1
|
Zeng H, Chen H, Zhang M, Ding M, Xu F, Yan F, Kinoshita T, Zhu Y. Plasma membrane H +-ATPases in mineral nutrition and crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:978-994. [PMID: 38582687 DOI: 10.1016/j.tplants.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
| | - Huiying Chen
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan 528000, China
| | - Ming Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 4660824, Japan.
| | - Yiyong Zhu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Zhu J, Chen R, Feng Q, Huang C, Huang F, Du J, Wang J, Zhan X. Mechanistic insights into auxin-enhancing polycyclic aromatic hydrocarbon uptake by wheat roots: Evidence from in situ intracellular pH and root-surface H + flux. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133077. [PMID: 38035525 DOI: 10.1016/j.jhazmat.2023.133077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/17/2023] [Accepted: 11/22/2023] [Indexed: 12/02/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of extremely carcinogenic organic pollutants. Our previous findings have demonstrated that plant roots actively take up PAHs through co-transport with H+ ions. Auxin serves as a pivotal regulator of plant growth and development. However, it remains unclear whether the hormone can enhance the uptake of PAHs by plant roots. Hence, the wheat root exposed to PAHs with/without auxins was set to investigate how the auxin promotes the PAHs uptake by roots. In our study, auxin could significantly enhance the uptake of PAHs after 4 h of exposure. After the addition of auxin, the root tissue cytoplasmic pH value was decreased and the H+ influx was observed, indicating that the extracellular space was alkalinized in a short time. The increased H+ influx rate enhanced the uptake of PAHs. In addition, the H+-ATPase activity was also increased, suggesting that auxin activated two distinct and antagonistic H+ flux pathways, and the H+ influx pathway was dominant. Our findings offer important information for exploring the mechanism underlying auxin regulation of PAHs uptake and the phytoremediation of PAH-contaminated soil and water.
Collapse
Affiliation(s)
- Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Ruonan Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Qiurun Feng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Chenghao Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Fei Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiani Du
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, People's Republic of China.
| |
Collapse
|
3
|
Zhu J, Chen R, Huang C, Wang J, Zhan X. Exogenous auxin alters the polycyclic aromatic hydrocarbons apoplastic and symplastic uptake by wheat seedling roots. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123112. [PMID: 38097155 DOI: 10.1016/j.envpol.2023.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/14/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a category of organic pollutants known for their high carcinogenicity. Our previous research has illustrated that plant roots actively absorb PAHs through a co-transport mechanism with H+ ions. Because auxin can increase the H+-ATPase activity, the wheat roots were exposed to PAHs with/without auxins to study whether auxins facilitate the uptake of PAHs by plant roots and to gain insights into the underlying mechanisms of this process. In our study, indole acetic acid (100 μM) and α-naphthaleneacetic acid (10 μM) significantly increased the PAHs concentrations in apoplast and symplast, and the treating time and concentrations were positively correlated with PAHs accumulations. The time-dependent kinetics for 36 h followed the Elovich equation, and the concentration-dependent kinetics of apoplastic and symplastic uptake for 4 h could be described with the Freundlich and Michaelis-Menten equations, respectively. The proportion of PAHs accumulated in apoplast could be enhanced by auxins in most treatments. Our findings offer novel insights into the mechanisms of PAH uptake by plant roots under auxin exposure. Additionally, this research aids in refining strategies for ensuring crop safety and improving phytoremediation of PAH-contaminated soil and water.
Collapse
Affiliation(s)
- Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Ruonan Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Chenghao Huang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, People's Republic of China.
| |
Collapse
|
4
|
Sun M, Zheng C, Feng W, Shao J, Pang C, Li P, Dong H. Low soil available phosphorus level reduces cotton fiber length via osmoregulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1254103. [PMID: 37662180 PMCID: PMC10471804 DOI: 10.3389/fpls.2023.1254103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/01/2023] [Indexed: 09/05/2023]
Abstract
Introduction Phosphorus (P) deficiency hinders cotton (Gossypium hirustum L.) growth and development, seriously affecting lint yield and fiber quality. However, it is still unclear how P fertilizer affects fiber length. Methods Therefore, a two-year (2019-2020) pool-culture experiment was conducted using the split-plot design, with two cotton cultivars (CCRI-79; low-P tolerant and SCRC-28; low-P sensitive) as the main plot. Three soil available phosphorus (AP) contents (P0: 3 ± 0.5, P1: 6 ± 0.5, and P2 (control) with 15 ± 0.5 mg kg-1) were applied to the plots, as the subplot, to investigate the impact of soil AP content on cotton fiber elongation and length. Results Low soil AP (P0 and P1) decreased the contents of the osmotically active solutes in the cotton fibers, including potassium ions (K+), malate, soluble sugar, and sucrose, by 2.2-10.2%, 14.4-47.3%, 8.7-24.5%, and 10.1-23.4%, respectively, inhibiting the vacuoles from facilitating fiber elongation through osmoregulation. Moreover, soil AP deficiency also reduced the activities of enzymes participated in fiber elongation (plasma membrane H+-ATPase (PM-H+-ATPase), vacuole membrane H+-ATPase (V-H+-ATPase), vacuole membrane H+-translocating inorganic pyrophosphatase (V-H+-PPase), and phosphoenolpyruvate carboxylase (PEPC)). The PM-H+-ATPase, V-H+-ATPase, V-H+-PPase, and PEPC were reduced by 8.4-33.0%, 7.0-33.8%, 14.1-38.4%, and 16.9-40.2%, respectively, inhibiting the transmembrane transport of the osmotically active solutes and acidified conditions for fiber cell wall, thus limiting the fiber elongation. Similarly, soil AP deficiency reduced the fiber length by 0.6-3.0 mm, mainly due to the 3.8-16.3% reduction of the maximum velocity of fiber elongation (VLmax). Additionally, the upper fruiting branch positions (FB10-11) had higher VLmax and longer fiber lengths under low soil AP. Discussion Cotton fibers with higher malate content and V-H+-ATPase and V-H+-PPase activities yielded longer fibers. And the malate and soluble sugar contents and V-H+-ATPase and PEPC activities in the SCRC-28's fiber were more sensitive to soil AP deficiency in contrast to those of CCRI-79, possibly explaining the SCRC-28 fiber length sensitivity to low soil AP.
Collapse
Affiliation(s)
- Miao Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Cangsong Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Weina Feng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jingjing Shao
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Pengcheng Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Helin Dong
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, China
| |
Collapse
|
5
|
Cheng C, Steinman AD, Xue Q, Wan X, Xie L. The disruption of calcium and hydrogen ion homeostasis of submerged macrophyte Vallisneria natans (Lour.) Hara caused by microcystin-LR. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106377. [PMID: 36563584 DOI: 10.1016/j.aquatox.2022.106377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/20/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Aquatic plants play an important role in maintaining lake water status and ecosystem stability, but the effect of the cyanotoxin microcystin (MC) on ion homeostasis in aquatic plants and the resulting adverse consequences remains unclear. This study used non-invasive micro-test technology to detect the effect of MC-LR on homeostasis of calcium (Ca2+) and hydrogen ions (H+) in Vallisneria natans (Lour.) Hara, and examined the relationship between ion homeostasis and physiological indicators. Results showed that 1) MC-LR was enriched in V. natans tissues, with greater absorption in roots than in leaves, and 2) MC-LR induced a sustained and dose-dependent Ca2+ efflux from leaves and recoverable Ca2+ efflux from roots. Although H+-ATPase of leaves and roots was activated by MC-LR, the effluent of H+ from roots and influent of H+ into leaves was enhanced. By affecting the homeostasis of Ca2+ and H+, MC-LR directly or indirectly affected accumulation of nutrients essential for maintaining normal growth: accumulation of nitrogen, magnesium, phosphorus, calcium, iron, and zinc decreased in leaves; calcium, magnesium, and zinc decreased in roots; and potassium showed an increase in both leaves and roots. Microscopy revealed MC-LR results in leaf swelling and reduced accumulation of protein and starch, presumably due to changes in nutrient processes. In addition, efflux of Ca2+ and reduced accumulation of transition metals resulted in decreased ROS levels in leaves and roots. The disruption of ionic homeostasis in aquatic plants can be caused by as small a concentration as 1 μg/L MC-LR, indicating potential ecological impacts caused by microcystin need greater attention.
Collapse
Affiliation(s)
- Chen Cheng
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Alan D Steinman
- Annis Water Resources Institute, Grand Valley State University, 740 West Shoreline Drive, Muskegon, MI, USA
| | - Qingju Xue
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiang Wan
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Liqiang Xie
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
6
|
Wu Q, Yang L, Liang H, Yin L, Chen D, Shen P. Integrated analyses reveal the response of peanut to phosphorus deficiency on phenotype, transcriptome and metabolome. BMC PLANT BIOLOGY 2022; 22:524. [PMID: 36372886 PMCID: PMC9661748 DOI: 10.1186/s12870-022-03867-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Phosphorus (P) is one of the most essential macronutrients for crops. The growth and yield of peanut (Arachis hypogaea L.) are always limited by P deficiency. However, the transcriptional and metabolic regulatory mechanisms were less studied. In this study, valuable phenotype, transcriptome and metabolome data were analyzed to illustrate the regulatory mechanisms of peanut under P deficiency stress. RESULT In present study, two treatments of P level in deficiency with no P application (-P) and in sufficiency with 0.6 mM P application (+ P) were used to investigate the response of peanut on morphology, physiology, transcriptome, microRNAs (miRNAs), and metabolome characterizations. The growth and development of plants were significantly inhibited under -P treatment. A total of 6088 differentially expressed genes (DEGs) were identified including several transcription factor family genes, phosphate transporter genes, hormone metabolism related genes and antioxidant enzyme related genes that highly related to P deficiency stress. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses indicated that 117 genes were annotated in the phenylpropanoid biosynthesis pathway under P deficiency stress. A total of 6 miRNAs have been identified significantly differential expression between + P and -P group by high-throughput sequencing of miRNAs, including two up-regulated miRNAs (ahy-miR160-5p and ahy-miR3518) and four down-regulated miRNAs (ahy-miR408-5p, ahy-miR408-3p, ahy-miR398, and ahy-miR3515). Further, the predicted 22 target genes for 6 miRNAs and cis-elements in 2000 bp promoter region of miRNA genes were analyzed. A total of 439 differentially accumulated metabolites (DAMs) showed obviously differences in two experimental conditions. CONCLUSIONS According to the result of transcripome and metabolome analyses, we can draw a conclusion that by increasing the content of lignin, amino acids, and levan combining with decreasing the content of LPC, cell reduced permeability, maintained stability, raised the antioxidant capacity, and increased the P uptake in struggling for survival under P deficiency stress.
