1
|
Eckardt NA, Allahverdiyeva Y, Alvarez CE, Büchel C, Burlacot A, Cardona T, Chaloner E, Engel BD, Grossman AR, Harris D, Herrmann N, Hodges M, Kern J, Kim TD, Maurino VG, Mullineaux CW, Mustila H, Nikkanen L, Schlau-Cohen G, Tronconi MA, Wietrzynski W, Yachandra VK, Yano J. Lighting the way: Compelling open questions in photosynthesis research. THE PLANT CELL 2024; 36:3914-3943. [PMID: 39038210 PMCID: PMC11449116 DOI: 10.1093/plcell/koae203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Photosynthesis-the conversion of energy from sunlight into chemical energy-is essential for life on Earth. Yet there is much we do not understand about photosynthetic energy conversion on a fundamental level: how it evolved and the extent of its diversity, its dynamics, and all the components and connections involved in its regulation. In this commentary, researchers working on fundamental aspects of photosynthesis including the light-dependent reactions, photorespiration, and C4 photosynthetic metabolism pose and discuss what they view as the most compelling open questions in their areas of research.
Collapse
Affiliation(s)
| | - Yagut Allahverdiyeva
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | - Claudia Büchel
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Adrien Burlacot
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Tanai Cardona
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Emma Chaloner
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Benjamin D Engel
- Biozentrum, University of Basel, Sptialstrasse 41, 4056 Basel, Switzerland
| | - Arthur R Grossman
- Division of Bioscience and Engineering, Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dvir Harris
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nicolas Herrmann
- Institute of Molecular Biosciences, Goethe University Frankfurt, 60438 Frankfurt, Germany
| | - Michael Hodges
- Université Paris-Saclay, CNRS, INRAE, Université d’Evry, Université de Paris Cité, Institute of Plant Sciences Paris-Saclay (IPS2), 91190 Gif-sur-Yvette, France
| | - Jan Kern
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Tom Dongmin Kim
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Veronica G Maurino
- Molecular Plant Physiology, Institute for Cellular and Molecular Botany (IZMB), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, Mile End Road, London E1 4NS, UK
| | - Henna Mustila
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Lauri Nikkanen
- Molecular Plant Biology Unit, Department of Life Technologies, University of Turku, 20014 Turku, Finland
| | - Gabriela Schlau-Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Massachusetts Ave, Cambridge, MA 02139, USA
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacuticas, University of Rosario, Suipacha 570, 2000 Rosario, Argentina
| | | | - Vittal K Yachandra
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junko Yano
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Liu H, Zhao H, Zhang Y, Li X, Zuo Y, Wu Z, Jin K, Xian W, Wang W, Ning W, Liu Z, Zhao X, Wang L, Sage RF, Lu T, Stata M, Cheng S. The genome of Eleocharis vivipara elucidates the genetics of C 3-C 4 photosynthetic plasticity and karyotype evolution in the Cyperaceae. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024. [PMID: 39177373 DOI: 10.1111/jipb.13765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
Eleocharis vivipara, an amphibious sedge in the Cyperaceae family, has several remarkable properties, most notably its alternate use of C3 photosynthesis underwater and C4 photosynthesis on land. However, the absence of genomic data has hindered its utility for evolutionary and genetic research. Here, we present a high-quality genome for E. vivipara, representing the first chromosome-level genome for the Eleocharis genus, with an approximate size of 965.22 Mb mainly distributed across 10 chromosomes. Its Hi-C pattern, chromosome clustering results, and one-to-one genome synteny across two subgroups indicates a tetraploid structure with chromosome count 2n = 4x = 20. Phylogenetic analysis suggests that E. vivipara diverged from Cyperus esculentus approximately 32.96 million years ago (Mya), and underwent a whole-genome duplication (WGD) about 3.5 Mya. Numerous fusion and fission events were identified between the chromosomes of E. vivipara and its close relatives. We demonstrate that E. vivipara has holocentromeres, a chromosomal feature which can maintain the stability of such chromosomal rearrangements. Experimental transplantation and cross-section studies showed its terrestrial culms developed C4 Kranz anatomy with increased number of chloroplasts in the bundle sheath (BS) cells. Gene expression and weighted gene co-expression network analysis (WGCNA) showed overall elevated expression of core genes associated with the C4 pathway, and significant enrichment of genes related to modified culm anatomy and photosynthesis efficiency. We found evidence of mixed nicotinamide adenine dinucleotide - malic enzyme and phosphoenolpyruvate carboxykinase type C4 photosynthesis in E. vivipara, and hypothesize that the evolution of C4 photosynthesis predates the WGD event. The mixed type is dominated by subgenome A and supplemented by subgenome B. Collectively, our findings not only shed light on the evolution of E. vivipara and karyotype within the Cyperaceae family, but also provide valuable insights into the transition between C3 and C4 photosynthesis, offering promising avenues for crop improvement and breeding.
Collapse
Affiliation(s)
- Hongbing Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Hang Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Yanwen Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
- Shenzhen Research Institute of Henan university, Shenzhen, 518000, China
| | - Xiuli Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yi Zuo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Zhen Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Kaining Jin
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University & Research, Wageningen, 6708 WB, The Netherlands
| | - Wenfei Xian
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Wenzheng Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weidong Ning
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Zijian Liu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
- Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux, 4000, Belgium
| | - Xiaoxiao Zhao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, China National Botanical Garden, Chinese Academy of Science, Beijing, 100093, China
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, The University of Toronto, Toronto, M5S 3B2, ON, Canada
| | - Tiegang Lu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Matt Stata
- Plant Resilience Institute, Michigan State University, East Lansing, 48824, MI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, 48824, MI, USA
| | - Shifeng Cheng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| |
Collapse
|
3
|
Zhang Y, Zhao Z, Liu Z, Yao J, Yin K, Yan C, Zhang Y, Liu J, Li J, Zhao N, Zhao R, Zhou X, Chen S. Populus euphratica PeNADP-ME interacts with PePLDδ to mediate sodium and ROS homeostasis under salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108600. [PMID: 38593488 DOI: 10.1016/j.plaphy.2024.108600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/16/2024] [Accepted: 04/03/2024] [Indexed: 04/11/2024]
Abstract
Populus euphratica phospholipase Dδ (PePLDδ) is transcriptionally regulated and mediates reactive oxygen species (ROS) and ion homeostasis under saline conditions. The purpose of this study is to explore the post-transcriptional regulation of PePLDδ in response to salt environment. P. euphratica PePLDδ was shown to interact with the NADP-dependent malic enzyme (NADP-ME) by screening the yeast two-hybrid libraries. The transcription level of PeNADP-ME increased upon salt exposure to NaCl (200 mM) in leaves and roots of P. euphratica. PeNADP-ME had a similar subcellular location with PePLDδ in the cytoplasm, and the interaction between PeNADP-ME and PePLDδ was further verified by GST pull-down and yeast two-hybrid. To clarify whether PeNADP-ME interacts with PePLDδ to enhance salt tolerance, PePLDδ and PeNADP-ME were overexpressed singly or doubly in Arabidopsis thaliana. Dual overexpression of PeNADP-ME and PePLDδ resulted in an even more pronounced improvement in salt tolerance compared with single transformants overexpressing PeNADP-ME or PePLDδ alone. Greater Na+ limitation and Na+ efflux in roots were observed in doubly overexpressed plants compared with singly overexpressed plants with PeNADP-ME or PePLDδ. Furthermore, NaCl stimulation of SOD, APX, and POD activity and transcription were more remarkable in the doubly overexpressed plants. It is noteworthy that the enzymic activity of NADP-ME and PLD, and total phosphatidic acid (PA) concentrations were significantly higher in the double-overexpressed plants than in the single transformants. We conclude that PeNADP-ME interacts with PePLDδ in Arabidopsis to promote PLD-derived PA signaling, conferring Na+ extrusion and ROS scavenging under salt stress.
Collapse
Affiliation(s)
- Ying Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Ziyan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Zhe Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jun Yao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, 510520, China
| | - Kexin Yin
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Caixia Yan
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanli Zhang
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jian Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jing Li
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Nan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Rui Zhao
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaoyang Zhou
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Shaoliang Chen
- State Key Laboratory of Efficient Production of Forest Resources, College of Biological Science and Biotechnology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
4
|
Mohanta TK, Mohanta YK, Kaushik P, Kumar J. Physiology, genomics, and evolutionary aspects of desert plants. J Adv Res 2024; 58:63-78. [PMID: 37160225 PMCID: PMC10982872 DOI: 10.1016/j.jare.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/11/2023] Open
Abstract
BACKGROUND Despite the exposure to arid environmental conditions across the globe ultimately hampering the sustainability of the living organism, few plant species are equipped with several unique genotypic, biochemical, and physiological features to counter such harsh conditions. Physiologically, they have evolved with reduced leaf size, spines, waxy cuticles, thick leaves, succulent hydrenchyma, sclerophyll, chloroembryo, and photosynthesis in nonfoliar and other parts. At the biochemical level, they are evolved to perform efficient photosynthesis through Crassulacean acid metabolism (CAM) and C4 pathways with the formation of oxaloacetic acid (Hatch-Slack pathway) instead of the C3 pathway. Additionally, comparative genomics with existing data provides ample evidence of the xerophytic plants' positive selection to adapt to the arid environment. However, adding more high-throughput sequencing of xerophyte plant species is further required for a comparative genomic study toward trait discovery related to survival. Learning from the mechanism to survive in harsh conditions could pave the way to engineer crops for future sustainable agriculture. AIM OF THE REVIEW The distinct physiology of desert plants allows them to survive in harsh environments. However, the genomic composition also contributes significantly to this and requires great attention. This review emphasizes the physiological and genomic adaptation of desert plants. Other important parameters, such as desert biodiversity and photosynthetic strategy, are also discussed with recent progress in the field. Overall, this review discusses the different features of desert plants, which prepares them for harsh conditions intending to translate knowledge to engineer plant species for sustainable agriculture. KEY SCIENTIFIC CONCEPTS OF REVIEW This review comprehensively presents the physiology, molecular mechanism, and genomics of desert plants aimed towards engineering a sustainable crop.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 611, Oman.
| | - Yugal Kishore Mohanta
- Dept. of Applied Biology, University of Science and Technology Meghalaya, Baridua, Meghalaya 793101, India
| | - Prashant Kaushik
- Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, 125004, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| |
Collapse
|
5
|
Fedorin DN, Eprintsev AT, Igamberdiev AU. The role of promoter methylation of the genes encoding the enzymes metabolizing di- and tricarboxylic acids in the regulation of plant respiration by light. JOURNAL OF PLANT PHYSIOLOGY 2024; 294:154195. [PMID: 38377939 DOI: 10.1016/j.jplph.2024.154195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 02/22/2024]
Abstract
We discuss the role of epigenetic changes at the level of promoter methylation of the key enzymes of carbon metabolism in the regulation of respiration by light. While the direct regulation of enzymes via modulation of their activity and post-translational modifications is fast and readily reversible, the role of cytosine methylation is important for providing a prolonged response to environmental changes. In addition, adenine methylation can play a role in the regulation of transcription of genes. The mitochondrial and extramitochondrial forms of several enzymes participating in the tricarboxylic acid cycle and associated reactions are regulated via promoter methylation in opposite ways. The mitochondrial forms of citrate synthase, aconitase, fumarase, NAD-malate dehydrogenase are inhibited while the cytosolic forms of aconitase, fumarase, NAD-malate dehydrogenase, and the peroxisomal form of citrate synthase are activated. It is concluded that promoter methylation represents a universal mechanism of the regulation of activity of respiratory enzymes in plant cells by light. The role of the regulation of the mitochondrial and cytosolic forms of respiratory enzymes in the operation of malate and citrate valves and in controlling the redox state and balancing the energy level of photosynthesizing plant cells is discussed.
Collapse
Affiliation(s)
- Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018, Voronezh, Russia.
