1
|
Janová J, Kubásek J, Grams TEE, Zeisler-Diehl V, Schreiber L, Šantrůček J. Effect of light-induced changes in leaf anatomy on intercellular and cellular components of mesophyll resistance for CO 2 in Fagus sylvatica. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:842-854. [PMID: 38743618 DOI: 10.1111/plb.13655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/15/2024] [Indexed: 05/16/2024]
Abstract
Mesophyll resistance for CO2 diffusion (rm) is one of the main limitations for photosynthesis and plant growth. Breeding new varieties with lower rm requires knowledge of its distinct components. We tested new method for estimating the relative drawdowns of CO2 concentration (c) across hypostomatous leaves of Fagus sylvatica. This technique yields values of the ratio of the internal CO2 concentrations at the adaxial and abaxial leaf side, cd/cb, the drawdown in the intercellular air space (IAS), and intracellular drawdown between IAS and chloroplast stroma, cc/cbd. The method is based on carbon isotope composition of leaf dry matter and epicuticular wax isolated from upper and lower leaf sides. We investigated leaves from tree-canopy profile to analyse the effects of light and leaf anatomy on the drawdowns and partitioning of rm into its inter- (rIAS) and intracellular (rliq) components. Validity of the new method was tested by independent measurements of rm using conventional isotopic and gas exchange techniques. 73% of investigated leaves had adaxial epicuticular wax enriched in 13C compared to abaxial wax (by 0.50‰ on average), yielding 0.98 and 0.70 for average of cd/cb and cc/cbd, respectively. The rIAS to rliq proportion were 5.5:94.5% in sun-exposed and 14.8:85.2% in shaded leaves. cc dropped to less than half of the atmospheric value in the sunlit and to about two-thirds of it in shaded leaves. This method shows that rIAS is minor but not negligible part of rm and reflects leaf anatomy traits, i.e. leaf mass per area and thickness.
Collapse
Affiliation(s)
- J Janová
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - J Kubásek
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - T E E Grams
- Ecophysiology of Plants, Technical University of Munich, Freising, Germany
| | - V Zeisler-Diehl
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - L Schreiber
- Institute of Cellular and Molecular Botany, University of Bonn, Bonn, Germany
| | - J Šantrůček
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Ubierna N, Holloway-Phillips MM, Wingate L, Ogée J, Busch FA, Farquhar GD. Using Carbon Stable Isotopes to Study C 3 and C 4 Photosynthesis: Models and Calculations. Methods Mol Biol 2024; 2790:163-211. [PMID: 38649572 DOI: 10.1007/978-1-0716-3790-6_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Stable carbon isotopes are a powerful tool to study photosynthesis. Initial applications consisted of determining isotope ratios of plant biomass using mass spectrometry. Subsequently, theoretical models relating C isotope values to gas exchange characteristics were introduced and tested against instantaneous online measurements of 13C photosynthetic discrimination. Beginning in the twenty-first century, laser absorption spectroscopes with sufficient precision for determining isotope mixing ratios became commercially available. This has allowed collection of large data sets at lower cost and with unprecedented temporal resolution. More data and accompanying knowledge have permitted refinement of 13C discrimination model equations, but often at the expense of increased model complexity and difficult parametrization. This chapter describes instantaneous online measurements of 13C photosynthetic discrimination, provides recommendations for experimental setup, and presents a thorough compilation of equations available to researchers. We update our previous 2018 version of this chapter by including recently improved descriptions of (photo)respiratory processes and associated fractionations. We discuss the capabilities and limitations of the diverse 13C discrimination model equations and provide guidance for selecting the model complexity needed for different applications.
Collapse
Affiliation(s)
- Nerea Ubierna
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Unité Mixte de Recherche (UMR)1391 ISPA, Villenave D'Ornon, France
| | - Meisha-Marika Holloway-Phillips
- Research Unit of Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmendsorf, Switzerland
| | - Lisa Wingate
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Unité Mixte de Recherche (UMR)1391 ISPA, Villenave D'Ornon, France
| | - Jérôme Ogée
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), Unité Mixte de Recherche (UMR)1391 ISPA, Villenave D'Ornon, France
| | - Florian A Busch
- School of Biosciences and The Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| | - Graham D Farquhar
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
3
|
Mizokami Y, Oguchi R, Sugiura D, Yamori W, Noguchi K, Terashima I. Cost-benefit analysis of mesophyll conductance: diversities of anatomical, biochemical and environmental determinants. ANNALS OF BOTANY 2022; 130:265-283. [PMID: 35947983 PMCID: PMC9487971 DOI: 10.1093/aob/mcac100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/08/2022] [Indexed: 06/09/2023]
Abstract
BACKGROUND Plants invest photosynthates in construction and maintenance of their structures and functions. Such investments are considered costs. These costs are recovered by the CO2 assimilation rate (A) in the leaves, and thus A is regarded as the immediate, short-term benefit. In photosynthesizing leaves, CO2 diffusion from the air to the carboxylation site is hindered by several structural and biochemical barriers. CO2 diffusion from the intercellular air space to the chloroplast stroma is obstructed by the mesophyll resistance. The inverses is the mesophyll conductance (gm). Whether various plants realize an optimal gm, and how much investment is needed for a relevant gm, remain unsolved. SCOPE This review examines relationships among leaf construction costs (CC), leaf maintenance costs (MC) and gm in various plants under diverse growth conditions. Through a literature survey, we demonstrate a strong linear relationship between leaf mass per area (LMA) and leaf CC. The overall correlation of CC vs. gm across plant phylogenetic groups is weak, but significant trends are evident within specific groups and/or environments. Investment in CC is necessary for an increase in LMA and mesophyll cell surface area (Smes). This allows the leaf to accommodate more chloroplasts, thus increasing A. However, increases in LMA and/or Smes often accompany other changes, such as cell wall thickening, which diminishes gm. Such factors that make the correlations of CC and gm elusive are identified. CONCLUSIONS For evaluation of the contribution of gm to recover CC, leaf life span is the key factor. The estimation of MC in relation to gm, especially in terms of costs required to regulate aquaporins, could be essential for efficient control of gm over the short term. Over the long term, costs are mainly reflected in CC, while benefits also include ultimate fitness attributes in terms of integrated carbon gain over the life of a leaf, plant survival and reproductive output.
Collapse
Affiliation(s)
- Yusuke Mizokami
- Department of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Riichi Oguchi
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo, Chikusa-ku, Nagoya 464-8601, Japan
| | - Wataru Yamori
- Graduate School of Agricultural and Life Science, Institute for Sustainable Agri-ecosystem, The University of Tokyo, 1-1-1, Midoricho, Nishitokyo, Tokyo 188-0002, Japan
| | - Ko Noguchi
- Department of Life Science, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Ichiro Terashima
- Department of Biological Sciences, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Han J, Gu L, Warren JM, Guha A, Mclennan DA, Zhang W, Zhang Y. The roles of photochemical and non-photochemical quenching in regulating photosynthesis depend on the phases of fluctuating light conditions. TREE PHYSIOLOGY 2022; 42:848-861. [PMID: 34617116 DOI: 10.1093/treephys/tpab133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The induction and relaxation of photochemistry and non-photochemical quenching (NPQ) are not instantaneous and require time to respond to fluctuating environments. There is a lack of integrated understanding on how photochemistry and NPQ influence photosynthesis in fluctuating environments. We measured the induction and relaxation of chlorophyll a fluorescence and gas exchange in poplar and cotton at varying temperatures under saturating and fluctuating lights. When the light shifted from dark to high, the fraction of open reaction centers in photosystem II (qL) gradually increased while NPQ increased suddenly and then remained stable. Temperature significantly changed the response of qL but not that of NPQ during the dark to high light transition. Increased qL led to higher photosynthesis but their precise relationship was affected by NPQ and temperature. qL was significantly related to biochemical capacity. Thus, qL appears to be a strong indicator of the activation of carboxylase, leading to the similar dynamics between qL and photosynthesis. When the light shifted from high to low intensity, NPQ is still engaged at a high level, causing a stronger decline in photosynthesis. Our finding suggests that the dynamic effects of photochemistry and NPQ on photosynthesis depend on the phases of environmental fluctuations and interactive effects of light and temperature. Across the full spectra of light fluctuation, the slow induction of qL is a more important limiting factor than the slow relaxation of NPQ for photosynthesis in typical ranges of temperature for photosynthesis. The findings provided a new perspective to improve photosynthetic productivity with molecular biology under natural fluctuating environments.
Collapse
Affiliation(s)
- Jimei Han
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, North Four Road, Shihezi, Xinjiang, 832000, P.R. China
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
- School of Integrative Plant Science, Soil and Crop Sciences Section, Cornell University, 360 Tower Road, Ithaca, NY 14850, USA
| | - Lianhong Gu
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Jeffrey M Warren
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Anirban Guha
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - David A Mclennan
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN 37830, USA
| | - Wangfeng Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, North Four Road, Shihezi, Xinjiang, 832000, P.R. China
| | - Yali Zhang
- Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Shihezi University, North Four Road, Shihezi, Xinjiang, 832000, P.R. China
| |
Collapse
|
5
|
Mantuano D, Ornellas T, Aidar MPM, Mantovani A. Photosynthetic activity increases with leaf size and intercellular spaces in an allomorphic lianescent aroid Rhodospatha oblongata. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:557-566. [PMID: 33556303 DOI: 10.1071/fp20215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
This study aimed to investigate leaf anatomy, as well as photosynthetic gas exchange, that underlie the improvement in light foraging capacity, which appears to occur in aroid vines seeking light exposure. Three levels of plant height (soil level, 3 m and 6 m) were categorised for the aroid vine Rhodospatha oblongata Poepp. to represent the transition from ground to canopy. Compared with shaded leaves, leaves exposed to high light conditions were thicker, presenting a larger, spongy parenchyma characterised by a larger transversal area of intercellular spaces. In addition to the increase in maximum CO2 assimilation (Amax) and thicker and larger leaf lamina, we found an increased light saturation point, light compensation point and water use efficiency at 500 µmol PPFD. Nitrogen content per leaf dry mass remained constant across habitats, but Amax/N was 1.5-times greater in the canopy position than in the leaves at soil level, suggesting that CO2 gain did not rely on an N-related biochemical apparatus. The lower δ13C discrimination observed at high canopy leaves corroborated the higher photosynthesis. Altogether, these results suggest that the large and exposed aroid leaves maintained carbon gain coupled with light gain through investing in a more efficient proportion of intercellular spaces and photosynthetic cell surface, which likely allowed a less pronounced CO2 gradient in substomatal-intercellular space.
