1
|
Ninkuu V, Zhou Y, Liu H, Sun S, Liu Z, Liu Y, Yang J, Hu M, Guan L, Sun X. Regulation of nitrogen metabolism by COE2 under low sulfur stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112137. [PMID: 38815871 DOI: 10.1016/j.plantsci.2024.112137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The interplay between nitrogen and sulfur assimilation synergistically supports and sustains plant growth and development, operating in tandem to ensure coordinated and optimal outcomes. Previously, we characterized Arabidopsis CHLOROPHYLL A/B-BINDING (CAB) overexpression 2 (COE2) mutant, which has a mutation in the NITRIC OXIDE-ASSOCIATED (NOA1) gene and exhibits deficiency in root growth under low nitrogen (LN) stress. This study found that the growth suppression in roots and shoots in coe2 correlates with decreased sensitivity to low sulfur stress treatment compared to the wild-type. Therefore, we examined the regulatory role of COE2 in nitrogen and sulfur interaction by assessing the expression of nitrogen metabolism-related genes in coe2 seedlings under low sulfur stress. Despite the notable upregulation of nitrate reductase genes (NIA1 and NIA2), there was a considerable reduction in nitrogen uptake and utilization, resulting in a substantial growth penalty. Moreover, the elevated expression of miR396 perhaps complemented growth stunting by selectively targeting and curtailing the expression levels of GROWTH REGULATING FACTOR 2 (GRF2), GRF4, and GRF9. This study underscores the vital role of COE2-mediated nitrogen signaling in facilitating seedling growth under sulfur deficiency stress.
Collapse
Affiliation(s)
- Vincent Ninkuu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yaping Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Hao Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Susu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Zhixin Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Yumeng Liu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Jincheng Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Mengke Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Liping Guan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China
| | - Xuwu Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 85 Minglun Street, Kaifeng 475001, China.
| |
Collapse
|
2
|
Lazzara FE, Rodriguez RE, Palatnik JF. Molecular mechanisms regulating GROWTH-REGULATING FACTORS activity in plant growth, development, and environmental responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4360-4372. [PMID: 38666596 DOI: 10.1093/jxb/erae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 07/24/2024]
Abstract
Plants rely on complex regulatory mechanisms to ensure proper growth and development. As plants are sessile organisms, these mechanisms must be flexible enough to adapt to changes in the environment. GROWTH-REGULATING FACTORS (GRFs) are plant-specific transcription factors that act as a central hub controlling plant growth and development, which offer promising biotechnological applications to enhance plant performance. Here, we analyze the complex molecular mechanisms that regulate GRFs activity, and how their natural and synthetic variants can impact on plant growth and development. We describe the biological roles of the GRFs and examine how they regulate gene expression and contribute to the control of organ growth and plant responses to a changing environment. This review focuses on the premise that unlocking the full biotechnological potential of GRFs requires a thorough understanding of the various regulatory layers governing GRF activity, the functional divergence among GRF family members, and the gene networks that they regulate.
Collapse
Affiliation(s)
- Franco E Lazzara
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - Ramiro E Rodriguez
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| |
Collapse
|
3
|
Cui D, Song Y, Jiang W, Ye H, Wang S, Yuan L, Liu B. Genome-wide characterization of the GRF transcription factors in potato ( Solanum tuberosum L.) and expression analysis of StGRF genes during potato tuber dormancy and sprouting. FRONTIERS IN PLANT SCIENCE 2024; 15:1417204. [PMID: 38978523 PMCID: PMC11228316 DOI: 10.3389/fpls.2024.1417204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/03/2024] [Indexed: 07/10/2024]
Abstract
Growth-regulating factors (GRFs) are transcription factors that play a pivotal role in plant growth and development. This study identifies 12 Solanum tuberosum GRF transcription factors (StGRFs) and analyzes their physicochemical properties, phylogenetic relationships, gene structures and gene expression patterns using bioinformatics. The StGRFs exhibit a length range of 266 to 599 amino acids, with a molecular weight of 26.02 to 64.52 kDa. The majority of StGRFs possess three introns. The promoter regions contain a plethora of cis-acting elements related to plant growth and development, as well as environmental stress and hormone response. All the members of the StGRF family contain conserved WRC and QLQ domains, with the sequences of these two conserved domain modules exhibiting high levels of conservation. Transcriptomic data indicates that StGRFs play a significant role in the growth and development of stamens, roots, young tubers, and other tissues or organs in potatoes. Furthermore, a few StGRFs exhibit differential expression patterns in response to Phytophthora infestans, chemical elicitors, heat, salt, and drought stresses, as well as multiple hormone treatments. The results of the expression analysis indicate that StGRF1, StGRF2, StGRF5, StGRF7, StGRF10 and StGRF12 are involved in the process of tuber sprouting, while StGRF4 and StGRF9 may play a role in tuber dormancy. These findings offer valuable insights that can be used to investigate the roles of StGRFs during potato tuber dormancy and sprouting.
Collapse
Affiliation(s)
- Danni Cui
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yin Song
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Weihao Jiang
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Han Ye
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shipeng Wang
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Li Yuan
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, China
| | - Bailin Liu
- Shenzhen Research Institute, Northwest A&F University, Shenzhen, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Xu M, Li L, Yan J, Li D, Liu Y, Zhang W, Liu Y. Blocking miR396 activity by overexpression MIM396 improved switchgrass tiller number and biomass yield. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:69. [PMID: 38802880 PMCID: PMC11131217 DOI: 10.1186/s13068-024-02514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND MicroRNA396 (miR396) plays an important role in the regulation of plant growth and development by repressing the expression level of its target growth-regulating factor (GRF) family genes. In our previous study, we found that overexpression of miR396 negatively regulated both tillering and biomass yield in switchgrass (Panicum virgatum L.). We, therefore, speculated that blocking the expression of miR396 could enhance switchgrass tillering and biomass yield. Here, we produced transgenic switchgrass plants overexpressing a target mimicry form of miR396 (MIM396) in wild type (WT) and Os-MIR319b overexpressing switchgrass plant (with higher enzymatic hydrolysis efficiency, but reduced tillering), in which the expression of miR396 was blocked. The phenotype and biological yields of these plants were analyzed. RESULTS Blocking miR396 to improve its target PvGRFs expression in switchgrass improved the tiller number and dry weight of transgenic plants. Further morphological analysis revealed that MIM396 plants increased the number of aerial branches and basal tillers compared to those of wild-type plants. The enzymatic efficiency of MIM396 plants was reduced; however, the total sugar production per plant was still significantly higher than that of wild-type plants due to the increase in biomass. In addition, blocking miR396 in a transgenic switchgrass plant overexpressing Os-MIR319b (TG21-Ms) significantly increased the PvGRF1/3/5 expression level and tiller number and biomass yield. The miR156-target gene PvSPL4, playing a negative role in aerial and basal buds outgrowth, showed significant downregulated in MIM396 and TG21-Ms. Those results indicate that miR396-PvGRFs, through disrupting the PvSPL4 expression, are involved in miR319-PvPCFs in regulating tiller number, at least partly. CONCLUSIONS MIM396 could be used as a molecular tool to improving tiller number and biomass yield in switchgrass wild type and miR319b transgenic plants. This finding may be applied to other graminaceous plants to regulate plant biological yield.
Collapse
Affiliation(s)
- Mingzhi Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianping Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, People's Republic of China
| | - Yaling Liu
- National Center of Pratacultural Technology Innovation (Under Preparation), Hohhot, 010010, China
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Wang R, Zhu Y, Zhao D. Genome-Wide Identification and Expression Analysis of Growth-Regulating Factors in Eucommia ulmoides Oliver (Du-Zhong). PLANTS (BASEL, SWITZERLAND) 2024; 13:1185. [PMID: 38732399 PMCID: PMC11085888 DOI: 10.3390/plants13091185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/20/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
The roots, stems, leaves, and seeds of Eucommia ulmoides contain a large amount of trans-polyisoprene (also known as Eu-rubber), which is considered to be an important laticiferous plant with valuable industrial applications. Eu-rubber used in industry is mainly extracted from leaves. Therefore, it is of great significance to identify genes related to regulating the leaf size of E. ulmoides. Plant growth-regulating factors (GRFs) play important roles in regulating leaf size, and their functions are highly conserved across different plant species. However, there have been very limited reports on EuGRFs until now. In this study, eight canonical EuGRFs with both QLQ and WRC domains and two putative eul-miR396s were identified in the chromosome-level genome of E. ulmoides. It is found that, unlike AtGRFs, all EuGRFs contain the miR396s binding site in the terminal of WRC domains. These EuGRFs were distributed on six chromosomes in the genome of E. ulmoides. Collinearity analysis of the E. ulmoides genome revealed that EuGRF1 and EuGRF3 exhibit collinear relationships with EuGRF2, suggesting that those three genes may have emerged via gene replication events. The collinear relationship between EuGRFs, AtGRFs, and OsGRFs showed that EuGRF5 and EuGRF8 had no collinear members in Arabidopsis and rice. Almost all EuGRFs show a higher expression level in growing and developing tissues, and most EuGRF promoters process phytohormone-response and stress-induced cis-elements. Moreover, we found the expression of EuGRFs was significantly induced by gibberellins (GA3) in three hours, and the height of E. ulmoides seedlings was significantly increased one week after GA3 treatment. The findings in this study provide potential candidate genes for further research and lay the foundation for further exploring the molecular mechanism underlying E. ulmoides development in response to GA3.
Collapse
Affiliation(s)
- Ruoruo Wang
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Biotechnology Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Ying Zhu
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Biotechnology Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
| | - Degang Zhao
- Plant Conservation Technology Center, Guizhou Key Laboratory of Agricultural Biotechnology, Biotechnology Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang 550006, China
- Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Genetic Resources and Germplasm Innovation in Karst Region, Guiyang 550006, China
- The Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China
| |
Collapse
|
6
|
Ezaki K, Koga H, Takeda-Kamiya N, Toyooka K, Higaki T, Sakamoto S, Tsukaya H. Precocious cell differentiation occurs in proliferating cells in leaf primordia in Arabidopsis angustifolia3 mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1322223. [PMID: 38689848 PMCID: PMC11058843 DOI: 10.3389/fpls.2024.1322223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
During leaf development, the timing of transition from cell proliferation to expansion is an important factor in determining the final organ size. However, the regulatory system involved in this transition remains less understood. To get an insight into this system, we investigated the compensation phenomenon, in which the cell number decreases while the cell size increases in organs with determinate growth. Compensation is observed in several plant species suggesting coordination between cell proliferation and expansion. In this study, we examined an Arabidopsis mutant of ANGUSTIFOLIA 3 (AN3)/GRF-INTERACTING FACTOR 1, a positive regulator of cell proliferation, which exhibits the compensation. Though the AN3 role has been extensively investigated, the mechanism underlying excess cell expansion in the an3 mutant remains unknown. Focusing on the early stage of leaf development, we performed kinematic, cytological, biochemical, and transcriptome analyses, and found that the cell size had already increased during the proliferation phase, with active cell proliferation in the an3 mutant. Moreover, at this stage, chloroplasts, vacuoles, and xylem cells developed earlier than in the wild-type cells. Transcriptome data showed that photosynthetic activity and secondary cell wall biosynthesis were activated in an3 proliferating cells. These results indicated that precocious cell differentiation occurs in an3 cells. Therefore, we suggest a novel AN3 role in the suppression of cell expansion/differentiation during the cell proliferation phase.