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1C 5S7, Canada.
| |
Collapse
|
6
|
Lee J, Yang JH, Weber APM, Bhattacharya D, Kim WY, Yoon HS. Diurnal Rhythms in the Red Seaweed Gracilariopsis chorda are Characterized by Unique Regulatory Networks of Carbon Metabolism. Mol Biol Evol 2024; 41:msae012. [PMID: 38267085 PMCID: PMC10853006 DOI: 10.1093/molbev/msae012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/01/2024] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Cellular and physiological cycles are driven by endogenous pacemakers, the diurnal and circadian rhythms. Key functions such as cell cycle progression and cellular metabolism are under rhythmic regulation, thereby maintaining physiological homeostasis. The photoreceptors phytochrome and cryptochrome, in response to light cues, are central input pathways for physiological cycles in most photosynthetic organisms. However, among Archaeplastida, red algae are the only taxa that lack phytochromes. Current knowledge about oscillatory rhythms is primarily derived from model species such as Arabidopsis thaliana and Chlamydomonas reinhardtii in the Viridiplantae, whereas little is known about these processes in other clades of the Archaeplastida, such as the red algae (Rhodophyta). We used genome-wide expression profiling of the red seaweed Gracilariopsis chorda and identified 3,098 rhythmic genes. Here, we characterized possible cryptochrome-based regulation and photosynthetic/cytosolic carbon metabolism in this species. We found a large family of cryptochrome genes in G. chorda that display rhythmic expression over the diurnal cycle and may compensate for the lack of phytochromes in this species. The input pathway gates regulatory networks of carbon metabolism which results in a compact and efficient energy metabolism during daylight hours. The system in G. chorda is distinct from energy metabolism in most plants, which activates in the dark. The green lineage, in particular, land plants, balance water loss and CO2 capture in terrestrial environments. In contrast, red seaweeds maintain a reduced set of photoreceptors and a compact cytosolic carbon metabolism to thrive in the harsh abiotic conditions typical of intertidal zones.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Ji Hyun Yang
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 four), Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
7
|
Dai JL, He YJ, Chen HH, Jiang JG. Dual Roles of Two Malic Enzymes in Lipid Biosynthesis and Salt Stress Response in Dunaliella salina. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37906521 DOI: 10.1021/acs.jafc.3c04810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Triacylglycerols (TAG) from microalgae can be used as feedstocks for biofuel production to address fuel shortages. Most of the current research has focused on the enzymes involved in TAG biosynthesis. In this study, the effects of malic enzyme (ME), which provides precursor and reducing power for TAG biosynthesis, on biomass and lipid accumulation and its response to salt stress in Dunaliella salina were investigated. The overexpression of DsME1 and DsME2 improved the lipid production, which reached 0.243 and 0.253 g/L and were 30.5 and 36.3% higher than wild type, respectively. The transcript levels of DsME1 and DsME2 increased with increasing salt concentration (0, 1, 2, 3, and 4.5 mol/L NaCl), indicating that DsMEs participated in the salt stress response in D. salina. It was found that cis-acting elements associated with the salt stress response were present on the promoters of two DsMEs. The deletion of the MYB binding site (MBS) on the DsME2 promoter confirmed that MBS drives the expression of DsME2 to participate in osmotic regulation in D. salina. In conclusion, MEs are the critical enzymes that play pivotal roles in lipid accumulation and osmotic regulation.
Collapse
Affiliation(s)
- Jv-Liang Dai
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yu-Jing He
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hao-Hong Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jian-Guo Jiang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
8
|
Kandoi D, Tripathy BC. Overexpression of chloroplastic Zea mays NADP-malic enzyme (ZmNADP-ME) confers tolerance to salt stress in Arabidopsis thaliana. PHOTOSYNTHESIS RESEARCH 2023; 158:57-76. [PMID: 37561272 DOI: 10.1007/s11120-023-01041-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 07/29/2023] [Indexed: 08/11/2023]
Abstract
The C4 plants photosynthesize better than C3 plants especially in arid environment. As an attempt to genetically convert C3 plant to C4, the cDNA of decarboxylating C4 type NADP-malic enzyme from Zea mays (ZmNADP-ME) that has lower Km for malate and NADP than its C3 isoforms, was overexpressed in Arabidopsis thaliana under the control of 35S promoter. Due to increased activity of NADP-ME in the transgenics the malate decarboxylation increased that resulted in loss of carbon skeletons needed for amino acid and protein synthesis. Consequently, amino acid and protein content of the transgenics declined. Therefore, the Chl content, photosynthetic efficiency (Fv/Fm), electron transport rate (ETR), the quantum yield of photosynthetic CO2 assimilation, rosette diameter, and biomass were lower in the transgenics. However, in salt stress (150 mM NaCl), the overexpressers had higher Chl, protein content, Fv/Fm, ETR, and biomass than the vector control. NADPH generated in the transgenics due to increased malate decarboxylation, contributed to augmented synthesis of proline, the osmoprotectant required to alleviate the reactive oxygen species-mediated membrane damage and oxidative stress. Consequently, the glutathione peroxidase activity increased and H2O2 content decreased in the salt-stressed transgenics. The reduced membrane lipid peroxidation and lower malondialdehyde production resulted in better preservation, of thylakoid integrity and membrane architecture in the transgenics under saline environment. Our results clearly demonstrate that overexpression of C4 chloroplastic ZmNADP-ME in the C3 Arabidopsis thaliana, although decrease their photosynthetic efficiency, protects the transgenics from salinity stress.
Collapse
Affiliation(s)
- Deepika Kandoi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- Department of Life Sciences, Sharda University, Greater Noida, UP, 201310, India
| | - Baishnab C Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, UP, 201310, India.
| |
Collapse
|
9
|
Zheng H, Wang B, Hua X, Gao R, Wang Y, Zhang Z, Zhang Y, Mei J, Huang Y, Huang Y, Lin H, Zhang X, Lin D, Lan S, Liu Z, Lu G, Wang Z, Ming R, Zhang J, Lin Z. A near-complete genome assembly of the allotetrapolyploid Cenchrus fungigraminus (JUJUNCAO) provides insights into its evolution and C4 photosynthesis. PLANT COMMUNICATIONS 2023; 4:100633. [PMID: 37271992 PMCID: PMC10504591 DOI: 10.1016/j.xplc.2023.100633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/07/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
JUJUNCAO (Cenchrus fungigraminus; 2n = 4x = 28) is a Cenchrus grass with the highest biomass production among cultivated plants, and it can be used for mushroom cultivation, animal feed, and biofuel production. Here, we report a nearly complete genome assembly of JUJUNCAO and reveal that JUJUNCAO is an allopolyploid that originated ∼2.7 million years ago (mya). Its genome consists of two subgenomes, and subgenome A shares high collinear synteny with pearl millet. We also investigated the genome evolution of JUJUNCAO and suggest that the ancestral karyotype of Cenchrus split into the A and B ancestral karyotypes of JUJUNCAO. Comparative transcriptome and DNA methylome analyses revealed functional divergence of homeologous gene pairs between the two subgenomes, which was a further indication of asymmetric DNA methylation. The three types of centromeric repeat in the JUJUNCAO genome (CEN137, CEN148, and CEN156) may have evolved independently within each subgenome, with some introgressions of CEN156 from the B to the A subgenome. We investigated the photosynthetic characteristics of JUJUNCAO, revealing its typical C4 Kranz anatomy and high photosynthetic efficiency. NADP-ME and PEPCK appear to cooperate in the major C4 decarboxylation reaction of JUJUNCAO, which is different from other C4 photosynthetic subtypes and may contribute to its high photosynthetic efficiency and biomass yield. Taken together, our results provide insights into the highly efficient photosynthetic mechanism of JUJUNCAO and provide a valuable reference genome for future genetic and evolutionary studies, as well as genetic improvement of Cenchrus grasses.
Collapse
Affiliation(s)
- Huakun Zheng
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Baiyu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China; Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiuting Hua
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China
| | - Ruiting Gao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China
| | - Yuhao Wang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zixin Zhang
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yixing Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jing Mei
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongji Huang
- Fuzhou Institute of Oceanography, Minjiang University, Fuzhou 350108, China
| | - Yumin Huang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xingtan Zhang
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siren Lan
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhongjian Liu
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Guodong Lu
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zonghua Wang
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Ray Ming
- Center for Genomics, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, Guangxi, China.
| | - Zhanxi Lin
- National Engineering Research Center of JUNCAO Technology, College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
11
|
Nisa ZU, Wang Y, Ali N, Chen C, Zhang X, Jin X, Yu L, Jing L, Chen C, Elansary HO. Strigolactone signaling gene from soybean GmMAX2a enhances the drought and salt-alkaline resistance in Arabidopsis via regulating transcriptional profiles of stress-related genes. Funct Integr Genomics 2023; 23:216. [PMID: 37391642 DOI: 10.1007/s10142-023-01151-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/14/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Strigolactone (SL) is a new plant hormone, which not only plays an important role in stimulating seed germination, plant branching, and regulating root development, but also plays an important role in the response of plants to abiotic stresses. In this study, the full-length cDNA of a soybean SL signal transduction gene (GmMAX2a) was isolated, cloned and revealed an important role in abiotic stress responses. Tissue-specific expression analysis by qRT-PCR indicated that GmMAX2a was expressed in all tissues of soybean, but highest expression was detected in seedling stems. Moreover, upregulation of GmMAX2a transcript expression under salt, alkali, and drought conditions were noted at different time points in soybean leaves compared to roots. Additionally, histochemical GUS staining studies revealed the deep staining in PGmMAX2a: GUS transgenic lines compared to WT indicating active involvement of GmMAX2a promoter region to stress responses. To further investigate the function of GmMAX2a gene in transgenic Arabidopsis, Petri-plate experiments were performed and GmMAX2a OX lines appeared with longer roots and improved fresh biomass compared to WT plants to NaCl, NaHCO3, and mannitol supplementation. Furthermore, the expression of several stress-related genes such as RD29B, SOS1, NXH1, AtRD22, KIN1, COR15A, RD29A, COR47, H+-APase, NADP-ME, NCED3, and P5CS were significantly high in GmMAX2a OX plants after stress treatment compared to WT plants. In conclusion, GmMAX2a improves soybean tolerance towards abiotic stresses (salt, alkali, and drought). Hence, GmMAX2a can be considered a candidate gene for transgenic breeding against various abiotic stresses in plants.
Collapse
Affiliation(s)
- Zaib-Un Nisa
- Institute of Molecular Biology and Biotechnology IMBB, The University of Lahore, Lahore, Pakistan.
| | - Yudan Wang
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Naila Ali
- Institute of Molecular Biology and Biotechnology IMBB, The University of Lahore, Lahore, Pakistan
| | - Chen Chen
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Xu Zhang
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Xiaoxia Jin
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Lijie Yu
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Legang Jing
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China
| | - Chao Chen
- Department of Chemistry and Molecular biology, School of Life Science and Technology, Harbin Normal University, Harbin, 150025, People's Republic of China.
| | - Hosam O Elansary
- Department of Plant Production, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
12
|
Singh J, Garai S, Das S, Thakur JK, Tripathy BC. Role of C4 photosynthetic enzyme isoforms in C3 plants and their potential applications in improving agronomic traits in crops. PHOTOSYNTHESIS RESEARCH 2022; 154:233-258. [PMID: 36309625 DOI: 10.1007/s11120-022-00978-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
As compared to C3, C4 plants have higher photosynthetic rates and better tolerance to high temperature and drought. These traits are highly beneficial in the current scenario of global warming. Interestingly, all the genes of the C4 photosynthetic pathway are present in C3 plants, although they are involved in diverse non-photosynthetic functions. Non-photosynthetic isoforms of carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), malate dehydrogenase (MDH), the decarboxylating enzymes NAD/NADP-malic enzyme (NAD/NADP-ME), and phosphoenolpyruvate carboxykinase (PEPCK), and finally pyruvate orthophosphate dikinase (PPDK) catalyze reactions that are essential for major plant metabolism pathways, such as the tricarboxylic acid (TCA) cycle, maintenance of cellular pH, uptake of nutrients and their assimilation. Consistent with this view differential expression pattern of these non-photosynthetic C3 isoforms has been observed in different tissues across the plant developmental stages, such as germination, grain filling, and leaf senescence. Also abundance of these C3 isoforms is increased considerably in response to environmental fluctuations particularly during abiotic stress. Here we review the vital roles played by C3 isoforms of C4 enzymes and the probable mechanisms by which they help plants in acclimation to adverse growth conditions. Further, their potential applications to increase the agronomic trait value of C3 crops is discussed.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, 110067, India.
| | - Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, 110067, India
| | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, 110067, India.