Collapse
Affiliation(s)
- Dulce Mantuano
- Laboratório de Ecofisiologia Vegetal, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho 373, Bloco A, sala A1-118, CCS, Cidade Universitária, 21941-590, Rio de Janeiro, RJ, Brazil; and Corresponding author.
| | - Thales Ornellas
- Escola Nacional de Botânica Tropical; Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, 22460-030, Rio de Janeiro, Brazil
| | - Marcos P M Aidar
- Centro de Pesquisas em Ecologia e Fisiologia, Núcleo de Pesquisa em Fisiologia e Bioquímica, Instituto de Botânica de São Paulo, São Paulo, SP, Brazil
| | - André Mantovani
- Laboratório de Botânica Estrutural, Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, 22460-030, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Marçal DMS, Avila RT, Quiroga-Rojas LF, de Souza RPB, Gomes Junior CC, Ponte LR, Barbosa ML, Oliveira LA, Martins SCV, Ramalho JDC, DaMatta FM. Elevated [CO 2] benefits coffee growth and photosynthetic performance regardless of light availability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 158:524-535. [PMID: 33293205 DOI: 10.1016/j.plaphy.2020.11.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Despite being evolved in shaded environments, most coffee (Coffea arabica L.) is cultivated worldwide under sparse shade or at full sunlight. Coffee is ranked as greatly responsive to climate change (CC), and shading has been considered an important management strategy for mitigating the harmful CC outcomes on the crop. However, there is no information on the effects of enhanced [CO2] (eCa) on coffee performance in response to light availability. Here, we examined how carbon assimilation and use are affected by eCa in combination with contrasting light levels. For that, greenhouse-grown plants were submitted to varying light levels (16 or 7.5 mol photons m-2 day-1) and [CO2] (ca. 380 or 740 μmol mol-1 air) over six months. We demonstrated that both high light and eCa improved growth and photosynthetic performance, independently. Despite marginal alterations in biomass partitioning, some allometric changes, such as higher root biomass-to-total leaf area and lower leaf area ratio under the combination of eCa and high light were found. Stimulation of photosynthetic rates by eCa occurred with no direct effect on stomatal and mesophyll conductances, and no signs of photosynthetic down-regulation were found irrespective of treatments. Particularly at high light, eCa led to decreases in both photorespiration rates and oxidative pressure. Overall, our novel findings suggest that eCa could tandemly act with shading to mitigate the harmful CC effects on coffee sustainability.
Collapse
Affiliation(s)
- Dinorah M S Marçal
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Rodrigo T Avila
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | | | - Raylla P B de Souza
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Carlos C Gomes Junior
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Lucas R Ponte
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Marcela L Barbosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Leonardo A Oliveira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - Samuel C V Martins
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| | - José D C Ramalho
- PlantStress & Biodiversity Lab, Centro de Estudos Florestais (CEF), Dept. Recursos Naturais, Ambiente e Território (DRAT), Instituto Superior de Agronomia (ISA), Universidade de Lisboa (ULisboa), Quinta do Marquês, Av. da República, 2784-505, Oeiras, Portugal; Unidade de Geobiociências, Geoengenharias e Geotecnologias (GeoBioTec), Faculdade de Ciências e Tecnologia (FCT), Universidade NOVA de Lisboa (UNL), Monte de Caparica, 2829-516, Caparica, Portugal.
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, MG, Brazil.
| |
Collapse
|
7
|
Tang X, Liu G, Jiang J, Lei C, Zhang Y, Wang L, Liu X. Effects of growth irradiance on photosynthesis and photorespiration of Phoebe bournei leaves. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 47:1053-1061. [PMID: 32600525 DOI: 10.1071/fp20062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/30/2020] [Indexed: 06/11/2023]
Abstract
Light intensity is a major environmental factor affecting the growth and survival of trees in a forest. The effect of light reduction on photosynthesis and photorespiration of an evergreen broad-leaved tree, Phoebe bournei (Hemsley) Yang was examined with three levels of full light, 50.5% light, and 21.8% light. The results showed that shading led to significant increase in plant height and crown diameter. Light-saturated leaf photosynthetic rate (Amax), maximal carboxylation activity (Vcmax), maximum electron transfer rate (Jmax), stomatal conductance (gs), mesophyll conductance (gm) and chloroplast CO2 concentration (Cc) significantly increased in response to shade. Photorespiratory CO2 release rate (PR) was higher in plants grown under shade conditions than under full light. The relative limitations of gm (lm) was higher than the relative limitations of gs (ls) and the relative limitations of biochemical factors (lb) in leaves of P. bournei grown under full light, whereas lm was lower than ls and lb under shade. Our results suggest that increase of photosynthesis in P. bournei leaves grown under shade is associated with enhanced CO2 diffusion and biochemistry. And we propose that enhancement of the photorespiratory is essential for shade leaves to improve photosynthesis.
Collapse
Affiliation(s)
- Xinglin Tang
- Research Institute of Forest Ecology and Environment, Jiangxi Academy of Forestry, 1629-Fenglin West Street, Qingshan Lake District, Nanchang, 330032, China; and College of Forestry, Nanjing Forestry University, 159-Longpan Road, Xuanwu District, Nanjing, 210037, China; and Corresponding author.
| | - Guangzheng Liu
- Research Institute of Forest Ecology and Environment, Jiangxi Academy of Forestry, 1629-Fenglin West Street, Qingshan Lake District, Nanchang, 330032, China
| | - Jiang Jiang
- College of Forestry, Nanjing Forestry University, 159-Longpan Road, Xuanwu District, Nanjing, 210037, China
| | - Changju Lei
- Research Institute of Forest Ecology and Environment, Jiangxi Academy of Forestry, 1629-Fenglin West Street, Qingshan Lake District, Nanchang, 330032, China
| | - Yunxing Zhang
- School of Architectural and Artistic Design, Henan Polytechnic University, 2001-Century Road, Jiaozuo, 454003, China
| | - Liyan Wang
- Research Institute of Forest Ecology and Environment, Jiangxi Academy of Forestry, 1629-Fenglin West Street, Qingshan Lake District, Nanchang, 330032, China
| | - Xinliang Liu
- Research Institute of Forest Ecology and Environment, Jiangxi Academy of Forestry, 1629-Fenglin West Street, Qingshan Lake District, Nanchang, 330032, China
| |
Collapse
|
8
|
Crous KY, Campany C, Lopez R, Cano FJ, Ellsworth DS. Canopy position affects photosynthesis and anatomy in mature Eucalyptus trees in elevated CO2. TREE PHYSIOLOGY 2020; 41:tpaa117. [PMID: 32918811 DOI: 10.1093/treephys/tpaa117] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/26/2020] [Accepted: 09/10/2020] [Indexed: 06/11/2023]
Abstract
Leaves are exposed to different light conditions according to their canopy position, resulting in structural and anatomical differences with consequences for carbon uptake. While these structure-function relationships have been thoroughly explored in dense forest canopies, such gradients may be diminished in open canopies, and they are often ignored in ecosystem models. We tested within-canopy differences in photosynthetic properties and structural traits in leaves in a mature Eucalyptus tereticornis canopy exposed to long-term elevated CO2 for up to three years. We explored these traits in relation to anatomical variation and diffusive processes for CO2 (i.e., stomatal conductance, gs and mesophyll conductance, gm) in both upper and lower portions of the canopy receiving ambient and elevated CO2. While shade resulted in 13% lower leaf mass per area ratio (MA) in lower versus upper canopy leaves, there was no relationship between leaf Nmass and canopy gap fraction. Both maximum carboxylation capacity (Vcmax) and maximum electron transport (Jmax) were ~ 18% lower in shaded leaves and were also reduced by ~ 22% with leaf aging. In mature leaves, we found no canopy differences for gm or gs, despite anatomical differences in MA, leaf thickness and mean mesophyll thickness between canopy positions. There was a positive relationship between net photosynthesis and gm or gs in mature leaves. Mesophyll conductance was negatively correlated with mean parenchyma length, suggesting that long palisade cells may contribute to a longer CO2 diffusional pathway and more resistance to CO2 transfer to chloroplasts. Few other relationships between gm and anatomical variables were found in mature leaves, which may be due to the open crown of Eucalyptus. Consideration of shade effects and leaf-age dependent responses to photosynthetic capacity and mesophyll conductance are critical to improve canopy photosynthesis models and will improve understanding of long-term responses to elevated CO2 in tree canopies.
Collapse
Affiliation(s)
- K Y Crous
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - C Campany
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
- Department of Biology, Shepherd University, P.O. Box 5000, Shepherdstown, West Virginia, 25443, USA
| | - R Lopez
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
- Departamento de Sistemas y Recursos Naturales, Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - F J Cano
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - D S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| |
Collapse
|
9
|
Veromann-Jürgenson LL, Brodribb TJ, Niinemets Ü, Tosens T. Variability in the chloroplast area lining the intercellular airspace and cell walls drives mesophyll conductance in gymnosperms. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4958-4971. [PMID: 32392579 DOI: 10.1093/jxb/eraa231] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The photosynthetic efficiency of plants in different environments is controlled by stomata, hydraulics, biochemistry, and mesophyll conductance (gm). Recently, gm was demonstrated to be the key limitation of photosynthesis in gymnosperms. Values of gm across gymnosperms varied over 20-fold, but this variation was poorly explained by robust structure-bound integrated traits such as leaf dry mass per area. Understanding how the component structural traits control gm is central for identifying the determinants of variability in gm across plant functional and phylogenetic groups. Here, we investigated the structural traits responsible for gm in 65 diverse gymnosperms. Although the integrated morphological traits, shape, and anatomical characteristics varied widely across species, the distinguishing features of all gymnosperms were thick mesophyll cell walls and low chloroplast area exposed to intercellular airspace (Sc/S) compared with angiosperms. Sc/S and cell wall thickness were the fundamental traits driving variations in gm across gymnosperm species. Chloroplast thickness was the strongest limitation of gm among liquid-phase components. The variation in leaf dry mass per area was not correlated with the key ultrastructural traits determining gm. Thus, given the absence of correlating integrated easy-to-measure traits, detailed knowledge of underlying component traits controlling gm across plant taxa is necessary to understand the photosynthetic limitations across ecosystems.
Collapse
Affiliation(s)
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
10
|
Flexas J, Carriquí M. Photosynthesis and photosynthetic efficiencies along the terrestrial plant's phylogeny: lessons for improving crop photosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:964-978. [PMID: 31833133 DOI: 10.1111/tpj.14651] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/12/2019] [Accepted: 12/03/2019] [Indexed: 05/08/2023]
Abstract
Photosynthesis is the basis of all life on Earth. Surprisingly, until very recently, data on photosynthesis, photosynthetic efficiencies, and photosynthesis limitations in terrestrial land plants other than spermatophytes were very scarce. Here we provide an updated data compilation showing that maximum photosynthesis rates (expressed either on an area or dry mass basis) progressively scale along the land plant's phylogeny, from lowest values in bryophytes to largest in angiosperms. Unexpectedly, both photosynthetic water (WUE) and nitrogen (PNUE) use efficiencies also scale positively through the phylogeny, for which it has been commonly reported that these two efficiencies tend to trade-off between them when comparing different genotypes or a single species subject to different environmental conditions. After providing experimental evidence that these observed trends are mostly due to an increased mesophyll conductance to CO2 - associated with specific anatomical changes - along the phylogeny, we discuss how these findings on a large phylogenetic scale can provide useful information to address potential photosynthetic improvements in crops in the near future.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de Economía del Agua (UIB-INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
| | - Marc Carriquí
- Research Group on Plant Biology Under Mediterranean Conditions, Universitat de les Illes Balears - Instituto de Investigaciones Agroambientales y de Economía del Agua (UIB-INAGEA), Carretera de Valldemossa Km 7.5, 07122, Palma, Spain
- School of Biological Sciences, University of Tasmania, Private Bag 51, 7001, Hobart, TAS, Australia
| |
Collapse
|
11
|
Catoni R, Bracco F, Granata MU. Analysis of mesophyll conductance in five understory herbaceous species. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:261-270. [PMID: 32158133 PMCID: PMC7036402 DOI: 10.1007/s12298-019-00746-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 08/02/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
Mesophyll conductance (g m) has received over time much less attention than stomatal conductance (g s), although it affects leaf photosynthesis to about the same extent as stomatal conductance does. The objective of this study was to analyze the g m trend in five understory herbaceous species growing in a close-canopy forest in the north-west of Italy. In particular, three of analyzed species were monocots: Carex brizoides Lam., Carex pilosa Scop., and Oplismenus undulatifolius P. Beauv and the others dicots species: Circaea lutetiana L., and Pulmonaria officinalis Ced. The results showed, on one hand, the absence of correlation between g m and the considered environmental variables in the forest understory (i.e. air temperature, photosynthetic photon flux density and carbon dioxide concentration). Moreover, we carried out a principal component analysis considering all the analyzed morphological and physiological variables for the five species. The following correlation between the first component, related to the leaf mass per unit of leaf area and the leaf tissue density, and g m seem to suggest a key role of the leaf structural features in determining g m variations across the five species.
