Ghezzi CE. A 3D In Vitro Cortical Tissue Model Based on Dense Collagen to Study the Effects of Gamma Radiation on Neuronal Function. Adv Healthc Mater 2024; 13:e2301123. [PMID: 37921265 PMCID: PMC11468710 DOI: 10.1002/adhm.202301123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/14/2023] [Indexed: 11/04/2023]
Abstract
Studies on gamma radiation-induced injury have long been focused on hematopoietic, gastrointestinal, and cardiovascular systems, yet little is known about the effects of gamma radiation on the function of human cortical tissue. The challenge in studying radiation-induced cortical injury is, in part, due to a lack of human tissue models and physiologically relevant readouts. Here, a physiologically relevant 3D collagen-based cortical tissue model (CTM) is developed for studying the functional response of human iPSC-derived neurons and astrocytes to a sub-lethal radiation exposure (5 Gy). Cytotoxicity, DNA damage, morphology, and extracellular electrophysiology are quantified. It is reported that 5 Gy exposure significantly increases cytotoxicity, DNA damage, and astrocyte reactivity while significantly decreasing neurite length and neuronal network activity. Additionally, it is found that clinically deployed radioprotectant amifostine ameliorates the DNA damage, cytotoxicity, and astrocyte reactivity. The CTM provides a critical experimental platform to understand cell-level mechanisms by which gamma radiation (GR) affects human cortical tissue and to screen prospective radioprotectant compounds.
Collapse
Affiliation(s)
- Neal M. Lojek
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Victoria A. Williams
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Andrew M. Rogers
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Erno Sajo
- Department of Physics and Applied PhysicsUniversity of Massachusetts LowellLowellMA01854USA
| | - Bryan J. Black
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| | - Chiara E. Ghezzi
- Department of Biomedical EngineeringUniversity of Massachusetts LowellLowellMA01854USA
| |
Collapse
|
11
|
Stephan OOH. Bio-positive effects of ionizing radiation on pollen: The role of ROS. PHYSIOLOGIA PLANTARUM 2024; 176:e14163. [PMID: 39141204 DOI: 10.1111/ppl.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 08/15/2024]
Abstract
The concept of 'hormesis' is defined as a dose-response relationship whereby low doses of various toxic substances or physical stressors trigger bio-positive effects in diverse biological systems, whereas high doses cause inhibition of cellular performance (e.g. growth, viability). The two-sided phenomenon of specific low-dose stimulation and high-dose inhibition imposed by a 'hormetic-factor' has been well documented in toxicology and pharmacology. Multitudinous factors have been identified that correspondingly cause hormetic effects in diverse taxa of animals, fungi, and plants. This study particularly aims to elucidate the molecular basis for stimulatory implications of ionizing radiation (IR) on plant male gametophytes (pollen). Beyond that, this analysis impacts general research on cell growth, plant breeding, radiation protection, and, in a wider sense, medical treatment. For this purpose, IR-related data were surveyed and discussed in connection with the present knowledge about pollen physiology. It is concluded that IR-induced reactive oxygen species (ROS) have a key role here. Moreover, it is hypothesized that IR-exposure shifts the ratio between diverse types of ROS in the cell. The interrelation between ROS, intracellular Ca2+-gradient, NADPH oxidases, ROS-scavengers, actin dynamics, and cell wall properties are most probably involved in IR-hormesis of pollen germination and tube growth. Modulation of gene expression, phytohormone signalling, and cellular antioxidant capacity are also implicated in IR-hormesis.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|
12
|
Millevert C, Vidas-Guscic N, Vanherp L, Jonckers E, Verhoye M, Staelens S, Bertoglio D, Weckhuysen S. Resting-State Functional MRI and PET Imaging as Noninvasive Tools to Study (Ab)Normal Neurodevelopment in Humans and Rodents. J Neurosci 2023; 43:8275-8293. [PMID: 38073598 PMCID: PMC10711730 DOI: 10.1523/jneurosci.1043-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 06/09/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of complex neurologic and psychiatric disorders. Functional and molecular imaging techniques, such as resting-state functional magnetic resonance imaging (rs-fMRI) and positron emission tomography (PET), can be used to measure network activity noninvasively and longitudinally during maturation in both humans and rodent models. Here, we review the current knowledge on rs-fMRI and PET biomarkers in the study of normal and abnormal neurodevelopment, including intellectual disability (ID; with/without epilepsy), autism spectrum disorder (ASD), and attention deficit hyperactivity disorder (ADHD), in humans and rodent models from birth until adulthood, and evaluate the cross-species translational value of the imaging biomarkers. To date, only a few isolated studies have used rs-fMRI or PET to study (abnormal) neurodevelopment in rodents during infancy, the critical period of neurodevelopment. Further work to explore the feasibility of performing functional imaging studies in infant rodent models is essential, as rs-fMRI and PET imaging in transgenic rodent models of NDDs are powerful techniques for studying disease pathogenesis, developing noninvasive preclinical imaging biomarkers of neurodevelopmental dysfunction, and evaluating treatment-response in disease-specific models.
Collapse
Affiliation(s)
- Charissa Millevert
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Nicholas Vidas-Guscic
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Liesbeth Vanherp
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Elisabeth Jonckers
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Steven Staelens
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Daniele Bertoglio
- Bio-Imaging Lab, University of Antwerp, Antwerp 2610, Belgium
- Molecular Imaging Center Antwerp (MICA), University of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
| | - Sarah Weckhuysen
- Applied & Translational Neurogenomics Group, Vlaams Instituut voor Biotechnology (VIB) Center for Molecular Neurology, VIB, Antwerp 2610, Belgium
- Department of Neurology, University Hospital of Antwerp, Antwerp 2610, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, Antwerp 2610, Belgium
- Translational Neurosciences, Faculty of Medicine and Health Science, University of Antwerp, Antwerp 2610, Belgium
| |
Collapse
|
13
|
Kohzaki M, Suzuki K, Ootsuyama A, Okazaki R. Spontaneous p53 activation in middle-aged C57BL/6 mice mitigates the lifespan-extending adaptive response induced by low-dose ionizing radiation. NPJ AGING 2023; 9:26. [PMID: 37935713 PMCID: PMC10630390 DOI: 10.1038/s41514-023-00123-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 09/22/2023] [Indexed: 11/09/2023]
Abstract
Understanding the biological effects of low-dose (<100 mGy) ionizing radiation (LDR) is technically challenging. We investigated age-dependent LDR effects using adaptive response experiments in young (7-to 12-week-old) and middle-aged (40-to 62-week-old) C57BL/6 mice. Compared with 3 Gy irradiation, 0.02 Gy preirradiation followed by 3 Gy irradiation prolonged life in young mice but not middle-aged mice. Preirradiation also suppressed irradiation-induced 53BP1 repair foci in the small intestines, splenic apoptosis, and p53 activity in young mice but not middle-aged mice. Young p53+/- C57BL/6 mice did not show these adaptive responses, indicating that insufficient p53 function in young mice mitigated the adaptive responses. Interestingly, p53 activation in middle-aged mice spontaneously became approximately 4.5-fold greater than that in young mice, possibly masking LDR stresses. Furthermore, adaptive responses in young mice, but not in middle-aged mice, suppressed some senescence-associated secretory phenotype (SASP) factors (IL-6, CCL2, CCL5, CXCL1). Thus, LDR-induced adaptive responses associated with specific SASP factors may be attenuated by a combination of reduced DNA damage sensor/transducer function and chronic p53 activation in middle-aged mice.
Collapse
Affiliation(s)
- Masaoki Kohzaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan.
| | - Keiji Suzuki
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Akira Ootsuyama
- Department of Radiation Biology and Health, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Ryuji Okazaki
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
14
|
Averbeck D. Low-Dose Non-Targeted Effects and Mitochondrial Control. Int J Mol Sci 2023; 24:11460. [PMID: 37511215 PMCID: PMC10380638 DOI: 10.3390/ijms241411460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
Non-targeted effects (NTE) have been generally regarded as a low-dose ionizing radiation (IR) phenomenon. Recently, regarding long distant abscopal effects have also been observed at high doses of IR) relevant to antitumor radiation therapy. IR is inducing NTE involving intracellular and extracellular signaling, which may lead to short-ranging bystander effects and distant long-ranging extracellular signaling abscopal effects. Internal and "spontaneous" cellular stress is mostly due to metabolic oxidative stress involving mitochondrial energy production (ATP) through oxidative phosphorylation and/or anaerobic pathways accompanied by the leakage of O2- and other radicals from mitochondria during normal or increased cellular energy requirements or to mitochondrial dysfunction. Among external stressors, ionizing radiation (IR) has been shown to very rapidly perturb mitochondrial functions, leading to increased energy supply demands and to ROS/NOS production. Depending on the dose, this affects all types of cell constituents, including DNA, RNA, amino acids, proteins, and membranes, perturbing normal inner cell organization and function, and forcing cells to reorganize the intracellular metabolism and the network of organelles. The reorganization implies intracellular cytoplasmic-nuclear shuttling of important proteins, activation of autophagy, and mitophagy, as well as induction of cell cycle arrest, DNA repair, apoptosis, and senescence. It also includes reprogramming of mitochondrial metabolism as well as genetic and epigenetic control of the expression of genes and proteins in order to ensure cell and tissue survival. At low doses of IR, directly irradiated cells may already exert non-targeted effects (NTE) involving the release of molecular mediators, such as radicals, cytokines, DNA fragments, small RNAs, and proteins (sometimes in the form of extracellular vehicles or exosomes), which can induce damage of unirradiated neighboring bystander or distant (abscopal) cells as well as immune responses. Such non-targeted effects (NTE) are contributing to low-dose phenomena, such as hormesis, adaptive responses, low-dose hypersensitivity, and genomic instability, and they are also promoting suppression and/or activation of immune cells. All of these are parts of the main defense systems of cells and tissues, including IR-induced innate and adaptive immune responses. The present review is focused on the prominent role of mitochondria in these processes, which are determinants of cell survival and anti-tumor RT.