Collapse
Affiliation(s)
- Kazune Ezaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Noriko Takeda-Kamiya
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Kiminori Toyooka
- Technology Platform Division, Mass Spectrometry and Microscopy Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, Japan
| | - Takumi Higaki
- Faculty of Advanced Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, Japan
- International Research Organization for Advanced Science and Technology, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
7
|
Schneider M, Van Bel M, Inzé D, Baekelandt A. Leaf growth - complex regulation of a seemingly simple process. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1018-1051. [PMID: 38012838 DOI: 10.1111/tpj.16558] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 11/29/2023]
Abstract
Understanding the underlying mechanisms of plant development is crucial to successfully steer or manipulate plant growth in a targeted manner. Leaves, the primary sites of photosynthesis, are vital organs for many plant species, and leaf growth is controlled by a tight temporal and spatial regulatory network. In this review, we focus on the genetic networks governing leaf cell proliferation, one major contributor to final leaf size. First, we provide an overview of six regulator families of leaf growth in Arabidopsis: DA1, PEAPODs, KLU, GRFs, the SWI/SNF complexes, and DELLAs, together with their surrounding genetic networks. Next, we discuss their evolutionary conservation to highlight similarities and differences among species, because knowledge transfer between species remains a big challenge. Finally, we focus on the increase in knowledge of the interconnectedness between these genetic pathways, the function of the cell cycle machinery as their central convergence point, and other internal and environmental cues.
Collapse
Affiliation(s)
- Michele Schneider
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Michiel Van Bel
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Dirk Inzé
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| | - Alexandra Baekelandt
- Ghent University, Department of Plant Biotechnology and Bioinformatics, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052, Ghent, Belgium
| |
Collapse
|
8
|
Kumar S, Sharma N, Sopory SK, Sanan-Mishra N. miRNAs and genes as molecular regulators of rice grain morphology and yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108363. [PMID: 38281341 DOI: 10.1016/j.plaphy.2024.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/07/2023] [Accepted: 01/10/2024] [Indexed: 01/30/2024]
Abstract
Rice is one of the most consumed crops worldwide and the genetic and molecular basis of its grain yield attributes are well understood. Various studies have identified different yield-related parameters in rice that are regulated by the microRNAs (miRNAs). MiRNAs are endogenous small non-coding RNAs that silence gene expression during or after transcription. They control a variety of biological or genetic activities in plants including growth, development and response to stress. In this review, we have summarized the available information on the genetic control of panicle architecture and grain yield (number and morphology) in rice. The miRNA nodes that are associated with their regulation are also described while focussing on the central role of miR156-SPL node to highlight the co-regulation of two master regulators that determine the fate of panicle development. Since abiotic stresses are known to negatively affect yield, the impact of abiotic stress induced alterations on the levels of these miRNAs are also discussed to highlight the potential of miRNAs for regulating crop yields.
Collapse
Affiliation(s)
- Sudhir Kumar
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neha Sharma
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Sudhir K Sopory
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India.
| |
Collapse
|
9
|
Wang J, Tu Z, Wang M, Zhang Y, Hu Q, Li H. Genome-wide identification of GROWTH-REGULATING FACTORs in Liriodendron chinense and functional characterization of LcGRF2 in leaf size regulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108204. [PMID: 38043251 DOI: 10.1016/j.plaphy.2023.108204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/08/2023] [Accepted: 11/16/2023] [Indexed: 12/05/2023]
Abstract
GROWTH-REGULATING FACTORs (GRFs) play a pivotal role in the regulation of leaf size in plants and have been widely reported in plants. However, their specific functions in leaf size regulation in Liriodendron chinense remains unclear. Therefore, in this study, we identified GRF genes on a genome-wide scale in L. chinense to characterize the roles of LcGRFs in regulating leaf size. A total of nine LcGRF genes were identified, and these genes exhibited weak expression in mature leaves but strong expression in shoot apex. Notably, LcGRF2 exhibited the highest expression level in the shoot apex of L. chinense. Further RT-qPCR assay revealed that the expression level of LcGRF2 gradually decreased along with the leaf development process, and also displayed a gradient along the leaf proximo-distal and medio-lateral axes. Furthermore, overexpression of LcGRF2 in Arabidopsis thaliana resulted in increased leaf size, and significantly up-regulated the expression of genes involved in cell division like AtCYCD3;1, AtKNOLLE, and AtCYCB1;1, indicating that LcGRF2 may influence leaf size by promoting cell proliferation. This work contributes to a better understanding of the roles and molecular mechanisms of LcGRFs in the regulation of leaf size in L. chinense.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Zhonghua Tu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Minxin Wang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Qinghua Hu
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Huogen Li
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Lv Z, Zhao W, Kong S, Li L, Lin S. Overview of molecular mechanisms of plant leaf development: a systematic review. FRONTIERS IN PLANT SCIENCE 2023; 14:1293424. [PMID: 38146273 PMCID: PMC10749370 DOI: 10.3389/fpls.2023.1293424] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/22/2023] [Indexed: 12/27/2023]
Abstract
Leaf growth initiates in the peripheral region of the meristem at the apex of the stem, eventually forming flat structures. Leaves are pivotal organs in plants, serving as the primary sites for photosynthesis, respiration, and transpiration. Their development is intricately governed by complex regulatory networks. Leaf development encompasses five processes: the leaf primordium initiation, the leaf polarity establishment, leaf size expansion, shaping of leaf, and leaf senescence. The leaf primordia starts from the side of the growth cone at the apex of the stem. Under the precise regulation of a series of genes, the leaf primordia establishes adaxial-abaxial axes, proximal-distal axes and medio-lateral axes polarity, guides the primordia cells to divide and differentiate in a specific direction, and finally develops into leaves of a certain shape and size. Leaf senescence is a kind of programmed cell death that occurs in plants, and as it is the last stage of leaf development. Each of these processes is meticulously coordinated through the intricate interplay among transcriptional regulatory factors, microRNAs, and plant hormones. This review is dedicated to examining the regulatory influences of major regulatory factors and plant hormones on these five developmental aspects of leaves.
Collapse
Affiliation(s)
- Zhuo Lv
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Wanqi Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuxin Kong
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, China
- College of Life Science, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
11
|
Juneja S, Saini R, Mukit A, Kumar S. Drought priming modulates ABF, GRFs, related microRNAs and induce metabolic adjustment during heat stress in chickpea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108007. [PMID: 37714028 DOI: 10.1016/j.plaphy.2023.108007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023]
Abstract
Drought and high temperature stress may occur concomitantly or individually in succession causing cellular dysfunctions. Abscisic acid (ABA) is a key stress regulator, and its responsive genes are controlled by ABRE (Abscisic acid Responsive Element)-binding factors (ABFs)and G-Box Regulatory factors (GRFs). Here, we identify ABFs, GRFs and targeting miRNAs in desi and kabuli chickpea. To validate their role after drought priming and subsequent high temperature stress, two contrasting chickpea varieties (PBG1 and PBG5) were primed and exposed to 32 °C, 35 °C and 38 °C for 12, 6 and 2 h respectively and analyzed for Physio-biochemical, expression of ABFs, GRFs and MiRNAs, and GC-MS based metabolite analysis. To ascertain the ABF-GRF protein-protein interactions, docking studies were carried out between the ABF3 and GRF14. Genome-wide analysis identified total 9 & 11 ABFs, and 11 GRFsin desi and kabuli respectively. Their gene structure, and motif composition were conserved in all subfamilies and only 10 and 12 genes have undergone duplication in both desi and kabuli chickpea respectively. These genes were differentially expressed in-silico. MiR172 and miR396 were identified to target ABFs and GRFs respectively. Protein-protein interaction (ABF3 and GRF14) might be successful only when the ABF3 was phosphorylated. Drought priming downregulated miR172 and miR396 and eventually upregulated targeting ABFs, and GRFs. Metabolite profiling (GC-MS) revealed the accumulation of 87 metabolites in Primed (P) and Non-Primed (NP) Chickpea plants. Tolerant cultivar (PBG5) responded better in all respects however both severity of stress and exposure are important factors and can produce broadly similar cellular response.
Collapse
Affiliation(s)
- Sumandeep Juneja
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Rashmi Saini
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Abdul Mukit
- Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India
| | - Sanjeev Kumar
- Centre for Biosciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda, 151401, India; Department of Botany, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, India.
| |
Collapse
|
12
|
Ferela A, Debernardi JM, Rosatti S, Liebsch D, Schommer C, Palatnik JF. Interplay among ZF-HD and GRF transcription factors during Arabidopsis leaf development. PLANT PHYSIOLOGY 2023; 191:1789-1802. [PMID: 36652435 PMCID: PMC10022616 DOI: 10.1093/plphys/kiad009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The growth-regulating factor (GRF) family of transcriptional factors are involved in the control of leaf size and senescence, inflorescence and root growth, grain size, and plant regeneration. However, there is limited information about the genes regulated by these transcriptional factors, which are in turn responsible for their functions. Using a meta-analysis approach, we identified genes encoding Arabidopsis (Arabidopsis thaliana) zinc-finger homeodomain (ZF-HD) transcriptional factors, as potential targets of the GRFs. We further showed that GRF3 binds to the promoter of one of the members of the ZF-HD family, HOMEOBOX PROTEIN 33 (HB33), and activates its transcription. Increased levels of HB33 led to different modifications in leaf cell number and size that were dependent on its expression levels. Furthermore, we found that expression of HB33 for an extended period during leaf development increased leaf longevity. To cope with the functional redundancy among ZF-HD family members, we generated a dominant repressor version of HB33, HB33-SRDX. Expression of HB33-SRDX from HB33 regulatory regions was seedling-lethal, revealing the importance of the ZF-HD family in plant development. Misexpression of HB33-SRDX in early leaf development caused a reduction in both cell size and number. Interestingly, the loss-of-function of HB33 in lines carrying a GRF3 allele insensitive to miR396 reverted the delay in leaf senescence characteristic of these plants. Our results revealed functions for ZF-HDs in leaf development and linked them to the GRF pathway.
Collapse
Affiliation(s)
- Antonella Ferela
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Juan Manuel Debernardi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Santiago Rosatti
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Daniela Liebsch
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Carla Schommer
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | | |
Collapse
|
13
|
Liu Y, Guo P, Wang J, Xu ZY. Growth-regulating factors: conserved and divergent roles in plant growth and development and potential value for crop improvement. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1122-1145. [PMID: 36582168 DOI: 10.1111/tpj.16090] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/13/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
High yield and stress resistance are the major prerequisites for successful crop cultivation, and can be achieved by modifying plant architecture. Evolutionarily conserved growth-regulating factors (GRFs) control the growth of different tissues and organs of plants. Here, we provide a systematic overview of the expression patterns of GRF genes and the structural features of GRF proteins in different plant species. Moreover, we illustrate the conserved and divergent roles of GRFs, microRNA396 (miR396), and GRF-interacting factors (GIFs) in leaf, root, and flower development. We also describe the molecular networks involving the miR396-GRF-GIF module, and illustrate how this module coordinates with different signaling molecules and transcriptional regulators to control development of different plant species. GRFs promote leaf growth, accelerate grain filling, and increase grain size and weight. We also provide some molecular insight into how coordination between GRFs and other signaling modules enhances crop productivity; for instance, how the GRF-DELLA interaction confers yield-enhancing dwarfism while increasing grain yield. Finally, we discuss how the GRF-GIF chimera substantially improves plant transformation efficiency by accelerating shoot formation. Overall, we systematically review the conserved and divergent roles of GRFs and the miR396-GRF-GIF module in growth regulation, and also provide insights into how GRFs can be utilized to improve the productivity and nutrient content of crop plants.
