1
|
Rybin DA, Sukhova AA, Syomin AA, Zdobnova TA, Berezina EV, Brilkina AA. Characteristics of Callus and Cell Suspension Cultures of Highbush Blueberry ( Vaccinium corymbosum L.) Cultivated in the Presence of Different Concentrations of 2,4-D and BAP in a Nutrient Medium. PLANTS (BASEL, SWITZERLAND) 2024; 13:3279. [PMID: 39683072 DOI: 10.3390/plants13233279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
In this work, cultures of callus and suspension cells originating from leaves of sterile highbush blueberry (Vaccinium corymbosum L.) plants were obtained and characterized. For their active growth and production of phenolic compounds, a combination of 2,4-D at a concentration of 0.34-2.25 µM and BAP at a concentration of 0.45-2.25 µM is effective. An increase in the phytohormone concentration leads to a slowdown in culture formation and reduces their ability to synthesize phenolic compounds. When cultivating V. corymbosum suspension cells over a year (12 passages), they not only retain the ability to synthesize phenolic compounds but also enhance it. By the 12th passage, the content of TSPC in suspension cells reaches 150 mg/g DW, the content of flavonoids reaches 100 mg/g DW, the content of flavans reaches 40 mg/g DW, and the content of proanthocyanidins reaches 30 mg/g DW. The high content of phenolic compounds may be due to the high expression of genes in flavonoid biosynthesis enzymes. V. corymbosum suspension cells accumulate a high level of phenolic compounds during a passage. The ability of V. corymbosum callus and cell suspension cultures in the presence of low concentrations of phytohormones to grow and accumulate biologically active phenolic compounds determines their high economic significance and prospects for organizing a biotechnological method for obtaining phenolic compounds.
Collapse
Affiliation(s)
- Dmitry A Rybin
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Alina A Sukhova
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Andrey A Syomin
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Tatiana A Zdobnova
- Department of Biophysics, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Ekaterina V Berezina
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| | - Anna A Brilkina
- Department of Biochemistry and Biotechnology, Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, Gagarin Avenue 23, 603022 Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Schilling F, Schumacher C, Köhl K, Sprenger H, Kopka J, Peters R, Haas M, Zuther E, Horn R. Whole-genome sequencing of tetraploid potato varieties reveals different strategies for drought tolerance. Sci Rep 2024; 14:5476. [PMID: 38443466 PMCID: PMC10914802 DOI: 10.1038/s41598-024-55669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
Climate changes leading to increasingly longer seasonal drought periods in large parts of the world increase the necessity for breeding drought-tolerant crops. Cultivated potato (Solanum tuberosum), the third most important vegetable crop worldwide, is regarded as drought-sensitive due to its shallow root architecture. Two German tetraploid potato cultivars differing in drought tolerance and their F1-progeny were evaluated under various drought scenarios. Bulked segregant analyses were combined with whole-genome sequencing (BSA-Seq) using contrasting bulks of drought-tolerant and drought-sensitive F1-clones. Applying QTLseqr, 15 QTLs comprising 588,983 single nucleotide polymorphisms (SNPs) in 2325 genes associated with drought stress tolerance were identified. SeqSNP analyses in an association panel of 34 mostly starch potato varieties using 1-8 SNPs for each of 188 selected genes narrowed the number of candidate genes down to 10. In addition, ent-kaurene synthase B was the only gene present under QTL 10. Eight of the identified genes (StABP1, StBRI1, StKS, StLEA, StPKSP1, StPKSP2, StYAB5, and StZOG1) address plant development, the other three genes (StFATA, StHGD and StSYP) contribute to plant protection under drought stress. Allelic variation in these genes might be explored in future breeding for drought-tolerant potato varieties.
Collapse
Affiliation(s)
- Florian Schilling
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Christina Schumacher
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany
| | - Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Heike Sprenger
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Rolf Peters
- Landwirtschaftskammer Niedersachsen, Dethlingen 14, 29633, Munster, Germany
- PotatoConsult UG, Hiddinger Straße 33, 27374, Visselhövede, Germany
| | - Manuela Haas
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Ministry of Agriculture, Environment and Climate Protection, Henning-Von-Tresckow-Straße 2-13, 14467, Potsdam, Germany
| | - Ellen Zuther
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany
- Center of Artificial Intelligence in Public Health Research, Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | - Renate Horn
- Department of Plant Genetics, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059, Rostock, Germany.
| |
Collapse
|
3
|
Huang X, Maisch J, Hayashi KI, Nick P. Fluorescent Auxin Analogs Report Two Auxin Binding Sites with Different Subcellular Distribution and Affinities: A Cue for Non-Transcriptional Auxin Signaling. Int J Mol Sci 2022; 23:ijms23158593. [PMID: 35955725 PMCID: PMC9369420 DOI: 10.3390/ijms23158593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/01/2022] [Indexed: 02/04/2023] Open
Abstract
The complexity of auxin signaling is partially due to multiple auxin receptors that trigger differential signaling. To obtain insight into the subcellular localization of auxin-binding sites, we used fluorescent auxin analogs that can undergo transport but do not deploy auxin signaling. Using fluorescent probes for different subcellular compartments, we can show that the fluorescent analog of 1-naphthaleneacetic acid (NAA) associates with the endoplasmic reticulum (ER) and tonoplast, while the fluorescent analog of indole acetic acid (IAA) binds to the ER. The binding of the fluorescent NAA analog to the ER can be outcompeted by unlabeled NAA, which allows us to estimate the affinity of NAA for this binding site to be around 1 μM. The non-transportable auxin 2,4-dichlorophenoxyacetic acid (2,4-D) interferes with the binding site for the fluorescent NAA analog at the tonoplast but not with the binding site for the fluorescent IAA analog at the ER. We integrate these data into a working model, where the tonoplast hosts a binding site with a high affinity for 2,4-D, while the ER hosts a binding site with high affinity for NAA. Thus, the differential subcellular localization of binding sites reflects the differential signaling in response to these artificial auxins.
Collapse
Affiliation(s)
- Xiang Huang
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133 Karlsruhe, Germany; (X.H.); (J.M.)
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Jan Maisch
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133 Karlsruhe, Germany; (X.H.); (J.M.)
| | - Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005, Japan;
| | - Peter Nick
- Molecular Cell Biology, Botanical Institute, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76133 Karlsruhe, Germany; (X.H.); (J.M.)
- Correspondence: ; Tel.: +49-721-608-42144
| |
Collapse
|
4
|
Abstract
The auxin-binding protein 1 (ABP1) has endured a history of undulating prominence as a candidate receptor for this important phytohormone. Its capacity for binding auxin has not been in doubt, a feature adequately explained by its crystal structure, but any relevance of this to auxin signaling and plant development has been far more demanding to define. Over its research lifetime, it has been associated with many auxin-induced activities, including ion fluxes across the plasma membrane, rearrangement of the cytoskeleton and cell shape, and the abundance of PIN proteins at the plasma membrane via control of endocytosis, all of which required its presence in the apoplast. Yet, ABP1 has a KDEL sequence that targets it to the endoplasmic reticulum, where most of it remains. This mismatch has been more than adequately compensated for by the need for an auxin receptor to account for responses far too rapid to be executed through transcription and translation and the TIR1/AuxIAA coreceptor system. However, discoveries showing that abp1-null mutants are not compromised for auxin signaling or development, that TIR1 or AFB1 are necessarily involved with very rapid responses at the plasma membrane, and that these rapid responses are mediated with intracellular auxin all suggest that ABP1's auxin-binding capacity is not physiologically relevant. Nevertheless, ABP1 is ubiquitous in higher plants and throughout plant tissues. We need to complete its history by defining its function inside plant cells.
