1
|
Ren J, Liu Y, Liu S, Wang R, Qiao Z, Cao X. Effect of sowing date on physicochemical properties of waxy and non-waxy proso millet (Panicum miliaceum L.) starches. Int J Biol Macromol 2025; 303:140626. [PMID: 39914526 DOI: 10.1016/j.ijbiomac.2025.140626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/18/2025] [Accepted: 02/01/2025] [Indexed: 02/11/2025]
Abstract
In this experiment, waxy (Shuzi, P1) and non-waxy (Ningmei No. 14, P2) proso millet were used as experimental materials to study the quality changes of waxy and non-waxy proso millet in different sowing dates as well as the differences in the physical and chemical properties of starch, such as starch morphological structure, crystal structure and gelatinization properties. The results showed that with the postponement of the sowing date, the total starch contents of P1 and P2 decreased by 2 % - 7.28 % and 3.26 % - 8.23 %, respectively, and the protein contents decreased by 0.1 % - 9.91 % and 2.52 % - 5.03 %, respectively. Compared with B1, B3 - B5 reduced the amylose content of P1 by 15.21 % - 26.80 %. With the postponement of the sowing date, the breakdown (BD) of P1 increased by 4.68-22.79 %, while the trough viscosity (TV) and final viscosity (FV) decreased by 2.50 % - 17.43 % and 2.58 % - 9.21 %, respectively. The peak viscosity (PV), TV, BD and FV of P2 increased by 10.33 % - 36.95 %, 9.31 % - 19.86 %, 12.68 % - 81.07 % and 5.69 % - 36.46 %, respectively, with the postponement of the sowing date. The sowing date also affected the volume distribution of proso millet grains. This study clarified the influence of sowing date on the quality of proso millet grains and the physical and chemical properties of starch, providing a theoretical basis for improving the high-yield and high-quality cultivation techniques of proso millet grains and the deep processing of products.
Collapse
Affiliation(s)
- Jiangling Ren
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Yuhan Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Sichen Liu
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Ruiyun Wang
- College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Zhijun Qiao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; College of Agriculture, Shanxi Agricultural University, Taigu 030801, China
| | - Xiaoning Cao
- Center for Agricultural Genetic Resources Research, Shanxi Agricultural University, Taiyuan 030031, China; College of Agriculture, Shanxi Agricultural University, Taigu 030801, China.
| |
Collapse
|
2
|
de Sousa Oliveira TC, Veenendaal E, Domingues TF. The thermal optimum of photosynthetic parameters is regulated by leaf nutrients in neotropical savannas. TREE PHYSIOLOGY 2025; 45:tpae163. [PMID: 39673198 DOI: 10.1093/treephys/tpae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
Global warming significantly threatens species in the Cerrado, the world's largest savannah. Therefore, understanding how plants respond to temperature change, particularly in relation to leaf-level photosynthetic capacity, is crucial to understanding the future of Cerrado vegetation. Here, we determined the optimum temperature of the maximum rate of RuBP-carboxylation and maximum electron transport rate (TOptV and TOptJ, respectively) of 12 tree species in two opposite borders (northeastern and southeastern) of the Cerrado with distinct temperature regimes. We focused on four widespread species found in both sites, four restricted to the northeast, and four to the southeast. We compared TOptV and TOptJ between regions and between widespread species (co-occurring in both sites) and species restricted to each ecoregion. Additionally, we also explored the relationship between TOptV and TOptJ with leaf nitrogen (N), phosphorus (P) and potassium (K). As a result, we found that TOptV and TOptJ values were similar across species, regardless of the study region or species distribution range. The similarity of TOpt values among species suggests that photosynthetic performance is optimized to current temperatures. Additionally, we also observed that the TOptV and TOptJ were similar to the local maximum ambient temperatures. Therefore, if these species do not have enough plasticity, the increasing temperature predicted for this region may reduce their photosynthetic performance. Finally, the studied species exhibited general relationships between the TOptV and TOptJ and foliar key nutrients, particularly with P, suggesting the nutrient availability has an important role in the thermal acclimation of leaves. These findings offer valuable insights into physiological and ecological mechanisms in photosynthesis performance present in the Cerrado species.
Collapse
Affiliation(s)
- Tony César de Sousa Oliveira
- Plant Ecology and Nature Conservation Group, Wageningen University (WU), Droevendaalsesteeg 36708PB, Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14040-901, Brazil
- Institute of Biogeosciences, Forschungszentrum Jülich, Wilhelm-Johnen Strasse, Jülich, 52428, Germany
- Faculty of Communication and Environment, Hochschule Rhein-Waal, Südstr. 8 Kamp-lintfort, 47475, Germany
| | - Elmar Veenendaal
- Plant Ecology and Nature Conservation Group, Wageningen University (WU), Droevendaalsesteeg 36708PB, Wageningen, The Netherlands
| | - Tomas Ferreira Domingues
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes, 3900, Monte Alegre, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|
3
|
Chen X, Wang J, Liu W, Zhang Y. The relative effects of climatic drivers and phenotypic integration on phenotypic plasticity of a globally invasive plant. FRONTIERS IN PLANT SCIENCE 2024; 15:1473456. [PMID: 39654961 PMCID: PMC11625578 DOI: 10.3389/fpls.2024.1473456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/06/2024] [Indexed: 12/12/2024]
Abstract
Introduction Understanding the constraints of phenotypic plasticity can provide insights into the factors that limit or influence the capacity of an organism to respond to changing environments. However, the relative effects of external and internal factors on phenotypic plasticity remain largely unexplored. Phenotypic integration, the pattern of correlations among traits, is recognized as an important internal constraint to plasticity. Phenotypic plasticity is critical in facilitating the acclimation of invasive species to the diverse environments within their introduced ranges. Consequently, these species serve as ideal models for investigating phenotypic plasticity and its underlying determinants. Methods Here, we collected seeds of a global salt marsh invader Spartina alterniflora from seven invasive populations covering the entire latitudinal range in China. These populations were cultivated in two common gardens located at the southern and northern range margins, respectively. We quantified plasticity and variation therein for plant height, shoot density, first flowering day and inflorescence biomass (on a per capita basis). These traits have direct or indirect effects on invasiveness. We examined the relationships between traits plasticity with climatic conditions at site of origin (external factor) and phenotypic integration (internal factor). Results We found that plasticity differed according to the trait being measured, and was higher for a trait affecting fitness. Phenotypic variance increased with latitude and temperature at the site of origin was the primary factor affecting phenotypic variation. These results indicated that external abiotic factors directly affected the selection on phenotypic plasticity of S. alterniflora. Discussion Our study provides a unique viewpoint on assessing the importance of identifying influential factors and mechanisms underlying phenotypic plasticity. Understanding these factors and mechanisms is a critical indicator for invasive and other cosmopolitan species' responses, establishment, persistence, and distribution under climate change.
Collapse
Affiliation(s)
| | | | | | - Yihui Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College
of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
4
|
Ye J, Ji Y, Wang J, Ma X, Gao J. Climate factors dominate the elevational variation in grassland plant resource utilization strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1430027. [PMID: 39170792 PMCID: PMC11335560 DOI: 10.3389/fpls.2024.1430027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/10/2024] [Indexed: 08/23/2024]
Abstract
Specific leaf area (SLA) and leaf dry matter content (LDMC) are key leaf functional traits often used to reflect plant resource utilization strategies and predict plant responses to environmental changes. In general, grassland plants at different elevations exhibit varying survival strategies. However, it remains unclear how grassland plants adapt to changes in elevation and their driving factors. To address this issue, we utilized SLA and LDMC data of grassland plants from 223 study sites at different elevations in China, along with climate and soil data, to investigate variations in resource utilization strategies of grassland plants along different elevational gradients and their dominant influencing factors employing linear mixed-effects models, variance partitioning method, piecewise Structural Equation Modeling, etc. The results show that with increasing elevation, SLA significantly decreases, and LDMC significantly increases (P < 0.001). This indicates different resource utilization strategies of grassland plants across elevation gradients, transitioning from a "faster investment-return" at lower elevations to a "slower investment-return" at higher elevations. Across different elevation gradients, climatic factors are the main factors affecting grassland plant resource utilization strategies, with soil nutrient factors also playing a non-negligible coordinating role. Among these, mean annual precipitation and hottest month mean temperature are key climatic factors influencing SLA of grassland plants, explaining 28.94% and 23.88% of SLA variation, respectively. The key factors affecting LDMC of grassland plants are mainly hottest month mean temperature and soil phosphorus content, with relative importance of 24.24% and 20.27%, respectively. Additionally, the direct effect of elevation on grassland plant resource utilization strategies is greater than its indirect effect (through influencing climatic and soil nutrient factors). These findings emphasize the substantive impact of elevation on grassland plant resource utilization strategies and have important ecological value for grassland management and protection under global change.
Collapse
Affiliation(s)
- Jinkun Ye
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Yuhui Ji
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jinfeng Wang
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Xiaodong Ma
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
| | - Jie Gao
- Key Laboratory for the Conservation and Regulation Biology of Species in Special Environments, College of Life Science, Xinjiang Normal University, Urumqi, China
- Key Laboratory of Earth Surface Processes of Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing, China
| |
Collapse
|
5
|
Daco L, Colling G, Matthies D. Clinal variation in quantitative traits but not in evolutionary potential along elevational and latitudinal gradients in the widespread Anthyllis vulneraria. AMERICAN JOURNAL OF BOTANY 2024; 111:e16360. [PMID: 38888183 DOI: 10.1002/ajb2.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 06/20/2024]
Abstract
PREMISE Strong elevational and latitudinal gradients allow the study of genetic differentiation in response to similar environmental changes. However, it is uncertain whether the environmental changes along the two types of gradients result in similar genetically based changes in quantitative traits. Peripheral arctic and alpine populations are thought to have less evolutionary potential than more central populations do. METHODS We studied quantitative traits of the widespread Anthyllis vulneraria in a common garden. Plants originated from 20 populations along a 2000-m elevational gradient from the lowlands to the elevational limit of the species in the Alps, and from 20 populations along a 2400-km latitudinal gradient from the center of the distribution of the species in Central Europe to its northern distributional margin. RESULTS Most traits showed similar clinal variations with elevation and latitude of origin, and the magnitude of all measured traits in relation to mean annual temperature was similar. Higher QST values than FST values in several traits indicated diversifying selection, but for others QST was smaller than FST. Genetic diversity of quantitative traits and neutral molecular markers was not correlated. Plasticity in response to favorable conditions declined with elevation and less strongly with latitude of origin, but the evolvability of traits did not. CONCLUSIONS The clinal variation suggests adaptive differentiation of quantitative traits along the two gradients. The evolutionary potential of peripheral populations is not necessarily reduced, but lower plasticity may threaten their survival under rapidly changing climatic conditions.
Collapse
Affiliation(s)
- Laura Daco
- Musée national d'histoire naturelle, 25 rue Münster, Luxembourg, L-2160, Luxembourg
- Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
- Fondation faune-flore, 24 rue Münster, Luxembourg, L-2160, Luxembourg
| | - Guy Colling
- Musée national d'histoire naturelle, 25 rue Münster, Luxembourg, L-2160, Luxembourg
| | - Diethart Matthies
- Department of Biology, University of Marburg, Karl-von-Frisch-Str. 8, Marburg, D-35043, Germany
| |
Collapse
|
6
|
Amissah S, Ankomah G, Lee RD, Perry CD, Washington BJ, Porter WM, Virk S, Bryant CJ, Vellidis G, Harris GH, Cabrera M, Franklin DH, Diaz-Perez JC, Sintim HY. Assessing corn recovery from early season nutrient stress under different soil moisture regimes. FRONTIERS IN PLANT SCIENCE 2024; 15:1344022. [PMID: 38510438 PMCID: PMC10950915 DOI: 10.3389/fpls.2024.1344022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Corn (Zea mays) biomass accumulation and nutrient uptake by the six-leaf collar (V6) growth stage are low, and therefore, synchronizing nutrient supply with crop demand could potentially minimize nutrient loss and improve nutrient use efficiency. Knowledge of corn's response to nutrient stress in the early growth stages could inform such nutrient management. Field studies were conducted to assess corn recovery from when no fertilizer application is made until the V6 growth stage, and thereafter, applying fertilizer rates as those in non-stressed conditions. The early season nutrient stress and non-stress conditions received the same amount of nutrients. As the availability of nutrients for plant uptake is largely dependent on soil moisture, corn recovery from the early season nutrient stress was assessed under different soil moisture regimes induced via irrigation scheduling at 50% and 80% field capacity under overhead and subsurface drip irrigation (SSDI) systems. Peanut (Arachis hypogaea) was the previous crop under all conditions, and the fields were under cereal rye (Secale cereale) cover crop prior to planting corn. At the V6 growth stage, the nutrient concentrations of the early season-stressed crops, except for copper, were above the minimum threshold of sufficiency ranges reported for corn. However, the crops showed poor growth, with biomass accumulation being reduced by over 50% compared to non-stressed crops. Also, the uptake of all nutrients was significantly lower under the early season nutrient stress conditions. The recovery of corn from the early season nutrient stress was low. Compared to non-stress conditions, the early season nutrient stress caused 1.58 Mg ha-1 to 3.4 Mg ha-1 yield reduction. The percent yield reduction under the SSDI system was 37.6-38.2% and that under the overhead irrigation system was 11.7-13%. The high yield reduction from the early season nutrient stress under the SSDI system was because of water stress conditions in the topsoil soil layer. The findings of the study suggest ample nutrient supply in the early season growth stage is critical for corn production, and thus, further studies are recommended to determine the optimum nutrient supply for corn at the initial growth stages.