Collapse
Affiliation(s)
- Yutong Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Peng Guo
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Jie Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| | - Zheng-Yi Xu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
14
|
Ma C, Dai X, He G, Wu Y, Yang Y, Zhang S, Lou Y, Ming F. PeGRF6-PeGIF1 complex regulates cell proliferation in the leaf of Phalaenopsis equestris. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:683-694. [PMID: 36801773 DOI: 10.1016/j.plaphy.2023.02.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Phalaenopsis equestris is an ornamental plant with very large leaves. In this study, we identified genes related to the regulation of leaf development in Phalaenopsis and explored their mechanism of action. Sequence alignment and phylogenetic analyses revealed that PeGRF6 in the PeGRF family of P. equestris has similarities with the Arabidopsis genes AtGRF1 and AtGRF2, which are known to be involved in the regulation of leaf development. Among the PeGRFs, PeGRF6 was continuously and stably expressed at various stages of leaf development. The functions of PeGRF6 and of its complex formed with PeGIF1 in leaf development were verified by virus-induced gene silencing (VIGS) technology. The results show that the PeGRF6-PeGIF1 complex forms in the nucleus and positively regulates leaf cell proliferation via influencing cell size. Interestingly, VIGS suppression of PeGRF6 resulted in anthocyanin accumulation in Phalaenopsis leaves. Analyses of the regulatory mechanism of the miR396-PeGRF6 model based on the P. equestris small RNA library constructed here suggested that PeGRF6 transcripts are cleaved by Peq-miR396. These results show that, compared with PeGRF6 or PeGIF1 alone, the PeGRF6-PeGIF1 complex plays a more important role in the leaf development of Phalaenopsis, possibly by regulating the expression of cell cycle-related genes.
Collapse
Affiliation(s)
- Chenghao Ma
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xinyue Dai
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guoren He
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - YiDing Wu
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yi Yang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Suyi Zhang
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - YuXia Lou
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | - Feng Ming
- Development Centre of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
15
|
Ahmad S, Lu C, Gao J, Wei Y, Xie Q, Jin J, Zhu G, Yang F. The Integrated mRNA and miRNA Approach Reveals Potential Regulators of Flowering Time in Arundina graminifolia. Int J Mol Sci 2023; 24:ijms24021699. [PMID: 36675213 PMCID: PMC9865619 DOI: 10.3390/ijms24021699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Orchids are among the most precious flowers in the world. Regulation of flowering time is one of the most important targets to enhance their ornamental value. The beauty of Arundina graminifolia is its year-round flowering, although the molecular mechanism of this flowering ability remains masked. Therefore, we performed a comprehensive assessment to integrate transcriptome and miRNA sequencing to disentangle the genetic regulation of flowering in this valuable species. Clustering analyses provided a set of molecular regulators of floral transition and floral morphogenesis. We mined candidate floral homeotic genes, including FCA, FPA, GI, FT, FLC, AP2, SOC1, SVP, GI, TCP, and CO, which were targeted by a variety of miRNAs. MiR11091 targeted the highest number of genes, including candidate regulators of phase transition and hormonal control. The conserved miR156-miR172 pathway of floral time regulation was evident in our data, and we found important targets of these miRNAs in the transcriptome. Moreover, endogenous hormone levels were determined to decipher the hormonal control of floral buds in A. graminifolia. The qRT-PCR analysis of floral and hormonal integrators validated the transcriptome expression. Therefore, miRNA-mediated mining of candidate genes with hormonal regulation forms the basis for comprehending the complex regulatory network of perpetual flowering in precious orchids. The findings of this study can do a great deal to broaden the breeding programs for flowering time manipulation of orchids.
Collapse
Affiliation(s)
- Sagheer Ahmad
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Chuqiao Lu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jie Gao
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yonglu Wei
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Qi Xie
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Jianpeng Jin
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Genfa Zhu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510640, China
| | - Fengxi Yang
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou 510640, China
- Correspondence: ; Tel.: +86-020-8516-1014
| |
Collapse
|
16
|
Zhang Y, Xiao T, Yi F, Yu J. SimiR396d targets SiGRF1 to regulate drought tolerance and root growth in foxtail millet. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111492. [PMID: 36243168 DOI: 10.1016/j.plantsci.2022.111492] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 10/02/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
MicroRNAs play critical roles in growth, development and abiotic stress responses. SimR396d is a miRNA whose expression level is much higher in foxtail millet roots than other tissues. Whether SimR396d is involved in foxtail millet root growth and response to abiotic stress is still unknown. Here, we demonstrate that SimiR396d modulates both drought response and root growth in foxtail millet. The expression of SimiR396d is induced by PEG treatment. Overexpression of SimiR396d enhances drought tolerance and root length, while knockdown SimiR396d expression using target mimics of SimiR396d (MIM396) resulted in reduced drought tolerance and shortened root length. Furthermore, we identified and confirmed a plant-specific transcription factor, growth-regulating factor 1 (SiGRF1), as a direct target of SimiR396d. Overexpression of SiGRF1 in foxtail millet resulted in suppressed root growth and reduced sensitivity to drought stress. Moreover, ethylene signaling is necessary for SimiR396d and SiGRF1 to participate in the regulation of plant root growth. These results revealed a pivotal role of SimiR396d in drought tolerance and root growth in foxtail millet. SimiR396d-SiGRF1 regulatory module provides a strategy to improve drought-stress resistance of crop.
Collapse
Affiliation(s)
- Yifan Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Tong Xiao
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fei Yi
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China; State Key Laboratory of Plant Physiology and Biochemistry, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
17
|
Genome-wide identification of GRF gene family and their contribution to abiotic stress response in pitaya (Hylocereus polyrhizus). Int J Biol Macromol 2022; 223:618-635. [PMID: 36356872 DOI: 10.1016/j.ijbiomac.2022.10.284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/09/2022]
Abstract
Growth-regulating factors (GRFs) are plant-specific transcription factors identified in many land plants. Recently, their indispensable roles in stress response are highlighted. In present work, 11 HpGRFs were cloned in pitaya. Segmental duplication is considered essential for the expansion of HpGRFs. A phylogenetic tree suggested that GRFs could be divided into eight categories, among which G-I was a Caryophyllales-specific one. The categorization was further evidenced by differences in the gene structure, collinearity, protein domain of HpGRFs. Five miR396 hairpins giving rise to two types of matured miR396s were identified in pitaya via sRNA-Seq in combination with bioinformatic analysis. Parallel analysis of RNA ends proved that HpGRFs except HpGRF5 were degraded by miR396-directed cleavages at the regions which code the conserved WRC motifs of HpGRFs. Multiple cis-regulatory elements were discovered in the promoters of HpGRFs. Among the elements, most are involved in stress and phytohormone response as well as plant growth, indicating a crosstalk between them. Expression analysis showed the responsive patterns of the miR396-GRF module under abiotic stresses. To conclude, our work systematically identified the miR396-targeted HpGRFs in pitaya and confirmed their involvement in stress response, providing novel insights into the comprehensive understanding of the stress resistance of pitaya.
Collapse
|
18
|
Kim Y, Takahashi S, Miyao M. Relationship between reduction in rice (Nipponbare) leaf blade size under elevated CO 2 and miR396- GRF module. PLANT SIGNALING & BEHAVIOR 2022; 17:2041280. [PMID: 35318879 PMCID: PMC8959511 DOI: 10.1080/15592324.2022.2041280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 05/27/2023]
Abstract
Elevated CO2 (eCO2; 1000 ppm) influences developing rice leaf formation, reducing leaf blade length and width as compared to rice grown under ambient CO2 (aCO2; 400 ppm). Since micro RNAs (miRNAs) are known to play multiple roles in plant development, we hypothesized that miRNAs might be involved in modulating leaf size under eCO2 conditions. To identify miRNAs responding to eCO2, we profiled miRNA levels in developing rice leaves (P4; plastochron number of the fourth-youngest leaf) under eCO2 using small RNA-seq. We detected 18 mature miRNA sequences for which expression levels varied more than two-fold between the eCO2 and aCO2 conditions. Among them, only miR396e and miR396f significantly differed between the two conditions. Additionally, the expression of growth-regulating factors (GRFs), potential target mRNA of miR396s, were repressed under the eCO2 condition. We used an antisense oligonucleotide approach to confirm that single-strand DNA corresponding to the miR396e sequence effectively downregulated GRF expression in developing leaves, reducing the leaf blade length, such as for rice grown under eCO2. These results suggest that the miR396-GRF module is crucially relevant to controlling rice leaf blade length in eCO2 environments.
Collapse
Affiliation(s)
- Yonghyun Kim
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Sumire Takahashi
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| | - Mitsue Miyao
- Graduate School of Agricultural Science, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
Yu Y, Zhang T, Sun J, Jing T, Shen Y, Zhang K, Chen Y, Ding D, Wang G, Yang J, Tang J, Shi Z, Wang D, Gou M. Evolutionary characterization of miR396s in Poaceae exemplified by their genetic effects in wheat and maize. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111465. [PMID: 36155239 DOI: 10.1016/j.plantsci.2022.111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
MiR396s play important roles in regulating plant growth and stress response, and great potential for crop yield promotion was anticipated. For more comprehensive and precise understanding of miR396s in Poaceae, we analyzed the phylogenetic linkage, gene expression, and chromosomal distribution of miR396s in this study. Although the mature miR396s' sequences were mostly conserved, differential expression patterns and chromosomal distribution were found among Poaceae species including the major cereal crops rice, wheat, and maize. Consistently, in comparison with rice, wheat and maize plants transformed with the target mimicry construct of miR396 (MIM396) exhibited differential effects on grain size and disease resistance. While the TaMIM396 plants showed increased grain size, panicle length and sensitivity to B. graminis, the ZmMIM396 plants didn't show obvious changes in grain size and disease resistance. In Addition, several GROWTH-REGULATING FACTOR (GRF) genes in wheat and maize were repressed by miR396s, which could be reversed by MIM396, confirming the conserved regulatory roles of miR396 on GRFs. While providing new solution to enhance grain yield in wheat and revealing potential regulatory variations of miR396s in controlling grain size and disease resistance in different crops, this study gives clues to further explore miR396s' functions in other Poaceae species.
Collapse
Affiliation(s)
- Yanwen Yu
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Tongxiang Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingfan Sun
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Teng Jing
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanjie Shen
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kunpu Zhang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Yan Chen
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dong Ding
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Guoying Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianping Yang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China; The Shennong Laboratory, Zhengzhou, Henan 450002, China
| | - Zhenying Shi
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Daowen Wang
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| | - Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
20
|
Ecotype-specific blockage of tasiARF production by two different RNA viruses in Arabidopsis. PLoS One 2022; 17:e0275588. [PMID: 36197942 PMCID: PMC9534422 DOI: 10.1371/journal.pone.0275588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis thaliana is one of the most studied model organisms of plant biology with hundreds of geographical variants called ecotypes. One might expect that this enormous genetic variety could result in differential response to pathogens. Indeed, we observed previously that the Bur ecotype develops much more severe symptoms (upward curling leaves and wavy leaf margins) upon infection with two positive-strand RNA viruses of different families (turnip vein-clearing virus, TVCV, and turnip mosaic virus, TuMV). To find the genes potentially responsible for the ecotype-specific response, we performed a differential expression analysis of the mRNA and sRNA pools of TVCV and TuMV-infected Bur and Col plants along with the corresponding mock controls. We focused on the genes and sRNAs that showed an induced or reduced expression selectively in the Bur virus samples in both virus series. We found that the two ecotypes respond to the viral infection differently, yet both viruses selectively block the production of the TAS3-derived small RNA specimen called tasiARF only in the virus-infected Bur plants. The tasiARF normally forms a gradient through the adaxial and abaxial parts of the leaf (being more abundant in the adaxial part) and post-transcriptionally regulates ARF4, a major leaf polarity determinant in plants. The lack of tasiARF-mediated silencing could lead to an ectopically expressed ARF4 in the adaxial part of the leaf where the misregulation of auxin-dependent signaling would result in an irregular growth of the leaf blade manifesting as upward curling leaf and wavy leaf margin. QTL mapping using Recombinant Inbred Lines (RILs) suggests that the observed symptoms are the result of a multigenic interaction that allows the symptoms to develop only in the Bur ecotype. The particular nature of genetic differences leading to the ecotype-specific symptoms remains obscure and needs further study.