Collapse
Affiliation(s)
- Qi Wu
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liyu Yang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Haiyan Liang
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Liang Yin
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Dianxu Chen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| | - Pu Shen
- Shandong Peanut Research Institute/Key Laboratory of Peanut Biology, Genetics & Breeding, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, 126 Wannianquan Road, Qingdao, 266100 China
| |
Collapse
|
7
|
Overexpression of a Plasma Membrane H +-ATPase Gene OSA1 Stimulates the Uptake of Primary Macronutrients in Rice Roots. Int J Mol Sci 2022; 23:ijms232213904. [PMID: 36430382 PMCID: PMC9697395 DOI: 10.3390/ijms232213904] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Plasma membrane (PM) H+-ATPase is a master enzyme involved in various plant physiological processes, such as stomatal movements in leaves and nutrient uptake and transport in roots. Overexpression of Oryza sativa PM H+-ATPase 1 (OSA1) has been known to increase NH4+ uptake in rice roots. Although electrophysiological and pharmacological experiments have shown that the transport of many substances is dependent on the proton motive force provided by PM H+-ATPase, the exact role of PM H+-ATPase on the uptake of nutrients in plant roots, especially for the primary macronutrients N, P, and K, is still largely unknown. Here, we used OSA1 overexpression lines (OSA1-oxs) and gene-knockout osa1 mutants to investigate the effect of modulation of PM H+-ATPase on the absorption of N, P, and K nutrients through the use of a nutrient-exhaustive method and noninvasive microtest technology (NMT) in rice roots. Our results showed that under different concentrations of P and K, the uptake rates of P and K were enhanced in OSA1-oxs; by contrast, the uptake rates of P and K were significantly reduced in roots of osa1 mutants when compared with wild-type. In addition, the net influx rates of NH4+ and K+, as well as the efflux rate of H+, were enhanced in OSA1-oxs and suppressed in osa1 mutants under low concentration conditions. In summary, this study indicated that overexpression of OSA1 stimulated the uptake rate of N, P, and K and promoted flux rates of cations (i.e., H+, NH4+, and K+) in rice roots. These results may provide a novel insight into improving the coordinated utilization of macronutrients in crop plants.
Collapse
|
8
|
The molecular mechanism of plasma membrane H +-ATPases in plant responses to abiotic stress. J Genet Genomics 2022; 49:715-725. [PMID: 35654346 DOI: 10.1016/j.jgg.2022.05.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 11/22/2022]
Abstract
Plasma membrane H+-ATPases (PM H+-ATPases) are critical proton pumps that export protons from the cytoplasm to the apoplast. The resulting proton gradient and difference in electrical potential energize various secondary active transport events. PM H+-ATPases play essential roles in plant growth, development, and stress responses. In this review, we focus on recent studies of the mechanism of PM H+-ATPases in response to abiotic stresses in plants, such as salt and high pH, temperature, drought, light, macronutrient deficiency, acidic soil and aluminum stress, as well as heavy metal toxicity. Moreover, we discuss remaining outstanding questions about how PM H+-ATPases contribute to abiotic stress responses.
Collapse
|
9
|
He M, Li X, Mang M, Li Z, Ludewig U, Schulze WX. A systems-biology approach identifies co-expression modules in response to low phosphate supply in maize lines of different breeding history. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1249-1270. [PMID: 34897849 DOI: 10.1111/tpj.15630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 12/02/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Plants cope with low phosphorus availability by adjusting growth and metabolism through transcriptomic and proteomic adaptations. We hypothesize that selected genotypes with distinct phosphorous (P) use efficiency covering the breeding history of European Flint heterotic pool provide a tool to reveal general and genotype-specific molecular responses to P limitation. We reconstructed protein and gene co-expression networks by weighted correlation network analysis and related these to phosphate deficiency-induced traits. In roots, low phosphate supply resulted in a decreasing abundance of proteins in the oxidative pentose phosphate pathway and a negative correlation with root and shoot phosphate content. We observed an increase in abundance and positive correlation with root and shoot phosphate content for proteins in sucrose biosynthesis, lipid metabolism, respiration and RNA processing. Purple acid phosphatases, superoxide dismutase and phenylalanine ammonia lyase were identified as being upregulated under low phosphate in all genotypes. Overall, correlations between protein and mRNA abundance changes were limited, with ribosomal proteins and the ubiquitin protein degradation pathway exclusively responding with protein abundance changes. Carbohydrate, phospho- and sulfo-lipid metabolism showed abundance changes at the protein and mRNA levels. These partially non-overlapping proteomic and transcriptomic adjustments to low phosphate suggest sugar and lipid metabolism as metabolic processes associated with improved P use efficiency specifically in Founder Flint lines. We identified a mitogen-activated protein kinase-kinase as a potential genotype-specific regulator of sucrose metabolism at low phosphate in Founder Flint line EP1. We conclude that, during breedingt of Elite Flint lines, regulation of primary metabolism has changed to result in a distinct low phosphate response in Founder lines.
Collapse
Affiliation(s)
- Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Xuelian Li
- Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Melissa Mang
- Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Zhi Li
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Uwe Ludewig
- Department of Nutritional Crop Physiology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, 70593, Germany
| |
Collapse
|
10
|
Di DW, Sun L, Wang M, Wu J, Kronzucker HJ, Fang S, Chu J, Shi W, Li G. WRKY46 promotes ammonium tolerance in Arabidopsis by repressing NUDX9 and indole-3-acetic acid-conjugating genes and by inhibiting ammonium efflux in the root elongation zone. THE NEW PHYTOLOGIST 2021; 232:190-207. [PMID: 34128546 DOI: 10.1111/nph.17554] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 06/08/2021] [Indexed: 05/11/2023]
Abstract
Ammonium (NH4+ ) is toxic to root growth in most plants, even at moderate concentrations. Transcriptional regulation is one of the most important mechanisms in the response of plants to NH4+ toxicity, but the nature of the involvement of transcription factors (TFs) in this regulation remains unclear. Here, RNA-seq analysis was performed on Arabidopsis roots to screen for ammonium-responsive TFs. WRKY46, the member of the WRKY transcription factor family most responsive to NH4+ , was selected. We defined the role of WRKY46 using mutation and overexpression assays, and characterized the regulation of NUDX9 and indole-3-acetic acid (IAA)-conjugating genes by WRKY46 via yeast one-hybrid and electrophoretic mobility shift assays and chromatin immunoprecipitation-quantitative real-time polymerase chain reaction (ChIP-qPCR). Knockout of WRKY46 increased, while overexpression of WRKY46 decreased, NH4+ -suppression of the primary root. WRKY46 is shown to directly bind to the promoters of the NUDX9 and IAA-conjugating genes (GH3.1, GH3.6, UGT75D1, UGT84B2) and to inhibit their transcription, thus positively regulating free IAA content and stabilizing protein N-glycosylation, leading to an inhibition of NH4+ efflux in the root elongation zone (EZ). We identify TF involvement in the regulation of NH4+ efflux in the EZ, and show that WRKY46 inhibits NH4+ efflux by negative regulation of NUDX9 and IAA-conjugating genes.
Collapse
Affiliation(s)
- Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jingjing Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, Vic., 3010, Australia
- Faculty of Land and Food Systems, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
11
|
Zhang R, Wang N, Li S, Wang Y, Xiao S, Zhang Y, Egrinya Eneji A, Zhang M, Wang B, Duan L, Li F, Tian X, Li Z. Gibberellin biosynthesis inhibitor mepiquat chloride enhances root K+ uptake in cotton by modulating plasma membrane H+-ATPase. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6659-6671. [PMID: 34161578 DOI: 10.1093/jxb/erab302] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Potassium deficiency causes severe losses in yield and quality in crops. Mepiquat chloride, a plant growth regulator, can increase K+ uptake in cotton (Gossypium hirsutum), but the underlying physiological mechanisms remain unclear. In this study, we used a non-invasive micro-test technique to measure K+ and H+ fluxes in the root apex with or without inhibitors of K+ channels, K+ transporters, non-selective cation channels, and plasma membrane H+-ATPases. We found that soaking seeds in mepiquat chloride solution increased the K+ influx mediated by K+ channels and reduced the K+ efflux mediated by non-selective cation channels in cotton seedlings. Mepiquat chloride also increased negative membrane potential (Em) and the activity of plasma membrane H+-ATPases in roots, due to higher levels of gene expression and protein accumulation of plasma membrane H+-ATPases as well as phosphorylation of H+-ATPase 11 (GhAHA11). Thus, plasma membrane hyperpolarization mediated by H+-ATPases was able to stimulate the activity of K+ channels in roots treated with mepiquat chloride. In addition, reduced K+ efflux under mepiquat chloride treatment was associated with reduced accumulation of H2O2 in roots. Our results provide important insights into the mechanisms of mepiquat chloride-induced K+ uptake in cotton and hence have the potential to help in improving K nutrition for enhancing cotton production.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yiru Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shuang Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yichi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar, 540271, Nigeria
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Baomin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fangjun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Wang K, Xu F, Yuan W, Zhang D, Liu J, Sun L, Cui L, Zhang J, Xu W. Rice G protein γ subunit qPE9-1 modulates root elongation for phosphorus uptake by involving 14-3-3 protein OsGF14b and plasma membrane H + -ATPase. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1603-1615. [PMID: 34216063 DOI: 10.1111/tpj.15402] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 06/07/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Heterotrimeric G protein is involved in plant growth and development, while the role of rice (Oryza sativa) G protein γ subunit qPE9-1 in response to low-phosphorus (LP) conditions remains unclear. The gene expression of qPE9-1 was significantly induced in rice roots under LP conditions. Rice varieties carrying the qPE9-1 allele showed a stronger primary root response to LP than the varieties carrying the qpe9-1 allele (mutant of the qPE9-1 allele). Transgenic rice plants with the qPE9-1 allele had longer primary roots and higher P concentrations than those with the qpe9-1 allele under LP conditions. The plasma membrane (PM) H+ -ATPase was important for the qPE9-1-mediated response to LP. Furthermore, OsGF14b, a 14-3-3 protein that acts as a key component in activating PM H+ -ATPase for root elongation, is also involved in the qPE9-1 mediation. Moreover, the overexpression of OsGF14b in WYJ8 (carrying the qpe9-1 allele) partially increased primary root length under LP conditions. Experiments using R18 peptide (a 14-3-3 protein inhibitor) showed that qPE9-1 is important for primary root elongation and H+ efflux under LP conditions by involving the 14-3-3 protein. In addition, rhizosheath weight, total P content, and the rhizosheath soil Olsen-P concentration of qPE9-1 lines were higher than those of qpe9-1 lines under soil drying and LP conditions. These results suggest that the G protein γ subunit qPE9-1 in rice plants modulates root elongation for phosphorus uptake by involving the 14-3-3 protein OsGF14b and PM H+ -ATPase, which is required for rice P use.
Collapse
Affiliation(s)
- Ke Wang
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Feiyun Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei Yuan
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dongping Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, China
| | - Jianping Liu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Leyun Sun
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liyou Cui
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianhua Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crops and College of Life Sciences, Center for Plant Water-Use and Nutrition Regulation and College of Resource and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
13
|
Di DW, Li G, Sun L, Wu J, Wang M, Kronzucker HJ, Fang S, Chu J, Shi W. High ammonium inhibits root growth in Arabidopsis thaliana by promoting auxin conjugation rather than inhibiting auxin biosynthesis. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153415. [PMID: 33894579 DOI: 10.1016/j.jplph.2021.153415] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
Ammonium (NH4+) inhibits primary root (PR) growth in most plant species when present even at moderate concentrations. Previous studies have shown that transport of indole-3-acetic acid (IAA) is critical to maintaining root elongation under high-NH4+ stress. However, the precise regulation of IAA homeostasis under high-NH4+ stress (HAS) remains unclear. In this study, qRT-PCR, RNA-seq, free IAA and IAA conjugate and PR elongation measurements were conducted in genetic mutants to investigate the role of IAA biosynthesis and conjugation under HAS. Our data clearly show that HAS decreases free IAA in roots by increasing IAA inactivation but does not decrease IAA biosynthesis, and that the IAA-conjugating genes GH3.1, GH3.2, GH3.3, GH3.4, and GH3.6 function as the key genes in regulating high-NH4+ sensitivity in the roots. Furthermore, the analysis of promoter::GUS staining in situ and genetic mutants reveals that HAS promotes IAA conjugation in the elongation zone (EZ), which may be responsible for the PR inhibition observed under HAS. This study provides potential new insight into the role of auxin in the improvement of tolerance to NH4+.