Collapse
Affiliation(s)
- Solomon Amissah
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Godfred Ankomah
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Robert D. Lee
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Calvin D. Perry
- C. M. Stripling Irrigation Research Park, University of Georgia, Camilla, GA, United States
| | - Bobby J. Washington
- C. M. Stripling Irrigation Research Park, University of Georgia, Camilla, GA, United States
| | - Wesley M. Porter
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Simerjeet Virk
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Corey J. Bryant
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS, United States
| | - George Vellidis
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Glendon H. Harris
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| | - Miguel Cabrera
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Dorcas H. Franklin
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, United States
| | - Juan C. Diaz-Perez
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Henry Y. Sintim
- Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, United States
| |
Collapse
|
7
|
Manitašević Jovanović S, Hočevar K, Vuleta A, Tucić B. Predicting the Responses of Functional Leaf Traits to Global Warming: An In Situ Temperature Manipulation Design Using Iris pumila L. PLANTS (BASEL, SWITZERLAND) 2023; 12:3114. [PMID: 37687360 PMCID: PMC10490406 DOI: 10.3390/plants12173114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023]
Abstract
Phenotypic plasticity is widely acknowledged as one of the most common solutions for coping with novel environmental conditions following climate change. However, it is less known whether the current amounts of trait plasticity, which is sufficient for matching with the contemporary climate, will be adequate when global temperatures exceed historical levels. We addressed this issue by exploring the responses of functional and structural leaf traits in Iris pumila clonal individuals to experimentally increased temperatures (~1.5 °C) using an open top chamber (OTC) design. We determined the phenotypic values of the specific leaf area, leaf dry matter content, specific leaf water content, and leaf thickness in the leaves sampled from the same clone inside and outside of the OTC deployed on it, over seasons and years within two natural populations. We analyzed the data using a repeated multivariate analysis of variance, which primarily focusses on the profiles (reaction norms (RNs)) of a variable gathered from the same individual at several different time points. We found that the mean RNs of all analyzed traits were parallel regardless of experienced temperatures, but differed in the level and the shape. The populations RNs were similar as well. As the amount of plasticity in the analyzed leaf trait was adequate for coping with elevated temperatures inside the OTCs, we predict that it will be also sufficient for responding to increased temperatures if they exceed the 1.5 °C target.
Collapse
Affiliation(s)
- Sanja Manitašević Jovanović
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (K.H.); (A.V.)
| | - Katarina Hočevar
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (K.H.); (A.V.)
| | - Ana Vuleta
- Department of Evolutionary Biology, Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, 11108 Belgrade, Serbia; (K.H.); (A.V.)
| | | |
Collapse
|
8
|
Vitale L, Francesca S, Arena C, D'Agostino N, Principio L, Vitale E, Cirillo V, de Pinto MC, Barone A, Rigano MM. Multitraits evaluation of a Solanum pennellii introgression tomato line challenged by combined abiotic stress. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:518-528. [PMID: 36942418 DOI: 10.1111/plb.13518] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/14/2023] [Indexed: 05/17/2023]
Abstract
Rising daily temperatures and water shortage are two of the major concerns in agriculture. In this work, we analysed the tolerance traits in a tomato line carrying a small region of the Solanum pennellii wild genome (IL12-4-SL) when grown under prolonged conditions of single and combined high temperature and water stress. When exposed to stress, IL12-4-SL showed higher heat tolerance than the cultivated line M82 at morphological, physiological, and biochemical levels. Moreover, under stress IL12-4-SL produced more flowers than M82, also characterized by higher pollen viability. In both lines, water stress negatively affected photosynthesis more than heat alone, whereas the combined stress did not further exacerbate the negative impacts of drought on this trait. Despite an observed decrease in carbon fixation, the quantum yield of PSII linear electron transport in IL12-4-SL was not affected by stress, thereby indicating that photochemical processes other than CO2 fixation acted to maintain the electron chain in oxidized state and prevent photodamage. The ability of IL12-4-SL to tolerate abiotic stress was also related to the intrinsic ability of this line to accumulate ascorbic acid. The data collected in this study clearly indicate improved tolerance to single and combined abiotic stress for IL12-4-SL, making this line a promising one for cultivation in a climate scenario characterized by frequent and long-lasting heatwaves and low rainfall.
Collapse
Affiliation(s)
- L Vitale
- National Research Council (CNR), Department of Biology, Agriculture and Food Sciences (DiSBA), Institute for Agricultural and Forestry Systems in the Mediterranean (ISAFoM), Portici, Naples, Italy
| | - S Francesca
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| | - C Arena
- Department of Biology, University of Naples "Federico II", Naples, Italy
- NBFC - National Biodiversity Future Center, Palermo, Italy
| | - N D'Agostino
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| | - L Principio
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| | - E Vitale
- Department of Biology, University of Naples "Federico II", Naples, Italy
| | - V Cirillo
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| | - M C de Pinto
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| | - A Barone
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| | - M M Rigano
- Department of Agricultural Sciences, University of Naples "Federico II", Portici, Naples, Italy
| |
Collapse
|
9
|
Adams WW, Stewart JJ, Polutchko SK, Cohu CM, Muller O, Demmig-Adams B. Foliar Phenotypic Plasticity Reflects Adaptation to Environmental Variability. PLANTS (BASEL, SWITZERLAND) 2023; 12:2041. [PMID: 37653958 PMCID: PMC10224448 DOI: 10.3390/plants12102041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/10/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
Arabidopsis thaliana ecotypes adapted to native habitats with different daylengths, temperatures, and precipitation were grown experimentally under seven combinations of light intensity and leaf temperature to assess their acclimatory phenotypic plasticity in foliar structure and function. There were no differences among ecotypes when plants developed under moderate conditions of 400 µmol photons m-2 s-1 and 25 °C. However, in response to more extreme light or temperature regimes, ecotypes that evolved in habitats with pronounced differences in either the magnitude of changes in daylength or temperature or in precipitation level exhibited pronounced adjustments in photosynthesis and transpiration, as well as anatomical traits supporting these functions. Specifically, when grown under extremes of light intensity (100 versus 1000 µmol photons m-2 s-1) or temperature (8 °C versus 35 °C), ecotypes from sites with the greatest range of daylengths and temperature over the growing season exhibited the greatest differences in functional and structural features related to photosynthesis (light- and CO2-saturated capacity of oxygen evolution, leaf dry mass per area or thickness, phloem cells per minor vein, and water-use efficiency of CO2 uptake). On the other hand, the ecotype from the habitat with the lowest precipitation showed the greatest plasticity in features related to water transport and loss (vein density, ratio of water to sugar conduits in foliar minor veins, and transpiration rate). Despite these differences, common structure-function relationships existed across all ecotypes and growth conditions, with significant positive, linear correlations (i) between photosynthetic capacity (ranging from 10 to 110 µmol O2 m-2 s-1) and leaf dry mass per area (from 10 to 75 g m-2), leaf thickness (from 170 to 500 µm), and carbohydrate-export infrastructure (from 6 to 14 sieve elements per minor vein, from 2.5 to 8 µm2 cross-sectional area per sieve element, and from 16 to 82 µm2 cross-sectional area of sieve elements per minor vein); (ii) between transpiration rate (from 1 to 17 mmol H2O m-2 s-1) and water-transport infrastructure (from 3.5 to 8 tracheary elements per minor vein, from 13.5 to 28 µm2 cross-sectional area per tracheary element, and from 55 to 200 µm2 cross-sectional area of tracheary elements per minor vein); (iii) between the ratio of transpirational water loss to CO2 fixation (from 0.2 to 0.7 mol H2O to mmol-1 CO2) and the ratio of water to sugar conduits in minor veins (from 0.4 to 1.1 tracheary to sieve elements, from 4 to 6 µm2 cross-sectional area of tracheary to sieve elements, and from 2 to 6 µm2 cross-sectional area of tracheary elements to sieve elements per minor vein); (iv) between sugar conduits and sugar-loading cells; and (v) between water conducting and sugar conducting cells. Additionally, the proportion of water conduits to sugar conduits was greater for all ecotypes grown experimentally under warm-to-hot versus cold temperature. Thus, developmental acclimation to the growth environment included ecotype-dependent foliar structural and functional adjustments resulting in multiple common structural and functional relationships.
Collapse
Affiliation(s)
- William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| | - Jared J. Stewart
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| | - Stephanie K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| | - Christopher M. Cohu
- Environmental Science and Technology, Colorado Mesa University, Grand Junction, CO 81502, USA;
| | - Onno Muller
- Pflanzenwissenschaften (IBG-2), Institut für Bio- und Geowissenschaften, Forschungszentrum Jülich, 52428 Jülich, Germany;
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA; (J.J.S.); (S.K.P.); (B.D.-A.)
| |
Collapse
|
10
|
Yin XH, Hao GY, Sterck F. Ring- and diffuse-porous tree species from a cold temperate forest diverge in stem hydraulic traits, leaf photosynthetic traits, growth rate and altitudinal distribution. TREE PHYSIOLOGY 2023; 43:722-736. [PMID: 36715627 DOI: 10.1093/treephys/tpad008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/06/2023] [Accepted: 01/20/2023] [Indexed: 05/13/2023]
Abstract
In cold and humid temperate forests, low temperature, late frost and frequent freeze-thaw cycles are the main factors limiting tree growth and survival. Ring- and diffuse-porous tree species differing in xylem anatomy coexist in these forests, but their divergent adaptations to these factors have been poorly explored. To fill this knowledge gap, we compared four ring-porous and four diffuse-porous tree species from the same temperate forest in Northeast China by quantifying their leaf and stem functional traits, their stem growth rates using tree ring analysis and their resistance to cold represented by upper altitude species distribution borders from survey data. We found that the ring-porous trees were characterized by traits related to more rapid water transport, carbon gain and stem growth rates than those of the diffuse-porous species. Compared with the diffuse-porous species, the ring-porous species had a significantly higher shoot hydraulic conductance (Ks-shoot, 0.52 vs 1.03 kg m-1 s-1 MPa-1), leaf photosynthetic rate (An, 11.28 vs 15.83 μmol m-2 s-1), relative basal area increment (BAIr, 2.28 vs 0.72 cm year-1) and stem biomass increment (M, 0.34 vs 0.09 kg year-1 m-1). However, the observed upper elevational distribution limit of the diffuse-porous species was higher than that of the ring-porous species and was associated with higher values of conservative traits, such as longer leaf life span (R2 = 0.52). Correspondingly, BAIr and M showed significant positive correlations with acquisitive traits such as Ks-shoot (R2 = 0.77) and leaf photosynthetic rate (R2 = 0.73) across the eight species, with the ring-porous species occurring at the fast-acquisitive side of the spectrum and the diffuse-porous species located on the opposite side. The observed contrasts in functional traits between the two species groups improved our understanding of their differences in terms of growth strategies and adaptive capabilities in the cold, humid temperate forests.
Collapse
Affiliation(s)
- Xiao-Han Yin
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shengyang, Liaoning 110016, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shengyang, Liaoning 110016, China
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Guang-You Hao
- Key Laboratory of Terrestrial Ecosystem Carbon Neutrality, Shengyang, Liaoning 110016, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shengyang, Liaoning 110016, China
| | - Frank Sterck
- Forest Ecology and Forest Management Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
11
|
Su Y, Wang X, Gong C, Chen L, Cui B, Huang B, Wang X. Advances in spring leaf phenology are mainly triggered by elevated temperature along the rural-urban gradient in Beijing, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2023; 67:777-791. [PMID: 36943496 DOI: 10.1007/s00484-023-02454-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 05/25/2023]
Abstract
Urbanization-induced phenological changes have received considerable attention owing to their implications for determining urban ecosystem productivity and predicting the response of plants and ecosystem carbon cycles to future climate change. However, inconsistent rural-urban gradients in plant phenology remain, and phenological drivers other than temperature are poorly understood. In this study, we simultaneously observed the micro-climate and spring leaf phenology of seven woody plant species at 13 parks along a rural-urban gradient in Beijing, China. The minimum (Tmin) and mean (Tmean) air temperature and the minimum (VPDmin) and mean (VPDmean) vapor pressure deficit increased significantly along the rural-urban gradient, but the maximum air temperature (Tmax) and maximum vapor pressure deficit (VPDmax) did not. All observed leaf phenological phases for the seven species were significantly advanced along the rural-urban gradient by 0.20 to 1.02 days/km. Advances in the occurrence of leaf phenological events were significantly correlated with increases in Tmean (accounting for 57-59% variation), Tmin (21-26%), VPDmin (12-16%), and VPDmean (3-5%), but not with changes in Tmax or VPDmax. Advances in spring leaf phenology along the rural-urban gradient differed between non-native species and native species and between shrubs and trees. The reason may be mainly that the sensitivities of spring leaf phenology to micro-climate differ with species origin and growth form. This study highlights that urbanization-induced increases in Tmean and Tmin are the major contributors to advances in spring leaf phenology along the rural-urban gradient, exerting less influence on native species than on non-native species.
Collapse
Affiliation(s)
- Yuebo Su
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- Shenzhen Academy of Environmental Sciences, Shenzhen, 518001, China
| | - Xuming Wang
- State Key Laboratory for Subtropical Mountain Ecology of the Ministry of Science and Technology and Fujian Province, College of Geographical Science, Fujian Normal University, Fuzhou, 350007, China
| | - Cheng Gong
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Chen
- Torch High Technology Industry Development Center, Ministry of Science & Technology, Beijing, 100045, China
| | - Bowen Cui
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Binbin Huang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoke Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
12
|
Liu Z, Zhao M, Zhang H, Ren T, Liu C, He N. Divergent response and adaptation of specific leaf area to environmental change at different spatio-temporal scales jointly improve plant survival. GLOBAL CHANGE BIOLOGY 2023; 29:1144-1159. [PMID: 36349544 DOI: 10.1111/gcb.16518] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/23/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Specific leaf area (SLA) is one of the most important plant functional traits. It integrates multiple functions and reflects strategies of plants to obtain resources. How plants employ different strategies (e.g., through SLA) to respond to dynamic environmental conditions remains poorly understood. This study aimed to explore the spatial variation in SLA and its divergent adaptation through the lens of biogeographic patterns, evolutionary history, and short-term responses. SLA data for 5424 plant species from 76 natural communities in China were systematically measured and integrated with meta-analysis of field experiments (i.e., global warming, drought, and nitrogen addition). The mean value of SLA across all species was 21.8 m2 kg-1 , ranging from 0.9 to 110.2 m2 kg-1 . SLA differed among different ecosystems, temperature zones, vegetation types, and functional groups. Phylogeny had a weak effect on SLA, but plant species evolved toward higher SLA. Furthermore, SLA responded nonlinearly to environmental change. Unexpectedly, radiation was one of the main factors determining the spatial variation in SLA on a large scale. Conversely, short-term manipulative experiments showed that SLA increased with increased resource availability and tended to stabilize with treatment duration. However, different species exhibited varying response patterns. Overall, variation in long-term adaptation of SLA to environmental gradients and its short-term response to resource pulses jointly improve plant adaptability to a changing environment. Overall SLA-environment relationships should be emphasized as a multidimensional strategy for elucidating environmental change in future research.