Collapse
Affiliation(s)
- Rosangela Catoni
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| | - Francesco Bracco
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| | - Mirko U. Granata
- Department of Earth and Environmental Sciences, University of Pavia, Via S. Epifanio 14, 27100 Pavia, Italy
| |
Collapse
|
12
|
Han J, Lei Z, Zhang Y, Yi X, Zhang W, Zhang Y. Drought-introduced variability of mesophyll conductance in Gossypium and its relationship with leaf anatomy. PHYSIOLOGIA PLANTARUM 2019; 166:873-887. [PMID: 30264467 DOI: 10.1111/ppl.12845] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2018] [Accepted: 09/24/2018] [Indexed: 05/26/2023]
Abstract
Mesophyll conductance (gm ) is one of the major determinants of photosynthetic rate, for which it has an impact on crop yield. However, the regulatory mechanisms behind the decline in gm of cotton (Gossypium. spp) by drought are unclear. An upland cotton (Gossypium hirsutum) genotype and a pima cotton (Gossypium barbadense) genotype were used to determine the gas exchange parameters, leaf anatomical structure as well as aquaporin and carbonic anhydrase gene expression under well-watered and drought treatment conditions. In this study, the decrease of net photosynthetic rate (AN ) under drought conditions was related to a decline in gm and in stomatal conductance (gs ). gm and gs coordinate with each other to ensure optimum state of CO2 diffusion and achieve the balance of water and CO2 demand in the process of photosynthesis. Meanwhile, mesophyll limitations to photosynthesis are equally important to the stomatal limitations. Considering gm , its decline in cotton leaves under drought was mostly regulated by the chloroplast surface area exposed to leaf intercellular air spaces per leaf area (Sc /S) and might also be regulated by the expression of leaf CARBONIC ANHYDRASE (CA1). Meanwhile, cotton leaves can minimize the decrease in gm under drought by maintaining cell wall thickness (Tcw ). Our results indicated that modification of chloroplasts might be a target trait in future attempts to improve cotton drought tolerance.
Collapse
Affiliation(s)
- Jimei Han
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Zhangying Lei
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yujie Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Xiaoping Yi
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Wangfeng Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| | - Yali Zhang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Group, Shihezi University, Shihezi 832003, China
| |
Collapse
|
13
|
Knauer J, Zaehle S, De Kauwe MG, Bahar NHA, Evans JR, Medlyn BE, Reichstein M, Werner C. Effects of mesophyll conductance on vegetation responses to elevated CO 2 concentrations in a land surface model. GLOBAL CHANGE BIOLOGY 2019; 25:1820-1838. [PMID: 30809890 PMCID: PMC6487956 DOI: 10.1111/gcb.14604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/26/2019] [Indexed: 05/13/2023]
Abstract
Mesophyll conductance (gm ) is known to affect plant photosynthesis. However, gm is rarely explicitly considered in land surface models (LSMs), with the consequence that its role in ecosystem and large-scale carbon and water fluxes is poorly understood. In particular, the different magnitudes of gm across plant functional types (PFTs) are expected to cause spatially divergent vegetation responses to elevated CO2 concentrations. Here, an extensive literature compilation of gm across major vegetation types is used to parameterize an empirical model of gm in the LSM JSBACH and to adjust photosynthetic parameters based on simulated An - Ci curves. We demonstrate that an explicit representation of gm changes the response of photosynthesis to environmental factors, which cannot be entirely compensated by adjusting photosynthetic parameters. These altered responses lead to changes in the photosynthetic sensitivity to atmospheric CO2 concentrations which depend both on the magnitude of gm and the climatic conditions, particularly temperature. We then conducted simulations under ambient and elevated (ambient + 200 μmol/mol) CO2 concentrations for contrasting ecosystems and for historical and anticipated future climate conditions (representative concentration pathways; RCPs) globally. The gm -explicit simulations using the RCP8.5 scenario resulted in significantly higher increases in gross primary productivity (GPP) in high latitudes (+10% to + 25%), intermediate increases in temperate regions (+5% to + 15%), and slightly lower to moderately higher responses in tropical regions (-2% to +5%), which summed up to moderate GPP increases globally. Similar patterns were found for transpiration, but with a lower magnitude. Our results suggest that the effect of an explicit representation of gm is most important for simulated carbon and water fluxes in the boreal zone, where a cold climate coincides with evergreen vegetation.
Collapse
Affiliation(s)
- Jürgen Knauer
- Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
- International Max Planck Research School for Global Biogeochemical Cycles (IMPRS gBGC)JenaGermany
| | - Sönke Zaehle
- Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
- Michael‐Stifel Center Jena for Data‐Driven and Simulation ScienceJenaGermany
| | - Martin G. De Kauwe
- ARC Centre of Excellence for Climate Extremes and the Climate Change Research CentreUniversity of New South WalesSydneyNSWAustralia
| | - Nur H. A. Bahar
- ARC Centre of Excellence in Plant Energy Biology, Division of Plant SciencesResearch School of Biology, Australian National UniversityCanberraACTAustralia
| | - John R. Evans
- ARC Centre of Excellence for Translational Photosynthesis, Division of Plant SciencesResearch School of Biology, Australian National UniversityCanberraACTAustralia
| | - Belinda E. Medlyn
- Hawkesbury Institute for the EnvironmentWestern Sydney UniversityRichmondNSWAustralia
| | - Markus Reichstein
- Department of Biogeochemical IntegrationMax Planck Institute for BiogeochemistryJenaGermany
- Michael‐Stifel Center Jena for Data‐Driven and Simulation ScienceJenaGermany
| | - Christiane Werner
- Department of Ecosystem PhysiologyUniversity of FreiburgFreiburgGermany
| |
Collapse
|
14
|
Tang J, Sun B, Cheng R, Shi Z, Luo D, Liu S, Centritto M. Seedling leaves allocate lower fractions of nitrogen to photosynthetic apparatus in nitrogen fixing trees than in non-nitrogen fixing trees in subtropical China. PLoS One 2019; 14:e0208971. [PMID: 30830910 PMCID: PMC6398865 DOI: 10.1371/journal.pone.0208971] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/20/2019] [Indexed: 11/26/2022] Open
Abstract
Photosynthetic-nitrogen use efficiency (PNUE) is a useful trait to characterize leaf physiology and survival strategy. PNUE can also be considered as part of ‘leaf economics spectrum’ interrelated with leaf nutrient concentrations, photosynthesis and respiration, leaf life-span and dry-mass investment. However, few studies have paid attention to PNUE of N-fixing tree seedlings in subtropical China. In this study, we investigated the differences in PNUE, leaf nitrogen (N) allocation, and mesophyll conductance (gm) in Dalbergia odorifera and Erythrophleum fordii (N-fixing trees), and Betula alnoides and Castanopsis hystrix (non-N-fixing trees). PNUE of D. odorifera and E. fordii were significantly lower than those of B. alnoides and C. hystrix mainly because of their allocation of a lower fraction of leaf N to Rubisco (PR) and bioenergetics (PB). Mesophyll conductance had a significant positive correlation with PNUE in D. odorifera, E. fordii, and B. alnoides, but the effect of gm on PNUE was different between species. The fraction of leaf N to cell wall (PCW) had a significant negative correlation with PR in B. alnoides and C. hystrix seedling leaves, but no correlation in D. odorifera and E. fordii seedling leaves, which may indicate that B. alnoides and C. hystrix seedling leaves did not have enough N to satisfy the demand from both the cell wall and Rubisco. Our results indicate that B. alnoides and C. hystrix may have a higher competitive ability in natural ecosystems with fertile soil, and D. odorifera and E. fordii may grow well in N-poor soil. Mixing these non-N-fixing and N-fixing trees for afforestation is useful for improving soil N utilization efficiency in the tropical forests.
Collapse
Affiliation(s)
- Jingchao Tang
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, China
| | - Baodi Sun
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao, China
| | - Ruimei Cheng
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zuomin Shi
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Tree and Timber Institute, National Research Council of Italy Sesto, Fiorentino, Italy
- * E-mail:
| | - Da Luo
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Research Institute of Economic Forestry, Xinjiang Academy of Forestry Science, Urumqi, China
| | - Shirong Liu
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy Sesto, Fiorentino, Italy
| |
Collapse
|
15
|
Tang J, Cheng R, Shi Z, Xu G, Liu S, Centritto M. Fagaceae tree species allocate higher fraction of nitrogen to photosynthetic apparatus than Leguminosae in Jianfengling tropical montane rain forest, China. PLoS One 2018; 13:e0192040. [PMID: 29390007 PMCID: PMC5794133 DOI: 10.1371/journal.pone.0192040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 01/16/2018] [Indexed: 01/23/2023] Open
Abstract
Variation in photosynthetic-nitrogen use efficiency (PNUE) is generally affected by several factors such as leaf nitrogen allocation and leaf diffusional conductances to CO2, although it is still unclear which factors significantly affect PNUE in tropical montane rain forest trees. In this study, comparison of PNUE, photosynthetic capacity, leaf nitrogen allocation, and diffusional conductances to CO2 between five Fagaceae tree species and five Leguminosae tree species were analyzed in Jianfengling tropical montane rain forest, Hainan Island, China. The result showed that PNUE of Fagaceae was significantly higher than that of Leguminosae (+35.5%), attributed to lower leaf nitrogen content per area (Narea, -29.4%). The difference in nitrogen allocation was the main biochemical factor that influenced interspecific variation in PNUE of these tree species. Fagaceae species allocated a higher fraction of leaf nitrogen to the photosynthetic apparatus (PP, +43.8%), especially to Rubisco (PR, +50.0%) and bioenergetics (PB +33.3%) in comparison with Leguminosae species. Leaf mass per area (LMA) of Leguminosae species was lower than that of Fagaceae species (-15.4%). While there was no significant difference shown for mesophyll conductance (gm), Fagaceae tree species may have greater chloroplast to total leaf surface area ratios and that offset the action of thicker cell walls on gm. Furthermore, weak negative relationship between nitrogen allocation in cell walls and in Rubisco was found for Castanopsis hystrix, Cyclobalanopsis phanera and Cy. patelliformis, which might imply that nitrogen in the leaves was insufficient for both Rubisco and cell walls. In summary, our study concluded that higher PNUE might contribute to the dominance of most Fagaceae tree species in Jianfengling tropical montane rain forest.