Collapse
Affiliation(s)
- Dietrich Averbeck
- Laboratory of Cellular and Molecular Radiobiology, PRISME, UMR CNRS 5822/IN2P3, IP2I, Lyon-Sud Medical School, University Lyon 1, 69921 Oullins, France
| |
Collapse
|
15
|
Oyefeso FA, Goldberg G, Opoku NYPS, Vazquez M, Bertucci A, Chen Z, Wang C, Muotri AR, Pecaut MJ. Effects of acute low-moderate dose ionizing radiation to human brain organoids. PLoS One 2023; 18:e0282958. [PMID: 37256873 PMCID: PMC10231836 DOI: 10.1371/journal.pone.0282958] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 02/27/2023] [Indexed: 06/02/2023] Open
Abstract
Human exposure to low-to-moderate dose ionizing radiation (LMD-IR) is increasing via environmental, medical, occupational sources. Acute exposure to LMD-IR can cause subclinical damage to cells, resulting in altered gene expression and cellular function within the human brain. It has been difficult to identify diagnostic and predictive biomarkers of exposure using traditional research models due to factors including lack of 3D structure in monolayer cell cultures, limited ability of animal models to accurately predict human responses, and technical limitations of studying functional human brain tissue. To address this gap, we generated brain/cerebral organoids from human induced pluripotent stem cells to study the radiosensitivity of human brain cells, including neurons, astrocytes, and oligodendrocytes. While organoids have become popular models for studying brain physiology and pathology, there is little evidence to confirm that exposing brain organoids to LMD-IR will recapitulate previous in vitro and in vivo observations. We hypothesized that exposing brain organoids to proton radiation would (1) cause a time- and dose-dependent increase in DNA damage, (2) induce cell type-specific differences in radiosensitivity, and (3) increase expression of oxidative stress and DNA damage response genes. Organoids were exposed to 0.5 or 2 Gy of 250 MeV protons and samples were collected at 30 minute, 24 hour, and 48 hour timepoints. Using immunofluorescence and RNA sequencing, we found time- and dose-dependent increases in DNA damage in irradiated organoids; no changes in cell populations for neurons, oligodendrocytes, and astrocytes by 24 hours; decreased expression of genes related to oligodendrocyte lineage, astrocyte lineage, mitochondrial function, and cell cycle progression by 48 hours; increased expression of genes related to neuron lineage, oxidative stress, and DNA damage checkpoint regulation by 48 hours. Our findings demonstrate the possibility of using organoids to characterize cell-specific radiosensitivity and early radiation-induced gene expression changes within the human brain, providing new avenues for further study of the mechanisms underlying acute neural cell responses to IR exposure at low-to-moderate doses.
Collapse
Affiliation(s)
- Foluwasomi A. Oyefeso
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Gabriela Goldberg
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Nana Yaa P. S. Opoku
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Marcelo Vazquez
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Antonella Bertucci
- Center for Genomics, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Zhong Chen
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Charles Wang
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
- Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Alysson R. Muotri
- Department of Radiation Medicine, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
| | - Michael J. Pecaut
- Department of Biomedical Engineering Sciences, School of Medicine, Loma Linda University, Loma Linda, California, United States of America
- Departments of Pediatrics and Cellular & Molecular Medicine, School of Medicine, Center for Academic Research and Training in Anthropogeny (CARTA), Kavli Institute for Brain and Mind, Archealization Center (ArchC), University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
16
|
Mousavikia SN, Bahreyni Toossi MT, Khademi S, Soukhtanloo M, Azimian H. Evaluation of micronuclei and antioxidant status in hospital radiation workers occupationally exposed to low-dose ionizing radiation. BMC Health Serv Res 2023; 23:540. [PMID: 37226157 DOI: 10.1186/s12913-023-09516-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/08/2023] [Indexed: 05/26/2023] Open
Abstract
PURPOSE There is scientific evidence that ionizing radiation (IR) can be responsible for various health hazards that are one of the concerns in occupational exposure. This study was performed to evaluate DNA damage and antioxidant status in hospital workers who are occupationally exposed to low doses of IR. MATERIALS AND METHODS In this study, twenty occupationally exposed to low doses of IR (CT and angiography) comprising with control groups which matched them. In order to investigate the effects of chronic irradiation of radiation workers, Micronuclei (MN) frequency and the antioxidant activity of Superoxide Dismutase (SOD), Catalase (CAT) and Total Antioxidant Capacity (TAC) were measured. Then, to check adaptation against high challenge dose, the samples (in all groups) were irradiated in vitro and MN frequency was compared. Finally, to investigated the effect of the high dose after the acute and chronic low dose of ionizing radiation, MN frequency was compared in two groups (the control group that was to in-vitro irradiated (acute low dose + high dose) and radiation workers (chronic low dose + high dose)). RESULTS MN frequency in the occupationally exposed group (n = 30) increased significantly when compared to the control group (p-value < 0.0001). However, chronic irradiation of radiation workers could not lead to an adaptive Sresponse, while acute low-doses could produce this effect (p-value ˂ 0.05). In addition, the activity levels of antioxidant enzymes SOD, CAT, and TAC were not statistically different between the radiation workers and the control group (p-value > 0.05). CONCLUSIONS We observed that exposure to low doses of IR leads to increased cytogenetic damage, could not cause an adaptive-response, and improve antioxidant capacity in radiation workers. Controlling healthcare workers' exposure is the first step to improving the health of hospital workers and the quality of patient care, thus decreasing human and economic costs.
Collapse
Affiliation(s)
- S N Mousavikia
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M T Bahreyni Toossi
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - S Khademi
- Department of Radiology Technology, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - M Soukhtanloo
- Department of Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - H Azimian
- Medical Physics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Baier J, Rix A, Darguzyte M, Girbig RM, May JN, Palme R, Tolba R, Kiessling F. Repeated Contrast-Enhanced Micro-CT Examinations Decrease Animal Welfare and Influence Tumor Physiology. Invest Radiol 2023; 58:327-336. [PMID: 36730911 DOI: 10.1097/rli.0000000000000936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Computed tomography (CT) imaging is considered relatively safe and is often used in preclinical research to study physiological processes. However, the sum of low-dose radiation, anesthesia, and animal handling might impact animal welfare and physiological parameters. This is particularly relevant for longitudinal studies with repeated CT examinations. Therefore, we investigated the influence of repeated native and contrast-enhanced (CE) CT on animal welfare and tumor physiology in regorafenib-treated and nontreated tumor-bearing mice. MATERIAL AND METHODS Mice bearing 4T1 breast cancer were divided into 5 groups: (1) no imaging, (2) isoflurane anesthesia only, (3) 4 mGy CT, (4) 50 mGy CT, and (5) CE-CT (iomeprol). In addition, half of each group was treated with the multikinase inhibitor regorafenib. Mice were imaged 3 times within 1 week under isoflurane anesthesia. Behavioral alterations were investigated by score sheet evaluation, rotarod test, heart rate measurements, and fecal corticosterone metabolite analysis. Tumor growth was measured daily with a caliper. Tumors were excised at the end of the experiment and histologically examined for blood vessel density, perfusion, and cell proliferation. RESULTS According to the score sheet, animals showed a higher burden after anesthesia administration and in addition with CT imaging ( P < 0.001). Motor coordination was not affected by native CT, but significantly decreased after CE-CT in combination with the tumor therapy ( P < 0.001). Whereas tumor growth and blood vessel density were not influenced by anesthesia or imaging, CT-scanned animals had a higher tumor perfusion ( P < 0.001) and a lower tumor cell proliferation ( P < 0.001) for both radiation doses. The most significant difference was observed between the control and CE-CT groups. CONCLUSION Repeated (CE-) CT imaging of anesthetized animals can lead to an impairment of animal motor coordination and, thus, welfare. Furthermore, these standard CT protocols seem to be capable of inducing alterations in tumor physiology when applied repetitively. These potential effects of native and CE-CT should be carefully considered in preclinical oncological research.
Collapse
Affiliation(s)
- Jasmin Baier
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Anne Rix
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Milita Darguzyte
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Renée Michèle Girbig
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Jan-Niklas May
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Rupert Palme
- Department of Biomedical Sciences, University of Veterinary Medicine Vienna, Vienna, Austria
| | - René Tolba
- Institute for Laboratory Animal Science and Experimental Surgery, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| | - Fabian Kiessling
- From the Institute for Experimental Molecular Imaging, Medical Faculty, RWTH Aachen International University, Aachen, Germany
| |
Collapse
|
18
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part I: Mammary gland and digestive tract. JOURNAL OF RADIATION RESEARCH 2023; 64:210-227. [PMID: 36773323 PMCID: PMC10036108 DOI: 10.1093/jrr/rrad002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data are available for the dose and dose-rate effectiveness factor (DDREF) for human populations, animal models have contributed significantly to providing quantitative data with mechanistic insights. The aim of the current review is to compile both the in vitro experiments with reference to the dose-rate effects of DNA damage and repair, and the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. In particular, the review focuses especially on the results pertaining to underlying biological mechanisms and discusses their possible involvement in the process of radiation-induced carcinogenesis. Because the concept of adverse outcome pathway (AOP) together with the key events has been considered as a clue to estimate radiation risks at low doses and low dose-rates, the review scrutinized the dose-rate dependency of the key events related to carcinogenesis, which enables us to unify the underlying critical mechanisms to establish a connection between animal experimental studies with human epidemiological studies.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author. Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel: +81-95-819-7116; Fax: +81-95-819-7117;
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
19
|
Suzuki K, Imaoka T, Tomita M, Sasatani M, Doi K, Tanaka S, Kai M, Yamada Y, Kakinuma S. Molecular and cellular basis of the dose-rate-dependent adverse effects of radiation exposure in animal models. Part II: Hematopoietic system, lung and liver. JOURNAL OF RADIATION RESEARCH 2023; 64:228-249. [PMID: 36773331 PMCID: PMC10036110 DOI: 10.1093/jrr/rrad003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/04/2022] [Indexed: 06/18/2023]
Abstract
While epidemiological data have greatly contributed to the estimation of the dose and dose-rate effectiveness factor (DDREF) for human populations, studies using animal models have made significant contributions to provide quantitative data with mechanistic insights. The current article aims at compiling the animal studies, specific to rodents, with reference to the dose-rate effects of cancer development. This review focuses specifically on the results that explain the biological mechanisms underlying dose-rate effects and their potential involvement in radiation-induced carcinogenic processes. Since the adverse outcome pathway (AOP) concept together with the key events holds promise for improving the estimation of radiation risk at low doses and low dose-rates, the review intends to scrutinize dose-rate dependency of the key events in animal models and to consider novel key events involved in the dose-rate effects, which enables identification of important underlying mechanisms for linking animal experimental and human epidemiological studies in a unified manner.
