1
|
Vallicrosa H, Sardans J, Maspons J, Zuccarini P, Fernández-Martínez M, Bauters M, Goll DS, Ciais P, Obersteiner M, Janssens IA, Peñuelas J. Global maps and factors driving forest foliar elemental composition: the importance of evolutionary history. THE NEW PHYTOLOGIST 2022; 233:169-181. [PMID: 34614196 DOI: 10.1111/nph.17771] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Consistent information on the current elemental composition of vegetation at global scale and the variables that determine it is lacking. To fill this gap, we gathered a total of 30 912 georeferenced records on woody plants foliar concentrations of nitrogen (N), phosphorus (P) and potassium (K) from published databases, and produced global maps of foliar N, P and K concentrations for woody plants using neural networks at a resolution of 1 km2 . We used data for climate, atmospheric deposition, soil and morphoclimatic groups to train the neural networks. Foliar N, P and K do not follow clear global latitudinal patterns but are consistent with the hypothesis of soil substrate age. We additionally built generalized linear mixed models to investigate the evolutionary history effect together with the effects of environmental effects. In this comparison, evolutionary history effects explained most of the variability in all cases (mostly > 60%). These results emphasize the determinant role of evolutionary history in foliar elemental composition, which should be incorporated in upcoming dynamic global vegetation models.
Collapse
Affiliation(s)
- Helena Vallicrosa
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, 08913, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, 08913, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, 08913, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, 08913, Spain
| | - Joan Maspons
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, 08913, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, 08913, Spain
| | - Paolo Zuccarini
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, 08913, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, 08913, Spain
| | - Marcos Fernández-Martínez
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, B-2610, Belgium
| | - Marijn Bauters
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, B-2610, Belgium
| | | | | | - Michael Obersteiner
- Ecosystems Services and Management, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg, A-2361, Austria
| | - Ivan A Janssens
- Research Group PLECO (Plants and Ecosystems), Department of Biology, University of Antwerp, Wilrijk, B-2610, Belgium
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Catalonia, 08913, Spain
- CREAF, Cerdanyola del Vallès, Catalonia, 08913, Spain
| |
Collapse
|
2
|
Sun Y, Wang X, Chen Z, Qin L, Li B, Ouyang L, Peng X, He H. Quantitative Proteomics and Transcriptomics Reveals Differences in Proteins During Anthers Development in Oryza longistaminata. FRONTIERS IN PLANT SCIENCE 2021; 12:744792. [PMID: 34868129 PMCID: PMC8640343 DOI: 10.3389/fpls.2021.744792] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/22/2021] [Indexed: 06/07/2023]
Abstract
Oryza longistaminata is an African wild rice species that possesses special traits for breeding applications. Self-incompatibility is the main cause of sterility in O. longistaminata, but here we demonstrated that its pollen vitality are normal. Lipid and carbohydrate metabolism were active throughout pollen development. In this study, we used I2-KI staining and TTC staining to investigate pollen viability. Aniline-blue-stained semithin sections were used to investigate important stages of pollen development. Tandem mass tags (TMT)-based quantitative analysis was used to investigate the profiles of proteins related to lipid and carbohydrate metabolism in 4-, 6-, and 8.5-mm O. longistaminata spikelets before flowering. Pollen was found to germinate normally in vitro and in vivo. We documented cytological changes throughout important stages of anther development, including changes in reproductive cells as they formed mature pollen grains through meiosis and mitosis. A total of 31,987 RNA transcripts and 8,753 proteins were identified, and 6,842 of the proteins could be quantified. RNA-seq and proteome association analysis indicated that fatty acids were converted to sucrose after the 6-mm spikelet stage, based on the abundance of most key enzymes of the glyoxylate cycle and gluconeogenesis. The abundance of proteins involved in pollen energy metabolism was further confirmed by combining quantitative real-time PCR with parallel reaction monitoring (PRM) analyses. In conclusion, our study provides novel insights into the pollen viability of O. longistaminata at the proteome level, which can be used to improve the efficiency of male parent pollination in hybrid rice breeding applications.
Collapse
|
3
|
Kumari S, Chhillar H, Chopra P, Khanna RR, Khan MIR. Potassium: A track to develop salinity tolerant plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:1011-1023. [PMID: 34598021 DOI: 10.1016/j.plaphy.2021.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/10/2021] [Accepted: 09/24/2021] [Indexed: 05/24/2023]
Abstract
Salinity is one of the major constraints to plant growth and development across the globe that leads to the huge crop productivity loss. Salinity stress causes impairment in plant's metabolic and cellular processes including disruption in ionic homeostasis due to excess of sodium (Na+) ion influx and potassium (K+) efflux. This condition subsequently results in a significant reduction of the cytosolic K+ levels, eventually inhibiting plant growth attributes. K+ plays a crucial role in alleviating salinity stress by recasting key processes of plants. In addition, K+ acquisition and retention also serve as the perquisite trait to establish salt tolerant mechanism. In addition, an intricate network of genes and their regulatory elements are involved in coordinating salinity stress responses. Furthermore, plant growth regulators (PGRs) and other signalling molecules influence K+-mediated salinity tolerance in plants. Recently, nanoparticles (NPs) have also been found several implications in plants with respect to their roles in mediating K+ homoeostasis during salinity stress in plants. The present review describes salinity-induced adversities in plants and role of K+ in mitigating salinity-induced damages. The review also highlights the efficacy of PGRs and other signalling molecules in regulating K+ mediated salinity tolerance along with nano-technological perspective for improving K+ mediated salinity tolerance in plants.