- International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India.
| | | |
Collapse
|
13
|
Shanker AK, Gunnapaneni D, Bhanu D, Vanaja M, Lakshmi NJ, Yadav SK, Prabhakar M, Singh VK. Elevated CO 2 and Water Stress in Combination in Plants: Brothers in Arms or Partners in Crime? BIOLOGY 2022; 11:biology11091330. [PMID: 36138809 PMCID: PMC9495351 DOI: 10.3390/biology11091330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 08/17/2022] [Indexed: 04/30/2023]
Abstract
The changing dynamics in the climate are the primary and important determinants of agriculture productivity. The effects of this changing climate on overall productivity in agriculture can be understood when we study the effects of individual components contributing to the changing climate on plants and crops. Elevated CO2 (eCO2) and drought due to high variability in rainfall is one of the important manifestations of the changing climate. There is a considerable amount of literature that addresses climate effects on plant systems from molecules to ecosystems. Of particular interest is the effect of increased CO2 on plants in relation to drought and water stress. As it is known that one of the consistent effects of increased CO2 in the atmosphere is increased photosynthesis, especially in C3 plants, it will be interesting to know the effect of drought in relation to elevated CO2. The potential of elevated CO2 ameliorating the effects of water deficit stress is evident from literature, which suggests that these two agents are brothers in arms protecting the plant from stress rather than partners in crime, specifically for water deficit when in isolation. The possible mechanisms by which this occurs will be discussed in this minireview. Interpreting the effects of short-term and long-term exposure of plants to elevated CO2 in the context of ameliorating the negative impacts of drought will show us the possible ways by which there can be effective adaption to crops in the changing climate scenario.
Collapse
|
14
|
Jan M, Liu Z, Rochaix JD, Sun X. Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. FRONTIERS IN PLANT SCIENCE 2022; 13:980237. [PMID: 36119624 PMCID: PMC9478734 DOI: 10.3389/fpls.2022.980237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/18/2022] [Indexed: 06/02/2023]
Abstract
The chloroplast is a complex cellular organelle that not only performs photosynthesis but also synthesizes amino acids, lipids, and phytohormones. Nuclear and chloroplast genetic activity are closely coordinated through signaling chains from the nucleus to chloroplast, referred to as anterograde signaling, and from chloroplast to the nucleus, named retrograde signaling. The chloroplast can act as an environmental sensor and communicates with other cell compartments during its biogenesis and in response to stress, notably with the nucleus through retrograde signaling to regulate nuclear gene expression in response to developmental cues and stresses that affect photosynthesis and growth. Although several components involved in the generation and transmission of plastid-derived retrograde signals and in the regulation of the responsive nuclear genes have been identified, the plastid retrograde signaling network is still poorly understood. Here, we review the current knowledge on multiple plastid retrograde signaling pathways, and on potential plastid signaling molecules. We also discuss the retrograde signaling-dependent regulation of nuclear gene expression within the frame of a multilayered network of transcription factors.
Collapse
Affiliation(s)
- Masood Jan
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zhixin Liu
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Jean-David Rochaix
- Department of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Xuwu Sun
- State Key Laboratory of Cotton Biology and State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| |
Collapse
|
15
|
Pandit S, Goel R, Mishra G. Phosphatidic acid binds to and stimulates the activity of ARGAH2 from Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:344-355. [PMID: 35752016 DOI: 10.1016/j.plaphy.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidic acid (PA) has emerged as an important lipid signal during abiotic and biotic stress conditions such as drought, salinity, freezing, nutrient starvation, wounding and microbial elicitation. PA acts during stress responses primarily via binding and translocating target proteins or through modulating their activity. Owing to the importance of PA during stress signaling and developmental stages, it is imperative to identify PA interacting proteins and decipher their specific roles. In the present study, we have identified PA binding proteins from the leaves of Arabidopsis thaliana. Mass spectroscopy analysis led to the identification of 21 PA binding proteins with known roles in various cellular processes. One of the PA-binding proteins identified during this study, AtARGAH2, was further studied to unravel the role of PA interaction. Recombinant AtARGAH2 binding with immobilized PA on a solid support validated PA-AtARGAH2 binding invitro. PA binding to AtARGAH2 leads to the enhancement of arginase enzymatic activity in a dose dependent manner. Enzyme kinetics of recombinant AtARGAH2 demonstrated a lower Km value in presence of PA, suggesting role of PA in efficient enzyme-substrate binding. This simple approach could systematically be applied to perform an inclusive study on lipid binding proteins to elucidate their role in physiology of plants.
Collapse
Affiliation(s)
- Shatakshi Pandit
- Department of Botany, University of Delhi, Delhi, 110007, India.
| | - Renu Goel
- Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
| | - Girish Mishra
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
16
|
Hüdig M, Tronconi MA, Zubimendi JP, Sage TL, Poschmann G, Bickel D, Gohlke H, Maurino VG. Respiratory and C4-photosynthetic NAD-malic enzyme coexist in bundle sheath cell mitochondria and evolved via association of differentially adapted subunits. THE PLANT CELL 2022; 34:597-615. [PMID: 34734993 PMCID: PMC8773993 DOI: 10.1093/plcell/koab265] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/26/2021] [Indexed: 05/29/2023]
Abstract
In plant mitochondria, nicotinamide adenine dinucleotide-malic enzyme (NAD-ME) has a housekeeping function in malate respiration. In different plant lineages, NAD-ME was independently co-opted in C4 photosynthesis. In the C4 Cleome species, Gynandropsis gynandra and Cleome angustifolia, all NAD-ME genes (NAD-MEα, NAD-MEβ1, and NAD-MEβ2) were affected by C4 evolution and are expressed at higher levels than their orthologs in the C3 species Tarenaya hassleriana. In T. hassleriana, the NAD-ME housekeeping function is performed by two heteromers, NAD-MEα/β1 and NAD-MEα/β2, with similar biochemical properties. In both C4 species, this role is restricted to NAD-MEα/β2. In the C4 species, NAD-MEα/β1 is exclusively present in the leaves, where it accounts for most of the enzymatic activity. Gynandropsis gynandra NAD-MEα/β1 (GgNAD-MEα/β1) exhibits high catalytic efficiency and is differentially activated by the C4 intermediate aspartate, confirming its role as the C4-decarboxylase. During C4 evolution, NAD-MEβ1 lost its catalytic activity; its contribution to the enzymatic activity results from a stabilizing effect on the associated α-subunit and the acquisition of regulatory properties. We conclude that in bundle sheath cell mitochondria of C4 species, the functions of NAD-ME as C4 photosynthetic decarboxylase and as a housekeeping enzyme coexist and are performed by isoforms that combine the same α-subunit with differentially adapted β-subunits.
Collapse
Affiliation(s)
- Meike Hüdig
- Molekulare Pflanzenphysiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee, Bonn 53115, Germany
| | - Marcos A Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Juan P Zubimendi
- Centro de Estudios Fotosintéticos y Bioquímicos, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario 2000, Argentina
| | - Tammy L Sage
- Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - Gereon Poschmann
- Molecular Proteomics Laboratory, Biomedical Research Centre (BMFZ) & Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - David Bickel
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry) & Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| | - Veronica G Maurino
- Molekulare Pflanzenphysiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Kirschallee, Bonn 53115, Germany
| |
Collapse
|
17
|
Calace P, Tonetti T, Margarit E, Figueroa CM, Lobertti C, Andreo CS, Gerrard Wheeler MC, Saigo M. The C4 cycle and beyond: diverse metabolic adaptations accompany dual-cell photosynthetic functions in Setaria. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7876-7890. [PMID: 34402880 DOI: 10.1093/jxb/erab381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
C4 photosynthesis is typically characterized by the spatial compartmentalization of the photosynthetic reactions into mesophyll (M) and bundle sheath (BS) cells. Initial carbon fixation within M cells gives rise to C4 acids, which are transported to the BS cells. There, C4 acids are decarboxylated so that the resulting CO2 is incorporated into the Calvin cycle. This work is focused on the study of Setaria viridis, a C4 model plant, closely related to several major feed and bioenergy grasses. First, we performed the heterologous expression and biochemical characterization of Setaria isoforms for chloroplastic NADP-malic enzyme (NADP-ME) and mitochondrial NAD-malic enzyme (NAD-ME). The kinetic parameters obtained agree with a major role for NADP-ME in the decarboxylation of the C4 acid malate in the chloroplasts of BS cells. In addition, mitochondria-located NAD-ME showed regulatory properties that could be important in the context of the operation of the C4 carbon shuttle. Secondly, we compared the proteomes of M and BS compartments and found 825 differentially accumulated proteins that could support different metabolic scenarios. Most interestingly, we found evidence of metabolic strategies to insulate the C4 core avoiding the leakage of intermediates by either up-regulation or down-regulation of chloroplastic, mitochondrial, and peroxisomal proteins. Overall, the results presented in this work provide novel data concerning the complexity of C4 metabolism, uncovering future lines of research that will undoubtedly contribute to the expansion of knowledge on this topic.
Collapse
Affiliation(s)
- Paula Calace
- Grupo de Metabolismo del Carbono y Producción Vegetal, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Tomás Tonetti
- Instituto de Agrobiotecnología del Litoral (IAL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Ezequiel Margarit
- Grupo de Calidad de Frutos Cítricos, Bayas y Mejoramiento Forestal, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Carlos M Figueroa
- Instituto de Agrobiotecnología del Litoral (IAL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Carlos Lobertti
- Grupo de Metabolismo del Carbono y Producción Vegetal, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Laboratorio de Patogénesis Bacteriana, Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Centro Científico Tecnológico Rosario, Rosario, Argentina
| | - Carlos S Andreo
- Grupo de Metabolismo del Carbono y Producción Vegetal, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariel C Gerrard Wheeler
- Grupo de Metabolismo del Carbono y Producción Vegetal, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Mariana Saigo
- Grupo de Metabolismo del Carbono y Producción Vegetal, Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
18
|
Wen Z, Wang Y, Xia C, Zhang Y, Zhang H. Chloroplastic SaNADP-ME4 of C 3-C 4 Woody Desert Species Salsola laricifolia Confers Drought and Salt Stress Resistance to Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2021; 10:1827. [PMID: 34579361 PMCID: PMC8471237 DOI: 10.3390/plants10091827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 11/16/2022]
Abstract
The NADP-malic enzyme (NADP-ME) catalyzes the reversible decarboxylation of L-malate to produce pyruvate, CO2, and NADPH in the presence of a bivalent cation. In addition, this enzyme plays crucial roles in plant developmental and environment responses, especially for the plastidic isoform. However, this isoform is less studied in C3-C4 intermediate species under drought and salt stresses than in C3 and C4 species. In the present study, we characterized SaNADP-ME4 from the intermediate woody desert species Salsola laricifolia. SaNADP-ME4 encoded a protein of 646 amino acids, which was found to be located in the chloroplasts based on confocal imaging. Quantitative real-time PCR analysis showed that SaNADP-ME4 was highly expressed in leaves, followed by stems and roots, and SaNADP-ME4 expression was improved and reached its maximum under the 200 mm mannitol and 100 mm NaCl treatments, respectively. Arabidopsis overexpressing SaNADP-ME4 showed increased root length and fresh weight under mannitol and salt stress conditions at the seedling stage. In the adult stage, SaNADP-ME4 could alleviate the decreased in chlorophyll contents and PSII photochemical efficiency, as well as improve the expression of superoxide dismutase, peroxidase, and pyrroline-5-carboxylate synthase genes to enhance reactive oxygen species scavenging capability and proline levels. Our results suggest that SaNADP-ME4 overexpression in Arabidopsis increases drought and salt stress resistance.
Collapse
Affiliation(s)
- Zhibin Wen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Wang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunlan Xia
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuhui Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxiang Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; (Z.W.); (Y.W.); (C.X.); (Y.Z.)
- The Specimen Museum of Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
19
|
Francisco M, Kliebenstein DJ, Rodríguez VM, Soengas P, Abilleira R, Cartea ME. Fine mapping identifies NAD-ME1 as a candidate underlying a major locus controlling temporal variation in primary and specialized metabolism in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:454-467. [PMID: 33523525 DOI: 10.1111/tpj.15178] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/19/2021] [Indexed: 05/23/2023]
Abstract
Plant metabolism is modulated by a complex interplay between internal signals and external cues. A major goal of all quantitative metabolomic studies is to clone the underlying genes to understand the mechanistic basis of this variation. Using fine-scale genetic mapping, in this work we report the identification and initial characterization of NAD-DEPENDENT MALIC ENZYME 1 (NAD-ME1) as the candidate gene underlying the pleiotropic network Met.II.15 quantitative trait locus controlling variation in plant metabolism and circadian clock outputs in the Bay × Sha Arabidopsis population. Transcript abundance and promoter analysis in NAD-ME1Bay-0 and NAD-ME1Sha alleles confirmed allele-specific expression that appears to be due a polymorphism disrupting a putative circadian cis-element binding site. Analysis of transfer DNA insertion lines and heterogeneous inbred families showed that transcript variation of the NAD-ME1 gene led to temporal shifts of tricarboxylic acid cycle intermediates, glucosinolate (GSL) accumulation, and altered regulation of several GSL biosynthesis pathway genes. Untargeted metabolomic analyses revealed complex regulatory networks of NAD-ME1 dependent upon the daytime. The mutant led to shifts in plant primary metabolites, cell wall components, isoprenoids, fatty acids, and plant immunity phytochemicals, among others. Our findings suggest that NAD-ME1 may act as a key gene to coordinate plant primary and secondary metabolism in a time-dependent manner.