Collapse
|
21
|
Guo L, Shen J, Zhang C, Guo Q, Liang H, Hou X. Characterization and bioinformatics analysis of ptc-miR396g-5p in response to drought stress of Paeonia ostii. Noncoding RNA Res 2022; 7:150-158. [PMID: 35799773 PMCID: PMC9240715 DOI: 10.1016/j.ncrna.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 06/09/2022] [Accepted: 06/17/2022] [Indexed: 10/31/2022] Open
Abstract
Drought is one of the main abiotic stress factors affecting yield of Paeonia ostii. In this study, we conducted bioinformatics and differential expression analyses of P. ostii ‘Feng Dan’ ptc-miR396g-5p in leaf samples under different drought stress. ptc-miR396g-5p belongs to the miR396 family. Among the 271 plant species registered in the miRBase database, at least one miR396 member was found in 48 Angiospermae species, 3 in Gymnospermae species, and 1 in Pteridophy. Mature sequence alignment showed that P. ostii ‘Feng Dan’ ptc-miR396g-5p had high sequence similarity with miR396 from other species. Secondary structure prediction showed that the precursor sequence of ‘Feng Dan’ ptc-miR396g-5p could form a stable stem-loop structure, and the mature sequence was located on the 5′ arm of the secondary structure. Phylogenetic tree analysis showed that ‘Feng Dan’ was closely related to 20 species such as Glycine max, Medicago truncatula, Populus trichocarpa, Citrus sinensis, Vitis vinifera, and Theobroma cacao. The predicted target gene of the ‘Feng Dan’ ptc-miR396g-5p encodes a Signal Transducer and Activator of Transcription (STAT) transcription factor. The negative correlation of expression between the miRNA and its target gene was confirmed by qRT-PCR. Our data indicate that ‘Feng Dan’ ptc-miR396g-5p′s expression decreases under drought, leading to an expression increase of the STAT transcription factor.
Collapse
|
22
|
Sun Y, Li H, Wu J, Zhang K, Tang W, Cong L, Xie H, Wang ZY, Chai M. Genome-wide identification of growth-regulating factor transcription factor family related to leaf and stem development in alfalfa. FRONTIERS IN PLANT SCIENCE 2022; 13:964604. [PMID: 36082290 PMCID: PMC9445573 DOI: 10.3389/fpls.2022.964604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Growth-regulating factors (GRFs) play crucial roles in plant growth and stress response. To date, there have been no reports of the analysis and identification of the GRF transcription factor family in alfalfa. In this study, we identified 27 GRF family members from alfalfa (Medicago sativa L.) "Xinjiang Daye", and analyzed their physicochemical properties. Based on phylogenetic analysis, these MsGRFs were divided into five subgroups, each with a similar gene structure and conserved motifs. MsGRFs genes are distributed on 23 chromosomes, and all contain QLQ and WRC conserved domains. The results of the collinearity analysis showed that all MsGRFs are involved in gene duplication, including multiple whole-genome duplication or segmental duplication and a set of tandem duplication, indicating that large-scale duplication is important for the expansion of the GRF family in alfalfa. Several hormone-related and stress-related cis-acting elements have been found in the promoter regions of MsGRFs. Some MsGRFs were highly expressed in young leaves and stems, and their expression decreased during development. In addition, the leaf size of different varieties was found to vary, and MsGRF1 to 4, MsGRF18 to 20, and MsGRF22 to 23 were differentially expressed in large and small leaf alfalfa varieties, suggesting that they are critical in the regulation of leaf size. The results of this study can benefit further exploration of the regulatory functions of MsGRFs in growth and development, and can identify candidate genes that control leaf size development.
Collapse
|
23
|
Ma X, Tang K, Tang Z, Dong A, Xiao H, Meng Y, Wang P. An organ-specific transcriptomic atlas of the medicinal plant Bletilla striata: Protein-coding genes, microRNAs, and regulatory networks. THE PLANT GENOME 2022; 15:e20210. [PMID: 35475547 DOI: 10.1002/tpg2.20210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
As one of the important species belonging to the Bletilla genus of Orchidaceae, Bletilla striata (Thunb.) Rchb. f., possesses both ornamental and medicinal values. Its dried tubers are used as a traditional Chinese medicine, and several secondary metabolites have been indicated to be the active ingredients. However, the molecular mechanisms related to the regulation of secondary metabolism have not been characterized in B. striata. In this study, integrated analysis of RNA sequencing (RNA-seq), small RNA sequencing (sRNA-seq), and degradome sequencing (degradome-seq) data from three organs (leaf, root, and tuber) of B. striata provided us with a comprehensive view of the microRNA (miRNA)-mediated regulatory network. Firstly, based on the RNA-seq data, the organ-specific expression patterns of the protein-coding genes, especially for those related to secondary metabolism, were investigated. Secondly, 342 conserved miRNA candidates were identified from B. striata. These miRNAs were assigned to 88 families, some of which were selected for expression pattern analysis. Additionally, 31 hairpin-structured precursors encoding 23 novel miRNAs were uncovered from the transcriptome assembly. Thirdly, based on the degradome signatures, 1,142 validated miRNA-target pairs (involving 167 conserved miRNAs and six novel miRNAs and 51 target genes) were included in the regulatory network. Organ-specific expression level comparison between the miRNAs and their targets revealed some interesting miRNA-target pairs. Fourthly, some valuable subnetworks were extracted for further functional studies. Additionally, some regulatory pathways were indicated to be monocot specific. Summarily, our results lay a solid basis for in-depth studies on the regulatory mechanisms underlying the production of the medicinal ingredients in B. striata.
Collapse
Affiliation(s)
- Xiaoxia Ma
- College of Pharmaceutical Science, Zhejiang Univ. of Technology, Hangzhou, 310014, China
- School of Pharmacy, Hangzhou Normal Univ., Hangzhou, 311121, China
| | - Kehua Tang
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou Univ., Zhangjiajie, 427000, China
| | - Zhonghai Tang
- College of Food Science and Technology, Hunan Agricultural Univ., Changsha, 410128, China
| | - Aiwen Dong
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou Univ., Zhangjiajie, 427000, China
| | - Hang Xiao
- Dep. of Food Science, Univ. of Massachusetts, Amherst, MA, 01003, USA
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal Univ., Hangzhou, 311121, China
| | - Pu Wang
- College of Pharmaceutical Science, Zhejiang Univ. of Technology, Hangzhou, 310014, China
| |
Collapse
|
24
|
Ma X, Zhao F, Zhou B. The Characters of Non-Coding RNAs and Their Biological Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2022; 23:ijms23084124. [PMID: 35456943 PMCID: PMC9032736 DOI: 10.3390/ijms23084124] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023] Open
Abstract
Plant growth and development are greatly affected by the environment. Many genes have been identified to be involved in regulating plant development and adaption of abiotic stress. Apart from protein-coding genes, more and more evidence indicates that non-coding RNAs (ncRNAs), including small RNAs and long ncRNAs (lncRNAs), can target plant developmental and stress-responsive mRNAs, regulatory genes, DNA regulatory regions, and proteins to regulate the transcription of various genes at the transcriptional, posttranscriptional, and epigenetic level. Currently, the molecular regulatory mechanisms of sRNAs and lncRNAs controlling plant development and abiotic response are being deeply explored. In this review, we summarize the recent research progress of small RNAs and lncRNAs in plants, focusing on the signal factors, expression characters, targets functions, and interplay network of ncRNAs and their targets in plant development and abiotic stress responses. The complex molecular regulatory pathways among small RNAs, lncRNAs, and targets in plants are also discussed. Understanding molecular mechanisms and functional implications of ncRNAs in various abiotic stress responses and development will benefit us in regard to the use of ncRNAs as potential character-determining factors in molecular plant breeding.
Collapse
Affiliation(s)
- Xu Ma
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fei Zhao
- Horticulture Science and Engineering, Shandong Agricultural University, Taian 271018, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| | - Bo Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Northeast Forestry University, Ministry of Education, Harbin 150040, China;
- College of Life Science, Northeast Forestry University, Harbin 150040, China
- Correspondence: (F.Z.); (B.Z.); Tel.: +86-0538-8243-965 (F.Z.); +86-0451-8219-1738 (B.Z.)
| |
Collapse
|
25
|
Dong Q, Hu B, Zhang C. microRNAs and Their Roles in Plant Development. FRONTIERS IN PLANT SCIENCE 2022; 13:824240. [PMID: 35251094 PMCID: PMC8895298 DOI: 10.3389/fpls.2022.824240] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/27/2022] [Indexed: 05/26/2023]
Abstract
Small RNAs are short non-coding RNAs with a length ranging between 20 and 24 nucleotides. Of these, microRNAs (miRNAs) play a distinct role in plant development. miRNAs control target gene expression at the post-transcriptional level, either through direct cleavage or inhibition of translation. miRNAs participate in nearly all the developmental processes in plants, such as juvenile-to-adult transition, shoot apical meristem development, leaf morphogenesis, floral organ formation, and flowering time determination. This review summarizes the research progress in miRNA-mediated gene regulation and its role in plant development, to provide the basis for further in-depth exploration regarding the function of miRNAs and the elucidation of the molecular mechanism underlying the interaction of miRNAs and other pathways.
Collapse
Affiliation(s)
- Qingkun Dong
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Binbin Hu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cui Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Tu Z, Xia H, Yang L, Zhai X, Shen Y, Li H. The Roles of microRNA-Long Non-coding RNA-mRNA Networks in the Regulation of Leaf and Flower Development in Liriodendron chinense. FRONTIERS IN PLANT SCIENCE 2022; 13:816875. [PMID: 35154228 PMCID: PMC8829146 DOI: 10.3389/fpls.2022.816875] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/04/2022] [Indexed: 05/27/2023]
Abstract
The leaf and the flower are vital plant organs owing to their roles in photosynthesis and reproduction. Long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and transcription factors (TFs) are very important to the development of these organs. Liriodendron chinense is a common ornamental tree species in southern China with an unusual leaf shape and tulip-like flowers. The genetic mechanisms underlying leaf and flower development in L. chinense and the miRNA-lncRNA-TF regulatory networks are poorly studied. Through the integration and analysis of different types of sequencing data, we identified the miRNA-lncRNA-TF regulatory networks that were related to leaf and flower development. These networks contained 105 miRNAs, 258 lncRNAs, 393 TFs, and 22 endogenous target mimics. Notably, lch-lnc7374-miR156h-SPL3 and lch-lnc7374-miR156j-SPL9 were potential regulators of stamen and pistil development in L. chinense, respectively. miRNA-lncRNA-mRNA regulatory networks were shown to impact anther development, male and female fertility, and petal color by regulating the biosynthesis of phenylpropanoid metabolites. Phenylpropanoid metabolite biosynthesis genes and TFs that were targeted by miRNAs and lncRNAs were differentially expressed in the leaf and flower. Moreover, RT-qPCR analysis confirmed 22 differentially expressed miRNAs, among which most of them showed obvious leaf or flower specificity; miR157a-SPL and miR160a-ARF module were verified by using RLM-RACE, and these two modules were related to leaf and flower development. These findings provide insight into the roles of miRNA-lncRNA-mRNA regulatory networks in organ development and function in L. chinense, and will facilitate further investigation into the regulatory mechanisms of leaf and flower development in L. chinense.