Collapse
Affiliation(s)
- Sarika Kumari
- Department of Botany, Jamia Hamdard, New Delhi-110062, India
| | | | - Priyanka Chopra
- Department of Botany, Jamia Hamdard, New Delhi-110062, India
| | | | - M Iqbal R Khan
- Department of Botany, Jamia Hamdard, New Delhi-110062, India.
| |
Collapse
|
4
|
Sardans J, Peñuelas J. Potassium Control of Plant Functions: Ecological and Agricultural Implications. PLANTS (BASEL, SWITZERLAND) 2021; 10:419. [PMID: 33672415 PMCID: PMC7927068 DOI: 10.3390/plants10020419] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/18/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023]
Abstract
Potassium, mostly as a cation (K+), together with calcium (Ca2+) are the most abundant inorganic chemicals in plant cellular media, but they are rarely discussed. K+ is not a component of molecular or macromolecular plant structures, thus it is more difficult to link it to concrete metabolic pathways than nitrogen or phosphorus. Over the last two decades, many studies have reported on the role of K+ in several physiological functions, including controlling cellular growth and wood formation, xylem-phloem water content and movement, nutrient and metabolite transport, and stress responses. In this paper, we present an overview of contemporary findings associating K+ with various plant functions, emphasizing plant-mediated responses to environmental abiotic and biotic shifts and stresses by controlling transmembrane potentials and water, nutrient, and metabolite transport. These essential roles of K+ account for its high concentrations in the most active plant organs, such as leaves, and are consistent with the increasing number of ecological and agricultural studies that report K+ as a key element in the function and structure of terrestrial ecosystems, crop production, and global food security. We synthesized these roles from an integrated perspective, considering the metabolic and physiological functions of individual plants and their complex roles in terrestrial ecosystem functions and food security within the current context of ongoing global change. Thus, we provide a bridge between studies of K+ at the plant and ecological levels to ultimately claim that K+ should be considered at least at a level similar to N and P in terrestrial ecological studies.
Collapse
Affiliation(s)
- Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain;
- CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08913 Bellaterra, Catalonia, Spain;
- CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
5
|
First Evidence of a Protective Effect of Plant Bioactive Compounds against H 2O 2-Induced Aconitase Damage in Durum Wheat Mitochondria. Antioxidants (Basel) 2020; 9:antiox9121256. [PMID: 33321766 PMCID: PMC7763331 DOI: 10.3390/antiox9121256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 12/24/2022] Open
Abstract
In order to contribute to the understanding of the antioxidant behavior of plant bioactive compounds with respect to specific subcellular targets, in this study, their capability to protect aconitase activity from oxidative-mediated dysfunction was evaluated for the first time in plant mitochondria. Interest was focused on the Krebs cycle enzyme catalyzing the citrate/isocitrate interconversion via cis-aconitate, as it possesses a [4Fe-4S]2+ cluster at the active site, making it an early and highly sensitive target of reactive oxygen species (ROS)-induced oxidative damage. In particular, the effect on the aconitase reaction of five natural phenols, including ferulic acid, apigenin, quercetin, resveratrol, and curcumin, as well as of the isothiocyanate sulforaphane, was investigated in highly purified mitochondria obtained from durum wheat (DWM). Interestingly, a short-term (10 min) DWM pre-treatment with all investigated compounds, applied at 150 µM (75 µM in the case of resveratrol), completely prevented aconitase damage induced by a 15 min exposure of mitochondria to 500 µM H2O2. Curcumin and quercetin were also found to completely recover DWM-aconitase activity when phytochemical treatment was performed after H2O2 damage. In addition, all tested phytochemicals (except ferulic) induced a significant increase of aconitase activity in undamaged mitochondria. On the contrary, a relevant protective and recovery effect of only quercetin treatment was observed in terms of the aconitase activity of a commercial purified mammalian isoform, which was used for comparison. Overall, the results obtained in this study may suggest a possible role of phytochemicals in preserving plant mitochondrial aconitase activity, as well as energy metabolism, against oxidative damage that may occur under environmental stress conditions. Further investigations are needed to elucidate the physiological role and the mechanism responsible for this short-term protective effect.