Collapse
Affiliation(s)
- Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AS, United Kingdom
| |
Collapse
|
5
|
Winnicki K. The Winner Takes It All: Auxin-The Main Player during Plant Embryogenesis. Cells 2020; 9:E606. [PMID: 32138372 PMCID: PMC7140527 DOI: 10.3390/cells9030606] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/21/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
In plants, the first asymmetrical division of a zygote leads to the formation of two cells with different developmental fates. The establishment of various patterns relies on spatial and temporal gene expression, however the precise mechanism responsible for embryonic patterning still needs elucidation. Auxin seems to be the main player which regulates embryo development and controls expression of various genes in a dose-dependent manner. Thus, local auxin maxima and minima which are provided by polar auxin transport underlie cell fate specification. Diverse auxin concentrations in various regions of an embryo would easily explain distinct cell identities, however the question about the mechanism of cellular patterning in cells exposed to similar auxin concentrations still remains open. Thus, specification of cell fate might result not only from the cell position within an embryo but also from events occurring before and during mitosis. This review presents the impact of auxin on the orientation of the cell division plane and discusses the mechanism of auxin-dependent cytoskeleton alignment. Furthermore, close attention is paid to auxin-induced calcium fluxes, which regulate the activity of MAPKs during postembryonic development and which possibly might also underlie cellular patterning during embryogenesis.
Collapse
Affiliation(s)
- Konrad Winnicki
- Department of Cytophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lódź, Poland
| |
Collapse
|
6
|
Kubeš M, Napier R. Non-canonical auxin signalling: fast and curious. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2609-2614. [PMID: 30854547 PMCID: PMC6506764 DOI: 10.1093/jxb/erz111] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 02/25/2019] [Indexed: 05/20/2023]
Affiliation(s)
- Martin Kubeš
- School of Live Sciences, University of Warwick, Coventry, UK
- Laboratory of Growth Regulators, The Czech Academy of Sciences, Institute of Experimental Botany & Palacky University, Slechtitelu, Olomouc, Czech Republic
- University Hradec Kralove, Faculty of Science, Department of Biology, Rokitanskeho, CZ-50003 Hradec Kralove, Czech Republic
| | - Richard Napier
- School of Live Sciences, University of Warwick, Coventry, UK
- Correspondence: or
| |
Collapse
|
7
|
Zhao Y, Peng T, Sun H, Teotia S, Wen H, Du Y, Zhang J, Li J, Tang G, Xue H, Zhao Q. miR1432-OsACOT (Acyl-CoA thioesterase) module determines grain yield via enhancing grain filling rate in rice. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:712-723. [PMID: 30183128 PMCID: PMC6419572 DOI: 10.1111/pbi.13009] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/22/2018] [Accepted: 08/31/2018] [Indexed: 05/18/2023]
Abstract
Rice grain filling rate contributes largely to grain productivity and accumulation of nutrients. MicroRNAs (miRNAs) are key regulators of development and physiology in plants and become a novel key target for engineering grain size and crop yield. However, there is little studies, so far, showing the miRNA regulation of grain filling and rice yield, in consequence. Here, we show that suppressed expression of rice miR1432 (STTM1432) significantly improves grain weight by enhancing grain filling rate and leads to an increase in overall grain yield up to 17.14% in a field trial. Molecular analysis identified rice Acyl-CoA thioesterase (OsACOT), which is conserved with ACOT13 in other species, as a major target of miR1432 by cleavage. Moreover, overexpression of miR1432-resistant form of OsACOT (OXmACOT) resembled the STTM1432 plants, that is, a large margin of an increase in grain weight up to 46.69% through improving the grain filling rate. Further study indicated that OsACOT was involved in biosynthesis of medium-chain fatty acids. In addition, RNA-seq based transcriptomic analyses of transgenic plants with altered expression of miR1432 demonstrated that downstream genes of miR1432-regulated network are involved in fatty acid metabolism and phytohormones biosynthesis and also overlap with the enrichment analysis of co-expressed genes of OsACOT, which is consistent with the increased levels of auxin and abscisic acid in STTM1432 and OXmACOT plants. Overall, miR1432-OsACOT module plays an important role in grain filling in rice, illustrating its capacity for engineering yield improvement in crops.
Collapse
Affiliation(s)
- Ya‐Fan Zhao
- Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Rice Biology in Henan ProvinceHenan Agricultural UniversityZhengzhouChina
| | - Ting Peng
- Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Rice Biology in Henan ProvinceHenan Agricultural UniversityZhengzhouChina
| | - Hong‐Zheng Sun
- Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Rice Biology in Henan ProvinceHenan Agricultural UniversityZhengzhouChina
| | - Sachin Teotia
- Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Department of Biological Sciences and Biotechnology Research Center (BRC)Michigan Technological UniversityHoughtonMIUSA
| | - Hui‐Li Wen
- Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Rice Biology in Henan ProvinceHenan Agricultural UniversityZhengzhouChina
| | - Yan‐Xiu Du
- Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Rice Biology in Henan ProvinceHenan Agricultural UniversityZhengzhouChina
| | - Jing Zhang
- Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Rice Biology in Henan ProvinceHenan Agricultural UniversityZhengzhouChina
| | - Jun‐Zhou Li
- Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Rice Biology in Henan ProvinceHenan Agricultural UniversityZhengzhouChina
| | - Gui‐Liang Tang
- Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Department of Biological Sciences and Biotechnology Research Center (BRC)Michigan Technological UniversityHoughtonMIUSA
| | - Hong‐Wei Xue
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of Sciences (CAS)ShanghaiChina
| | - Quan‐Zhi Zhao
- Collaborative Innovation Center of Henan Grain CropsHenan Agricultural UniversityZhengzhouChina
- Key Laboratory of Rice Biology in Henan ProvinceHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
8
|
Alsenani F, Wass TJ, Ma R, Eltanahy E, Netzel ME, Schenk PM. Transcriptome-wide analysis of Chlorella reveals auxin-induced carotenogenesis pathway in green microalgae. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Labusch C, Effendi Y, Fulda M, Scherer GFE. Transcription of TIR1-Controlled Genes Can be Regulated within 10 Min by an Auxin-Induced Process. Can TIR1 be the Receptor? FRONTIERS IN PLANT SCIENCE 2016; 7:995. [PMID: 27462327 PMCID: PMC4939301 DOI: 10.3389/fpls.2016.00995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/22/2016] [Indexed: 05/30/2023]
Abstract
ABP1 and TIR1/AFBs are known as auxin receptors. ABP1 is linked to auxin responses several of which are faster than 10 min. TIR1 regulates auxin-induced transcription of early auxin genes also within minutes. We use transcription of such TIR1-dependent genes as indicator of TIR1 activity to show the rapid regulation of TIR1 by exogenous auxin. To this end, we used quantification of transcription of a set of fifteen early auxin-induced reporter genes at t = 10 and t = 30 min to measure this as a TIR1-dependent auxin response. We conducted this study in 22 mutants of auxin transporters (pin5, abcb1, abcb19, and aux1/lax3), protein kinases and phosphatases (ibr5, npr1, cpk3, CPK3-OX, d6pk1, d6pkl1-1, d6pkl3-2, d6pkl1-1/d6pkl2-2, and d6pkl1-1/d6pkl3-2), of fatty acid metabolism (fad2-1, fad6-1, ssi2, lacs4, lacs9, and lacs4/lacs9) and receptors (tir1, tir1/afb2, and tir1/afb3) and compared them to the wild type. After 10 min auxin application, in 18 out of 22 mutants mis-regulated expression of at least one reporter was found, and in 15 mutants transcription of two-to-three out of five selected auxin reporter genes was mis-regulated. After 30 min of auxin application to mutant plants, mis-regulation of reporter genes ranged from one to 13 out of 15 tested reporter genes. Those genes chosen as mutants were themselves not regulated in their expression by auxin for at least 1 h, excluding an influence of TIR1/AFBs on their transcription. The expression of TIR1/AFB genes was also not modulated by auxin for up to 3 h. Together, this excludes a feedback or feedforward of these mutant genes/proteins on TIR1/AFBs output of transcription in this auxin-induced response. However, an auxin-induced response needed an as yet unknown auxin receptor. We suggest that the auxin receptor necessary for the fast auxin-induced transcription modulation could be, instead, ABP1. The alternative hypothesis would be that auxin-induced expression of a protein, initiated by TIR1/AFBs receptors, could initiate these responses and that this unknown protein regulated TIR1/AFB activities within 10 min.