Collapse
Affiliation(s)
- Marta Francisco
- Misión Biológica de Galicia (MBG-CSIC), P.O. Box 28, Pontevedra, 36080, Spain
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California at Davis, Davis, CA, 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Denmark
| | - Víctor M Rodríguez
- Misión Biológica de Galicia (MBG-CSIC), P.O. Box 28, Pontevedra, 36080, Spain
| | - Pilar Soengas
- Misión Biológica de Galicia (MBG-CSIC), P.O. Box 28, Pontevedra, 36080, Spain
| | - Rosaura Abilleira
- Misión Biológica de Galicia (MBG-CSIC), P.O. Box 28, Pontevedra, 36080, Spain
| | - María E Cartea
- Misión Biológica de Galicia (MBG-CSIC), P.O. Box 28, Pontevedra, 36080, Spain
| |
Collapse
|
20
|
Corpas FJ, González-Gordo S, Palma JM. Nitric oxide and hydrogen sulfide modulate the NADPH-generating enzymatic system in higher plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:830-847. [PMID: 32945878 DOI: 10.1093/jxb/eraa440] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) are two key molecules in plant cells that participate, directly or indirectly, as regulators of protein functions through derived post-translational modifications, mainly tyrosine nitration, S-nitrosation, and persulfidation. These post-translational modifications allow the participation of both NO and H2S signal molecules in a wide range of cellular processes either physiological or under stressful circumstances. NADPH participates in cellular redox status and it is a key cofactor necessary for cell growth and development. It is involved in significant biochemical routes such as fatty acid, carotenoid and proline biosynthesis, and the shikimate pathway, as well as in cellular detoxification processes including the ascorbate-glutathione cycle, the NADPH-dependent thioredoxin reductase (NTR), or the superoxide-generating NADPH oxidase. Plant cells have diverse mechanisms to generate NADPH by a group of NADP-dependent oxidoreductases including ferredoxin-NADP reductase (FNR), NADP-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH), NADP-dependent malic enzyme (NADP-ME), NADP-dependent isocitrate dehydrogenase (NADP-ICDH), and both enzymes of the oxidative pentose phosphate pathway, designated as glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH). These enzymes consist of different isozymes located in diverse subcellular compartments (chloroplasts, cytosol, mitochondria, and peroxisomes) which contribute to the NAPDH cellular pool. We provide a comprehensive overview of how post-translational modifications promoted by NO (tyrosine nitration and S-nitrosation), H2S (persulfidation), and glutathione (glutathionylation), affect the cellular redox status through regulation of the NADP-dependent dehydrogenases.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| | - José M Palma
- Group of Antioxidant, Free Radical and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, C/ Profesor Albareda, Granada, Spain
| |
Collapse
|
21
|
Eprintsev AT, Gataullina MO. Kinetic Properties of NADP+-Dependent Decarboxylating Malate Dehydrogenase from Corn Leaves. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Correia PMP, da Silva AB, Vaz M, Carmo-Silva E, Marques da Silva J. Efficient Regulation of CO 2 Assimilation Enables Greater Resilience to High Temperature and Drought in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:675546. [PMID: 34381474 PMCID: PMC8350398 DOI: 10.3389/fpls.2021.675546] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/28/2021] [Indexed: 05/15/2023]
Abstract
Increasing temperatures and extended drought episodes are among the major constraints affecting food production. Maize has a relatively high temperature optimum for photosynthesis compared to C3 crops, however, the response of this important C4 crop to the combination of heat and drought stress is poorly understood. Here, we hypothesized that resilience to high temperature combined with water deficit (WD) would require efficient regulation of the photosynthetic traits of maize, including the C4-CO2 concentrating mechanism (CCM). Two genotypes of maize with contrasting levels of drought and heat tolerance, B73 and P0023, were acclimatized at high temperature (38°C versus 25°C) under well-watered (WW) or WD conditions. The photosynthetic performance was evaluated by gas exchange and chlorophyll a fluorescence, and in vitro activities of key enzymes for carboxylation (phosphoenolpyruvate carboxylase), decarboxylation (NADP-malic enzyme), and carbon fixation (Rubisco). Both genotypes successfully acclimatized to the high temperature, although with different mechanisms: while B73 maintained the photosynthetic rates by increasing stomatal conductance (gs), P0023 maintained gs and showed limited transpiration. When WD was experienced in combination with high temperatures, limited transpiration allowed water-savings and acted as a drought stress avoidance mechanism. The photosynthetic efficiency in P0023 was sustained by higher phosphorylated PEPC and electron transport rate (ETR) near vascular tissues, supplying chemical energy for an effective CCM. These results suggest that the key traits for drought and heat tolerance in maize are limited transpiration rate, allied with a synchronized regulation of the carbon assimilation metabolism. These findings can be exploited in future breeding efforts aimed at improving maize resilience to climate change.
Collapse
Affiliation(s)
- Pedro M. P. Correia
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- *Correspondence: Pedro M. P. Correia,
| | - Anabela Bernardes da Silva
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Margarida Vaz
- Departamento de Biologia, Mediterranean Institute for Agriculture (MED), Environment and Development, Universidade de Évora, Évora, Portugal
| | | | - Jorge Marques da Silva
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
- Departamento de Biologia Vegetal, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Tronconi MA, Hüdig M, Schranz ME, Maurino VG. Independent Recruitment of Duplicated β-Subunit-Coding NAD-ME Genes Aided the Evolution of C4 Photosynthesis in Cleomaceae. FRONTIERS IN PLANT SCIENCE 2020; 11:572080. [PMID: 33123181 PMCID: PMC7573226 DOI: 10.3389/fpls.2020.572080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/14/2020] [Indexed: 05/21/2023]
Abstract
In different lineages of C4 plants, the release of CO2 by decarboxylation of a C4 acid near rubisco is catalyzed by NADP-malic enzyme (ME) or NAD-ME, and the facultative use of phosphoenolpyruvate carboxykinase. The co-option of gene lineages during the evolution of C4-NADP-ME has been thoroughly investigated, whereas that of C4-NAD-ME has received less attention. In this work, we aimed at elucidating the mechanism of recruitment of NAD-ME for its function in the C4 pathway by focusing on the eudicot family Cleomaceae. We identified a duplication of NAD-ME in vascular plants that generated the two paralogs lineages: α- and β-NAD-ME. Both gene lineages were retained across seed plants, and their fixation was likely driven by a degenerative process of sub-functionalization, which resulted in a NAD-ME operating primarily as a heteromer of α- and β-subunits. We found most angiosperm genomes maintain a 1:1 β-NAD-ME/α-NAD-ME (β/α) relative gene dosage, but with some notable exceptions mainly due to additional duplications of β-NAD-ME subunits. For example, a significantly high proportion of species with C4-NAD-ME-type photosynthesis have a non-1:1 ratio of β/α. In the Brassicales, we found C4 species with a 2:1 ratio due to a β-NAD-ME duplication (β1 and β2); this was also observed in the C3 Tarenaya hassleriana and Brassica crops. In the independently evolved C4 species, Gynandropsis gynandra and Cleome angustifolia, all three genes were affected by C4 evolution with α- and β1-NAD-ME driven by adaptive selection. In particular, the β1-NAD-MEs possess many differentially substituted amino acids compared with other species and the β2-NAD-MEs of the same species. Five of these amino acids are identically substituted in β1-NAD-ME of G. gynandra and C. angustifolia, two of them were identified as positively selected. Using synteny analysis, we established that β-NAD-ME duplications were derived from ancient polyploidy events and that α-NAD-ME is in a unique syntenic context in both Cleomaceae and Brassicaceae. We discuss our hypotheses for the evolution of NAD-ME and its recruitment for C4 photosynthesis. We propose that gene duplications provided the basis for the recruitment of NAD-ME in C4 Cleomaceae and that all members of the NAD-ME gene family have been adapted to fit the C4-biochemistry. Also, one of the β-NAD-ME gene copies was independently co-opted for its function in the C4 pathway.
Collapse
Affiliation(s)
- Marcos A. Tronconi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Meike Hüdig
- Abteilung Molekulare Pflanzenphysiologie, Institut für Molekulare Physiologie und Biotechnologie der Pflanzen, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - M. Eric Schranz
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - Veronica G. Maurino
- Abteilung Molekulare Pflanzenphysiologie, Institut für Molekulare Physiologie und Biotechnologie der Pflanzen, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
24
|
Eprintsev AT, Fedorin DN, Gataullina MO, Igamberdiev AU. Two forms of NAD-malic enzyme in maize leaves are regulated by light in opposite ways via promoter methylation. JOURNAL OF PLANT PHYSIOLOGY 2020; 251:153193. [PMID: 32540762 DOI: 10.1016/j.jplph.2020.153193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/14/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
NAD-malic enzyme (EC 1.1.1.39) activity, expression and methylation of promoters of its two genes was studied in maize (Zea mays L.) leaves depending on light regime. The total activity was high in darkness and upon irradiation by far-red light and suppressed by white light and by red light. The changes in the levels of transcripts of the genes Me1 and Me2 encoding NAD-malic enzyme revealed their dependence on irradiation in opposite ways. White and red light decreased the quantity of mRNA of the gene Me1, while far-red light led to the increase of its transcripts. The opposite pattern was observed for the transcripts of Me2, the level of which was low in darkness and upon irradiation by far-red light, and was higher in white light and after irradiation by red light. The study of methylation of the promoters of the genes encoding NAD-ME showed a strong dependence between the levels of transcripts and the state of methylation of CG dinucleotides. The two isoforms of NAD-malic enzyme were partially purified from maize leaves and characterized. The first isoform had a pH optimum of 6.4 while the second had a pH optimum of 6.9; in the reverse reaction, the pH optimum was ∼0.5 units higher. It is concluded that the two genes encode different isoforms of NAD-malic enzyme with different kinetic properties. The role of both isoforms in the operation of the tricarboxylic acid cycle in the open mode is discussed.
Collapse
Affiliation(s)
- Alexander T Eprintsev
- Department of Biochemistry and Cell Physiology, Voronezh State University, Voronezh 394006, Russia
| | - Dmitry N Fedorin
- Department of Biochemistry and Cell Physiology, Voronezh State University, Voronezh 394006, Russia
| | - Marina O Gataullina
- Department of Biochemistry and Cell Physiology, Voronezh State University, Voronezh 394006, Russia
| | - Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
25
|
Igamberdiev AU. Citrate valve integrates mitochondria into photosynthetic metabolism. Mitochondrion 2020; 52:218-230. [PMID: 32278088 DOI: 10.1016/j.mito.2020.04.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/21/2020] [Accepted: 04/07/2020] [Indexed: 12/31/2022]
Abstract
While in heterotrophic cells and in darkness mitochondria serve as main producers of energy, during photosynthesis this function is transferred to chloroplasts and the main role of mitochondria in bioenergetics turns to be the balance of the level of phosphorylation of adenylates and of reduction of pyridine nucleotides to avoid over-energization of the cell and optimize major metabolic fluxes. This is achieved via the establishment and regulation of local equilibria of the tricarboxylic acid (TCA) cycle enzymes malate dehydrogenase and fumarase in one branch and aconitase and isocitrate dehydrogenase in another branch. In the conditions of elevation of redox level, the TCA cycle is transformed into a non-cyclic open structure (hemicycle) leading to the export of the tricarboxylic acid (citrate) to the cytosol and to the accumulation of the dicarboxylic acids (malate and fumarate). While the buildup of NADPH in chloroplasts provides operation of the malate valve leading to establishment of NADH/NAD+ ratios in different cell compartments, the production of NADH by mitochondria drives citrate export by establishing conditions for the operation of the citrate valve. The latter regulates the intercompartmental NADPH/NADP+ ratio and contributes to the biosynthesis of amino acids and other metabolic products during photosynthesis.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
26
|
Yadav S, Mishra A. Ectopic expression of C 4 photosynthetic pathway genes improves carbon assimilation and alleviate stress tolerance for future climate change. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2020; 26:195-209. [PMID: 32153323 PMCID: PMC7036372 DOI: 10.1007/s12298-019-00751-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/10/2019] [Accepted: 12/23/2019] [Indexed: 05/04/2023]
Abstract
Alteration in atmospheric carbon dioxide concentration and other environmental factors are the significant cues of global climate change. Environmental factors affect the most fundamental biological process including photosynthesis and different metabolic pathways. The feeding of the rapidly growing world population is another challenge which imposes pressure to improve productivity and quality of the existing crops. C4 plants are considered the most productive, containing lower photorespiration, and higher water-use & N-assimilation efficiencies, compared to C3 plants. Besides, the C4-photosynthetic genes not only play an important role in carbon assimilation but also modulate abiotic stresses. In this review, fundamental three metabolic processes (C4, C3, and CAM) of carbon dioxide assimilation, the evolution of C4-photosynthetic genes, effect of elevated CO2 on photosynthesis, and overexpression of C4-photosynthetic genes for higher photosynthesis were discussed. Kranz-anatomy is considered an essential prerequisite for the terrestrial C4 carbon assimilation, but single-celled C4 plant species changed this well-established paradigm. C4 plants are insensitive to an elevated CO2 stress condition but performed better under stress conditions. Overexpression of essential C4-photosynthetic genes such as PEPC, PPDK, and NADP-ME in C3 plants like Arabidopsis, tobacco, rice, wheat, and potato not only improved photosynthesis but also provided tolerance to various environmental stresses, especially drought. The review provides useful information for sustainable productivity and yield under elevated CO2 environment, which to be explored further for CO2 assimilation and also abiotic stress tolerance. Additionally, it provides a better understanding to explore C4-photosynthetic gene(s) to cope with global warming and prospective adverse climatic changes.