Collapse
|
6
|
Soccio M, Laus MN, Alfarano M, Pastore D. Measuring Activity of Native Plant Sirtuins - The Wheat Mitochondrial Model. FRONTIERS IN PLANT SCIENCE 2018; 9:961. [PMID: 30026749 PMCID: PMC6041729 DOI: 10.3389/fpls.2018.00961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/14/2018] [Indexed: 05/04/2023]
Abstract
Sirtuins are NAD+-dependent deacetylase enzymes that have gained considerable interest in mammals for their recognized importance in gene silencing and expression and in cell metabolism. Conversely, knowledge about plant sirtuins remains limited, although a sirtuin-mediated regulation of mitochondrial energy metabolism has been recently reported in Arabidopsis. However, so far, no information is available about direct measurement of intracellular plant sirtuin activity, i.e., in cell extracts and/or subcellular organelles. In this study, a novel approach was proposed for reliable evaluation of native sirtuin activity in plant samples, based on (i) an adequate combinatory application of enzymatic assays very different for chemical basis and rationale and (ii) a comparative measurement of activity of a recombinant sirtuin isoform. In particular, two sirtuin assays were applied, based on bioluminescence emission and Homogeneous Time-Resolved Fluorescence (HTRF®) technology, and the human SIRT1 isoform (hSIRT1) was used for comparison. For the first time in plants, this new approach allowed measuring directly a high and nicotinamide-sensitive sirtuin activity in highly purified mitochondrial fraction obtained from durum wheat (WM). WM-sirtuin activity was 268 ± 10 mU⋅mg-1 protein, as measured by HTRF® assay, and 166 ± 12 ng hSIRT1 eq.⋅mg-1 protein, as evaluated by the bioluminescent assay and calculated on the basis of the hSIRT1 calibration curve. Moreover, effects of resveratrol and quercetin, reported as potent hSIRT1 activators, but whose activation mechanism is still debated, were also studied. No effect of resveratrol was found on both WM-sirtuin and hSIRT1 activities, while only a slight increase, up to about 20%, of hSIRT1 activity by quercetin was observed. In the whole, results of this study indicate that WM may represent a good system for studying native plant sirtuins. In fact, the high yield of purified WM and their high sirtuin activity, together with use of microplate readers, allow performing a large number of measurements from the same preparation, so qualifying the approach for application to large-scale high-throughput screening. Moreover, WM may also represent an excellent tool to investigate physiological role and modulation of plant sirtuins under experimental conditions more physiologically relevant with respect to recombinant purified enzymes.
Collapse
|
7
|
Inorganic markers profiling in wild type and genetically modified plants subjected to abiotic stresses. Microchem J 2017. [DOI: 10.1016/j.microc.2017.04.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
8
|
Antollini SS, Barrantes FJ. Fatty Acid Regulation of Voltage- and Ligand-Gated Ion Channel Function. Front Physiol 2016; 7:573. [PMID: 27965583 PMCID: PMC5124694 DOI: 10.3389/fphys.2016.00573] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/09/2016] [Indexed: 12/25/2022] Open
Abstract
Free fatty acids (FFA) are essential components of the cell, where they play a key role in lipid and carbohydrate metabolism, and most particularly in cell membranes, where they are central actors in shaping the physicochemical properties of the lipid bilayer and the cellular adaptation to the environment. FFA are continuously being produced and degraded, and a feedback regulatory function has been attributed to their turnover. The massive increase observed under some pathological conditions, especially in brain, has been interpreted as a protective mechanism possibly operative on ion channels, which in some cases is of stimulatory nature and in other cases inhibitory. Here we discuss the correlation between the structure of FFA and their ability to modulate protein function, evaluating the influence of saturation/unsaturation, number of double bonds, and cis vs. trans isomerism. We further focus on the mechanisms of FFA modulation operating on voltage-gated and ligand-gated ion channel function, contrasting the still conflicting evidence on direct vs. indirect mechanisms of action.
Collapse
Affiliation(s)
- Silvia S Antollini
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (CONICET-UNS)Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del SurBahía Blanca, Argentina
| | | |
Collapse
|
9
|
Dinakar C, Vishwakarma A, Raghavendra AS, Padmasree K. Alternative Oxidase Pathway Optimizes Photosynthesis During Osmotic and Temperature Stress by Regulating Cellular ROS, Malate Valve and Antioxidative Systems. FRONTIERS IN PLANT SCIENCE 2016; 7:68. [PMID: 26904045 PMCID: PMC4747084 DOI: 10.3389/fpls.2016.00068] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Accepted: 01/15/2016] [Indexed: 05/19/2023]
Abstract
The present study reveals the importance of alternative oxidase (AOX) pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 μmoles m(-2) s(-1) at 25°C under a range of sorbitol concentrations from 0.4 to 1.0 M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 to 10°C to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25°C), the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation), under both hyper-osmotic (1.0 M sorbitol) and sub-optimal temperature stress conditions (10°C), while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS) levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA) related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG) related to antioxidative system during hyper-osmotic stress. Further, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD) and sub-optimal temperature (NADPH/NADP) stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM), the observed changes in NaHCO3-dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(P)H/NAD(P) and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the results indicated the importance of AOX pathway in optimizing photosynthesis under both hyper-osmotic stress and sub-optimal temperatures. Regulation of ROS through redox couples related to malate valve and antioxidant system by AOX pathway to optimize photosynthesis under these stresses are discussed.
