1
|
Adim H, Fahmideh L, Fakheri BA, Zarrini HN, Sasanfar H. iTRAQ-based quantitative proteomic analysis of herbicide stress in Avena ludoviciana Durieu. Sci Rep 2025; 15:577. [PMID: 39747563 PMCID: PMC11696301 DOI: 10.1038/s41598-024-84326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Winter wild oat (Avena sterilis subsp. ludoviciana (Durieu) Gillet & Magne) has been considered the most common and troublesome weed in wheat fields of Iran. The widespread and continuous use of herbicides has led to the emergence and development of resistant biotypes in A. ludoviciana, making it one of the most important herbicide-resistant weeds within field crops. Considering the importance of understanding the mechanisms underlying resistance to herbicides and identifying key proteins involved in the response to Acetyl-coenzyme A carboxylase (ACCase) and Acetolactate synthase (ALS) inhibitor herbicides in A. ludoviciana. This study aimed to identify the proteins involved in herbicide resistance in A. ludoviciana using the Isobaric Tags for Relative and Absolute Quantification (iTRAQ) technique. In this study, a total of 18,313 peptides were identified with ≤ 0.01 FDR, which could be classified into 484 protein groups. Additionally, 138 differentially expressed proteins (DEPs) were identified in the resistant biotype (R), while 93 DEPs were identified in the susceptible biotype (S). Gene Ontology (GO) analysis revealed that these DEPs mainly consisted of proteins related to photosynthesis, respiration, amino acid synthesis and translation, secondary metabolite biosynthesis, defense proteins, and detoxification. Furthermore, enrichment pathway analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) showed that the most important pathways included metabolic pathways, carbohydrate metabolism, secondary metabolites, amino acid synthesis, and photosynthesis. The function of DEPs indicated that some proteins, such as cytochrome P450, play a direct role in herbicide detoxification. Overall, the results of this study demonstrated the complex response of the resistant biotype to herbicides and its ability to increase antioxidant capacity through up-regulated detoxification proteins, particularly cytochrome P450 (Q6YSB4), and defense proteins, particularly superoxide dismutase (Q0DRV6) and polyamine oxidase (Q7XR46). In the resistant A. ludoviciana populations, in addition to the activation of enzymatic and non-enzymatic defense systems, other strategies such as reduced photosynthesis and respiration, increased transcription and translation activity, enhanced lipid metabolism, regulation of cellular processes and homeostasis, and up-regulation of proteins associated with signaling and ion channels play a role in resistance to herbicide. Overall these findings provide new insights into the role of different proteins in resistance to herbicides and contribute to a comprehensive understanding of herbicide resistance in A. ludoviciana.
Collapse
Affiliation(s)
- Hossein Adim
- Plant Protection Research Department, North Khorasan Agricultural and Natural Resources Research and Education Center, AREEO, Bojnurd, Iran.
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran.
| | - Leila Fahmideh
- Department of Plant Breeding and Biotechnology, Plant Production Faculty, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| | - Barat Ali Fakheri
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Zabol, Zabol, Iran
| | - Hamid Najafi Zarrini
- Department of Plant Breeding and Biotechnology, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Hamidreza Sasanfar
- Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran
| |
Collapse
|
2
|
Theeuwen TPJM, Wijfjes RY, Dorussen D, Lawson AW, Lind J, Jin K, Boekeloo J, Tijink D, Hall D, Hanhart C, Becker FFM, van Eeuwijk FA, Kramer DM, Wijnker E, Harbinson J, Koornneef M, Aarts MGM. Species-wide inventory of Arabidopsis thaliana organellar variation reveals ample phenotypic variation for photosynthetic performance. Proc Natl Acad Sci U S A 2024; 121:e2414024121. [PMID: 39602263 PMCID: PMC11626173 DOI: 10.1073/pnas.2414024121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Efforts to improve photosynthetic performance are increasingly employing natural genetic variation. However, genetic variation in the organellar genomes (plasmotypes) is often disregarded due to the difficulty of studying the plasmotypes and the lack of evidence that this is a worthwhile investment. Here, we systematically phenotyped plasmotype diversity using Arabidopsis thaliana as a model species. A reanalysis of whole-genome resequencing data of 1,541 representative accessions shows that the genetic diversity among the mitochondrial genomes is eight times lower than among the chloroplast genomes. Plasmotype diversity of the accessions divides the species into two major phylogenetic clusters, within which highly divergent subclusters are distinguished. We combined plasmotypes from 60 A. thaliana accessions with the nuclear genomes (nucleotypes) of four A. thaliana accessions to create a panel of 232 cytonuclear genotypes (cybrids). The cybrid plants were grown in a range of different light and temperature conditions and phenotyped using high-throughput phenotyping platforms. Analysis of the phenotypes showed that several plasmotypes alone or in interaction with the nucleotypes have significant effects on photosynthesis and that the effects are highly dependent on the environment. Moreover, we introduce Plasmotype Association Studies (PAS) as a method to reveal plasmotypic effects. Within A. thaliana, several organellar variants can influence photosynthetic phenotypes, which emphasizes the valuable role this variation has on improving photosynthetic performance. The increasing feasibility of producing cybrids in various species calls for further research into how these phenotypes may support breeding goals in crop species.
Collapse
Affiliation(s)
- Tom P. J. M. Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Raúl Y. Wijfjes
- Bioinformatics Group, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Delfi Dorussen
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Aaron W. Lawson
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jorrit Lind
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Kaining Jin
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Janhenk Boekeloo
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Dillian Tijink
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David Hall
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Corrie Hanhart
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Frank F. M. Becker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Fred A. van Eeuwijk
- Biometris, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - David M. Kramer
- Michigan State University Department of Energy Plant Research Lab, Michigan State University, East Lansing, MI48824
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University & Research, Wageningen6708 WE, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| | - Mark G. M. Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen6708 PB, The Netherlands
| |
Collapse
|
3
|
June V, Song X, Chen ZJ. Imprinting but not cytonuclear interactions determines seed size heterosis in Arabidopsis hybrids. PLANT PHYSIOLOGY 2024; 195:1214-1228. [PMID: 38319651 PMCID: PMC11142339 DOI: 10.1093/plphys/kiae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 02/07/2024]
Abstract
The parent-of-origin effect on seeds can result from imprinting (unequal expression of paternal and maternal alleles) or combinational effects between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding factors, we produced cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in Arabidopsis (Arabidopsis thaliana) ecotypes Col-0 and C24. These CNS lines differed only in the nuclear genome (imprinting) or cytoplasm. The CNS reciprocal hybrids with the same cytoplasm displayed ∼20% seed size difference, whereas the seed size was similar between the reciprocal hybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection identified 104 maternally expressed genes (MEGs) and 90 paternally expressed genes (PEGs). These imprinted genes were involved in pectin catabolism and cell wall modification in the endosperm. Homeodomain Glabrous9 (HDG9), an epiallele and one of 11 cross-specific imprinted genes, affected seed size. In the embryo, there were a handful of imprinted genes in the CNS hybrids but only 1 was expressed at higher levels than in the endosperm. AT4G13495 was found to encode a long-noncoding RNA (lncRNA), but no obvious seed phenotype was observed in lncRNA knockout lines. Nuclear RNA Polymerase D1 (NRPD1), encoding the largest subunit of RNA Pol IV, was involved in the biogenesis of small interfering RNAs. Seed size and embryos were larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross, supporting a role of the maternal NRPD1 allele in seed development. Although limited ecotypes were tested, these results suggest that imprinting and the maternal NRPD1-mediated small RNA pathway play roles in seed size heterosis in plant hybrids.