Collapse
Affiliation(s)
- Zhaogang Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Vegetation & Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Zhao
- State Key Laboratory of Vegetation & Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hongxiang Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Tingting Ren
- State Key Laboratory of Vegetation & Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Congcong Liu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
13
|
Schmiege SC, Griffin KL, Boelman NT, Vierling LA, Bruner SG, Min E, Maguire AJ, Jensen J, Eitel JUH. Vertical gradients in photosynthetic physiology diverge at the latitudinal range extremes of white spruce. PLANT, CELL & ENVIRONMENT 2023; 46:45-63. [PMID: 36151613 PMCID: PMC10092832 DOI: 10.1111/pce.14448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/09/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Light availability drives vertical canopy gradients in photosynthetic functioning and carbon (C) balance, yet patterns of variability in these gradients remain unclear. We measured light availability, photosynthetic CO2 and light response curves, foliar C, nitrogen (N) and pigment concentrations, and the photochemical reflectance index (PRI) on upper and lower canopy needles of white spruce trees (Picea glauca) at the species' northern and southern range extremes. We combined our photosynthetic data with previously published respiratory data to compare and contrast canopy C balance between latitudinal extremes. We found steep canopy gradients in irradiance, photosynthesis and leaf traits at the southern range limit, but a lack of variation across canopy positions at the northern range limit. Thus, unlike many tree species from tropical to mid-latitude forests, high latitude trees may not require vertical gradients of metabolic activity to optimize photosynthetic C gain. Consequently, accounting for self-shading is less critical for predicting gross primary productivity at northern relative to southern latitudes. Northern trees also had a significantly smaller net positive leaf C balance than southern trees suggesting that, regardless of canopy position, low photosynthetic rates coupled with high respiratory costs may ultimately constrain the northern range limit of this widely distributed boreal species.
Collapse
Affiliation(s)
- Stephanie C. Schmiege
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
- New York Botanical GardenBronxNew YorkUSA
- Plant Resilience InstituteMichigan State UniversityEast LansingMichiganUSA
- Department of BiologyWestern UniversityLondonOntarioCanada
| | - Kevin L. Griffin
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
- Department of Earth and Environmental SciencesColumbia UniversityPalisadesNew YorkUSA
- Lamont‐Doherty Earth ObservatoryColumbia UniversityPalisadesNew YorkUSA
| | | | - Lee A. Vierling
- Department of Natural Resources and Society, College of Natural ResourcesUniversity of IdahoMoscowIdahoUSA
- McCall Outdoor Science School, College of Natural ResourcesUniversity of IdahoMcCallIdahoUSA
| | - Sarah G. Bruner
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Elizabeth Min
- Department of Earth and Environmental SciencesColumbia UniversityPalisadesNew YorkUSA
| | - Andrew J. Maguire
- Department of Natural Resources and Society, College of Natural ResourcesUniversity of IdahoMoscowIdahoUSA
- McCall Outdoor Science School, College of Natural ResourcesUniversity of IdahoMcCallIdahoUSA
| | - Johanna Jensen
- Department of Ecology, Evolution and Environmental BiologyColumbia UniversityNew YorkNew YorkUSA
| | - Jan U. H. Eitel
- Department of Natural Resources and Society, College of Natural ResourcesUniversity of IdahoMoscowIdahoUSA
- McCall Outdoor Science School, College of Natural ResourcesUniversity of IdahoMcCallIdahoUSA
| |
Collapse
|
14
|
de la Mata R, Zas R, Bustingorri G, Sampedro L, Rust M, Hernandez‐Serrano A, Sala A. Drivers of population differentiation in phenotypic plasticity in a temperate conifer: A 27-year study. Evol Appl 2022; 15:1945-1962. [PMID: 36426125 PMCID: PMC9679231 DOI: 10.1111/eva.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022] Open
Abstract
Phenotypic plasticity is a main mechanism for organisms to cope with changing environments and broaden their ecological range. Plasticity is genetically based and can evolve under natural selection, such that populations within a species show distinct phenotypic responses to the environment if evolved under different conditions. Understanding how intraspecific variation in phenotypic plasticity arises is critical to assess potential adaptation to ongoing climate change. Theory predicts that plasticity is favored in more favorable but variable environments. Yet, many theoretical predictions about benefits, costs, and selection on plasticity remain untested. To test these predictions, we took advantage of three genetic trials in the northern Rocky Mountains, USA, which assessed 23 closely located Pinus ponderosa populations over 27 years. Mean environmental conditions and their spatial patterns of variation at the seed source populations were characterized based on six basic climate parameters. Despite the small area of origin, there was significant genetic variation in phenotypic plasticity for tree growth among populations. We found a significant negative correlation between phenotypic plasticity and the patch size of environmental heterogeneity at the seed source populations, but not with total environmental spatial variance. These results show that populations exposed to high microhabitat heterogeneity have evolved higher phenotypic plasticity and that the trigger was the grain rather than the total magnitude of spatial heterogeneity. Contrary to theoretical predictions, we also found a positive relationship between population plasticity and summer drought at the seed source, indicating that drought can act as a trigger of plasticity. Finally, we found a negative correlation between the quantitative genetic variance within populations and their phenotypic plasticity, suggesting compensatory adaptive mechanisms for the lack of genetic diversity. These results improve our understanding of the microevolutionary drivers of phenotypic plasticity, a critical process for resilience of long-lived species under climate change, and support decision-making in tree genetic improvement programs and seed transfer strategies.
Collapse
Affiliation(s)
- Raul de la Mata
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
- Estación Biológica de DoñanaConsejo Superior de Investigaciones Científicas (EBD‐CSIC)SevillaSpain
| | - Rafael Zas
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (MBG‐CSIC)PontevedraSpain
| | - Gloria Bustingorri
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (MBG‐CSIC)PontevedraSpain
| | - Luis Sampedro
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (MBG‐CSIC)PontevedraSpain
| | - Marc Rust
- Inland Empire Tree Improvement CooperativeUniversity of IdahoMoscowIdahoUSA
| | - Ana Hernandez‐Serrano
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF)Cerdanyola del VallèsSpain
| | - Anna Sala
- Division of Biological SciencesUniversity of MontanaMissoulaMontanaUSA
| |
Collapse
|
15
|
Stotz GC, Salgado‐Luarte C, Escobedo VM, Valladares F, Gianoli E. Phenotypic plasticity and the leaf economics spectrum: plasticity is positively associated with specific leaf area. OIKOS 2022. [DOI: 10.1111/oik.09342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Gisela C. Stotz
- Centro de Investigación para la Sustentabilidad, Facultad de Ciencias de la Vida, Univ. Andrés Bello Santiago Chile
| | - Cristian Salgado‐Luarte
- Inst. de Investigación Multidisciplinario en Ciencia y Tecnología, Univ. de La Serena La Serena Chile
| | - Víctor M. Escobedo
- Laboratorio de Biología Vegetal, Inst. de Ciencias Biológicas, Univ. de Talca Talca Chile
| | - Fernando Valladares
- Depto de Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales (MNCN‐CSIC) Madrid España
- Área de Biodiversidad y Conservación, Univ. Rey Juan Carlos, Móstoles Madrid España
| | | |
Collapse
|
16
|
Griffin KL, Griffin ZM, Schmiege SC, Bruner SG, Boelman NT, Vierling LA, Eitel JUH. Variation in White spruce needle respiration at the species range limits: A potential impediment to Northern expansion. PLANT, CELL & ENVIRONMENT 2022; 45:2078-2092. [PMID: 35419840 DOI: 10.1111/pce.14333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 04/06/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
White spruce (Picea glauca) spans a massive range, yet the variability in respiratory physiology and related implications for tree carbon balance at the extremes of this distribution remain as enigmas. Working at both the most northern and southern extents of the distribution range more than 5000 km apart, we measured the short-term temperature response of dark respiration (R/T) at upper and lower canopy positions. R/T curves were fit to both polynomial and thermodynamic models so that model parameters could be compared among locations, canopy positions, and with previously published data. Respiration measured at 25°C (R25 ) was 68% lower at the southern location than at the northern location, resulting in a significantly lower intercept in R/T response in temperate trees. Only at the southern location did upper canopy leaves have a steeper temperature response than lower canopy leaves, likely reflecting canopy gradients in light. At the northern range limit respiration is nearly twice that of the average R25 reported in a global leaf respiration database. We predict that without significant thermal acclimation, respiration will increase with projected end-of-the-century warming and will likely constrain the future range limits of this important boreal species.
Collapse
Affiliation(s)
- Kevin L Griffin
- Department of Earth and Environmental Sciences, Columbia University, Palisades, New York, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Zoe M Griffin
- Department of Geography & Environmental Sustainability, SUNY Oneonta, Oneonta, New York, USA
| | - Stephanie C Schmiege
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
- New York Botanical Garden, Bronx, New York, USA
| | - Sarah G Bruner
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, New York, USA
| | - Natalie T Boelman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | - Lee A Vierling
- Department of Natural Resources and Society, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
| | - Jan U H Eitel
- Department of Natural Resources and Society, College of Natural Resources, University of Idaho, Moscow, Idaho, USA
- McCall Outdoor Science School, College of Natural Resources, University of Idaho, McCall, Idaho, USA
| |
Collapse
|
17
|
Genetic Diversity and Genome-Wide Association Study of Architectural Traits of Spray Cut Chrysanthemum Varieties. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The architecture of spray cut chrysanthemum is crucial for the quality and quantity of cut flower production. However, the mechanism underlying plant architecture still needs to be clarified. In this study, we measured nine architecture-related traits of 195 spray cut chrysanthemum varieties during a two-year period. The results showed that the number of upper primary branches, number of lateral flower buds and primary branch length widely varied. Additionally, plant height had a significant positive correlation with number of leaf nodes and total number of lateral buds. Number of upper primary branches had a significant negative correlation with primary branch diameter, primary branch angle and primary branch length. Plant height, total number of lateral buds, number of upper primary branches, stem diameter, primary branch diameter and primary branch length were vulnerable to environmental impacts. All varieties could be divided into five categories according to cluster analysis, and the typical plant architecture of the varieties was summarized. Finally, a genome-wide association study (GWAS) was performed to find potential functional genes.
Collapse
|
18
|
Jasmonate resistant 1 and ethylene responsive factor 11 are involved in chilling sensitivity in pepper fruit (Capsicum annuum L.). Sci Rep 2022; 12:3141. [PMID: 35210544 PMCID: PMC8873250 DOI: 10.1038/s41598-022-07268-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 02/15/2022] [Indexed: 12/03/2022] Open
Abstract
Pepper fruit (Capsicum annuum L.) is sensitive to chilling stress with chilling injuries occurring below 7 °C; however, chilling injuries occur at different temperatures depending on the genotype. The present study aimed to identify the factors that affect chilling sensitivity in pepper fruits. A total of 112 F2 pepper fruits crossed between chilling-insensitive 'UZB-GJG-1999–51' and chilling-sensitive 'C00562' pepper were grouped according to the seed browning rate, which is a typical chilling symptom of pepper fruit under chilling conditions. Physiological traits, amino acids, fatty acids, as well as ethylene responsive factor (ERF) and jasmonate resistant 1 (JAR1) expression levels were analyzed, and their correlations with the seed browning rate were confirmed. The expression level of JAR1 showed a strong negative correlation with the seed browning rate (r = − 0.7996). The expression level of ERF11 and content of hydrogen peroxide showed strong positive correlation with the seed browning rate (r = 0.7622 and 0.6607, respectively). From these results, we inferred that JAR1 and ERF11 are important factors influencing the chilling sensitivity of pepper fruit.
Collapse
|
19
|
Vidaković A, Šatović Z, Tumpa K, Idžojtić M, Liber Z, Pintar V, Radunić M, Runjić TN, Runjić M, Rošin J, Gaunt D, Poljak I. Phenotypic Variation in European Wild Pear (Pyrus pyraster (L.) Burgsd.) Populations in the North-Western Part of the Balkan Peninsula. PLANTS 2022; 11:plants11030335. [PMID: 35161316 PMCID: PMC8837925 DOI: 10.3390/plants11030335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/03/2022]
Abstract
Leaves play a central role in plant fitness, allowing efficient light capture, gas exchange and thermoregulation, ensuring optimal growing conditions for the plant. Phenotypic variability in leaf shape and size has been linked to environmental heterogeneity and habitat characteristics. Therefore, the study of foliar morphology in plant populations can help us to identify the environmental factors that may have influenced the process of species diversification. In this study, we used European wild pear (Pyrus pyraster (L.) Burgsd., Rosaceae) as a model species to investigate the phenotypic variability of leaves under different environmental conditions. Using leaf morphometric data from 19 natural populations from the north-western part of the Balkan Peninsula, a high level of variability among and within populations were found. Leaf traits related to leaf size were more variable compared to leaf shape traits, with both influenced by geographic and environmental factors. Consequently, patterns of isolation by environment (IBE) and distance (IBD) were identified, with IBE showing a stronger influence on leaf variability. Multivariate statistical analysis revealed that European wild pear populations from the north-western part of the Balkan Peninsula can be divided into two morphological clusters, consistent with their geographical distance and environmental conditions. Our results confirm a high level of phenotypic variability in European wild pear populations, providing additional data on this poorly studied species, emphasizing phenotypic plasticity as a major driver in the adaptation of this noble hardwood species to rapid climate change.