Collapse
Affiliation(s)
- Zhonghua Tu
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Hui Xia
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Lichun Yang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Xinyu Zhai
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yufang Shen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Huogen Li
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
27
|
Xing H, Li Y, Ren Y, Zhao Y, Wu X, Li HL. Genome-wide investigation of microRNAs and expression profiles during rhizome development in ginger (Zingiber officinale Roscoe). BMC Genomics 2022; 23:49. [PMID: 35021996 PMCID: PMC8756691 DOI: 10.1186/s12864-021-08273-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/20/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are endogenous, non-coding small functional RNAs that govern the post-transcriptional regulatory system of gene expression and control the growth and development of plants. Ginger is an herb that is well-known for its flavor and medicinal properties. The genes involved in ginger rhizome development and secondary metabolism have been discovered, but the genome-wide identification of miRNAs and their overall expression profiles and targets during ginger rhizome development are largely unknown. In this study, we used BGISEQ-500 technology to perform genome-wide identification of miRNAs from the leaf, stem, root, flower, and rhizome of ginger during three development stages. RESULTS In total, 104 novel miRNAs and 160 conserved miRNAs in 28 miRNA families were identified. A total of 181 putative target genes for novel miRNAs and 2772 putative target genes for conserved miRNAs were predicted. Transcriptional factors were the most abundant target genes of miRNAs, and 17, 9, 8, 4, 13, 8, 3 conserved miRNAs and 5, 7, 4, 5, 5, 15, 9 novel miRNAs showed significant tissue-specific expression patterns in leaf, stem, root, flower, and rhizome. Additionally, 53 miRNAs were regarded as rhizome development-associated miRNAs, which mostly participate in metabolism, signal transduction, transport, and catabolism, suggesting that these miRNAs and their target genes play important roles in the rhizome development of ginger. Twelve candidate miRNA target genes were selected, and then, their credibility was confirmed using qRT-PCR. As the result of qRT-PCR analysis, the expression of 12 candidate target genes showed an opposite pattern after comparison with their miRNAs. The rhizome development system of ginger was observed to be governed by miR156, miR319, miR171a_2, miR164, and miR529, which modulated the expression of the SPL, MYB, GRF, SCL, and NAC genes, respectively. CONCLUSION This is a deep genome-wide investigation of miRNA and identification of miRNAs involved in rhizome development in ginger. We identified 52 rhizome-related miRNAs and 392 target genes, and this provides an important basis for understanding the molecular mechanisms of the miRNA target genes that mediate rhizome development in ginger.
Collapse
Affiliation(s)
- Haitao Xing
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Yuan Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| | - Yun Ren
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Ying Zhao
- Research Center for Terrestrial Biodiversity of the South China Sea, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, Hainan, China
| | - Xiaoli Wu
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China
| | - Hong-Lei Li
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
- Chongqing Key Laboratory of Economic Plant Biotechnology, Chongqing University of Arts and Sciences, Chongqing, 402168, China.
| |
Collapse
|
28
|
Zhang B, Tong Y, Luo K, Zhai Z, Liu X, Shi Z, Zhang D, Li D. Identification of GROWTH-REGULATING FACTOR transcription factors in lettuce (Lactuca sativa) genome and functional analysis of LsaGRF5 in leaf size regulation. BMC PLANT BIOLOGY 2021; 21:485. [PMID: 34688264 PMCID: PMC8539887 DOI: 10.1186/s12870-021-03261-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 10/06/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND GROWTH-REGULATING FACTORs (GRFs), a type of plant-specific transcription factors, play important roles in regulating plant growth and development. Although GRF gene family has been identified in various plant species, a genome-wide analysis of this family in lettuce (Lactuca sativa L.) has not been reported yet. RESULTS Here we identified 15 GRF genes in lettuce and performed comprehensive analysis of them, including chromosomal locations, gene structures, and conserved motifs. Through phylogenic analysis, we divided LsaGRFs into six groups. Transactivation assays and subcellular localization of LsaGRF5 showed that this protein is likely to act as a transcriptional factor in the cell nucleus. Furthermore, transgenic lettuce lines overexpressing LsaGRF5 exhibited larger leaves, while smaller leaves were observed in LsaMIR396a overexpression lines, in which LsaGRF5 was down-regulated. CONCLUSIONS These results in lettuce provide insight into the molecular mechanism of GRF gene family in regulating leaf growth and development and foundational information for genetic improvement of the lettuce variations specialized in leaf character.
Collapse
Affiliation(s)
- Bin Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, PR China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, 100097, PR China
| | - Yanan Tong
- Biotechnology Research Center, China Three Gorges University, Yichang, 443002, PR China
| | - Kangsheng Luo
- Biotechnology Research Center, China Three Gorges University, Yichang, 443002, PR China
| | - Zhaodong Zhai
- College of Life Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Xue Liu
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, PR China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, PR China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, 100097, PR China
| | - Zhenying Shi
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, PR China
| | - Dechun Zhang
- Biotechnology Research Center, China Three Gorges University, Yichang, 443002, PR China.
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, PR China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, PR China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs of the P. R. China, Beijing, 100097, PR China.
| |
Collapse
|
29
|
Wang J, Zhou H, Zhao Y, Jiang C, Li J, Tang F, Liu Y, Zhao S, Hu J, Song X, Lu MZ. PagGRF12a interacts with PagGIF1b to regulate secondary xylem development through modulating PagXND1a expression in Populus alba × P. glandulosa. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1683-1694. [PMID: 33913591 DOI: 10.1111/jipb.13102] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
Growth-regulating factors (GRFs) are important regulators of plant development and growth, but their possible roles in xylem development in woody plants remain unclear. Here, we report that Populus alba × Papulus glandulosa PagGRF12a negatively regulates xylem development in poplar. PagGRF12a is expressed in vascular tissues. Compared to non-transgenic control plants, transgenic poplar plants overexpressing PagGRF12a exhibited reduced xylem width and plants with repressed expression of PagGRF12a exhibited increased xylem width. Xylem NAC domain 1 (XND1) encodes a NAC domain transcription factor that regulates xylem development and transcriptional analyses revealed that PagXND1a is highly upregulated in PagGRF12a-overexpressing plants and downregulated in PagGRF12a-suppressed plants, indicating that PagGRF12a may regulate xylem development through PagXND1a. Transient transcriptional assays and chromatin immunoprecipitation-polymerase chain reaction assays confirmed that PagGRF12a directly upregulates PagXND1a. In addition, PagGRF12a interacts with the GRF-Interacting Factor (GIF) PagGIF1b, and this interaction enhances the effects of PagGRF12a on PagXND1a. Our results indicate that PagGRF12a inhibits xylem development by upregulating the expression of PagXND1a.
Collapse
Affiliation(s)
- Jinnan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Houjun Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yanqiu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Cheng Jiang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
| | - Jihong Li
- Key Laboratory of Agricultural Ecology and Environment, College of Forestry, Shandong Agricultural University, Tai'an, 271018, China
| | - Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shutang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jianjun Hu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
30
|
Kumar S, Ruggles A, Logan S, Mazarakis A, Tyson T, Bates M, Grosse C, Reed D, Li Z, Grimwood J, Schmutz J, Saski C. Comparative Transcriptomics of Non-Embryogenic and Embryogenic Callus in Semi-Recalcitrant and Non-Recalcitrant Upland Cotton Lines. PLANTS 2021; 10:plants10091775. [PMID: 34579308 PMCID: PMC8472754 DOI: 10.3390/plants10091775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Somatic embryogenesis-mediated plant regeneration is essential for the genetic manipulation of agronomically important traits in upland cotton. Genotype specific recalcitrance to regeneration is a primary challenge in deploying genome editing and incorporating useful transgenes into elite cotton germplasm. In this study, transcriptomes of a semi-recalcitrant cotton (Gossypium hirsutum L.) genotype ‘Coker312’ were analyzed at two critical stages of somatic embryogenesis that include non-embryogenic callus (NEC) and embryogenic callus (EC) cells, and the results were compared to a non-recalcitrant genotype ‘Jin668’. We discovered 305 differentially expressed genes in Coker312, whereas, in Jin668, about 6-fold more genes (2155) were differentially expressed. A total of 154 differentially expressed genes were common between the two genotypes. Gene enrichment analysis of the upregulated genes identified functional categories, such as lipid transport, embryo development, regulation of transcription, sugar transport, and vitamin biosynthesis, among others. In Coker312 EC cells, five major transcription factors were highly upregulated: LEAFY COTYLEDON 1 (LEC1), WUS-related homeobox 5 (WOX5), ABSCISIC ACID INSENSITIVE3 (ABI3), FUSCA3 (FUS3), and WRKY2. In Jin668, LEC1, BABY BOOM (BBM), FUS3, and AGAMOUS-LIKE15 (AGL15) were highly expressed in EC cells. We also found that gene expression of these embryogenesis genes was typically higher in Jin668 when compared to Coker312. We conclude that significant differences in the expression of the above genes between Coker312 and Jin668 may be a critical factor affecting the regenerative ability of these genotypes.
Collapse
Affiliation(s)
- Sonika Kumar
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
| | - Ashleigh Ruggles
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Sam Logan
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Alora Mazarakis
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Thomas Tyson
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Matthew Bates
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Clayton Grosse
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - David Reed
- Techshot Inc., Greenville, IN 47124, USA; (A.R.); (S.L.); (A.M.); (T.T.); (M.B.); (C.G.); (D.R.)
| | - Zhigang Li
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (J.G.); (J.S.)
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; (J.G.); (J.S.)
| | - Christopher Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.K.); (Z.L.)
- Correspondence: ; Tel.: +1-864-656-6929
| |
Collapse
|
31
|
|
32
|
Wang H, Kong F, Zhou C. From genes to networks: The genetic control of leaf development. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1181-1196. [PMID: 33615731 DOI: 10.1111/jipb.13084] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/16/2021] [Indexed: 05/15/2023]
Abstract
Substantial diversity exists for both the size and shape of the leaf, the main photosynthetic organ of flowering plants. The two major forms of leaf are simple leaves, in which the leaf blade is undivided, and compound leaves, which comprise several leaflets. Leaves form at the shoot apical meristem from a group of undifferentiated cells, which first establish polarity, then grow and differentiate. Each of these processes is controlled by a combination of transcriptional regulators, microRNAs and phytohormones. The present review documents recent advances in our understanding of how these various factors modulate the development of both simple leaves (focusing mainly on the model plant Arabidopsis thaliana) and compound leaves (focusing mainly on the model legume species Medicago truncatula).
Collapse
Affiliation(s)
- Hongfeng Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chuanen Zhou
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266101, China
| |
Collapse
|
33
|
Karamat U, Sun X, Li N, Zhao J. Genetic regulators of leaf size in Brassica crops. HORTICULTURE RESEARCH 2021; 8:91. [PMID: 33931619 PMCID: PMC8087820 DOI: 10.1038/s41438-021-00526-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/03/2021] [Accepted: 02/24/2021] [Indexed: 05/06/2023]
Abstract
Leaf size influences plant development and biomass and is also an important agricultural trait in Brassica crops, in which leaves are the main organ produced for consumption. Leaf size is determined by the coordinated regulation of cell proliferation and cell expansion during leaf development, and these processes are strictly controlled by various integrated signals from the intrinsic regulatory network and the growth environment. Understanding the molecular mechanism of leaf size control is a prerequisite for molecular breeding for crop improvement purposes. Although research on leaf size control is just beginning in Brassica, recent studies have identified several genes and QTLs that are important in leaf size regulation. These genes have been proposed to influence leaf growth through different pathways and mechanisms, including phytohormone biosynthesis and signaling, transcription regulation, small RNAs, and others. In this review, we summarize the current findings regarding the genetic regulators of leaf size in Brassica and discuss future prospects for this research.