Collapse
Affiliation(s)
- Viviana June
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiaoya Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
4
|
Jurado-Ruiz F, Nguyen TP, Peller J, Aranzana MJ, Polder G, Aarts MGM. LeTra: a leaf tracking workflow based on convolutional neural networks and intersection over union. PLANT METHODS 2024; 20:11. [PMID: 38233879 PMCID: PMC10795293 DOI: 10.1186/s13007-024-01138-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND The study of plant photosynthesis is essential for productivity and yield. Thanks to the development of high-throughput phenotyping (HTP) facilities, based on chlorophyll fluorescence imaging, photosynthetic traits can be measured in a reliable, reproducible and efficient manner. In most state-of-the-art HTP platforms, these traits are automatedly analyzed at individual plant level, but information at leaf level is often restricted by the use of manual annotation. Automated leaf tracking over time is therefore highly desired. Methods for tracking individual leaves are still uncommon, convoluted, or require large datasets. Hence, applications and libraries with different techniques are required. New phenotyping platforms are initiated now more frequently than ever; however, the application of advanced computer vision techniques, such as convolutional neural networks, is still growing at a slow pace. Here, we provide a method for leaf segmentation and tracking through the fine-tuning of Mask R-CNN and intersection over union as a solution for leaf tracking on top-down images of plants. We also provide datasets and code for training and testing on both detection and tracking of individual leaves, aiming to stimulate the community to expand the current methodologies on this topic. RESULTS We tested the results for detection and segmentation on 523 Arabidopsis thaliana leaves at three different stages of development from which we obtained a mean F-score of 0.956 on detection and 0.844 on segmentation overlap through the intersection over union (IoU). On the tracking side, we tested nine different plants with 191 leaves. A total of 161 leaves were tracked without issues, accounting to a total of 84.29% correct tracking, and a Higher Order Tracking Accuracy (HOTA) of 0.846. In our case study, leaf age and leaf order influenced photosynthetic capacity and photosynthetic response to light treatments. Leaf-dependent photosynthesis varies according to the genetic background. CONCLUSION The method provided is robust for leaf tracking on top-down images. Although one of the strong components of the method is the low requirement in training data to achieve a good base result (based on fine-tuning), most of the tracking issues found could be solved by expanding the training dataset for the Mask R-CNN model.
Collapse
Affiliation(s)
- Federico Jurado-Ruiz
- Center for Research in Agricultural Genomics (CRAG), Cerdanyola, 08193, Barcelona, Spain
| | - Thu-Phuong Nguyen
- Laboratory of Genetics, Wageningen University and Research (WUR), Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Joseph Peller
- Greenhouse Horticulture, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - María José Aranzana
- Center for Research in Agricultural Genomics (CRAG), Cerdanyola, 08193, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Gerrit Polder
- Greenhouse Horticulture, Wageningen University and Research (WUR), Wageningen, The Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University and Research (WUR), Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
5
|
June V, Song X, Jeffrey Chen Z. Imprinting but not cytonuclear interactions affects parent-of-origin effect on seed size in Arabidopsis hybrids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557997. [PMID: 37745544 PMCID: PMC10516054 DOI: 10.1101/2023.09.15.557997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The parent-of-origin effect on seed size can result from imprinting or a combinational effect between cytoplasmic and nuclear genomes, but their relative contributions remain unknown. To discern these confounding effects, we generated cytoplasmic-nuclear substitution (CNS) lines using recurrent backcrossing in the Arabidopsis thaliana ecotypes Col-0 and C24. These CNS lines differ only in the nuclear genome (imprinting) or in the cytoplasm. The CNS reciprocal hybrids with the same cytoplasm display a ~20% seed size difference as observed in the conventional hybrids. However, seed size is similar between the reciprocal cybrids with fixed imprinting. Transcriptome analyses in the endosperm of CNS hybrids using laser-capture microdissection have identified 104 maternally expressed genes (MEGs) and 90 paternally-expressed genes (PEGs). These imprinted genes are involved in pectin catabolism and cell wall modification in the endosperm. HDG9, an epiallele and one of 11 cross-specific imprinted genes, controls seed size. In the embryo, a handful of imprinted genes is found in the CNS hybrids but only one is expressed higher in the embryo than endosperm. AT4G13495 encodes a long-noncoding RNA (lncRNA), but no obvious seed phenotype is observed in the lncRNA knockout lines. NRPD1, encoding the largest subunit of RNA Pol IV, is involved in the biogenesis of small interfering RNAs. Seed size and embryo is larger in the cross using nrpd1 as the maternal parent than in the reciprocal cross. In spite of limited ecotypes tested, these results suggest potential roles of imprinting and NRPD1-mediated small RNA pathway in seed size variation in hybrids.
Collapse
Affiliation(s)
- Viviana June
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Xiaoya Song
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Z. Jeffrey Chen
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
6
|
Meyer RC, Weigelt-Fischer K, Tschiersch H, Topali G, Altschmied L, Heuermann MC, Knoch D, Kuhlmann M, Zhao Y, Altmann T. Dynamic growth QTL action in diverse light environments: characterization of light regime-specific and stable QTL in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5341-5362. [PMID: 37306093 DOI: 10.1093/jxb/erad222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 06/10/2023] [Indexed: 06/13/2023]
Abstract
Plant growth is a complex process affected by a multitude of genetic and environmental factors and their interactions. To identify genetic factors influencing plant performance under different environmental conditions, vegetative growth was assessed in Arabidopsis thaliana cultivated under constant or fluctuating light intensities, using high-throughput phenotyping and genome-wide association studies. Daily automated non-invasive phenotyping of a collection of 382 Arabidopsis accessions provided growth data during developmental progression under different light regimes at high temporal resolution. Quantitative trait loci (QTL) for projected leaf area, relative growth rate, and PSII operating efficiency detected under the two light regimes were predominantly condition-specific and displayed distinct temporal activity patterns, with active phases ranging from 2 d to 9 d. Eighteen protein-coding genes and one miRNA gene were identified as potential candidate genes at 10 QTL regions consistently found under both light regimes. Expression patterns of three candidate genes affecting projected leaf area were analysed in time-series experiments in accessions with contrasting vegetative leaf growth. These observations highlight the importance of considering both environmental and temporal patterns of QTL/allele actions and emphasize the need for detailed time-resolved analyses under diverse well-defined environmental conditions to effectively unravel the complex and stage-specific contributions of genes affecting plant growth processes.