Collapse
Affiliation(s)
- Keiji Suzuki
- Corresponding author, Department of Radiation Medical Sciences, Nagasaki University Atomic Bomb Disease Institute. 1-12-4 Sakamoto, Nagasaki 852-8523, Japan. Tel:+81-95-819-7116; Fax:+81-95-819-7117; E-mail:
| | | | | | | | - Kazutaka Doi
- Department of Radiation Regulatory Science Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Satoshi Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 Ienomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Michiaki Kai
- Nippon Bunri University, 1727-162 Ichiki, Oita, Oita 870-0397, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| | - Shizuko Kakinuma
- Department of Radiation Effects Research, National Institute of Radiological Sciences (NIRS), National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba 263-8555, Japan
| |
Collapse
|
20
|
Kim JH, Dubey SK, Hwangbo K, Chung BY, Lee SS, Lee S. Application of ionizing radiation as an elicitor to enhance the growth and metabolic activities in Chlamydomonas reinhardtii. FRONTIERS IN PLANT SCIENCE 2023; 14:1087070. [PMID: 36890890 PMCID: PMC9986495 DOI: 10.3389/fpls.2023.1087070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Chlamydomonas reinhardtii is a eukaryotic, unicellular photosynthetic organism and a potential algal platform for producing biomass and recombinant proteins for industrial use. Ionizing radiation is a potent genotoxic and mutagenic agent used for algal mutation breeding that induces various DNA damage and repair responses. In this study, however, we explored the counterintuitive bioeffects of ionizing radiation, such as X- and γ-rays, and its potential as an elicitor to facilitate batch or fed-batch cultivation of Chlamydomonas cells. A certain dose range of X- and γ-rays was shown to stimulate the growth and metabolite production of Chlamydomonas cells. X- or γ-irradiation with relatively low doses below 10 Gy substantially increased chlorophyll, protein, starch, and lipid content as well as growth and photosynthetic activity in Chlamydomonas cells without inducing apoptotic cell death. Transcriptome analysis demonstrated the radiation-induced changes in DNA damage response (DDR) and various metabolic pathways with the dose-dependent expression of some DDR genes, such as CrRPA30, CrFEN1, CrKU, CrRAD51, CrOASTL2, CrGST2, and CrRPA70A. However, the overall transcriptomic changes were not causally associated with growth stimulation and/or enhanced metabolic activities. Nevertheless, the radiation-induced growth stimulation was strongly enhanced by repetitive X-irradiation and/or subsequent cultivation with an inorganic carbon source, i.e., NaHCO3, but was significantly inhibited by treatment of ascorbic acid, a scavenger of reactive oxygen species (ROS). The optimal dose range of X-irradiation for growth stimulation differed by genotype and radiation sensitivity. Here, we suggest that ionizing radiation within a certain dose range determined by genotype-dependent radiation sensitivity could induce growth stimulation and enhance metabolic activities, including photosynthesis, chlorophyll, protein, starch, and lipid synthesis in Chlamydomonas cells via ROS signaling. The counterintuitive benefits of a genotoxic and abiotic stress factor, i.e., ionizing radiation, in a unicellular algal organism, i.e., Chlamydomonas, may be explained by epigenetic stress memory or priming effects associated with ROS-mediated metabolic remodeling.
Collapse
Affiliation(s)
- Jin-Hong Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Shubham Kumar Dubey
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Kwon Hwangbo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
| | - Byung Yeoup Chung
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
| | - Seung Sik Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| | - Sungbeom Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeollabuk-do, Republic of Korea
- Department of Radiation Science and Technology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
21
|
Abozaid OAR, Rashed LA, El-Sonbaty SM, Abu-Elftouh AI, Ahmed ESA. Mesenchymal Stem Cells and Selenium Nanoparticles Synergize with Low Dose of Gamma Radiation to Suppress Mammary Gland Carcinogenesis via Regulation of Tumor Microenvironment. Biol Trace Elem Res 2023; 201:338-352. [PMID: 35138531 PMCID: PMC9823077 DOI: 10.1007/s12011-022-03146-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023]
Abstract
Breast cancer is one of the most prevalent and deadliest cancers among women in the world because of its aggressive behavior and inadequate response to conventional therapies. Mesenchymal stem cells (MSCs) combined with green nanomaterials could be an efficient tool in cell cancer therapy. This study examined the curative effects of bone marrow-derived mesenchymal stem cells (BM-MSCs) with selenium nanoparticles (SeNPs) coated with fermented soymilk and a low dose of gamma radiation (LDR) in DMBA-induced mammary gland carcinoma in female rats. DMBA-induced mammary gland carcinoma as marked by an elevation of mRNA level of cancer promoter genes (Serpin and MIF, LOX-1, and COL1A1) and serum level of VEGF, TNF-α, TGF-β, CA15-3, and caspase-3 with the reduction in mRNA level of suppressor gene (FST and ADRP). These deleterious effects were hampered after treatment with BM-MSCs (1 × 106 cells/rat) once and daily administration of SeNPs (20 mg/kg body weight) and exposure once to (0.25 Gy) LDR. Finally, MSCs, SeNPs, and LDR notably modulated the expression of multiple tumor promoters and suppressor genes playing a role in breast cancer induction and suppression.
Collapse
Affiliation(s)
- Omayma A. R. Abozaid
- Biochemistry Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Laila A. Rashed
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Sawsan M. El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Esraa S. A. Ahmed
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Nasr City, Cairo, 11787 Egypt
| |
Collapse
|
22
|
Guo P, Lei M, Hu S, Xu Z, Zhou Y, Zhou P, Huang R. Long-term LDR exposure may induce cognitive impairments: A possible association through targeting gut microbiota-gut-brain axis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114351. [PMID: 36508818 DOI: 10.1016/j.ecoenv.2022.114351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 11/19/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Environmental and occupational low-dose radiation (LDR) exposure may be harmful for health but the previous reports regarding effect of LDR on cognition are contradictory. Here we investigated the effect of long-term LDR exposure on cognition. In this study, male Balb/c mice' cognitive functions were tested at 15 weeks after being exposed to 0.5 Gy LDR in 10 fractions at each dose of 0.05 Gy. The results demonstrated that long-term LDR exposure increases escape latency and the time spent in finding exits in mice compared with non LDR exposure. Meanwhile, the inflammation-related proteins including NFκB and p38 also increased. Lipopolysaccharide (LPS) increased and short-chain fatty acid (SCFA) levels decreased following long term LDR exposure. Treatment with microbiota-derived LPS and SCFAs reversed these effects in mice. Furthermore, the gut barrier integrity was damaged in a time-dependent manner with the decreased expression of intestinal epithelial-related biomarkers such as ZO-1 and occludin. Mechanistically, long after exposure to LDR, increased LPS levels may cause cognitive impairment through the regulation of Akt/mTOR signaling in the mouse hippocampus. These findings provide new insight into the clinical applications of LDR and suggest that the gut microbiota-plasma LPS and SCFAs-brain axis may underlie long-term LDR-induced cognition effects.
Collapse
Affiliation(s)
- Peiyu Guo
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - MingJun Lei
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410078, Hunan, China.
| | - Sai Hu
- Department of Radiology, Xiangya Hospital, CSU, Changsha 410008, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - Zi Xu
- Central South University, China.
| | - Yao Zhou
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - Pingkun Zhou
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| | - Ruixue Huang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, Hunan Province 410078, China; Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Haidian District, Beijing 100850, China.
| |
Collapse
|
23
|
ICRP PUBLICATION 153 Approved by the Commission in September 2022. Ann ICRP 2022; 51:9-95. [PMID: 36942865 DOI: 10.1177/01466453221142702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Veterinary use of radiation in the diagnosis, management, and treatment of disease has expanded and diversified, as have the corresponding radiological protection concerns. Radiological exposure of personnel involved in veterinary procedures and, where applicable, members of the public providing assistance (e.g. owners or handlers) has always been included within the system of radiological protection. Veterinary practice is now addressed explicitly as the modern complexities associated with this practice warrant dedicated consideration, and there is a need to clarify and strengthen the application of radiological protection principles in this area. The Commission recommends that the system of radiological protection should be applied in veterinary practice principally for the protection of humans, but with explicit attention to the protection of exposed animals. Additionally, consideration should be given to the risk of potential contamination of the environment associated with applications of nuclear medicine in veterinary practice. This publication focuses primarily on justification and optimisation in veterinary practice, and sets the scene for more detailed guidance to follow in future Recommendations. It is intended for a wide-ranging audience, including radiological protection professionals, veterinary staff, students, education and training providers, and members of the public, as an introduction to radiological protection in veterinary practice.© 2022 ICRP. Published by SAGE.
Collapse
|
24
|
Jayan J, Roshi H, Ashraf FFP, Nair PG, Vijayakumar A, Nair AS, Pappachen LK, Abdelgawad MA, Parambi DGT, Aleya L, Mathew B. Effects of radiation exposure on brain health: a state of the art and new challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87068-87081. [PMID: 36308656 DOI: 10.1007/s11356-022-23703-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Good brain health refers to a condition in which a person may fully realize their talents and improve their psychological, emotional, cognitive, and behavioral functioning to cope with life's challenges. Various causes of CNS diseases are now being investigated. Radiation is one of the factors that affects the brain and causes a variety of problems. The emission or transmission of energy in the form of waves or particles via space or a material medium is known as radiation. Particle beams and electromagnetic waves are two types of ionizing radiation that have the potential to ionize atoms in a material (separating them into positively charged ions and negatively charged electrons). Radiation to the CNS can induce delayed puberty, which can lead to hyperprolactinemia, and the hypothalamic-pituitary axis can lead to gonadotropin deficit if the hypothalamic-pituitary axis is involved in the radiation field. Ionizing radiation is the most common kind of radiation. Here, we focus on the different effects of radiation on brain health. In this article, we will look at a variety of CNS diseases and how radiation affects each one, as well as how it affects the brain's numerous processes.
Collapse
Affiliation(s)
- Jayalakshmi Jayan
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Harsha Roshi
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Fathima Farzana Perumbilly Ashraf
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Parvathy G Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Aparna Vijayakumar
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Aathira Sujathan Nair
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India
| | - Leena K Pappachen
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India.