Collapse
Affiliation(s)
- Sonam Yadav
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat India
| | - Avinash Mishra
- Division of Applied Phycology and Biotechnology, CSIR-Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar, Gujarat India
| |
Collapse
|
27
|
Muñoz-Vargas MA, González-Gordo S, Palma JM, Corpas FJ. Inhibition of NADP-malic enzyme activity by H 2 S and NO in sweet pepper (Capsicum annuum L.) fruits. PHYSIOLOGIA PLANTARUM 2020; 168:278-288. [PMID: 31152557 DOI: 10.1111/ppl.13000] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/21/2019] [Accepted: 05/28/2019] [Indexed: 05/20/2023]
Abstract
NADPH is an essential cofactor in many physiological processes. Fruit ripening is caused by multiple biochemical pathways in which, reactive oxygen and nitrogen species (ROS/RNS) metabolism is involved. Previous studies have demonstrated the differential modulation of nitric oxide (NO) and hydrogen sulfide (H2 S) content during sweet pepper (Capsicum annuum L.) fruit ripening, both of which regulate NADP-isocitrate dehydrogenase activity. To gain a deeper understanding of the potential functions of other NADPH-generating components, we analyzed glucose-6-phosphate dehydrogenase (G6PDH) and 6-phosphogluconate dehydrogenase (6PGDH), which are involved in the oxidative phase of the pentose phosphate pathway (OxPPP) and NADP-malic enzyme (NADP-ME). During fruit ripening, G6PDH activity diminished by 38%, while 6PGDH and NADP-ME activity increased 1.5- and 2.6-fold, respectively. To better understand the potential regulation of these NADP-dehydrogenases by H2 S, we obtained a 50-75% ammonium-sulfate-enriched protein fraction containing these proteins. With the aid of in vitro assays, in the presence of H2 S, we observed that, while NADP-ME activity was inhibited by up to 29-32% using 2 and 5 mM Na2 S as H2 S donor, G6PDH and 6PGDH activities were unaffected. On the other hand, NO donors, S-nitrosocyteine (CysNO) and DETA NONOate also inhibited NADP-ME activity by 35%. These findings suggest that both NADP-ME and 6PGDH play an important role in maintaining the supply of NADPH during pepper fruit ripening and that H2 S and NO partially modulate the NADPH-generating system.
Collapse
Affiliation(s)
- María A Muñoz-Vargas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - Salvador González-Gordo
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - José M Palma
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| | - Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), 18008, Granada, Spain
| |
Collapse
|
28
|
Alvarez CE, Bovdilova A, Höppner A, Wolff CC, Saigo M, Trajtenberg F, Zhang T, Buschiazzo A, Nagel-Steger L, Drincovich MF, Lercher MJ, Maurino VG. Molecular adaptations of NADP-malic enzyme for its function in C 4 photosynthesis in grasses. NATURE PLANTS 2019; 5:755-765. [PMID: 31235877 DOI: 10.1038/s41477-019-0451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In C4 grasses of agronomical interest, malate shuttled into the bundle sheath cells is decarboxylated mainly by nicotinamide adenine dinucleotide phosphate (NADP)-malic enzyme (C4-NADP-ME). The activity of C4-NADP-ME was optimized by natural selection to efficiently deliver CO2 to Rubisco. During its evolution from a plastidic non-photosynthetic NADP-ME, C4-NADP-ME acquired increased catalytic efficiency, tetrameric structure and pH-dependent inhibition by its substrate malate. Here, we identified specific amino acids important for these C4 adaptions based on strict differential conservation of amino acids, combined with solving the crystal structures of maize and sorghum C4-NADP-ME. Site-directed mutagenesis and structural analyses show that Q503, L544 and E339 are involved in catalytic efficiency; E339 confers pH-dependent regulation by malate, F140 is critical for the stabilization of the oligomeric structure and the N-terminal region is involved in tetramerization. Together, the identified molecular adaptations form the basis for the efficient catalysis and regulation of one of the central biochemical steps in C4 metabolism.
Collapse
Affiliation(s)
- Clarisa E Alvarez
- Centro de Estudios Fotosinteticos y Bioquimicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, University of Rosario, Rosario, Argentina
| | - Anastasiia Bovdilova
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Astrid Höppner
- Center for Structural Studies, Hreinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christian-Claus Wolff
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Mariana Saigo
- Centro de Estudios Fotosinteticos y Bioquimicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, University of Rosario, Rosario, Argentina
| | - Felipe Trajtenberg
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Tao Zhang
- Institut für Physikalische Biologie, Heinrich Heine University, Düsseldorf, Germany
- Institut of Complex Systems, Structural Biochemistry (ICS-6), Jülich, Germany
| | - Alejandro Buschiazzo
- Laboratory of Molecular and Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Integrative Microbiology of Zoonotic Agents, Department of Microbiology, Institut Pasteur, Paris, France
| | - Luitgard Nagel-Steger
- Institut für Physikalische Biologie, Heinrich Heine University, Düsseldorf, Germany
- Institut of Complex Systems, Structural Biochemistry (ICS-6), Jülich, Germany
| | - Maria F Drincovich
- Centro de Estudios Fotosinteticos y Bioquimicos (CEFOBI-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, University of Rosario, Rosario, Argentina
| | - Martin J Lercher
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
- Institute for Computer Science and Department of Biology, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Veronica G Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany.
| |
Collapse
|
29
|
Cacefo V, Ribas AF, Zilliani RR, Neris DM, Domingues DS, Moro AL, Vieira LGE. Decarboxylation mechanisms of C4 photosynthesis in Saccharum spp.: increased PEPCK activity under water-limiting conditions. BMC PLANT BIOLOGY 2019; 19:144. [PMID: 30991938 PMCID: PMC6469216 DOI: 10.1186/s12870-019-1745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND C4 plants have been classified into three subtypes based on the enzymes used to decarboxylate C4 acids in the bundle sheath cells (NADP-ME, NAD-ME and PEPCK pathways). Evidences indicate that, depending on environmental factors, C4 plants may exhibit a certain degree of flexibility in the use of the decarboxylation mechanisms. In this context, the objective was to extend the knowledge on the degree of flexibility between the pathways of decarboxylation in sugarcane, a NADP-ME species, at different levels of water deficit. RESULTS An experiment was carried out with two cultivars - RB92579 (tolerant to water deficit) and SP80-3280 (susceptible to water deficit) subjected to moderate level (- 1.5 to - 1.8 MPa), severe level (below - 2.0 MPa) and recovery (48 h after rehydration) and changes in the activities of the enzymes involved in the three C4 mechanisms and in gene expression were investigated. Our results showed that sugarcane uses the PEPCK pathway as a decarboxylation mechanism in addition to the NADP-ME, which was more evident under water deficit conditions for both cultivars. CONCLUSIONS The results obtained here, show that sugarcane increases the use of the PEPCK pathway as a decarboxylation mechanism, in addition to the NADP-ME pathway, under conditions of water deficit, particularly in the tolerant cultivar.
Collapse
Affiliation(s)
- Viviane Cacefo
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Alessandra Ferreira Ribas
- Agronomy Graduate Program, Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Rafael Rebes Zilliani
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Daniel Moreira Neris
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Douglas Silva Domingues
- Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Avenida 24-A, 1515, CEP, Rio Claro, SP 13506-900 Brazil
| | - Adriana Lima Moro
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Luiz Gonzaga Esteves Vieira
- Agronomy Graduate Program, Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| |
Collapse
|
30
|
Schlüter U, Bräutigam A, Droz JM, Schwender J, Weber APM. The role of alanine and aspartate aminotransferases in C 4 photosynthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:64-76. [PMID: 30126035 DOI: 10.1111/plb.12904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Alanine and aspartate are essential transfer metabolites for C4 species of the NAD-malic enzyme and phosphoenolpyruvate carboxykinase subtype. To some degree both amino acids are also part of the metabolite shuttle in NADP-malic enzyme plants. In comparison with C3 species, the majority of C4 species are therefore characterised by enhanced expression and activity of alanine and aspartate aminotransferases (AT) in the photosynthetically active tissue. Both enzymes exist in multiple copies and have been found in different subcellular compartments. We tested whether different C4 species show preferential recruitment of enzymes from specific lineages and subcellular compartments. Phylogenetic analysis of alanine and aspartate ATs from a variety of monocot and eudicot C4 species and their C3 relatives was combined with subcellular prediction tools and analysis of the subsequent transcript amounts in mature leaves. Recruitment of aspartate AT from a specific subcellular compartment was strongly connected to the biochemical subtype. Deviation from the main model was however observed in Gynandropsis gynandra. The configuration of alanine AT generally differed in monocot and eudicot species. C4 monocots recruited an alanine AT from a specific cytosolic branch, but eudicots use alanine AT copies from a mitochondrial branch. Generally, plants display high plasticity in the setup of the C4 pathway. Beside the common models for the different C4 subtypes, individual solutions were found for plant groups or lineages.
Collapse
Affiliation(s)
- U Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - A Bräutigam
- Computational Biology, Centre for Biotechnology, University Bielefeld, Bielefeld, Germany
| | | | - J Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - A P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
31
|
Watson-Lazowski A, Papanicolaou A, Sharwood R, Ghannoum O. Investigating the NAD-ME biochemical pathway within C 4 grasses using transcript and amino acid variation in C 4 photosynthetic genes. PHOTOSYNTHESIS RESEARCH 2018; 138:233-248. [PMID: 30078073 DOI: 10.1007/s11120-018-0569-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/28/2018] [Indexed: 05/18/2023]
Abstract
Expanding knowledge of the C4 photosynthetic pathway can provide key information to aid biological improvements to crop photosynthesis and yield. While the C4 NADP-ME pathway is well characterised, there is increasing agricultural and bioengineering interest in the comparably understudied NAD-ME and PEPCK pathways. Within this study, a systematic identification of key differences across species has allowed us to investigate the evolution of C4-recruited genes in one C3 and eleven C4 grasses (Poaceae) spanning two independent origins of C4 photosynthesis. We present evidence for C4-specific paralogs of NAD-malic enzyme 2, MPC1 and MPC2 (mitochondrial pyruvate carriers) via increased transcript abundance and associated rates of evolution, implicating them as genes recruited to perform C4 photosynthesis within NAD-ME and PEPCK subtypes. We then investigate the localisation of AspAT across subtypes, using novel and published evidence to place AspAT3 in both the cytosol and peroxisome. Finally, these findings are integrated with transcript abundance of previously identified C4 genes to provide an updated model for C4 grass NAD-ME and PEPCK photosynthesis. This updated model allows us to develop on the current understanding of NAD-ME and PEPCK photosynthesis in grasses, bolstering our efforts to understand the evolutionary 'path to C4' and improve C4 photosynthesis.
Collapse
Affiliation(s)
- Alexander Watson-Lazowski
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia.