Collapse
Affiliation(s)
- Jingchao Tang
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Ruimei Cheng
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zuomin Shi
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Tree and Timber Institute, National Research Council of Italy Sesto, Fiorentino, Italy
| | - Gexi Xu
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Shirong Liu
- Key Laboratory on Forest Ecology and Environmental Sciences of State Forestry Administration, Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Mauro Centritto
- Tree and Timber Institute, National Research Council of Italy Sesto, Fiorentino, Italy
| |
Collapse
|
16
|
Flexas J, Cano FJ, Carriquí M, Coopman RE, Mizokami Y, Tholen D, Xiong D. CO2 Diffusion Inside Photosynthetic Organs. THE LEAF: A PLATFORM FOR PERFORMING PHOTOSYNTHESIS 2018. [DOI: 10.1007/978-3-319-93594-2_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Ubierna N, Holloway-Phillips MM, Farquhar GD. Using Stable Carbon Isotopes to Study C 3 and C 4 Photosynthesis: Models and Calculations. Methods Mol Biol 2018; 1770:155-196. [PMID: 29978402 DOI: 10.1007/978-1-4939-7786-4_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stable carbon isotopes are a powerful tool to study photosynthesis. Initial applications consisted of determining isotope ratios of plant biomass using mass spectrometry. Subsequently, theoretical models relating C-isotope values to gas exchange characteristics were introduced and tested against instantaneous online measurements of 13C photosynthetic discrimination. Beginning in the twenty-first century, tunable diode laser spectroscopes with sufficient precision for determining isotope mixing ratios became commercially available. This has allowed collection of large data sets, at low cost and with unprecedented temporal resolution. With more data and accompanying knowledge, it has become apparent that there is a need for increased complexity in models and calculations. This chapter describes instantaneous online measurements of 13C photosynthetic discrimination, provides recommendations for experimental setup, and presents a thorough compilation of equations needed for different applications.
Collapse
Affiliation(s)
- Nerea Ubierna
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, USA.
| | | | - Graham D Farquhar
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
18
|
Oguchi R, Onoda Y, Terashima I, Tholen D. Leaf Anatomy and Function. THE LEAF: A PLATFORM FOR PERFORMING PHOTOSYNTHESIS 2018. [DOI: 10.1007/978-3-319-93594-2_5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
19
|
Tian Y, Sacharz J, Ware MA, Zhang H, Ruban AV. Effects of periodic photoinhibitory light exposure on physiology and productivity of Arabidopsis plants grown under low light. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4249-4262. [PMID: 28922753 PMCID: PMC5853873 DOI: 10.1093/jxb/erx213] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/31/2017] [Indexed: 05/18/2023]
Abstract
This work examined the long-term effects of periodic high light stress on photosynthesis, morphology, and productivity of low-light-acclimated Arabidopsis plants. Significant photoinhibition of Arabidopsis seedlings grown under low light (100 μmol photons m-2 s-1) was observed at the beginning of the high light treatment (three times a day for 30 min at 1800 μmol photons m-2 s-1). However, after 2 weeks of treatment, similar photosynthesis yields (Fv/Fm) to those of control plants were attained. The daily levels of photochemical quenching measured in the dark (qPd) indicated that the plants recovered from photoinhibition within several hours once transferred back to low light conditions, with complete recovery being achieved overnight. Acclimation to high light stress resulted in the modification of the number, structure, and position of chloroplasts, and an increase in the average chlorophyll a/b ratio. During ontogenesis, high-light-exposed plants had lower total leaf areas but higher above-ground biomass. This was attributed to the consumption of starch for stem and seed production. Moreover, periodic high light exposure brought forward the reproductive phase and resulted in higher seed yields compared with control plants grown under low light. The responses to periodic high light exposure of mature Arabidopsis plants were similar to those of seedlings but had higher light tolerance.
Collapse
Affiliation(s)
- Yonglan Tian
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Joanna Sacharz
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Maxwell A Ware
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
| | - Huayong Zhang
- Research Center for Engineering Ecology and Nonlinear Science, North China Electric Power University, Beijing, China
| | - Alexander V Ruban
- School of Biological and Chemical Sciences, Queen Mary University of London, UK
- Correspondence:
| |
Collapse
|
20
|
Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, Poorter H, Tosens T, Westoby M. Physiological and structural tradeoffs underlying the leaf economics spectrum. THE NEW PHYTOLOGIST 2017; 214:1447-1463. [PMID: 28295374 DOI: 10.1111/nph.14496] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/23/2017] [Indexed: 05/18/2023]
Abstract
The leaf economics spectrum (LES) represents a suite of intercorrelated leaf traits concerning construction costs per unit leaf area, nutrient concentrations, and rates of carbon fixation and tissue turnover. Although broad trade-offs among leaf structural and physiological traits have been demonstrated, we still do not have a comprehensive view of the fundamental constraints underlying the LES trade-offs. Here, we investigated physiological and structural mechanisms underpinning the LES by analysing a novel data compilation incorporating rarely considered traits such as the dry mass fraction in cell walls, nitrogen allocation, mesophyll CO2 diffusion and associated anatomical traits for hundreds of species covering major growth forms. The analysis demonstrates that cell wall constituents are major components of leaf dry mass (18-70%), especially in leaves with high leaf mass per unit area (LMA) and long lifespan. A greater fraction of leaf mass in cell walls is typically associated with a lower fraction of leaf nitrogen (N) invested in photosynthetic proteins; and lower within-leaf CO2 diffusion rates, as a result of thicker mesophyll cell walls. The costs associated with greater investments in cell walls underpin the LES: long leaf lifespans are achieved via higher LMA and in turn by higher cell wall mass fraction, but this inevitably reduces the efficiency of photosynthesis.
Collapse
Affiliation(s)
- Yusuke Onoda
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ian J Wright
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, 0200, Australia
| | - Kouki Hikosaka
- Graduate School of Life Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan
| | - Kaoru Kitajima
- Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51014, Estonia
| | - Hendrik Poorter
- Plant Sciences (IBG-2), Forschungszentrum Jülich GmbH, D-52425, Jülich, Germany
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Tartu, 51014, Estonia
| | - Mark Westoby
- Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
21
|
Théroux-Rancourt G, Gilbert ME. The light response of mesophyll conductance is controlled by structure across leaf profiles. PLANT, CELL & ENVIRONMENT 2017; 40:726-740. [PMID: 28039917 DOI: 10.1111/pce.12890] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 05/05/2023]
Abstract
Mesophyll conductance to CO2 (gm ) may respond to light either through regulated dynamic mechanisms or due to anatomical and structural factors. At low light, some layers of cells in the leaf cross-section approach photocompensation and contribute minimally to bulk leaf photosynthesis and little to whole leaf gm (gm,leaf ). Thus, the bulk gm,leaf will appear to respond to light despite being based upon cells having an anatomically fixed mesophyll conductance. Such behaviour was observed in species with contrasting leaf structure using the variable J or stable isotope method of measuring gm,leaf . A species with bifacial structure, Arbutus × 'Marina', and an isobilateral species, Triticum durum L., had contrasting responses of gm,leaf upon varying adaxial or abaxial illumination. Anatomical observations, when coupled with the proposed model of gm,leaf to photosynthetic photon flux density (PPFD) response, successfully represented the observed gas exchange data. The theoretical and observed evidence that gm,leaf apparently responds to light has large implications for how gm,leaf values are interpreted, particularly limitation analyses, and indicates the importance of measuring gm under full light saturation. Responses of gm,leaf to the environment should be treated as an emergent property of a distributed 3D structure, and not solely a leaf area-based phenomenon.
Collapse
Affiliation(s)
| | - Matthew E Gilbert
- Department of Plant Sciences, University of California, Davis, 95616, USA
| |
Collapse
|
22
|
Amada G, Onoda Y, Ichie T, Kitayama K. Influence of leaf trichomes on boundary layer conductance and gas-exchange characteristics inMetrosideros polymorpha(Myrtaceae). Biotropica 2017. [DOI: 10.1111/btp.12433] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Gaku Amada
- Graduate School of Agriculture; Kyoto University; Kitashirakawa Oiwake-Cho Sakyo-Ku Kyoto 606-8502 Japan
| | - Yusuke Onoda
- Graduate School of Agriculture; Kyoto University; Kitashirakawa Oiwake-Cho Sakyo-Ku Kyoto 606-8502 Japan
| | - Tomoaki Ichie
- Faculty of Agriculture; Kochi University; B200, Monobe Nankoku 783-8502 Japan
| | - Kanehiro Kitayama
- Graduate School of Agriculture; Kyoto University; Kitashirakawa Oiwake-Cho Sakyo-Ku Kyoto 606-8502 Japan
| |
Collapse
|
23
|
Ubierna N, Gandin A, Boyd RA, Cousins AB. Temperature response of mesophyll conductance in three C 4 species calculated with two methods: 18 O discrimination and in vitro V pmax. THE NEW PHYTOLOGIST 2017; 214:66-80. [PMID: 27918624 DOI: 10.1111/nph.14359] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 10/27/2016] [Indexed: 05/08/2023]
Abstract
Mesophyll conductance (gm ) is an important factor limiting rates of C3 photosynthesis. However, its role in C4 photosynthesis is poorly understood because it has been historically difficult to estimate. We use two methods to derive the temperature responses of gm in C4 species. The first (Δ18 O) combines measurements of gas exchange with models and measurements of 18 O discrimination. The second method (in vitro Vpmax ) derives gm by retrofitting models of C4 photosynthesis and 13 C discrimination with gas exchange, kinetic constants and in vitro Vpmax measurements. The two methods produced similar gm for Setaria viridis and Zea mays. Additionally, we present the first temperature response (10-40°C) of C4 gm in S. viridis, Z. mays and Miscanthus × giganteus. Values for gm at 25°C ranged from 2.90 to 7.85 μmol m-2 s-1 Pa-1 . Our study demonstrated that: the two described methods are suitable to calculate gm in C4 species; gm values in C4 are similar to high-end values reported for C3 species; and gm increases with temperature analogous to reports for C3 species and the response is species specific. These results improve our mechanistic understanding of C4 photosynthesis.
Collapse
Affiliation(s)
- Nerea Ubierna
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Anthony Gandin
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Ryan A Boyd
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Asaph B Cousins
- School of Biological Sciences, Molecular Plant Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| |
Collapse
|
24
|
Veromann-Jürgenson LL, Tosens T, Laanisto L, Niinemets Ü. Extremely thick cell walls and low mesophyll conductance: welcome to the world of ancient living! JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1639-1653. [PMID: 28419340 PMCID: PMC5441924 DOI: 10.1093/jxb/erx045] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Mesophyll conductance is thought to be an important photosynthetic limitation in gymnosperms, but they currently constitute the most understudied plant group in regard to the extent to which photosynthesis and intrinsic water use efficiency are limited by mesophyll conductance. A comprehensive analysis of leaf gas exchange, photosynthetic limitations, mesophyll conductance (calculated by three methods previously used for across-species comparisons), and the underlying ultra-anatomical, morphological and chemical traits in 11 gymnosperm species varying in evolutionary history was performed to gain insight into the evolution of structural and physiological controls on photosynthesis at the lower return end of the leaf economics spectrum. Two primitive herbaceous species were included in order to provide greater evolutionary context. Low mesophyll conductance was the main limiting factor of photosynthesis in the majority of species. The strongest sources of limitation were extremely thick mesophyll cell walls, high chloroplast thickness and variation in chloroplast shape and size, and the low exposed surface area of chloroplasts per unit leaf area. In gymnosperms, the negative relationship between net assimilation per mass and leaf mass per area reflected an increased mesophyll cell wall thickness, whereas the easy-to-measure integrative trait of leaf mass per area failed to predict the underlying ultrastructural traits limiting mesophyll conductance.