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 2014, Al Jouf, Saudi Arabia
| | - Della Grace Thomas Parambi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, 2014, Al Jouf, Saudi Arabia
| | - Lotfi Aleya
- Laboratoire Chrono-Environment, Universite de Bourgogne Franche-Comte, CNRS6249, Besancon, France
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, Kochi, 682 041, India.
| |
Collapse
|
25
|
Mothersill C, Cocchetto A, Seymour C. Low Dose and Non-Targeted Radiation Effects in Environmental Protection and Medicine-A New Model Focusing on Electromagnetic Signaling. Int J Mol Sci 2022; 23:11118. [PMID: 36232421 PMCID: PMC9570230 DOI: 10.3390/ijms231911118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 11/17/2022] Open
Abstract
The role of signalling in initiating and perpetuating effects triggered by deposition of ionising radiation energy in parts of a system is very clear. Less clear are the very early steps involved in converting energy to chemical and biological effects in non-targeted parts of the system. The paper aims to present a new model, which could aid our understanding of the role of low dose effects in determining ultimate disease outcomes. We propose a key role for electromagnetic signals resulting from physico-chemical processes such as excitation decay, and acoustic waves. These lead to the initiation of damage response pathways such as elevation of reactive oxygen species and membrane associated changes in key ion channels. Critically, these signalling pathways allow coordination of responses across system levels. For example, depending on how these perturbations are transduced, adverse or beneficial outcomes may predominate. We suggest that by appreciating the importance of signalling and communication between multiple levels of organisation, a unified theory could emerge. This would allow the development of models incorporating time, space and system level to position data in appropriate areas of a multidimensional domain. We propose the use of the term "infosome" to capture the nature of radiation-induced communication systems which include physical as well as chemical signals. We have named our model "the variable response model" or "VRM" which allows for multiple outcomes following exposure to low doses or to signals from low dose irradiated cells, tissues or organisms. We suggest that the use of both dose and infosome in radiation protection might open up new conceptual avenues that could allow intrinsic uncertainty to be embraced within a holistic protection framework.
Collapse
Affiliation(s)
- Carmel Mothersill
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Alan Cocchetto
- National CFIDS Foundation, 285 Beach Ave., Hull, MA 02045-1602, USA
| | - Colin Seymour
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
26
|
Hippocampus sparing volumetric modulated arc therapy in patients with loco-regionally advanced oropharyngeal cancer. Phys Imaging Radiat Oncol 2022; 24:71-75. [PMID: 36217428 PMCID: PMC9547285 DOI: 10.1016/j.phro.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
|
27
|
Yamaguchi M, Tatara Y, Nugraha ED, Sato Y, Miura T, Hosoda M, Syaifudin M, Tokonami S, Kashiwakura I. Serum Proteomic and Oxidative Modification Profiling in Mice Exposed to Total Body X-Irradiation. Antioxidants (Basel) 2022; 11:antiox11091710. [PMID: 36139779 PMCID: PMC9495380 DOI: 10.3390/antiox11091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022] Open
Abstract
The details of the dose-dependent response of serum proteins exposed to ionizing radiation, especially the oxidative modification response in amino acid sequences of albumin, the most abundant protein, are unknown. Thus, a proteomic analysis of the serum components from mice exposed to total body X-irradiation (TBI) ranging from 0.5 Gy to 3.0 Gy was conducted using LC-MS/MS. The analysis of oxidative modification sequences of albumin (mOMSA) in TBI mouse serum revealed significant moderate or strong correlations between the X-irradiation exposure dose and modification of 11 mOMSAs (especially the 97th, 267th and 499th lysine residues, 159th methionine residue and 287th tyrosine residues). In the case of X-irradiation of serum alone, significant correlations were also found in the 14 mOMSAs. In addition, a dose-dependent variation in six proteins (Angiotensinogen, Odorant-binding protein 1a, Serine protease inhibitor A3K, Serum paraoxonase/arylesterase 1, Prothrombin and Epidermal growth factor receptor) was detected in the serum of mice exposed to TBI. These findings suggest the possibility that the protein variation and serum albumin oxidative modification responses found in exposed individuals are important indicators for considering the effects of radiation on living organisms, along with DNA damage, and suggests their possible application as biomarkers of radiation dose estimation.
Collapse
Affiliation(s)
- Masaru Yamaguchi
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| | - Yota Tatara
- Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki 036-8562, Aomori, Japan
| | - Eka Djatnika Nugraha
- The Research Center for Safety, Metrology, and Nuclear Quality Technology (PRTKMMN), Research Organization for Nuclear Energy, National Research and Innovation Agency of Indonesia (BRIN), JI. Lebak Bulus Raya No. 49, Jakarta Selatan 12440, DKI Jakarta, Indonesia
| | - Yoshiaki Sato
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
| | - Tomisato Miura
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Masahiro Hosoda
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Mukh Syaifudin
- Research Center for Radioisotope, Radiopharmaceutical and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Kw. Puspiptek, Setu, Tangerang Selatan 15312, Banten, Indonesia
| | - Shinji Tokonami
- Institute of Radiation Emergency Medicine, Hirosaki University, 66-1 Hon-cho, Hirosaki, Aomori 036-8564, Japan
| | - Ikuo Kashiwakura
- Hirosaki University Graduate School of Health Sciences, 66-1 Hon-cho, Hirosaki 036-8564, Aomori, Japan
- Correspondence:
| |
Collapse
|
28
|
Lierová A, Milanová M, Pospíchal J, Novotný J, Storm J, Andrejsová L, Šinkorová Z. BIOLOGICAL EFFECTS OF LOW-DOSE RADIATION FROM CT IMAGING. RADIATION PROTECTION DOSIMETRY 2022; 198:514-520. [PMID: 36005951 DOI: 10.1093/rpd/ncac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/21/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The dramatic rise in diagnostic procedures, radioisotope-based scans and intervention procedures has created a very valid concern regarding the long-term biological consequences from exposure to low doses of ionizing radiation. Despite its unambiguous medical benefits, additional knowledge on the health outcome of its use is essential. This review summarizes the available information regarding the biological consequences of low-dose radiation (LDR) exposure in humans (e.g. cytogenetic changes, cancer risk and radiation-induced cataracts. However, LDR studies remain relatively new and thus an encompassing view of its biological effects and relevant mechanisms in the human body is still needed.
Collapse
Affiliation(s)
- Anna Lierová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Marcela Milanová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Jan Pospíchal
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Jan Novotný
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Jaroslav Storm
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
- Department of Clinical Subspecialties, Faculty of Health Studies, University of Pardubice, Pardubice, Czech Republic
| | - Lenka Andrejsová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| | - Zuzana Šinkorová
- Department of Radiobiology, Faculty of Military Health Sciences, University of Defence, Hradec Králové, Czech Republic
| |
Collapse
|
29
|
Pohjoismäki JLO, Goffart S. Adaptive and Pathological Outcomes of Radiation Stress-Induced Redox Signaling. Antioxid Redox Signal 2022; 37:336-348. [PMID: 35044250 DOI: 10.1089/ars.2021.0257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Significance: Ionizing radiation can damage cells either directly or through oxidative damage caused by ionization. Although radiation exposure from natural sources is very limited, ionizing radiation in nuclear disaster zones and long spaceflights causes inconspicuous, yet measurable physiological effects in men and animals, whose significance remains poorly known. Understanding the physiological impacts of ionizing radiation has a wide importance due to the increased use of medical imaging and radiotherapy. Recent Advances: Radiation exposure has been traditionally investigated from the perspective of DNA damage and its consequences. However, recent studies from Chernobyl as well as spaceflights have provided interesting insights into oxidative stress-induced metabolic alterations and disturbances in the circadian regulation. Critical Issues: In this review, we discuss the physiological consequences of radiation exposure in the light of oxidative stress signaling. Radiation exposure likely triggers many converging or interconnecting signaling pathways, some of which mimic mitochondrial dysfunction and might explain the observed metabolic changes. Future Directions: Better understanding of the different radiation-induced signaling pathways might help to devise strategies for mitigation of the long-term effects of radiation exposure. The utility of fibroblast growth factor 21 (FGF21) as a radiation exposure biomarker and the use of radiation hormesis as a method to protect astronauts on a prolonged spaceflight, such as a mission to Mars, should be investigated. Antioxid. Redox Signal. 37, 336-348.
Collapse
Affiliation(s)
- Jaakko L O Pohjoismäki
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Steffi Goffart
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
30
|
Xu J, Liu D, Zhao D, Jiang X, Meng X, Jiang L, Yu M, Zhang L, Jiang H. Role of low-dose radiation in senescence and aging: A beneficial perspective. Life Sci 2022; 302:120644. [PMID: 35588864 DOI: 10.1016/j.lfs.2022.120644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/03/2022] [Accepted: 05/11/2022] [Indexed: 02/06/2023]
Abstract
Cellular senescence refers to the permanent arrest of cell cycle caused by intrinsic and/or extrinsic stressors including oncogene activation, irradiation, DNA damage, oxidative stress, and certain cytokines (including senescence associated secretory phenotype). Cellular senescence is an important factor in aging. Accumulation of senescent cells has been implicated in the causation of various age-related organ disorders, tissue dysfunction, and chronic diseases. It is widely accepted that the biological effects triggered by low-dose radiation (LDR) are different from those caused by high-dose radiation. Experimental evidence suggests that LDR may promote growth and development, enhance longevity, induce embryo production, and delay the progression of chronic diseases. The underlying mechanisms of these effects include modulation of immune response, stimulation of hematopoietic system, antioxidative effect, reduced DNA damage and improved ability for DNA damage repair. In this review, we discuss the possible mechanisms by which LDR prevents senescence and aging from the perspectives of inhibiting cellular senescence and promoting the removal of senescent cells. We review a wide broad of evidence about the beneficial impact of LDR in senescence and aging models (including cardiovascular diseases, neurological diseases, arthritis and osteoporosis, chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis) to highlight the potential value of LDR in preventing aging and age-related diseases. However, there is no consensus on the effect of LDR on human health, and several important aspects require further investigation.