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Robert Sharwood
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
32
|
Borba AR, Serra TS, Górska A, Gouveia P, Cordeiro AM, Reyna-Llorens I, Kneřová J, Barros PM, Abreu IA, Oliveira MM, Hibberd JM, Saibo NJM. Synergistic Binding of bHLH Transcription Factors to the Promoter of the Maize NADP-ME Gene Used in C4 Photosynthesis Is Based on an Ancient Code Found in the Ancestral C3 State. Mol Biol Evol 2018; 35:1690-1705. [PMID: 29659975 PMCID: PMC5995220 DOI: 10.1093/molbev/msy060] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
C4 photosynthesis has evolved repeatedly from the ancestral C3 state to generate a carbon concentrating mechanism that increases photosynthetic efficiency. This specialized form of photosynthesis is particularly common in the PACMAD clade of grasses, and is used by many of the world's most productive crops. The C4 cycle is accomplished through cell-type-specific accumulation of enzymes but cis-elements and transcription factors controlling C4 photosynthesis remain largely unknown. Using the NADP-Malic Enzyme (NADP-ME) gene as a model we tested whether mechanisms impacting on transcription in C4 plants evolved from ancestral components found in C3 species. Two basic Helix-Loop-Helix (bHLH) transcription factors, ZmbHLH128 and ZmbHLH129, were shown to bind the C4NADP-ME promoter from maize. These proteins form heterodimers and ZmbHLH129 impairs trans-activation by ZmbHLH128. Electrophoretic mobility shift assays indicate that a pair of cis-elements separated by a seven base pair spacer synergistically bind either ZmbHLH128 or ZmbHLH129. This pair of cis-elements is found in both C3 and C4 Panicoid grass species of the PACMAD clade. Our analysis is consistent with this cis-element pair originating from a single motif present in the ancestral C3 state. We conclude that C4 photosynthesis has co-opted an ancient C3 regulatory code built on G-box recognition by bHLH to regulate the NADP-ME gene. More broadly, our findings also contribute to the understanding of gene regulatory networks controlling C4 photosynthesis.
Collapse
Affiliation(s)
- Ana Rita Borba
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Tânia S Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Alicja Górska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Paulo Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - André M Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jana Kneřová
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Maria Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
33
|
Hüdig M, Schmitz J, Engqvist MKM, Maurino VG. Biochemical control systems for small molecule damage in plants. PLANT SIGNALING & BEHAVIOR 2018; 13:e1477906. [PMID: 29944438 PMCID: PMC6103286 DOI: 10.1080/15592324.2018.1477906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/11/2018] [Indexed: 05/29/2023]
Abstract
As a system, plant metabolism is far from perfect: small molecules (metabolites, cofactors, coenzymes, and inorganic molecules) are frequently damaged by unwanted enzymatic or spontaneous reactions. Here, we discuss the emerging principles in small molecule damage biology. We propose that plants evolved at least three distinct systems to control small molecule damage: (i) repair, which returns a damaged molecule to its original state; (ii) scavenging, which converts reactive molecules to harmless products; and (iii) steering, in which the possible formation of a damaged molecule is suppressed. We illustrate the concept of small molecule damage control in plants by describing specific examples for each of these three categories. We highlight interesting insights that we expect future research will provide on those systems, and we discuss promising strategies to discover new small molecule damage-control systems in plants.
Collapse
Affiliation(s)
- M. Hüdig
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - J. Schmitz
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - M. K. M. Engqvist
- Department of Biology and Biological engineering, Division of Systems and Synthetic Biology, Chalmers University of Technology, Gothenburg, Sweden
| | - V. G. Maurino
- Plant Molecular Physiology and Biotechnology Group, Institute of Developmental and Molecular Biology of Plants, Heinrich Heine University, and Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
34
|
Reyna-Llorens I, Hibberd JM. Recruitment of pre-existing networks during the evolution of C 4 photosynthesis. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160386. [PMID: 28808102 PMCID: PMC5566883 DOI: 10.1098/rstb.2016.0386] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 11/12/2022] Open
Abstract
During C4 photosynthesis, CO2 is concentrated around the enzyme RuBisCO. The net effect is to reduce photorespiration while increasing water and nitrogen use efficiencies. Species that use C4 photosynthesis have evolved independently from their C3 ancestors on more than 60 occasions. Along with mimicry and the camera-like eye, the C4 pathway therefore represents a remarkable example of the repeated evolution of a highly complex trait. In this review, we provide evidence that the polyphyletic evolution of C4 photosynthesis is built upon pre-existing metabolic and genetic networks. For example, cells around veins of C3 species show similarities to those of the C4 bundle sheath in terms of C4 acid decarboxylase activity and also the photosynthetic electron transport chain. Enzymes of C4 photosynthesis function together in gluconeogenesis during early seedling growth of C3Arabidopsis thaliana Furthermore, multiple C4 genes appear to be under control of both light and chloroplast signals in the ancestral C3 state. We, therefore, hypothesize that relatively minor rewiring of pre-existing genetic and metabolic networks has facilitated the recurrent evolution of this trait. Understanding how these changes are likely to have occurred could inform attempts to install C4 traits into C3 crops.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
35
|
Li Y, Heckmann D, Lercher MJ, Maurino VG. Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:117-125. [PMID: 27660481 DOI: 10.1093/jxb/erw333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To feed a world population projected to reach 9 billion people by 2050, the productivity of major crops must be increased by at least 50%. One potential route to boost the productivity of cereals is to equip them genetically with the 'supercharged' C4 type of photosynthesis; however, the necessary genetic modifications are not sufficiently understood for the corresponding genetic engineering programme. In this opinion paper, we discuss a strategy to solve this problem by developing a new paradigm for plant breeding. We propose combining the bioengineering of well-understood traits with subsequent evolutionary engineering, i.e. mutagenesis and artificial selection. An existing mathematical model of C3-C4 evolution is used to choose the most promising path towards this goal. Based on biomathematical simulations, we engineer Arabidopsis thaliana plants that express the central carbon-fixing enzyme Rubisco only in bundle sheath cells (Ru-BSC plants), the localization characteristic for C4 plants. This modification will initially be deleterious, forcing the Ru-BSC plants into a fitness valley from where previously inaccessible adaptive steps towards C4 photosynthesis become accessible through fitness-enhancing mutations. Mutagenized Ru-BSC plants are then screened for improved photosynthesis, and are expected to respond to imposed artificial selection pressures by evolving towards C4 anatomy and biochemistry.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute for Computer Science, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - David Heckmann
- Institute for Computer Science, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
36
|
Wang K, Liu Y, Tian J, Huang K, Shi T, Dai X, Zhang W. Transcriptional Profiling and Identification of Heat-Responsive Genes in Perennial Ryegrass by RNA-Sequencing. FRONTIERS IN PLANT SCIENCE 2017; 8:1032. [PMID: 28680431 PMCID: PMC5478880 DOI: 10.3389/fpls.2017.01032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/29/2017] [Indexed: 05/18/2023]
Abstract
Perennial ryegrass (Lolium perenne) is one of the most widely used forage and turf grasses in the world due to its desirable agronomic qualities. However, as a cool-season perennial grass species, high temperature is a major factor limiting its performance in warmer and transition regions. In this study, a de novo transcriptome was generated using a cDNA library constructed from perennial ryegrass leaves subjected to short-term heat stress treatment. Then the expression profiling and identification of perennial ryegrass heat response genes by digital gene expression analyses was performed. The goal of this work was to produce expression profiles of high temperature stress responsive genes in perennial ryegrass leaves and further identify the potentially important candidate genes with altered levels of transcript, such as those genes involved in transcriptional regulation, antioxidant responses, plant hormones and signal transduction, and cellular metabolism. The de novo assembly of perennial ryegrass transcriptome in this study obtained more total and annotated unigenes compared to previously published ones. Many DEGs identified were genes that are known to respond to heat stress in plants, including HSFs, HSPs, and antioxidant related genes. In the meanwhile, we also identified four gene candidates mainly involved in C4 carbon fixation, and one TOR gene. Their exact roles in plant heat stress response need to dissect further. This study would be important by providing the gene resources for improving heat stress tolerance in both perennial ryegrass and other cool-season perennial grass plants.
Collapse
Affiliation(s)
- Kehua Wang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| | - Yanrong Liu
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Jinli Tian
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Kunyong Huang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Tianran Shi
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Xiaoxia Dai
- Department of Grassland Science, China Agricultural UniversityBeijing, China
| | - Wanjun Zhang
- Department of Grassland Science, China Agricultural UniversityBeijing, China
- National Energy R&D Center for Biomass, China Agricultural UniversityBeijing, China
- *Correspondence: Kehua Wang, Wanjun Zhang,
| |
Collapse
|
37
|
Voznesenskaya EV, Koteyeva NK, Edwards GE, Ocampo G. Unique photosynthetic phenotypes in Portulaca (Portulacaceae): C3-C4 intermediates and NAD-ME C4 species with Pilosoid-type Kranz anatomy. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:225-239. [PMID: 27986845 PMCID: PMC5853368 DOI: 10.1093/jxb/erw393] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/18/2016] [Indexed: 05/24/2023]
Abstract
Portulacaceae is a family that has considerable diversity in photosynthetic phenotypes. It is one of 19 families of terrestrial plants where species having C4 photosynthesis have been found. Most species in Portulaca are in the alternate-leaved (AL) lineage, which includes one clade (Cryptopetala) with taxa lacking C4 photosynthesis and three clades having C4 species (Oleracea, Umbraticola and Pilosa). All three species in the Cryptopetala clade lack Kranz anatomy, the leaves have C3-like carbon isotope composition and they have low levels of C4 cycle enzymes. Anatomical, biochemical and physiological analyses show they are all C3-C4 intermediates. They have intermediate CO2 compensation points, enrichment of organelles in the centripetal position in bundle sheath (BS) cells, with selective localization of glycine decarboxylase in BS mitochondria. In the three C4 clades there are differences in Kranz anatomy types and form of malic enzyme (ME) reported to function in C4 (NAD-ME versus NADP-ME): Oleracea (Atriplicoid, NAD-ME), Umbraticola (Atriplicoid, NADP-ME) and Pilosa (Pilosoid, NADP-ME). Structural and biochemical analyses were performed on Pilosa clade representatives having Pilosoid-type leaf anatomy with Kranz tissue enclosing individual peripheral vascular bundles and water storage in the center of the leaf. In this clade, all species except P. elatior are NADP-ME-type C4 species with grana-deficient BS chloroplasts and grana-enriched M chloroplasts. Surprisingly, P. elatior has BS chloroplasts enriched in grana and NAD-ME-type photosynthesis. The results suggest photosynthetic phenotypes were probably derived from an ancestor with NADP-ME-type C4, with two independent switches to NAD-ME type.
Collapse
Affiliation(s)
- Elena V Voznesenskaya
- Laboratory of Anatomy and Morphology, VL Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov Street 2, 197376, St. Petersburg, Russia
| | - Nuria K Koteyeva
- Laboratory of Anatomy and Morphology, VL Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov Street 2, 197376, St. Petersburg, Russia
| | - Gerald E Edwards
- School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA
| | - Gilberto Ocampo
- Universidad Autónoma de Aguascalientes, Aguascalientes, Mexico
| |
Collapse
|
38
|
Rao X, Dixon RA. The Differences between NAD-ME and NADP-ME Subtypes of C 4 Photosynthesis: More than Decarboxylating Enzymes. FRONTIERS IN PLANT SCIENCE 2016; 7:1525. [PMID: 27790235 PMCID: PMC5061750 DOI: 10.3389/fpls.2016.01525] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/28/2016] [Indexed: 05/03/2023]
Abstract
As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities, and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase). C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME) and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters, and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North TexasDenton, TX, USA
- BioEnergy Science Center, US Department of EnergyOak Ridge, TN, USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North TexasDenton, TX, USA
- BioEnergy Science Center, US Department of EnergyOak Ridge, TN, USA
| |
Collapse
|
39
|
Rao X, Lu N, Li G, Nakashima J, Tang Y, Dixon RA. Comparative cell-specific transcriptomics reveals differentiation of C4 photosynthesis pathways in switchgrass and other C4 lineages. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1649-62. [PMID: 26896851 PMCID: PMC4783356 DOI: 10.1093/jxb/erv553] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Almost all C4 plants require the co-ordination of the adjacent and fully differentiated cell types, mesophyll (M) and bundle sheath (BS). The C4 photosynthetic pathway operates through two distinct subtypes based on how malate is decarboxylated in BS cells; through NAD-malic enzyme (NAD-ME) or NADP-malic enzyme (NADP-ME). The diverse or unique cell-specific molecular features of M and BS cells from separate C4 subtypes of independent lineages remain to be determined. We here provide an M/BS cell type-specific transcriptome data set from the monocot NAD-ME subtype switchgrass (Panicum virgatum). A comparative transcriptomics approach was then applied to compare the M/BS mRNA profiles of switchgrass, monocot NADP-ME subtype C4 plants maize and Setaria viridis, and dicot NAD-ME subtype Cleome gynandra. We evaluated the convergence in the transcript abundance of core components in C4 photosynthesis and transcription factors to establish Kranz anatomy, as well as gene distribution of biological functions, in these four independent C4 lineages. We also estimated the divergence between NAD-ME and NADP-ME subtypes of C4 photosynthesis in the two cell types within C4 species, including differences in genes encoding decarboxylating enzymes, aminotransferases, and metabolite transporters, and differences in the cell-specific functional enrichment of RNA regulation and protein biogenesis/homeostasis. We suggest that C4 plants of independent lineages in both monocots and dicots underwent convergent evolution to establish C4 photosynthesis, while distinct C4 subtypes also underwent divergent processes for the optimization of M and BS cell co-ordination. The comprehensive data sets in our study provide a basis for further research on evolution of C4 species.