Collapse
Affiliation(s)
- Rhonda C Meyer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Kathleen Weigelt-Fischer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Henning Tschiersch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Georgia Topali
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Lothar Altschmied
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Marc C Heuermann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Dominic Knoch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Markus Kuhlmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Yusheng Zhao
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Breeding Research, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| | - Thomas Altmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Department of Molecular Genetics, OT Gatersleben, Corrensstraße 3, D-06466 Seeland, Germany
| |
Collapse
|
7
|
Gherekhloo J, Hassanpour-bourkheili S, Hejazirad P, Golmohammadzadeh S, Vazquez-Garcia JG, De Prado R. Herbicide Resistance in Phalaris Species: A Review. PLANTS 2021; 10:plants10112248. [PMID: 34834611 PMCID: PMC8621942 DOI: 10.3390/plants10112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/26/2022]
Abstract
Weeds, such as Phalaris spp., can drastically reduce the yield of crops, and the evolution of resistance to herbicides has further exacerbated this issue. Thus far, 23 cases of herbicide resistance in 11 countries have been reported in Phalaris spp., including Phalaris minor Retz., Phalaris paradoxa L., and Phalaris brachystachys L., for photosystem II (PS-II), acetyl-CoA carboxylase (ACCase), and acetolactate synthase (ALS)-inhibiting herbicides. This paper will first review the cases of herbicide resistance reported in P. minor, P. paradoxa, and P. brachystachys. Then, the mechanisms of resistance in Phalaris spp. are discussed in detail. Finally, the fitness cost of herbicide resistance and the literature on the management of herbicide-resistant weeds from these species are reviewed.
Collapse
Affiliation(s)
- Javid Gherekhloo
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
- Correspondence: (J.G.); (R.D.P.)
| | - Saeid Hassanpour-bourkheili
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
| | - Parvin Hejazirad
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
| | - Sajedeh Golmohammadzadeh
- Department of Agronomy, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan 49189-43464, Iran; (S.H.-b.); (P.H.); (S.G.)
| | - Jose G. Vazquez-Garcia
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14071 Cordoba, Spain;
| | - Rafael De Prado
- Department of Agricultural Chemistry, Edaphology and Microbiology, University of Cordoba, 14071 Cordoba, Spain;
- Correspondence: (J.G.); (R.D.P.)
| |
Collapse
|
8
|
The Arabidopsis Accessions Selection Is Crucial: Insight from Photosynthetic Studies. Int J Mol Sci 2021; 22:ijms22189866. [PMID: 34576029 PMCID: PMC8465966 DOI: 10.3390/ijms22189866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Natural genetic variation in photosynthesis is strictly associated with the remarkable adaptive plasticity observed amongst Arabidopsis thaliana accessions derived from environmentally distinct regions. Exploration of the characteristic features of the photosynthetic machinery could reveal the regulatory mechanisms underlying those traits. In this study, we performed a detailed characterisation and comparison of photosynthesis performance and spectral properties of the photosynthetic apparatus in the following selected Arabidopsis thaliana accessions commonly used in laboratories as background lines: Col-0, Col-1, Col-2, Col-8, Ler-0, and Ws-2. The main focus was to distinguish the characteristic disparities for every accession in photosynthetic efficiency that could be accountable for their remarkable plasticity to adapt. The biophysical and biochemical analysis of the thylakoid membranes in control conditions revealed differences in lipid-to-protein contribution, Chlorophyll-to-Carotenoid ratio (Chl/Car), and xanthophyll cycle pigment distribution among accessions. We presented that such changes led to disparities in the arrangement of the Chlorophyll-Protein complexes, the PSI/PSII ratio, and the lateral mobility of the thylakoid membrane, with the most significant aberrations detected in the Ler-0 and Ws-2 accessions. We concluded that selecting an accession suitable for specific research on the photosynthetic process is essential for optimising the experiment.
Collapse
|
9
|
Flood PJ, Theeuwen TPJM, Schneeberger K, Keizer P, Kruijer W, Severing E, Kouklas E, Hageman JA, Wijfjes R, Calvo-Baltanas V, Becker FFM, Schnabel SK, Willems LAJ, Ligterink W, van Arkel J, Mumm R, Gualberto JM, Savage L, Kramer DM, Keurentjes JJB, van Eeuwijk F, Koornneef M, Harbinson J, Aarts MGM, Wijnker E. Reciprocal cybrids reveal how organellar genomes affect plant phenotypes. NATURE PLANTS 2020; 6:13-21. [PMID: 31932677 DOI: 10.1038/s41477-019-0575-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 11/25/2019] [Indexed: 05/21/2023]
Abstract
Assessment of the impact of variation in chloroplast and mitochondrial DNA (collectively termed the plasmotype) on plant phenotypes is challenging due to the difficulty in separating their effect from nuclear-derived variation (the nucleotype). Haploid-inducer lines can be used as efficient plasmotype donors to generate new plasmotype-nucleotype combinations (cybrids)1. We generated a panel comprising all possible cybrids of seven Arabidopsis thaliana accessions and extensively phenotyped these lines for 1,859 phenotypes under both stable and fluctuating conditions. We show that natural variation in the plasmotype results in both additive and epistatic effects across all phenotypic categories. Plasmotypes that induce more additive phenotypic changes also cause more epistatic effects, suggesting a possible common basis for both additive and epistatic effects. On average, epistatic interactions explained twice as much of the variance in phenotypes as additive plasmotype effects. The impact of plasmotypic variation was also more pronounced under fluctuating and stressful environmental conditions. Thus, the phenotypic impact of variation in plasmotypes is the outcome of multi-level nucleotype-plasmotype-environment interactions and, as such, the plasmotype is likely to serve as a reservoir of variation that is predominantly exposed under certain conditions. The production of cybrids using haploid inducers is a rapid and precise method for assessment of the phenotypic effects of natural variation in organellar genomes. It will facilitate efficient screening of unique nucleotype-plasmotype combinations to both improve our understanding of natural variation in these combinations and identify favourable combinations to enhance plant performance.
Collapse
Affiliation(s)
- Pádraic J Flood
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
- Horticulture and Product Physiology, Wageningen University & Research, Wageningen, the Netherlands.