Collapse
Affiliation(s)
- Dong-Wei Di
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Li Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing, Jiangsu, 210095, China
| | - Jingjing Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu, 210014, China
| | - Meng Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Herbert J Kronzucker
- Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC, V6T 1Z4, Canada; School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Shuang Fang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
14
|
Feil SB, Pii Y, Valentinuzzi F, Tiziani R, Mimmo T, Cesco S. Copper toxicity affects phosphorus uptake mechanisms at molecular and physiological levels in Cucumis sativus plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:138-147. [PMID: 33113485 DOI: 10.1016/j.plaphy.2020.10.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/16/2020] [Indexed: 05/28/2023]
Abstract
Due to the deliberate use of cupric fungicides in the last century for crop-defence programs, copper (Cu) has considerably accumulated in the soil. The concentrations of Cu often exceed the safety limits of risk assessment for Cu in soil and this may cause toxicity in plants. Copper toxicity induces nutritional imbalances in plants and constraints to plants growth. These aspects might be of paramount importance in the case of phosphorus (P), which is an essential plant macronutrient. In this work, hydroponically grown cucumber plants were used to investigate the influence of the exposure to different Cu concentrations (0.2, 5, 25 and 50 μM) on i) the phenotypic traits of plants, particularly at root level, ii) the nutrient content in both roots and shoots, and iii) the P uptake mechanisms, considering both the biochemical and molecular aspects. At high Cu concentrations (i.e. above 25 μM), the shoot and root growth resulted stunted and the P influx rate diminished. Furthermore, two P transporter genes (i.e. CsPT1.4 and CsPT1.9) were upregulated at the highest Cu concentration, albeit with different induction kinetics. Overall, these results confirm that high Cu concentrations can limit the root acquisition of P, most likely via a direct action on the uptake mechanisms (e.g. transporters). However, the alteration of root plasma membrane permeability induced by Cu toxicity might also play a pivotal role in the observed phenomenon.
Collapse
Affiliation(s)
- Sebastian B Feil
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Youry Pii
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy.
| | - Fabio Valentinuzzi
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Raphael Tiziani
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| | - Tanja Mimmo
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy; Competence Centre of Plant Health, Free University of Bozen/Bolzano, I-39100, Bolzano, Italy
| | - Stefano Cesco
- Faculty of Science and Technology, Free University of Bozen-Bolzano, I-39100, Bolzano, Italy
| |
Collapse
|
15
|
Li F, Shi T, Tang X, Tang M, Gong J, Yi Y. Bacillus amyloliquefaciens PDR1 from root of karst adaptive plant enhances Arabidopsis thaliana resistance to alkaline stress through modulation of plasma membrane H +-ATPase activity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:472-482. [PMID: 32827872 DOI: 10.1016/j.plaphy.2020.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 05/17/2023]
Abstract
Exploration of native microbes is a feasible way to develop microbial agents for ecological restoration. This study was aimed to explore the impact of Bacillus amyloliquefaciens PDR1 from karst adaptive plant on the activity of root plasma membrane H+-ATPase in Arabidopsis thaliana. A. thaliana was cultured in presence or absence of B. amyloliquefaciens PDR1 and its effects on the growth were evaluated by measuring the taproot length and dry weight. The rhizosphere acidification capacity was detected by a pH indicator, a pH meter and non-invasive micro-test techniques (NMT). The nutrient uptake was performed using appropriate methods. A combination of transcriptome sequencing and real-time quantitative polymerase chain reaction (qRT-PCR) was used to measure the expression of functional genes that regulate the plasma membrane H+-ATPase activity in A. thaliana roots. Functional analysis was performed to understand how B. amyloliquefaciens regulates biological processes and metabolic pathways to strengthen A. thaliana resistance to alkaline stress. Here, we show that volatile organic compounds (VOCs) from B. amyloliquefaciens PDR1 promoted the growth and development of A. thaliana, enhanced the plasma membrane H+-ATPase activity, and affected ion absorption in Arabidopsis roots. Moreover, B. amyloliquefaciens PDR1 VOCs did not affect the expression of the gene coding for plasma membrane H+-ATPase, but affected the expression of genes regulating the activity of plasma membrane H+-ATPase. Our findings illuminate the mechanism by which B. amyloliquefaciens regulates the growth and alkaline stress resistance of A. thaliana, and lay a foundation for wide and efficient application for agricultural production and ecological protection.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China; Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China
| | - Tianlong Shi
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoxin Tang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China
| | - Ming Tang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China
| | - Jiyi Gong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, Northeast Forestry University, Harbin, 150040, China; The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China
| | - Yin Yi
- The Key Laboratory of Biodiversity Conservation in Karst Mountain Area of Southwest of China, Forestry Ministry, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China; Key Laboratory of Plant Physiology and Developmental Regulation, School of Life Sciences, Guizhou Normal University, Guiyang, 550003, China.
| |
Collapse
|
16
|
Nogueira dos Reis D, Guimarães Silva F, da Costa Santana R, Caetano de Oliveira T, Brito Freiberger M, Barbosa da Silva F, Monteiro Júnior E, Müller C. Growth, Physiology and Nutrient Use Efficiency in Eugenia dysenterica DC under Varying Rates of Nitrogen and Phosphorus. PLANTS 2020; 9:plants9060722. [PMID: 32521605 PMCID: PMC7355562 DOI: 10.3390/plants9060722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/29/2020] [Accepted: 06/01/2020] [Indexed: 11/16/2022]
Abstract
The production of high-quality seedlings and their use in commercial planting reduce pressure on natural areas. Eugenia dysenterica DC is a native fruit tree from the Brazilian Cerrado, whose nutritional requirements are still unclear. This study aimed to evaluate the effects of nitrogen (N) and phosphorus (P) supplementation on the physiology, growth and nutrient uptake, and use efficiencies of E. dysenterica seedlings grown in glasshouse conditions. The following rates were used in separate experiments: 0, 50, 100, 200, and 400 mg dm−3 N and 0, 100, 200, 400, and 600 mg dm−3 P. The experiment was conducted in a randomized block with four replications. The lowest N rate (50 mg dm−3) increased the stomatal conductance (gS) and, consequently, resulted in the highest transpiration (E), electron transport (ETR), and photosynthetic (A) rates. Also, rates of 50 mg dm−3 and 100 mg dm−3 N increased the Root Uptake Efficiency (RUE) and plant Nutrient Use Efficiency (NUE) for macronutrients and the RUE for micronutrients, stimulating plant growth. Phosphorous fertilization resulted in the maximum values for photosynthesis, electron transport rate, total dry mass, and NUE at the 200 mg dm−3 rate. The results of this study suggest that fertilization with 50 mg dm−3 N and 200 mg dm−3 P is suitable for the development of E. dysenterica seedlings.
Collapse
Affiliation(s)
- Daniele Nogueira dos Reis
- Plant Tissue Culture Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil; (D.N.d.R.); (R.d.C.S.); (T.C.d.O.); (M.B.F.)
| | - Fabiano Guimarães Silva
- Plant Tissue Culture Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil; (D.N.d.R.); (R.d.C.S.); (T.C.d.O.); (M.B.F.)
- Correspondence: ; Tel.: +55-64-3620-5617
| | - Reginaldo da Costa Santana
- Plant Tissue Culture Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil; (D.N.d.R.); (R.d.C.S.); (T.C.d.O.); (M.B.F.)
| | - Thales Caetano de Oliveira
- Plant Tissue Culture Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil; (D.N.d.R.); (R.d.C.S.); (T.C.d.O.); (M.B.F.)
| | - Mariângela Brito Freiberger
- Plant Tissue Culture Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil; (D.N.d.R.); (R.d.C.S.); (T.C.d.O.); (M.B.F.)
| | - Fábia Barbosa da Silva
- Plants Stress Study Laboratory, University of São Paulo, Luiz de QueirózAgriculture School, P.O. Box 9, 13418-900 Piracicaba, SP, Brazil;
| | - Elídio Monteiro Júnior
- Biodiversity Laboratory, Minas South Federal Institute of Science and Technology—Campus Poços de Caldas, 37713-100 Poços de Caldas, MG, Brazil;
| | - Caroline Müller
- Ecophysiology and Plant Productivity Laboratory, Goiano Federal Institute of Science and Technology—Campus Rio Verde, P.O. Box 66, 75901-970 Rio Verde, GO, Brazil;
| |
Collapse
|
17
|
Galatro A, Ramos-Artuso F, Luquet M, Buet A, Simontacchi M. An Update on Nitric Oxide Production and Role Under Phosphorus Scarcity in Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:413. [PMID: 32351528 PMCID: PMC7174633 DOI: 10.3389/fpls.2020.00413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/23/2020] [Indexed: 05/03/2023]
Abstract
Phosphate (P) is characterized by its low availability and restricted mobility in soils, and also by a high redistribution capacity inside plants. In order to maintain P homeostasis in nutrient restricted conditions, plants have developed mechanisms which enable P acquisition from the soil solution, and an efficient reutilization of P already present in plant cells. Nitric oxide (NO) is a bioactive molecule with a plethora of functions in plants. Its endogenous synthesis depends on internal and environmental factors, and is closely tied with nitrogen (N) metabolism. Furthermore, there is evidence demonstrating that N supply affects P homeostasis and that P deficiency impacts on N assimilation. This review will provide an overview on how NO levels in planta are affected by P deficiency, the interrelationship with N metabolism, and a summary of the current understanding about the influence of this reactive N species over the processes triggered by P starvation, which could modify P use efficiency.
Collapse
Affiliation(s)
- Andrea Galatro
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Melisa Luquet
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
| | - Agustina Buet
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE), CONICET-UNLP, La Plata, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
18
|
Liu J, Chen J, Xie K, Tian Y, Yan A, Liu J, Huang Y, Wang S, Zhu Y, Chen A, Xu G. A mycorrhiza-specific H + -ATPase is essential for arbuscule development and symbiotic phosphate and nitrogen uptake. PLANT, CELL & ENVIRONMENT 2020; 43:1069-1083. [PMID: 31899547 DOI: 10.1111/pce.13714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 12/27/2019] [Indexed: 05/21/2023]
Abstract
Most land plants can form symbiosis with arbuscular mycorrhizal (AM) fungi to enhance uptake of mineral nutrients, particularly phosphate (Pi) and nitrogen (N), from the soil. It is established that transport of Pi from interfacial apoplast into plant cells depends on the H+ gradient generated by the H+ -ATPase located on the periarbuscular membrane (PAM); however, little evidence regarding the potential link between mycorrhizal N transport and H+ -ATPase activity is available to date. Here, we report that a PAM-localized tomato H+ -ATPase, SlHA8, is indispensable for arbuscule development and mycorrhizal P and N uptake. Knockout of SlHA8 resulted in truncated arbuscule morphology, reduced shoot P and N accumulation, and decreased H+ -ATPase activity and acidification of apoplastic spaces in arbusculated cells. Overexpression of SlHA8 in tomato promoted both P and N uptake, and increased total colonization level, but did not affect arbuscule morphology. Heterogeneous expression of SlHA8 in the rice osha1 mutant could fully complement its defects in arbuscule development and mycorrhizal P and N uptake. Our results propose a pivotal role of the SlHA8 in energizing both the symbiotic P and N transport, and highlight the evolutionary conservation of the AM-specific H+ -ATPase orthologs in maintaining AM symbiosis across different mycorrhizal plant species.