Collapse
Affiliation(s)
- Umer Karamat
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Xiaoxue Sun
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China
| | - Na Li
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China.
| | - Jianjun Zhao
- State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, College of Horticulture, Hebei Agricultural University, 071000, Baoding, China.
| |
Collapse
|
34
|
Zhang J, Li J, Ni Y, Jiang Y, Jiao Z, Li H, Wang T, Zhang P, Han M, Li L, Liu H, Li Q, Niu J. Key wheat GRF genes constraining wheat tillering of mutant dmc. PeerJ 2021; 9:e11235. [PMID: 33889451 PMCID: PMC8038642 DOI: 10.7717/peerj.11235] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/17/2021] [Indexed: 11/29/2022] Open
Abstract
Tillering is a key agronomy trait for wheat (Triticum aestivum L.) production. Previously, we have reported a dwarf-monoculm wheat mutant (dmc) obtained from cultivar Guomai 301 (wild type, WT), and found growth regulating factors (GRFs) playing important roles in regulating wheat tillering. This study is to systematically investigate the roles of all the wheat GRFs (T. aestivum GRFs, TaGRFs) in regulating tillering, and screen out the key regulators. A total of 30 TaGRFs were identified and their physicochemical properties, gene structures, conserved domains, phylogenetic relationships and tissue expression profiles were analyzed. The expression levels of all the TaGRFs were significantly lower in dmc than those in WT at early tillering stage, and the abnormal expressions of TaGRF2-7(A, B, D), TaGRF5-7D, TaGRF10-6(A, B, D) and TaGRF11-2A were major causes constraining the tillering of dmc. The transcriptions of TaGRFs were significantly affected by exogenous indole acetic acid (IAA) and gibberellin acid (GA3) applications, which suggested that TaGRFs as well as IAA, GA signaling were involved in controlling wheat tillering. This study provided valuable clues for functional characterization of GRF genes in wheat.
Collapse
Affiliation(s)
- Jing Zhang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Junchang Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Yongjing Ni
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Yumei Jiang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Zhixin Jiao
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Huijuan Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Ting Wang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Peipei Zhang
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Mengyao Han
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Lei Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Hongjie Liu
- Shangqiu Academy of Agricultural and Forestry Sciences, Shangqiu, Henan, China
| | - Qiaoyun Li
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| | - Jishan Niu
- Henan Agricultural University, National Centre of Engineering and Technological Research for Wheat/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou, Henan, China
| |
Collapse
|
35
|
Beltramino M, Debernardi JM, Ferela A, Palatnik JF. ARF2 represses expression of plant GRF transcription factors in a complementary mechanism to microRNA miR396. PLANT PHYSIOLOGY 2021; 185:1798-1812. [PMID: 33580700 PMCID: PMC8133599 DOI: 10.1093/plphys/kiab014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Members of the GROWTH REGULATING FACTOR (GRF) family of transcription factors play key roles in the promotion of plant growth and development. Many GRFs are post-transcriptionally repressed by microRNA (miRNA) miR396, an evolutionarily conserved small RNA, which restricts their expression to proliferative tissue. We performed a comprehensive analysis of the GRF family in eudicot plants and found that in many species all the GRFs have a miR396-binding site. Yet, we also identified GRFs with mutations in the sequence recognized by miR396, suggesting a partial or complete release of their post-transcriptional repression. Interestingly, Brassicaceae species share a group of GRFs that lack miR396 regulation, including Arabidopsis GRF5 and GRF6. We show that instead of miR396-mediated post-transcriptional regulation, the spatiotemporal control of GRF5 is achieved through evolutionarily conserved promoter sequences, and that AUXIN RESPONSE FACTOR 2 (ARF2) binds to such conserved sequences to repress GRF5 expression. Furthermore, we demonstrate that the unchecked expression of GRF5 in arf2 mutants is responsible for the increased cell number of arf2 leaves. The results describe a switch in the repression mechanisms that control the expression of GRFs and mechanistically link the control of leaf growth by miR396, GRFs, and ARF2 transcription factors.
Collapse
Affiliation(s)
- Matías Beltramino
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Juan Manuel Debernardi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Antonella Ferela
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
36
|
Kaur G, Vikal Y, Kaur L, Kalia A, Mittal A, Kaur D, Yadav I. Elucidating the morpho-physiological adaptations and molecular responses under long-term waterlogging stress in maize through gene expression analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 304:110823. [PMID: 33568312 DOI: 10.1016/j.plantsci.2021.110823] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 05/25/2023]
Abstract
Waterlogging stress in maize is one of the emerging abiotic stresses in the current climate change scenario. To gain insights in transcriptional reprogramming during late hours of waterlogging stress under field conditions, we aimed to elucidate the transcriptional and anatomical changes in two contrasting maize inbreds viz. I110 (susceptible) and I172 (tolerant). Waterlogging stress reduced dry matter translocations from leaves and stems to ears, resulting in a lack of sink capacity and inadequate grain filling in I110, thus decreased the grain yield drastically. The development of aerenchyma cells within 48 h in I172 enabled hypoxia tolerance. The upregulation of alanine aminotransferase, ubiquitin activating enzyme E1, putative mitogen activated protein kinase and pyruvate kinase in I172 suggested that genes involved in protein degradation, signal transduction and carbon metabolism provided adaptive mechanisms during waterlogging. Overexpression of alcohol dehydrogenase, sucrose synthase, aspartate aminotransferase, NADP dependent malic enzyme and many miRNA targets in I110 indicated that more oxygen and energy consumption might have shortened plant survival during long-term waterlogging exposure. To the best of our knowledge, this is the first report of transcript profiling at late stage (24-96 h) of waterlogging stress under field conditions and provides new visions to understand the molecular basis of waterlogging tolerance in maize.
Collapse
Affiliation(s)
- Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India.
| | - Loveleen Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Anu Kalia
- Department of Nanoscience, Punjab Agricultural University, Ludhiana, India
| | - Amandeep Mittal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Dasmeet Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Inderjit Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| |
Collapse
|
37
|
Yu S, Wang JW. The Crosstalk between MicroRNAs and Gibberellin Signaling in Plants. PLANT & CELL PHYSIOLOGY 2020; 61:1880-1890. [PMID: 32845336 DOI: 10.1093/pcp/pcaa079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 06/05/2020] [Indexed: 05/14/2023]
Abstract
Gibberellin (GA) is an integral phytohormone that plays prominent roles in controlling seed germination, stem elongation, leaf development and floral induction. It has been shown that GA regulates these diverse biological processes mainly through overcoming the suppressive effects of the DELLA proteins, a family of nuclear repressors of GA response. MicroRNAs (miRNAs), which have been identified as master regulators of gene expression in eukaryotes, are also involved in a wide range of plant developmental events through the repression of their target genes. The pathways of GA biosynthesis and signaling, as well as the pathways of miRNA biogenesis and regulation, have been profoundly delineated in the past several decades. Growing evidence has shown that miRNAs and GAs are coordinated in regulating plant development, as several components in GA pathways are targeted by miRNAs, and GAs also regulate the expression of miRNAs or their target genes vice versa. Here, we review the recent advances in our understanding of the molecular connections between miRNAs and GA, with an emphasis on the two miRNAs, miR156 and miR159.
Collapse
Affiliation(s)
- Sha Yu
- Center for RNA research, Institute for Basic Science, Seoul 00826, South Korea
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
38
|
Hou G, Dong Y, Zhu F, Zhao Q, Li T, Dou D, Ma X, Wu L, Ku L, Chen Y. MicroRNA transcriptomic analysis of the sixth leaf of maize (Zea mays L.) revealed a regulatory mechanism of jointing stage heterosis. BMC PLANT BIOLOGY 2020; 20:541. [PMID: 33256592 PMCID: PMC7708177 DOI: 10.1186/s12870-020-02751-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 11/22/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND Zhengdan 958 (Zheng 58 × Chang 7-2), a commercial hybrid that is produced in a large area in China, is the result of the successful use of the heterotic pattern of Reid × Tang-SPT. The jointing stage of maize is the key period from vegetative to reproductive growth, which determines development at later stages and heterosis to a certain degree. MicroRNAs (miRNAs) play vital roles in the regulation of plant development, but how they function in the sixth leaf at the six-leaf (V6) stage to influence jointing stage heterosis is still unclear. RESULT Our objective was to study miRNAs in four hybrid combinations developed in accordance with the Reid × Tang-SPT pattern, Zhengdan 958, Anyu 5 (Ye 478 × Chang 7-2), Ye 478 × Huangzaosi, Zheng 58 × Huangzaosi, and their parental inbred lines to explore the mechanism related to heterosis. A total of 234 miRNAs were identified in the sixth leaf at the V6 stage, and 85 miRNAs were differentially expressed between the hybrid combinations and their parental inbred lines. Most of the differentially expressed miRNAs were non-additively expressed, which indicates that miRNAs may participate in heterosis at the jointing stage. miR164, miR1432 and miR528 families were repressed in the four hybrid combinations, and some miRNAs, such as miR156, miR399, and miR395 families, exhibited different expression trends in different hybrid combinations, which may result in varying effects on the heterosis regulatory mechanism. CONCLUSIONS The potential targets of the identified miRNAs are related to photosynthesis, the response to plant hormones, and nutrient use. Different hybrid combinations employ different mature miRNAs of the same miRNA family and exhibit different expression trends that may result in enhanced or repressed gene expression to regulate heterosis. Taken together, our results reveal a miRNA-mediated network that plays a key role in jointing stage heterosis via posttranscriptional regulation.
Collapse
Affiliation(s)
- Gege Hou
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yahui Dong
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Fangfang Zhu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Qiannan Zhao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Tianyi Li
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Dandan Dou
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Xingli Ma
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Liancheng Wu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lixia Ku
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China
| | - Yanhui Chen
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, #15 Longzi Lake University District, Zhengdong New District, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
39
|
Wang J, Zhou H, Zhao Y, Sun P, Tang F, Song X, Lu MZ. Characterization of poplar growth-regulating factors and analysis of their function in leaf size control. BMC PLANT BIOLOGY 2020; 20:509. [PMID: 33153427 PMCID: PMC7643314 DOI: 10.1186/s12870-020-02699-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/13/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND Growth-regulating factors (GRFs) are plant-specific transcription factors that control organ size. Nineteen GRF genes were identified in the Populus trichocarpa genome and one was reported to control leaf size mainly by regulating cell expansion. In this study, we further characterize the roles of the other poplar GRFs in leaf size control in a similar manner. RESULTS The 19 poplar GRF genes were clustered into six groups according to their phylogenetic relationship with Arabidopsis GRFs. Bioinformatic analysis, degradome, and transient transcription assays showed that 18 poplar GRFs were regulated by miR396, with GRF12b the only exception. The functions of PagGRF6b (Pag, Populus alba × P. glandulosa), PagGRF7a, PagGRF12a, and PagGRF12b, representing three different groups, were investigated. The results show that PagGRF6b may have no function on leaf size control, while PagGRF7a functions as a negative regulator of leaf size by regulating cell expansion. By contrast, PagGRF12a and PagGRF12b may function as positive regulators of leaf size control by regulating both cell proliferation and expansion, primarily cell proliferation. CONCLUSIONS The diversity of poplar GRFs in leaf size control may facilitate the specific, coordinated regulation of poplar leaf development through fine adjustment of cell proliferation and expansion.