Collapse
Affiliation(s)
- Linda-Liisa Veromann-Jürgenson
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Lauri Laanisto
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
- Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn, Estonia
| |
Collapse
|
25
|
Loucos KE, Simonin KA, Barbour MM. Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species. PLANT, CELL & ENVIRONMENT 2017; 40:203-215. [PMID: 27861995 DOI: 10.1111/pce.12865] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 05/26/2023]
Abstract
Stomata represent one resistor in a series of resistances for carbon and water exchange between the leaf and the atmosphere; the remaining resistors occurring within the leaf, commonly represented as mesophyll conductance to CO2 , gm , and leaf hydraulic conductance, kLeaf . Recent studies have proposed that gm and kLeaf may be coordinated across species because of shared pathways. We assessed the correlation between gm and kLeaf within cotton, under growth CO2 partial pressure and irradiance treatments and also with short-term variation in irradiance and humidity. gm was estimated using two isotopic techniques that allowed partitioning of total gm (Δ13 C-gm ) into cell wall plus plasma membrane conductance (Δ18 O-gm ) and chloroplast membrane conductance (gcm ). A weak correlation was found between Δ13 C-gm and kLeaf only when measured under growth conditions. However, Δ18 O-gm was related to kLeaf under both short-term environmental variation and growth conditions. Partitioning gm showed that gcm was not affected by short-term changes in irradiance or correlated with kLeaf , but was strongly reduced at high growth CO2 partial pressure. Thus, simultaneous measurements of gm , kLeaf and gcm suggest independent regulation of carbon and water transport across the chloroplast membrane with limited coordinated regulation across the cell wall and plasma membrane.
Collapse
Affiliation(s)
- Karen E Loucos
- Centre for Carbon, Water and Food, Faculty of Agriculture and Environment, The University of Sydney, 380 Werombi Rd, New South Wales, 2570, Australia
| | - Kevin A Simonin
- Department of Biology, San Francisco State University, San Francisco, CA, 94132, USA
| | - Margaret M Barbour
- Centre for Carbon, Water and Food, Faculty of Agriculture and Environment, The University of Sydney, 380 Werombi Rd, New South Wales, 2570, Australia
| |
Collapse
|
26
|
Campany CE, Tjoelker MG, von Caemmerer S, Duursma RA. Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks. PLANT, CELL & ENVIRONMENT 2016; 39:2762-2773. [PMID: 27726150 DOI: 10.1111/pce.12841] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Light gradients within tree canopies play a major role in the distribution of plant resources that define the photosynthetic capacity of sun and shade leaves. However, the biochemical and diffusional constraints on gas exchange in sun and shade leaves in response to light remain poorly quantified, but critical for predicting canopy carbon and water exchange. To investigate the CO2 diffusion pathway of sun and shade leaves, leaf gas exchange was coupled with concurrent measurements of carbon isotope discrimination to measure net leaf photosynthesis (An ), stomatal conductance (gs ) and mesophyll conductance (gm ) in Eucalyptus tereticornis trees grown in climate controlled whole-tree chambers. Compared to sun leaves, shade leaves had lower An , gm , leaf nitrogen and photosynthetic capacity (Amax ) but gs was similar. When light intensity was temporarily increased for shade leaves to match that of sun leaves, both gs and gm increased, and An increased to values greater than sun leaves. We show that dynamic physiological responses of shade leaves to altered light environments have implications for up-scaling leaf level measurements and predicting whole canopy carbon gain. Despite exhibiting reduced photosynthetic capacity, the rapid up-regulation of gm with increased light enables shade leaves to respond quickly to sunflecks.
Collapse
Affiliation(s)
- Courtney E Campany
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Susanne von Caemmerer
- ARC Centre of Excellence for Translational Photosynthesis, Plant Science Division, Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Remko A Duursma
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| |
Collapse
|
27
|
Barbour MM, Kaiser BN. The response of mesophyll conductance to nitrogen and water availability differs between wheat genotypes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 251:119-127. [PMID: 27593470 DOI: 10.1016/j.plantsci.2016.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 05/24/2023]
Abstract
Increased mesophyll conductance (gm) has been suggested as a target for selection for high productivity and high water-use efficiency in crop plants, and genotypic variability in gm has been reported in several important crop species. However, effective selection requires an understanding of how gm varies with growth conditions, to ensure that the ranking of genotypes is consistent across environments. We assessed the genotypic variability in gm and other leaf gas exchange traits, as well as growth and biomass allocation for six wheat genotypes under different water and nitrogen availabilities. The wheat genotypes differed in their response of gm to growth conditions, resulting in genotypic differences in the mesophyll limitation to photosynthesis and a significant increase in the mesophyll limitation to photosynthesis under drought. In this experiment, leaf intrinsic water-use efficiency was more closely related to stomatal conductance than to mesophyll conductance, and stomatal limitation to photosynthesis increased more in some genotypes than in others in response to drought. Screening for gm should be carried out under a range of growth conditions.
Collapse
Affiliation(s)
- Margaret M Barbour
- Centre for Carbon, Water and Food, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia.
| | - Brent N Kaiser
- Centre for Carbon, Water and Food, The University of Sydney, 380 Werombi Road, Brownlow Hill, NSW 2570, Australia.
| |
Collapse
|
28
|
Fini A, Loreto F, Tattini M, Giordano C, Ferrini F, Brunetti C, Centritto M. Mesophyll conductance plays a central role in leaf functioning of Oleaceae species exposed to contrasting sunlight irradiance. PHYSIOLOGIA PLANTARUM 2016; 157:54-68. [PMID: 26537749 DOI: 10.1111/ppl.12401] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 06/05/2023]
Abstract
The ability to modify mesophyll conductance (gm ) in response to changes in irradiance may be a component of the acclimation of plants to shade-sun transitions, thus influencing species-specific distributions along light-gradients, and the ecological niches for the different species. To test this hypothesis we grew three woody species of the Oleaceae family, the evergreen Phillyrea latifolia (sun-requiring), the deciduous Fraxinus ornus (facultative sun-requiring) and the hemi-deciduous Ligustrum vulgare (shade tolerant) at 30 or 100% sunlight irradiance. We show that neither mesophyll conductance calculated with combined gas exchange and chlorophyll fluorescence techniques (gm) nor CO2 assimilation significantly varied in F. ornus because of sunlight irradiance. This corroborates previous suggestions that species with high plasticity for light requirements, do not need to undertake extensive reorganization of leaf conductances to CO2 diffusion to adapt to different light environments. On the other hand, gm steeply declined in L. vulgare and increased in P. latifolia exposed to full-sun conditions. In these two species, leaf anatomical traits are in part responsible for light-driven changes in gm , as revealed by the correlation between gm and mesophyll conductance estimated by anatomical parameters (gmA). Nonetheless, gm was greatly overestimated by gmA when leaf metabolism was impaired because of severe light stress. We show that gm is maximum at the light intensity at which plant species have evolved and we conclude that gm actually plays a key role in the sun and shade adaptation of Mediterranean species. The limits of gmA in predicting mesophyll conductance are also highlighted.
Collapse
Affiliation(s)
- Alessio Fini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
| | - Francesco Loreto
- Dipartimento di Scienze Bio-Agroalimentari, Consiglio Nazionale delle Ricerche, P.le Aldo Moro 7, I-00185, Roma, Italy
| | - Massimiliano Tattini
- Istituto per la Protezione Sostenibile delle Piante, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Cristiana Giordano
- Centro di Microscopie Elettroniche "Laura Bonzi", Istituto dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Francesco Ferrini
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
| | - Cecilia Brunetti
- Dipartimento di Scienze delle Produzioni Agroalimentari e dell'Ambiente, Università di Firenze, Viale delle Idee 30, I-50019, Sesto Fiorentino (FI), Italy
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| | - Mauro Centritto
- Istituto per la Valorizzazione del Legno e delle Specie Arboree, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, I-50019, Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
29
|
SANTOS LEONARDOD, CRUZ LEANDRORDA, SANTOS SAMUELADOS, SANT'ANNA-SANTOS BRUNOF, SANTOS IZABELATDOS, OLIVEIRA ARIANEMDE, BARROS RODRIGOE, SANTOS MÁRCIAV, FARIA RODRIGOM. Phenotypic plasticity of Neonotonia wightii and Pueraria phaseoloidesgrown under different light intensities. ACTA ACUST UNITED AC 2015; 87:519-28. [DOI: 10.1590/0001-3765201520140017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2014] [Accepted: 07/29/2014] [Indexed: 11/21/2022]
Abstract
Plants have the ability to undergo morphophysiological changes based on availability of light. The present study evaluated biomass accumulation, leaf morphoanatomy and physiology of Neonotonia wightii andPueraria phaseoloides grown in full sunlight, as well as in 30% and 50% shade. Two assays were performed, one for each species, using a randomized block design with 10 replicates. A higher accumulation of fresh mass in the shoot of the plants was observed for both species under cultivation in 50% shade, while no differences were detected between the full sunlight and 30% shade. N. wightii and P. phaseoloides showed increase in area and reduction in thickness leaf when cultivated in 50% shade. There were no changes in photosynthetic rate, stomatal conductance, water use efficiency and evapotranspiration of P. phaseoloidesplants because growth environment. However, the shade treatments caused alterations in physiological parameters of N. wightii. In both species, structural changes in the mesophyll occurred depending on the availability of light; however, the amount of leaf blade tissue remained unaltered. Despite the influence of light intensity variation on the morphophysiological plasticity ofN. wightiiand P. phaseoloides, no effects on biomass accumulation were observed in response to light.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - MÁRCIA V. SANTOS
- Universidade Federal dos Vales do Jequitinhonha e Mucuri, Brasil
| | | |
Collapse
|
30
|
Cai YF, Li SF, Li SF, Xie WJ, Song J. How do leaf anatomies and photosynthesis of three Rhododendron species relate to their natural environments? BOTANICAL STUDIES 2014; 55:36. [PMID: 28510962 PMCID: PMC5432949 DOI: 10.1186/1999-3110-55-36] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 11/07/2013] [Indexed: 05/12/2023]
Abstract
BACKGROUND Rhododendron is one of the most well-known alpine flowers. In order to identify performances relating to Rhododendron's natural habitats we investigated the leaf anatomical structures and photosynthetic characteristics of R. yunnanense, R. irroratum and R. delavayi, which showed different responses after being transplanted into a common environment. RESULTS When compared with R. irroratum and R. delavayi, R. yunnanense had lower leaf dry mass per unit area (LMA) and larger stomata, but smaller stomatal density (SD) and total stomata apparatus area percent (At), lower stomatal conductance (Gs), transpiration rate (Tr), light compensation point (LCP), light saturation point (LSP), light-saturated photosynthetic rate (Amax) and leaf nitrogen content per unit area (Na). LMA was positively correlated with Amax and maximum rates of carboxylation (Vcmax). However, leaf N content was not significantly correlated with Amax. Thus, the variation in leaf photosynthesis among species was regulated largely by changes in LMA, rather than the concent of nitrogen in leaf tissue. CONCLUSIONS R. yunnanense plants are vulnerable to moisture and light stress, while R. irroratum and R. delavayi are better suited to dry and high radiation environments. The present results contribute to our understanding physiological trait divergence in Rhododendron, as well benefit introduction and domestication efforts for the three species of Rhododendron studied in this work.