Collapse
Affiliation(s)
- Xiaolan Rao
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA BioEnergy Science Center (BESC), US Department of Energy, Oak Ridge, TN 37831, USA
| | - Nan Lu
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA
| | - Guifen Li
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Jin Nakashima
- Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Yuhong Tang
- BioEnergy Science Center (BESC), US Department of Energy, Oak Ridge, TN 37831, USA Samuel Roberts Noble Foundation, 2510 Sam Noble Parkway, Ardmore, OK 73401, USA
| | - Richard A Dixon
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203, USA BioEnergy Science Center (BESC), US Department of Energy, Oak Ridge, TN 37831, USA
| |
Collapse
|
40
|
Genome-wide identification, classification, and analysis of NADP-ME family members from 12 crucifer species. Mol Genet Genomics 2016; 291:1167-80. [PMID: 26839002 DOI: 10.1007/s00438-016-1174-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 01/20/2016] [Indexed: 01/06/2023]
Abstract
NADP-dependent malic enzymes (NADP-MEs) play essential roles in both normal development and stress responses in plants. Here, genome-wide analysis was performed to identify 65 putative NADP-ME genes from 12 crucifer species. These NADP-ME genes were grouped into five categories of syntenic orthologous genes and were divided into three clades of a phylogenic tree. Promoter motif analysis showed that NADP-ME1 genes in Group IV were more conserved with each other than the other NADP-ME genes in Groups I and II. A nucleotide motif involved in ABA responses, desiccation and seed development was found in the promoters of most NADP-ME1 genes. Generally, the NADP-ME genes of Brassica rapa, B. oleracea and B. napus had less introns than their corresponding Arabidopsis orthologs. In these three Brassica species, the NADP-ME genes derived from the least fractionated subgenome have lost less introns than those from the medium fractionated and most fractionated subgenomes. BrNADP-ME1 showed the highest expression in petals and mature embryos. Two paralogous NADP-ME2 genes (BrNADP-ME2a and BrNADP-ME2b) shared similar expression profiles and differential expression levels. BrNADP-ME3 showed down-regulation during embryogenesis and reached its lowest expression in early cotyledonary embryos. BrNADP-ME4 was expressed widely in multiple organs and showed high expression during the whole embryogenesis process. Different NADP-ME genes of B. rapa showed differential gene expression profiles in young leaves after ABA treatment or cold stress. Our genome-wide identification and characterization of NADP-ME genes extend our understanding of the evolution or function of this family in Brassicaceae.
Collapse
|
41
|
Ludwig M. The Roles of Organic Acids in C4 Photosynthesis. FRONTIERS IN PLANT SCIENCE 2016; 7:647. [PMID: 27242848 PMCID: PMC4868847 DOI: 10.3389/fpls.2016.00647] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 04/27/2016] [Indexed: 05/05/2023]
Abstract
Organic acids are involved in numerous metabolic pathways in all plants. The finding that some plants, known as C4 plants, have four-carbon dicarboxylic acids as the first product of carbon fixation showed these organic acids play essential roles as photosynthetic intermediates. Oxaloacetate (OAA), malate, and aspartate (Asp) are substrates for the C4 acid cycle that underpins the CO2 concentrating mechanism of C4 photosynthesis. In this cycle, OAA is the immediate, short-lived, product of the initial CO2 fixation step in C4 leaf mesophyll cells. The malate and Asp, resulting from the rapid conversion of OAA, are the organic acids delivered to the sites of carbon reduction in the bundle-sheath cells of the leaf, where they are decarboxylated, with the released CO2 used to make carbohydrates. The three-carbon organic acids resulting from the decarboxylation reactions are returned to the mesophyll cells where they are used to regenerate the CO2 acceptor pool. NADP-malic enzyme-type, NAD-malic enzyme-type, and phosphoenolpyruvate carboxykinase-type C4 plants were identified, based on the most abundant decarboxylating enzyme in the leaf tissue. The genes encoding these C4 pathway-associated decarboxylases were co-opted from ancestral C3 plant genes during the evolution of C4 photosynthesis. Malate was recognized as the major organic acid transferred in NADP-malic enzyme-type C4 species, while Asp fills this role in NAD-malic enzyme-type and phosphoenolpyruvate carboxykinase-type plants. However, accumulating evidence indicates that many C4 plants use a combination of organic acids and decarboxylases during CO2 fixation, and the C4-type categories are not rigid. The ability to transfer multiple organic acid species and utilize different decarboxylases has been suggested to give C4 plants advantages in changing and stressful environments, as well as during development, by facilitating the balance of energy between the two cell types involved in the C4 pathway of CO2 assimilation. The results of recent empirical and modeling studies support this suggestion and indicate that a combination of transferred organic acids and decarboxylases is beneficial to C4 plants in different light environments.
Collapse
|
42
|
Sarasketa A, González-Moro MB, González-Murua C, Marino D. Nitrogen Source and External Medium pH Interaction Differentially Affects Root and Shoot Metabolism in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2016; 7:29. [PMID: 26870054 PMCID: PMC4734181 DOI: 10.3389/fpls.2016.00029] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/10/2016] [Indexed: 05/09/2023]
Abstract
Ammonium nutrition often represents an important growth-limiting stress in plants. Some of the symptoms that plants present under ammonium nutrition have been associated with pH deregulation, in fact external medium pH control is known to improve plants ammonium tolerance. However, the way plant cell metabolism adjusts to these changes is not completely understood. Thus, in this work we focused on how Arabidopsis thaliana shoot and root respond to different nutritional regimes by varying the nitrogen source ([Formula: see text] and [Formula: see text]), concentration (2 and 10 mM) and pH of the external medium (5.7 and 6.7) to gain a deeper understanding of cell metabolic adaptation upon altering these environmental factors. The results obtained evidence changes in the response of ammonium assimilation machinery and of the anaplerotic enzymes associated to Tricarboxylic Acids (TCA) cycle in function of the plant organ, the nitrogen source and the degree of ammonium stress. A greater stress severity at pH 5.7 was related to [Formula: see text] accumulation; this could not be circumvented in spite of the stimulation of glutamine synthetase, glutamate dehydrogenase, and TCA cycle anaplerotic enzymes. Moreover, this study suggests specific functions for different gln and gdh isoforms based on the nutritional regime. Overall, [Formula: see text] accumulation triggering ammonium stress appears to bear no relation to nitrogen assimilation impairment.
Collapse
Affiliation(s)
- Asier Sarasketa
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU)Bilbao, Spain
| | - M. Begoña González-Moro
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU)Bilbao, Spain
| | - Carmen González-Murua
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU)Bilbao, Spain
| | - Daniel Marino
- Department of Plant Biology and Ecology, University of the Basque Country (UPV/EHU)Bilbao, Spain
- Ikerbasque, Basque Foundation for ScienceBilbao, Spain
- *Correspondence: Daniel Marino
| |
Collapse
|
43
|
Maurino VG, Engqvist MKM. 2-Hydroxy Acids in Plant Metabolism. THE ARABIDOPSIS BOOK 2015; 13:e0182. [PMID: 26380567 PMCID: PMC4568905 DOI: 10.1199/tab.0182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Glycolate, malate, lactate, and 2-hydroxyglutarate are important 2-hydroxy acids (2HA) in plant metabolism. Most of them can be found as D- and L-stereoisomers. These 2HA play an integral role in plant primary metabolism, where they are involved in fundamental pathways such as photorespiration, tricarboxylic acid cycle, glyoxylate cycle, methylglyoxal pathway, and lysine catabolism. Recent molecular studies in Arabidopsis thaliana have helped elucidate the participation of these 2HA in in plant metabolism and physiology. In this chapter, we summarize the current knowledge about the metabolic pathways and cellular processes in which they are involved, focusing on the proteins that participate in their metabolism and cellular/intracellular transport in Arabidopsis.
Collapse
Affiliation(s)
- Veronica G. Maurino
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Martin K. M. Engqvist
- institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstraße 1, and Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
44
|
Gong C, Wang J, Hu C, Wang J, Ning P, Bai J. Interactive response of photosynthetic characteristics in Haloxylon ammodendron and Hedysarum scoparium exposed to soil water and air vapor pressure deficits. J Environ Sci (China) 2015; 34:184-96. [PMID: 26257361 DOI: 10.1016/j.jes.2015.03.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 03/17/2015] [Accepted: 03/20/2015] [Indexed: 05/27/2023]
Abstract
C4 plants possess better drought tolerance than C3 plants. However, Hedysarum scoparium, a C3 species, is dominant and widely distributed in the desert areas of northwestern China due to its strong drought tolerance. This study compared it with Haloxylon ammodendron, a C4 species, regarding the interactive effects of drought stress and different leaf-air vapor pressure deficits. Variables of interest included gas exchange, the activity levels of key C4 photosynthetic enzymes, and cellular anatomy. In both species, gas exchange parameters were more sensitive to high vapor pressure deficit than to strong water stress, and the net CO2 assimilation rate (An) was enhanced as vapor pressure deficits increased. A close relationship between An and stomatal conductance (gs) suggested that the species shared a similar response mechanism. In H. ammodendron, the activity levels of key C4 enzymes were higher, including those of phosphoenolpyruvate carboxylase (PEPC) and nicotinamide adenine dinucleotide phosphate-malate enzyme (NADP-ME), whereas in H. scoparium, the activity level of nicotinamide adenine dinucleotide-malate enzyme (NAD-ME) was higher. Meanwhile, H. scoparium utilized adaptive structural features, including a larger relative vessel area and a shorter distance from vein to stomata, which facilitated the movement of water. These findings implied that some C4 biochemical pathways were present in H. scoparium to respond to environmental challenges.
Collapse
Affiliation(s)
- Chunmei Gong
- College of Life Sciences, Northwest A&F University, Yangling 712100, China.
| | - Jiajia Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Congxia Hu
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Junhui Wang
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Pengbo Ning
- College of Veterinary Medicine, Northwest A&F University, Yangling 712100, China
| | - Juan Bai
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
45
|
Offermann S, Friso G, Doroshenk KA, Sun Q, Sharpe RM, Okita TW, Wimmer D, Edwards GE, van Wijk KJ. Developmental and Subcellular Organization of Single-Cell C₄ Photosynthesis in Bienertia sinuspersici Determined by Large-Scale Proteomics and cDNA Assembly from 454 DNA Sequencing. J Proteome Res 2015; 14:2090-108. [PMID: 25772754 DOI: 10.1021/pr5011907] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Kranz C4 species strictly depend on separation of primary and secondary carbon fixation reactions in different cell types. In contrast, the single-cell C4 (SCC4) species Bienertia sinuspersici utilizes intracellular compartmentation including two physiologically and biochemically different chloroplast types; however, information on identity, localization, and induction of proteins required for this SCC4 system is currently very limited. In this study, we determined the distribution of photosynthesis-related proteins and the induction of the C4 system during development by label-free proteomics of subcellular fractions and leaves of different developmental stages. This was enabled by inferring a protein sequence database from 454 sequencing of Bienertia cDNAs. Large-scale proteome rearrangements were observed as C4 photosynthesis developed during leaf maturation. The proteomes of the two chloroplasts are different with differential accumulation of linear and cyclic electron transport components, primary and secondary carbon fixation reactions, and a triose-phosphate shuttle that is shared between the two chloroplast types. This differential protein distribution pattern suggests the presence of a mRNA or protein-sorting mechanism for nuclear-encoded, chloroplast-targeted proteins in SCC4 species. The combined information was used to provide a comprehensive model for NAD-ME type carbon fixation in SCC4 species.