Collapse
Affiliation(s)
- Jinnan Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Houjun Zhou
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Ludong University, Yantai, 264025, China
| | - Yanqiu Zhao
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Pengbo Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Fang Tang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xueqin Song
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
- Zhejiang Agriculture & Forestry University, Hangzhou, 311300, China.
| |
Collapse
|
40
|
Rojas AML, Drusin SI, Chorostecki U, Mateos JL, Moro B, Bologna NG, Bresso EG, Schapire A, Rasia RM, Moreno DM, Palatnik JF. Identification of key sequence features required for microRNA biogenesis in plants. Nat Commun 2020; 11:5320. [PMID: 33087730 PMCID: PMC7577975 DOI: 10.1038/s41467-020-19129-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 09/24/2020] [Indexed: 01/23/2023] Open
Abstract
MicroRNAs (miRNAs) are endogenous small RNAs of ∼21 nt that regulate multiple biological pathways in multicellular organisms. They derive from longer transcripts that harbor an imperfect stem-loop structure. In plants, the ribonuclease type III DICER-LIKE1 assisted by accessory proteins cleaves the precursor to release the mature miRNA. Numerous studies highlight the role of the precursor secondary structure during plant miRNA biogenesis; however, little is known about the relevance of the precursor sequence. Here, we analyzed the sequence composition of plant miRNA primary transcripts and found specifically located sequence biases. We show that changes in the identity of specific nucleotides can increase or abolish miRNA biogenesis. Most conspicuously, our analysis revealed that the identity of the nucleotides at unpaired positions of the precursor plays a crucial role during miRNA biogenesis in Arabidopsis. The secondary structure of miRNA precursor sequences is known to affect processing by DICER-like proteins. Here Rojas et al. show that additional sequence features also play a regulatory role in plants with nucleotide identity at unpaired positions substantially impacting processing efficiency.
Collapse
Affiliation(s)
- Arantxa M L Rojas
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Salvador I Drusin
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Área Física, Departamento de Química-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, S2002LRK Rosario, Santa Fe, Argentina
| | - Uciel Chorostecki
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Barcelona Supercomputing Centre (BSC-CNS), Barcelona, (08034), Spain.,Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, (08028), Spain
| | - Julieta L Mateos
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, (1428), Argentina
| | - Belén Moro
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, (08193), Spain
| | - Nicolas G Bologna
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, (08193), Spain
| | - Edgardo G Bresso
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Arnaldo Schapire
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Rodolfo M Rasia
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina.,Área Biofísica, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
| | - Diego M Moreno
- Instituto de Química de Rosario (CONICET-UNR), Suipacha 570, S2002LRK, Rosario, Santa Fe, Argentina.,Área Química General e Inorgánica, Departamento de Química-Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, S2002LRK, Rosario, Santa Fe, Argentina
| | - Javier F Palatnik
- IBR (Instituto de Biología Molecular y Celular de Rosario), CONICET and Universidad Nacional de Rosario, Rosario, 2000, Argentina. .,Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, 2000, Argentina.
| |
Collapse
|
41
|
Differential Expression of Maize and Teosinte microRNAs under Submergence, Drought, and Alternated Stress. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9101367. [PMID: 33076374 PMCID: PMC7650716 DOI: 10.3390/plants9101367] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/01/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
Submergence and drought stresses are the main constraints to crop production worldwide. MicroRNAs (miRNAs) are known to play a major role in plant response to various stresses. In this study, we analyzed the expression of maize and teosinte miRNAs by high-throughput sequencing of small RNA libraries in maize and its ancestor teosinte (Zea mays ssp. parviglumis), under submergence, drought, and alternated stress. We found that the expression patterns of 67 miRNA sequences representing 23 miRNA families in maize and other plants were regulated by submergence or drought. miR159a, miR166b, miR167c, and miR169c were downregulated by submergence in both plants but more severely in maize. miR156k and miR164e were upregulated by drought in teosinte but downregulated in maize. Small RNA profiling of teosinte subject to alternate treatments with drought and submergence revealed that submergence as the first stress attenuated the response to drought, while drought being the first stress did not alter the response to submergence. The miRNAs identified herein, and their potential targets, indicate that control of development, growth, and response to oxidative stress could be crucial for adaptation and that there exists evolutionary divergence between these two subspecies in miRNA response to abiotic stresses.
Collapse
|
42
|
Zheng X, Li H, Chen M, Zhang J, Tan R, Zhao S, Wang Z. smi-miR396b targeted SmGRFs, SmHDT1, and SmMYB37/4 synergistically regulates cell growth and active ingredient accumulation in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2020; 39:1263-1283. [PMID: 32607753 DOI: 10.1007/s00299-020-02562-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
MIR396b had been cloned and overexpressed in Salvia miltiorrhiza hairy roots. MiR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to regulate cell growth and secondary metabolism in S. miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a valuable medicinal herb with two kinds of clinically used natural products, salvianolic acids and tanshinones. miR396 is a conserved microRNA and plays extensive roles in plants. However, it is still unclear how miR396 works in S. miltiorrhiza. In this study, an smi-MIR396b has been cloned from S. miltiorrhiza. Overexpression of miR396b in danshen hairy roots inhibited hairy root growth, reduced salvianolic acid concentration, but enhanced tanshinone accumulation, resulting in the biomass and total salvianolic acids respectively reduced to 55.5 and 72.1% of the control and total tanshinones increased up to 1.91-fold of the control. Applied degradome sequencing, 5'RLM-RACE, and qRT-PCR, 13 targets for miR396b were identified including seven conserved SmGRF1-7 and six novel ones. Comparative transcriptomics and microRNomics analysis together with qRT-PCR results confirmed that miR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to mediate the phytohormone, especially gibberellin signaling pathways and consequentially resulted in the phenotype variation of miR396b-OE hairy roots. Furthermore, miR396b could be activated by methyl jasmonate, abscisic acid, gibberellin, salt, and drought stresses. The findings in this study indicated that smi-miR396b acts as an upstream and central regulator in cell growth and the biosynthesis of tanshinones and salvianolic acids, shedding light on the coordinated regulation of plant growth and biosynthesis of active ingredients in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Hang Li
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Min Chen
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jinjia Zhang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Ronghui Tan
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
43
|
Chen Y, Dan Z, Gao F, Chen P, Fan F, Li S. Rice GROWTH-REGULATING FACTOR7 Modulates Plant Architecture through Regulating GA and Indole-3-Acetic Acid Metabolism. PLANT PHYSIOLOGY 2020; 184:393-406. [PMID: 32581114 PMCID: PMC7479900 DOI: 10.1104/pp.20.00302] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/12/2020] [Indexed: 05/19/2023]
Abstract
Plant-specific GROWTH-REGULATING FACTORs (GRFs) participate in central developmental processes, including leaf and root development; inflorescence, flower, and seed formation; senescence; and tolerance to stresses. In rice (Oryza sativa), there are 12 GRFs, but the role of the miR396-OsGRF7 regulatory module remains unknown. Here, we report that OsGRF7 shapes plant architecture via the regulation of auxin and GA metabolism in rice. OsGRF7 is mainly expressed in lamina joints, nodes, internodes, axillary buds, and young inflorescences. Overexpression of OsGRF7 causes a semidwarf and compact plant architecture with an increased culm wall thickness and narrowed leaf angles mediated by shortened cell length, altered cell arrangement, and increased parenchymal cell layers in the culm and adaxial side of the lamina joints. Knockout and knockdown lines of OsGRF7 exhibit contrasting phenotypes with severe degradation of parenchymal cells in the culm and lamina joints at maturity. Further analysis indicated that OsGRF7 binds the ACRGDA motif in the promoters of a cytochrome P450 gene and AUXIN RESPONSE FACTOR12, which are involved in the GA synthesis and auxin signaling pathways, respectively. Correspondingly, OsGRF7 alters the contents of endogenous GAs and auxins and sensitivity to exogenous phytohormones. These findings establish OsGRF7 as a crucial component in the OsmiR396-OsGRF-plant hormone regulatory network that controls rice plant architecture.
Collapse
Affiliation(s)
- Yunping Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhiwu Dan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Feng Gao
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Pian Chen
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fengfeng Fan
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice of Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
44
|
Wang Y, Liu W, Wang X, Yang R, Wu Z, Wang H, Wang L, Hu Z, Guo S, Zhang H, Lin J, Fu C. MiR156 regulates anthocyanin biosynthesis through SPL targets and other microRNAs in poplar. HORTICULTURE RESEARCH 2020; 7:118. [PMID: 32821401 PMCID: PMC7395715 DOI: 10.1038/s41438-020-00341-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/23/2020] [Accepted: 05/12/2020] [Indexed: 05/20/2023]
Abstract
Anthocyanins biosynthesized from the flavonoid pathway are types of pigments that are involved in the protection of poplar from biotic and abiotic stresses. Previous researchers studying anthocyanin-related transcription factors and structural genes in poplar have made significant discoveries. However, little is known about the regulatory role of microRNAs in anthocyanin biosynthesis in poplar. Here, we overexpressed miR156 in poplar to study the comprehensive effects of the miR156-SPL module on the biosynthesis of anthocyanins. Small RNA sequencing analysis revealed 228 microRNAs differentially expressed in transgenic poplar plants with dramatically increased miR156 levels. Furthermore, integrated microRNAomic and transcriptomic analysis suggested that two microRNAs, miR160h, and miR858, have the potential to affect anthocyanin accumulation in poplar by regulating auxin response factors and MYB transcription factors, respectively. Additionally, the accumulation of miR160h and miR858 displayed a positive correlation with miR156 levels, suggesting a possible interaction between the miR156-SPL module and these microRNAs in poplar. Last, metabolomics analysis revealed that the levels of anthocyanins, flavones, and flavonols were substantially elevated in transgenic poplar plants overexpressing miR156 compared with the wild type, whereas the total lignin content was reduced in the transgenic plants. Taken together, our results indicate that miR156 can fine tune the anthocyanin biosynthetic pathway via multiple factors, including microRNAs, transcription factors, and the levels of structural genes, in poplar. This provides additional clues for understanding the complex regulatory network of anthocyanin biosynthesis in woody plants.
Collapse
Affiliation(s)
- Yamei Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Wenwen Liu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Xinwei Wang
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 10083 China
| | - Ruijuan Yang
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhenying Wu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| | - Han Wang
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Lei Wang
- Collaborative Innovation Center of Crop Stress Biology, Henan Province and Institute of Plant Stress Biology, Henan University, Kaifeng, 475001 China
| | - Zhubing Hu
- Collaborative Innovation Center of Crop Stress Biology, Henan Province and Institute of Plant Stress Biology, Henan University, Kaifeng, 475001 China
| | - Siyi Guo
- Collaborative Innovation Center of Crop Stress Biology, Henan Province and Institute of Plant Stress Biology, Henan University, Kaifeng, 475001 China
| | - Hailing Zhang
- Grass and Science Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang China
| | - Jinxing Lin
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 10083 China
| | - Chunxiang Fu
- Shandong Provincial Key Laboratory of Energy Genetics, Key Laboratory of Biofuels, Chinese Academy of Sciences, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101 China
| |
Collapse
|
45
|
Fonini LS, Lazzarotto F, Barros PM, Cabreira-Cagliari C, Martins MAB, Saibo NJM, Turchetto-Zolet AC, Margis-Pinheiro M. Molecular evolution and diversification of the GRF transcription factor family. Genet Mol Biol 2020; 43:20200080. [PMID: 32706846 PMCID: PMC7380329 DOI: 10.1590/1678-4685-gmb-2020-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/12/2020] [Indexed: 12/02/2022] Open
Abstract
Abstract - Growth Regulating Factors (GRFs) comprise a transcription factor family with important functions in plant growth and development. They are characterized by the presence of QLQ and WRC domains, responsible for interaction with proteins and DNA, respectively. The QLQ domain is named due to the similarity to a protein interaction domain found in the SWI2/SNF2 chromatin remodeling complex. Despite the occurrence of the QLQ domain in both families, the divergence between them had not been further explored. Here, we show evidence for GRF origin and determined its diversification in angiosperm species. Phylogenetic analysis revealed 11 well-supported groups of GRFs in flowering plants. These groups were supported by gene structure, synteny, and protein domain composition. Synteny and phylogenetic analyses allowed us to propose different sets of probable orthologs in the groups. Besides, our results, together with functional data previously published, allowed us to suggest candidate genes for engineering agronomic traits. In addition, we propose that the QLQ domain of GRF genes evolved from the eukaryotic SNF2 QLQ domain, most likely by a duplication event in the common ancestor of the Charophytes and land plants. Altogether, our results are important for advancing the origin and evolution of the GRF family in Streptophyta.