Collapse
Affiliation(s)
- Yan-Fei Cai
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
- Yunnan Flower Breeding Key Lab, Kunming, 650204 China
- Yunnan Flower Research and Development Center, Kunming, 650205 China
| | - Shi-Feng Li
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
- Yunnan Flower Breeding Key Lab, Kunming, 650204 China
- Yunnan Flower Research and Development Center, Kunming, 650205 China
| | - Shu-Fa Li
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
- Yunnan Flower Breeding Key Lab, Kunming, 650204 China
- Yunnan Flower Research and Development Center, Kunming, 650205 China
| | - Wei-Jia Xie
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
- Yunnan Flower Breeding Key Lab, Kunming, 650204 China
- Yunnan Flower Research and Development Center, Kunming, 650205 China
| | - Jie Song
- Flower Research Institute of Yunnan Academy of Agricultural Sciences, Kunming, 650205 China
- Yunnan Flower Breeding Key Lab, Kunming, 650204 China
- Yunnan Flower Research and Development Center, Kunming, 650205 China
| |
Collapse
|
31
|
Broeckx LS, Fichot R, Verlinden MS, Ceulemans R. Seasonal variations in photosynthesis, intrinsic water-use efficiency and stable isotope composition of poplar leaves in a short-rotation plantation. TREE PHYSIOLOGY 2014; 34:701-15. [PMID: 25074859 PMCID: PMC4131770 DOI: 10.1093/treephys/tpu057] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/03/2014] [Indexed: 05/10/2023]
Abstract
Photosynthetic carbon assimilation and transpirational water loss play an important role in the yield and the carbon sequestration potential of bioenergy-devoted cultures of fast-growing trees. For six poplar (Populus) genotypes in a short-rotation plantation, we observed significant seasonal and genotypic variation in photosynthetic parameters, intrinsic water-use efficiency (WUEi) and leaf stable isotope composition (δ13C and δ18O). The poplars maintained high photosynthetic rates (between 17.8 and 26.9 μmol m(-2) s(-1) depending on genotypes) until late in the season, in line with their fast-growth habit. Seasonal fluctuations were mainly explained by variations in soil water availability and by stomatal limitation upon photosynthesis. Stomatal rather than biochemical limitation was confirmed by the constant intrinsic photosynthetic capacity (Vcmax) during the growing season, closely related to leaf nitrogen (N) content. Intrinsic water-use efficiency scaled negatively with carbon isotope discrimination (Δ13Cbl) and positively with the ratio between mesophyll diffusion conductance (gm) and stomatal conductance. The WUEi-Δ13Cbl relationship was partly influenced by gm. There was a trade-off between WUEi and photosynthetic N-use efficiency, but only when soil water availability was limiting. Our results suggest that seasonal fluctuations in relation to soil water availability should be accounted for in future modelling studies assessing the carbon sequestration potential and the water-use efficiency of woody energy crops.
Collapse
Affiliation(s)
- L S Broeckx
- Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - R Fichot
- University of Orléans, INRA, LBLGC, F-45067 Orléans, France
| | - M S Verlinden
- Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - R Ceulemans
- Department of Biology, Research Group of Plant and Vegetation Ecology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
32
|
Sun Y, Gu L, Dickinson RE, Pallardy SG, Baker J, Cao Y, DaMatta FM, Dong X, Ellsworth D, Van Goethem D, Jensen AM, Law BE, Loos R, Martins SCV, Norby RJ, Warren J, Weston D, Winter K. Asymmetrical effects of mesophyll conductance on fundamental photosynthetic parameters and their relationships estimated from leaf gas exchange measurements. PLANT, CELL & ENVIRONMENT 2014; 37:978-94. [PMID: 24117476 DOI: 10.1111/pce.12213] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 09/27/2013] [Accepted: 10/01/2013] [Indexed: 05/09/2023]
Abstract
Worldwide measurements of nearly 130 C3 species covering all major plant functional types are analysed in conjunction with model simulations to determine the effects of mesophyll conductance (g(m)) on photosynthetic parameters and their relationships estimated from A/Ci curves. We find that an assumption of infinite g(m) results in up to 75% underestimation for maximum carboxylation rate V(cmax), 60% for maximum electron transport rate J(max), and 40% for triose phosphate utilization rate T(u) . V(cmax) is most sensitive, J(max) is less sensitive, and T(u) has the least sensitivity to the variation of g(m). Because of this asymmetrical effect of g(m), the ratios of J(max) to V(cmax), T(u) to V(cmax) and T(u) to J(max) are all overestimated. An infinite g(m) assumption also limits the freedom of variation of estimated parameters and artificially constrains parameter relationships to stronger shapes. These findings suggest the importance of quantifying g(m) for understanding in situ photosynthetic machinery functioning. We show that a nonzero resistance to CO2 movement in chloroplasts has small effects on estimated parameters. A non-linear function with gm as input is developed to convert the parameters estimated under an assumption of infinite gm to proper values. This function will facilitate gm representation in global carbon cycle models.
Collapse
Affiliation(s)
- Ying Sun
- Department of Geological Sciences, University of Texas at Austin, 1 University Station #C9000, Austin, TX, 78712, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Buckley TN, Warren CR. The role of mesophyll conductance in the economics of nitrogen and water use in photosynthesis. PHOTOSYNTHESIS RESEARCH 2014; 119:77-88. [PMID: 23609621 DOI: 10.1007/s11120-013-9825-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 04/08/2013] [Indexed: 06/02/2023]
Abstract
A recent resurgence of interest in formal optimisation theory has begun to improve our understanding of how variations in stomatal conductance and photosynthetic capacity control the response of whole plant photosynthesis and growth to the environment. However, mesophyll conductance exhibits similar variation and has similar impact on photosynthesis as stomatal conductance; yet, the role of mesophyll conductance in the economics of photosynthetic resource use has not been thoroughly explored. In this article, we first briefly summarise the knowledge of how mesophyll conductance varies in relation to environmental factors that also affect stomatal conductance and photosynthetic capacity, and then we use a simple analytical approach to begin to explore how these important controls on photosynthesis should mutually co-vary in a plant canopy in the optimum. Our analysis predicts that when either stomatal or mesophyll conductance is limited by fundamental biophysical constraints in some areas of a canopy, e.g. reduced stomatal conductance in upper canopy leaves due to reduced water potential, the other of the two conductances should increase in those leaves, while photosynthetic capacity should decrease. Our analysis also predicts that if mesophyll conductance depends on nitrogen investment in one or more proteins, then nitrogen investment should shift away from Rubisco and towards mesophyll conductance if hydraulic or other constraints cause chloroplastic CO2 concentration to decline. Thorough exploration of these issues awaits better knowledge of whether and how mesophyll conductance is itself limited by nitrogen investment, and about how these determinants of photosynthetic CO2 supply and demand co-vary among leaves in real plant canopies.
Collapse
Affiliation(s)
- Thomas N Buckley
- Department of Biology, Sonoma State University, Rohnert Park, CA, 94928, USA,
| | | |
Collapse
|
34
|
Flexas J, Niinemets U, Gallé A, Barbour MM, Centritto M, Diaz-Espejo A, Douthe C, Galmés J, Ribas-Carbo M, Rodriguez PL, Rosselló F, Soolanayakanahally R, Tomas M, Wright IJ, Farquhar GD, Medrano H. Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. PHOTOSYNTHESIS RESEARCH 2013; 117:45-59. [PMID: 23670217 DOI: 10.1007/s11120-013-9844-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/25/2013] [Indexed: 05/19/2023]
Abstract
A key objective for sustainable agriculture and forestry is to breed plants with both high carbon gain and water-use efficiency (WUE). At the level of leaf physiology, this implies increasing net photosynthesis (A N) relative to stomatal conductance (g s). Here, we review evidence for CO2 diffusional constraints on photosynthesis and WUE. Analyzing past observations for an extensive pool of crop and wild plant species that vary widely in mesophyll conductance to CO2 (g m), g s, and foliage A N, it was shown that both g s and g m limit A N, although the relative importance of each of the two conductances depends on species and conditions. Based on Fick's law of diffusion, intrinsic WUE (the ratio A N/g s) should correlate on the ratio g m/g s, and not g m itself. Such a correlation is indeed often observed in the data. However, since besides diffusion A N also depends on photosynthetic capacity (i.e., V c,max), this relationship is not always sustained. It was shown that only in a very few cases, genotype selection has resulted in simultaneous increases of both A N and WUE. In fact, such a response has never been observed in genetically modified plants specifically engineered for either reduced g s or enhanced g m. Although increasing g m alone would result in increasing photosynthesis, and potentially increasing WUE, in practice, higher WUE seems to be only achieved when there are no parallel changes in g s. We conclude that for simultaneous improvement of A N and WUE, genetic manipulation of g m should avoid parallel changes in g s, and we suggest that the appropriate trait for selection for enhanced WUE is increased g m/g s.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Illes Balears, Spain,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Cano FJ, Sánchez-Gómez D, Rodríguez-Calcerrada J, Warren CR, Gil L, Aranda I. Effects of drought on mesophyll conductance and photosynthetic limitations at different tree canopy layers. PLANT, CELL & ENVIRONMENT 2013; 36:1961-80. [PMID: 23527762 DOI: 10.1111/pce.12103] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 05/24/2023]
Abstract
In recent years, many studies have focused on the limiting role of mesophyll conductance (gm ) to photosynthesis (An ) under water stress, but no studies have examined the effect of drought on gm through the forest canopy. We investigated limitations to An on leaves at different heights in a mixed adult stand of sessile oak (Quercus petraea) and beech (Fagus sylvatica) trees during a moderately dry summer. Moderate drought decreased An of top and lowest beech canopy leaves much more than in leaves located in the mid canopy; whereas in oak, An of the lower canopy was decreased more than in sunlit leaves. The decrease of An was probably not due to leaf-level biochemistry given that VCmax was generally unaffected by drought. The reduction in An was instead associated with reduction in stomatal and mesophyll conductances. Drought-induced increases in stomatal limitations were largest in leaves from the top canopy, whereas drought-induced increases in mesophyll limitations were largest in leaves from the lowest canopy. Sensitivity analysis highlighted the need to decompose the canopy into different leaf layers and to incorporate the limitation imposed by gm when assessing the impact of drought on the gas exchange of tree canopies.
Collapse
Affiliation(s)
- F Javier Cano
- Unidad Docente de Anatomía, Fisiología y Genética Forestal, E.T.S.I. Montes, Universidad Politécnica de Madrid (UPM), Ciudad Universitaria s/n, 28040, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Flexas J, Scoffoni C, Gago J, Sack L. Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3965-81. [PMID: 24123453 DOI: 10.1093/jxb/ert319] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Two highly contrasting variables summarizing the efficiency of transport of materials within the leaf are recognized as playing central roles in determining gas exchange and plant performance. This paper summarizes current approaches for the measurement of mesophyll conductance to CO2 (g m) and leaf hydraulic conductance (K leaf) and addresses the physiological integration of these parameters. First, the most common methods to determine g m and K leaf are summarized. Next, novel data compilation is analysed, which indicates that, across diverse species, g m is strongly linked with gas exchange parameters such as net CO2 assimilation (A area) and stomatal conductance (g s), and with K leaf, independently of leaf vein length per leaf area. Based on their parallel responses to a number of environmental variables, this review proposes that g m is linked to the outside-xylem but not to the xylem component of K leaf. Further, a mechanistic hypothesis is proposed to explain the interactions among all these and other physiological parameters. Finally, the possibility of estimating g m based on this hypothesis was tested using a regression analysis and a neurofuzzy logic approach. These approaches enabled the estimation of g m of given species from K leaf and leaf mass per area, providing a higher predictive power than from either parameter alone. The possibility of estimating g m from measured K leaf or vice-versa would result in a rapid increase in available data. Studies in which g m, K leaf, and leaf mass per area are simultaneously determined are needed in order to confirm and strengthen predictive and explanatory models for these parameters and importantly improve resolution of the integrated hydraulic-stomatal-photosynthetic system.
