1
|
Cannon EK, Portwood JL, Hayford RK, Haley OC, Gardiner JM, Andorf CM, Woodhouse MR. Enhanced pan-genomic resources at the maize genetics and genomics database. Genetics 2024; 227:iyae036. [PMID: 38577974 DOI: 10.1093/genetics/iyae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/13/2024] [Indexed: 04/06/2024] Open
Abstract
Pan-genomes, encompassing the entirety of genetic sequences found in a collection of genomes within a clade, are more useful than single reference genomes for studying species diversity. This is especially true for a species like Zea mays, which has a particularly diverse and complex genome. Presenting pan-genome data, analyses, and visualization is challenging, especially for a diverse species, but more so when pan-genomic data is linked to extensive gene model and gene data, including classical gene information, markers, insertions, expression and proteomic data, and protein structures as is the case at MaizeGDB. Here, we describe MaizeGDB's expansion to include the genic subset of the Zea pan-genome in a pan-gene data center featuring the maize genomes hosted at MaizeGDB, and the outgroup teosinte Zea genomes from the Pan-Andropoganeae project. The new data center offers a variety of browsing and visualization tools, including sequence alignment visualization, gene trees and other tools, to explore pan-genes in Zea that were calculated by the pipeline Pandagma. Combined, these data will help maize researchers study the complexity and diversity of Zea, and to use the comparative functions to validate pan-gene relationships for a selected gene model.
Collapse
Affiliation(s)
- Ethalinda K Cannon
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - John L Portwood
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Rita K Hayford
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Olivia C Haley
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Carson M Andorf
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | | |
Collapse
|
2
|
Tang L, Liu C, Li X, Wang H, Zhang S, Cai X, Zhang J. An aldehyde dehydrogenase gene, GhALDH7B4_A06, positively regulates fiber strength in upland cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2024; 15:1377682. [PMID: 38736450 PMCID: PMC11082362 DOI: 10.3389/fpls.2024.1377682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/09/2024] [Indexed: 05/14/2024]
Abstract
High fiber strength (FS) premium cotton has significant market demand. Consequently, enhancing FS is a major objective in breeding quality cotton. However, there is a notable lack of known functionally applicable genes that can be targeted for breeding. To address this issue, our study used specific length-amplified fragment sequencing combined with bulk segregant analysis to study FS trait in an F2 population. Subsequently, we integrated these results with previous quantitative trait locus mapping results regarding fiber quality, which used simple sequence repeat markers in F2, F2:3, and recombinant inbred line populations. We identified a stable quantitative trait locus qFSA06 associated with FS located on chromosome A06 (90.74-90.83 Mb). Within this interval, we cloned a gene, GhALDH7B4_A06, which harbored a critical mutation site in coding sequences that is distinct in the two parents of the tested cotton line. In the paternal parent Ji228, the gene is normal and referred to as GhALDH7B4_A06O; however, there is a nonsense mutation in the maternal parent Ji567 that results in premature termination of protein translation, and this gene is designated as truncated GhALDH7B4_A06S. Validation using recombinant inbred lines and gene expression analysis revealed that this mutation site is correlated with cotton FS. Virus-induced gene silencing of GhALDH7B4 in cotton caused significant decreases in FS and fiber micronaire. Conversely, GhALDH7B4_A06O overexpression in Arabidopsis boosted cell wall component contents in the stem. The findings of our study provide a candidate gene for improving cotton fiber quality through molecular breeding.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jianhong Zhang
- Institute of Cotton, Hebei Academy of Agriculture and Forestry Sciences, Key Laboratory of Cotton Biology and Genetic Breeding in Huanghuaihai Semiarid Area, Ministry of Agriculture and Rural Affairs, Shijiazhuang, Hebei, China
| |
Collapse
|
3
|