Collapse
Affiliation(s)
- Junli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- The Institute of Environmental Resources and Soil Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jiadong Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kun Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuan Tian
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Anning Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianjian Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yujuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuangshuang Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yiyong Zhu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Wang QJ, Yuan Y, Liao Z, Jiang Y, Wang Q, Zhang L, Gao S, Wu F, Li M, Xie W, Liu T, Xu J, Liu Y, Feng X, Lu Y. Genome-Wide Association Study of 13 Traits in Maize Seedlings under Low Phosphorus Stress. THE PLANT GENOME 2019; 12:1-13. [PMID: 33016582 DOI: 10.3835/plantgenome2019.06.0039] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/06/2019] [Indexed: 06/11/2023]
Abstract
Low P stress is a global issue for grain production. Significant phenotypic differences were detected among 13 traits in 356 maize lines under P-sufficient and P-deficient conditions. Significant single nucleotide polymorphisms (SNPs) and low-P stress-responsive genes were identified for 13 maize root traits based on a genome-wide association study. Hap5, harboring 12 favorable SNPs, could enhance strong root systems and P absorption under low-P stress. Phosphorus is an essential macronutrient required for normal plant growth and development. Determining the genetic basis of root traits will enhance our understanding of maize's (Zea mays L.) tolerance to low-P stress. Here, we identified significant phenotypic differences for 13 traits in maize seedlings subjected to P-sufficient and P-deficient conditions. Six extremely sensitive and seven low-P stress tolerant inbreds were selected from 356 inbred lines of maize. No significant differences were observed between temperate and tropical-subtropical groups with respect to trait ratios associated with the adaptation to low-P stress. The broad-sense heritability of these traits ranged from relatively moderate (0.59) to high (0.90). Through genome-wide association mapping with 541,575 informative single nucleotide polymorphisms (SNPs), 551, 1140 and 1157 significant SNPs were detected for the 13 traits in 2012, 2016 and both years combined, respectively, along with 23 shared candidate genes, seven of which overlapped with reported quantitative trait loci and genes for low-P stress. Five haplotypes located in candidate gene GRMZM2G009544 were identified; among these, Hap5, harboring 12 favorable SNP alleles, showed significantly greater values for the root traits studied than the other four haplotypes under both experimental conditions. The candidate genes and favorable haplotypes and alleles identified here provide promising resources for genetic studies and molecular breeding for improving tolerance to abiotic stress in maize.
Collapse
Affiliation(s)
- Qing-Jun Wang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yibing Yuan
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Zhengqiao Liao
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yi Jiang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Qi Wang
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Litian Zhang
- College of Chuancha, Yibin Univ., Yibin, 644000, Sichuan, China
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Fengkai Wu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Menglu Li
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Wubing Xie
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Tianhong Liu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yaxi Liu
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- Triticeae Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Xuanjun Feng
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
- State Key Lab. of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural Univ., Wenjiang, 611130, Sichuan, China
| |
Collapse
|
20
|
Ghorbanian AR, Khoshgoftarmanesh AH, Zahedi M. The effect of foliar-applied magnesium on root cell membrane H +-ATPase activity and physiological characteristics of sugar beet. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:1273-1282. [PMID: 31564788 PMCID: PMC6745575 DOI: 10.1007/s12298-019-00695-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/29/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to investigate the effect of foliar application of Mg on the leaf-to-root translocation of sugar and ATPase activity in the roots of sugar beet (Beta vulgaris L. Jolgeh). Furthermore, the effect of Mg on H+ secretion from the roots into the surrounding solution and solubility of Fe(OH)3 (s) was investigated. Two Mg fertilizer sources i.e., MgSO4 and Mg-lysine complex (Mg-Lys) were used. A group of plants received only lysine (Lys) and a control treatment free of Mg and Lys was used. Foliar Mg spray significantly increased Fe(OH)3 (s) solubilization in the root environment, at least in part due to higher passive H+ transport from the roots into the solution. The active transport of H+ and root activity of ATPase was significantly lower in the plants receiving Mg in comparison with those not receiving Mg. In contrast, the passive transport of H+ was higher in the Mg treatments as compared with the control. Our results suggest that foliar applied Mg can moderate the root activity of ATPase pump but it may affect Fe solubility in the root media by enhancing the passive H+ permeation across plasma membrane.
Collapse
Affiliation(s)
- Ali Reza Ghorbanian
- Department of Soil Science, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | | | - Morteza Zahedi
- Department of Agronomy and Breeding, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| |
Collapse
|
21
|
Buet A, Galatro A, Ramos-Artuso F, Simontacchi M. Nitric oxide and plant mineral nutrition: current knowledge. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4461-4476. [PMID: 30903155 DOI: 10.1093/jxb/erz129] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/14/2019] [Indexed: 05/20/2023]
Abstract
Plants under conditions of essential mineral deficiency trigger signaling mechanisms that involve common components. Among these components, nitric oxide (NO) has been identified as a key participant in responses to changes in nutrient availability. Usually, nutrient imbalances affect the levels of NO in specific plant tissues, via modification of its rate of synthesis or degradation. Changes in the level of NO affect plant morphology and/or trigger responses associated with nutrient homeostasis, mediated by its interaction with reactive oxygen species, phytohormones, and through post-translational modification of proteins. NO-related events constitute an exciting field of research to understand how plants adapt and respond to conditions of nutrient shortage. This review summarizes the current knowledge on NO as a component of the multiple processes related to plant performance under conditions of deficiency in mineral nutrients, focusing on macronutrients such as nitrogen, phosphate, potassium, and magnesium, as well as micronutrients such as iron and zinc.
Collapse
Affiliation(s)
- Agustina Buet
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Andrea Galatro
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal, CCT-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Buenos Aires, Argentina
- Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
22
|
Aboobucker SI, Suza WP. Why Do Plants Convert Sitosterol to Stigmasterol? FRONTIERS IN PLANT SCIENCE 2019; 10:354. [PMID: 30984220 PMCID: PMC6447690 DOI: 10.3389/fpls.2019.00354] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/07/2019] [Indexed: 05/11/2023]
Abstract
A direct role for cholesterol signaling in mammals is clearly established; yet, the direct role in signaling for a plant sterol or sterol precursor is unclear. Fluctuations in sitosterol and stigmasterol levels during development and stress conditions suggest their involvement in signaling activities essential for plant development and stress compensation. Stigmasterol may be involved in gravitropism and tolerance to abiotic stress. The isolation of stigmasterol biosynthesis mutants offers a promising tool to test the function of sterol end products in signaling responses to developmental and environmental cues.
Collapse
Affiliation(s)
| | - Walter P. Suza
- Department of Agronomy, Iowa State University, Ames, IA, United States
| |
Collapse
|
23
|
Liu H, Ren X, Zhu J, Wu X, Liang C. Effect of exogenous abscisic acid on morphology, growth and nutrient uptake of rice (Oryza sativa) roots under simulated acid rain stress. PLANTA 2018; 248:647-659. [PMID: 29855701 DOI: 10.1007/s00425-018-2922-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 05/21/2018] [Indexed: 06/08/2023]
Abstract
Application of proper ABA can improve acid tolerance of rice roots by balancing endogenous hormones and promoting nutrient uptake. Abscisic acid (ABA) has an important signaling role in enhancing plant tolerance to environmental stress. To alleviate the inhibition on plant growth and productivity caused by acid rain, it is crucial to clarify the regulating mechanism of ABA on adaptation of plants to acid rain. Here, we studied the effects of exogenously applied ABA on nutrients uptake of rice roots under simulated acid rain (SAR) stress from physiological, biochemical and molecular aspects. Compared to the single SAR treatment (pH 4.5 or 3.5), exogenous 10 μM ABA alleviated the SAR-induced inhibition of root growth by balancing endogenous hormones (abscisic acid, indole-3-acetic acid, gibberellic acid and zeatin), promoting nutrient uptake (nitrate, P, K and Mg) in rice roots, and increasing the activity of the plasma membrane H+-ATPase by up-regulating expression levels of genes (OSA2, OSA4, OSA9 and OSA10). However, exogenous 100 μM ABA exacerbated the SAR-caused inhibition of root growth by disrupting the balance of endogenous hormones, and inhibiting nutrient uptake (nitrate, P, K, Ca and Mg) through decreasing the activity of the plasma membrane H+-ATPase. These results indicate that proper concentration of exogenous ABA could enhance tolerance of rice roots to SAR stress by promoting nutrients uptake and balancing endogenous hormones.
Collapse
Affiliation(s)
- Hongyue Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xiaoqian Ren
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jiuzheng Zhu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Xi Wu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Chanjuan Liang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Cooperative Innovation Center of Technology and Material of Water Treatment, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
24
|
Xu L, Wu C, Oelmüller R, Zhang W. Role of Phytohormones in Piriformospora indica-Induced Growth Promotion and Stress Tolerance in Plants: More Questions Than Answers. Front Microbiol 2018; 9:1646. [PMID: 30140257 PMCID: PMC6094092 DOI: 10.3389/fmicb.2018.01646] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/02/2018] [Indexed: 11/18/2022] Open
Abstract
Phytohormones play vital roles in the growth and development of plants as well as in interactions of plants with microbes such as endophytic fungi. The endophytic root-colonizing fungus Piriformospora indica promotes plant growth and performance, increases resistance of colonized plants to pathogens, insects and abiotic stress. Here, we discuss the roles of the phytohormones (auxins, cytokinin, gibberellins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids) in the interaction of P. indica with higher plant species, and compare available data with those from other (beneficial) microorganisms interacting with roots. Crosstalks between different hormones in balancing the plant responses to microbial signals is an emerging topic in current research. Furthermore, phytohormones play crucial roles in systemic signal propagation as well as interplant communication. P. indica interferes with plant hormone synthesis and signaling to stimulate growth, flowering time, differentiation and local and systemic immune responses. Plants adjust their hormone levels in the roots in response to the microbes to control colonization and fungal propagation. The available information on the roles of phytohormones in beneficial root-microbe interactions opens new questions of how P. indica manipulates the plant hormone metabolism to promote the benefits for both partners in the symbiosis.
Collapse
Affiliation(s)
- Le Xu
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| | - Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Ralf Oelmüller
- Matthias-Schleiden-Institute, Plant Physiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Wenying Zhang
- Hubei Collaborative Innovation Center for Grain Industry, School of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
25
|
Zhang L, Li G, Li Y, Min J, Kronzucker HJ, Shi W. Tomato plants ectopically expressing Arabidopsis GRF9 show enhanced resistance to phosphate deficiency and improved fruit production in the field. JOURNAL OF PLANT PHYSIOLOGY 2018; 226:31-39. [PMID: 29698910 DOI: 10.1016/j.jplph.2018.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/15/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Agronomic performance of transgenic tomato overexpressing functional genes has rarely been investigated in the field. In an attempt to improve low-phosphate (P) stress tolerance of tomato (Solanum lycopersicum) plants and promote tomato fruit production in the field, an expression vector containing cDNA to an Arabidopsis 14-3-3 protein, General Regulatory Factor 9 (GRF9), driven by a cauliflower mosaic virus 35S promoter, was transferred into tomato plants. Transgenic expression of GRF9 was ascertained by quantitative real-time PCR analysis. The degree of low-P tolerance in transgenic plants was found to be significantly greater than that in wild-type plants, and reflected in improved root development and enhanced P content under hydroponic conditions. For transgenic tomato, roots had higher P uptake, as evidenced by tissue P content and relative expression of the genes LePT1 and LePT2 in both normal and low-P hydroponic solutions. GRF9 overexpressors had greatly enhanced proton extrusion from roots and heightened activity of the plasma-membrane H+-ATPase (PM H+-ATPase) in roots under low-P hydroponic conditions. Thus, in addition to enhanced root development, higher expression of genes coding for phosphate transporters and improved capacity for acidification in the rhizosphere emerged as key mechanisms underpinning improved P acquisition in transgenic tomato plants in soil. Subsequent field trials measuring tomato fruit production at two P levels, indicated that GRF9 can indeed improve total tomato production and may play a role in early fruit maturity. Our results suggest that the heterologous Arabidopsis GRF9 gene can confer resistance to P deficiency in transgenic tomato plants and promote fruit production.