Collapse
Affiliation(s)
- Challabathula Dinakar
- Department of Plant Sciences, School of Life Sciences, University of HyderabadHyderabad, India
- Department of Life Sciences, School of Basic and Applied Sciences, Central University of Tamil NaduThiruvarur, India
| | - Abhaypratap Vishwakarma
- Department of Plant Sciences, School of Life Sciences, University of HyderabadHyderabad, India
| | - Agepati S. Raghavendra
- Department of Plant Sciences, School of Life Sciences, University of HyderabadHyderabad, India
| | - Kollipara Padmasree
- Department of Biotechnology and Bioinformatics, School of Life Sciences, University of HyderabadHyderabad, India
- *Correspondence: Kollipara Padmasree, ;
| |
Collapse
|
10
|
Trono D, Laus MN, Soccio M, Alfarano M, Pastore D. Modulation of Potassium Channel Activity in the Balance of ROS and ATP Production by Durum Wheat Mitochondria-An Amazing Defense Tool Against Hyperosmotic Stress. FRONTIERS IN PLANT SCIENCE 2015; 6:1072. [PMID: 26648958 PMCID: PMC4664611 DOI: 10.3389/fpls.2015.01072] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 11/16/2015] [Indexed: 05/03/2023]
Abstract
In plants, the existence of a mitochondrial potassium channel was firstly demonstrated about 15 years ago in durum wheat as an ATP-dependent potassium channel (PmitoKATP). Since then, both properties of the original PmitoKATP and occurrence of different mitochondrial potassium channels in a number of plant species (monocotyledonous and dicotyledonous) and tissues/organs (etiolated and green) have been shown. Here, an overview of the current knowledge is reported; in particular, the issue of PmitoKATP physiological modulation is addressed. Similarities and differences with other potassium channels, as well as possible cross-regulation with other mitochondrial proteins (Plant Uncoupling Protein, Alternative Oxidase, Plant Inner Membrane Anion Channel) are also described. PmitoKATP is inhibited by ATP and activated by superoxide anion, as well as by free fatty acids (FFAs) and acyl-CoAs. Interestingly, channel activation increases electrophoretic potassium uptake across the inner membrane toward the matrix, so collapsing membrane potential (ΔΨ), the main component of the protonmotive force (Δp) in plant mitochondria; moreover, cooperation between PmitoKATP and the K(+)/H(+) antiporter allows a potassium cycle able to dissipate also ΔpH. Interestingly, ΔΨ collapse matches with an active control of mitochondrial reactive oxygen species (ROS) production. Fully open channel is able to lower superoxide anion up to 35-fold compared to a condition of ATP-inhibited channel. On the other hand, ΔΨ collapse by PmitoKATP was unexpectedly found to not affect ATP synthesis via oxidative phosphorylation. This may probably occur by means of a controlled collapse due to ATP inhibition of PmitoKATP; this brake to the channel activity may allow a loss of the bulk phase Δp, but may preserve a non-classically detectable localized driving force for ATP synthesis. This ability may become crucial under environmental/oxidative stress. In particular, under moderate hyperosmotic stress (mannitol or NaCl), PmitoKATP was found to be activated by ROS, so inhibiting further large-scale ROS production according to a feedback mechanism; moreover, a stress-activated phospholipase A2 may generate FFAs, further activating the channel. In conclusion, a main property of PmitoKATP is the ability to keep in balance the control of harmful ROS with the mitochondrial/cellular bioenergetics, thus preserving ATP for energetic needs of cell defense under stress.
Collapse
Affiliation(s)
- Daniela Trono
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca per la Cerealicoltura, Foggia, Italy
| | - Maura N. Laus
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Foggia, Italy
| | - Mario Soccio
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Foggia, Italy
| | - Michela Alfarano
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Foggia, Italy
| | - Donato Pastore
- Dipartimento di Scienze Agrarie, degli Alimenti e dell’Ambiente, Università di Foggia, Foggia, Italy
| |
Collapse
|
11
|
Gargallo-Garriga A, Sardans J, Pérez-Trujillo M, Oravec M, Urban O, Jentsch A, Kreyling J, Beierkuhnlein C, Parella T, Peñuelas J. Warming differentially influences the effects of drought on stoichiometry and metabolomics in shoots and roots. THE NEW PHYTOLOGIST 2015; 207:591-603. [PMID: 25772030 DOI: 10.1111/nph.13377] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/15/2015] [Indexed: 05/26/2023]
Abstract
Plants in natural environments are increasingly being subjected to a combination of abiotic stresses, such as drought and warming, in many regions. The effects of each stress and the combination of stresses on the functioning of shoots and roots have been studied extensively, but little is known about the simultaneous metabolome responses of the different organs of the plant to different stresses acting at once. We studied the shift in metabolism and elemental composition of shoots and roots of two perennial grasses, Holcus lanatus and Alopecurus pratensis, in response to simultaneous drought and warming. These species responded differently to individual and simultaneous stresses. These responses were even opposite in roots and shoots. In plants exposed to simultaneous drought and warming, terpenes, catechin and indole acetic acid accumulated in shoots, whereas amino acids, quinic acid, nitrogenous bases, the osmoprotectants choline and glycine betaine, and elements involved in growth (nitrogen, phosphorus and potassium) accumulated in roots. Under drought, warming further increased the allocation of primary metabolic activity to roots and changed the composition of secondary metabolites in shoots. These results highlight the plasticity of plant metabolomes and stoichiometry, and the different complementary responses of shoots and roots to complex environmental conditions.