Collapse
Affiliation(s)
- Corinna Labusch
- Abteilung Molekulare Ertragsphysiologie, Institut für Gartenbauliche Produktionssysteme, Leibniz Universität HannoverHannover, Germany
| | - Yunus Effendi
- Abteilung Molekulare Ertragsphysiologie, Institut für Gartenbauliche Produktionssysteme, Leibniz Universität HannoverHannover, Germany
- Department of Biology, University of Al Azhar IndonesiaJakarta, Indonesia
| | - Martin Fulda
- Abteilung Biochemie der Pflanzen, Albrecht-von-Haller-Institut der Pflanzenwissenschaften, Universität GöttingenGöttingen, Germany
| | - Günther F. E. Scherer
- Abteilung Molekulare Ertragsphysiologie, Institut für Gartenbauliche Produktionssysteme, Leibniz Universität HannoverHannover, Germany
| |
Collapse
|
10
|
Šoškić M, Porobić I. Interactions of Indole Derivatives with β-Cyclodextrin: A Quantitative Structure-Property Relationship Study. PLoS One 2016; 11:e0154339. [PMID: 27124734 PMCID: PMC4849784 DOI: 10.1371/journal.pone.0154339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 04/12/2016] [Indexed: 11/21/2022] Open
Abstract
Retention factors for 31 indole derivatives, most of them with auxin activity, were determined by high-performance liquid chromatography, using bonded β-cyclodextrin as a stationary phase. A three-parameter QSPR (quantitative structure-property relationship) model, based on physico-chemical and structural descriptors was derived, which accounted for about 98% variations in the retention factors. The model suggests that the indole nucleus occupies the relatively apolar cavity of β-cyclodextrin while the carboxyl group of the indole -3-carboxylic acids makes hydrogen bonds with the hydroxyl groups of β-cyclodextrin. The length and flexibility of the side chain containing carboxyl group strongly affect the binding of these compounds to β-cyclodextrin. Non-acidic derivatives, unlike the indole-3-carboxylic acids, are poorly retained on the column. A reasonably well correlation was found between the retention factors of the indole-3-acetic acids and their relative binding affinities for human serum albumin, a carrier protein in the blood plasma. A less satisfactory correlation was obtained when the retention factors of the indole derivatives were compared with their affinities for auxin-binding protein 1, a plant auxin receptor.
Collapse
Affiliation(s)
- Milan Šoškić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
- * E-mail:
| | - Ivana Porobić
- Department of Chemistry, Faculty of Agriculture, University of Zagreb, Svetošimunska 25, 10000 Zagreb, Croatia
| |
Collapse
|
11
|
Fehér A, Lajkó DB. Signals fly when kinases meet Rho-of-plants (ROP) small G-proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 237:93-107. [PMID: 26089155 DOI: 10.1016/j.plantsci.2015.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 05/11/2015] [Accepted: 05/12/2015] [Indexed: 05/11/2023]
Abstract
Rho-type small GTP-binding plant proteins function as two-state molecular switches in cellular signalling. There is accumulating evidence that Rho-of-plants (ROP) signalling is positively controlled by plant receptor kinases, through the ROP guanine nucleotide exchange factor proteins. These signalling modules regulate cell polarity, cell shape, hormone responses, and pathogen defence, among other things. Other ROP-regulatory proteins might also be subjected to protein phosphorylation by cellular kinases (e.g., mitogen-activated protein kinases or calcium-dependent protein kinases), in order to integrate various cellular signalling pathways with ROP GTPase-dependent processes. In contrast to the role of kinases in upstream ROP regulation, much less is known about the potential link between ROP GTPases and downstream kinase signalling. In other eukaryotes, Rho-type G-protein-activated kinases are widespread and have a key role in many cellular processes. Recent data indicate the existence of structurally different ROP-activated kinases in plants, but their ROP-dependent biological functions still need to be validated. In addition to these direct interactions, ROPs may also indirectly control the activity of mitogen-activated protein kinases or calcium-dependent protein kinases. These kinases may therefore function as upstream as well as downstream kinases in ROP-mediated signalling pathways, such as the phosphatidylinositol monophosphate kinases involved in cell polarity establishment.
Collapse
Affiliation(s)
- Attila Fehér
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary.
| | - Dézi Bianka Lajkó
- Institute of Plant Biology, Biological Research Centre, Hungarian Academy of Sciences, Temesvári krt. 62, H-6726 Szeged, Hungary
| |
Collapse
|
12
|
Di DW, Zhang C, Guo GQ. Involvement of secondary messengers and small organic molecules in auxin perception and signaling. PLANT CELL REPORTS 2015; 34:895-904. [PMID: 25693494 DOI: 10.1007/s00299-015-1767-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 05/26/2023]
Abstract
Auxin is a major phytohormone involved in most aspects of plant growth and development. Generally, auxin is perceived by three distinct receptors: TRANSPORT INHIBITOR RESISTANT1-Auxin/INDOLE ACETIC ACID, S-Phase Kinase-Associated Protein 2A and AUXIN-BINDING PROTEIN1. The auxin perception is regulated by a variety of secondary messenger molecules, including nitric oxide, reactive oxygen species, calcium, cyclic GMP, cyclic AMP, inositol triphosphate, diacylglycerol and by physiological pH. In addition, some small organic molecules, including inositol hexakisphosphate, yokonolide B, p-chlorophenoxyisobutyric acid, toyocamycin and terfestatin A, are involved in auxin signaling. In this review, we summarize and discuss the recent progress in understanding the functions of these secondary messengers and small organic molecules, which are now thoroughly demonstrated to be pervasive and important in auxin perception and signal transduction.
Collapse
Affiliation(s)
- Dong-Wei Di
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, 73000, China,
| | | | | |
Collapse
|
13
|
Luczak M, Krzeszowiec-Jeleń W, Konopka-Postupolska D, Wojtaszek P. Collagenase as a useful tool for the analysis of plant cellular peripheries. PHYTOCHEMISTRY 2015; 112:195-209. [PMID: 25435175 DOI: 10.1016/j.phytochem.2014.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 10/15/2014] [Accepted: 11/05/2014] [Indexed: 05/25/2023]
Abstract
A technique for the selective loosening of the cell wall structure and the isolation of proteins permanently knotted in the cell walls was elaborated. Following treatment with collagenase, some proteins, such as calreticulin (CRT) and auxin binding protein 1 (ABP1) were released from purified cell walls, most probably through destruction of respective interacting proteins. The results were confirmed by the immunolocalization of the ABP1 and CRT with confocal and electron microscopy. On the other hand, potential substrates of collagenase, among them annexin 1 have been recognized. Mass spectra of annexin 1 obtained after collagenase digestion and results from analysis of potential cleavage sites suggested that the mechanism of enzyme cleavage might not depend on the amino acid sequence. Summarizing, collagenase was found to be a very useful tool for exploring molecules involved in the functioning of cellular peripheries.