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| | - Tom P J M Theeuwen
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
| | - Korbinian Schneeberger
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Paul Keizer
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Willem Kruijer
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Evangelos Kouklas
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Jos A Hageman
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Raúl Wijfjes
- Bioinformatics Group, Wageningen, the Netherlands
| | - Vanesa Calvo-Baltanas
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Frank F M Becker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Sabine K Schnabel
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Leo A J Willems
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Wilco Ligterink
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Jeroen van Arkel
- Bioscience, Wageningen University & Research, Wageningen, the Netherlands
| | - Roland Mumm
- Bioscience, Wageningen University & Research, Wageningen, the Netherlands
| | - José M Gualberto
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Linda Savage
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - David M Kramer
- MSU-DOE Plant Research Lab, Michigan State University, East Lansing, MI, USA
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Fred van Eeuwijk
- Biometris, Wageningen University & Research, Wageningen, the Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jeremy Harbinson
- Horticulture and Product Physiology, Wageningen University & Research, Wageningen, the Netherlands
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands
| | - Erik Wijnker
- Laboratory of Genetics, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
10
|
Hamdani S, Wang H, Zheng G, Perveen S, Qu M, Khan N, Khan W, Jiang J, Li M, Liu X, Zhu X, Chu C, Zhu XG. Genome-wide association study identifies variation of glucosidase being linked to natural variation of the maximal quantum yield of photosystem II. PHYSIOLOGIA PLANTARUM 2019; 166:105-119. [PMID: 30834537 DOI: 10.1111/ppl.12957] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/06/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
The maximum quantum yield of photosystem II (as reflected by variable to maximum chlorophyll a fluorescence, Fv /Fm ) is regarded as one of the most important photosynthetic parameters. The genetic basis underlying natural variation in Fv /Fm , which shows low level of variations in plants under non-stress conditions, is not easy to be exploited using the conventional gene cloning approaches. Thus, in order to answer this question, we have followed another strategy: we used genome-wide association study (GWAS) and transgenic analysis in a rice mini-core collection. We report here that four single-nucleotide polymorphisms, located in the promoter region of β-glucosidase 5 (BGlu-5), are associated with observed variation in Fv /Fm . Indeed, our transgenic analysis showed a good correlation between BGlu-5 and Fv /Fm . Thus, our work demonstrates the feasibility of using GWAS to study natural variation in Fv /Fm , suggesting that cis-element polymorphism, affecting the BGlu-5 expression level, may, indirectly, contribute to Fv /Fm variation in rice through the gibberellin signaling pathway. Further research is needed to understand the mechanism of our novel observation.
Collapse
Affiliation(s)
- Saber Hamdani
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongru Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guangyong Zheng
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shahnaz Perveen
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mingnan Qu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Naveed Khan
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Waqasuddin Khan
- Jamil-ur-Rahman Center for Genome Research, DR. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Jianjun Jiang
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ming Li
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xinyu Liu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xiaocen Zhu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin-Guang Zhu
- Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
11
|
van Bezouw RFHM, Keurentjes JJB, Harbinson J, Aarts MGM. Converging phenomics and genomics to study natural variation in plant photosynthetic efficiency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:112-133. [PMID: 30548574 PMCID: PMC6850172 DOI: 10.1111/tpj.14190] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 11/27/2018] [Accepted: 11/28/2018] [Indexed: 05/18/2023]
Abstract
In recent years developments in plant phenomic approaches and facilities have gradually caught up with genomic approaches. An opportunity lies ahead to dissect complex, quantitative traits when both genotype and phenotype can be assessed at a high level of detail. This is especially true for the study of natural variation in photosynthetic efficiency, for which forward genetics studies have yielded only a little progress in our understanding of the genetic layout of the trait. High-throughput phenotyping, primarily from chlorophyll fluorescence imaging, should help to dissect the genetics of photosynthesis at the different levels of both plant physiology and development. Specific emphasis should be directed towards understanding the acclimation of the photosynthetic machinery in fluctuating environments, which may be crucial for the identification of genetic variation for relevant traits in food crops. Facilities should preferably be designed to accommodate phenotyping of photosynthesis-related traits in such environments. The use of forward genetics to study the genetic architecture of photosynthesis is likely to lead to the discovery of novel traits and/or genes that may be targeted in breeding or bio-engineering approaches to improve crop photosynthetic efficiency. In the near future, big data approaches will play a pivotal role in data processing and streamlining the phenotype-to-gene identification pipeline.
Collapse
Affiliation(s)
- Roel F. H. M. van Bezouw
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| | - Joost J. B. Keurentjes
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| | - Jeremy Harbinson
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenThe Netherlands
| |
Collapse
|
12
|
Erinle KO, Jiang Z, Ma B, Ur-Rehman K, Shahla A, Zhang Y. Physiological and molecular responses of pearl millet seedling to atrazine stress. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2018; 20:343-351. [PMID: 29584472 DOI: 10.1080/15226514.2017.1393385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pearl millet has been recommended beneficial for several therapeutic purposes. However, little is known of the physiological responses to abiotic stressors, especially of atrazine. In order to elucidate the physiological and molecular responses of pearl millet to atrazine stress, we studied the response of various biomarkers under increasing herbicide concentrations (0, 5, 10, and 50 mg/kg). We also quantified the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) (H2O2 and O2•-) produced in the leaves to evaluate the extent of oxidative damage. Increasing atrazine concentrations significantly increased ROS and MDA production in the plant leaves. Ascorbate peroxidase (APX) and peroxidase (POD) activities increased, while catalase (CAT) and superoxide dismutase activities reduced with increasing atrazine concentrations. Generally, atrazine applied at 50 mg/kg suppressed chlorophyll contents, whereas, chlorophyll (a/b) ratio was increased. Atrazine applied at 50 mg/kg significantly suppressed antioxidant gene expressions to the lowest. The APX gene showed overall low response to the atrazine treatments. The chloroplastic psbA gene showed highest expression with 10 mg/kg atrazine, whereas atrazine at 50 mg/kg significantly suppressed the gene expression to its lowest. Pearl millet was able to suppress oxidative stress under low atrazine levels, but high atrazine concentration could induce more oxidative damage.
Collapse
Affiliation(s)
- Kehinde O Erinle
- a School of Resources and Environment, Northeast Agricultural University , Harbin , PR China
- b Waite Institute, University of Adelaide , PMB 5005 South Australia , Australia
| | - Zhao Jiang
- a School of Resources and Environment, Northeast Agricultural University , Harbin , PR China
| | - Bingbing Ma
- a School of Resources and Environment, Northeast Agricultural University , Harbin , PR China
| | - Khalil Ur-Rehman
- a School of Resources and Environment, Northeast Agricultural University , Harbin , PR China
| | - Andleeb Shahla
- a School of Resources and Environment, Northeast Agricultural University , Harbin , PR China
| | - Ying Zhang
- a School of Resources and Environment, Northeast Agricultural University , Harbin , PR China
| |
Collapse
|
13
|
de Oliveira Silva FM, Lichtenstein G, Alseekh S, Rosado-Souza L, Conte M, Suguiyama VF, Lira BS, Fanourakis D, Usadel B, Bhering LL, DaMatta FM, Sulpice R, Araújo WL, Rossi M, de Setta N, Fernie AR, Carrari F, Nunes-Nesi A. The genetic architecture of photosynthesis and plant growth-related traits in tomato. PLANT, CELL & ENVIRONMENT 2018; 41:327-341. [PMID: 29044606 DOI: 10.1111/pce.13084] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 09/22/2017] [Accepted: 09/23/2017] [Indexed: 05/22/2023]
Abstract
To identify genomic regions involved in the regulation of fundamental physiological processes such as photosynthesis and respiration, a population of Solanum pennellii introgression lines was analyzed. We determined phenotypes for physiological, metabolic, and growth related traits, including gas exchange and chlorophyll fluorescence parameters. Data analysis allowed the identification of 208 physiological and metabolic quantitative trait loci with 33 of these being associated to smaller intervals of the genomic regions, termed BINs. Eight BINs were identified that were associated with higher assimilation rates than the recurrent parent M82. Two and 10 genomic regions were related to shoot and root dry matter accumulation, respectively. Nine genomic regions were associated with starch levels, whereas 12 BINs were associated with the levels of other metabolites. Additionally, a comprehensive and detailed annotation of the genomic regions spanning these quantitative trait loci allowed us to identify 87 candidate genes that putatively control the investigated traits. We confirmed 8 of these at the level of variance in gene expression. Taken together, our results allowed the identification of candidate genes that most likely regulate photosynthesis, primary metabolism, and plant growth and as such provide new avenues for crop improvement.