Collapse
Affiliation(s)
- Lili Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Guangjie Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yilin Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ju Min
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Herbert J Kronzucker
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
26
|
Liu D, Jiao S, Cheng G, Li X, Pei Z, Pei Y, Yin H, Du Y. Identification of chitosan oligosaccharides binding proteins from the plasma membrane of wheat leaf cell. Int J Biol Macromol 2018; 111:1083-1090. [DOI: 10.1016/j.ijbiomac.2018.01.113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 01/12/2023]
|
27
|
Extracellular Secretion of Phytase from Transgenic Wheat Roots Allows Utilization of Phytate for Enhanced Phosphorus Uptake. Mol Biotechnol 2018; 59:334-342. [PMID: 28667571 DOI: 10.1007/s12033-017-0020-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
A significant portion of organic phosphorus comprises of phytates which are not available to wheat for uptake. Hence for enabling wheat to utilize organic phosphorus in form of phytate, transgenic wheat expressing phytase from Aspergillus japonicus under barley root-specific promoter was developed. Transgenic events were initially screened via selection media containing BASTA, followed by PCR and BASTA leaf paint assay after hardening. Out of 138 successfully regenerated To events, only 12 had complete constructs and thus further analyzed. Positive T1 transgenic plants, grown in sand, exhibited 0.08-1.77, 0.02-0.67 and 0.44-2.14 fold increase in phytase activity in root extracts, intact roots and external root solution, respectively, after 4 weeks of phosphorus stress. Based on these results, T2 generation of four best transgenic events was further analyzed which showed up to 1.32, 56.89, and 15.40 fold increase in phytase activity in root extracts, intact roots and external root solution, respectively, while in case of real-time PCR, maximum fold increase of 19.8 in gene expression was observed. Transgenic lines showed 0.01-1.18 fold increase in phosphorus efficiency along with higher phosphorus content when supplied phytate or inorganic phosphorus than control plants. Thus, this transgenic wheat may aid in reducing fertilizer utilization and enhancing wheat yield.
Collapse
|
28
|
Ramos-Artuso F, Galatro A, Buet A, Santa-María GE, Simontacchi M. Key acclimation responses to phosphorus deficiency in maize plants are influenced by exogenous nitric oxide. JOURNAL OF PLANT PHYSIOLOGY 2018; 222:51-58. [PMID: 29407549 DOI: 10.1016/j.jplph.2018.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/27/2017] [Accepted: 01/01/2018] [Indexed: 05/20/2023]
Abstract
Improving phosphorus (P) acquisition and utilization in crops is of great importance in order to achieve a good plant nutritional state and maximize biomass production while minimizing the addition of fertilizers, and the concomitant risk of eutrophication. This study explores to which extent key processes involved in P-acquisition, and other acclimation mechanisms to low P supply in maize (Zea mays L.) plants, are affected by the addition of a nitric oxide (NO) donor (S-nitrosoglutathione, GSNO). Plants grown in a complete culture solution were exposed to four treatments performed by the combination of two P levels (0 and 0.5 mM), and two GSNO levels (0 and 0.1 mM), and responses to P-deprivation were then studied. Major plant responses related to P-deprivation were affected by the presence of the NO donor. In roots, the activity of acid phosphatases was significantly increased in P-depleted plants simultaneously exposed to GSNO. Acidification of the culture solution also increased in plants that had been grown in the presence of the NO donor. Furthermore, the potential capability displayed by roots of P-deprived plants for P-uptake, was higher in the plants that had been treated with GSNO. These results indicate that exogenous NO addition affects fundamental acclimation responses of maize plants to P scarcity, particularly and positively those that help plants to sustain P-acquisition under low P availability.
Collapse
Affiliation(s)
- Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Diagonal 113 y 61, La Plata, Buenos Aires, 1900, Argentina; Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata, Argentina
| | - Andrea Galatro
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Diagonal 113 y 61, La Plata, Buenos Aires, 1900, Argentina; Physical Chemistry, School of Pharmacy and Biochemistry, University of Buenos Aires-CONICET, Junín 956, Buenos Aires, C1113AAD, Argentina
| | - Agustina Buet
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Diagonal 113 y 61, La Plata, Buenos Aires, 1900, Argentina; Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata, Argentina
| | - Guillermo E Santa-María
- Instituto Tecnológico Chascomús (IIB-INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de San Martín (UNSAM), Av. Intendente Marino km 8.2, Chascomús, Buenos Aires, 7130, Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Diagonal 113 y 61, La Plata, Buenos Aires, 1900, Argentina; Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata, Argentina.
| |
Collapse
|
29
|
Zhang J, Wei J, Li D, Kong X, Rengel Z, Chen L, Yang Y, Cui X, Chen Q. The Role of the Plasma Membrane H +-ATPase in Plant Responses to Aluminum Toxicity. FRONTIERS IN PLANT SCIENCE 2017; 8:1757. [PMID: 29089951 PMCID: PMC5651043 DOI: 10.3389/fpls.2017.01757] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/25/2017] [Indexed: 05/04/2023]
Abstract
Aluminum (Al) toxicity is a key factor limiting plant growth and crop production on acid soils. Increasing the plant Al-detoxification capacity and/or breeding Al-resistant cultivars are a cost-effective strategy to support crop growth on acidic soils. The plasma membrane H+-ATPase plays a central role in all plant physiological processes. Changes in the activity of the plasma membrane H+-ATPase through regulating the expression and phosphorylation of this enzyme are also involved in many plant responses to Al toxicity. The plasma membrane H+-ATPase mediated H+ influx may be associated with the maintenance of cytosolic pH and the plasma membrane gradients as well as Al-induced citrate efflux mediated by a H+-ATPase-coupled MATE co-transport system. In particular, modulating the activity of plasma membrane H+-ATPase through application of its activators (e.g., magnesium or IAA) or using transgenics has effectively enhanced plant resistance to Al stress in several species. In this review, we critically assess the available knowledge on the role of the plasma membrane H+-ATPase in plant responses to Al stress, incorporating physiological and molecular aspects.
Collapse
Affiliation(s)
- Jiarong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Jian Wei
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Dongxu Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiangying Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Faculty of Architecture and City Planning, Kunming University of Science and Technology, Kunming, China
| | - Zed Rengel
- UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia, Perth, WA, Australia
| | - Limei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Ye Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- UWA School of Agriculture and Environment, Faculty of Science, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
30
|
Poonam, Srivastava S, Pathare V, Suprasanna P. Physiological and molecular insights into rice-arbuscular mycorrhizal interactions under arsenic stress. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2017.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
31
|
Yuan W, Zhang D, Song T, Xu F, Lin S, Xu W, Li Q, Zhu Y, Liang J, Zhang J. Arabidopsis plasma membrane H+-ATPase genes AHA2 and AHA7 have distinct and overlapping roles in the modulation of root tip H+ efflux in response to low-phosphorus stress. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:1731-1741. [PMID: 28369625 PMCID: PMC5441905 DOI: 10.1093/jxb/erx040] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phosphorus deficiency in soil is one of the major limiting factors for plant growth. Plasma membrane H+-ATPase (PM H+-ATPase) plays an important role in the plant response to low-phosphorus stress (LP). However, few details are known regarding the action of PM H+-ATPase in mediating root proton (H+) flux and root growth under LP. In this study, we investigated the involvement and function of different Arabidopsis PM H+-ATPase genes in root H+ flux in response to LP. First, we examined the expressions of all Arabidopsis PM H+-ATPase gene family members (AHA1-AHA11) under LP. Expression of AHA2 and AHA7 in roots was enhanced under this condition. When the two genes were deficient in their respective Arabidopsis mutant plants, root growth and responses of the mutants to LP were highly inhibited compared with the wild-type plant. AHA2-deficient plants exhibited reduced primary root elongation and lower H+ efflux in the root elongation zone. AHA7-deficient plants exhibited reduced root hair density and lower H+ efflux in the root hair zone. The modulation of H+ efflux by AHA2 or AHA7 was affected by the action of 14-3-3 proteins and/or auxin regulatory pathways in the context of root growth and response to LP. Our results suggest that under LP conditions, AHA2 acts mainly to modulate primary root elongation by mediating H+ efflux in the root elongation zone, whereas AHA7 plays an important role in root hair formation by mediating H+ efflux in the root hair zone.
Collapse
Affiliation(s)
- Wei Yuan
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Dongping Zhang
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- Yangzhou University, Jiangsu, China
| | - Tao Song
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Feiyun Xu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
- Nanjing Agricultural University, Nanjing, China
| | - Sheng Lin
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | - Weifeng Xu
- Key Laboratory of Ministry of Education for Genetic Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| | | | - Yiyong Zhu
- Nanjing Agricultural University, Nanjing, China
| | | | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
32
|
Filiz E, Vatansever R, Ozyigit II. Dissecting a co-expression network of basic helix-loop-helix ( bHLH ) genes from phosphate (Pi)-starved soybean ( Glycine max ). ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.plgene.2016.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
33
|
Enhancing phosphorus uptake efficiency through QTL-based selection for root system architecture in maize. J Genet Genomics 2016; 43:663-672. [DOI: 10.1016/j.jgg.2016.11.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/09/2016] [Accepted: 11/06/2016] [Indexed: 01/21/2023]
|
34
|
Liu J, Liu J, Chen A, Ji M, Chen J, Yang X, Gu M, Qu H, Xu G. Analysis of tomato plasma membrane H(+)-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species. MYCORRHIZA 2016; 26:645-56. [PMID: 27103309 DOI: 10.1007/s00572-016-0700-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 04/11/2016] [Indexed: 05/21/2023]
Abstract
In plants, the plasma membrane H(+)-ATPase (HA) is considered to play a crucial role in regulating plant growth and respoding to environment stresses. Multiple paralogous genes encoding different isozymes of HA have been identified and characterized in several model plants, while limited information of the HA gene family is available to date for tomato. Here, we describe the molecular and expression features of eight HA-encoding genes (SlHA1-8) from tomato. All these genes are interrupted by multiple introns with conserved positions. SlHA1, 2, and 4 were widely expressed in all tissues, while SlHA5, 6, and 7 were almost only expressed in flowers. SlHA8, the transcripts of which were barely detectable under normal or nutrient-/salt-stress growth conditions, was strongly activated in arbuscular mycorrhizal (AM) fungal-colonized roots. Extreme lack of SlHA8 expression in M161, a mutant defective to AM fungal colonization, provided genetic evidence towards the dependence of its expression on AM symbiosis. A 1521-bp SlHA8 promoter could direct the GUS reporter expression specifically in colonized cells of transgenic tobacco, soybean, and rice mycorrhizal roots. Promoter deletion assay revealed a 223-bp promoter fragment of SlHA8 containing a variant of AM-specific cis-element MYCS (vMYCS) sufficient to confer the AM-induced activity. Targeted deletion of this motif in the corresponding promoter region causes complete abolishment of GUS staining in mycorrhizal roots. Together, these results lend cogent evidence towards the evolutionary conservation of a potential regulatory mechanism mediating the activation of AM-responsive HA genes in diverse mycorrhizal plant species.