Collapse
Affiliation(s)
- Magdalena Luczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland.
| | | | | | - Przemysław Wojtaszek
- Department of Molecular and Cellular Biology, Adam Mickiewicz University, Poznań, Poland.
| |
Collapse
|
14
|
Liu CM. Auxin Binding Protein 1 (ABP1): a matter of fact. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:234-235. [PMID: 25664934 DOI: 10.1111/jipb.12339] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
15
|
Ludwig-Müller J. Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. JOURNAL OF PLANT PHYSIOLOGY 2015; 172:4-12. [PMID: 25456606 DOI: 10.1016/j.jplph.2014.01.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 05/03/2023]
Abstract
Plant diseases cause huge losses by changing the quality and quantity of harvested crops. Many disease symptoms caused by bacteria or fungi rely on the involvement of plant hormones, while other plant hormones act as defense signals in the plant. In this review the role of auxins in these processes will be evaluated. Some growth promoting plant hormones cause disease symptoms. For example auxins stimulate cell division and cell elongation in a healthy plant, but tumor formation after bacterial infection. Thus, control of auxin levels and auxin signaling pathways significantly contribute to the defense network in plants. Auxin can also act directly as defense molecule with antimicrobial activity. Since much research has been done in the recent years on auxin as a pathogenicity factor for many diseases, several examples will be presented to highlight the complexity between normal plant growth, which is regulated by auxin, and processes determining resistance or susceptibility, triggered by the same class of molecules.
Collapse
Affiliation(s)
- Jutta Ludwig-Müller
- Technische Universität Dresden, Institut für Botanik, 01062 Dresden, Germany.
| |
Collapse
|
16
|
Lin D, Ren H, Fu Y. ROP GTPase-mediated auxin signaling regulates pavement cell interdigitation in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:31-9. [PMID: 25168157 DOI: 10.1111/jipb.12281] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/27/2014] [Indexed: 05/08/2023]
Abstract
In multicellular plant organs, cell shape formation depends on molecular switches to transduce developmental or environmental signals and to coordinate cell-to-cell communication. Plants have a specific subfamily of the Rho GTPase family, usually called Rho of Plants (ROP), which serve as a critical signal transducer involved in many cellular processes. In the last decade, important advances in the ROP-mediated regulation of plant cell morphogenesis have been made by using Arabidopsis thaliana leaf and cotyledon pavement cells. Especially, the auxin-ROP signaling networks have been demonstrated to control interdigitated growth of pavement cells to form jigsaw-puzzle shapes. Here, we review findings related to the discovery of this novel auxin-signaling mechanism at the cell surface. This signaling pathway is to a large extent independent of the well-known Transport Inhibitor Response (TIR)-Auxin Signaling F-Box (AFB) pathway, and instead requires Auxin Binding Protein 1 (ABP1) interaction with the plasma membrane-localized, transmembrane kinase (TMK) receptor-like kinase to regulate ROP proteins. Once activated, ROP influences cytoskeletal organization and inhibits endocytosis of the auxin transporter PIN1. The present review focuses on ROP signaling and its self-organizing feature allowing ROP proteins to serve as a bustling signal decoder and integrator for plant cell morphogenesis.
Collapse
Affiliation(s)
- Deshu Lin
- Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | | | | |
Collapse
|
17
|
Druege U, Franken P, Lischewski S, Ahkami AH, Zerche S, Hause B, Hajirezaei MR. Transcriptomic analysis reveals ethylene as stimulator and auxin as regulator of adventitious root formation in petunia cuttings. FRONTIERS IN PLANT SCIENCE 2014; 5:494. [PMID: 25400641 PMCID: PMC4212214 DOI: 10.3389/fpls.2014.00494] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/06/2014] [Indexed: 05/23/2023]
Abstract
Adventitious root (AR) formation in the stem base (SB) of cuttings is the basis for propagation of many plant species and petunia is used as model to study this developmental process. Following AR formation from 2 to 192 hours post-excision (hpe) of cuttings, transcriptome analysis by microarray revealed a change of the character of the rooting zone from SB to root identity. The greatest shift in the number of differentially expressed genes was observed between 24 and 72 hpe, when the categories storage, mineral nutrient acquisition, anti-oxidative and secondary metabolism, and biotic stimuli showed a notable high number of induced genes. Analyses of phytohormone-related genes disclosed multifaceted changes of the auxin transport system, auxin conjugation and the auxin signal perception machinery indicating a reduction in auxin sensitivity and phase-specific responses of particular auxin-regulated genes. Genes involved in ethylene biosynthesis and action showed a more uniform pattern as a high number of respective genes were generally induced during the whole process of AR formation. The important role of ethylene for stimulating AR formation was demonstrated by the application of inhibitors of ethylene biosynthesis and perception as well as of the precursor aminocyclopropane-1-carboxylic acid, all changing the number and length of AR. A model is proposed showing the putative role of polar auxin transport and resulting auxin accumulation in initiation of subsequent changes in auxin homeostasis and signal perception with a particular role of Aux/IAA expression. These changes might in turn guide the entrance into the different phases of AR formation. Ethylene biosynthesis, which is stimulated by wounding and does probably also respond to other stresses and auxin, acts as important stimulator of AR formation probably via the expression of ethylene responsive transcription factor genes, whereas the timing of different phases seems to be controlled by auxin.
Collapse
Affiliation(s)
- Uwe Druege
- Department of Plant Propagation, Leibniz Institute of Vegetable and Ornamental Crops (IGZ)Großbeeren/Erfurt, Germany
| | - Philipp Franken
- Department of Plant Propagation, Leibniz Institute of Vegetable and Ornamental Crops (IGZ)Großbeeren/Erfurt, Germany
| | - Sandra Lischewski
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant BiochemistryHalle, Germany
| | - Amir H. Ahkami
- Institute of Biological Chemistry, Washington State UniversityPullman, WA, USA
| | - Siegfried Zerche
- Department of Plant Propagation, Leibniz Institute of Vegetable and Ornamental Crops (IGZ)Großbeeren/Erfurt, Germany
| | - Bettina Hause
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant BiochemistryHalle, Germany
| | - Mohammad R. Hajirezaei
- Department of Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| |
Collapse
|
18
|
Effendi Y, Radatz K, Labusch C, Rietz S, Wimalasekera R, Helizon H, Zeidler M, Scherer GFE. Mutants of phospholipase A (pPLA-I) have a red light and auxin phenotype. PLANT, CELL & ENVIRONMENT 2014; 37:1626-40. [PMID: 24433169 DOI: 10.1111/pce.12278] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Accepted: 12/27/2013] [Indexed: 05/13/2023]
Abstract
pPLA-I is the evolutionarily oldest patatin-related phospholipase A (pPLA) in plants, which have previously been implicated to function in auxin and defence signalling. Molecular and physiological analysis of two allelic null mutants for pPLA-I [ppla-I-1 in Wassilewskija (Ws) and ppla-I-3 in Columbia (Col) ] revealed pPLA-I functions in auxin and light signalling. The enzyme is localized in the cytosol and to membranes. After auxin application expression of early auxin-induced genes is significantly slower compared with wild type and both alleles show a slower gravitropic response of hypocotyls, indicating compromised auxin signalling. Additionally, phytochrome-modulated responses like abrogation of gravitropism, enhancement of phototropism and growth in far red-enriched light are decreased in both alleles. While early flowering, root coils and delayed phototropism are only observed in the Ws mutant devoid of phyD, the light-related phenotypes observed in both alleles point to an involvement of pPLA-I in phytochrome signalling.
Collapse
Affiliation(s)
- Yunus Effendi
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzwissenschaften, Abt. Molekulare Ertragsphysiologie, D-30419, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Sotelo-Silveira M, Marsch-Martínez N, de Folter S. Unraveling the signal scenario of fruit set. PLANTA 2014; 239:1147-58. [PMID: 24659051 DOI: 10.1007/s00425-014-2057-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/05/2014] [Indexed: 05/22/2023]
Abstract
Long-term goals to impact or modify fruit quality and yield have been the target of researchers for many years. Different approaches such as traditional breeding,mutation breeding, and transgenic approaches have revealed a regulatory network where several hormones concur in a complex way to regulate fruit set and development,and these networks are shared in some way among species with different kinds of fruits. Understanding the molecular and biochemical networks of fruit set and development could be very useful for breeders to meet the current and future challenges of agricultural problems.