Collapse
Affiliation(s)
- Antonio Vidaković
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Zlatko Šatović
- Department for Seed Science and Technology, Faculty of Agriculture, University of Zagreb, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia;
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
| | - Katarina Tumpa
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Marilena Idžojtić
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Zlatko Liber
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
- Department of Biology, Faculty of Science, University of Zagreb, Marulićev trg 9a, HR-10000 Zagreb, Croatia
| | - Valentino Pintar
- Ministry of Economy and Sustainable Development, Institute for Environment and Nature, Nature Sector, Radnička cesta 80, HR-10000 Zagreb, Croatia;
| | - Mira Radunić
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska cesta 25, HR-10000 Zagreb, Croatia; (Z.L.); (M.R.)
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Tonka Ninčević Runjić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Marko Runjić
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Jakša Rošin
- Institute for Adriatic Crops and Karst Reclamation, Put Duilova 11, HR-21000 Split, Croatia; (T.N.R.); (M.R.); (J.R.)
| | - Daniel Gaunt
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
| | - Igor Poljak
- Institute of Forest Genetics, Dendrology and Botany, Faculty of Forestry and Wood Technology, University of Zagreb, Svetošimunska cesta 23, HR-10000 Zagreb, Croatia; (A.V.); (K.T.); (M.I.); (D.G.)
- Correspondence: ; Tel.: +385-1-2352547
| |
Collapse
|
20
|
Lyu M, Sun M, Peñuelas J, Sardans J, Sun J, Chen X, Zhong Q, Cheng D. Thermal Acclimation of Foliar Carbon Metabolism in Pinus taiwanensis Along an Elevational Gradient. FRONTIERS IN PLANT SCIENCE 2022; 12:778045. [PMID: 35082808 PMCID: PMC8784779 DOI: 10.3389/fpls.2021.778045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Climate change could negatively alter plant ecosystems if rising temperatures exceed optimal conditions for obtaining carbon. The acclimation of plants to higher temperatures could mitigate this effect, but the potential of subtropical forests to acclimate still requires elucidation. We used space-for-time substitution to determine the photosynthetic and respiratory-temperature response curves, optimal temperature of photosynthesis (T opt), photosynthetic rate at T opt, temperature sensitivity (Q 10), and the rate of respiration at a standard temperature of 25°C (R 25) for Pinus taiwanensis at five elevations (1200, 1400, 1600, 1800, and 2000 m) in two seasons (summer and winter) in the Wuyi Mountains in China. The response of photosynthesis in P. taiwanensis leaves to temperature at the five elevations followed parabolic curves, and the response of respiration to temperature increased with temperature. T opt was higher in summer than winter at each elevation and decreased significantly with increasing elevation. Q 10 decreased significantly with increasing elevation in summer but not winter. These results showed a strong thermal acclimation of foliar photosynthesis and respiration to current temperatures across elevations and seasons, and that R 25 increased significantly with elevation and were higher in winter than summer at each elevation indicating that the global warming can decrease R 25. These results strongly suggest that this thermal acclimation will likely occur in the coming decades under climate change, so the increase in respiration rates of P. taiwanensis in response to climatic warming may be smaller than predicted and thus may not increase atmospheric CO2 concentrations.
Collapse
Affiliation(s)
- Min Lyu
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
- School of Urban and Rural Construction, Shaoyang University, Shaoyang, China
| | - Mengke Sun
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, Spain
| | - Jun Sun
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Xiaoping Chen
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Quanlin Zhong
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| | - Dongliang Cheng
- Key Laboratory of Humid Subtropical Eco-Geographical Processes, Ministry of Education, Fuzhou, China
- Fujian Provincial Key Laboratory of Plant Ecophysiology, Fujian Normal University, Fuzhou, China
| |
Collapse
|
21
|
Flannery SE, Pastorelli F, Wood WHJ, Hunter CN, Dickman MJ, Jackson PJ, Johnson MP. Comparative proteomics of thylakoids from Arabidopsis grown in laboratory and field conditions. PLANT DIRECT 2021; 5:e355. [PMID: 34712896 PMCID: PMC8528093 DOI: 10.1002/pld3.355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 06/13/2023]
Abstract
Compared to controlled laboratory conditions, plant growth in the field is rarely optimal since it is frequently challenged by large fluctuations in light and temperature which lower the efficiency of photosynthesis and lead to photo-oxidative stress. Plants grown under natural conditions therefore place an increased onus on the regulatory mechanisms that protect and repair the delicate photosynthetic machinery. Yet, the exact changes in thylakoid proteome composition which allow plants to acclimate to the natural environment remain largely unexplored. Here, we use quantitative label-free proteomics to demonstrate that field-grown Arabidopsis plants incorporate aspects of both the low and high light acclimation strategies previously observed in laboratory-grown plants. Field plants showed increases in the relative abundance of ATP synthase, cytochrome b 6 f, ferredoxin-NADP+ reductases (FNR1 and FNR2) and their membrane tethers TIC62 and TROL, thylakoid architecture proteins CURT1A, CURT1B, RIQ1, and RIQ2, the minor monomeric antenna complex CP29.3, rapidly-relaxing non-photochemical quenching (qE)-related proteins PSBS and VDE, the photosystem II (PSII) repair machinery and the cyclic electron transfer complexes NDH, PGRL1B, and PGR5, in addition to decreases in the amounts of LHCII trimers composed of LHCB1.1, LHCB1.2, LHCB1.4, and LHCB2 proteins and CP29.2, all features typical of a laboratory high light acclimation response. Conversely, field plants also showed increases in the abundance of light harvesting proteins LHCB1.3 and CP29.1, zeaxanthin epoxidase (ZEP) and the slowly-relaxing non-photochemical quenching (qI)-related protein LCNP, changes previously associated with a laboratory low light acclimation response. Field plants also showed distinct changes to the proteome including the appearance of stress-related proteins ELIP1 and ELIP2 and changes to proteins that are largely invariant under laboratory conditions such as state transition related proteins STN7 and TAP38. We discuss the significance of these alterations in the thylakoid proteome considering the unique set of challenges faced by plants growing under natural conditions.
Collapse
Affiliation(s)
- Sarah E. Flannery
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| | - Federica Pastorelli
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| | - William H. J. Wood
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| | - C. Neil Hunter
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| | - Mark J. Dickman
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| | - Philip J. Jackson
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
- Department of Chemical and Biological EngineeringUniversity of SheffieldSheffieldUK
| | - Matthew P. Johnson
- Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
| |
Collapse
|
22
|
Girousse C, Inchboard L, Deswarte JC, Chenu K. How does post-flowering heat impact grain growth and its determining processes in wheat? JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6596-6610. [PMID: 34125876 DOI: 10.1093/jxb/erab282] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/11/2021] [Indexed: 05/23/2023]
Abstract
Wheat grain yield is anticipated to suffer from the increased temperatures expected under climate change. In particular, the effects of post-anthesis temperatures on grain growth and development must be better understood in order to improve crop models. Grain growth and development involve several processes, and we hypothesized that some of the most important processes, namely grain dry biomass and water accumulation, grain volume expansion, and endosperm cell proliferation, will have different thermal sensitivity. To assess this, we established temperature-response curves of these processes for steady post-anthesis temperatures between 15 °C and 36 °C. From anthesis to maturity, grain dry mass, water mass, volume, and endosperm cell number were monitored, whilst considering grain temperature. Different sensitivities to heat of these various processes were revealed. The rate of grain dry biomass accumulation increased linearly up to 25 °C, while the reciprocal of its duration increased linearly up to at least 32 °C. In contrast, the growth rates of traits contributing to grain expansion, such as increase in grain volume and cell numbers, had higher optimum temperatures, while the reciprocal of their durations were significantly lower. These temperature-response curves can contribute to improve current crop models, and allow targeting of specific mechanisms for genetic and genomic studies.
Collapse
Affiliation(s)
- Christine Girousse
- INRAe, UCA, UMR 1095 GDEC, 5 Chemin de Beaulieu, F-63000 Clermont-Ferrand, France
| | - Lauren Inchboard
- INRAe, UCA, UMR 1095 GDEC, 5 Chemin de Beaulieu, F-63000 Clermont-Ferrand, France
| | - Jean-Charles Deswarte
- Arvalis Institut du Végétal, Route de Chateaufort, ZA des graviers, F-91190 Villiers-le-Bâcle, France
| | - Karine Chenu
- The University of Queensland, Queensland Alliance for Agriculture and Food Innovation (QAAFI), 13 Holberton street, Toowoomba, QLD 4350, Australia
| |
Collapse
|
23
|
Stotz GC, Salgado-Luarte C, Escobedo VM, Valladares F, Gianoli E. Global trends in phenotypic plasticity of plants. Ecol Lett 2021; 24:2267-2281. [PMID: 34216183 DOI: 10.1111/ele.13827] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/26/2021] [Accepted: 05/21/2021] [Indexed: 12/14/2022]
Abstract
Predicting plastic responses is crucial to assess plant species potential to adapt to climate change, but little is known about which factors drive the biogeographical patterns of phenotypic plasticity in plants. Theory predicts that climatic variability would select for increased phenotypic plasticity, whereas evidence indicates that stressful conditions can limit phenotypic plasticity. Using a meta-analytic, phylogeny-corrected approach to global data on plant phenotypic plasticity, we tested whether latitude, climate, climatic variability and/or stressful conditions are predictors of plastic responses at a biogeographical scale. We found support for a positive association between phenotypic plasticity and climatic variability only for plasticity in allocation. Plasticity in leaf morphology, size and physiology were positively associated with mean annual temperature. We also found evidence that phenotypic plasticity in physiology is limited by cold stress. Overall, plant plastic responses to non-climatic factors were stronger than responses to climatic factors. However, while climatic conditions were associated with plant plastic responses to climatic factors, they generally did not relate to plastic responses to other abiotic or biotic factors. Our study highlights the need to consider those factors that favour and limit phenotypic plasticity in order to improve predictive frameworks addressing plant species' potential to adapt to climate change.
Collapse
Affiliation(s)
- Gisela C Stotz
- Sustainability Research Centre, Life Sciences Faculty, Universidad Andrés Bello, Santiago, Chile.,Departamento de Biología, Universidad de La Serena, La Serena, Chile
| | | | - Víctor M Escobedo
- Laboratorio de Biología Vegetal, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Fernando Valladares
- Departamento de Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales, MNCN-CSIC, Madrid, España.,Área de Biodiversidad y Conservación, Universidad Rey Juan Carlos, Móstoles, Madrid, España
| | - Ernesto Gianoli
- Departamento de Biología, Universidad de La Serena, La Serena, Chile.,Departamento de Botánica, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
24
|
Zhao B, Liu Q, Wang B, Yuan F. Roles of Phytohormones and Their Signaling Pathways in Leaf Development and Stress Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3566-3584. [PMID: 33739096 DOI: 10.1021/acs.jafc.0c07908] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Phytohormones participate in various processes over the course of a plant's lifecycle. In addition to the five classical phytohormones (auxins, cytokinins, gibberellins, abscisic acid, and ethylene), phytohormones such as brassinosteroids, jasmonic acid, salicylic acid, strigolactones, and peptides also play important roles in plant growth and stress responses. Given the highly interconnected nature of phytohormones during plant development and stress responses, it is challenging to study the biological function of a single phytohormone in isolation. In the current Review, we describe the combined functions and signaling cascades (especially the shared points and pathways) of various phytohormones in leaf development, in particular, during leaf primordium initiation and the establishment of leaf polarity and leaf morphology as well as leaf development under various stress conditions. We propose a model incorporating the roles of multiple phytohormones in leaf development and stress responses to illustrate the underlying combinatorial signaling pathways. This model provides a reference for breeding stress-resistant crops.
Collapse
Affiliation(s)
- Boqing Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Qingyun Liu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Baoshan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| | - Fang Yuan
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Ji'nan, Shandong 250014, P. R. China
| |
Collapse
|
25
|
Eid EM, Shaltout KH, Al-Sodany YM, Haroun SA, Galal TM, Ayed H, Khedher KM, Jensen K. Temporal Potential of Phragmites australis as a Phytoremediator to Remove Ni and Pb from Water and Sediment in Lake Burullus, Egypt. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:516-527. [PMID: 33547904 DOI: 10.1007/s00128-021-03120-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Accepted: 01/18/2021] [Indexed: 05/09/2023]
Abstract
In the current work, we investigated the concentration of Ni and Pb in different organs of Phragmites australis to evaluate its potential application as a phytoremediator to remove these two metals from contaminated water and sediment in Lake Burullus (a Ramsar site in Egypt). Above- and below-ground biomass of P. australis, water and sediment were sampled monthly for 1 year at six sites of Lake Burullus (three sites represent each of the northern and southern parts of the lake) using six randomly distributed quadrats (each of 0.5 × 0.5 m) at each sampling site. Significant variation was detected for Ni and Pb concentrations in the sediments and waters between the northern and southern sites of the lake. The biomass of P. australis in the southern sites was greater than that in the northern sites; in addition, the above-ground biomass was higher than the below-ground biomass. The above-ground organs accumulated higher concentrations of Ni and Pb than the below-ground organs. The Ni and Pb standing stocks data indicated that the organs of P. australis extracted higher amounts of Ni and Pb per its area from the southern rather than the northern sites. In the current study, the Ni and Pb above-ground standing stocks increased from the early growing season (February) and reached its peak during August and then decreased. The highest monthly Ni and Pb standing stock (18.2 and 18.4 g m- 2, respectively) was recorded in the above-ground organs of plants in the southern sites in August. The bioaccumulation factor of Ni was 157.6 and 153.4 in the northern and southern sites, respectively, whereas that of Pb was 175.3 and 158.3. The translocation factor of Ni and Pb from the below- to above-ground organs was generally > 1. Thus, this reed species is a potential candidate for Ni and Pb phytoextraction. Based on our results, P. australis could be used for the extraction of Ni and Pb to reduce the pollution in Lake Burullus, if the above-ground biomass is harvested at its maximum value in August, as was the case regarding the maximum standing stock of Ni and Pb.