Collapse
Affiliation(s)
- Jing Xu
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Dandan Liu
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Di Zhao
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Xin Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Xinxin Meng
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Lili Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Meina Yu
- Department of Special Clinic, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Long Zhang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China
| | - Hongyu Jiang
- Department of Health Examination Center, The First Hospital of Jilin University, Changchun 130001, Jilin, China.
| |
Collapse
|
31
|
Guo L, Wu B, Wang X, Kou X, Zhu X, Fu K, Zhang Q, Hong S, Wang X. Long-term low-dose ionizing radiation induced chromosome-aberration-specific metabolic phenotype changes in radiation workers. J Pharm Biomed Anal 2022; 214:114718. [DOI: 10.1016/j.jpba.2022.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 10/18/2022]
|
32
|
Seven M, Yigin AK, Agirbasli D, Alay MT, Kirbiyik F, Demir M. Radiation exposure in pregnancy: outcomes, perceptions and teratological counseling in Turkish women. Ann Saudi Med 2022; 42:214-221. [PMID: 35229664 PMCID: PMC9167462 DOI: 10.5144/0256-4947.2022.03.03.1200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Fetal effects of radiation are associated with the gestational week of exposure, dose, and duration of exposure, but the perception of risk of radiation in expecting mothers is greater than the actual risk of physical effects. OBJECTIVES Evaluate the overestimation of the teratogenic risk in women exposed to radiation and the role of teratological counseling in minimizing preconceptions. DESIGN Analytical, cross-sectional. SETTING Tertiary care center, genetic diseases diagnosis center. PATIENTS AND METHODS Out of 10 784 people who applied for teratological consultation between 2009 and 2018, pregnant women meeting inclusion criteria and exposed to radiation were selected as the study group; pregnant women without radiation exposure were selected as the control group. Two subgroups of the study group based on the week and dose of exposure were also analyzed. MAIN OUTCOME MEASURES Abortion rate, termination recommendation rates before and after teratological counseling. SAMPLE SIZE 461 pregnant exposed to radiation; 213 pregnant women without radiation exposure. RESULTS Preterm birth and termination rates differed significantly between cases and controls (P=.038, P=.019, respectively). Termination recommendation at the first examination was more frequent for both the week of exposure overall and dose subgroups comparing cases and controls (P<.001). In the comparison of subgroups by week of exposure, only the miscarriage rate was statistically significant (P=.007). After teratological counseling termination decision rates were significantly decreased (P<.001). CONCLUSION Subjective perceptions about the risks of radiation may lead to the termination of an otherwise wanted pregnancy. Teratological counseling is crucial for the prevention of termination of pregnancy, clarifying misinformation, and minimizing anxiety. LIMITATIONS With the exception of measurable values as calculated doses of radiation, the conclusions are mostly derived from medical records and subjective responses of pregnant women. The termination rates in our study probably do not reflect the whole population. CONFLICT OF INTEREST None.
Collapse
Affiliation(s)
- Mehmet Seven
- From the Medical Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Aysel Kalayci Yigin
- From the Medical Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Deniz Agirbasli
- From the Medical Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mustafa Tarik Alay
- From the Medical Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Faruk Kirbiyik
- From the Medical Genetics, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Mustafa Demir
- From the Nuclear Medicine, Cerrahpasa Medical Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
33
|
Enhanced Effects of Chronic Restraint-Induced Psychological Stress on Total Body Fe-Irradiation-Induced Hematopoietic Toxicity in Trp53-Heterozygous Mice. Life (Basel) 2022; 12:life12040565. [PMID: 35455056 PMCID: PMC9025703 DOI: 10.3390/life12040565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/28/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Humans are exposed to both psychological stress (PS) and radiation in some scenarios such as manned deep-space missions. It is of great concern to verify possible enhanced deleterious effects from such concurrent exposure. Pioneer studies showed that chronic restraint-induced PS (CRIPS) could attenuate Trp53 functions and increase gamma-ray-induced carcinogenesis in Trp53-heterozygous mice while CRIPS did not significantly modify the effects on X-ray-induced hematopoietic toxicity in Trp53 wild-type mice. As high-linear energy transfer (LET) radiation is the most important component of space radiation in causing biological effects, we further investigated the effects of CRIPS on high-LET iron-particle radiation (Fe)-induced hematopoietic toxicity in Trp53-heterozygous mice. The results showed that CRIPS alone could hardly induce significant alteration in hematological parameters (peripheral hemogram and micronucleated erythrocytes in bone marrow) while concurrent exposure caused elevated genotoxicity measured as micronucleus incidence in erythrocytes. Particularly, exposure to either CRISP or Fe-particle radiation at a low dose (0.1 Gy) did not induce a marked increase in the micronucleus incidence; however, concurrent exposure caused a significantly higher increase in the micronucleus incidence. These findings indicated that CRIPS could enhance the deleterious effects of high-LET radiation, particularly at a low dose, on the hematopoietic toxicity in Trp53-heterozygous mice.
Collapse
|
34
|
In situ gamma spectrometry of terrestrial naturally occurring radioactive materials and radiation hazard assessment of Kebbi State, Nigeria. J Radioanal Nucl Chem 2022. [DOI: 10.1007/s10967-022-08256-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Development and Evaluation of a Machine Learning Prediction Model for Small-for-Gestational-Age Births in Women Exposed to Radiation before Pregnancy. J Pers Med 2022; 12:jpm12040550. [PMID: 35455666 PMCID: PMC9031835 DOI: 10.3390/jpm12040550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022] Open
Abstract
Exposure to radiation has been associated with increased risk of delivering small-for-gestational-age (SGA) newborns. There are no tools to predict SGA newborns in pregnant women exposed to radiation before pregnancy. Here, we aimed to develop an array of machine learning (ML) models to predict SGA newborns in women exposed to radiation before pregnancy. Patients’ data was obtained from the National Free Preconception Health Examination Project from 2010 to 2012. The data were randomly divided into a training dataset (n = 364) and a testing dataset (n = 91). Eight various ML models were compared for solving the binary classification of SGA prediction, followed by a post hoc explainability based on the SHAP model to identify and interpret the most important features that contribute to the prediction outcome. A total of 455 newborns were included, with the occurrence of 60 SGA births (13.2%). Overall, the model obtained by extreme gradient boosting (XGBoost) achieved the highest area under the receiver-operating-characteristic curve (AUC) in the testing set (0.844, 95% confidence interval (CI): 0.713–0.974). All models showed satisfied AUCs, except for the logistic regression model (AUC: 0.561, 95% CI: 0.355–0.768). After feature selection by recursive feature elimination (RFE), 15 features were included in the final prediction model using the XGBoost algorithm, with an AUC of 0.821 (95% CI: 0.650–0.993). ML algorithms can generate robust models to predict SGA newborns in pregnant women exposed to radiation before pregnancy, which may thus be used as a prediction tool for SGA newborns in high-risk pregnant women.
Collapse
|
36
|
Fang F, Yu X, Wang X, Zhu X, Liu L, Rong L, Niu D, Li J. Transcriptomic profiling reveals gene expression in human peripheral blood after exposure to low-dose ionizing radiation. JOURNAL OF RADIATION RESEARCH 2022; 63:8-18. [PMID: 34788452 PMCID: PMC8776696 DOI: 10.1093/jrr/rrab091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/03/2021] [Indexed: 05/15/2023]
Abstract
Although the health effects of exposure to low-dose ionizing radiation have been the focus of many studies, the affected biological functions and underlying regulatory mechanisms are not well-understood. In particular, the influence of radiation exposure at doses of less than 200 mGy on the regulation of genes and pathways remains unclear. To investigate the molecular alterations induced by varying doses of low-dose radiation (LDR), transcriptomic analysis was conducted based on ribonucleic acid (RNA) sequencing following exposure to 50 and 150 mGy doses. Human peripheral blood was collected, and the samples were divided into three groups, including two treatments and one control (no radiation). A total of 876 (318 upregulated and 558 downregulated) and 486 (202 upregulated and 284 downregulated) differentially expressed genes (DEGs) were identified after exposure to 50 mGy and 150 mGy, respectively. Most upregulated genes in both the 50 mGy and 150 mGy groups were associated with 'antigen processing and presentation,' which appeared to be the major targets affected by LDR exposure. Several interacting genes, including HLA-DQA1, HLA-DQA2, HLA-DQB2, HLA-DRB1, and HLA-DRB5 were mapped to 'antigen processing and presentation,' 'immune system-related diseases' and the 'cytokine-mediated signaling pathway,' suggesting that these genes might drive the downstream transmission of these signal transduction pathways. Our results suggest that exposure to LDR may elicit changes in key genes and associated pathways, probably helping further explore the biological processes and molecular mechanism responsible for low-dose occupational or environmental exposures in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jue Li
- Corresponding author. Department of Scientific Research, Beijing Institute of Occupational Disease Prevention and Treatment (The Beijing Prevention and Treatment Hospital of Occupational Disease for Chemical Industry), 50 Xiangshan Yikesong Road, Haidian District, Beijing 100093, China.
| |
Collapse
|
37
|
Stati G, Passaretta F, Gindraux F, Centurione L, Di Pietro R. The Role of the CREB Protein Family Members and the Related Transcription Factors in Radioresistance Mechanisms. Life (Basel) 2021; 11:life11121437. [PMID: 34947968 PMCID: PMC8706059 DOI: 10.3390/life11121437] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/02/2021] [Accepted: 12/16/2021] [Indexed: 02/05/2023] Open
Abstract
In the framework of space flight, the risk of radiation carcinogenesis is considered a "red" risk due to the high likelihood of occurrence as well as the high potential impact on the quality of life in terms of disease-free survival after space missions. The cyclic AMP response element-binding protein (CREB) is overexpressed both in haematological malignancies and solid tumours and its expression and function are modulated following irradiation. The CREB protein is a transcription factor and member of the CREB/activating transcription factor (ATF) family. As such, it has an essential role in a wide range of cell processes, including cell survival, proliferation, and differentiation. Among the CREB-related nuclear transcription factors, NF-κB and p53 have a relevant role in cell response to ionising radiation. Their expression and function can decide the fate of the cell by choosing between death or survival. The aim of this review was to define the role of the CREB/ATF family members and the related transcription factors in the response to ionising radiation of human haematological malignancies and solid tumours.