Collapse
|
20
|
Ma Q, Robert S. Auxin biology revealed by small molecules. PHYSIOLOGIA PLANTARUM 2014; 151:25-42. [PMID: 24252105 DOI: 10.1111/ppl.12128] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 11/07/2013] [Accepted: 11/08/2013] [Indexed: 05/08/2023]
Abstract
The plant hormone auxin regulates virtually every aspect of plant growth and development and unraveling its molecular and cellular modes of action is fundamental for plant biology research. Chemical genomics is the use of small molecules to modify protein functions. This approach currently rises as a powerful technology for basic research. Small compounds with auxin-like activities or affecting auxin-mediated biological processes have been widely used in auxin research. They can serve as a tool complementary to genetic and genomic methods, facilitating the identification of an array of components modulating auxin metabolism, transport and signaling. The employment of high-throughput screening technologies combined with informatics-based chemical design and organic chemical synthesis has since yielded many novel small molecules with more instantaneous, precise and specific functionalities. By applying those small molecules, novel molecular targets can be isolated to further understand and dissect auxin-related pathways and networks that otherwise are too complex to be elucidated only by gene-based methods. Here, we will review examples of recently characterized molecules used in auxin research, highlight the strategies of unraveling the mechanisms of these small molecules and discuss future perspectives of small molecule applications in auxin biology.
Collapse
Affiliation(s)
- Qian Ma
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | | |
Collapse
|
21
|
Ludwig-Müller J. Auxin homeostasis, signaling, and interaction with other growth hormones during the clubroot disease of Brassicaceae. PLANT SIGNALING & BEHAVIOR 2014; 9:e28593. [PMID: 24699875 PMCID: PMC4091609 DOI: 10.4161/psb.28593] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 03/19/2014] [Indexed: 05/23/2023]
Abstract
The obligate biotrophic protist Plasmodiophora brassicae causes worldwide devastating losses on Brassica crops. Among these are oilseed rape, vegetable brassicas, and turnips. However, the fact that Arabidopsis thaliana is a good host for P. brassicae, has boosted research on the molecular interaction using the resources available for this model plant. Due to the uncontrolled growth of infected host root tissues the disease has been coined "clubroot." Consequently, during the last years, alterations in host hormone metabolisms have been described. Influencing the hormonal balance leads to aberrant growth responses in the clubbed roots. The discussion presented in the following will focus on growth promoting hormones, mainly auxins, with the interaction to other growth associated hormonal signaling pathways, such as cytokinins and brassinosteroids.
Collapse
|
22
|
Kirpichnikova AA, Rudashevskaya EL, Yemelyanov VV, Shishova MF. Ca(2+)-Transport through Plasma Membrane as a Test of Auxin Sensitivity. PLANTS (BASEL, SWITZERLAND) 2014; 3:209-22. [PMID: 27135501 PMCID: PMC4844295 DOI: 10.3390/plants3020209] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Revised: 03/09/2014] [Accepted: 03/13/2014] [Indexed: 11/16/2022]
Abstract
Auxin is one of the crucial regulators of plant growth and development. The discovered auxin cytosolic receptor (TIR1) is not involved in the perception of the hormone signal at the plasma membrane. Instead, another receptor, related to the ABP1, auxin binding protein1, is supposed to be responsible for the perception at the plasma membrane. One of the fast and sensitive auxin-induced reactions is an increase of Ca(2+) cytosolic concentration, which is suggested to be dependent on the activation of Ca(2+) influx through the plasma membrane. This investigation was carried out with a plasmalemma enriched vesicle fraction, obtained from etiolated maize coleoptiles. The magnitude of Ca(2+) efflux through the membrane vesicles was estimated according to the shift of potential dependent fluorescent dye diS-C₃-(5). The obtained results showed that during coleoptiles ageing (3rd, 4th and 5th days of seedling etiolated growth) the magnitude of Ca(2+) efflux from inside-out vesicles was decreased. Addition of ABP1 led to a recovery of Ca(2+) efflux to the level of the youngest and most sensitive cells. Moreover, the efflux was more sensitive, responding from 10(-8) to 10(-6) M 1-NAA, in vesicles containing ABP1, whereas native vesicles showed the highest efflux at 10(-6) M 1-NAA. We suggest that auxin increases plasma membrane permeability to Ca(2+) and that ABP1 is involved in modulation of this reaction.
Collapse
Affiliation(s)
- Anastasia A. Kirpichnikova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russia; E-Mails: (A.A.K.); (V.V.Y.)
| | - Elena L. Rudashevskaya
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russia; E-Mails: (A.A.K.); (V.V.Y.)
| | - Vladislav V. Yemelyanov
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russia; E-Mails: (A.A.K.); (V.V.Y.)
- Department of Genetics and Biotechnology, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russia
| | - Maria F. Shishova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, Universitetskaya emb. 7/9, St. Petersburg 199034, Russia; E-Mails: (A.A.K.); (V.V.Y.)
| |
Collapse
|
23
|
Eshraghi L, Anderson JP, Aryamanesh N, McComb JA, Shearer B, Hardy GSJE. Suppression of the auxin response pathway enhances susceptibility to Phytophthora cinnamomi while phosphite-mediated resistance stimulates the auxin signalling pathway. BMC PLANT BIOLOGY 2014; 14:68. [PMID: 24649892 PMCID: PMC3999932 DOI: 10.1186/1471-2229-14-68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/14/2014] [Indexed: 05/04/2023]
Abstract
BACKGROUND Phytophthora cinnamomi is a devastating pathogen worldwide and phosphite (Phi), an analogue of phosphate (Pi) is highly effective in the control of this pathogen. Phi also interferes with Pi starvation responses (PSR), of which auxin signalling is an integral component. In the current study, the involvement of Pi and the auxin signalling pathways in host and Phi-mediated resistance to P. cinnamomi was investigated by screening the Arabidopsis thaliana ecotype Col-0 and several mutants defective in PSR and the auxin response pathway for their susceptibility to this pathogen. The response to Phi treatment was also studied by monitoring its effect on Pi- and the auxin response pathways. RESULTS Here we demonstrate that phr1-1 (phosphate starvation response 1), a mutant defective in response to Pi starvation was highly susceptible to P. cinnamomi compared to the parental background Col-0. Furthermore, the analysis of the Arabidopsis tir1-1 (transport inhibitor response 1) mutant, deficient in the auxin-stimulated SCF (Skp1 - Cullin - F-Box) ubiquitination pathway was also highly susceptible to P. cinnamomi and the susceptibility of the mutants rpn10 and pbe1 further supported a role for the 26S proteasome in resistance to P. cinnamomi. The role of auxin was also supported by a significant (P < 0.001) increase in susceptibility of blue lupin (Lupinus angustifolius) to P. cinnamomi following treatment with the inhibitor of auxin transport, TIBA (2,3,5-triiodobenzoic acid). Given the apparent involvement of auxin and PSR signalling in the resistance to P. cinnamomi, the possible involvement of these pathways in Phi mediated resistance was also investigated. Phi (especially at high concentrations) attenuates the response of some Pi starvation inducible genes such as AT4, AtACP5 and AtPT2 in Pi starved plants. However, Phi enhanced the transcript levels of PHR1 and the auxin responsive genes (AUX1, AXR1and AXR2), suppressed the primary root elongation, and increased root hair formation in plants with sufficient Pi. CONCLUSIONS The auxin response pathway, particularly auxin sensitivity and transport, plays an important role in resistance to P. cinnamomi in Arabidopsis, and phosphite-mediated resistance may in some part be through its effect on the stimulation of the PSR and auxin response pathways.