Collapse
Affiliation(s)
- Albert Gargallo-Garriga
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Cerdanyola del vallès, Catalonia, 08193, Spain
- CREAF, Cerdanyola del vallès, Catalonia, 08193, Spain
- Service of Nuclear Magnetic Resonance and Chemistry Department, Faculty of Sciences and Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, 08913, Spain
| | - Jordi Sardans
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Cerdanyola del vallès, Catalonia, 08193, Spain
- CREAF, Cerdanyola del vallès, Catalonia, 08193, Spain
| | - Míriam Pérez-Trujillo
- Service of Nuclear Magnetic Resonance and Chemistry Department, Faculty of Sciences and Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, 08913, Spain
| | - Michal Oravec
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Belidla 4a, CZ-60300, Brno, Czech Republic
| | - Otmar Urban
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Belidla 4a, CZ-60300, Brno, Czech Republic
| | - Anke Jentsch
- Disturbance Ecology and Vegetation Dynamics, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Juergen Kreyling
- Department of Biogeography, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Carl Beierkuhnlein
- Department of Biogeography, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Teodor Parella
- Service of Nuclear Magnetic Resonance and Chemistry Department, Faculty of Sciences and Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Catalonia, 08913, Spain
| | - Josep Peñuelas
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Cerdanyola del vallès, Catalonia, 08193, Spain
- CREAF, Cerdanyola del vallès, Catalonia, 08193, Spain
| |
Collapse
|
12
|
Savchenko TV, Zastrijnaja OM, Klimov VV. Oxylipins and plant abiotic stress resistance. BIOCHEMISTRY (MOSCOW) 2015; 79:362-75. [PMID: 24910209 DOI: 10.1134/s0006297914040051] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Oxylipins are signaling molecules formed enzymatically or spontaneously from unsaturated fatty acids in all aerobic organisms. Oxylipins regulate growth, development, and responses to environmental stimuli of organisms. The oxylipin biosynthesis pathway in plants includes a few parallel branches named after first enzyme of the corresponding branch as allene oxide synthase, hydroperoxide lyase, divinyl ether synthase, peroxygenase, epoxy alcohol synthase, and others in which various biologically active metabolites are produced. Oxylipins can be formed non-enzymatically as a result of oxygenation of fatty acids by free radicals and reactive oxygen species. Spontaneously formed oxylipins are called phytoprostanes. The role of oxylipins in biotic stress responses has been described in many published works. The role of oxylipins in plant adaptation to abiotic stress conditions is less studied; there is also obvious lack of available data compilation and analysis in this area of research. In this work we analyze data on oxylipins functions in plant adaptation to abiotic stress conditions, such as wounding, suboptimal light and temperature, dehydration and osmotic stress, and effects of ozone and heavy metals. Modern research articles elucidating the molecular mechanisms of oxylipins action by the methods of biochemistry, molecular biology, and genetics are reviewed here. Data on the role of oxylipins in stress signal transduction, stress-inducible gene expression regulation, and interaction of these metabolites with other signal transduction pathways in cells are described. In this review the general oxylipin-mediated mechanisms that help plants to adjust to a broad spectrum of stress factors are considered, followed by analysis of more specific responses regulated by oxylipins only under certain stress conditions. New approaches to improvement of plant resistance to abiotic stresses based on the induction of oxylipin-mediated processes are discussed.
Collapse
Affiliation(s)
- T V Savchenko
- Institute of Basic Biological Problems, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | | | |
Collapse
|
13
|
Trono D, Laus MN, Soccio M, Pastore D. Transport pathways--proton motive force interrelationship in durum wheat mitochondria. Int J Mol Sci 2014; 15:8186-215. [PMID: 24821541 PMCID: PMC4057727 DOI: 10.3390/ijms15058186] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/18/2014] [Accepted: 04/24/2014] [Indexed: 12/25/2022] Open
Abstract
In durum wheat mitochondria (DWM) the ATP-inhibited plant mitochondrial potassium channel (PmitoK(ATP)) and the plant uncoupling protein (PUCP) are able to strongly reduce the proton motive force (pmf) to control mitochondrial production of reactive oxygen species; under these conditions, mitochondrial carriers lack the driving force for transport and should be inactive. However, unexpectedly, DWM uncoupling by PmitoK(ATP) neither impairs the exchange of ADP for ATP nor blocks the inward transport of Pi and succinate. This uptake may occur via the plant inner membrane anion channel (PIMAC), which is physiologically inhibited by membrane potential, but unlocks its activity in de-energized mitochondria. Probably, cooperation between PIMAC and carriers may accomplish metabolite movement across the inner membrane under both energized and de-energized conditions. PIMAC may also cooperate with PmitoK(ATP) to transport ammonium salts in DWM. Interestingly, this finding may trouble classical interpretation of in vitro mitochondrial swelling; instead of free passage of ammonia through the inner membrane and proton symport with Pi, that trigger metabolite movements via carriers, transport of ammonium via PmitoK(ATP) and that of the counteranion via PIMAC may occur. Here, we review properties, modulation and function of the above reported DWM channels and carriers to shed new light on the control that they exert on pmf and vice-versa.
Collapse
Affiliation(s)
- Daniela Trono
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per la Cerealicoltura, S.S. 673 Km 25, 71122 Foggia, Italy.
| | - Maura N Laus
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Mario Soccio
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| | - Donato Pastore
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25, 71122 Foggia, Italy.
| |
Collapse
|
14
|
Rivas-Ubach A, Gargallo-Garriga A, Sardans J, Oravec M, Mateu-Castell L, Pérez-Trujillo M, Parella T, Ogaya R, Urban O, Peñuelas J. Drought enhances folivory by shifting foliar metabolomes in Quercus ilex trees. THE NEW PHYTOLOGIST 2014; 202:874-885. [PMID: 24443979 DOI: 10.1111/nph.12687] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/17/2013] [Indexed: 05/06/2023]
Abstract
At the molecular level, folivory activity on plants has mainly been related to the foliar concentrations of nitrogen (N) and/or particular metabolites. We studied the responses of different nutrients and the whole metabolome of Quercus ilex to seasonal changes and to moderate field experimental conditions of drought, and how this drought may affect folivory activity, using stoichiometric and metabolomic techniques. Foliar potassium (K) concentrations increased in summer and consequently led to higher foliar K : phosphorus (P) and lower carbon (C) : K and N : K ratios. Foliar N : P ratios were not lowest in spring as expected by the growth rate hypothesis. Trees exposed to moderate drought presented higher concentrations of total sugars and phenolics and these trees also experienced more severe folivory attack. The foliar increases in K, sugars and antioxidant concentrations in summer, the driest Mediterranean season, indicated enhanced osmoprotection under natural drought conditions. Trees under moderate drought also presented higher concentrations of sugars and phenolics; a plant response to avoid water loss. These shifts in metabolism produced an indirect relationship between increased drought and folivory activity.