Collapse
Affiliation(s)
- Jaume Flexas
- Research Group on Plant Biology under Mediterranean Conditions, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07121 Palma de Mallorca, Illes Balears, Spain
| | | | | | | |
Collapse
|
37
|
André MJ. Modelling 18O2 and 16O2 unidirectional fluxes in plants. III: Fitting of experimental data by a simple model. Biosystems 2013; 113:104-14. [DOI: 10.1016/j.biosystems.2012.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 10/24/2012] [Accepted: 10/24/2012] [Indexed: 10/27/2022]
|
38
|
Assouline S, Or D. Plant water use efficiency over geological time--evolution of leaf stomata configurations affecting plant gas exchange. PLoS One 2013; 8:e67757. [PMID: 23844085 PMCID: PMC3699479 DOI: 10.1371/journal.pone.0067757] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/22/2013] [Indexed: 11/19/2022] Open
Abstract
Plant gas exchange is a key process shaping global hydrological and carbon cycles and is often characterized by plant water use efficiency (WUE - the ratio of CO2 gain to water vapor loss). Plant fossil record suggests that plant adaptation to changing atmospheric CO2 involved correlated evolution of stomata density (d) and size (s), and related maximal aperture, amax . We interpreted the fossil record of s and d correlated evolution during the Phanerozoic to quantify impacts on gas conductance affecting plant transpiration, E, and CO2 uptake, A, independently, and consequently, on plant WUE. A shift in stomata configuration from large s-low d to small s-high d in response to decreasing atmospheric CO2 resulted in large changes in plant gas exchange characteristics. The relationships between gas conductance, gws , A and E and maximal relative transpiring leaf area, (amax ⋅d), exhibited hysteretic-like behavior. The new WUE trend derived from independent estimates of A and E differs from established WUE-CO2 trends for atmospheric CO2 concentrations exceeding 1,200 ppm. In contrast with a nearly-linear decrease in WUE with decreasing CO2 obtained by standard methods, the newly estimated WUE trend exhibits remarkably stable values for an extended geologic period during which atmospheric CO2 dropped from 3,500 to 1,200 ppm. Pending additional tests, the findings may affect projected impacts of increased atmospheric CO2 on components of the global hydrological cycle.
Collapse
Affiliation(s)
- Shmuel Assouline
- Department of Environmental Physics and Irrigation, Institute of Soil, Water and Environmental Sciences, A.R.O.-Volcani Center, Bet Dagan, Israel.
| | | |
Collapse
|
39
|
Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano H, Ribas-Carbó M, Tosens T, Vislap V, Niinemets Ü. Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2269-81. [PMID: 23564954 PMCID: PMC3654418 DOI: 10.1093/jxb/ert086] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Foliage photosynthetic and structural traits were studied in 15 species with a wide range of foliage anatomies to gain insight into the importance of key anatomical traits in the limitation of diffusion of CO2 from substomatal cavities to chloroplasts. The relative importance of different anatomical traits in constraining CO2 diffusion was evaluated using a quantitative model. Mesophyll conductance (g m) was most strongly correlated with chloroplast exposed surface to leaf area ratio (S c/S) and cell wall thickness (T cw), but, depending on foliage structure, the overall importance of g m in constraining photosynthesis and the importance of different anatomical traits in the restriction of CO2 diffusion varied. In species with mesophytic leaves, membrane permeabilities and cytosol and stromal conductance dominated the variation in g m. However, in species with sclerophytic leaves, g m was mostly limited by T cw. These results demonstrate the major role of anatomy in constraining mesophyll diffusion conductance and, consequently, in determining the variability in photosynthetic capacity among species.
Collapse
Affiliation(s)
- Magdalena Tomás
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies. IMEDEA—Universitat de les Illes Balears, Carretera de Valldemossa Km.7.5, 07122 Palma de Mallorca, Spain
| | - Jaume Flexas
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies. IMEDEA—Universitat de les Illes Balears, Carretera de Valldemossa Km.7.5, 07122 Palma de Mallorca, Spain
- * To whom correspondence should be addressed.
| | - Lucian Copolovici
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Jeroni Galmés
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies. IMEDEA—Universitat de les Illes Balears, Carretera de Valldemossa Km.7.5, 07122 Palma de Mallorca, Spain
| | - Lea Hallik
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Hipólito Medrano
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies. IMEDEA—Universitat de les Illes Balears, Carretera de Valldemossa Km.7.5, 07122 Palma de Mallorca, Spain
| | - Miquel Ribas-Carbó
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterrànies. IMEDEA—Universitat de les Illes Balears, Carretera de Valldemossa Km.7.5, 07122 Palma de Mallorca, Spain
| | - Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Vivian Vislap
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia
| |
Collapse
|
40
|
André MJ. Modelling (18)O2 and (16)O2 unidirectional fluxes in plants. IV: role of conductance and laws of its regulation in C3 plants. Biosystems 2013; 113:115-26. [PMID: 23318161 DOI: 10.1016/j.biosystems.2012.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 10/27/2022]
Abstract
Numerous studies focus on the measurement of conductances for CO2 transfer in plants and especially on their regulatory effects on photosynthesis. Measurement accuracy is strongly dependent on the model used and on the knowledge of the flow of photochemical energy generated by light in chloroplasts. The only accurate and precise method to quantify the linear electron flux (responsible for the production of reductive energy) is the direct measurement of O2 evolution, by (18)O2 labelling and mass spectrometry. The sharing of this energy between the carboxylation (P) and the oxygenation of photorespiration (PR) depends on the plant specificity factor (Sp) and on the corresponding atmospheric concentrations of CO2 and O2 (André, 2013). The concept of plant specificity factor simplifies the equations of the model. It gives a new expression of the effect of the conductance (g) between atmosphere and chloroplasts. Its quantitative effect on photosynthesis is easy to understand because it intervenes in the ratio of the plant specificity factor (Sp) to the specificity of Rubisco (Sr). Using this 'simple' model with the data of (18)O2 experiments, the calculation of conductance variations in response to CO2 and light was carried out. The good fitting of experimental data of O2 and CO2 exchanges confirms the validity of the simple model. The calculation of conductance variation during the increase of external CO2 concentration reveals a linear law of regulation between external and internal CO2 concentrations. During CO2 variations, the effects of g regulation tend to maintain a higher level of oxygenation (PR) in expense of a better carboxylation (P). Contrary to CO2, the variation of O2 creates a negative feedback effect compatible with a stabilization of atmospheric O2. The regulation of g amplifies this result. The effect of light in combination with CO2 is more complex. Below 800μmolquantam(-2)s(-1) the ratio PR/P is maintained unchangeable in expense of carboxylation efficiency. Above that irradiance value, PR/P increases dramatically. It appears that the saturation curves of photosynthesis under high light could be simply due to the regulation by the conductance g and not by any biochemical or biophysical limitation. In conclusion, the regulatory effect of conductance operates in a way that it preserves the rate of photorespiration. This confirms a positive and protective role of photorespiration at the biochemical, whole plant and atmosphere levels. Since the effects of photorespiration are linked to the properties of Rubisco, they add new arguments for a co-evolution of plant and atmosphere, including the evolution of CO2 conductance.
Collapse
|
41
|
Tosens T, Niinemets Ü, Westoby M, Wright IJ. Anatomical basis of variation in mesophyll resistance in eastern Australian sclerophylls: news of a long and winding path. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5105-19. [PMID: 22888123 PMCID: PMC3430992 DOI: 10.1093/jxb/ers171] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In sclerophylls, photosynthesis is particularly strongly limited by mesophyll diffusion resistance from substomatal cavities to chloroplasts (r(m)), but the controls on diffusion limits by integral leaf variables such as leaf thickness, density, and dry mass per unit area and by the individual steps along the diffusion pathway are imperfectly understood. To gain insight into the determinants of r(m) in leaves with varying structure, the full CO(2) physical diffusion pathway was analysed in 32 Australian species sampled from sites contrasting in soil nutrients and rainfall, and having leaf structures from mesophytic to strongly sclerophyllous. r(m) was estimated based on combined measurements of gas exchange and chlorophyll fluorescence. In addition, r(m) was modelled on the basis of detailed anatomical measurements to separate the importance of different serial resistances affecting CO(2) diffusion into chloroplasts. The strongest sources of variation in r(m) were S(c)/S, the exposed surface area of chloroplasts per unit leaf area, and mesophyll cell wall thickness, t(cw). The strong correlation of r(m) with t(cw) could not be explained by cell wall thickness alone, and most likely arose from a further effect of cell wall porosity. The CO(2) drawdown from intercellular spaces to chloroplasts was positively correlated with t(cw), suggesting enhanced diffusional limitations in leaves with thicker cell walls. Leaf thickness and density were poorly correlated with S(c)/S, indicating that widely varying combinations of leaf anatomical traits occur at given values of leaf integrated traits, and suggesting that detailed anatomical studies are needed to predict r(m) for any given species.
Collapse
Affiliation(s)
- Tiina Tosens
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia.
| | | | | | | |
Collapse
|
42
|
Kaldenhoff R. Mechanisms underlying CO2 diffusion in leaves. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:276-81. [PMID: 22300606 DOI: 10.1016/j.pbi.2012.01.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 01/09/2012] [Accepted: 01/09/2012] [Indexed: 05/23/2023]
Abstract
Plants provide an excellent system to study CO(2) diffusion because, under light saturated conditions, photosynthesis is limited by CO(2) availability. Recent findings indicate that CO(2) diffusion in leaves can be variable in a short time range. Mesophyll CO(2) conductance could change independently from stomata movement or CO(2) fixing reactions and it was suggested that, beside others, the membranes are mesophyll CO(2) conductance limiting components. Specific aquaporins as membrane intrinsic pore proteins are considered to have a function in the modification of membrane CO(2) conductivity. Because of conflicting data, the mechanism of membrane CO(2) diffusion in plants and animals is a matter of a controversy vivid debate in the scientific community. On one hand, data from biophysics are in favor of CO(2) diffusion limiting mechanisms completely independent from membrane structure and membrane components. On the other, there is increasing evidence from physiology that a change in membrane composition has an effect on CO(2) diffusion.
Collapse
Affiliation(s)
- Ralf Kaldenhoff
- Applied Plant Science, Technische Universität Darmstadt, Schnittspahnstrasse 10, Darmstadt, Germany.
| |
Collapse
|
43
|
Tosens T, Niinemets U, Vislap V, Eichelmann H, Castro Díez P. Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. PLANT, CELL & ENVIRONMENT 2012; 35:839-56. [PMID: 22070625 DOI: 10.1111/j.1365-3040.2011.02457.x] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Finite mesophyll diffusion conductance (g(m) ) significantly constrains net assimilation rate (A(n) ), but g(m) variations and variation sources in response to environmental stresses during leaf development are imperfectly known. The combined effects of light and water limitations on g(m) and diffusion limitations of photosynthesis were studied in saplings of Populus tremula L. An one-dimensional diffusion model was used to gain insight into the importance of key anatomical traits in determining g(m) . Leaf development was associated with increases in dry mass per unit area, thickness, density, exposed mesophyll (S(mes) /S) and chloroplast (S(c) /S) to leaf area ratio, internal air space (f(ias) ), cell wall thickness and chloroplast dimensions. Development of S(mes) /S and S(c) /S was delayed under low light. Reduction in light availability was associated with lower S(c) /S, but with larger f(ias) and chloroplast thickness. Water stress reduced S(c) /S and increased cell wall thickness under high light. In all treatments, g(m) and A(n) increased and CO(2) drawdown because of g(m) , C(i) -C(c) , decreased with increasing leaf age. Low light and drought resulted in reduced g(m) and A(n) and increased C(i) -C(c) . These results emphasize the importance of g(m) and its components in determining A(n) variations during leaf development and in response to stress.