Collapse
Affiliation(s)
- Junli Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianjian Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiqun Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Minjie Ji
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiadong Chen
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaofeng Yang
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mian Gu
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
35
|
Wang P, Yu W, Zhang J, Rengel Z, Xu J, Han Q, Chen L, Li K, Yu Y, Chen Q. Auxin enhances aluminium-induced citrate exudation through upregulation of GmMATE and activation of the plasma membrane H+-ATPase in soybean roots. ANNALS OF BOTANY 2016; 118:933-940. [PMID: 27474509 PMCID: PMC5055814 DOI: 10.1093/aob/mcw133] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/04/2016] [Accepted: 05/16/2016] [Indexed: 05/18/2023]
Abstract
Background and Aims Aluminium (Al) toxicity is a limiting factor for plant growth and crop production in acidic soils. Citrate exudation and activation of the plasma membrane H+-ATPase are involved in soybean responses to Al stress. Auxin has crucial functions in plant growth and stress responses. However, little is known about possible interactions between auxin and citrate exudation under Al stress. In this study, we elucidated the regulatory roles of IAA in Al-induced citrate exudation in soybean roots. Methods We measured IAA content, Al concentration, citrate exudation, plasma membrane H+-ATPase activity, expression of the relevant genes and phosphorylation of the plasma membrane H+-ATPase by integrating physiological characterization and molecular analysis using hydroponically grown soybean. Key Results The concentration of IAA was increased by 25 and 50 μm Al, but decreased to the control level at 200 μm Al. External addition of 50 μm IAA to the root medium containing 25, 50 or 200 μm Al decreased root Al concentration and stimulated Al-induced citrate exudation and the plasma membrane H+-ATPase activity. Reverse transcription-PCR analysis showed that exogenous IAA enhanced the expression of citrate exudation transporter (GmMATE) but not the plasma membrane H+-ATPase gene. The western blot results suggested that IAA enhanced phosphorylation of the plasma membrane H+-ATPase under Al stress. Conclusions Auxin enhanced Al-induced citrate exudation through upregulation of GmMATE and an increase in phosphorylation of the plasma membrane H+-ATPase in soybean roots.
Collapse
Affiliation(s)
- Ping Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Wenqian Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Jiarong Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Zed Rengel
- Soil Science and Plant Nutrition, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Perth, WA 6000, Australia
| | - Jin Xu
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan, 666303, China
| | - Qinqin Han
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Limei Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| | - Yongxiong Yu
- College of Zoological Science and Technology, Southwest University, Chongqing, 400715, China
| | - Qi Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Road, Kunming, 650500, China
| |
Collapse
|
36
|
Mosa A, El-Ghamry A, Trüby P, Omar M, Gao B, Elnaggar A, Li Y. Chemo-mechanical modification of cottonwood for Pb(2+) removal from aqueous solutions: Sorption mechanisms and potential application as biofilter in drip-irrigation. CHEMOSPHERE 2016; 161:1-9. [PMID: 27393935 DOI: 10.1016/j.chemosphere.2016.06.101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/10/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Using biomass (e.g. crop residues) and its derivatives as biosorbents have been recognized as an eco-friendly technique for wastewater decontamination. In this study, mechanically modified cottonwood was further activated with KOH to improve its sorption of Pb(2+). In addition, its potential as a biofilter to safeguard radish (Raphanus sativus, L.) against Pb-stress was evaluated in a gravity-fed drip irrigation system. Physiochemical properties of the chemo-mechanically activated cottonwood (CMACW) and the mechanically activated cottonwood (MACW) before and after sorption process were characterized using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), transmission electron microscopy (TEM), digital selected-area electron diffraction (SAED) and Fourier transform infrared spectroscopy (FTIR). After activation, several sorption mechanisms (i.e. precipitation, electrostatic outer- and inner-sphere complexation) were responsible for the higher sorption capacity of CMACW as compared with MACW (8.55 vs. 7.28 mg g(-1)). Sorption kinetics and isotherms fitted better with the pseudo-second-order and Langmuir models as compared with the pseudo-first-order and Freundlich models, respectively. In the gravity-fed drip irrigation system, the CMACW biofilter reduced the accumulation of Pb in radish roots and shoots and avoided reaching the toxic limits in some cases. Soil types had a significant effect on Pb(2+) bioavailability because of the difference in sorption ability. Findings from this study showed that CMACW biofilter can be used as a safeguard for wastewater irrigation.
Collapse
Affiliation(s)
- Ahmed Mosa
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Ayman El-Ghamry
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Peter Trüby
- Institute of Soil Science and Forest Nutrition, Freiburg University, Freiburg, Germany
| | - Mahmoud Omar
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States.
| | - Abdelhamid Elnaggar
- Soils Department, Faculty of Agriculture, Mansoura University, 35516 Mansoura, Egypt
| | - Yuncong Li
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, United States; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States
| |
Collapse
|
37
|
Ma CL, Qi YP, Liang WW, Yang LT, Lu YB, Guo P, Ye X, Chen LS. MicroRNA Regulatory Mechanisms on Citrus sinensis leaves to Magnesium-Deficiency. FRONTIERS IN PLANT SCIENCE 2016; 7:201. [PMID: 26973661 PMCID: PMC4778066 DOI: 10.3389/fpls.2016.00201] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 05/06/2023]
Abstract
Magnesium (Mg)-deficiency, which affects crop productivity and quality, widespreadly exists in many agricultural crops, including citrus. However, very limited data are available on Mg-deficiency-responsive microRNAs (miRNAs) in higher plants. Using Illumina sequencing, we isolated 75 (73 known and 2 novel) up- and 71 (64 known and 7 novel) down-regulated miRNAs from Mg-deficient Citrus sinensis leaves. In addition to the remarkable metabolic flexibility as indicated by the great alteration of miRNA expression, the adaptive responses of leaf miRNAs to Mg-deficiency might also involve the following several aspects: (a) up-regulating stress-related genes by down-regulating miR164, miR7812, miR5742, miR3946, and miR5158; (b) enhancing cell transport due to decreased expression of miR3946 and miR5158 and increased expression of miR395, miR1077, miR1160, and miR8019; (c) activating lipid metabolism-related genes by repressing miR158, miR5256, and miR3946; (d) inducing cell wall-related gene expansin 8A by repressing miR779; and (e) down-regulating the expression of genes involved in the maintenance of S, K and Cu by up-regulating miR395 and miR6426. To conclude, we isolated some new known miRNAs (i.e., miR7812, miR8019, miR6218, miR1533, miR6426, miR5256, miR5742, miR5561, miR5158, and miR5818) responsive to nutrient deficiencies and found some candidate miRNAs that might contribute to Mg-deficiency tolerance. Therefore, our results not only provide novel information about the responses of plant to Mg-deficiency, but also are useful for obtaining the key miRNAs for plant Mg-deficiency tolerance.
Collapse
Affiliation(s)
- Cui-Lan Ma
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Life Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Horticulture, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical SciencesFuzhou, China
| | - Wei-Wei Liang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Yi-Bin Lu
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Peng Guo
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Xin Ye
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
- College of Resource and Environmental Science, Fujian Agriculture and Forestry UniversityFuzhou, China
- The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry UniversityFuzhou, China
- Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry UniversityFuzhou, China
| |
Collapse
|
38
|
Lei KJ, Lin YM, An GY. miR156 modulates rhizosphere acidification in response to phosphate limitation in Arabidopsis. JOURNAL OF PLANT RESEARCH 2016; 129:275-84. [PMID: 26659856 DOI: 10.1007/s10265-015-0778-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 10/18/2015] [Indexed: 05/26/2023]
Abstract
Rhizosphere acidification is a general response to Pi deficiency, especially in dicotyledonous plants. However, the signaling pathway underlying this process is still unclear. Here, we demonstrate that miR156 is induced in the shoots and roots of wild type Arabidopsis plants during Pi starvation. The rhizosphere acidification capacity was increased in 35S:MIR156 (miR156 overexpression) plants, but was completely inhibited in 35S:MIM156 (target mimicry) plants. Both 35S:MIR156 and 35S:MIM156 plants showed altered proton efflux and H(+)-ATPase activity. In addition, significant up-regulation of H(+)-ATPase activity in 35S:MIR156 roots coupled with increased citric acid and malic acid exudates was observed. qRT-PCR results showed that most H(+)-ATPase and PPCK gene transcript levels were decreased in 35S:MIM156 plants, which may account for the decreased H(+)-ATPase activity in 35S:MIM156 plants. MiR156 also affect the root architecture system. Collectively, our results suggest that miR156 regulates the process of rhizosphere acidification in plants.
Collapse
Affiliation(s)
- Kai Jian Lei
- College of Life Sciences, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, 475004, People's Republic of China
- Pharmacy College of Henan University, Kaifeng, 475004, People's Republic of China
| | - Ya Ming Lin
- College of Life Sciences, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, 475004, People's Republic of China
| | - Guo Yong An
- College of Life Sciences, State Key Laboratory of Cotton Biology, Henan University, Kaifeng, 475004, People's Republic of China.
| |
Collapse
|
39
|
Jiang HX, Yang LT, Qi YP, Lu YB, Huang ZR, Chen LS. Root iTRAQ protein profile analysis of two Citrus species differing in aluminum-tolerance in response to long-term aluminum-toxicity. BMC Genomics 2015; 16:949. [PMID: 26573913 PMCID: PMC4647617 DOI: 10.1186/s12864-015-2133-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Limited information is available on aluminum (Al)-toxicity-responsive proteins in woody plant roots. Seedlings of 'Xuegan' (Citrus sinensis) and 'Sour pummelo' (Citrus grandis) were treated for 18 weeks with nutrient solution containing 0 (control) or 1.2 mM AlCl3 · 6H2O (+Al). Thereafter, we investigated Citrus root protein profiles using isobaric tags for relative and absolute quantification (iTRAQ). The aims of this work were to determine the molecular mechanisms of plants to deal with Al-toxicity and to identify differentially expressed proteins involved in Al-tolerance. RESULTS C. sinensis was more tolerant to Al-toxicity than C. grandis. We isolated 347 differentially expressed proteins from + Al Citrus roots. Among these proteins, 202 (96) proteins only presented in C. sinensis (C. grandis), and 49 proteins were shared by the two species. Of the 49 overlapping proteins, 45 proteins were regulated in the same direction upon Al exposure in the both species. These proteins were classified into following categories: sulfur metabolism, stress and defense response, carbohydrate and energy metabolism, nucleic acid metabolism, protein metabolism, cell transport, biological regulation and signal transduction, cell wall and cytoskeleton metabolism, and jasmonic acid (JA) biosynthesis. The higher Al-tolerance of C. sinensis may be related to several factors, including: (a) activation of sulfur metabolism; (b) greatly improving the total ability of antioxidation and detoxification; (c) up-regulation of carbohydrate and energy metabolism; (d) enhancing cell transport; (e) decreased (increased) abundances of proteins involved in protein synthesis (proteiolysis); (f) keeping a better balance between protein phosphorylation and dephosphorylation; and (g) increasing JA biosynthesis. CONCLUSIONS Our results demonstrated that metabolic flexibility was more remarkable in C. sinenis than in C. grandis roots, thus improving the Al-tolerance of C. sinensis. This provided the most integrated view of the adaptive responses occurring in Al-toxicity roots.