Collapse
Affiliation(s)
- Sascha Offermann
- †Institute of Botany, Leibniz University, Herrenhaeuser Strasse 2, Hannover 30419, Germany
| | - Giulia Friso
- ‡Department of Plant Biology, Cornell University, 332 Emerson Hall, Ithaca, New York 14853, United States
| | - Kelly A Doroshenk
- §Institute of Biological Chemistry, Washington State University, 299 Clark Hall, Pullman, Washington 99164, United States
| | - Qi Sun
- ∥Computational Biology Service Unit, Cornell University, 618 Rhodes Hall, Ithaca, New York 14853, United States
| | - Richard M Sharpe
- ⊥School of Biological Science, Washington State University, 303 Heald Hall, Pullman, Washington 99164, United States
| | - Thomas W Okita
- §Institute of Biological Chemistry, Washington State University, 299 Clark Hall, Pullman, Washington 99164, United States
| | - Diana Wimmer
- †Institute of Botany, Leibniz University, Herrenhaeuser Strasse 2, Hannover 30419, Germany
| | - Gerald E Edwards
- ⊥School of Biological Science, Washington State University, 303 Heald Hall, Pullman, Washington 99164, United States
| | - Klaas J van Wijk
- ‡Department of Plant Biology, Cornell University, 332 Emerson Hall, Ithaca, New York 14853, United States
| |
Collapse
|
46
|
Lin L, Luo Y, Sørensen P, Prætorius H, Vajta G, Callesen H, Pribenszky C, Bolund L, Kristensen TN. Effects of high hydrostatic pressure on genomic expression profiling of porcine parthenogenetic activated and cloned embryos. Reprod Fertil Dev 2015; 26:469-84. [PMID: 24618454 DOI: 10.1071/rd13037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/08/2013] [Indexed: 12/31/2022] Open
Abstract
Handmade cloning (HMC) has been used to generate transgenic pigs for biomedical research. Recently, we found that parthenogenetic activation (PA) of porcine oocytes and improved HMC efficiency could be achieved by treatment with sublethal high hydrostatic pressure (HHP). However, the molecular mechanism underlying the effects of HHP treatment on embryonic development is poorly understood and so was investigated in the present study. Thus, in the present study, we undertook genome-wide gene expression analysis in HHP-treated and untreated oocytes, as well as in 4-cell and blastocyst stage embryos derived by PA or HMC. Hierarchical clustering depicted stage-specific genomic expression profiling. At the 4-cell and blastocyst stages, 103 and 163 transcripts were differentially expressed between the HMC and PA embryos, respectively (P<0.05). These transcripts are predominantly involved in regulating cellular differentiation, gene expression and cell-to-cell signalling. We found that 44 transcripts were altered by HHP treatment, with most exhibiting lower expression in HHP-treated oocytes. Genes involved in embryonic development were prominent among the transcripts affected by HHP. Two of these genes (INHBB and ME3) were further validated by quantitative reverse transcription-polymerase chain reaction. We also observed that HHP treatment activated expression of the imprinting gene DLX5 in 4-cell PA embryos. In conclusion, our genomic expression profiling data suggest that HHP alters the RNA constitution in porcine oocytes and affects the expression of imprinting genes during embryonic development.
Collapse
Affiliation(s)
- Lin Lin
- Department of Biomedicine, Aarhus University, Wilhelm Meyer Alle 4, 8000, Aarhus C, Denmark
| | - Yonglun Luo
- Department of Biomedicine, Aarhus University, Wilhelm Meyer Alle 4, 8000, Aarhus C, Denmark
| | - Peter Sørensen
- Department of Animal Science, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark
| | - Helle Prætorius
- Department of Biomedicine, Aarhus University, Wilhelm Meyer Alle 4, 8000, Aarhus C, Denmark
| | - Gabor Vajta
- BGI/HuaDa, Beishan Road 10, 518000, Shenzhen, China
| | - Henrik Callesen
- Department of Animal Science, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark
| | - Csaba Pribenszky
- Department of Animal Breeding and Genetics, Szent István University, István u. 2, Budapest, 1078, Hungary
| | - Lars Bolund
- Department of Biomedicine, Aarhus University, Wilhelm Meyer Alle 4, 8000, Aarhus C, Denmark
| | - Torsten Nygård Kristensen
- Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Alle 20, 8830, Tjele, Denmark
| |
Collapse
|
47
|
Meyer E, Aspinwall MJ, Lowry DB, Palacio-Mejía JD, Logan TL, Fay PA, Juenger TE. Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.). BMC Genomics 2014; 15:527. [PMID: 24964784 PMCID: PMC4122788 DOI: 10.1186/1471-2164-15-527] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 06/05/2014] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND In light of the changes in precipitation and soil water availability expected with climate change, understanding the mechanisms underlying plant responses to water deficit is essential. Toward that end we have conducted an integrative analysis of responses to drought stress in the perennial C4 grass and biofuel crop, Panicum virgatum (switchgrass). Responses to soil drying and re-watering were measured at transcriptional, physiological, and metabolomic levels. To assess the interaction of soil moisture with diel light: dark cycles, we profiled gene expression in drought and control treatments under pre-dawn and mid-day conditions. RESULTS Soil drying resulted in reduced leaf water potential, gas exchange, and chlorophyll fluorescence along with differential expression of a large fraction of the transcriptome (37%). Many transcripts responded differently depending on time of day (e.g. up-regulation pre-dawn and down-regulation mid-day). Genes associated with C4 photosynthesis were down-regulated during drought, while C4 metabolic intermediates accumulated. Rapid changes in gene expression were observed during recovery from drought, along with increased water use efficiency and chlorophyll fluorescence. CONCLUSIONS Our findings demonstrate that drought responsive gene expression depends strongly on time of day and that gene expression is extensively modified during the first few hours of drought recovery. Analysis of covariation in gene expression, metabolite abundance, and physiology among plants revealed non-linear relationships that suggest critical thresholds in drought stress responses. Future studies may benefit from evaluating these thresholds among diverse accessions of switchgrass and other C4 grasses.
Collapse
Affiliation(s)
- Eli Meyer
- />Department of Integrative Biology, Oregon State University, Cordley Hall 3029, Corvallis, OR 97331 USA
- />Department of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712 USA
| | - Michael J Aspinwall
- />Department of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712 USA
- />Hawkesbury Institute for the Environment, University of Western Sydney, Penrith, NSW 2751 Australia
| | - David B Lowry
- />Department of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712 USA
| | - Juan Diego Palacio-Mejía
- />Department of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712 USA
| | - Tierney L Logan
- />Department of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712 USA
| | - Philip A Fay
- />USDA-ARS Grassland Soil and Water Research Laboratory, Temple, TX 76502 USA
| | - Thomas E Juenger
- />Department of Integrative Biology, University of Texas at Austin, 1 University Station C0930, Austin, TX 78712 USA
| |
Collapse
|
48
|
Integrating transcriptional, metabolomic, and physiological responses to drought stress and recovery in switchgrass (Panicum virgatum L.). BMC Genomics 2014. [PMID: 24964784 DOI: 10.1186/1471‐2164‐15‐527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In light of the changes in precipitation and soil water availability expected with climate change, understanding the mechanisms underlying plant responses to water deficit is essential. Toward that end we have conducted an integrative analysis of responses to drought stress in the perennial C4 grass and biofuel crop, Panicum virgatum (switchgrass). Responses to soil drying and re-watering were measured at transcriptional, physiological, and metabolomic levels. To assess the interaction of soil moisture with diel light: dark cycles, we profiled gene expression in drought and control treatments under pre-dawn and mid-day conditions. RESULTS Soil drying resulted in reduced leaf water potential, gas exchange, and chlorophyll fluorescence along with differential expression of a large fraction of the transcriptome (37%). Many transcripts responded differently depending on time of day (e.g. up-regulation pre-dawn and down-regulation mid-day). Genes associated with C4 photosynthesis were down-regulated during drought, while C4 metabolic intermediates accumulated. Rapid changes in gene expression were observed during recovery from drought, along with increased water use efficiency and chlorophyll fluorescence. CONCLUSIONS Our findings demonstrate that drought responsive gene expression depends strongly on time of day and that gene expression is extensively modified during the first few hours of drought recovery. Analysis of covariation in gene expression, metabolite abundance, and physiology among plants revealed non-linear relationships that suggest critical thresholds in drought stress responses. Future studies may benefit from evaluating these thresholds among diverse accessions of switchgrass and other C4 grasses.
Collapse
|
49
|
Mallmann J, Heckmann D, Bräutigam A, Lercher MJ, Weber APM, Westhoff P, Gowik U. The role of photorespiration during the evolution of C4 photosynthesis in the genus Flaveria. eLife 2014; 3:e02478. [PMID: 24935935 PMCID: PMC4103682 DOI: 10.7554/elife.02478] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 06/14/2014] [Indexed: 01/08/2023] Open
Abstract
C4 photosynthesis represents a most remarkable case of convergent evolution of a complex trait, which includes the reprogramming of the expression patterns of thousands of genes. Anatomical, physiological, and phylogenetic and analyses as well as computational modeling indicate that the establishment of a photorespiratory carbon pump (termed C2 photosynthesis) is a prerequisite for the evolution of C4. However, a mechanistic model explaining the tight connection between the evolution of C4 and C2 photosynthesis is currently lacking. Here we address this question through comparative transcriptomic and biochemical analyses of closely related C3, C3-C4, and C4 species, combined with Flux Balance Analysis constrained through a mechanistic model of carbon fixation. We show that C2 photosynthesis creates a misbalance in nitrogen metabolism between bundle sheath and mesophyll cells. Rebalancing nitrogen metabolism requires anaplerotic reactions that resemble at least parts of a basic C4 cycle. Our findings thus show how C2 photosynthesis represents a pre-adaptation for the C4 system, where the evolution of the C2 system establishes important C4 components as a side effect.
Collapse
Affiliation(s)
- Julia Mallmann
- Institute for Plant Molecular and Developmental Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - David Heckmann
- Institute for Computer Science, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science, Heinrich-Heine-Universität, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Andreas PM Weber
- Institute of Plant Biochemistry, Heinrich-Heine-Universität, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Peter Westhoff
- Institute for Plant Molecular and Developmental Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-Universität, Düsseldorf, Germany
| | - Udo Gowik
- Institute for Plant Molecular and Developmental Biology, Heinrich-Heine-Universität, Düsseldorf, Germany
| |
Collapse
|
50
|
Garay LA, Boundy-Mills KL, German JB. Accumulation of high-value lipids in single-cell microorganisms: a mechanistic approach and future perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2014; 62:2709-27. [PMID: 24628496 PMCID: PMC3983371 DOI: 10.1021/jf4042134] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 01/12/2014] [Accepted: 03/16/2014] [Indexed: 05/08/2023]
Abstract
In recent years attention has been focused on the utilization of microorganisms as alternatives for industrial and nutritional applications. Considerable research has been devoted to techniques for growth, extraction, and purification of high-value lipids for their use as biofuels and biosurfactants as well as high-value metabolites for nutrition and health. These successes argue that the elucidation of the mechanisms underlying the microbial biosynthesis of such molecules, which are far from being completely understood, now will yield spectacular opportunities for industrial scale biomolecular production. There are important additional questions to be solved to optimize the processing strategies to take advantage of the assets of microbial lipids. The present review describes the current state of knowledge regarding lipid biosynthesis, accumulation, and transport mechanisms present in single-cell organisms, specifically yeasts, microalgae, bacteria, and archaea. Similarities and differences in biochemical pathways and strategies of different microorganisms provide a diverse toolset to the expansion of biotechnologies for lipid production. This paper is intended to inspire a generation of lipid scientists to insights that will drive the biotechnologies of microbial production as uniquely enabling players of lipid biotherapeutics, biofuels, biomaterials, and other opportunity areas into the 21st century.
Collapse
Affiliation(s)
- Luis A. Garay
- Department
of Food Science
and Technology, University of California, Davis, One Shields Avenue, Davis California 95616-8598, United States
| | - Kyria L. Boundy-Mills
- Department
of Food Science
and Technology, University of California, Davis, One Shields Avenue, Davis California 95616-8598, United States
| | - J. Bruce German
- Department
of Food Science
and Technology, University of California, Davis, One Shields Avenue, Davis California 95616-8598, United States
| |
Collapse
|