Collapse
Affiliation(s)
- Leila Eshraghi
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Jonathan P Anderson
- CSIRO Plant Industry, Centre for Environment and Life Sciences, Private Bag 5, Wembley, WA 6913, Australia
- The University of Western Australia, Institute of Agriculture, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Nader Aryamanesh
- School of Plant Biology, Faculty of Science, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
- The University of Western Australia, Institute of Agriculture, 35 Stirling Highway, Crawley, WA 6009, Australia
| | - Jen A McComb
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Bryan Shearer
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
- Science Division, Department of Environment and conservation, Kensington, WA 6983, Australia
| | - Giles St J E Hardy
- Centre for Phytophthora Science and Management, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| |
Collapse
|
24
|
Rigal A, Ma Q, Robert S. Unraveling plant hormone signaling through the use of small molecules. FRONTIERS IN PLANT SCIENCE 2014; 5:373. [PMID: 25126092 PMCID: PMC4115670 DOI: 10.3389/fpls.2014.00373] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 07/11/2014] [Indexed: 05/03/2023]
Abstract
Plants have acquired the capacity to grow continuously and adjust their morphology in response to endogenous and external signals, leading to a high architectural plasticity. The dynamic and differential distribution of phytohormones is an essential factor in these developmental changes. Phytohormone perception is a fast but complex process modulating specific developmental reprogramming. In recent years, chemical genomics or the use of small molecules to modulate target protein function has emerged as a powerful strategy to study complex biological processes in plants such as hormone signaling. Small molecules can be applied in a conditional, dose-dependent and reversible manner, with the advantage of circumventing the limitations of lethality and functional redundancy inherent to traditional mutant screens. High-throughput screening of diverse chemical libraries has led to the identification of bioactive molecules able to induce plant hormone-related phenotypes. Characterization of the cognate targets and pathways of those molecules has allowed the identification of novel regulatory components, providing new insights into the molecular mechanisms of plant hormone signaling. An extensive structure-activity relationship (SAR) analysis of the natural phytohormones, their designed synthetic analogs and newly identified bioactive molecules has led to the determination of the structural requirements essential for their bioactivity. In this review, we will summarize the so far identified small molecules and their structural variants targeting specific phytohormone signaling pathways. We will highlight how the SAR analyses have enabled better interrogation of the molecular mechanisms of phytohormone responses. Finally, we will discuss how labeled/tagged hormone analogs can be exploited, as compelling tools to better understand hormone signaling and transport mechanisms.
Collapse
Affiliation(s)
| | | | - Stéphanie Robert
- *Correspondence: Stéphanie Robert, Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, 901 83 Umeå, Sweden e-mail:
| |
Collapse
|
25
|
Jahn L, Mucha S, Bergmann S, Horn C, Staswick P, Steffens B, Siemens J, Ludwig-Müller J. The Clubroot Pathogen (Plasmodiophora brassicae) Influences Auxin Signaling to Regulate Auxin Homeostasis in Arabidopsis. PLANTS 2013; 2:726-49. [PMID: 27137401 PMCID: PMC4844388 DOI: 10.3390/plants2040726] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 10/17/2013] [Accepted: 11/18/2013] [Indexed: 11/16/2022]
Abstract
The clubroot disease, caused by the obligate biotrophic protist Plasmodiophora brassicae, affects cruciferous crops worldwide. It is characterized by root swellings as symptoms, which are dependent on the alteration of auxin and cytokinin metabolism. Here, we describe that two different classes of auxin receptors, the TIR family and the auxin binding protein 1 (ABP1) in Arabidopsis thaliana are transcriptionally upregulated upon gall formation. Mutations in the TIR family resulted in more susceptible reactions to the root pathogen. As target genes for the different pathways we have investigated the transcriptional regulation of selected transcriptional repressors (Aux/IAA) and transcription factors (ARF). As the TIR pathway controls auxin homeostasis via the upregulation of some auxin conjugate synthetases (GH3), the expression of selected GH3 genes was also investigated, showing in most cases upregulation. A double gh3 mutant showed also slightly higher susceptibility to P. brassicae infection, while all tested single mutants did not show any alteration in the clubroot phenotype. As targets for the ABP1-induced cell elongation the effect of potassium channel blockers on clubroot formation was investigated. Treatment with tetraethylammonium (TEA) resulted in less severe clubroot symptoms. This research provides evidence for the involvement of two auxin signaling pathways in Arabidopsis needed for the establishment of the root galls by P. brassicae.
Collapse
Affiliation(s)
- Linda Jahn
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Stefanie Mucha
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Sabine Bergmann
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Cornelia Horn
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Paul Staswick
- Department of Agronomy and Horticulture, University of Nebraska, 379 Keim, Lincoln, NE 68521 USA.
| | - Bianka Steffens
- Botanisches Institut, Universität Kiel, Am Botanischen Garten 5, 24118 Kiel, Germany.
| | - Johannes Siemens
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Jutta Ludwig-Müller
- Institut für Botanik, Technische Universität Dresden, 01062 Dresden, Germany.
| |
Collapse
|
26
|
Effendi Y, Jones AM, Scherer GFE. AUXIN-BINDING-PROTEIN1 (ABP1) in phytochrome-B-controlled responses. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5065-74. [PMID: 24052532 PMCID: PMC3830486 DOI: 10.1093/jxb/ert294] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The auxin receptor ABP1 directly regulates plasma membrane activities including the number of PIN-formed (PIN) proteins and auxin efflux transport. Red light (R) mediated by phytochromes regulates the steady-state level of ABP1 and auxin-inducible growth capacity in etiolated tissues but, until now, there has been no genetic proof that ABP1 and phytochrome regulation of elongation share a common mechanism for organ elongation. In far red (FR)-enriched light, hypocotyl lengths were larger in the abp1-5 and abp1/ABP1 mutants, but not in tir1-1, a null mutant of the TRANSPORT-INHIBITOR-RESPONSE1 auxin receptor. The polar auxin transport inhibitor naphthylphthalamic acid (NPA) decreased elongation in the low R:FR light-enriched white light (WL) condition more strongly than in the high red:FR light-enriched condition WL suggesting that auxin transport is an important condition for FR-induced elongation. The addition of NPA to hypocotyls grown in R- and FR-enriched light inhibited hypocotyl gravitropism to a greater extent in both abp1 mutants and in phyB-9 and phyA-211 than the wild-type hypocotyl, arguing for decreased phytochrome action in conjunction with auxin transport in abp1 mutants. Transcription of FR-enriched light-induced genes, including several genes regulated by auxin and shade, was reduced 3-5-fold in abp1-5 compared with Col and was very low in abp1/ABP1. In the phyB-9 mutant the expression of these reporter genes was 5-15-fold lower than in Col. In tir1-1 and the phyA-211 mutants shade-induced gene expression was greatly attenuated. Thus, ABP1 directly or indirectly participates in auxin and light signalling.
Collapse
Affiliation(s)
- Yunus Effendi
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzforschung, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | - Alan M. Jones
- Departments of Biology and Pharmacology, University of North Carolina, Chapel Hill, NC 27516, USA
| | - Günther F. E. Scherer
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzforschung, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| |
Collapse
|
27
|
Labusch C, Shishova M, Effendi Y, Li M, Wang X, Scherer GFE. Patterns and timing in expression of early auxin-induced genes imply involvement of phospholipases A (pPLAs) in the regulation of auxin responses. MOLECULAR PLANT 2013; 6:1473-86. [PMID: 23519456 DOI: 10.1093/mp/sst053] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
While it is known that patatin-related phospholipase A (pPLA) activity is rapidly activated within 3 min by auxin, hardly anything is known about how this signal influences downstream responses like transcription of early auxin-induced genes or other physiological responses. We screened mutants with T-DNA insertions in members of the pPLA gene family for molecular and physiological phenotypes related to auxin. Only one in nine Arabidopsis thaliana ppla knockdown mutants displayed an obvious constitutive auxin-related phenotype. Compared to wild-type, ppla-IIIδ mutant seedlings had decreased main root lengths and increased lateral root numbers. We tested auxin-induced gene expression as a molecular readout for primary molecular auxin responses in nine ppla mutants and found delayed up-regulation of auxin-responsive gene expression in all of them. Thirty minutes after auxin treatment, up-regulation of up to 40% of auxin-induced genes was delayed in mutant seedlings. We observed only a few cases with hypersensitive auxin-induced gene expression in ppla mutants. While, in three ppla mutants, which were investigated in detail, rapid up-regulation (as early as 10min after auxin stimulus) of auxin-regulated genes was impaired, late transcriptional responses were wild-type-like. This regulatory or dynamic phenotype was consistently observed in different ppla mutants with delayed up-regulation that frequently affected the same genes. This defect was not affected by pPLA transcript levels which remained constant. This indicates a posttranslational mechanism as a functional link of pPLAs to auxin signaling. The need for a receptor triggering an auxin response without employing transcription regulation is discussed.