Collapse
Affiliation(s)
- Albert Rivas-Ubach
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08913, Catalonia, Spain
| | - Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08913, Catalonia, Spain
- Servei de Ressonància Magnètica Nuclear, Faculty of Sciences and Biosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08913, Catalonia, Spain
| | - Michal Oravec
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a, CZ-603 00, Brno, Czech Republic
| | - Laia Mateu-Castell
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08913, Catalonia, Spain
| | - Míriam Pérez-Trujillo
- Servei de Ressonància Magnètica Nuclear, Faculty of Sciences and Biosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Teodor Parella
- Servei de Ressonància Magnètica Nuclear, Faculty of Sciences and Biosciences, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Romà Ogaya
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08913, Catalonia, Spain
| | - Otmar Urban
- Global Change Research Centre, Academy of Sciences of the Czech Republic, Bĕlidla 4a, CZ-603 00, Brno, Czech Republic
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CEAB-CSIC-UAB, Cerdanyola del Vallès, 08913, Catalonia, Spain
- CREAF, Cerdanyola del Vallès, 08913, Catalonia, Spain
| |
Collapse
|
15
|
Sardans J, Peñuelas J. Climate and taxonomy underlie different elemental concentrations and stoichiometries of forest species: the optimum "biogeochemical niche". PLANT ECOLOGY 2014; 215:441-455. [PMID: 25983614 PMCID: PMC4430814 DOI: 10.1007/s11258-014-0314-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
We previously hypothesised the existence of a "biogeochemical niche" occupied by each plant species. Different species should have a specific elemental composition, stoichiometry and allocation as a consequence of their particular metabolism, physiology and structure (morphology) linked to their optimal functioning under the environmental (abiotic and biotic) conditions where they have evolved. We tested this hypothesis using data from the Catalan Forestry Inventory that covers different forest groups growing under a large climatic gradient. Mediterranean species that occupy hotter-drier environments have lower leaf N, P and K concentrations than non-Mediterranean forest species. Within a determined climatic biome, different species competing in the same space have different elemental compositions and allocations linked to their taxonomical differences and their phenotypic plasticity. Gymnosperms have a proportionally higher elemental allocation to leaves than to wood, higher C concentrations, and lower N, P and K concentrations mainly in the stem and branches than angiosperms. The differences among species are linked to asymmetrical use of different elements, suggesting that the biogeochemical niche is a final expression and consequence of long-term species adaptation to particular abiotic factors, ecological role (stress tolerant, ruderal, competitor), different soil occupation and use of resources to avoid interspecific competition, and finally of a certain degree of flexibility to adapt to current environmental shifts.
Collapse
Affiliation(s)
- J Sardans
- CSIC, Global Ecology Unit (CREAF-CEAB-CSIC-UAB), Universitat Autonoma de Barcelona, 08913 Cerdanyola del Vallès, Catalonia, Spain ; CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| | - J Peñuelas
- CSIC, Global Ecology Unit (CREAF-CEAB-CSIC-UAB), Universitat Autonoma de Barcelona, 08913 Cerdanyola del Vallès, Catalonia, Spain ; CREAF, 08913 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
16
|
De Simone V, Soccio M, Borrelli GM, Pastore D, Trono D. Stay-green trait-antioxidant status interrelationship in durum wheat (Triticum durum) flag leaf during post-flowering. JOURNAL OF PLANT RESEARCH 2014; 127:159-71. [PMID: 23979009 DOI: 10.1007/s10265-013-0584-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 06/16/2013] [Indexed: 05/08/2023]
Abstract
Three independent durum wheat mutant lines that show delayed leaf senescence or stay-green (SG) phenotype, SG196, SG310 and SG504, were compared to the parental genotype, cv. Trinakria, with respect to the photosynthetic parameters and the cellular redox state of the flag leaf in the period from flowering to senescence. The SG mutants maintained their chlorophyll content and net photosynthetic rate for longer than Trinakria, thus revealing a functional SG phenotype. They also showed a better redox state as demonstrated by: (1) a lower rate of superoxide anion production due to generally higher activity of the antioxidant enzymes superoxide dismutase and catalase in all of the SG mutants and also of the total peroxidase in SG196; (2) a higher thiol content that can be ascribed to a higher activity of the NADPH-providing enzyme glucose-6-phosphate dehydrogenase in all of the SG mutants and also of the NADP(+)-dependent malic enzyme in SG196; (3) a lower pro-oxidant activity of lipoxygenase that characterises SG196 and SG504 mutants close to leaf senescence. Overall, these results show a general relationship in durum wheat between the SG phenotype and a better redox state. This relationship differs across the different SG mutants, probably as a consequence of the different set of altered genes underlying the SG trait in these independent mutant lines.