Collapse
Affiliation(s)
- Ebrahem M Eid
- Biology Department, College of Science, King Khalid University, Abha, 61321, Saudi Arabia.
- Applied Plant Ecology, Biocenter Klein Flottbek and Botanical Garden, Hamburg University, Ohnhorststraße 18, 22609, Hamburg, Germany.
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Kamal H Shaltout
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yassin M Al-Sodany
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Soliman A Haroun
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Tarek M Galal
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo, 11790, Egypt
| | - Hamdi Ayed
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha, 61321, Saudi Arabia
| | - Khaled M Khedher
- Department of Civil Engineering, College of Engineering, King Khalid University, Abha, 61321, Saudi Arabia
| | - Kai Jensen
- Applied Plant Ecology, Biocenter Klein Flottbek and Botanical Garden, Hamburg University, Ohnhorststraße 18, 22609, Hamburg, Germany
| |
Collapse
|
26
|
Fernández Nevyl S, Battaglia ME. Developmental plasticity in Arabidopsis thaliana under combined cold and water deficit stresses during flowering stage. PLANTA 2021; 253:50. [PMID: 33506329 DOI: 10.1007/s00425-021-03575-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/19/2021] [Indexed: 05/02/2023]
Abstract
Morpho-physiological changes were observed in Arabidopsis plants acclimated to long-term combined cold and water deficit stresses. Limiting growth and differences in bolting, flowering, and silique development were evidenced. In nature, plants are exposed to multiple and simultaneous abiotic stresses that influence their growth, development, and reproduction. In the last years, the study of combined stresses has aroused the interest to know the physiological and molecular responses, because these new stress conditions are probed to be different from the sum of the individual stress. We are interested in the study of the acclimation of plants growing under the combination of cold and water deficit stresses prevalent in cold-arid or semi-arid climates worldwide. We hypothesized that the reproduction of the acclimated plants will be compromised and affected. Arabidopsis plants were submitted to long-term combined stress from the beginning to the reproductive stage, when floral bud was visible, until the silique development. Our results demonstrate severe morpho-anatomical changes after acclimation to combined stress. Inflorescence stem morphology was altered having a delayed bolting and a limited growth. Flowering and silique formation were delayed, and a higher size in the corolla and the petals was observed. Flower and silique number were severely diminished as a result of combined stress, unlike acclimated plants to individual cold stress. These traits were recovered after deacclimation to optimal conditions and plants achieved similar silique production as control plants. The long-term stress results suggest that there is not a single dominant stress, but there is an alternating dominance depending on the structure or the plant stage development evaluated.
Collapse
Affiliation(s)
- Solange Fernández Nevyl
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, 7600, Mar del Plata, Argentina
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (FCEyN, UNMdP), Funes 3250, 7600, Mar del Plata, Argentina
| | - Marina E Battaglia
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación Para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, 7600, Mar del Plata, Argentina.
| |
Collapse
|
27
|
Denisova G, Rahimov S. The effect of the height gradient on morphological traits of Dracocephalum nutans L. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213800024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Individuals of Dracocephalum nutans L. have been studied at different altitude levels from 460 to 2437 m above the level seas. The influence of the height gradient on morphological characters has been shown: the number of generative and vegetative shoots, the height of the generative shoot, the length and width of the leaf blade, length of its petiole, and inflorescence length. It was found that the height gradient has the greatest influence on the height of the generative shoot and the length of the inflorescence. When individuals grow higher along the altitude gradient, the height of the generative shoot and the length of the inflorescence decrease. The fluctuation of the average values of the traits of D. nutans in a wide range was established. The intrapopulation analysis of D. nutans individuals does not depend on the height factor.
Collapse
|
28
|
Adamo M, Mammola S, Noble V, Mucciarelli M. Integrating Multiple Lines of Evidence to Explore Intraspecific Variability in a Rare Endemic Alpine Plant and Implications for Its Conservation. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1160. [PMID: 32911798 PMCID: PMC7569986 DOI: 10.3390/plants9091160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/03/2020] [Accepted: 09/06/2020] [Indexed: 11/17/2022]
Abstract
We studied the ecology, distribution, and phylogeography of Tephroseris balbisiana, a rare plant whose range is centered to the South-Western Alps. Our aim was to assess the extent of intraspecific variability within the nominal species and the conservation status of isolated populations. We studied genetic diversity across the whole species range. We analyzed leaf traits, which are distinctive morphological characters within the Tephroseris genus. A clear pattern of genetic variation was found among populations of T. balbisiana, which clustered according to their geographic position. On the contrary, there was a strong overlap in the morphological space of individuals across the species' range, with few peripheral populations diverging in their leaf morphology. Studying habitat suitability by means of species distribution models, we observed that T. balbisiana range is primarily explained by solar radiation and precipitation seasonality. Environmental requirements could explain the genetic and morphological uniformity of T. balbisiana in its core distribution area and justify genetic, morphological, and ecological divergences found among the isolated populations of the Apennines. Our findings emphasize the need to account for the whole diversity of a species, comprising peripheral populations, in order to better estimate its status and to prioritize areas for its conservation.
Collapse
Affiliation(s)
- Martino Adamo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Pier Andrea Mattioli, 25, 10125 Torino, Italy;
| | - Stefano Mammola
- Molecular Ecology Group (MEG), Water Research Institute (IRSA), National Research Council (CNR), Corso Tonolli, 50, 28922 Verbania, Italy;
- Laboratory for Integrative Biodiversity Research (LIBRe), Finnish Museum of Natural History (LUOMUS), University of Helsinki, Pohjoinen Rautatiekatu 13, 00100 Helsinki, Finland
| | - Virgile Noble
- Conservatoire Botanique National Méditerranéen, Avenue Gambetta 34, 83400 Hyères-les-palmiers, France;
| | - Marco Mucciarelli
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Pier Andrea Mattioli, 25, 10125 Torino, Italy;
| |
Collapse
|
29
|
Lippmann R, Babben S, Menger A, Delker C, Quint M. Development of Wild and Cultivated Plants under Global Warming Conditions. Curr Biol 2020; 29:R1326-R1338. [PMID: 31846685 DOI: 10.1016/j.cub.2019.10.016] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Global warming is one of the most detrimental aspects of climate change, affecting plant growth and development across the entire life cycle. This Review explores how different stages of development are influenced by elevated temperature in both wild plants and crops. Starting from seed development and germination, global warming will influence morphological adjustments, termed thermomorphogenesis, and photosynthesis primarily during the vegetative phase, as well as flowering and reproductive development. Where applicable, we distinguish between moderately elevated temperatures that affect all stages of plant development and heat waves that often occur during the reproductive phase when they can have devastating consequences for fruit development. The parallel occurrence of elevated temperature with other abiotic and biotic stressors, particularly the combination of global warming and drought or increased pathogen pressure, will potentiate the challenges for both wild and cultivated plant species. The key components of the molecular networks underlying the physiological processes involved in thermal responses in the model plant Arabidopsis thaliana are highlighted. In crops, temperature-sensitive traits relevant for yield are illustrated for winter wheat (Triticum aestivum L.) and soybean (Glycine max L.), representing cultivated species adapted to temperate vs. warm climate zones, respectively. While the fate of wild plants depends on political agendas, plant breeding approaches informed by mechanistic understanding originating in basic science can enable the generation of climate change-resilient crops.
Collapse
Affiliation(s)
- Rebecca Lippmann
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Steve Babben
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Anja Menger
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Carolin Delker
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany.
| | - Marcel Quint
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany.
| |
Collapse
|
30
|
Schneider K, Abazaj L, Niemann C, Schröder L, Nägele T. Cold acclimation has a differential effect on leaf vascular bundle structure and carbon export rates in natural Arabidopsis accessions originating from southern and northern Europe. PLANT DIRECT 2020; 4:e00251. [PMID: 32789285 PMCID: PMC7416751 DOI: 10.1002/pld3.251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/08/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Acclimation to low but non-freezing temperature represents an ecologically important process for Arabidopsis thaliana but also for many other plant species from temperate regions. Cold acclimation comprises and affects numerous molecular and physiological processes and the maintenance of sugar supply of sink tissue by photosynthetically active source tissue is essential for plant survival. Here, changes in vascular bundle (VB) structure at the leaf petiole were analysed together with sucrose exudation rates before and after cold acclimation. Six natural Arabidopsis accessions originating from southern and northern Europe were compared. Photosynthetic efficiency, that is, maximum and effective quantum yield of photosystem II, revealed a significant effect of environmental condition. Only for northern accessions was a highly significant negative correlation observed between leaf sucrose exudation rates, xylem, and petiole cross-sectional areas. Furthermore, only for northern accessions was a significant increase of VB and leaf petiole cross-sectional area observed during cold acclimation. In contrast, variance of cross-sectional areas of cold acclimated southern accessions was strongly reduced compared to control plants, while mean areas remained similar under both conditions. In summary, these findings suggest that natural Arabidopsis accessions from northern Europe significantly adjust sink strength and leaf VB structure to maintain plant growth and photosynthesis under low temperature.
Collapse
Affiliation(s)
- Katja Schneider
- Department Biology IPlant DevelopmentLMU MünchenPlanegg‐MartinsriedGermany
| | - Lorena Abazaj
- Department Biology IPlant Evolutionary Cell BiologyLMU MünchenPlanegg‐MartinsriedGermany
| | - Cornelia Niemann
- Department Biology IPlant DevelopmentLMU MünchenPlanegg‐MartinsriedGermany
| | - Laura Schröder
- Department Biology IPlant Evolutionary Cell BiologyLMU MünchenPlanegg‐MartinsriedGermany
| | - Thomas Nägele
- Department Biology IPlant Evolutionary Cell BiologyLMU MünchenPlanegg‐MartinsriedGermany
| |
Collapse
|
31
|
Prinzenberg AE, Campos‐Dominguez L, Kruijer W, Harbinson J, Aarts MGM. Natural variation of photosynthetic efficiency in Arabidopsis thaliana accessions under low temperature conditions. PLANT, CELL & ENVIRONMENT 2020; 43:2000-2013. [PMID: 32495939 PMCID: PMC7497054 DOI: 10.1111/pce.13811] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 03/29/2020] [Accepted: 05/18/2020] [Indexed: 05/18/2023]
Abstract
Low, but non-freezing, temperatures have negative effects on plant growth and development. Despite some molecular signalling pathways being known, the mechanisms causing different responses among genotypes are still poorly understood. Photosynthesis is one of the processes that are affected by low temperatures. Using an automated phenotyping platform for chlorophyll fluorescence imaging the steady state quantum yield of photosystem II (PSII) electron transport (ΦPSII ) was measured and used to quantify the effect of moderately low temperature on a population of Arabidopsis thaliana natural accessions. Observations were made over the course of several weeks in standard and low temperature conditions and a strong decrease in ΦPSII upon the cold treatment was found. A genome wide association study identified several quantitative trait loci (QTLs) that are associated with changes in ΦPSII in low temperature. One candidate for a cold specific QTL was validated with a mutant analysis to be one of the genes that is likely involved in the PSII response to the cold treatment. The gene encodes the PSII associated protein PSB27 which has already been implicated in the adaptation to fluctuating light.
Collapse
Affiliation(s)
- Aina E. Prinzenberg
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Plant BreedingWageningen University and ResearchPO Box 386Wageningen6700 AJThe Netherlands
| | - Lucia Campos‐Dominguez
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Royal Botanic Garden Edinburgh20A Inverleith RowEdinburghEH3 5LRUnited Kingdom
| | - Willem Kruijer
- BiometrisWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
| | - Jeremy Harbinson
- Horticulture and Product PhysiologyWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
- Laboratory of BiophysicsWageningen University and ResearchWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchDroevendaalsesteeg 1Wageningen6708 PBThe Netherlands
| |
Collapse
|
32
|
de Oliveira RR, Ribeiro THC, Cardon CH, Fedenia L, Maia VA, Barbosa BCF, Caldeira CF, Klein PE, Chalfun-Junior A. Elevated Temperatures Impose Transcriptional Constraints and Elicit Intraspecific Differences Between Coffee Genotypes. FRONTIERS IN PLANT SCIENCE 2020; 11:1113. [PMID: 32849685 PMCID: PMC7396624 DOI: 10.3389/fpls.2020.01113] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/06/2020] [Indexed: 05/19/2023]
Abstract
The projected impact of global warming on coffee production may require the heat-adapted genotypes in the next decades. To identify cellular strategies in response to warmer temperatures, we compared the effect of elevated temperature on two commercial Coffea arabica L. genotypes exploring leaf physiology, transcriptome, and carbohydrate/protein composition. Growth temperatures were 23/19°C (day/night), as optimal condition (OpT), and 30/26°C (day/night) as a possible warmer scenario (WaT). The cv. Acauã showed lower levels of leaf temperature (Tleaf) under both conditions compared to cv. Catuaí, whereas slightly or no differences for other leaf physiological parameters. Therefore, to explore temperature responsive pathways the leaf transcriptome was examined using RNAseq. Genotypes showed a marked number of differentially-expressed genes (DEGs) under OpT, however DEGs strongly decrease in both at WaT condition indicating a transcriptional constraint. DEGs responsive to WaT revealed shared and genotype-specific genes mostly related to carbohydrate metabolism. Under OpT, leaf starch content was greater in cv. Acauã and, as WaT temperature was imposed, the leaf soluble sugar did not change in contrast to cv. Catuaí, although the levels of leaf starch, sucrose, and leaf protein decreased in both genotypes. These findings revealed intraspecific differences in the underlying transcriptional and metabolic interconnected pathways responsive to warmer temperatures, which is potentially linked to thermotolerance, and thus may be useful as biomarkers in breeding for a changing climate.