Collapse
Affiliation(s)
- Gianmarco Stati
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
- Correspondence: ; Tel.: +39-08713554567
| | - Francesca Passaretta
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Florelle Gindraux
- Laboratoire de Nanomédecine, Imagerie, Thérapeutique EA 4662, Université Bourgogne Franche-Comté, 25030 Besançon, France;
- Service de Chirurgie Orthopédique, Traumatologique et Plastique, CHU, 25030 Besançon, France
| | - Lucia Centurione
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| | - Roberta Di Pietro
- Department of Medicine and Ageing Sciences, G. d’Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; (F.P.); (L.C.); (R.D.P.)
| |
Collapse
|
38
|
Yang X, Song G, Liu H, Hu D. Microbial diversity formation and maintenance due to temporal niche differentiation caused by low-dose ionizing radiation in oligotrophic environments. LIFE SCIENCES IN SPACE RESEARCH 2021; 31:92-100. [PMID: 34689955 DOI: 10.1016/j.lssr.2021.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
The planetary protection strives to minimize the contamination of microorganisms in spacecrafts. However, it is reported that microbial diversity is abnormally high in the International Space Station (ISS) after long-term exposure to low-dose ionizing radiation (LDIR). It remains a mystery why LDIR leads to the formation and maintenance of high microbial diversity in oligotrophic environments like the ISS. In this study, an artificial microbial community has been cultivated without and with LDIR, respectively. The microbial community was composed of three common microbial species, i.e., Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa in the ISS. After analyzing the differences in microbial physiological and behavioral response characteristics in the two scenarios, a reasonable hypothesis was proposed to elucidate the formation and maintenance mechanisms of high microbial diversity in oligotrophic environments with the LDIR. Then a set of kinetic models with time-lag were developed based on this hypothesis, observed phenomena, and experimental data. Finally, these kinetic models were sufficiently validated, and the hypothesis was fully confirmed through large-scale digital simulations. Briefly, as a decisive succession mechanism in oligotrophic environments with LDIR, temporal niche differentiation (TND) caused by microbial delayed responses to LDIR can give rise to asynchronously convergent fluctuations of microbial populations and significantly alleviate the intra- and interspecific competitions. Such a mechanism can drive the microbial communities in oligotrophic environments with LDIR to form and maintain high species diversity.
Collapse
Affiliation(s)
- Xinbin Yang
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100083, China
| | - Ganyu Song
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100083, China
| | - Hong Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China
| | - Dawei Hu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China; Institute of Environmental Biology and Life Support Technology, Beihang University, Beijing 100083, China; Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing 100083, China; State Key Laboratory of Virtual Reality Technology and Systems, School of Computer Science and Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
39
|
Betlazar C, Middleton RJ, Howell N, Storer B, Davis E, Davies J, Banati R, Liu GJ. Mitochondrial Translocator Protein (TSPO) Expression in the Brain After Whole Body Gamma Irradiation. Front Cell Dev Biol 2021; 9:715444. [PMID: 34760884 PMCID: PMC8573390 DOI: 10.3389/fcell.2021.715444] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/29/2021] [Indexed: 01/04/2023] Open
Abstract
The brain's early response to low dose ionizing radiation, as may be encountered during diagnostic procedures and space exploration, is not yet fully characterized. In the brain parenchyma, the mitochondrial translocator protein (TSPO) is constitutively expressed at low levels by endothelial cells, and can therefore be used to assess the integrity of the brain's vasculature. At the same time, the inducible expression of TSPO in activated microglia, the brain's intrinsic immune cells, is a regularly observed early indicator of subtle or incipient brain pathology. Here, we explored the use of TSPO as a biomarker of brain tissue injury following whole body irradiation. Post-radiation responses were measured in C57BL/6 wild type (Tspo +/+) and TSPO knockout (Tspo -/-) mice 48 h after single whole body gamma irradiations with low doses 0, 0.01, and 0.1 Gy and a high dose of 2 Gy. Additionally, post-radiation responses of primary microglial cell cultures were measured at 1, 4, 24, and 48 h at an irradiation dose range of 0 Gy-2 Gy. TSPO mRNA and protein expression in the brain showed a decreased trend after 0.01 Gy relative to sham-irradiated controls, but remained unchanged after higher doses. Immunohistochemistry confirmed subtle decreases in TSPO expression after 0.01 Gy in vascular endothelial cells of the hippocampal region and in ependymal cells, with no detectable changes following higher doses. Cytokine concentrations in plasma after whole body irradiation showed differential changes in IL-6 and IL-10 with some variations between Tspo-/- and Tspo +/+ animals. The in vitro measurements of TSPO in primary microglial cell cultures showed a significant reduction 1 h after low dose irradiation (0.01 Gy). In summary, acute low and high doses of gamma irradiation up to 2 Gy reduced TSPO expression in the brain's vascular compartment without de novo induction of TSPO expression in parenchymal microglia, while TSPO expression in directly irradiated, isolated, and thus highly activated microglia, too, was reduced after low dose irradiation. The potential link between TSPO, its role in mitochondrial energy metabolism and the selective radiation sensitivity, notably of cells with constitutive TSPO expression such as vascular endothelial cells, merits further exploration.
Collapse
Affiliation(s)
- Calina Betlazar
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Ryan J. Middleton
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Nicholas Howell
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Ben Storer
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Emma Davis
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Justin Davies
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
| | - Richard Banati
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| | - Guo-Jun Liu
- Australian Nuclear Science and Technology Organisation, Sydney, NSW, Australia
- Discipline of Medical Imaging and Radiation Sciences, Faculty of Medicine and Health, Brain and Mind Centre, University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
40
|
Visweswaran S, Raavi V, Abdul Syed Basheerudeen S, Kanagaraj K, Prasad A, Selvan Gnana Sekaran T, Pattan S, Shanmugam P, Ozimuthu A, Joseph S, Perumal V. Comparative analysis of physical doses and biomarker changes in subjects underwent Computed Tomography, Positron Emission Tomography-Computed Tomography, and interventional procedures. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2021; 870-871:503404. [PMID: 34583824 DOI: 10.1016/j.mrgentox.2021.503404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/30/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Even though the medical uses of ionizing radiation are well-acknowledged globally as vital tools for the improvement of human health, they also symbolize the major man-made sources of radiation exposure to the population. Estimation of absorbed dose and biological changes after radiation-based imaging might help to better understand the effects of low dose radiation. Because of this, we measured the Entrance Surface Dose (ESD) at different anatomical locations using Lithium tetraborate doped with manganese (Li2B4O7: Mn), recorded Dose Length Product (DLP) and Dose Area Product (DAP), analyzed Chromosomal Aberration (CA), Micronucleus (MN), gamma-H2AX (γ-H2AX), and p53ser15 proteins in the blood lymphocytes of patients (n = 267) underwent Computed Tomography (CT), Positron Emission Tomography-CT (PET/CT), and interventional procedures and healthy volunteers (n = 19). The DLP and effective doses obtained from PET/CT procedures were significantly higher (p < 0.05) when compared to CT. Fluoroscopic time and DAP were significantly higher (p < 0.05) in therapeutic compared to diagnostic interventional procedures. All the anatomical locations registered a significant amount of ESD, the ESD obtained from CT and interventional procedures were significantly (p < 0.05) higher when compared to PET/CT. Fluoroscopic time did not correlate with the ESD (eye, head, thyroid, and shoulder; R2 = 0.03). CA frequency after PET/CT was significantly higher (p < 0.001) when compared to CT and interventional procedures. MN frequency was significantly higher in 24-hs (p < 0.001) post-interventional procedure compared to 2-hs. The mean ± SD of mean fluorescence intensity of γ-H2AX and p53ser15 obtained from all subjects underwent PET/CT and interventional procedures did not show a significant difference (p > 0.05) between pre- and post-procedure. However, the relative fluorescence intensity of γ-H2AX and p53ser15 was >1 in 58.5 % and 65.8 % of subjects respectively. Large inter-individual variation and lack of correlation between physical dose and biomarkers suggest the need for robust dosimetry with a large sample size to understand the health effects of low dose radiation.
Collapse
Affiliation(s)
- Shangamithra Visweswaran
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Venkateswarlu Raavi
- Department of Cell Biology and Molecular Genetics, Sri Devaraj Urs Academy of Higher Education and Research (Deemed to be University), Tamaka, Kolar, Karnataka, 563 103, India
| | - Safa Abdul Syed Basheerudeen
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Karthik Kanagaraj
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Akshaya Prasad
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Tamizh Selvan Gnana Sekaran
- Central Research Lab, K.S. Hegde Medical Academy, NITTE (Deemed to be University), Mangalore, Karnataka, 575 018, India
| | - Sudha Pattan
- Department of Radiology & Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Panneerselvam Shanmugam
- Department of Radiology & Imaging Sciences, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Annalakshmi Ozimuthu
- Safety, Quality & Resource Management Group, Health Safety and Environment Group, Homi Bhabha National Institute, Indira Gandhi Center for Atomic Research, Kalpakkam, Tamil Nadu, 603 102, India
| | - Santhosh Joseph
- Department of Neuro-Radiology, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India
| | - Venkatachalam Perumal
- Department of Human Genetics, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Porur, Chennai, Tamil Nadu, 600 116, India.
| |
Collapse
|
41
|
Low Dose Ionising Radiation-Induced Hormesis: Therapeutic Implications to Human Health. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The concept of radiation-induced hormesis, whereby a low dose is beneficial and a high dose is detrimental, has been gaining attention in the fields of molecular biology, environmental toxicology and radiation biology. There is a growing body of literature that recognises the importance of hormetic dose response not only in the radiation field, but also with molecular agents. However, there is continuing debate on the magnitude and mechanism of radiation hormetic dose response, which could make further contributions, as a research tool, to science and perhaps eventually to public health due to potential therapeutic benefits for society. The biological phenomena of low dose ionising radiation (LDIR) includes bystander effects, adaptive response, hypersensitivity, radioresistance and genomic instability. In this review, the beneficial and the detrimental effects of LDIR-induced hormesis are explored, together with an overview of its underlying cellular and molecular mechanisms that may potentially provide an insight to the therapeutic implications to human health in the future.