Collapse
Affiliation(s)
| | - Gabriel Lichtenstein
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Saleh Alseekh
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | | | - Bruno Silvestre Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Dimitrios Fanourakis
- Department of Viticulture, Floriculture, Vegetable Crops and Plant Protection, GR, 71307, Heraklion, Greece
| | - Björn Usadel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074, Aachen, Germany
- Forschungszentrum Jülich, IBG-2 Plant Sciences, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
| | - Leonardo Lopes Bhering
- Departamento de Biologia Geral, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Fábio M DaMatta
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, Plant & Agribiosiences, National University of Ireland Galway, H91 TK33, Galway, Ireland
| | - Wagner L Araújo
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, São Paulo, 05508-900, Brazil
| | - Nathalia de Setta
- Universidade Federal do ABC, 09606070, São Bernardo do Campo, São Paulo, Brazil
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría, and Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA, Castelar, Argentina
| | - Adriano Nunes-Nesi
- Max-Planck Partner Group, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
14
|
van Tol N, Rolloos M, Augustijn D, Alia A, de Groot HJ, Hooykaas PJJ, van der Zaal BJ. An Arabidopsis mutant with high operating efficiency of Photosystem II and low chlorophyll fluorescence. Sci Rep 2017; 7:3314. [PMID: 28607440 PMCID: PMC5468348 DOI: 10.1038/s41598-017-03611-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/03/2017] [Indexed: 11/09/2022] Open
Abstract
The overall light energy to biomass conversion efficiency of plant photosynthesis is generally regarded as low. Forward genetic screens in Arabidopsis have yielded very few mutants with substantially enhanced photochemistry. Here, we report the isolation of a novel Arabidopsis mutant with a high operating efficiency of Photosystem II (φPSII) and low chlorophyll fluorescence from a library of lines harboring T-DNA constructs encoding artificial transcription factors. This mutant was named Low Chlorophyll Fluorescence 1 (LCF1). Only a single T-DNA insertion was detected in LCF1, which interrupted the expression of the full length mRNA of the gene At4g36280 (MORC2). We demonstrate that the high φPSII and low levels of chlorophyll fluorescence were due to a decrease in PSII:PSI ratio. Although LCF1 plants had decreased rosette surface area and biomass under normal growth conditions, they contained more starch per gram fresh weight. The growth defect of LCF1 was alleviated by low light and short day conditions, and growth could even be enhanced after a period of dark-induced senescence, showing that the plant can utilize its excess photosynthetic conversion capacity as a resource when needed.
Collapse
Affiliation(s)
- Niels van Tol
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
- BioSolar Cells, P.O. Box 98, 6700 AB, Wageningen, The Netherlands
| | - Martijn Rolloos
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Dieuwertje Augustijn
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - A Alia
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Huub J de Groot
- Leiden Institute of Chemistry, Faculty of Science, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Paul J J Hooykaas
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Bert J van der Zaal
- Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| |
Collapse
|
15
|
Alberto D, Couée I, Sulmon C, Gouesbet G. Root-level exposure reveals multiple physiological toxicity of triazine xenobiotics in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2017; 212:105-114. [PMID: 28282526 DOI: 10.1016/j.jplph.2017.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/23/2017] [Accepted: 01/24/2017] [Indexed: 06/06/2023]
Abstract
Herbicides are pollutants of great concern due to environmental ubiquity resulting from extensive use in modern agriculture and persistence in soil and water. Studies at various spatial scales have also highlighted frequent occurrences of major herbicide breakdown products in the environment. Analysis of plant behavior toward such molecules and their metabolites under conditions of transient or persistent soil pollution is important for toxicity evaluation in the context of environmental risk assessment. In order to understand the mechanisms underlying the action of such environmental contaminants, the model plant Arabidopsis thaliana, which has been shown to be highly responsive to pesticides and other xenobiotics, was confronted with varying levels of the widely-used herbicide atrazine and of two of its metabolites, desethylatrazine and hydroxyatrazine, which are both frequently detected in water streams of agriculturally-intensive areas. After 24h of exposure to varying concentrations covering the range of triazine concentrations detected in the environment, root-level contaminations of atrazine, desethylatrazine and hydroxyatrazine were found to affect early growth and development in various dose-dependent and differential manners. Moreover, these differential effects of atrazine, desethylatrazine and hydroxyatrazine pointed to the involvement of distinct mechanisms directly affecting respiration and root development. The consequences of the identification of additional targets, in addition to the canonical photosystem II target, are discussed in relation with the ecotoxicological assessment of environmental xenobiotic contamination.
Collapse
Affiliation(s)
- Diana Alberto
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Ivan Couée
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| | - Cécile Sulmon
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France.
| | - Gwenola Gouesbet
- Université de Rennes 1, Centre National de la Recherche Scientifique, UMR CNRS 6553 ECOBIO, Campus de Beaulieu, bâtiment 14A, 263 avenue du Général Leclerc, F-35042 Rennes Cedex, France
| |
Collapse
|
16
|
Flood PJ, Hancock AM. The genomic basis of adaptation in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 36:88-94. [PMID: 28242535 DOI: 10.1016/j.pbi.2017.02.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 02/05/2017] [Accepted: 02/12/2017] [Indexed: 06/06/2023]
Abstract
Plants are powerful models for the study of adaptive evolution. Since they are rooted in place, they must directly face environmental insults, making adaptation to local conditions vital. In addition to adaptation to natural conditions, some plant species have held a central role in human subsistence over the past several thousand years. In these species, humans exerted strong selective pressures on traits of agricultural importance. Recently, an increasing number of studies have aimed to identify the genomic basis of adaptation. These studies have provided insights into the mechanisms through which the raw materials of adaptation were introduced as well as the modes of adaptation in wild and domesticated species.
Collapse
Affiliation(s)
- Pádraic J Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Angela M Hancock
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
17
|
|
18
|
Erinle KO, Jiang Z, Ma B, Li J, Chen Y, Ur-Rehman K, Shahla A, Zhang Y. Exogenous calcium induces tolerance to atrazine stress in Pennisetum seedlings and promotes photosynthetic activity, antioxidant enzymes and psbA gene transcripts. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 132:403-12. [PMID: 27391035 DOI: 10.1016/j.ecoenv.2016.06.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/20/2016] [Accepted: 06/20/2016] [Indexed: 05/25/2023]
Abstract
Calcium (Ca) has been reported to lessen oxidative damages in plants by upregulating the activities of antioxidant enzymes. However, atrazine mediated reactive oxygen species (ROS) reduction by Ca is limited. This study therefore investigated the effect of exogenously applied Ca on ROS, antioxidants activity and gene transcripts, the D1 protein (psbA gene), and chlorophyll contents in Pennisetum seedlings pre-treated with atrazine. Atrazine toxicity increased ROS production and enzyme activities (ascorbate peroxidase APX, peroxidase POD, Superoxide dismutase SOD, glutathione-S-transferase GST); but decreased antioxidants (APX, POD, and Cu/Zn SOD) and psbA gene transcripts. Atrazine also decreased the chlorophyll contents, but increased chlorophyll (a/b) ratio. Contrarily, Ca application to atrazine pre-treated seedlings lowered the harmful effects of atrazine by reducing ROS levels, but enhancing the accumulation of total chlorophyll contents. Ca-protected seedlings in the presence of atrazine manifested reduced APX and POD activity, whereas SOD and GST activity was further increased with Ca application. Antioxidant gene transcripts that were down-regulated by atrazine toxicity were up-regulated with the application of Ca. Calcium application also resulted in up-regulation of the D1 protein. In conclusion, ability of calcium to reverse atrazine-induced oxidative damage and calcium regulatory role on GST in Pennisetum was presented.