Collapse
Affiliation(s)
- Vanessa De Simone
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per la Cerealicoltura, S.S. 16, Km 675, 71122, Foggia, Italy,
| | | | | | | | | |
Collapse
|
17
|
Pastore D, Soccio M, Laus MN, Trono D. The uniqueness of the plant mitochondrial potassium channel. BMB Rep 2013; 46:391-7. [PMID: 23977986 PMCID: PMC4133908 DOI: 10.5483/bmbrep.2013.46.8.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/11/2013] [Accepted: 04/11/2013] [Indexed: 01/27/2023] Open
Abstract
The ATP-inhibited Plant Mitochondrial K(+) Channel (PmitoKATP) was discovered about fifteen years ago in Durum Wheat Mitochondria (DWM). PmitoKATP catalyses the electrophoretic K(+) uniport through the inner mitochondrial membrane; moreover, the co-operation between PmitoKATP and K(+)/H(+) antiporter allows such a great operation of a K(+) cycle to collapse mitochondrial membrane potential (ΔΨ) and ΔpH, thus impairing protonmotive force (Δp). A possible physiological role of such ΔΨ control is the restriction of harmful reactive oxygen species (ROS) production under environmental/oxidative stress conditions. Interestingly, DWM lacking Δp were found to be nevertheless fully coupled and able to regularly accomplish ATP synthesis; this unexpected behaviour makes necessary to recast in some way the classical chemiosmotic model. In the whole, PmitoKATP may oppose to large scale ROS production by lowering ΔΨ under environmental/oxidative stress, but, when stress is moderate, this occurs without impairing ATP synthesis in a crucial moment for cell and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Donato Pastore
- Dipartimento di Scienze Agrarie, degli Alimenti e dell'Ambiente, Università di Foggia, Via Napoli 25-71122 Foggia, Italy.
| | | | | | | |
Collapse
|
18
|
Sardans J, Rivas-Ubach A, Estiarte M, Ogaya R, Peñuelas J. Field-simulated droughts affect elemental leaf stoichiometry in Mediterranean forests and shrublands. ACTA OECOLOGICA-INTERNATIONAL JOURNAL OF ECOLOGY 2013. [DOI: 10.1016/j.actao.2013.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
19
|
A new simple fluorimetric method to assay cytosolic ATP content: application to durum wheat seedlings to assess modulation of mitochondrial potassium channel and uncoupling protein activity under hyperosmotic stress. Biologia (Bratisl) 2013. [DOI: 10.2478/s11756-013-0176-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
20
|
Trono D, Soccio M, Laus MN, Pastore D. The existence of phospholipase A(2) activity in plant mitochondria and its activation by hyperosmotic stress in durum wheat (Triticum durum Desf.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:91-102. [PMID: 23265322 DOI: 10.1016/j.plantsci.2012.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/09/2012] [Accepted: 11/10/2012] [Indexed: 05/19/2023]
Abstract
The activity of mitochondrial phospholipase A(2) (PLA(2)) was shown for the first time in plants. It was observed in etiolated seedlings from durum wheat, barley, tomato, spelt and green seedlings of maize, but not in potato and topinambur tubers and lentil etiolated seedlings. This result was achieved by a novel spectrophotometric assay based on the coupled PLA(2)/lipoxygenase reactions using 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine as substrate; the mitochondrial localisation was assessed by checking recovery of marker enzymes. Durum wheat mitochondrial PLA(2) (DWM-PLA(2)) showed maximal activity at pH 9.0 and 1mM Ca(2+), hyperbolic kinetics (K(m)=90±6μM, V(max)=29±1nmolmin(-1)mg(-1) of protein) and inhibition by methyl arachidonyl fluorophosphonate, 5-(4-benzyloxyphenyl)-4S-(7-phenylheptanoylamino)pentanoic acid and palmityl trifluoromethyl ketone. Reactive oxygen species had no effect on DWM-PLA(2), that instead was activated by about 50% and 95%, respectively, under salt (0.21M NaCl) and osmotic (0.42M mannitol) stress imposed during germination. Contrarily, a secondary Ca(2+)-independent activity, having optimum at pH 7.0, was stress-insensitive. We propose that the activation of DWM-PLA(2) is responsible for the strong increase of free fatty acids recently measured in mitochondria under the same stress conditions [Laus, et al., J. Exp. Bot. 62 (2011) 141-154] that, in turn, activate potassium channel and uncoupling protein, able to counteract hyperosmotic stress.
Collapse
Affiliation(s)
- Daniela Trono
- Consiglio per la Ricerca e la sperimentazione in Agricoltura - Centro di Ricerca per la Cerealicoltura, Foggia, Italy
| | | | | | | |
Collapse
|
21
|
The mitochondrial permeability transition pore (PTP) — An example of multiple molecular exaptation? BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:2072-86. [DOI: 10.1016/j.bbabio.2012.06.620] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 06/19/2012] [Accepted: 06/21/2012] [Indexed: 11/21/2022]
|
22
|
Sardans J, Peñuelas J, Coll M, Vayreda J, Rivas-Ubach A. Stoichiometry of potassium is largely determined by water availability and growth in Catalonian forests. Funct Ecol 2012. [DOI: 10.1111/j.1365-2435.2012.02023.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Jordi Vayreda
- CREAF, Facultat de Ciencies; Universitat Autònoma de Barcelona; Bellaterra; 08913; Spain
| | | |
Collapse
|
23
|
Rivas-Ubach A, Sardans J, Pérez-Trujillo M, Estiarte M, Peñuelas J. Strong relationship between elemental stoichiometry and metabolome in plants. Proc Natl Acad Sci U S A 2012; 109:4181-6. [PMID: 22371578 PMCID: PMC3306711 DOI: 10.1073/pnas.1116092109] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Shifts in the elemental stoichiometry of organisms in response to their ontogeny and to changing environmental conditions should be related to metabolomic changes because elements operate mostly as parts of molecular compounds. Here we show this relationship in leaves of Erica multiflora throughout their seasonal development and in response to moderate experimental field conditions of drought and warming. The N/P ratio in leaves decreased in the metabolically active growing seasons, coinciding with an increase in the content of primary metabolites. These results support the growth-rate hypothesis that states that rapidly growing organisms present low N/P ratios because of the increase in allocation of P to RNA. The foliar N/K and P/K ratios were lower in summer and in the drought treatment, in accordance with the role of K in osmotic protection, and coincided with the increase of compounds related to the avoidance of water stress. These results provide strong evidence of the relationship between the changes in foliar C/N/P/K stoichiometry and the changes in the leaf's metabolome during plant growth and environmental stress. Thus these results represent a step in understanding the relationships between stoichiometry and an organism's lifestyle.