Collapse
Affiliation(s)
- Leila Spagnolo Fonini
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Fernanda Lazzarotto
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Pedro M Barros
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Caroline Cabreira-Cagliari
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Marcelo Affonso Begossi Martins
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Nelson J M Saibo
- Universidade Nova de Lisboa, Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), Oeiras, Portugal
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Marcia Margis-Pinheiro
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia, Programa de Pós-graduação em Biologia Celular e Molecular, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul, Departamento de Genética, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
46
|
Lu Y, Meng Y, Zeng J, Luo Y, Feng Z, Bian L, Gao S. Coordination between GROWTH-REGULATING FACTOR1 and GRF-INTERACTING FACTOR1 plays a key role in regulating leaf growth in rice. BMC PLANT BIOLOGY 2020; 20:200. [PMID: 32384927 PMCID: PMC7206744 DOI: 10.1186/s12870-020-02417-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/29/2020] [Indexed: 05/29/2023]
Abstract
BACKGROUND The interactions between Growth-regulating factors (GRFs) and GRF-Interacting Factors (GIFs) have been well demonstrated but it remains unclear whether different combinations of GRF and GIF play distinctive roles in the pathway downstream of the complex. RESULTS Here we showed that OsGRF1 and OsGIF1 synergistically regulate leaf growth in rice. The expression of OsGIF1 emerged in all tissues with much higher level while that of OsGRF1 appeared preferentially only in the stem tips containing shoot apical meristem (SAM) and younger leaves containing leaf primordium. Overexpression of an OsmiR396-resistant version of mOsGRF1 resulted in expanded leaves due to increased cell proliferation while knockdown of OsGRF1 displayed an opposite phenotype. Overexpression of OsGIF1 did not exhibit new phenotype while knockdown lines displayed pleiotropic growth defects including shrunken leaves. The crossed lines of mOsGRF1 overexpression and OsGIF1 knockdown still exhibited shrunk leaves, indicating that OsGIF1 is indispensable in leaf growth regulated by OsGRF1. The expression of OsGRF1 could be upregulated by gibberellins (GAs) and downregulated by various stresses while that of OsGIF1 could not. CONCLUSION Our results suggest that OsGIF1 is in an excessive expression in various tissues and play roles in various aspects of growth while OsGRF1 may specifically involve in leaf growth through titrating OsGIF1. Both internal and external conditions impacting leaf growth are likely via way of regulating the expression of OsGRF1.
Collapse
Affiliation(s)
- Yuzhu Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Yunlong Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Jia Zeng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Ying Luo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Zhen Feng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Liying Bian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009 China
| | - Suyun Gao
- Jiangsu Key Laboratory of Crop Genetics and Physiology/ Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009 China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
47
|
Vercruysse J, Baekelandt A, Gonzalez N, Inzé D. Molecular networks regulating cell division during Arabidopsis leaf growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2365-2378. [PMID: 31748815 PMCID: PMC7178401 DOI: 10.1093/jxb/erz522] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 05/02/2023]
Abstract
Leaves are the primary organs for photosynthesis, and as such have a pivotal role for plant growth and development. Leaf development is a multifactorial and dynamic process involving many genes that regulate size, shape, and differentiation. The processes that mainly drive leaf development are cell proliferation and cell expansion, and numerous genes have been identified that, when ectopically expressed or down-regulated, increase cell number and/or cell size during leaf growth. Many of the genes regulating cell proliferation are functionally interconnected and can be grouped into regulatory modules. Here, we review our current understanding of six important gene regulatory modules affecting cell proliferation during Arabidopsis leaf growth: ubiquitin receptor DA1-ENHANCER OF DA1 (EOD1), GROWTH REGULATING FACTOR (GRF)-GRF-INTERACTING FACTOR (GIF), SWITCH/SUCROSE NON-FERMENTING (SWI/SNF), gibberellin (GA)-DELLA, KLU, and PEAPOD (PPD). Furthermore, we discuss how post-mitotic cell expansion and these six modules regulating cell proliferation make up the final leaf size.
Collapse
Affiliation(s)
- Jasmien Vercruysse
- Center for Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Alexandra Baekelandt
- Center for Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
| | - Nathalie Gonzalez
- INRAE, Université de Bordeaux, UMR1332 Biologie du fruit et Pathologie, INRA Bordeaux Aquitaine, Villenave d’Ornon cedex, France
| | - Dirk Inzé
- Center for Plant Systems Biology, VIB, Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Correspondence:
| |
Collapse
|
48
|
Parmar S, Gharat SA, Tagirasa R, Chandra T, Behera L, Dash SK, Shaw BP. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS One 2020; 15:e0230958. [PMID: 32294092 PMCID: PMC7159242 DOI: 10.1371/journal.pone.0230958] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/12/2020] [Indexed: 12/31/2022] Open
Abstract
Soil salinization is a serious problem for cultivation of rice, as among cereals rice is the most salt sensitive crop, and more than 40% of the total agricultural land amounting to approximately 80 million ha the world over is salt affected. Salinity affects a plant in a varieties of ways, including ion toxicity, osmotic stress and oxidative damage. Since miRNAs occupy the top place in biochemical events determining a trait, understanding their role in salt tolerance is highly desirable, which may allow introduction of the trait in the rice cultivars of choice through biotechnological interventions. High throughput sequencing of sRNAs in the root and shoot tissues of the seedlings of the control and NaCl treated Pokkali, a salt-tolerant rice variety, identified 75 conserved miRNAs and mapped 200 sRNAs to the rice genome as novel miRNAs. Expression of nine novel miRNAs and two conserved miRNAs were confirmed by Northern blotting. Several of both conserved and novel miRNAs that expressed differentially in root and/or shoot tissues targeted transcription factors like AP2/EREBP domain protein, ARF, NAC, MYB, NF-YA, HD-Zip III, TCP and SBP reported to be involved in salt tolerance or in abiotic stress tolerance in general. Most of the novel miRNAs expressed in the salt tolerant wild rice Oryza coarctata, suggesting conservation of miRNAs in taxonomically related species. One of the novel miRNAs, osa-miR12477, also targeted L-ascorbate oxidase (LAO), indicating build-up of oxidative stress in the plant upon salt treatment, which was confirmed by DAB staining. Thus, salt tolerance might involve miRNA-mediated regulation of 1) cellular abundance of the hormone signaling components like EREBP and ARF, 2) synthesis of abiotic stress related transcription factors, and 3) antioxidative component like LAO for mitigation of oxidative damage. The study clearly indicated importance of osa-miR12477 regulated expression of LAO in salt tolerance in the plant.
Collapse
Affiliation(s)
- Shaifaly Parmar
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sachin Ashruba Gharat
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Ravichandra Tagirasa
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Tilak Chandra
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Lambodar Behera
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Sushant Kumar Dash
- Crop Improvement Division, ICAR-National Rice Research Institute (Formerly Central Rice Research Institute), Cuttack, Odisha, India
| | - Birendra Prasad Shaw
- Abiotic Stress and Agro-Biotechnology Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
49
|
Lantzouni O, Alkofer A, Falter-Braun P, Schwechheimer C. GROWTH-REGULATING FACTORS Interact with DELLAs and Regulate Growth in Cold Stress. THE PLANT CELL 2020; 32:1018-1034. [PMID: 32060178 PMCID: PMC7145461 DOI: 10.1105/tpc.19.00784] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/02/2020] [Accepted: 02/12/2020] [Indexed: 05/18/2023]
Abstract
DELLA proteins are repressors of the gibberellin (GA) hormone signaling pathway that act mainly by regulating transcription factor activities in plants. GAs induce DELLA repressor protein degradation and thereby control a number of critical developmental processes as well as responses to stresses such as cold. The strong effect of cold temperatures on many physiological processes has rendered it difficult to assess, based on phenotypic criteria, the role of GA and DELLAs in plant growth during cold stress. Here, we uncover substantial differences in the GA transcriptomes between plants grown at ambient temperature (21°C) and plants exposed to cold stress (4°C) in Arabidopsis (Arabidopsis thaliana). We further identify over 250, to the largest extent previously unknown, DELLA-transcription factor interactions using the yeast two-hybrid system. By integrating both data sets, we reveal that most members of the nine-member GRF (GROWTH REGULATORY FACTOR) transcription factor family are DELLA interactors and, at the same time, that several GRF genes are targets of DELLA-modulated transcription after exposure to cold stress. We find that plants with altered GRF dosage are differentially sensitive to the manipulation of GA and hence DELLA levels, also after cold stress, and identify a subset of cold stress-responsive genes that qualify as targets of this DELLA-GRF regulatory module.
Collapse
Affiliation(s)
- Ourania Lantzouni
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Angela Alkofer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Pascal Falter-Braun
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| | - Claus Schwechheimer
- Plant Systems Biology, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
50
|
Lu Y, Feng Z, Meng Y, Bian L, Xie H, Mysore KS, Liang J. SLENDER RICE1 and Oryza sativa INDETERMINATE DOMAIN2 Regulating OsmiR396 Are Involved in Stem Elongation. PLANT PHYSIOLOGY 2020; 182:2213-2227. [PMID: 31953375 PMCID: PMC7140908 DOI: 10.1104/pp.19.01008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/27/2019] [Indexed: 05/04/2023]
Abstract
GAs play key roles in controlling cell proliferation through the GIBBERELLIN INSENSITIVE DWARF1/DELLA-mediated pathway. However, how DELLA proteins affect downstream pathways is not well understood. Therefore, discovering the signaling events downstream of DELLAs is key to better understanding the roles of GAs in plant development. Here, we discovered that miR396 is regulated by SLENDER RICE1 (SLR1) in controlling cell proliferation. The positive response of rice (Oryza sativa) GROWTH-REGULATING FACTORs (OsGRFs) to GAs was found to be caused by a negative response of miR396 to GAs. miR396 acts downstream of SLR1 and upstream of GA-induced cell-cycle genes. Rice INDETERMINATE DOMAIN2 (OsIDD2) directly binds the promoter of OsmiR396a and can interact with SLR1 in vivo and in vitro. Rice lines overexpressing miR396a (miR396OE) or OsIDD2 (OsIDD2OE) displayed dwarfism resulting from higher abundance of miR396 RNA. However, the stem elongation of OsIDD2OE plants could be significantly stimulated by applying exogenous GA3, while that of miR396OE plants could not. Rice with OsIDD2 knocked down by RNA interference showed a slr1-like phenotype, in which the expression of miR396 was inhibited while its targets were enhanced. The protein levels of OsIDD2 were unaffected by GA in wild-type and OsIDD2OE plants, implying that OsIDD2 promotes the expression of miR396 and likely requires the coactivator of SLR1. Taken together, these results provided a close link between SLR1/OsIDD2 and GRFs via a negative regulator, miR396, and thus highlighted a molecular mechanism of GA-mediated cell proliferation in rice.
Collapse
Affiliation(s)
- Yuzhu Lu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, Yangzhou University, Jiangsu 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zhen Feng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Yunlong Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Liying Bian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Hong Xie
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | | | - Jiansheng Liang
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|