Collapse
Affiliation(s)
- Kehinde Olajide Erinle
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhao Jiang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Bingbing Ma
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Jinmei Li
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Yukun Chen
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Khalil Ur-Rehman
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Andleeb Shahla
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China
| | - Ying Zhang
- School of Resources & Environment, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
19
|
Flood PJ, van Heerwaarden J, Becker F, de Snoo CB, Harbinson J, Aarts MG. Whole-Genome Hitchhiking on an Organelle Mutation. Curr Biol 2016; 26:1306-11. [DOI: 10.1016/j.cub.2016.03.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 01/22/2016] [Accepted: 03/10/2016] [Indexed: 10/21/2022]
|
20
|
Nunes-Nesi A, Nascimento VDL, de Oliveira Silva FM, Zsögön A, Araújo WL, Sulpice R. Natural genetic variation for morphological and molecular determinants of plant growth and yield. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2989-3001. [PMID: 27012286 DOI: 10.1093/jxb/erw124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Vitor de Laia Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Franklin Magnum de Oliveira Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- National University of Ireland, Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, Galway, Ireland
| |
Collapse
|
21
|
Flood PJ, Kruijer W, Schnabel SK, van der Schoor R, Jalink H, Snel JFH, Harbinson J, Aarts MGM. Phenomics for photosynthesis, growth and reflectance in Arabidopsis thaliana reveals circadian and long-term fluctuations in heritability. PLANT METHODS 2016; 12:14. [PMID: 26884806 PMCID: PMC4754911 DOI: 10.1186/s13007-016-0113-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 01/25/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Recent advances in genome sequencing technologies have shifted the research bottleneck in plant sciences from genotyping to phenotyping. This shift has driven the development of phenomics, high-throughput non-invasive phenotyping technologies. RESULTS We describe an automated high-throughput phenotyping platform, the Phenovator, capable of screening 1440 Arabidopsis plants multiple times per day for photosynthesis, growth and spectral reflectance at eight wavelengths. Using this unprecedented phenotyping capacity, we have been able to detect significant genetic differences between Arabidopsis accessions for all traits measured, across both temporal and environmental scales. The high frequency of measurement allowed us to observe that heritability was not only trait specific, but for some traits was also time specific. CONCLUSIONS Such continuous real-time non-destructive phenotyping will allow detailed genetic and physiological investigations of the kinetics of plant homeostasis and development. The success and ultimate outcome of a breeding program will depend greatly on the genetic variance which is sampled. Our observation of temporal fluctuations in trait heritability shows that the moment of measurement can have lasting consequences. Ultimately such phenomic level technologies will provide more dynamic insights into plant physiology, and the necessary data for the omics revolution to reach its full potential.
Collapse
Affiliation(s)
- Pádraic J. Flood
- />Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
- />Horticulture and Production Physiology, Wageningen University, Wageningen, The Netherlands
- />Department of Plant Breeding and Genetics, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Willem Kruijer
- />Biometris, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Sabine K. Schnabel
- />Biometris, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Rob van der Schoor
- />Greenhouse Horticulture, Wageningen University and Research Centre, Wageningen, The Netherlands
- />PhenoVation BV, Wageningen, The Netherlands
| | - Henk Jalink
- />Greenhouse Horticulture, Wageningen University and Research Centre, Wageningen, The Netherlands
- />PhenoVation BV, Wageningen, The Netherlands
| | - Jan F. H. Snel
- />Greenhouse Horticulture, Wageningen University and Research Centre, Wageningen, The Netherlands
- />Adviesbureau JFH Snel, Wageningen, The Netherlands
| | - Jeremy Harbinson
- />Horticulture and Production Physiology, Wageningen University, Wageningen, The Netherlands
| | - Mark G. M. Aarts
- />Laboratory of Genetics, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
22
|
Rosado-Souza L, Scossa F, Chaves IS, Kleessen S, Salvador LFD, Milagre JC, Finger F, Bhering LL, Sulpice R, Araújo WL, Nikoloski Z, Fernie AR, Nunes-Nesi A. Exploring natural variation of photosynthetic, primary metabolism and growth parameters in a large panel of Capsicum chinense accessions. PLANTA 2015; 242:677-691. [PMID: 26007687 DOI: 10.1007/s00425-015-2332-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/13/2015] [Indexed: 06/04/2023]
Abstract
Collectively, the results presented improve upon the utility of an important genetic resource and attest to a complex genetic basis for differences in both leaf metabolism and fruit morphology between natural populations. Diversity of accessions within the same species provides an alternative method to identify physiological and metabolic traits that have large effects on growth regulation, biomass and fruit production. Here, we investigated physiological and metabolic traits as well as parameters related to plant growth and fruit production of 49 phenotypically diverse pepper accessions of Capsicum chinense grown ex situ under controlled conditions. Although single-trait analysis identified up to seven distinct groups of accessions, working with the whole data set by multivariate analyses allowed the separation of the 49 accessions in three clusters. Using all 23 measured parameters and data from the geographic origin for these accessions, positive correlations between the combined phenotypes and geographic origin were observed, supporting a robust pattern of isolation-by-distance. In addition, we found that fruit set was positively correlated with photosynthesis-related parameters, which, however, do not explain alone the differences in accession susceptibility to fruit abortion. Our results demonstrated that, although the accessions belong to the same species, they exhibit considerable natural intraspecific variation with respect to physiological and metabolic parameters, presenting diverse adaptation mechanisms and being a highly interesting source of information for plant breeders. This study also represents the first study combining photosynthetic, primary metabolism and growth parameters for Capsicum to date.