Collapse
Affiliation(s)
- Albert Rivas-Ubach
- Global Ecology Unit, Centre for Ecological Research and Forestry Applications-Centre for Advanced Studies of Blanes-Spanish National Research Council, Universitat Autònoma de Barcelona, Bellaterra 08193, Barcelona, Catalonia, Spain.
| | | | | | | | | |
Collapse
|
24
|
Trono D, Soccio M, Laus MN, Pastore D. Potassium channel-oxidative phosphorylation relationship in durum wheat mitochondria from control and hyperosmotic-stressed seedlings. PLANT, CELL & ENVIRONMENT 2011; 34:2093-108. [PMID: 21819416 DOI: 10.1111/j.1365-3040.2011.02407.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Durum wheat mitochondria (DWM) possess an ATP-inhibited K(+) channel, the plant mitoK(ATP) (PmitoK(ATP) ), which is activated under environmental stress to control mitochondrial ROS production. To do this, PmitoK(ATP) collapses membrane potential (ΔΨ), thus suggesting mitochondrial uncoupling. We tested this point by studying oxidative phosphorylation (OXPHOS) in DWM purified from control seedlings and from seedlings subjected both to severe mannitol and NaCl stress. In severely-stressed DWM, the ATP synthesis via OXPHOS, continuously monitored by a spectrophotometric assay, was about 90% inhibited when the PmitoK(ATP) was activated by KCl. Contrarily, in control DWM, although PmitoK(ATP) collapsed ΔΨ, ATP synthesis, as well as coupling [respiratory control (RC) ratio and ratio between phosphorylated ADP and reduced oxygen (ADP/O)] checked by oxygen uptake experiments, were unaffected. We suggest that PmitoK(ATP) may play an important defensive role at the onset of the environmental/oxidative stress by preserving energy in a crucial moment for cell and mitochondrial bioenergetics. Consistently, under moderate mannitol stress, miming an early stress condition, the channel may efficiently control reactive oxygen species (ROS) generation (about 35-fold from fully open to closed state) without impairing ATP synthesis. Anyway, if the stress significantly proceeds, the PmitoK(ATP) becomes fully activated by decrease of ATP concentration (25-40%) and increase of activators [free fatty acids (FFAs) and superoxide anion], thus impairing ATP synthesis.
Collapse
Affiliation(s)
- Daniela Trono
- CRA - Centro di Ricerca per la Cerealicoltura, S.S. 16 Km 675, Dipartimento di Scienze Agroambientali, Chimica e Difesa Vegetale, Università di Foggia, Via Napoli 25, Italy
| | | | | | | |
Collapse
|
25
|
De Santis A, Frascaroli E, Baraldi E, Carnevali F, Landi P. The activity of the plant mitochondrial inner membrane anion channel (PIMAC) of maize populations divergently selected for cold tolerance level is differentially dependent on the growth temperature of seedlings. PLANT & CELL PHYSIOLOGY 2011; 52:193-204. [PMID: 21148151 DOI: 10.1093/pcp/pcq189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The activity of the plant inner membrane mitochondrial anion channel (PIMAC) is involved in metabolite shuttles and mitochondrial volume changes and could have a role in plant temperature tolerance. Our objectives were to investigate (i) the occurrence and (ii) the temperature dependence of anion fluxes through PIMAC in mitochondria isolated from seedlings of three maize populations differing in terms of cold tolerance; and (iii) the relationships between the PIMAC activity kinetics and the level of cold tolerance. Populations were the source population (C0) and two populations divergently selected for high (C4H) and low (C4L) cold tolerance. Such divergently selected populations are expected to share most of their genes, with the main exception of those genes controlling cold tolerance. Arrhenius plots of PIMAC chloride fluxes showed a linear temperature dependence when seedlings were grown at 25 or 14°C, whereas a non-linear temperature dependence was found when seedlings were grown at 5°C, with or without acclimation at 14°C. The activation energy and other thermodynamic parameters of PIMAC activity varied depending on temperature treatments during seedling growth. When seedlings were grown at 14 and 5°C with acclimation, PIMAC activity of the C4H population increased, while that of C4L declined, as compared with the activities of seedlings grown at 25°C. These symmetric responses indicate that PIMAC activity changes are associated with genetically determined differences in the cold tolerance level of the investigated populations. We conclude that anion fluxes by PIMAC depend upon changes on growth temperature and are differentially related to the tolerance level of the tested populations.
Collapse
Affiliation(s)
- Aurelio De Santis
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Ancona, Italy.
| | | | | | | | | |
Collapse
|