Collapse
Affiliation(s)
- Huan-Xin Jiang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Lin-Tong Yang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yi-Ping Qi
- Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001, China.
| | - Yi-Bin Lu
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Zeng-Rong Huang
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Li-Song Chen
- Institute of Plant Nutritional Physiology and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002, China. .,Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
40
|
Simontacchi M, Galatro A, Ramos-Artuso F, Santa-María GE. Plant Survival in a Changing Environment: The Role of Nitric Oxide in Plant Responses to Abiotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:977. [PMID: 26617619 PMCID: PMC4637419 DOI: 10.3389/fpls.2015.00977] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/26/2015] [Indexed: 05/20/2023]
Abstract
Nitric oxide in plants may originate endogenously or come from surrounding atmosphere and soil. Interestingly, this gaseous free radical is far from having a constant level and varies greatly among tissues depending on a given plant's ontogeny and environmental fluctuations. Proper plant growth, vegetative development, and reproduction require the integration of plant hormonal activity with the antioxidant network, as well as the maintenance of concentration of reactive oxygen and nitrogen species within a narrow range. Plants are frequently faced with abiotic stress conditions such as low nutrient availability, salinity, drought, high ultraviolet (UV) radiation and extreme temperatures, which can influence developmental processes and lead to growth restriction making adaptive responses the plant's priority. The ability of plants to respond and survive under environmental-stress conditions involves sensing and signaling events where nitric oxide becomes a critical component mediating hormonal actions, interacting with reactive oxygen species, and modulating gene expression and protein activity. This review focuses on the current knowledge of the role of nitric oxide in adaptive plant responses to some specific abiotic stress conditions, particularly low mineral nutrient supply, drought, salinity and high UV-B radiation.
Collapse
Affiliation(s)
- Marcela Simontacchi
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata–Consejo Nacional de Investigaciones Científicas y TécnicasLa Plata, Argentina
| | - Andrea Galatro
- Physical Chemistry – Institute for Biochemistry and Molecular Medicine, Faculty of Pharmacy and Biochemistry, University of Buenos Aires–Consejo Nacional de Investigaciones Científicas y TécnicasBuenos Aires, Argentina
| | - Facundo Ramos-Artuso
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata–Consejo Nacional de Investigaciones Científicas y TécnicasLa Plata, Argentina
| | - Guillermo E. Santa-María
- Instituto Tecnológico Chascomús, Consejo Nacional de Investigaciones Científicas y Técnicas–Universidad Nacional de San MartínChascomús, Argentina
| |
Collapse
|
41
|
Nguyen GN, Rothstein SJ, Spangenberg G, Kant S. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. FRONTIERS IN PLANT SCIENCE 2015; 6:629. [PMID: 26322069 PMCID: PMC4534779 DOI: 10.3389/fpls.2015.00629] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/30/2015] [Indexed: 05/22/2023]
Abstract
Plant microRNAs (miRNAs) are a class of small non-coding RNAs which target and regulate the expression of genes involved in several growth, development, and metabolism processes. Recent researches have shown involvement of miRNAs in the regulation of uptake and utilization of nitrogen (N) and phosphorus (P) and more importantly for plant adaptation to N and P limitation conditions by modifications in plant growth, phenology, and architecture and production of secondary metabolites. Developing strategies that allow for the higher efficiency of using both N and P fertilizers in crop production is important for economic and environmental benefits. Improved crop varieties with better adaptation to N and P limiting conditions could be a key approach to achieve this effectively. Furthermore, understanding on the interactions between N and P uptake and use and their regulation is important for the maintenance of nutrient homeostasis in plants. This review describes the possible functions of different miRNAs and their cross-talk relevant to the plant adaptive responses to N and P limiting conditions. In addition, a comprehensive understanding of these processes at molecular level and importance of biological adaptation for improved N and P use efficiency is discussed.
Collapse
Affiliation(s)
- Giao N. Nguyen
- Biosciences Research, Department of Economic DevelopmentHorsham, VIC, Australia
| | - Steven J. Rothstein
- Department of Molecular and Cellular Biology, College of Biological Science, University of GuelphGuelph, ON, Canada
| | - German Spangenberg
- Biosciences Research, Department of Economic Development, AgriBio, Centre for AgriBioscienceBundoora, VIC, Australia
- School of Applied Systems Biology, La Trobe UniversityBundoora, VIC, Australia
| | - Surya Kant
- Biosciences Research, Department of Economic DevelopmentHorsham, VIC, Australia
| |
Collapse
|
42
|
Młodzińska E, Kłobus G, Christensen MD, Fuglsang AT. The plasma membrane H(+) -ATPase AHA2 contributes to the root architecture in response to different nitrogen supply. PHYSIOLOGIA PLANTARUM 2015; 154:270-82. [PMID: 25382626 DOI: 10.1111/ppl.12305] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 10/19/2014] [Indexed: 05/21/2023]
Abstract
In this study the role of the plasma membrane (PM) H(+) -ATPase for growth and development of roots as response to nitrogen starvation is studied. It is known that root development differs dependent on the availability of different mineral nutrients. It includes processes such as initiation of lateral root primordia, root elongation and increase of the root biomass. However, the signal transduction mechanisms, which enable roots to sense changes in different mineral environments and match their growth and development patterns to actual conditions in the soil, are still unknown. Most recent comments have focused on one of the essential macroelements, namely nitrogen, and its role in the modification of the root architecture of Arabidopsis thaliana. As yet, not all elements of the signal transduction pathway leading to the perception of the nitrate stimulus, and hence to anatomical changes of the root, which allow for adaptation to variable ion concentrations in the soil, are known. Our data demonstrate that primary and lateral root length were shorter and lower in aha2 mutant lines compared with wild-type plants in response to a variable nitrogen source. This suggests that the PM proton pump AHA2 (Arabidopsis plasma membrane H(+) -ATPase isoform 2) is important for root growth and development during different nitrogen regimes. This is possible by controlling the pH homeostasis in the root during growth and development as shown by pH biosensors.
Collapse
Affiliation(s)
- Ewa Młodzińska
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, 50-328, Poland
| | - Grażyna Kłobus
- Department of Plant Molecular Physiology, Institute of Experimental Biology, Wroclaw University, Wroclaw, 50-328, Poland
| | - Monica Daugbjerg Christensen
- PUMPkin - Centre for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anja Thoe Fuglsang
- PUMPkin - Centre for Membrane Pumps in Cells and Disease, Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
He Y, Wu J, Lv B, Li J, Gao Z, Xu W, Baluška F, Shi W, Shaw PC, Zhang J. Involvement of 14-3-3 protein GRF9 in root growth and response under polyethylene glycol-induced water stress. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2271-81. [PMID: 25873671 PMCID: PMC4986726 DOI: 10.1093/jxb/erv149] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 05/19/2023]
Abstract
Plant 14-3-3 proteins are phosphoserine-binding proteins that regulate a wide array of targets via direct protein-protein interactions. In this study, the role of a 14-3-3 protein, GRF9, in plant response to water stress was investigated. Arabidopsis wild-type, GRF9-deficient mutant (grf9), and GRF9-overexpressing (OE) plants were treated with polyethylene glycol (PEG) to induce mild water stress. OE plant showed better whole-plant growth and root growth than the wild type under normal or water stress conditions while the grf9 mutant showed worse growth. In OE plants, GRF9 favours the allocation of shoot carbon to roots. In addition, GRF9 enhanced proton extrusion, mainly in the root elongation zone and root hair zone, and maintained root growth under mild water stress. Grafting among the wild type, OE, and grf9 plants showed that when OE plants were used as the scion and GRF9 was overexpressed in the shoot, it enhanced sucrose transport into the root, and when OE plants were used as rootstock and GRF9 was overexpressed in the root, it caused more release of protons into the root surface under water stress. Taken together, the results suggest that under PEG-induced water stress, GRF9 is involved in allocating more carbon from the shoot to the root and enhancing proton secretion in the root growing zone, and this process is important for root response to mild water stress.
Collapse
Affiliation(s)
- Yuchi He
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei University, Wuhan 430062, China
| | - Jingjing Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Bing Lv
- Yangzhou University, Yangzhou 225009, China
| | - Jia Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China Yangzhou University, Yangzhou 225009, China
| | - Zhiping Gao
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong College of Life Sciences, Nanjing Normal University, Wenyuan Road, Nanjing, China
| | - Weifeng Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| | - František Baluška
- Institute of Cellular and Molecular Botany, Universtiy of Bonn, Germany
| | - Weiming Shi
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Pang Chui Shaw
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| | - Jianhua Zhang
- School of Life Sciences and State Key Laboratory of Agrobiotechnology, the Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
44
|
Song Q, Wang S, Zhang G, Li Y, Li Z, Guo J, Niu N, Wang J, Ma S. Comparative proteomic analysis of a membrane-enriched fraction from flag leaves reveals responses to chemical hybridization agent SQ-1 in wheat. FRONTIERS IN PLANT SCIENCE 2015; 6:669. [PMID: 26379693 PMCID: PMC4549638 DOI: 10.3389/fpls.2015.00669] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/13/2015] [Indexed: 05/21/2023]
Abstract
The induction of wheat male fertile lines by using the chemical hybridizing agent SQ-1 (CHA-SQ-1) is an effective approach in the utilization of heterosis; however, the molecular basis of male fertility remains unknown. Wheat flag leaves are the initial receptors of CHA-SQ-1 and their membrane structure plays a vital role in response to CHA-SQ-1 stress. To investigate the response of wheat flag leaves to CHA-SQ-1 stress, we compared their quantitative proteomic profiles in the absence and presence of CHA-SQ-1. Our results indicated that wheat flag leaves suffered oxidative stress during CHA-SQ-1 treatments. Leaf O2 (-), H2O2, and malonaldehyde levels were significantly increased within 10 h after CHA-SQ-1 treatment, while the activities of major antioxidant enzymes such as superoxide dismutase, catalase, and guaiacol peroxidase were significantly reduced. Proteome profiles of membrane-enriched fraction showed a change in the abundance of a battery of membrane proteins involved in multiple biological processes. These variable proteins mainly impaired photosynthesis, ATP synthesis protein mechanisms and were involved in the response to stress. These results provide an explanation of the relationships between membrane proteomes and anther abortion and the practical application of CHA for hybrid breeding.