Collapse
Affiliation(s)
- Laise Rosado-Souza
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Low frequency paternal transmission of plastid genes in Brassicaceae. Transgenic Res 2014; 24:267-77. [PMID: 25343875 DOI: 10.1007/s11248-014-9842-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/14/2014] [Indexed: 11/25/2022]
Abstract
Plastid-encoded genes are maternally inherited in most plant species. Transgenes located on the plastid genome are thus within a natural confinement system, preventing their distribution via pollen. However, a low-frequency leakage of plastids via pollen seems to be universal in plants. Here we report that a very low-level paternal inheritance in Arabidopsis thaliana occurs under field conditions. As pollen donor an Arabidopsis accession (Ler-Ely) was used, which carried a plastid-localized atrazine resistance due to a point mutation in the psbA gene. The frequency of pollen transmission into F1 plants, based on their ability to express the atrazine resistance was 1.9 × 10(-5). We extended our analysis to another cruciferous species, the world-wide cultivated crop Brassica napus. First, we isolated a fertile and stable plastid transformant (T36) in a commercial cultivar of B. napus (cv Drakkar). In T36 the aadA and the bar genes were integrated in the inverted repeat region of the B. napus plastid DNA following particle bombardment of hypocotyl segments. Southern blot analysis confirmed transgene integration and homoplasmy of plastid DNA. Line T36 expressed Basta resistance from the inserted bar gene and this trait was used to estimate the frequency of pollen transmission into F1 plants. A frequency of <2.6 × 10(-5) was determined in the greenhouse. Taken together, our data show a very low rate of paternal plastid transmission in Brassicacea. Moreover, the establishment of plastid transformation in B. napus facilitates a safe use of this important crop plant for plant biotechnology.
Collapse
|
24
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
25
|
El-Soda M, Malosetti M, Zwaan BJ, Koornneef M, Aarts MGM. Genotype×environment interaction QTL mapping in plants: lessons from Arabidopsis. TRENDS IN PLANT SCIENCE 2014; 19:390-8. [PMID: 24491827 DOI: 10.1016/j.tplants.2014.01.001] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 12/23/2013] [Accepted: 01/06/2014] [Indexed: 05/23/2023]
Abstract
Plant growth and development are influenced by the genetic composition of the plant (G), the environment (E), and the interaction between them (G×E). To produce suitable genotypes for multiple environments, G×E should be accounted for and assessed in plant-breeding programs. Here, we review the genetic basis of G×E and its consequence for quantitative trait loci (QTL) mapping in biparental and genome-wide association (GWA) mapping populations. We also consider the implications of G×E for understanding plant fitness trade-offs and evolutionary ecology.
Collapse
Affiliation(s)
- Mohamed El-Soda
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Department of Genetics, Faculty of Agriculture, Cairo University, Giza, 12613, Egypt
| | - Marcos Malosetti
- Biometris - Applied Statistics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands; Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50829 Cologne, Germany
| | - Mark G M Aarts
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
26
|
Flood PJ, Yin L, Herdean A, Harbinson J, Aarts MGM, Spetea C. Natural variation in phosphorylation of photosystem II proteins in Arabidopsis thaliana: is it caused by genetic variation in the STN kinases? Philos Trans R Soc Lond B Biol Sci 2014; 369:20130499. [PMID: 24591726 DOI: 10.1098/rstb.2013.0499] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Reversible phosphorylation of photosystem II (PSII) proteins is an important regulatory mechanism that can protect plants from changes in ambient light intensity and quality. We hypothesized that there is natural variation in this process in Arabidopsis (Arabidopsis thaliana), and that this results from genetic variation in the STN7 and STN8 kinase genes. To test this, Arabidopsis accessions of diverse geographical origins were exposed to two light regimes, and the levels of phospho-D1 and phospho-light harvesting complex II (LHCII) proteins were quantified by western blotting with anti-phosphothreonine antibodies. Accessions were classified as having high, moderate or low phosphorylation relative to Col-0. This variation could not be explained by the abundance of the substrates in thylakoid membranes. In genotypes with atrazine-resistant forms of the D1 protein, low D1 and LHCII protein phosphorylation was observed, which may be due to low PSII efficiency, resulting in reduced activation of the STN kinases. In the remaining genotypes, phospho-D1 levels correlated with STN8 protein abundance in high-light conditions. In growth light, D1 and LHCII phosphorylation correlated with longitude and in the case of LHCII phosphorylation also with temperature variability. This suggests a possible role of natural variation in PSII protein phosphorylation in the adaptation of Arabidopsis to diverse environments.
Collapse
Affiliation(s)
- Pádraic J Flood
- Laboratory of Genetics, Wageningen University, , Wageningen 6708 PB, The Netherlands
| | | | | | | | | | | |
Collapse
|
27
|
Zhang Z, Li G, Gao H, Zhang L, Yang C, Liu P, Meng Q. Characterization of photosynthetic performance during senescence in stay-green and quick-leaf-senescence Zea mays L. inbred lines. PLoS One 2012; 7:e42936. [PMID: 22900069 PMCID: PMC3416754 DOI: 10.1371/journal.pone.0042936] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 07/15/2012] [Indexed: 12/21/2022] Open
Abstract
The net photosynthetic rate, chlorophyll content, chlorophyll fluorescence and 820 nm transmission were investigated to explore the behavior of the photosynthetic apparatus, including light absorption, energy transformation and the photoactivities of photosystem II (PSII) and photosystem I (PSI) during senescence in the stay-green inbred line of maize (Zea mays) Q319 and the quick-leaf-senescence inbred line of maize HZ4. The relationship between the photosynthetic performance and the decrease in chlorophyll content in the two inbred lines was also studied. Both the field and laboratory data indicated that the chlorophyll content, net photosynthetic rate, and the photoactivities of PSII and PSI decreased later and slower in Q319 than in HZ4, indicating that Q319 is a functional stay-green inbred line. In order to avoid the influence of different development stages and environmental factors on senescence, age-matched detached leaf segments from the two inbred lines were treated with ethephon under controlled conditions to induce senescence. The net photosynthetic rate, light absorption, energy transformation, the activities of PSII acceptor side and donor side and the PSI activities decreased much slower in Q319 than in HZ4 during the ethephon-induced senescence. These results suggest that the retention of light absorption, energy transformation and activity of electron transfer contribute to the extended duration of active photosynthesis in Q319. Although the chlorophyll content decreased faster in HZ4, with decrease of chlorophyll content induced by ethephon, photosynthetic performance of Q319 deteriorated much more severely than that of HZ4, indicating that, compared with Q319, HZ4 has an advantage at maintaining higher photosynthetic activity with decrease of chlorophyll although HZ4 is a quick-leaf-senescence inbred line. We conclude that attention should be paid to two favorable characteristics in breeding long duration of active photosynthesis hybrids: 1) maintaining more chlorophyll content during senescence and 2) maintaining higher photosynthetic activity during the loss of chlorophyll.