Collapse
|
42
|
Huang CS, Qiu LZ, Yue L, Wang NN, Liu H, Deng HF, Ni YH, Ma ZC, Zhou W, Gao Y. Low-dose radiation-induced demethylation of 3β-HSD participated in the regulation of testosterone content. J Appl Toxicol 2021; 42:529-539. [PMID: 34550611 DOI: 10.1002/jat.4237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 11/10/2022]
Abstract
The effects of low-dose radiation (LDR, ≤0.1 Gy) on living organisms have been the hot areas of radiation biology but do not reach a definitive conclusion yet. So far, few studies have adequately accounted for the male reproductive system responses to LDR, particularly the regulation of testosterone content. Hence, this study was designed to evaluate the effects of LDR on Leydig cells and testicular tissue, especially the ability to synthesize testosterone. We found that less than 0.2-Gy 60 Co gamma rays did not cause significant changes in the hemogram index and the body weight; also, pathological examination did not find obvious structural alterations in testis, epididymis, and other radiation-sensitive organs. Consistently, the results from in vitro showed that only more than 0.5-Gy gamma rays could induce remarkable DNA damage, cycle arrest, and apoptosis. Notably, LDR disturbed the contents of testosterone in mice serums and culture supernatants of TM3 cells and dose dependently increased the expression of 3β-HSD. After cotreatment with trilostane (Tril), the inhibitor of 3β-HSD, increased testosterone could be partially reversed. Besides, DNA damage repair-related enzymes, including DNMT1, DNMT3B, and Sirt1, were increased in irradiated TM3 cells, accompanying by evident demethylation in the gene body of 3β-HSD. In conclusion, our results strongly suggest that LDR could induce obvious perturbation in the synthesis of testosterone without causing organic damage, during which DNA demethylation modification of 3β-HSD might play a crucial role and would be a potential target to prevent LDR-induced male reproductive damage.
Collapse
Affiliation(s)
- Cong-Shu Huang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Li-Zhen Qiu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Lanxin Yue
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ning-Ning Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hong Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hui-Fang Deng
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Hao Ni
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zeng-Chun Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Wei Zhou
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yue Gao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing, China.,School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
43
|
Dahl H, Eide DM, Tengs T, Duale N, Kamstra JH, Oughton DH, Olsen AK. Perturbed transcriptional profiles after chronic low dose rate radiation in mice. PLoS One 2021; 16:e0256667. [PMID: 34428250 PMCID: PMC8384182 DOI: 10.1371/journal.pone.0256667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/11/2021] [Indexed: 12/13/2022] Open
Abstract
Adverse health outcomes of ionizing radiation given chronically at low dose rates are highly debated, a controversy also relevant for other stressors. Increased knowledge is needed for a more comprehensive understanding of the damaging potential of ionizing radiation from all dose rates and doses. There is a lack of relevant low dose rate data that is partly ascribed to the rarity of exposure facilities allowing chronic low dose rate exposures. Using the FIGARO facility, we assessed early (one day post-radiation) and late (recovery time of 100-200 days) hepatic genome-wide transcriptional profiles in male mice of two strains (CBA/CaOlaHsd and C57BL/6NHsd) exposed chronically to a low dose rate (2.5 mGy/h; 1200h, LDR), a mid-dose rate (10 mGy/h; 300h, MDR) and acutely to a high dose rate (100 mGy/h; 30h, HDR) of gamma irradiation, given to an equivalent total dose of 3 Gy. Dose-rate and strain-specific transcriptional responses were identified. Differently modulated transcriptional responses across all dose rate exposure groups were evident by the representation of functional biological pathways. Evidence of changed epigenetic regulation (global DNA methylation) was not detected. A period of recovery markedly reduced the number of differentially expressed genes. Using enrichment analysis to identify the functional significance of the modulated genes, perturbed signaling pathways associated with both cancer and non-cancer effects were observed, such as lipid metabolism and inflammation. These pathways were seen after chronic low dose rate and were not restricted to the acute high dose rate exposure. The transcriptional response induced by chronic low dose rate ionizing radiation suggests contribution to conditions such as cardiovascular diseases. We contribute with novel genome wide transcriptional data highlighting dose-rate-specific radiation responses and emphasize the importance of considering both dose rate, duration of exposure, and variability in susceptibility when assessing risks from ionizing radiation.
Collapse
Affiliation(s)
- Hildegunn Dahl
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Dag M. Eide
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Torstein Tengs
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Nur Duale
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Jorke H. Kamstra
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
- Faculty of Veterinary Medicine, Department of Population Health Sciences, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Deborah H. Oughton
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Ann-Karin Olsen
- Department of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
- Centre for Environmental Radiation (CERAD), Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
44
|
He CQ, Mao L, Yao J, Zhao WC, Huang B, Hu N, Long DX. The Threshold Effects of Low-Dose-Rate Radiation on miRNA-Mediated Neurodevelopment of Zebrafish. Radiat Res 2021; 196:633-646. [PMID: 34399425 DOI: 10.1667/rade-20-00265.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 07/29/2021] [Indexed: 11/03/2022]
Abstract
The biological effects and regulatory mechanisms of low-dose and low-dose-rate radiation are still rather controversial. Therefore, in this study we investigated the effects of low-dose-rate radiation on zebrafish neurodevelopment and the role of miRNAs in radiation-induced neurodevelopment. Zebrafish embryos received prolonged gamma-ray irradiation (0 mGy/h, 0.1 mGy/h, 0.2 mGy/h, 0.4 mGy/h) during development. Neurodevelopmental indicators included mortality, malformation rate, swimming speed, as well as the morphology changes of the lateral line system and brain tissue. Additionally, spatiotemporal expression of development-related miRNAs (dre-miR-196a-5p, dre-miR-210-3p, dre-miR-338) and miRNA processing enzymes genes (Dicer and Drosha) were assessed by qRT-PCR and whole mount in situ hybridization (WISH). The results revealed a decline in mortality, malformation and swimming speed, with normal histological and morphological appearance, in zebrafish that received 0.1 mGy/h; however, increased mortality, malformation and swimming speed were observed, with pathological changes, in zebrafish that received 0.2 mGy/h and 0.4 mGy/h. The expression of miRNA processing enzyme genes was altered after irradiation, and miRNAs expression was downregulated in the 0.1 mGy/h group, and upregulated in the 0.2 mGy/h and 0.4 mGy/h groups. Furthermore, ectopic expression of dre-miR-210-3p, Dicer and Drosha was also observed in the 0.4 mGy/h group. In conclusion, the effect of low-dose and low-dose-rate radiation on neurodevelopment follows the threshold model, under the regulation of miRNAs, excitatory effects occurred at a dose rate of 0.1 mGy/h and toxic effects occurred at a dose rate of 0.2 mGy/h and 0.4 mGy/h.
Collapse
Affiliation(s)
- Chu-Qi He
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Liang Mao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Jin Yao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Wei-Chao Zhao
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Bo Huang
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| | - Nan Hu
- Key Discipline Laboratory for National Defense for Biotechnology in Uranium Mining and Hydrometallurgy, University of South China, Hengyang, Hunan 421001, China
| | - Ding-Xin Long
- School of Public Health, University of South China, Hengyang 421001, PR China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, Hengyang, Hunan 421001, China
| |
Collapse
|
45
|
Mansour SM, Aly S, Hassan SHM, Zaki HF. Protective effect of sitagliptin and whole-body γ-irradiation in diabetes-induced cardiac injury. Can J Physiol Pharmacol 2021; 99:676-684. [PMID: 33108742 DOI: 10.1139/cjpp-2020-0454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus is associated with an increased risk of cardiac complications; this study aimed to investigate effect of sitagliptin (SITA) alone or combined with γ-irradiation on diabetes-associated cardiac injury. Rats were treated with SITA (100 mg/kg per day; p.o.) for 2 weeks followed by a single dose of whole-body γ-irradiation (3 Gy). Solitary administration of SITA or combined treatment with γ-irradiation succeeded to ameliorate the increase in serum levels of glucose, total cholesterol, triglycerides, creatine kinase-MB, and malondialdehyde, coupled by increased insulin and reduced glutathione levels. Their cardioprotective potential was confirmed through attenuating the apoptotic signaling by mitigating Bcl-2-associated X protein, caspase-3, and apoptosis-inducing factor expression, while augmenting the anti-apoptotic factors, B cell lymphoma-2 (Bcl-2), and heat shock protein 70 (HSP-70) in left ventricular tissue homogenates. These findings were supported histopathologically. In conclusion, treatment with SITA alone or combined with γ-irradiation may prove beneficial in diabetes-accompanied cardiac insult. This could be due to the crosstalk between the antioxidant, anti-apoptotic, and restoration of body's defense capacities.
Collapse
Affiliation(s)
- Suzan M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
- Department of Pharmacology, Toxicology and Biochemistry, Faculty of Pharmaceutical Sciences and Pharmaceutical Industries, Future University in Egypt, Cairo, Egypt
| | - Sara Aly
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT)-Atomic Energy Authority, Cairo, Egypt
| | - Seham H M Hassan
- Drug Radiation Research Department, National Centre for Radiation Research and Technology (NCRRT)-Atomic Energy Authority, Cairo, Egypt
| | - Hala F Zaki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
46
|
El-Missiry MA, Shabana S, Ghazala SJ, Othman AI, Amer ME. Melatonin exerts a neuroprotective effect against γ-radiation-induced brain injury in the rat through the modulation of neurotransmitters, inflammatory cytokines, oxidative stress, and apoptosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:31108-31121. [PMID: 33598836 DOI: 10.1007/s11356-021-12951-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/09/2021] [Indexed: 05/11/2023]
Abstract
The current study aimed to investigate the ameliorative effect of melatonin (MLT) against brain injury in rats undergoing whole-body exposure to γ-radiation. Male Wistar rats were whole-body exposed to 4-Gy γ-radiation from a cesium-137 source. MLT (10 mg/kg) was orally administrated 30 minutes before irradiation and continued once daily for 1 and 7 days after exposure. In the irradiated rats, the plasma levels of glutamate were increased, while the gamma-aminobutyric acid (GABA) levels were decreased, and MLT improved the disturbed glutamate and GABA levels. These effects paralleled an increase in pro-inflammatory cytokines (IL-1b, IL-6, and TNF-a) and C-reactive protein as well as a decrease in IL-10 in the plasma of the irradiated rats. MLT treatment markedly reduced these effects, indicating its anti-inflammatory impact. Immunohistochemical studies demonstrated a remarkable upregulation of caspase-3 and P53 expression, indicating the increased apoptosis in the brain of irradiated rats. MLT significantly downregulated the expression of these parameters compared with that in the irradiated rats, indicating its anti-apoptotic effect. Oxidative stress is developed in the brain as evidenced by increased levels of malondialdehyde; decreased activities of superoxide dismutase, catalase, and glutathione peroxidase; and decreased content of glutathione in the brain. MLT remarkably ameliorated the development of oxidative stress in the brain of the irradiated rats indicating its antioxidant impact. The histopathological results were consistent with the biochemical and immunohistochemical results and showed that MLT remarkably protected the histological structure of brain tissue compared with that in the irradiated rats. In conclusion, MLT showed potential neuroprotective properties by increasing the release of neurotransmitters, antioxidants, and anti-inflammatory factors and reducing pro-inflammatory cytokines and apoptosis in the brain of irradiated rats. MLT can be beneficial in clinical and occupational settings requiring radiation exposure; however, additional studies are required to elucidate its neuroprotective effect in humans.