Collapse
Affiliation(s)
- Tiina Tosens
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, Tartu 51014, Estonia, Spain.
| | | | | | | | | |
Collapse
|
44
|
Sprintsin M, Chen JM, Desai A, Gough CM. Evaluation of leaf-to-canopy upscaling methodologies against carbon flux data in North America. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2010jg001407] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
45
|
Douthe C, Dreyer E, Epron D, Warren CR. Mesophyll conductance to CO₂, assessed from online TDL-AS records of ¹³CO₂ discrimination, displays small but significant short-term responses to CO₂ and irradiance in Eucalyptus seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5335-46. [PMID: 21841176 PMCID: PMC3223034 DOI: 10.1093/jxb/err141] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 04/04/2011] [Accepted: 04/06/2011] [Indexed: 05/05/2023]
Abstract
Mesophyll conductance (g(m)) is now recognized as an important limiting process for photosynthesis, as it results in a significant decrease of CO(2) diffusion from substomatal cavities where water evaporation occurs, to chloroplast stroma. Over the past decade, an increasing number of studies proposed that g(m) can vary in the short term (e.g. minutes), but these variations are still controversial, especially those potentially induced by changing CO(2) and irradiance. In this study, g(m) data estimated with online (13)C discrimination recorded with a tunable diode laser absorption spectrometer (TDL-AS) during leaf gas exchange measurements, and based on the single point method, are presented. The data were obtained with three Eucalyptus species. A 50% decrease in g(m) was observed when the CO(2) mole fraction was increased from 300 μmol mol(-1) to 900 μmol mol(-1), and a 60% increase when irradiance was increased from 200 μmol mol(-1) to 1100 μmol mol(-1) photosynthetic photon flux density (PPFD). The relative contribution of respiration and photorespiration to overall (13)C discrimination was also estimated. Not taking this contribution into account may lead to a 50% underestimation of g(m) but had little effect on the CO(2)- and irradiance-induced changes. In conclusion, (i) the observed responses of g(m) to CO(2) and irradiance were not artefactual; (ii) the respiratory term is important to assess absolute values of g(m) but has no impact on the responses to CO(2) and PPFD; and (iii) increasing irradiance and reducing the CO(2) mole fraction results in rapid increases in g(m) in Eucalyptus seedlings.
Collapse
Affiliation(s)
- Cyril Douthe
- INRA, Unité Mixte de Recherches 1147 ‘Ecologie et Ecophysiologie Forestières’, F-54280 Champenoux, France
- Nancy Université, Unité Mixte de Recherches 1147 ‘Ecologie et Ecophysiologie Forestières’, Faculté des Sciences, F-54500 Vandoeuvre, France
- University of Sydney, School of Biological Sciences, Heydon-Laurence Building, A08, The University of Sydney, NSW 2006, Australia
| | - Erwin Dreyer
- INRA, Unité Mixte de Recherches 1147 ‘Ecologie et Ecophysiologie Forestières’, F-54280 Champenoux, France
- Nancy Université, Unité Mixte de Recherches 1147 ‘Ecologie et Ecophysiologie Forestières’, Faculté des Sciences, F-54500 Vandoeuvre, France
| | - Daniel Epron
- INRA, Unité Mixte de Recherches 1147 ‘Ecologie et Ecophysiologie Forestières’, F-54280 Champenoux, France
- Nancy Université, Unité Mixte de Recherches 1147 ‘Ecologie et Ecophysiologie Forestières’, Faculté des Sciences, F-54500 Vandoeuvre, France
| | - Charles R. Warren
- University of Sydney, School of Biological Sciences, Heydon-Laurence Building, A08, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
46
|
Ubierna N, Marshall JD. Estimation of canopy average mesophyll conductance using δ(13) C of phloem contents. PLANT, CELL & ENVIRONMENT 2011; 34:1521-1535. [PMID: 21554329 DOI: 10.1111/j.1365-3040.2011.02350.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Conductance to CO(2) inside leaves, known as mesophyll conductance (g(m)), imposes large limitations on photosynthesis. Because g(m) is difficult to quantify, it is often neglected in calculations of (13)C photosynthetic discrimination. The 'soluble sugar method' estimates g(m) via differences between observed photosynthetic discrimination, calculated from the δ(13)C of soluble sugars, and discrimination when g(m) is infinite. We expand upon this approach and calculate a photosynthesis-weighted average for canopy mesophyll conductance ((c) g(m)) using δ(13)C of stem phloem contents. We measured gas exchange at three canopy positions and collected stem phloem contents in mature trees of three conifer species (Pseudotsuga menziesii, Thuja plicata and Larix occidentalis). We generated species-specific and seasonally variable estimates of (c)g(m) . We found that (c)g(m) was significantly different among species (0.41, 0.22 and 0.09 mol m(-2) s(-1) for Larix, Pseudotsuga and Thuja, respectively), but was similar throughout the season. Ignoring respiratory and photorespiratory fractionations ((c)Δ(ef)) resulted in ≈30% underestimation of (c)g(m) in Larix and Pseudotsuga, but was innocuous in Thuja. Substantial errors (~1-4‰) in photosynthetic discrimination calculations were introduced by neglecting (c)g(m) and (c)Δ(ef) . Our method is easy to apply and cost-effective, captures species variation and would have captured seasonal variation had it existed. The method provides an average canopy value, which makes it suitable for parameterization of canopy-scale models of photosynthesis, even in tall trees.
Collapse
Affiliation(s)
- Nerea Ubierna
- Department of Forest Resources, University of Idaho, Moscow, ID 83844-1133, USA.
| | | |
Collapse
|
47
|
Scalon SPQ, Pereira HHG, Glaeser DF, Silva JJ, Betoni R, Mussury RM. Physio-anatomic aspects on the initial growth of Guazuma ulmifolia Lam. seedlings. AN ACAD BRAS CIENC 2011; 83:695-703. [PMID: 21670888 DOI: 10.1590/s0001-37652011000200027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 05/12/2010] [Indexed: 11/22/2022] Open
Abstract
This paper aimed to evaluate the initial growth of "mutambo" seedlings in different conditions of light intensity and treatments with gibberellic acid (GA). The seedlings were kept under full sun and 50% of shading. Sixty days after the emergence, seedlings were sprayed with: 1) 100 mg L(-1) GA(3); 2) 200 mg L(-1) GA(3); 3) control. At the end of the appraisals, seedlings height under 50% of shading was compared to the height that were growing under full sun with 200 mg L(-1) GA. Stem diameter was lower under shading. Leaf area did not vary among the treatments, but the root system growth was higher under full sun and did not vary among GA levels. The number of stomata, trichomes and epidermal cells on adaxial and abaxial sides was higher under full sun. Total dry masses of leaf and root were highe runder full sun and with 200 mg L(-1) GA application. "Mutambo" seedlings presented a higher initial growth under full sun, although with a lower height, diameter, and lenght of the largest root and total dry masses of leaf and root were higher. A concentration with 200 mg L(-1) promoted a higher growth.
Collapse
|
48
|
André MJ. Modelling 18O2 and 16O2 unidirectional fluxes in plants: I. Regulation of pre-industrial atmosphere. Biosystems 2011; 103:239-51. [DOI: 10.1016/j.biosystems.2010.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 11/30/2022]
|
49
|
Schäufele R, Santrucek J, Schnyder H. Dynamic changes of canopy-scale mesophyll conductance to CO₂ diffusion of sunflower as affected by CO₂ concentration and abscisic acid. PLANT, CELL & ENVIRONMENT 2011; 34:127-136. [PMID: 21029117 DOI: 10.1111/j.1365-3040.2010.02230.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Leaf-level measurements have shown that mesophyll conductance (g(m)) can vary rapidly in response to CO₂ and other environmental factors, but similar studies at the canopy-scale are missing. Here, we report the effect of short-term variation of CO₂ concentration on canopy-scale g(m) and other CO₂ exchange parameters of sunflower (Helianthus annuus L.) stands in the presence and absence of abscisic acid (ABA) in their nutrient solution. g(m) was estimated from gas exchange and on-line carbon isotope discrimination (Δ(obs)) in a ¹³CO₂/¹²CO₂) gas exchange mesocosm. The isotopic contribution of (photo)respiration to stand-scale Δ(obs) was determined with the experimental approach of Tcherkez et al. Without ABA, short-term exposures to different CO₂ concentrations (C(a) 100 to 900 µmol mol⁻¹) had little effect on canopy-scale g(m) . But, addition of ABA strongly altered the CO₂-response: g(m) was high (approx. 0.5 mol CO₂ m⁻² s⁻¹) at C(a) <200 µmol mol⁻¹ and decreased to <0.1 mol CO₂ m⁻² s⁻¹ at C(a) >400 µmol mol⁻¹. In the absence of ABA, the contribution of (photo)respiration to stand-scale Δ(obs) was high at low C(a) (7.2 ‰) and decreased to <2 ‰ at C(a) > 400 µmol mol⁻¹. Treatment with ABA halved this effect at all C(a) .
Collapse
Affiliation(s)
- Rudi Schäufele
- Lehrstuhl für Grünlandlehre, Technische Universität München, Alte Akademie 12, D-85350, Freising-Weihenstephan, Germany.
| | | | | |
Collapse
|
50
|
Misson L, Limousin JM, Rodriguez R, Letts MG. Leaf physiological responses to extreme droughts in Mediterranean Quercus ilex forest. PLANT, CELL & ENVIRONMENT 2010; 33:1898-1910. [PMID: 20561253 DOI: 10.1111/j.1365-3040.2010.02193.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Global climate change is expected to result in more frequent and intense droughts in the Mediterranean region. To understand forest response to severe drought, we used a mobile rainfall shelter to examine the impact of spring and autumn rainfall exclusion on stomatal (S(L) ) and non-stomatal (NS(L) ) limitations of photosynthesis in a Quercus ilex ecosystem. Spring rainfall exclusion, carried out during increasing atmospheric demand and leaf development, had a larger impact on photosynthesis than autumn exclusion, conducted at a time of mature foliage and decreasing vapour pressure deficit. The relative importance of NS(L) increased with drought intensity. S(L) and NS(L) were equal once total limitation (T(L) ) reached 60%, but NS(L) greatly exceeded S(L) during severe drought, with 76% NS(L) partitioned equally between mesophyll conductance (MC(L) ) and biochemical (B(L) ) limitations when T(L) reached 100%. Rainfall exclusion altered the relationship between leaf water potential and photosynthesis. In response to severe mid-summer drought stress, A(n) and V(cmax) were 75% and 72% lower in the spring exclusion plot than in the control plot at the same pre-dawn leaf water potential. Our results revealed changes in the relationship between photosynthetic parameters and water stress that are not currently included in drought parameterizations for modelling applications.
Collapse
Affiliation(s)
- Laurent Misson
- DREAM, CEFE, CNRS, UMR 5175, 1919 route de Mende, F-34293 Montpellier, Cedex 5, France
| | | | | | | |
Collapse
|