Collapse
Affiliation(s)
| | | | - Carlos Henrique Cardon
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Lauren Fedenia
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | | | | | - Cecílio Frois Caldeira
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX, United States
| | - Antonio Chalfun-Junior
- Plant Physiology Sector, Biology Department, Universidade Federal de Lavras (UFLA), Lavras, Brazil
| |
Collapse
|
33
|
Blondeel H, Perring MP, De Lombaerde E, Depauw L, Landuyt D, Govaert S, Maes SL, Vangansbeke P, De Frenne P, Verheyen K. Individualistic responses of forest herb traits to environmental change. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:601-614. [PMID: 32109335 DOI: 10.1111/plb.13103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Intraspecific trait variation (ITV; i.e. variability in mean and/or distribution of plant attribute values within species) can occur in response to multiple drivers. Environmental change and land-use legacies could directly alter trait values within species but could also affect them indirectly through changes in vegetation cover. Increasing variability in environmental conditions could lead to more ITV, but responses might differ among species. Disentangling these drivers on ITV is necessary to accurately predict plant community responses to global change. We planted herb communities into forest soils with and without a recent history of agriculture. Soils were collected across temperate European regions, while the 15 selected herb species had different colonizing abilities and affinities to forest habitat. These mesocosms (384) were exposed to two-level full-factorial treatments of warming, nitrogen addition and illumination. We measured plant height and specific leaf area (SLA). For the majority of species, mean plant height increased as vegetation cover increased in response to light addition, warming and agricultural legacy. The coefficient of variation (CV) for height was larger in fast-colonizing species. Mean SLA for vernal species increased with warming, while light addition generally decreased mean SLA for shade-tolerant species. Interactions between treatments were not important predictors. Environmental change treatments influenced ITV, either via increasing vegetation cover or by affecting trait values directly. Species' ITV was individualistic, i.e. species responded to different single resource and condition manipulations that benefited their growth in the short term. These individual responses could be important for altered community organization after a prolonged period.
Collapse
Affiliation(s)
- H Blondeel
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - M P Perring
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
- Ecosystem Restoration and Intervention Ecology Research Group, School of Biological Sciences, the University of Western Australia, Crawley, WA, Australia
| | - E De Lombaerde
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - L Depauw
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - D Landuyt
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - S Govaert
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - S L Maes
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - P Vangansbeke
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - P De Frenne
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| | - K Verheyen
- Forest & Nature Lab, Campus Gontrode, Faculty of Bioscience Engineering, Ghent University, Melle-Gontrode, Belgium
| |
Collapse
|
34
|
Plant palatability and trait responses to experimental warming. Sci Rep 2020; 10:10526. [PMID: 32601471 PMCID: PMC7324391 DOI: 10.1038/s41598-020-67437-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 06/08/2020] [Indexed: 11/08/2022] Open
Abstract
Climate warming is expected to significantly affect plant-herbivore interactions. Even though direct effects of temperature on herbivores were extensively studied, indirect effects of temperature (acting via changes in host plant quality) on herbivore performance have rarely been addressed. We conducted multiple-choice feeding experiments with generalist herbivore Schistocerca gregaria feeding on six species of genus Impatiens cultivated at three different temperatures in growth chambers and a common garden. We also studied changes in leaf morphology and chemistry. We tested effects of temperature on plant palatability and assessed whether the effects could be explained by changes in the leaf traits. The leaves of most Impatiens species experienced the highest herbivory when cultivated at the warmest temperature. Traits related to leaf morphology (specific leaf area, leaf dry matter content and leaf area), but not to leaf chemistry, partly mediated the effects of temperature on plant palatability. Herbivores preferred smaller leaves with lower specific leaf area and higher leaf dry matter content. Our study suggests that elevated temperature will lead to changes in leaf traits and increase their palatability. This might further enhance the levels of herbivory under the increased herbivore pressure, which is forecasted as a consequence of climate warming.
Collapse
|
35
|
Wang L, Ma KB, Lu ZG, Ren SX, Jiang HR, Cui JW, Chen G, Teng NJ, Lam HM, Jin B. Differential physiological, transcriptomic and metabolomic responses of Arabidopsis leaves under prolonged warming and heat shock. BMC PLANT BIOLOGY 2020; 20:86. [PMID: 32087683 PMCID: PMC7036190 DOI: 10.1186/s12870-020-2292-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 02/14/2020] [Indexed: 05/23/2023]
Abstract
BACKGROUND Elevated temperature as a result of global climate warming, either in form of sudden heatwave (heat shock) or prolonged warming, has profound effects on the growth and development of plants. However, how plants differentially respond to these two forms of elevated temperatures is largely unknown. Here we have therefore performed a comprehensive comparison of multi-level responses of Arabidopsis leaves to heat shock and prolonged warming. RESULTS The plant responded to prolonged warming through decreased stomatal conductance, and to heat shock by increased transpiration. In carbon metabolism, the glycolysis pathway was enhanced while the tricarboxylic acid (TCA) cycle was inhibited under prolonged warming, and heat shock significantly limited the conversion of pyruvate into acetyl coenzyme A. The cellular concentration of hydrogen peroxide (H2O2) and the activities of antioxidant enzymes were increased under both conditions but exhibited a higher induction under heat shock. Interestingly, the transcription factors, class A1 heat shock factors (HSFA1s) and dehydration responsive element-binding proteins (DREBs), were up-regulated under heat shock, whereas with prolonged warming, other abiotic stress response pathways, especially basic leucine zipper factors (bZIPs) were up-regulated instead. CONCLUSIONS Our findings reveal that Arabidopsis exhibits different response patterns under heat shock versus prolonged warming, and plants employ distinctly different response strategies to combat these two types of thermal stress.
Collapse
Affiliation(s)
- Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Kai-Biao Ma
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Zhao-Geng Lu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Shi-Xiong Ren
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Hui-Ru Jiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Jia-Wen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| | - Gang Chen
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Nian-Jun Teng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Hon-Ming Lam
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
36
|
Guo J, Li H, Yang Y. Phenotypic Plasticity in Sexual Reproduction Based on Nutrients Supplied From Vegetative Ramets in a Leymus chinensis Population. FRONTIERS IN PLANT SCIENCE 2020; 10:1681. [PMID: 32010165 PMCID: PMC6976537 DOI: 10.3389/fpls.2019.01681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/29/2019] [Indexed: 05/12/2023]
Abstract
Phenotypic plasticity is considered a major mechanism that allows plants to adapt to heterogeneous environments. The physiological integration between the interconnected rhizomes or stolons of clonal plants influences the plasticity of such plants in heterogeneous environments. However, the determinants of plasticity of reproductive ramets in clonal plants in homogeneous environments are unclear. Here, we chose Leymus chinensis, a perennial rhizomatous grass, and conducted a series of field experiments in situ, including grading sampling of reproductive ramets and different connection forms of vegetative ramets labeled with 15N at four reproductive stages. Reproductive ramet biomass, inflorescence biomass, seed number, seed-setting percentage, reproductive allocation, and reallocation significantly increased with an increase in the number of vegetative ramets connected to tillering nodes, and the plasticity indexes of these six phenotypic characteristics showed similar increasing trends. The amount of nutrients supplied from the connected vegetative ramets to the reproductive ramets was significantly affected by the transfer direction, reproductive stage, and position order of the vegetative ramets. Throughout the sexual reproduction stage, nutrients were preferentially transferred to the acropetal reproductive ramet in L. chinensis populations. The amount of nutrients supplied from the connected vegetative ramets to the reproductive ramets at the milk-ripe stage, when sexual reproduction was most vigorous, was significantly larger than that at other reproductive stages. The amount of nutrients supplied from the spacer vegetative ramet to the acropetal reproductive ramet was significantly larger than that to the basipetal reproductive ramet. The closer the vegetative ramet was to the reproductive ramet, the more nutrients were supplied; the amount of nutrients supplied was significantly negatively related to the position order of the vegetative ramet. We identified the determinant of plasticity in sexual reproduction in clonal plants in a homogeneous environment: physiological integration between ramets within clones. Our results are vital for better understanding the adaptation of populations and even the evolution of species of clonal plants.
Collapse
Affiliation(s)
| | - Haiyan Li
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| | - Yunfei Yang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Institute of Grassland Science, Northeast Normal University, Changchun, China
| |
Collapse
|
37
|
Carotti L, Graamans L, Puksic F, Butturini M, Meinen E, Heuvelink E, Stanghellini C. Plant Factories Are Heating Up: Hunting for the Best Combination of Light Intensity, Air Temperature and Root-Zone Temperature in Lettuce Production. FRONTIERS IN PLANT SCIENCE 2020; 11:592171. [PMID: 33584743 PMCID: PMC7876451 DOI: 10.3389/fpls.2020.592171] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/21/2020] [Indexed: 05/13/2023]
Abstract
This study analyzed interactions among photon flux density (PPFD), air temperature, root-zone temperature for growth of lettuce with non-limiting water, nutrient, and CO2 concentration. We measured growth parameters in 48 combinations of a PPFD of 200, 400, and 750 μmol m-2 s-1 (16 h daylength), with air and root-zone temperatures of 20, 24, 28, and 32°C. Lettuce (Lactuca sativa cv. Batavia Othilie) was grown for four cycles (29 days after transplanting). Eight combinations with low root-zone (20 and 24°C), high air temperature (28 and 32°C) and high PPFD (400 and 750 μmol m-2 s-1) resulted in an excessive incidence of tip-burn and were not included in further analysis. Dry mass increased with increasing photon flux to a PPFD of 750 μmol m-2 s-1. The photon conversion efficiency (both dry and fresh weight) decreased with increasing photon flux: 29, 27, and 21 g FW shoot and 1.01, 0.87, and 0.76 g DW shoot per mol incident light at 200, 400, and 750 μmol m-2 s-1, respectively, averaged over all temperature combinations, following a concurrent decrease in specific leaf area (SLA). The highest efficiency was achieved at 200 μmol m-2 s-1, 24°C air temperature and 28°C root-zone temperature: 44 g FW and 1.23 g DW per mol incident light. The effect of air temperature on fresh yield was linked to all leaf expansion processes. SLA, shoot mass allocation and water content of leaves showed the same trend for air temperature with a maximum around 24°C. The effect of root temperature was less prominent with an optimum around 28°C in nearly all conditions. With this combination of temperatures, market size (fresh weight shoot = 250 g) was achieved in 26, 20, and 18 days, at 200, 400, and 750 μmol m-2 s-1, respectively, with a corresponding shoot dry matter content of 2.6, 3.8, and 4.2%. In conclusion, three factors determine the "optimal" PPFD: capital and operational costs of light intensity vs the value of reducing cropping time, and the market value of higher dry matter contents.
Collapse
Affiliation(s)
- Laura Carotti
- Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Luuk Graamans
- Greenhouse Horticulture, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Luuk Graamans,
| | - Federico Puksic
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Michele Butturini
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Esther Meinen
- Greenhouse Horticulture, Wageningen University and Research, Wageningen, Netherlands
| | - Ep Heuvelink
- Horticulture and Product Physiology, Wageningen University and Research, Wageningen, Netherlands
| | - Cecilia Stanghellini
- Greenhouse Horticulture, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
38
|
Shen Y, Lei T, Cui X, Liu X, Zhou S, Zheng Y, Guérard F, Issakidis-Bourguet E, Zhou DX. Arabidopsis histone deacetylase HDA15 directly represses plant response to elevated ambient temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:991-1006. [PMID: 31400169 DOI: 10.1111/tpj.14492] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 06/26/2019] [Accepted: 08/05/2019] [Indexed: 06/10/2023]
Abstract
Elevated ambient temperatures affect plant growth and substantially impact biomass and crop yield. Recent results have indicated that chromatin remodelling is critical in plant thermal responses but how histone modification dynamics affects plant thermal response has not been clearly demonstarted. Here we show that Arabidopsis histone deacetylase genes HDA9, HDA15 and HDA19 play distinct roles in plant response to elevated ambient temperature. hda9 and hda19 mutants showed a warm-temperature-insensitive phenotype at 27°C, whereas hda15 plants displayed a constitutive warm-temperature-induced phenotype at 20°C and an enhanced thermal response at 27°C. The hda19 mutation led to upregulation of genes mostly related to stress response at both 20 and 27°C. The hda15 mutation resulted in upregulation of many warm temperature-responsive as well as metabolic genes at 20 and 27°C, while hda9 led to differential expression of a large number of genes at 20°C and impaired induction of warm-temperature-responsive genes at 27°C. HDA15 is associated with thermosensory mark genes at 20°C and that the association is decreased after shifting to 27°C, indicating that HDA15 is a direct repressor of plant thermal-responsive genes at normal temperature. In addition, as hda9, the hda15 mutation also led to upregulation of many metabolic genes and accumulation of primary metabolites. Furthermore, we show that HDA15 interacts with the transcription factor HFR1 (long Hypocotyl in Far Red1) to cooperatively repress warm-temperature response. Our study demonstrates that the histone deacetylases target to different sets of genes and play distinct roles in plant response to elevated ambient temperature.