Zhao B, Li K, Wang M, Liu Z, Yin P, Wang W, Li Z, Li X, Zhang L, Han Y, Li J, Yang X. Genetic basis of maize stalk strength decoded via linkage and association mapping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:1558-1573. [PMID: 38113320 DOI: 10.1111/tpj.16583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/20/2023] [Accepted: 11/26/2023] [Indexed: 12/21/2023]
Abstract
Stalk lodging is a severe problem that limits maize production worldwide, although little attention has been given to its genetic basis. Here we measured rind penetrometer resistance (RPR), an effective index for stalk lodging, in a multi-parent population of 1948 recombinant inbred lines (RILs) and an association population of 508 inbred lines (AMP508). Linkage and association mapping identified 53 and 29 single quantitative trait loci (QTLs) and 50 and 19 pairs of epistatic interactions for RPR in the multi-parent population and AMP508 population, respectively. Phenotypic variation explained by all identified epistatic QTLs (up to ~5%) was much less than that explained by all single additive QTLs (up to ~33% in the multi-parent population and ~ 60% in the AMP508 population). Among all detected QTLs, only eight single QTLs explained >10% of phenotypic variation in single RIL populations. Alleles that increased RPR were enriched in tropical/subtropical (TST) groups from the AMP508 population. Based on genome-wide association studies in both populations, we identified 137 candidate genes affecting RPR, which were assigned to multiple biological processes, such as the biosynthesis of cell wall components. Sixty-six candidate genes were cross-validated by multiple methods or populations. Most importantly, 23 candidate genes were upregulated or downregulated in high-RPR lines relative to low-RPR lines, supporting the associations between candidate genes and RPR. These findings reveal the complex nature of the genetic basis underlying RPR and provide loci or candidate genes for developing elite varieties that are resistant to stalk lodging via molecular breeding.
Collapse
Affiliation(s)
- Binghao Zhao
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Kun Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Min Wang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Zhiyuan Liu
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Pengfei Yin
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Weidong Wang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Zhigang Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaowei Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Lili Zhang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Yingjia Han
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jiansheng Li
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
4
|
Jiao S, Mamidi S, Chamberlin MA, Beatty M, Thatcher S, Simcox KD, Maina F, Wang-Nan H, Johal GS, Heetland L, Marla SR, Meeley RB, Schmutz J, Morris GP, Multani DS. Parallel tuning of semi-dwarfism via differential splicing of Brachytic1 in commercial maize and smallholder sorghum. THE NEW PHYTOLOGIST 2023; 240:1930-1943. [PMID: 37737036 DOI: 10.1111/nph.19273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/19/2023] [Indexed: 09/23/2023]
Abstract
In the current genomic era, the search and deployment of new semi-dwarf alleles have continued to develop better plant types in all cereals. We characterized an agronomically optimal semi-dwarf mutation in Zea mays L. and a parallel polymorphism in Sorghum bicolor L. We cloned the maize brachytic1 (br1-Mu) allele by a modified PCR-based Sequence Amplified Insertion Flanking Fragment (SAIFF) approach. Histology and RNA-Seq elucidated the mechanism of semi-dwarfism. GWAS linked a sorghum plant height QTL with the Br1 homolog by resequencing a West African sorghum landraces panel. The semi-dwarf br1-Mu allele encodes an MYB transcription factor78 that positively regulates stalk cell elongation by interacting with the polar auxin pathway. Semi-dwarfism is due to differential splicing and low functional Br1 wild-type transcript expression. The sorghum ortholog, SbBr1, co-segregates with the major plant height QTL qHT7.1 and is alternatively spliced. The high frequency of the Sbbr1 allele in African landraces suggests that African smallholder farmers used the semi-dwarf allele to improve plant height in sorghum long before efforts to introduce Green Revolution-style varieties in the 1960s. Surprisingly, variants for differential splicing of Brachytic1 were found in both commercial maize and smallholder sorghum, suggesting parallel tuning of plant architecture across these systems.