Collapse
Affiliation(s)
| | | | - Gaisheng Zhang
- *Correspondence: Gaisheng Zhang, College of Agronomy, Northwest Agriculture and Forestry University, National Yangling Agricultural Biotechnology and Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling 712100, China,
| | | | | | | | | | | | | |
Collapse
|
45
|
Guo P, Qi YP, Yang LT, Ye X, Jiang HX, Huang JH, Chen LS. cDNA-AFLP analysis reveals the adaptive responses of citrus to long-term boron-toxicity. BMC PLANT BIOLOGY 2014; 14:284. [PMID: 25348611 PMCID: PMC4219002 DOI: 10.1186/s12870-014-0284-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 10/14/2014] [Indexed: 05/02/2023]
Abstract
BACKGROUND Boron (B)-toxicity is an important disorder in agricultural regions across the world. Seedlings of 'Sour pummelo' (Citrus grandis) and 'Xuegan' (Citrus sinensis) were fertigated every other day until drip with 10 μM (control) or 400 μM (B-toxic) H3BO3 in a complete nutrient solution for 15 weeks. The aims of this study were to elucidate the adaptive mechanisms of citrus plants to B-toxicity and to identify B-tolerant genes. RESULTS B-toxicity-induced changes in seedlings growth, leaf CO2 assimilation, pigments, total soluble protein, malondialdehyde (MDA) and phosphorus were less pronounced in C. sinensis than in C. grandis. B concentration was higher in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. Here we successfully used cDNA-AFLP to isolate 67 up-regulated and 65 down-regulated transcript-derived fragments (TDFs) from B-toxic C. grandis leaves, whilst only 31 up-regulated and 37 down-regulated TDFs from B-toxic C. sinensis ones, demonstrating that gene expression is less affected in B-toxic C. sinensis leaves than in B-toxic C. grandis ones. These differentially expressed TDFs were related to signal transduction, carbohydrate and energy metabolism, nucleic acid metabolism, protein and amino acid metabolism, lipid metabolism, cell wall and cytoskeleton modification, stress responses and cell transport. The higher B-tolerance of C. sinensis might be related to the findings that B-toxic C. sinensis leaves had higher expression levels of genes involved in photosynthesis, which might contribute to the higher photosyntheis and light utilization and less excess light energy, and in reactive oxygen species (ROS) scavenging compared to B-toxic C. grandis leaves, thus preventing them from photo-oxidative damage. In addition, B-toxicity-induced alteration in the expression levels of genes encoding inorganic pyrophosphatase 1, AT4G01850 and methionine synthase differed between the two species, which might play a role in the B-tolerance of C. sinensis. CONCLUSIONS C. sinensis leaves could tolerate higher level of B than C. grandis ones, thus improving the B-tolerance of C. sinensis plants. Our findings reveal some novel mechanisms on the tolerance of plants to B-toxicity at the gene expression level.
Collapse
Affiliation(s)
- Peng Guo
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yi-Ping Qi
- />Institute of Materia Medica, Fujian Academy of Medical Sciences, Fuzhou, 350001 China
| | - Lin-Tong Yang
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xin Ye
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huan-Xin Jiang
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jing-Hao Huang
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Fruit Tree Science, Fujian Academy of Agricultural Sciences, Fuzhou, 350013 China
| | - Li-Song Chen
- />College of Resource and Environmental Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />Fujian Key Laboratory for Plant Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- />The Higher Educational Key Laboratory of Fujian Province for Soil Ecosystem Health and Regulation, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
46
|
Wu D, Shen H, Yokawa K, Baluška F. Alleviation of aluminium-induced cell rigidity by overexpression of OsPIN2 in rice roots. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5305-15. [PMID: 25053643 PMCID: PMC4157713 DOI: 10.1093/jxb/eru292] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 05/15/2014] [Accepted: 06/09/2014] [Indexed: 05/21/2023]
Abstract
Al-induced cell rigidity is one of the symptoms of Al toxicity, but the mechanism by which plants tolerate this toxicity is still unclear. In this study, we found that overexpression of OsPIN2, an auxin transporter gene, could alleviate Al-induced cell rigidity in rice root apices. A freeze-thawing experiment showed that the Al-treated roots of wild-type (WT) plants had more damage in the epidermal and outer cortex cells than that found in lines overexpressing OsPIN2 (OXs), and the freeze-disrupt coefficient was 2-fold higher in the former than in the latter. Furthermore, Al could induce aberrations of the cell wall-plasma membrane interface, which was more prominent in the epidermal cells of the elongation zone of the WT. Overexpressed OsPIN2 reduced Al-induced formation of reactive oxygen species and weakened Al-induced lipid peroxidation and lignification in roots. Compared with WT, a 16.6-32.6% lower Al-triggered hemicellulose 1 accumulation was observed in root apices of OXs, and 17.4-20.5% less Al accumulated in the cell wall of OXs. Furthermore, overexpression of OsPIN2 ameliorated the Al inhibitory effect on basipetal auxin transport and increased Al-induced IAA and proton release. Taken together, our results suggest that by decreasing the binding of Al to the cell wall and Al-targeted oxidative cellular damage, OXs lines show less Al-induced damage. By modulating PIN2-based auxin transport, IAA efflux, and cell wall acidification, lines overexpressing OsPIN2 alleviate Al-induced cell rigidity in the rice root apex.
Collapse
Affiliation(s)
- Daoming Wu
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Hong Shen
- College of Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ken Yokawa
- Department of Plant Cell Biology, IZMB, University of Bonn, Bonn D-53115, Germany
| | - František Baluška
- Department of Plant Cell Biology, IZMB, University of Bonn, Bonn D-53115, Germany
| |
Collapse
|
47
|
Yao Z, Tian J, Liao H. Comparative characterization of GmSPX members reveals that GmSPX3 is involved in phosphate homeostasis in soybean. ANNALS OF BOTANY 2014; 114:477-88. [PMID: 25074550 PMCID: PMC4204674 DOI: 10.1093/aob/mcu147] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/06/2014] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Proteins containing the SPX (SYG1/Pho81/XPR1) domain are vital components in the phosphorus (P) signalling pathway, and regulate phosphate (Pi) homeostasis in plants. However, the characteristics and functions of GmSPX members in soybean (Glycine max) remain largely unknown. METHODS BLAST searching revealed nine GmSPX members in the soybean genome. Subsequently, expression patterns of GmSPX members were investigated in various tissues of soybean grown in nutrient solution or sand culture through quantitative real-time PCR (qPCR) analysis. Sub-cellular localization of GmSPX was examined via transient expression of 35S:GmSPX-GFP in epidermal cells of onion (Allium cepa). Finally, soybean transgenic composite plants were generated to study GmSPX3 functions. KEY RESULTS Nine GmSPX members were identified, which were classified into three groups based on phylogenetic analysis. Diverse responses of GmSPX members to deficiencies of nutrients (nitrogen, phosphorus, potassium and iron) or inoculation of arbuscular mycorrhizal fungi and rhizobia were observed in soybean. In addition, variations of sub-cellular localization of GmSPX members were found. Among them, GmSPX3, GmSPX7 and GmSPX8 were localized in the nuclei, and the other GmSPX members were confined to the nuclei and cytoplasm. The nuclear-localized and Pi starvation responsive-gene, GmSPX3, was functionally analysed in soybean transgenic composite plants. Overexpression of GmSPX3 led to increased P concentrations in both shoots and roots in the high-P treatment, and increased transcription of seven Pi starvation-responsive genes in soybean hairy roots. CONCLUSIONS Taken together, the results suggest that GmSPX3 is a positive regulator in the P signalling network, and controls Pi homeostasis in soybean.
Collapse
Affiliation(s)
- Zhufang Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, PR China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, PR China
| | - Hong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
48
|
Hunter PJ, Teakle GR, Bending GD. Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica. FRONTIERS IN PLANT SCIENCE 2014; 5:27. [PMID: 24575103 PMCID: PMC3920115 DOI: 10.3389/fpls.2014.00027] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/22/2014] [Indexed: 05/21/2023]
Abstract
Brassicas are among the most widely grown and important crops worldwide. Phosphorus (P) is a key mineral element in the growth of all plants and is largely supplied as inorganic rock-phosphate, a dwindling resource, which is likely to be an increasingly significant factor in global agriculture. In order to develop crops which can abstract P from the soil, utilize it more efficiently, require less of it or obtain more from other sources such as soil organic P reservoirs, a detailed understanding the factors that influence P metabolism and cycling in plants and associated soil is required. This review focuses on the current state of understanding of root traits, rhizodeposition and rhizosphere community interaction as it applies to P solubilization and acquisition, with particular reference to Brassica species. Physical root characteristics, exudation of organic acids (particularly malate and citrate) and phosphatase enzymes are considered and the potential mechanisms of control of these responses to P deficiency examined. The influence of rhizodeposits on the development of the rhizosphere microbial community is discussed and the specific features of this community in response to P deficiency are considered; specifically production of phosphatases, phytases and phosphonate hydrolases. Finally various potential approaches for improving overall P use efficiency in Brassica production are discussed.
Collapse
Affiliation(s)
- Paul J. Hunter
- School of Life Sciences, University of WarwickCoventry, UK
| | | | | |
Collapse
|
49
|
Yang LT, Qi YP, Lu YB, Guo P, Sang W, Feng H, Zhang HX, Chen LS. iTRAQ protein profile analysis of Citrus sinensis roots in response to long-term boron-deficiency. J Proteomics 2013; 93:179-206. [PMID: 23628855 DOI: 10.1016/j.jprot.2013.04.025] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Revised: 04/09/2013] [Accepted: 04/16/2013] [Indexed: 12/24/2022]
Abstract
UNLABELLED Seedlings of Citrus sinensis were fertilized with boron (B)-deficient (0μM H3BO3) or -sufficient (10μM H3BO3) nutrient solution for 15weeks. Thereafter, iTRAQ analysis was employed to compare the abundances of proteins from B-deficient and -sufficient roots. In B-deficient roots, 164 up-regulated and 225 down-regulated proteins were identified. These proteins were grouped into the following functional categories: protein metabolism, nucleic acid metabolism, stress responses, carbohydrate and energy metabolism, cell transport, cell wall and cytoskeleton metabolism, biological regulation and signal transduction, and lipid metabolism. The adaptive responses of roots to B-deficiency might include following several aspects: (a) decreasing root respiration; (b) improving the total ability to scavenge reactive oxygen species (ROS); and (c) enhancing cell transport. The differentially expressed proteins identified by iTRAQ are much larger than those detected using 2D gel electrophoresis, and many novel B-deficiency-responsive proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes were identified in this work. Our results indicate remarkable metabolic flexibility of citrus roots, which may contribute to the survival of B-deficient plants. This represents the most comprehensive analysis of protein profiles in response to B-deficiency. BIOLOGICAL SIGNIFICANCE In this study, we identified many new proteins involved in cell transport, biological regulation and signal transduction, stress responses and other metabolic processes that were not previously known to be associated with root B-deficiency responses. Therefore, our manuscript represents the most comprehensive analysis of protein profiles in response to B-deficiency and provides new information about the plant response to B-deficiency. This article is part of a Special Issue entitled: Translational Plant Proteomics.
Collapse
Affiliation(s)
- Lin-Tong Yang
- College of Resources and Environmental Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Horticultural Plant Physiology, Biochemistry and Molecular Biology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Interactive effects of phosphorus deficiency and exogenous auxin on root morphological and physiological traits in white lupin (Lupinus albus L.). SCIENCE CHINA-LIFE SCIENCES 2013; 56:313-23. [PMID: 23504274 DOI: 10.1007/s11427-013-4461-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Accepted: 12/11/2012] [Indexed: 10/27/2022]
Abstract
White lupin (Lupinus albus) exhibits strong root morphological and physiological responses to phosphorus (P) deficiency and auxin treatments, but the interactive effects of P and auxin in regulating root morphological and physiological traits are not fully understood. This study aimed to assess white lupin root traits as influenced by P (0 or 250 μmol L(-1)) and auxin (10(-8) mol L(-1) NAA) in nutrient solution. Both P deficiency and auxin treatments significantly altered root morphological traits, as evidenced by reduced taproot length, increased number and density of first-order lateral roots, and enhanced cluster-root formation. Changes in root physiological traits were also observed, i.e., increased proton, citrate, and acid phosphatase exudation. Exogenous auxin enhanced root responses and sensitivity to P deficiency. A significant interplay exists between P and auxin in the regulation of root morphological and physiological traits. Principal component analysis showed that P availability explained 64.8% and auxin addition 21.3% of the total variation in root trait parameters, indicating that P availability is much more important than auxin in modifying root responses of white lupin. This suggests that white lupin can coordinate root morphological and physiological responses to enhance acquisition of P resources, with an optimal trade-off between root morphological and physiological traits regulated by external stimuli such as P availability and auxin.
Collapse
|