Collapse
Affiliation(s)
- Zishan Zhang
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Geng Li
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Agriculture, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Huiyuan Gao
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Litao Zhang
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Cheng Yang
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Peng Liu
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Agriculture, Shandong Agricultural University, Tai’an, Shandong Province, China
| | - Qingwei Meng
- State Key Lab of Crop Biology, Tai’an, Shandong Province, China
- College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong Province, China
| |
Collapse
|
28
|
|
29
|
Leister D. How Can the Light Reactions of Photosynthesis be Improved in Plants? FRONTIERS IN PLANT SCIENCE 2012; 3:199. [PMID: 22973282 PMCID: PMC3428562 DOI: 10.3389/fpls.2012.00199] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2012] [Accepted: 08/09/2012] [Indexed: 05/07/2023]
Affiliation(s)
- Dario Leister
- Plant Molecular Biology, Department Biology I, Ludwig-Maximilians-University MunichPlanegg-Martinsried, Germany
- *Correspondence:
| |
Collapse
|
30
|
Flood PJ, Harbinson J, Aarts MGM. Natural genetic variation in plant photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:327-35. [PMID: 21435936 DOI: 10.1016/j.tplants.2011.02.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 05/18/2023]
Abstract
Natural genetic variation in plant photosynthesis is a largely unexplored and as a result an underused genetic resource for crop improvement. Numerous studies show genetic variation in photosynthetic traits in both crop and wild species, and there is an increasingly detailed knowledge base concerning the interaction of photosynthetic phenotypes with their environment. The genetic factors that cause this variation remain largely unknown. Investigations into natural genetic variation in photosynthesis will provide insights into the genetic regulation of this complex trait. Such insights can be used to understand evolutionary processes that affect primary production, allow greater understanding of the genetic regulation of photosynthesis and ultimately increase the productivity of our crops.
Collapse
Affiliation(s)
- Pádraic J Flood
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | | | | |
Collapse
|
31
|
Tohge T, Mettler T, Arrivault S, Carroll AJ, Stitt M, Fernie AR. From models to crop species: caveats and solutions for translational metabolomics. FRONTIERS IN PLANT SCIENCE 2011; 2:61. [PMID: 22639601 PMCID: PMC3355600 DOI: 10.3389/fpls.2011.00061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 09/13/2011] [Indexed: 05/04/2023]
Abstract
Although plant metabolomics is largely carried out on Arabidopsis it is essentially genome-independent, and thus potentially applicable to a wide range of species. However, transfer between species, or even between different tissues of the same species, is not facile. This is because the reliability of protocols for harvesting, handling and analysis depends on the biological features and chemical composition of the plant tissue. In parallel with the diversification of model species it is important to establish good handling and analytic practice, in order to augment computational comparisons between tissues and species. Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics is one of the powerful approaches for metabolite profiling. By using a combination of different extraction methods, separation columns, and ion detection, a very wide range of metabolites can be analyzed. However, its application requires careful attention to exclude potential pitfalls, including artifactual changes in metabolite levels during sample preparation under variations of light or temperature and analytic errors due to ion suppression. Here we provide case studies with two different LC-MS-based metabolomics platforms and four species (Arabidopsis thaliana, Chlamydomonas reinhardtii, Solanum lycopersicum, and Oryza sativa) that illustrate how such dangers can be detected and circumvented.
Collapse
Affiliation(s)
- Takayuki Tohge
- Max-Planck-Institute for Molecular Plant PhysiologyPotsdam-Golm, Germany
- *Correspondence: Takayuki Tohge, Max-Planck-Institute for Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam-Golm, Germany. e-mail:
| | - Tabea Mettler
- Max-Planck-Institute for Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | | - Adam James Carroll
- Australian Research Council Centre of Excellence in Plant Energy Biology, The Australian National UniversityCanberra, ACT, Australia
| | - Mark Stitt
- Max-Planck-Institute for Molecular Plant PhysiologyPotsdam-Golm, Germany
| | - Alisdair R. Fernie
- Max-Planck-Institute for Molecular Plant PhysiologyPotsdam-Golm, Germany
| |
Collapse
|
32
|
Vredenberg W. Kinetic analyses and mathematical modeling of primary photochemical and photoelectrochemical processes in plant photosystems. Biosystems 2010; 103:138-51. [PMID: 21070830 DOI: 10.1016/j.biosystems.2010.10.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/06/2010] [Accepted: 10/07/2010] [Indexed: 11/28/2022]
Abstract
In this paper the model and simulation of primary photochemical and photo-electrochemical reactions in dark-adapted intact plant leaves is presented. A descriptive algorithm has been derived from analyses of variable chlorophyll a fluorescence and P700 oxidation kinetics upon excitation with multi-turnover pulses (MTFs) of variable intensity and duration. These analyses have led to definition and formulation of rate equations that describe the sequence of primary linear electron transfer (LET) steps in photosystem II (PSII) and of cyclic electron transport (CET) in PSI. The model considers heterogeneity in PSII reaction centers (RCs) associated with the S-states of the OEC and incorporates in a dark-adapted state the presence of a 15-35% fraction of Q(B)-nonreducing RCs that probably is identical with the S₀ fraction. The fluorescence induction algorithm (FIA) in the 10 μs-1s excitation time range considers a photochemical O-J-D, a photo-electrochemical J-I and an I-P phase reflecting the response of the variable fluorescence to the electric trans-thylakoid potential generated by the proton pump fuelled by CET in PSI. The photochemical phase incorporates the kinetics associated with the double reduction of the acceptor pair of pheophytin (Phe) and plastoquinone Q(A) [PheQ(A)] in Q(B) nonreducing RCs and the associated doubling of the variable fluorescence, in agreement with the three-state trapping model (TSTM) of PS II. The decline in fluorescence emission during the so called SMT in the 1-100s excitation time range, known as the Kautsky curve, is shown to be associated with a substantial decrease of CET-powered proton efflux from the stroma into the chloroplast lumen through the ATPsynthase of the photosynthetic machinery.
Collapse
Affiliation(s)
- Wim Vredenberg
- Dept. of Plant Physiology, Wageningen University and Research, Wageningen, The Netherlands.
| |
Collapse
|
33
|
Combining genetic diversity, informatics and metabolomics to facilitate annotation of plant gene function. Nat Protoc 2010; 5:1210-27. [DOI: 10.1038/nprot.2010.82] [Citation(s) in RCA: 179] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Iida S, Yamada A, Amano M, Ishii J, Kadono Y, Kosuge K. Inherited maternal effects on the drought tolerance of a natural hybrid aquatic plant, Potamogeton anguillanus. JOURNAL OF PLANT RESEARCH 2007; 120:473-81. [PMID: 17558544 DOI: 10.1007/s10265-007-0087-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Accepted: 03/12/2007] [Indexed: 05/07/2023]
Abstract
We tested whether maternal effects have led to the adaptive divergence of strains of the natural hybrid Potamogeton anguillanus, whose putative parents show contrastingly divergent ecologies. To examine the correlation between phenotypic characters and maternal types, we conducted drought experiments and DNA typing using nuclear and chloroplast genes. In the field, we investigated the distribution of the maternal type along the depth and the inshore-offshore gradient. Hybrids of P. malaianus mothers (M-hybrids) and those of P. perfoliatus mothers (P-hybrids) could not be distinguished morphologically under submerged conditions, but differed in drought tolerance. M-hybrids and P. malaianus formed more terrestrial shoots and exhibited higher survival than P-hybrids and P. perfoliatus in drought experiments. The distribution survey clarified that M-hybrids were dominant in shallow and inshore areas, whereas they were almost absent in deeper and offshore areas. These results indicate that the natural hybrid P. anguillanus differs in adaptive values depending on the maternal type. Bidirectional hybridization and heritable maternal effects may have played important roles in its phenotypic adaptation to local environmental conditions.
Collapse
Affiliation(s)
- Satoko Iida
- Research Center for Environmental Genomics, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan.
| | | | | | | | | | | |
Collapse
|