Collapse
Affiliation(s)
- Shuping Jiao
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Sujan Mamidi
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | | | - Mary Beatty
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Shawn Thatcher
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Kevin D Simcox
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Fanna Maina
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Hu Wang-Nan
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Gurmukh S Johal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Lynn Heetland
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Sandeep R Marla
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
| | - Robert B Meeley
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS, 66506, USA
- Soil & Crop Sciences, Colorado State University, Plant Sciences Building, Fort Collins, CO, 11111, USA
| | - Dilbag S Multani
- Corteva Agriscience, 7300 NW 62nd Ave, Johnston, IA, 50131, USA
- Napigen Inc., 200 Powder Mill Road, Delaware Innovation Space - E500, Wilmington, DE, 19803, USA
| |
Collapse
|
5
|
Ciulla MG, Gelain F. Structure-activity relationships of antibacterial peptides. Microb Biotechnol 2023; 16:757-777. [PMID: 36705032 PMCID: PMC10034643 DOI: 10.1111/1751-7915.14213] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/08/2022] [Accepted: 01/01/2023] [Indexed: 01/28/2023] Open
Abstract
Antimicrobial peptides play a crucial role in innate immunity, whose components are mainly peptide-based molecules with antibacterial properties. Indeed, the exploration of the immune system over the past 40 years has revealed a number of natural peptides playing a pivotal role in the defence mechanisms of vertebrates and invertebrates, including amphibians, insects, and mammalians. This review provides a discussion regarding the antibacterial mechanisms of peptide-based agents and their structure-activity relationships (SARs) with the aim of describing a topic that is not yet fully explored. Some growing evidence suggests that innate immunity should be strongly considered for the development of novel antibiotic peptide-based libraries. Also, due to the constantly rising concern of antibiotic resistance, the development of new antibiotic drugs is becoming a priority of global importance. Hence, the study and the understanding of defence phenomena occurring in the immune system may inspire the development of novel antibiotic compound libraries and set the stage to overcome drug-resistant pathogens. Here, we provide an overview of the importance of peptide-based antibacterial sources, focusing on accurately selected molecular structures, their SARs including recently introduced modifications, their latest biotechnology applications, and their potential against multi-drug resistant pathogens. Last, we provide cues to describe how antibacterial peptides show a better scope of action selectivity than several anti-infective agents, which are characterized by non-selective activities and non-targeted actions toward pathogens.
Collapse
Affiliation(s)
- Maria Gessica Ciulla
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Fabrizio Gelain
- Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
- Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
6
|
Kolkman JM, Moreta DE, Repka A, Bradbury P, Nelson RJ. Brown midrib mutant and genome-wide association analysis uncover lignin genes for disease resistance in maize. THE PLANT GENOME 2023; 16:e20278. [PMID: 36533711 DOI: 10.1002/tpg2.20278] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 05/10/2023]
Abstract
Brown midrib (BMR) maize (Zea mays L.) harbors mutations that result in lower lignin levels and higher feed digestibility, making it a desirable silage market class for ruminant nutrition. Northern leaf blight (NLB) epidemics in upstate New York highlighted the disease susceptibility of commercially grown BMR maize hybrids. We found the bm1, bm2, bm3, and bm4 mutants in a W64A genetic background to be more susceptible to foliar fungal (NLB, gray leaf spot [GLS], and anthracnose leaf blight [ALB]) and bacterial (Stewart's wilt) diseases. The bm1, bm2, and bm3 mutants showed enhanced susceptibility to anthracnose stalk rot (ASR), and the bm1 and bm3 mutants were more susceptible to Gibberella ear rot (GER). Colocalization of quantitative trait loci (QTL) and correlations between stalk strength and disease traits in recombinant inbred line families suggest possible pleiotropies. The role of lignin in plant defense was explored using high-resolution, genome-wide association analysis for resistance to NLB in the Goodman diversity panel. Association analysis identified 100 single and clustered single-nucleotide polymorphism (SNP) associations for resistance to NLB but did not implicate natural functional variation at bm1-bm5. Strong associations implicated a suite of diverse candidate genes including lignin-related genes such as a β-glucosidase gene cluster, hct11, knox1, knox2, zim36, lbd35, CASP-like protein 8, and xat3. The candidate genes are targets for breeding quantitative resistance to NLB in maize for use in silage and nonsilage purposes.