Collapse
Affiliation(s)
- Yuan Shen
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud, Université Paris-Saclay, 91405, Orsay, France
| | - Tingting Lei
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud, Université Paris-Saclay, 91405, Orsay, France
| | - Xiaoyun Cui
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud, Université Paris-Saclay, 91405, Orsay, France
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Shaoli Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, 430070, Wuhan, China
| | - Yu Zheng
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud, Université Paris-Saclay, 91405, Orsay, France
- Institute for Interdisciplinary Research, Jianghan University, Wuhan, 430056, China
| | - Florence Guérard
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud, Université Paris-Saclay, 91405, Orsay, France
| | - Emmanuelle Issakidis-Bourguet
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud, Université Paris-Saclay, 91405, Orsay, France
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRA, Université Paris-sud, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
39
|
Ogawa D, Sakamoto T, Tsunematsu H, Yamamoto T, Kanno N, Nonoue Y, Yonemaru JI. Surveillance of panicle positions by unmanned aerial vehicle to reveal morphological features of rice. PLoS One 2019; 14:e0224386. [PMID: 31671163 PMCID: PMC6822732 DOI: 10.1371/journal.pone.0224386] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/13/2019] [Indexed: 02/06/2023] Open
Abstract
Rice plant architecture affects biomass and grain yield. Thus, it is important to select rice genotypes with ideal plant architecture. High-throughput phenotyping by use of an unmanned aerial vehicle (UAV) allows all lines in a field to be observed in less time than with traditional procedures. However, discrimination of plants in dense plantings is difficult, especially during the reproductive stage, because leaves and panicles overlap. Here, we developed an original method that relies on using UAV to identify panicle positions for dissecting plant architecture and to distinguish rice lines by detecting red flags attached to panicle bases. The plant architecture of recombinant inbred lines derived from Japanese cultivars ‘Hokuriku 193’ and ‘Mizuhochikara’, which differ in plant architecture, was assessed using a commercial camera-UAV system. Orthomosaics were made from UAV digital images. The center of plants was plotted on the image during the vegetative stage. The horizontal distance from the center to the red flag during the reproductive stage was used as the panicle position (PP). The red flags enabled us to recognize the positions of the panicles at a rate of 92%. The PP phenotype was related to but was not identical with the phenotypes of the panicle base angle, leaf sheath angle, and score of spreading habit. These results indicate that PP on orthomosaics could be used as an index of plant architecture under field conditions.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba, Japan
- * E-mail: (DO); (TS)
| | - Toshihiro Sakamoto
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
- * E-mail: (DO); (TS)
| | - Hiroshi Tsunematsu
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Toshio Yamamoto
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Noriko Kanno
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Yasunori Nonoue
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Jun-ichi Yonemaru
- Institute of Crop Science, National Agricultural and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
40
|
Dinh QD, Dechesne A, Furrer H, Taylor G, Visser RGF, Harbinson J, Trindade LM. High-Altitude Wild Species Solanum arcanum LA385-A Potential Source for Improvement of Plant Growth and Photosynthetic Performance at Suboptimal Temperatures. FRONTIERS IN PLANT SCIENCE 2019; 10:1163. [PMID: 31608096 PMCID: PMC6769098 DOI: 10.3389/fpls.2019.01163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/26/2019] [Indexed: 05/26/2023]
Abstract
Plant growth, development, and yield of current tomato cultivars are directly affected by low temperatures. Although wild tomato species have been suggested as a potential source for low temperature tolerance, very little is known about their behavior during the reproductive phase. Here, we investigated the impact of suboptimal temperatures (SOT, 16/14°C), as compared to control temperatures (CT, 22/20°C), on plant growth, photosynthetic capacity, and carbohydrate metabolism. Under these conditions, two genotypes were analyzed: a Solanum lycopersicum cultivar Moneymaker and a high-altitude wild species Solanum arcanum LA385, from flowering onset until a later stage of fruit development. Total dry matter production in cv. Moneymaker was reduced up to 30% at SOT, whereas it was hardly affected in wild accession LA385. Specific leaf area, total leaf area, and number of fruits were also decreased at SOT in cv. Moneymaker. In contrast, wild accession LA385 showed an acclimation to SOT, in which ΦPSII and net CO2 assimilation rates were less affected; a similar specific leaf area; higher total leaf area; and higher number of fruits compared to those at CT. In addition, LA385 appeared to have a more distinct sucrose metabolism than cv. Moneymaker at both temperatures, in which it had higher contents of sucrose-6-phosphate, sucrose, and ratio of sucrose: starch in leaves and higher ratio of sucrose: hexose in fruits. Overall, our findings indicate that wild accession LA385 is able to acclimate well to SOT during the reproductive phase, whereas growth and development of cv. Moneymaker is reduced at SOT.
Collapse
Affiliation(s)
- Quy-Dung Dinh
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
- Graduate School Experimental Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Annemarie Dechesne
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Heleen Furrer
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| | - Graham Taylor
- Horticulture and Product Physiology Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - Jeremy Harbinson
- Horticulture and Product Physiology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
41
|
Robinson D, Peterkin JH. Clothing the Emperor: Dynamic Root-Shoot Allocation Trajectories in Relation to Whole-Plant Growth Rate and in Response to Temperature. PLANTS (BASEL, SWITZERLAND) 2019; 8:plants8070212. [PMID: 31295811 PMCID: PMC6681223 DOI: 10.3390/plants8070212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 06/09/2023]
Abstract
We quantified how root-shoot biomass allocation and whole-plant growth rate co-varied ontogenetically in contrasting species in response to cooling. Seven grass and four forb species were grown for 56 days in hydroponics. Growth was measured repeatedly before and after day/night temperatures were reduced at 28 days from 20 °C/15 °C to 10 °C/5 °C; controls remained unchanged. Sigmoid trajectories of root and shoot growth were reconstructed from the experimental data to derive continuous whole-plant relative growth rates (RGRs) and root mass fractions (RMFs). Root mass fractions in cooled plants generally increased, but this originated from unexpected and previously uncharacterised differences in response among species. Root mass fraction and RGR co-trajectories were idiosyncratic in controls and cooled plants. The RGR-RMF co-trajectories responded to cooling in grasses, but not forbs. The RMF responses of stress-tolerant grasses were predictably weak but projected to eventually out-respond faster-growing species. Sigmoid growth constrains biomass allocation. Only when neither root nor shoot biomass is near-maximal can biomass allocation respond to environmental drivers. Near maximum size, plants cannot adjust RMF, which then reflects net above- and belowground productivities. Ontogenetic biomass allocations are not equivalent to those based on interspecific surveys, especially in mature vegetation. This reinforces the importance of measuring temporal growth dynamics, and not relying on "snapshot" comparisons to infer the functional significance of root-shoot allocation.
Collapse
Affiliation(s)
- David Robinson
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 3UU, UK.
| | - John Henry Peterkin
- School of Biological Sciences, University of Portsmouth, Portsmouth PO1 2DY, UK
| |
Collapse
|
42
|
Bakhtiari M, Formenti L, Caggìa V, Glauser G, Rasmann S. Variable effects on growth and defense traits for plant ecotypic differentiation and phenotypic plasticity along elevation gradients. Ecol Evol 2019; 9:3740-3755. [PMID: 31015963 PMCID: PMC6468067 DOI: 10.1002/ece3.4999] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/28/2019] [Accepted: 01/31/2019] [Indexed: 01/05/2023] Open
Abstract
Along ecological gradients, phenotypic differentiation can arise through natural selection on trait diversity and magnitude, and environment-driven plastic changes. The magnitude of ecotypic differentiation versus phenotypic plasticity can vary depending on the traits under study. Using reciprocal transplant-common gardens along steep elevation gradients, we evaluated patterns of ecotypic differentiation and phenotypic plasticity of several growth and defense-related traits for two coexisting but unrelated plant species, Cardamine pratensis and Plantago major. For both species, we observed ecotypic differentiation accompanied by plasticity in growth-related traits. Plants grew faster and produced more biomass when placed at low elevation. In contrast, we observed fixed ecotypic differentiation for defense and resistance traits. Generally, low-elevation ecotypes produced higher chemical defenses regardless of the growing elevation. Yet, some plasticity was observed for specific compounds, such as indole glucosinolates. The results of this study may suggest that ecotypic differentiation in defense traits is maintained by costs of chemical defense production, while plasticity in growth traits is regulated by temperature-driven growth response maximization.
Collapse
Affiliation(s)
- Moe Bakhtiari
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | | | - Veronica Caggìa
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
- Institute of Plant ScienceUniversity of BernBernSwitzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Sergio Rasmann
- Institute of BiologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
43
|
Lorenzo M, Pinedo ML, Equiza MA, Fernández PV, Ciancia M, Ganem DG, Tognetti JA. Changes in apoplastic peroxidase activity and cell wall composition are associated with cold-induced morpho-anatomical plasticity of wheat leaves. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:84-94. [PMID: 29444373 DOI: 10.1111/plb.12709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Temperate grasses, such as wheat, become compact plants with small thick leaves after exposure to low temperature. These responses are associated with cold hardiness, but their underlying mechanisms remain largely unknown. Here we analyse the effects of low temperature on leaf morpho-anatomical structure, cell wall composition and activity of extracellular peroxidases, which play key roles in cell elongation and cell wall thickening, in two wheat cultivars with contrasting cold-hardening ability. A combined microscopy and biochemical approach was applied to study actively growing leaves of winter (ProINTA-Pincén) and spring (Buck-Patacón) wheat developed under constant warm (25 °C) or cool (5 °C) temperature. Cold-grown plants had shorter leaves but longer inter-stomatal epidermal cells than warm-grown plants. They had thicker walls in metaxylem vessels and mestome sheath cells, paralleled with accumulation of wall components, predominantly hemicellulose. These effects were more pronounced in the winter cultivar (Pincén). Cold also induced a sharp decrease in apoplastic peroxidase activity within the leaf elongating zone of Pincén, and a three-fold increase in the distal mature zone of the leaf. This was consistent with the enhanced cell length and thicker cell walls in this cultivar at 5 °C. The different response to low temperature of apoplastic peroxidase activity and hemicellulose between leaf zones and cultivar types suggests they might play a central role in the development of cold-induced compact morphology and cold hardening. New insights are presented on the potential temperature-driven role of peroxidases and hemicellulose in cell wall dynamics of grasses.
Collapse
Affiliation(s)
- M Lorenzo
- INTA, Unidad Integrada Balcarce, Balcarce, Buenos Aires, Argentina
| | - M L Pinedo
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Buenos Aires, Argentina
| | - M A Equiza
- Department of Renewable Resources, University of Alberta, Edmonton, Canada
| | - P V Fernández
- Cátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Research Member of the National Research Council of Argentina (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - M Ciancia
- Cátedra de Química de Biomoléculas, Departamento de Biología Aplicada y Alimentos, Facultad de Agronomía, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- CIHIDECAR-CONICET, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Research Member of the National Research Council of Argentina (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - D G Ganem
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
| | - J A Tognetti
- Laboratorio de Fisiología Vegetal, Facultad de Ciencias Agrarias, Universidad Nacional de Mar del Plata, Balcarce, Buenos Aires, Argentina
- Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CIC), La Plata, Buenos Aires, Argentina
| |
Collapse
|
44
|
Doughty CE, Santos-Andrade PE, Shenkin A, Goldsmith GR, Bentley LP, Blonder B, Díaz S, Salinas N, Enquist BJ, Martin RE, Asner GP, Malhi Y. Tropical forest leaves may darken in response to climate change. Nat Ecol Evol 2018; 2:1918-1924. [PMID: 30455442 DOI: 10.1038/s41559-018-0716-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 10/10/2018] [Indexed: 11/09/2022]
Abstract
Tropical forest leaf albedo (reflectance) greatly impacts how much energy the planet absorbs; however; little is known about how it might be impacted by climate change. Here, we measure leaf traits and leaf albedo at ten 1-ha plots along a 3,200-m elevation gradient in Peru. Leaf mass per area (LMA) decreased with warmer temperatures along the elevation gradient; the distribution of LMA was positively skewed at all sites indicating a shift in LMA towards a warmer climate and future reduced tropical LMA. Reduced LMA was significantly (P < 0.0001) correlated with reduced leaf near-infrared (NIR) albedo; community-weighted mean NIR albedo significantly (P < 0.01) decreased as temperature increased. A potential future 2 °C increase in tropical temperatures could reduce lowland tropical leaf LMA by 6-7 g m-2 (5-6%) and reduce leaf NIR albedo by 0.0015-0.002 units. Reduced NIR albedo means that leaves are darker and absorb more of the Sun's energy. Climate simulations indicate this increased absorbed energy will warm tropical forests more at high CO2 conditions with proportionately more energy going towards heating and less towards evapotranspiration and cloud formation.