Collapse
Affiliation(s)
| | - Sameh Shabana
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sara J Ghazala
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Azza I Othman
- Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Maggie E Amer
- Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
47
|
Liu YD, Tang G, Qian F, Liu L, Huang JR, Tang FR. Astroglial Connexins in Neurological and Neuropsychological Disorders and Radiation Exposure. Curr Med Chem 2021; 28:1970-1986. [PMID: 32520676 DOI: 10.2174/0929867327666200610175037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/03/2020] [Accepted: 05/04/2020] [Indexed: 11/22/2022]
Abstract
Radiotherapy is a common treatment for brain and spinal cord tumors and also a risk factor for neuropathological changes in the brain leading to different neurological and neuropsychological disorders. Astroglial connexins are involved in brain inflammation, development of Alzheimer's Disease (AD), depressive, epilepsy, and amyotrophic lateral sclerosis, and are affected by radiation exposure. Therefore, it is speculated that radiation-induced changes of astroglial connexins may be related to the brain neuropathology and development of neurological and neuropsychological disorders. In this paper, we review the functional expression and regulation of astroglial connexins expressed between astrocytes and different types of brain cells (including oligodendrocytes, microglia, neurons and endothelial cells). The roles of these connexins in the development of AD, depressive, epilepsy, amyotrophic lateral sclerosis and brain inflammation have also been summarized. The radiation-induced astroglial connexins changes and development of different neurological and neuropsychological disorders are then discussed. Based on currently available data, we propose that radiation-induced astroglial connexins changes may be involved in the genesis of different neurological and neuropsychological disorders which depends on the age, brain regions, and radiation doses/dose rates. The abnormal astroglial connexins may be novel therapeutic targets for the prevention of radiation-induced cognitive impairment, neurological and neuropsychological disorders.
Collapse
Affiliation(s)
- Yuan Duo Liu
- Medical School of Yangtze University, Jingzhou 434000, China
| | - Ge Tang
- Woodlands Health Campus, National Healthcare Group Singapore, Singapore
| | - Feng Qian
- Medical School of Yangtze University, Jingzhou 434000, China
| | - Lian Liu
- Medical School of Yangtze University, Jingzhou 434000, China
| | | | - Feng Ru Tang
- Radiation Physiology Laboratory, Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| |
Collapse
|
48
|
Ren BX, Huen I, Wu ZJ, Wang H, Duan MY, Guenther I, Bhanu Prakash KN, Tang FR. Early postnatal irradiation-induced age-dependent changes in adult mouse brain: MRI based characterization. BMC Neurosci 2021; 22:28. [PMID: 33882822 PMCID: PMC8061041 DOI: 10.1186/s12868-021-00635-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/13/2021] [Indexed: 02/08/2023] Open
Abstract
Background Brain radiation exposure, in particular, radiotherapy, can induce cognitive impairment in patients, with significant effects persisting for the rest of their life. However, the main mechanisms leading to this adverse event remain largely unknown. A study of radiation-induced injury to multiple brain regions, focused on the hippocampus, may shed light on neuroanatomic bases of neurocognitive impairments in patients. Hence, we irradiated BALB/c mice (male and female) at postnatal day 3 (P3), day 10 (P10), and day 21 (P21) and investigated the long-term radiation effect on brain MRI changes and hippocampal neurogenesis. Results We found characteristic brain volume reductions in the hippocampus, olfactory bulbs, the cerebellar hemisphere, cerebellar white matter (WM) and cerebellar vermis WM, cingulate, occipital and frontal cortices, cerebellar flocculonodular WM, parietal region, endopiriform claustrum, and entorhinal cortex after irradiation with 5 Gy at P3. Irradiation at P10 induced significant volume reduction in the cerebellum, parietal region, cingulate region, and olfactory bulbs, whereas the reduction of the volume in the entorhinal, parietal, insular, and frontal cortices was demonstrated after irradiation at P21. Immunohistochemical study with cell division marker Ki67 and immature marker doublecortin (DCX) indicated the reduced cell division and genesis of new neurons in the subgranular zone of the dentate gyrus in the hippocampus after irradiation at all three postnatal days, but the reduction of total granule cells in the stratum granulosun was found after irradiation at P3 and P10. Conclusions The early life radiation exposure during different developmental stages induces varied brain pathophysiological changes which may be related to the development of neurological and neuropsychological disorders later in life.
Collapse
Affiliation(s)
- Bo Xu Ren
- Department of Medical Imaging, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
| | - Isaac Huen
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore
| | - Zi Jun Wu
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China
| | - Hong Wang
- Radiation Physiology Laboratory, Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, 1 CREATE Way #04-01, Singapore, 138602, Singapore
| | - Meng Yun Duan
- Department of Medical Imaging, School of Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
| | - Ilonka Guenther
- Comparative Medicine, Centre for Life Sciences (CeLS), National University of Singapore, #05-02, 28 Medical Drive, Singapore, 117456, Singapore
| | - K N Bhanu Prakash
- Singapore Bioimaging Consortium (SBIC), Agency for Science, Technology and Research (A*STAR), Singapore, 138667, Singapore.
| | - Feng Ru Tang
- Radiation Physiology Laboratory, Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, 1 CREATE Way #04-01, Singapore, 138602, Singapore.
| |
Collapse
|
49
|
Restier-Verlet J, El-Nachef L, Ferlazzo ML, Al-Choboq J, Granzotto A, Bouchet A, Foray N. Radiation on Earth or in Space: What Does It Change? Int J Mol Sci 2021; 22:3739. [PMID: 33916740 PMCID: PMC8038356 DOI: 10.3390/ijms22073739] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
After having been an instrument of the Cold War, space exploration has become a major technological, scientific and societal challenge for a number of countries. With new projects to return to the Moon and go to Mars, radiobiologists have been called upon to better assess the risks linked to exposure to radiation emitted from space (IRS), one of the major hazards for astronauts. To this aim, a major task is to identify the specificities of the different sources of IRS that concern astronauts. By considering the probabilities of the impact of IRS against spacecraft shielding, three conclusions can be drawn: (1) The impacts of heavy ions are rare and their contribution to radiation dose may be low during low Earth orbit; (2) secondary particles, including neutrons emitted at low energy from the spacecraft shielding, may be common in deep space and may preferentially target surface tissues such as the eyes and skin; (3) a "bath of radiation" composed of residual rays and fast neutrons inside the spacecraft may present a concern for deep tissues such as bones and the cardiovascular system. Hence, skin melanoma, cataracts, loss of bone mass, and aging of the cardiovascular system are possible, dependent on the dose, dose-rate, and individual factors. This suggests that both radiosusceptibility and radiodegeneration may be concerns related to space exploration. In addition, in the particular case of extreme solar events, radiosensitivity reactions-such as those observed in acute radiation syndrome-may occur and affect blood composition, gastrointestinal and neurologic systems. This review summarizes the specificities of space radiobiology and opens the debate as regards refinements of current radiation protection concepts that will be useful for the better estimation of risks.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicolas Foray
- Inserm, U1296 Unit, «Radiation: Defense, Health and Environment», Centre Léon-Bérard, 28, Rue Laennec, 69008 Lyon, France; (J.R.-V.); (L.E.-N.); (M.L.F.); (J.A.-C.); (A.G.); (A.B.)
| |
Collapse
|
50
|
Segaran RC, Chan LY, Wang H, Sethi G, Tang FR. Neuronal Development-Related miRNAs as Biomarkers for Alzheimer's Disease, Depression, Schizophrenia and Ionizing Radiation Exposure. Curr Med Chem 2021; 28:19-52. [PMID: 31965936 DOI: 10.2174/0929867327666200121122910] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/30/2019] [Accepted: 10/22/2019] [Indexed: 11/22/2022]
Abstract
Radiation exposure may induce Alzheimer's disease (AD), depression or schizophrenia. A number of experimental and clinical studies suggest the involvement of miRNA in the development of these diseases, and also in the neuropathological changes after brain radiation exposure. The current literature review indicated the involvement of 65 miRNAs in neuronal development in the brain. In the brain tissue, blood, or cerebral spinal fluid (CSF), 11, 55, or 28 miRNAs are involved in the development of AD respectively, 89, 50, 19 miRNAs in depression, and 102, 35, 8 miRNAs in schizophrenia. We compared miRNAs regulating neuronal development to those involved in the genesis of AD, depression and schizophrenia and also those driving radiation-induced brain neuropathological changes by reviewing the available data. We found that 3, 11, or 8 neuronal developmentrelated miRNAs from the brain tissue, 13, 16 or 14 miRNAs from the blood of patient with AD, depression and schizophrenia respectively were also involved in radiation-induced brain pathological changes, suggesting a possibly specific involvement of these miRNAs in radiation-induced development of AD, depression and schizophrenia respectively. On the other hand, we noted that radiationinduced changes of two miRNAs, i.e., miR-132, miR-29 in the brain tissue, three miRNAs, i.e., miR- 29c-5p, miR-106b-5p, miR-34a-5p in the blood were also involved in the development of AD, depression and schizophrenia, thereby suggesting that these miRNAs may be involved in the common brain neuropathological changes, such as impairment of neurogenesis and reduced learning memory ability observed in these three diseases and also after radiation exposure.
Collapse
Affiliation(s)
- Renu Chandra Segaran
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Li Yun Chan
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Hong Wang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Feng Ru Tang
- Radiation Physiology Lab, Singapore Nuclear Research and Safety Initiative, National University of Singapore, CREATE Tower, Singapore 138602, Singapore
| |
Collapse
|