Collapse
Affiliation(s)
- Judith M Kolkman
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
| | - Danilo E Moreta
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853, USA
| | - Ace Repka
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
| | | | - Rebecca J Nelson
- School of Integrative Plant Science, Plant Pathology and Plant-Microbe Biology Section, Cornell Univ., Ithaca, NY, 14853, USA
- School of Integrative Plant Science, Plant Breeding and Genetics Section, Cornell Univ., Ithaca, NY, 14853, USA
| |
Collapse
|
7
|
Bhatia R, Timms-Taravella E, Roberts LA, Moron-Garcia OM, Hauck B, Dalton S, Gallagher JA, Wagner M, Clifton-Brown J, Bosch M. Transgenic ZmMYB167 Miscanthus sinensis with increased lignin to boost bioenergy generation for the bioeconomy. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:29. [PMID: 36814294 PMCID: PMC9945411 DOI: 10.1186/s13068-023-02279-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/07/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND Perennial C4 grasses from the genus Miscanthus are widely regarded as leading and promising dedicated bioenergy crops due to their high biomass accumulation on marginal land with low environmental impacts and maintenance requirements over its productive life. There is an urgent socio-political and environmental need to ramp up the production of alternative, affordable and green bioenergy sources and to re-direct the net zero carbon emissions trajectory. Hence, up-scaling of Miscanthus cultivation as a source of biomass for renewable energy could play an important role to strategically address sustainable development goals for a growing bio-based economy. Certain Miscanthus sinensis genotypes are particularly interesting for their biomass productivity across a wide range of locations. As the aromatic biomass component lignin exhibits a higher energy density than cell wall polysaccharides and is generally used as an indicator for heating or calorific value, genetic engineering could be a feasible strategy to develop M. sinensis biomass with increased lignin content and thus improving the energetic value of the biomass. RESULTS For this purpose, transgenic M. sinensis were generated by Agrobacterium-mediated transformation for expression of ZmMYB167, a MYB transcription factor known for regulating lignin biosynthesis in C3 and C4 grasses. Four independent transgenic ZmMYB167 Miscanthus lines were obtained. Agronomic traits such as plant height, tillering and above-ground dry weight biomass of the transgenic plants were not different to that of wild-type control plants. Total lignin content of the transgenic plants was ~ 15-24% higher compared with control plants. However, the structural carbohydrates, glucan and xylan, were decreased by ~ 2-7% and ~ 8-10%, respectively, in the transgenic plants. Moreover, expression of ZmMYB167 in transgenic plants did not alter lignin composition, phenolic compounds or enzymatic saccharification efficiency yields but importantly improved total energy levels in Miscanthus biomass, equivalent to 10% higher energy yield per hectare. CONCLUSIONS This study highlights ZmMYB167 as a suitable target for genetic lignin bioengineering interventions aimed at advancing and developing lignocellulosic biomass supply chains for sustainable production of renewable bioenergy.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK. .,Department of Agronomy and Plant Breeding, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Emma Timms-Taravella
- grid.8186.70000 0001 2168 2483Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE UK
| | - Luned A. Roberts
- grid.8186.70000 0001 2168 2483Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE UK
| | - Odin M. Moron-Garcia
- grid.8186.70000 0001 2168 2483Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE UK
| | - Barbara Hauck
- grid.8186.70000 0001 2168 2483Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE UK
| | - Sue Dalton
- grid.8186.70000 0001 2168 2483Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE UK
| | - Joe A. Gallagher
- grid.8186.70000 0001 2168 2483Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE UK
| | - Moritz Wagner
- Department of Applied Ecology, Geisenheim University, Geisenheim, Germany
| | - John Clifton-Brown
- grid.8664.c0000 0001 2165 8627Department of Agronomy and Plant Breeding, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK.