Collapse
Affiliation(s)
- Corinna Labusch
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzwissenschaften, Abt. Molekulare Ertragsphysiologie, Herrenhäuser Str. 2, D-30419 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Abstract
Auxin plays important roles during the entire life span of a plant. This small organic acid influences cell division, cell elongation and cell differentiation, and has great impact on the final shape and function of cells and tissues in all higher plants. Auxin metabolism is not well understood but recent discoveries, reviewed here, have started to shed light on the processes that regulate the synthesis and degradation of this important plant hormone.
Collapse
Affiliation(s)
- Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
| |
Collapse
|
29
|
Le Ny F, Leblanc A, Beauclair P, Deleu C, Le Deunff E. In low transpiring conditions, nitrate and water fluxes for growth of B. napus plantlets correlate with changes in BnNrt2.1 and BnNrt1.1 transporter expression. PLANT SIGNALING & BEHAVIOR 2013; 8:e22902. [PMID: 23299417 PMCID: PMC3656990 DOI: 10.4161/psb.22902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We analyzed how changes in BnNrt nitrate transporter gene expression induced by nitrate are associated with morphological changes in plantlets and osmotic water flow for growth. We hypothesized that in a Petri dish system, reduction in transpiration should induce conditions where nitrate and water fluxes for growth depend directly on nitrate transporter activity and nitrate signaling. Rape seedlings growing on agar plates were supplied with increasing external K (15)NO 3 concentrations from 0.05 to 20 mM. After 5 d of treatment, morphological switches in plantlet growth were observed between 0.5 and 5 mM nitrate supply. Root elongation was reduced by 50% while the cotyledon surface area was doubled. These morphological switches were strongly associated with increases in (15)NO 3(-) and water uptake rates as well as (15)N and water allocation to the shoot. These switches were also highly correlated with the upregulation of BnNrt1.1 and BnNrt2.1 in the root. However, while root expression of BnNrt2.1 was correlated linearly with a shoot growth-associated increase in (15)N and water uptake, BnNrt1.1 expression was correlated exponentially with both (15)N and water accumulation. In low transpiring conditions, the tight control exercised by nitrate transporters on K (15)NO 3 uptake and allocation clearly demonstrates that they modulated the nitrate-signaling cascade involved in cell growth and as a consequence, water uptake and allocation to the growing organs. Deciphering this signaling cascade in relation to acid growth theory seems to be the most important challenge for our understanding of the nitrate-signaling role in plant growth.
Collapse
Affiliation(s)
- Fabien Le Ny
- Université Caen; IBFA; UMR INRA 950 EVA; Caen France
| | | | | | - Carole Deleu
- Université Rennes 1; UMR INRA 1349 IGEPP; Rennes, France
| | - Erwan Le Deunff
- Université Caen; IBFA; UMR INRA 950 EVA; Caen France
- Correspondence to: Erwan Le Deunff,
| |
Collapse
|
30
|
Lamport DTA, Várnai P. Periplasmic arabinogalactan glycoproteins act as a calcium capacitor that regulates plant growth and development. THE NEW PHYTOLOGIST 2013; 197:58-64. [PMID: 23106282 DOI: 10.1111/nph.12005] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 09/15/2012] [Indexed: 05/18/2023]
Abstract
Arabinogalactan glycoproteins (AGPs) are implicated in virtually all aspects of plant growth and development, yet their precise role remains unknown. Classical AGPs cover the plasma membrane and are highly glycosylated by numerous acidic arabinogalactan polysaccharides O-linked to hydroxyproline. Their heterogeneity and complexity hindered a structural approach until the recent determination of a highly conserved repetitive consensus structure for a 15-sugar residue arabinogalactan subunit with paired glucuronic carboxyls. Based on NMR data and molecular dynamics simulations, we identify these carboxyls as potential intramolecular Ca(2+)-binding sites. Using rapid ultrafiltration assays and mass spectrometry, we verified that AGPs bind Ca(2+) tightly (K(d) ~ 6.5 μM) and stoichiometrically at pH 5. Ca(2+) binding is reversible in a pH-dependent manner. As typical AGPs contain c. 30 Ca(2+)-binding subunits and are bulk components of the periplasm, they represent a Ca(2+) capacitor discharged at low pH by stretch-activated plasma membrane H(+)-ATPases, hence a substantial source of cytosolic Ca(2+). We propose that these Ca(2+) waves prime the 'calcium oscillator', a signal generator essential to the global Ca(2+) signalling pathway of green plants.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Péter Várnai
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| |
Collapse
|
31
|
Baldwin KL, Strohm AK, Masson PH. Gravity sensing and signal transduction in vascular plant primary roots. AMERICAN JOURNAL OF BOTANY 2013; 100:126-42. [PMID: 23048015 DOI: 10.3732/ajb.1200318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
During gravitropism, the potential energy of gravity is converted into a biochemical signal. How this transfer occurs remains one of the most exciting mysteries in plant cell biology. New experiments are filling in pieces of the puzzle. In this review, we introduce gravitropism and give an overview of what we know about gravity sensing in roots of vascular plants, with special highlight on recent papers. When plant roots are reoriented sideways, amyloplast resedimentation in the columella cells is a key initial step in gravity sensing. This process somehow leads to cytoplasmic alkalinization of these cells followed by relocalization of auxin efflux carriers (PINs). This changes auxin flow throughout the root, generating a lateral gradient of auxin across the cap that upon transmission to the elongation zone leads to differential cell elongation and gravibending. We will present the evidence for and against the following players having a role in transferring the signal from the amyloplast sedimentation into the auxin signaling cascade: mechanosensitive ion channels, actin, calcium ions, inositol trisphosphate, receptors/ligands, ARG1/ARL2, spermine, and the TOC complex. We also outline auxin transport and signaling during gravitropism.
Collapse
Affiliation(s)
- Katherine L Baldwin
- Laboratory of Genetics and Program of Cellular and Molecular Biology, University of Wisconsin-Madison, 425G Henry Mall, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
32
|
Fozard JA, King JR, Bennett MJ. Modelling auxin efflux carrier phosphorylation and localization. J Theor Biol 2012; 319:34-49. [PMID: 23160141 DOI: 10.1016/j.jtbi.2012.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 10/15/2012] [Accepted: 11/05/2012] [Indexed: 01/17/2023]
Abstract
Regulation of the activity and localization of PIN-FORMED (PIN) membrane proteins, which facilitate efflux of the plant hormone auxin from cells, is important for plants to respond to environmental stimuli and to develop new organs. The protein kinase PINOID (PID) is involved in regulating PIN phosphorylation, and this is thought to affect PIN localization by biasing recycling towards shootwards (apical) (rather than rootwards (basal)) membrane domains. PID has been observed to undergo transient internalization following auxin treatment, and it has been suggested that this may be a result of calcium-dependent sequestration of PID by the calcium-binding protein TOUCH3 (TCH3). We present a mathematical formulation of these processes and examine the resulting steady-state and time-dependent behaviours in response to transient increases in cytosolic calcium. We further combine this model with one for the recycling of PINs in polarized cells and also examine its behaviour. The results provide insight into the behaviour observed experimentally and provide the basis for subsequent studies of the tissue-level implications of these subcellular processes for phenomena such as gravitropism.