Collapse
Affiliation(s)
- Christopher E Doughty
- School of Informatics, Computing, and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA.
| | | | - Alexander Shenkin
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Gregory R Goldsmith
- Schmid College of Science and Technology, Chapman University, Orange, CA, USA
| | - Lisa P Bentley
- Department of Biology, Sonoma State University, Rohnert Park, CA, USA
| | - Benjamin Blonder
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Sandra Díaz
- Instituto Multidisciplinario de Biología Vegetal, CONICET and Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Norma Salinas
- Universidad Nacional San Antonio Abad del Cusco, Cusco, Peru.,Seccion Quimica, Pontificia Universidad Catolica del Peru, Lima, Peru
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Roberta E Martin
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Gregory P Asner
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| |
Collapse
|
45
|
Patterson AE, Arkebauer R, Quallo C, Heskel MA, Li X, Boelman N, Griffin KL. Temperature response of respiration and respiratory quotients of 16 co-occurring temperate tree species. TREE PHYSIOLOGY 2018; 38:1319-1332. [PMID: 29425346 DOI: 10.1093/treephys/tpx176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 12/29/2017] [Indexed: 05/05/2023]
Abstract
The forests of the northeastern US are globally, one of the fastest growing terrestrial carbon sinks due to historical declines in large-scale agriculture, timber harvesting and fire disturbance. However, shifting range distributions of tree species with warming air temperatures are altering forest community composition and carbon dynamics. Here, we focus on respiration, a physiological process that is strongly temperature and species dependent. We specifically examined the response of respiration (R; CO2 release) to temperature in 10 broadleaved and six conifer species, as well as the respiratory quotient (RQ; ratio of CO2 released to O2 consumed) of nine broadleaved species that co-occur in the Hudson Highlands Region of New York, USA. The relationships between these physiological measurements and associated leaf traits were also explored. The rates of respiration at 20 °C were 71% higher in northern-ranged broadleaved species when compared with both central- and southern-ranged species. In contrast, the rates of respiration at 20 °C in northern-ranged conifers were 12% lower than in central-ranged conifers. The RQ of broadleaved species increased by 14% as temperatures increased from 15 °C to 35 °C. When RQ values were pooled across temperature, northern-ranged broadleaved species had 12% and 9% lower RQ values than central, and southern-ranged species, respectively, suggesting a reliance on alternative (non-carbohydrate) substrates to fulfill respiratory demands. A Pearson correlation analysis of leaf traits and respiration revealed strong correlations between leaf nitrogen, leaf mass area and R for both broadleaved and conifer species. Our results elucidate leaf trait relationships with tree physiology and reveal the various form and function strategies for species from differing range distributions. Compounded with predicted range distribution shifts and species replacement, this may reduce the carbon storage potential of northeast forests.
Collapse
Affiliation(s)
- Angelica E Patterson
- Columbia University, Department of Earth and Environmental Sciences, 5th Fl Schermerhorn Extension, 1200 Amsterdam Ave., New York, NY, USA
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, USA
| | - Rachel Arkebauer
- Columbia University, Ecology Evolution and Environmental Biology Department, 10th Fl Schermerhorn Extension, 1200 Amsterdam Ave., New York, NY, USA
| | - Crystal Quallo
- Columbia University, Barnard College, Department of Environmental Sciences, 3009 Broadway, 4th Fl Altschul Hall, New York, NY, USA
| | - Mary A Heskel
- The Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, USA
| | - Ximeng Li
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, Australia
| | - Natalie Boelman
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, USA
| | - Kevin L Griffin
- Columbia University, Department of Earth and Environmental Sciences, 5th Fl Schermerhorn Extension, 1200 Amsterdam Ave., New York, NY, USA
- Lamont-Doherty Earth Observatory, Columbia University, 61 Route 9W, Palisades, NY, USA
- Columbia University, Ecology Evolution and Environmental Biology Department, 10th Fl Schermerhorn Extension, 1200 Amsterdam Ave., New York, NY, USA
| |
Collapse
|
46
|
Fraimout A, Jacquemart P, Villarroel B, Aponte DJ, Decamps T, Herrel A, Cornette R, Debat V. Phenotypic plasticity of Drosophila suzukii wing to developmental temperature: implications for flight. ACTA ACUST UNITED AC 2018; 221:221/13/jeb166868. [PMID: 29987053 DOI: 10.1242/jeb.166868] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 04/16/2018] [Indexed: 12/27/2022]
Abstract
Phenotypic plasticity has been proposed as a mechanism that facilitates the success of biological invasions. In order to test the hypothesis of an adaptive role for plasticity in invasions, particular attention should be paid to the relationship between the focal plastic trait, the environmental stimulus and the functional importance of the trait. The Drosophila wing is particularly amenable to experimental studies of phenotypic plasticity. Wing morphology is known for its plastic variation under different experimental temperatures, but this plasticity has rarely been investigated in a functional context of flight. Here, we investigate the effect of temperature on wing morphology and flight in the invasive pest species Drosophila suzukii Although the rapid invasion of both Europe and North America was most likely facilitated by human activities, D. suzukii is also expected to disperse actively. By quantifying wing morphology and individual flight trajectories of flies raised under different temperatures, we tested whether (1) invasive populations of D. suzukii show higher phenotypic plasticity than their native counterparts, and (2) wing plasticity affects flight parameters. Developmental temperature was found to affect both wing morphology and flight parameters (in particular speed and acceleration), leaving open the possibility of an adaptive value for wing plasticity. Our results show no difference in phenotypic plasticity between invasive and native populations, rejecting a role for wing plasticity in the invasion success.
Collapse
Affiliation(s)
- Antoine Fraimout
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Pauline Jacquemart
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Bruno Villarroel
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France.,Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - David J Aponte
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France.,Department of Cell Biology & Anatomy, University of Calgary, Calgary AB, Canada
| | - Thierry Decamps
- Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Anthony Herrel
- Mécanismes Adaptatifs et Evolution, MECADEV-UMR 7179, CNRS, MNHN, Muséum National d'Histoire Naturelle, Sorbonne Universités, Paris, France
| | - Raphaël Cornette
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| | - Vincent Debat
- Institut de Systématique, Evolution, Biodiversité, ISYEB-UMR 7205-CNRS, MNHN, UPMC, EPHE, Muséum National d'Histoire Naturelle, Sorbonne Universités, 57 rue Cuvier, CP 50, 75005 Paris, France
| |
Collapse
|
47
|
Divergence of regulatory networks governed by the orthologous transcription factors FLC and PEP1 in Brassicaceae species. Proc Natl Acad Sci U S A 2017; 114:E11037-E11046. [PMID: 29203652 PMCID: PMC5754749 DOI: 10.1073/pnas.1618075114] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genome-wide landscapes of transcription factor (TF) binding sites (BSs) diverge during evolution, conferring species-specific transcriptional patterns. The rate of divergence varies in different metazoan lineages but has not been widely studied in plants. We identified the BSs and assessed the effects on transcription of FLOWERING LOCUS C (FLC) and PERPETUAL FLOWERING 1 (PEP1), two orthologous MADS-box TFs that repress flowering and confer vernalization requirement in the Brassicaceae species Arabidopsis thaliana and Arabis alpina, respectively. We found that only 14% of their BSs were conserved in both species and that these contained a CArG-box that is recognized by MADS-box TFs. The CArG-box consensus at conserved BSs was extended compared with the core motif. By contrast, species-specific BSs usually lacked the CArG-box in the other species. Flowering-time genes were highly overrepresented among conserved targets, and their CArG-boxes were widely conserved among Brassicaceae species. Cold-regulated (COR) genes were also overrepresented among targets, but the cognate BSs and the identity of the regulated genes were usually different in each species. In cold, COR gene transcript levels were increased in flc and pep1-1 mutants compared with WT, and this correlated with reduced growth in pep1-1 Therefore, FLC orthologs regulate a set of conserved target genes mainly involved in reproductive development and were later independently recruited to modulate stress responses in different Brassicaceae lineages. Analysis of TF BSs in these lineages thus distinguishes widely conserved targets representing the core function of the TF from those that were recruited later in evolution.
Collapse
|
48
|
Fontana V, Kohler M, Niedrist G, Bahn M, Tappeiner U, Frenck G. Decomposing the land-use specific response of plant functional traits along environmental gradients. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:750-759. [PMID: 28499223 DOI: 10.1016/j.scitotenv.2017.04.245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/17/2017] [Accepted: 04/18/2017] [Indexed: 05/26/2023]
Abstract
Environmental conditions affect functional trait variability within communities and thus shape ecosystem properties. With the ability of plants to adapt morphologically and physiologically to changing abiotic conditions, gradient analysis was shown to be a suitable tool to identify the drivers which determine trait values. Apart from direct environmental drivers and indirect gradients such as elevation, also anthropogenic effects (e.g. irrigation, grazing) can influence trait variability. Our aim was to assess the interactive effects of different environmental drivers on major plant traits and to investigate how these are modulated within two different land-use types (hay meadow vs. pasture). An elevational gradient spanning 1000m was decomposed into its underlying direct components (temperature, water input, length of growing season) for the investigation of gradual responses of five prominent functional traits (aboveground dry weight (AGDW), vegetative height (VegHt), specific leaf area (SLA), leaf dry matter content (LDMC), leaf nitrogen concentration (LNC)) for key species from two functional groups (grasses, forbs) in the two land-use/management regimes. The present study revealed that the detailed analysis of single direct gradients provides substantial additional information on trait response which remains hidden or is even reversed if only indirect gradients such as elevation are analysed. However, trait response to the combination of the three direct gradients aligned surprisingly well with trait response to the indirect gradient underpinning the adequate representation of temperature, water input and length of growing season by elevation. The response of traits significantly depended on the management regime and corresponding intensity which was shown to play an overriding role and constrained and attenuated response ranges of traits to climatic gradients.
Collapse
Affiliation(s)
- Veronika Fontana
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100 Bozen/Bolzano, Italy
| | - Marina Kohler
- Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria.
| | - Georg Niedrist
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100 Bozen/Bolzano, Italy
| | - Michael Bahn
- Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Ulrike Tappeiner
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100 Bozen/Bolzano, Italy; Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| | - Georg Frenck
- Institute for Alpine Environment, Eurac Research, Viale Druso 1, 39100 Bozen/Bolzano, Italy; Institute of Ecology, University of Innsbruck, Sternwartestrasse 15, 6020 Innsbruck, Austria
| |
Collapse
|
49
|
Liu M, Wang Z, Li S, Lü X, Wang X, Han X. Changes in specific leaf area of dominant plants in temperate grasslands along a 2500-km transect in northern China. Sci Rep 2017; 7:10780. [PMID: 28883421 PMCID: PMC5589743 DOI: 10.1038/s41598-017-11133-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/18/2017] [Indexed: 11/09/2022] Open
Abstract
Specific leaf area (SLA) is a key trait with great ecological importance as it correlates with whole plant growth. We aimed to investigate how SLA varies with environmental factors at a geographical scale in temperate grasslands. We measured SLA and mass-based leaf nitrogen content (N mass) of four dominant plant genera along a 2500 km climatic gradient in northern China grassland, and correlated SLA with mean annual precipitation (MAP), mean annual temperature (MAT), soil nitrogen concentration (soil N), soil C:N and N mass. Climate accounts much more for SLA variation than soil variables for Stipa, Cleistogens and Carex. SLA of Stipa is negatively associated with MAP and soil N, while positively with MAT, but Cleistogenes and Carex show the opposite. For Leymus, soil N promotes SLA and accounts for largest fraction of SLA variation. Overall, SLA was positively correlated with N mass in semi-arid regions, but not significant in arid regions. The genus-dependent responses of SLA may have consequences on ecosystem functioning, thus may help to predict the community composition and ecosystem functions under future climate scenario. The finding of SLA-N mass trade-off and its susceptibility to precipitation will advance our understanding on plant resource use strategies.
Collapse
Affiliation(s)
- Mengzhou Liu
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengwen Wang
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China. .,Key Laboratory for Vegetation Ecology, Ministry of Education, Northeast Normal University, Changchun, 130024, China.
| | - Shanshan Li
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaotao Lü
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xiaobo Wang
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Xingguo Han
- Erguna Forest-Steppe Ecotone Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.,State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
50
|
Scafaro AP, Xiang S, Long BM, Bahar NHA, Weerasinghe LK, Creek D, Evans JR, Reich PB, Atkin OK. Strong thermal acclimation of photosynthesis in tropical and temperate wet-forest tree species: the importance of altered Rubisco content. GLOBAL CHANGE BIOLOGY 2017; 23:2783-2800. [PMID: 27859952 DOI: 10.1111/gcb.13566] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 10/16/2016] [Indexed: 05/09/2023]
Abstract
Understanding of the extent of acclimation of light-saturated net photosynthesis (An ) to temperature (T), and associated underlying mechanisms, remains limited. This is a key knowledge gap given the importance of thermal acclimation for plant functioning, both under current and future higher temperatures, limiting the accuracy and realism of Earth system model (ESM) predictions. Given this, we analysed and modelled T-dependent changes in photosynthetic capacity in 10 wet-forest tree species: six from temperate forests and four from tropical forests. Temperate and tropical species were each acclimated to three daytime growth temperatures (Tgrowth ): temperate - 15, 20 and 25 °C; tropical - 25, 30 and 35 °C. CO2 response curves of An were used to model maximal rates of RuBP (ribulose-1,5-bisphosphate) carboxylation (Vcmax ) and electron transport (Jmax ) at each treatment's respective Tgrowth and at a common measurement T (25 °C). SDS-PAGE gels were used to determine abundance of the CO2 -fixing enzyme, Rubisco. Leaf chlorophyll, nitrogen (N) and mass per unit leaf area (LMA) were also determined. For all species and Tgrowth , An at current atmospheric CO2 partial pressure was Rubisco-limited. Across all species, LMA decreased with increasing Tgrowth . Similarly, area-based rates of Vcmax at a measurement T of 25 °C (Vcmax25 ) linearly declined with increasing Tgrowth , linked to a concomitant decline in total leaf protein per unit leaf area and Rubisco as a percentage of leaf N. The decline in Rubisco constrained Vcmax and An for leaves developed at higher Tgrowth and resulted in poor predictions of photosynthesis by currently widely used models that do not account for Tgrowth -mediated changes in Rubisco abundance that underpin the thermal acclimation response of photosynthesis in wet-forest tree species. A new model is proposed that accounts for the effect of Tgrowth -mediated declines in Vcmax25 on An , complementing current photosynthetic thermal acclimation models that do not account for T sensitivity of Vcmax25 .
Collapse
Affiliation(s)
- Andrew P Scafaro
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Shuang Xiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, Renmin South Road, Chengdu, Sichuan, 610041, China
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
| | - Benedict M Long
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Nur H A Bahar
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | | | - Danielle Creek
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
| | - John R Evans
- Division of Plant Sciences, Research School of Biology, The Australian National University, Building 46, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| | - Peter B Reich
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2751, Australia
- Department of Forest Resources, University of Minnesota, 1540 Cleveland Avenue North, St. Paul, MN, 55108, USA
| | - Owen K Atkin
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Building 134, Canberra, ACT, 2601, Australia
| |
Collapse
|