Collapse
Affiliation(s)
- J A Fozard
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, United Kingdom.
| | | | | |
Collapse
|
33
|
El-Sharkawy I, Sherif S, Mahboob A, Abubaker K, Bouzayen M, Jayasankar S. Expression of auxin-binding protein1 during plum fruit ontogeny supports the potential role of auxin in initiating and enhancing climacteric ripening. PLANT CELL REPORTS 2012; 31:1911-1921. [PMID: 22739723 DOI: 10.1007/s00299-012-1304-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/10/2012] [Accepted: 06/12/2012] [Indexed: 06/01/2023]
Abstract
Auxin-binding protein1 (ABP1) is an active element involved in auxin signaling and plays critical roles in auxin-mediated plant development. Here, we report the isolation and characterization of a putative sequence from Prunus salicina L., designated PslABP1. The expected protein exhibits a similar molecular structure to that of well-characterized maize-ABP1; however, PslABP1 displays more sequence polarity in the active-binding site due to substitution of some crucial amino-acid residues predicted to be involved in auxin-binding. Further, PslABP1 expression was assessed throughout fruit ontogeny to determine its role in fruit development. Comparing the expression data with the physiological aspects that characterize fruit-development stages indicates that PslABP1 up-regulation is usually associated with the signature events that are triggered in an auxin-dependent manner such as floral induction, fruit initiation, embryogenesis, and cell division and elongation. However, the diversity in PslABP1 expression profile during the ripening process of early and late plum cultivars seems to be due to the variability of endogenous auxin levels among the two cultivars, which consequently can change the levels of autocatalytic ethylene available for the fruit to co-ordinate ripening. The effect of auxin on stimulating ethylene production and in regulating PslABP1 was investigated. Our data suggest that auxin is involved in the transition of the mature green fruit into the ripening phase and in enhancing the ripening process in both auxin- and ethylene-dependent manners thereafter.
Collapse
Affiliation(s)
- I El-Sharkawy
- Department of Plant Agriculture, University of Guelph, 4890 Victoria Av. N, P.O. Box 7000, Vineland Station, ON, L0R 2E0, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Sakai T, Haga K. Molecular genetic analysis of phototropism in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:1517-34. [PMID: 22864452 PMCID: PMC3439871 DOI: 10.1093/pcp/pcs111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant life is strongly dependent on the environment, and plants regulate their growth and development in response to many different environmental stimuli. One of the regulatory mechanisms involved in these responses is phototropism, which allows plants to change their growth direction in response to the location of the light source. Since the study of phototropism by Darwin, many physiological studies of this phenomenon have been published. Recently, molecular genetic analyses of Arabidopsis have begun to shed light on the molecular mechanisms underlying this response system, including phototropin blue light photoreceptors, phototropin signaling components, auxin transporters, auxin action mechanisms and others. This review highlights some of the recent progress that has been made in further elucidating the phototropic response, with particular emphasis on mutant phenotypes.
Collapse
Affiliation(s)
- Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Nishi-ku, Niigata, 950-2181 Japan.
| | | |
Collapse
|
35
|
Mignolli F, Mariotti L, Lombardi L, Vidoz ML, Ceccarelli N, Picciarelli P. Tomato fruit development in the auxin-resistant dgt mutant is induced by pollination but not by auxin treatment. JOURNAL OF PLANT PHYSIOLOGY 2012; 169:1165-1172. [PMID: 22608080 DOI: 10.1016/j.jplph.2012.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/11/2012] [Accepted: 04/12/2012] [Indexed: 06/01/2023]
Abstract
In tomato (Solanum lycopersicum Mill.), auxin is believed to play a pivotal role in controlling fruit-set and early ovary growth. In this paper we investigated the effect of the reduced auxin sensitivity exhibited by the diageotropica (dgt) tomato mutant on ovary growth during early stage of fruit development. Here we show that in hand-pollinated ovaries fruit-set was not affected by the dgt lesion while fruit growth was reduced. This reduction was associated with a smaller cell size of mesocarp cells, with a lower mean C values and with a lower gene expression of the expansin gene LeExp2. When a synthetic auxin (4-CPA, chlorophenoxyacetic acid) was applied to the flowers of wild type plants, parthenocarpic ovary growth was induced. On the contrary, auxin application to the flowers of dgt plants failed to induce parthenocarpy. Hand-pollinated ovaries of dgt contained higher levels of IAA compared to wild type and this was not associated with high transcript levels of genes encoding a key regulatory enzyme of IAA biosynthesis (ToFZYs) but with lower expression levels of GH3, a gene involved in the conjugation of IAA to amino acids. The expression of diverse Aux/IAA genes and SAUR (small auxin up-regulated RNA) was also altered in the dgt ovaries. The dgt lesion does not seem to affect specific Aux/IAA genes in terms of transcript occurrence but rather in terms of relative levels of expression. Transcript levels of Aux/IAA genes were up regulated in auxin-treated ovaries of wild-type but not in dgt. Together, our results suggest that dgt ovary cells are not able to sense and/or transduce the external auxin signal, whereas pollinated dgt ovary cells are able to detect the IAA present in fertilized ovules promoting fruit development.
Collapse
Affiliation(s)
- Francesco Mignolli
- Department of Biology, University of Pisa, Via Mariscoglio 34, I-56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Hicks GR, Raikhel NV. Small molecules present large opportunities in plant biology. ANNUAL REVIEW OF PLANT BIOLOGY 2012; 63:261-82. [PMID: 22404475 DOI: 10.1146/annurev-arplant-042811-105456] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since the introduction of chemical genomics to plant biology as a tool for basic research, the field has advanced significantly. There are now examples of important basic discoveries that demonstrate the power and untapped potential of this approach. Given the combination of protein and small-molecule complexity, new phenotypes can be described through the perturbation of cellular functions that can be linked to growth and developmental phenotypes. There are now clear examples of overcoming functional redundancy in plants to dissect molecular mechanisms or critical pathways such as hormone signaling and dynamic intracellular processes. Owing to ongoing advances, including more sophisticated high-content screening and rapid approaches for target identification, the field is beginning to move forward. However, there are also challenges to improve automation, imaging, and analysis and provide chemical biology resources to the broader plant biology community.
Collapse
Affiliation(s)
- Glenn R Hicks
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
37
|
Modulation of AUXIN-BINDING PROTEIN 1 gene expression in maize and the teosintes by transposon insertions in its promoter. Mol Genet Genomics 2011; 287:143-53. [DOI: 10.1007/s00438-011-0667-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 12/09/2011] [Indexed: 01/09/2023]
|
38
|
Effendi Y, Scherer GFE. Auxin binding-protein1 (ABP1), a receptor to regulate auxin transport and early auxin genes in an interlocking system with PIN proteins and the receptor TIR1. PLANT SIGNALING & BEHAVIOR 2011; 6:1101-3. [PMID: 21822062 PMCID: PMC3260702 DOI: 10.4161/psb.6.8.16403] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Compared to the past 10 years, a flurry of publications, reviews, and experimental papers on ABP1 appeared in the last couple of years. Certainly, the reason is that new methods and conceptual approaches appeared to tackle the questions posed by this enigmatic auxin-binding protein. Part of the enigma is the obvious central importance of ABP1, documented by the embryo-lethal property of the homozygous T-DNA insertion into this gene1. At the same time, this very property hindered progress in studying ABP1. Another delaying influence on ABP1 research was the fact that regulation of early auxin genes was fully explained by the mechanism provided by TRI1, the second auxin receptor2-4.
Collapse
Affiliation(s)
- Yunus Effendi
- Leibniz Universität Hannover, Institut für Zierpflanzenbau und Gehölzforschung, Abt Molekulare Ertragsphysiologie, Hannover, Germany
| | | |
Collapse
|