| |
Collapse
|
8
|
Osman MEFM, Dirar AI, Konozy EHE. Genome-wide screening of lectin putative genes from Sorghum bicolor L., distribution in QTLs and a probable implications of lectins in abiotic stress tolerance. BMC PLANT BIOLOGY 2022; 22:397. [PMID: 35963996 PMCID: PMC9375933 DOI: 10.1186/s12870-022-03792-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/08/2022] [Indexed: 05/30/2023]
Abstract
BACKGROUND Sorghum bicolor is one of the most important crops worldwide with the potential to provide resilience when other economic staples might fail against the continuous environmental changes. Many physiological, developmental and tolerance traits in plants are either controlled or influenced by lectins; carbohydrate binding proteins. Hence, we aimed at providing a comprehensive in silico account on sorghum's lectins and study their possible implication on various desired agronomical traits. RESULTS We have searched sorghum's genome from grain and sweet types for lectins putative genes that encode proteins with domains capable of differentially binding carbohydrate moieties and trigger various physiological responses. Of the 12 known plant lectin families, 8 were identified regarding their domain architectures, evolutionary relationships, physiochemical characteristics, and gene expansion mechanisms, and they were thoroughly addressed. Variations between grain and sweet sorghum lectin homologs in term of the presence/absence of certain other joint domains like dirigent and nucleotide-binding adaptor shared by APAF-1, R-proteins, and CED-4 (NB-ARC) indicate a possible neofunctionalization. Lectin sequences were found to be preferentially overrepresented in certain quantitative trait loci (QTLs) related to various traits under several subcategories such as cold, drought, salinity, panicle/grain composition, and leaf morphology. The co-localization and distribution of lectins among multiple QTLs provide insights into the pleiotropic effects that could be played by one lectin gene in numerous traits. CONCLUSION Our study offers a first-time inclusive details on sorghum lectins and their possible role in conferring tolerance against abiotic stresses and other economically important traits that can be informative for future functional analysis and breeding studies.
Collapse
Affiliation(s)
| | - Amina Ibrahim Dirar
- Medicinal, Aromatic Plants and Traditional Medicine Research Institute (MAPTRI), National Center for Research, Mek Nimr Street, Khartoum, Sudan
| | | |
Collapse
|
9
|
Margarido GRA, Correr FH, Furtado A, Botha FC, Henry RJ. Limited allele-specific gene expression in highly polyploid sugarcane. Genome Res 2022; 32:297-308. [PMID: 34949669 PMCID: PMC8805727 DOI: 10.1101/gr.275904.121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/19/2021] [Indexed: 12/04/2022]
Abstract
Polyploidy is widespread in plants, allowing the different copies of genes to be expressed differently in a tissue-specific or developmentally specific way. This allele-specific expression (ASE) has been widely reported, but the proportion and nature of genes showing this characteristic have not been well defined. We now report an analysis of the frequency and patterns of ASE at the whole-genome level in the highly polyploid sugarcane genome. Very high depth whole-genome sequencing and RNA sequencing revealed strong correlations between allelic proportions in the genome and in expressed sequences. This level of sequencing allowed discrimination of each of the possible allele doses in this 12-ploid genome. Most genes were expressed in direct proportion to the frequency of the allele in the genome with examples of polymorphisms being found with every possible discrete level of dose from 1:11 for single-copy alleles to 12:0 for monomorphic sites. The rarer cases of ASE were more frequent in the expression of defense-response genes, as well as in some processes related to the biosynthesis of cell walls. ASE was more common in genes with variants that resulted in significant disruption of function. The low level of ASE may reflect the recent origin of polyploid hybrid sugarcane. Much of the ASE present can be attributed to strong selection for resistance to diseases in both nature and domestication.
Collapse
Affiliation(s)
- Gabriel Rodrigues Alves Margarido
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Piracicaba 13418-900, Brazil
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Fernando Henrique Correr
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Piracicaba 13418-900, Brazil
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Frederik C Botha
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| | - Robert James Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane 4072, Australia
| |
Collapse
|
10
|
Qiu H, Li C, Yang W, Tan K, Yi Q, Yang M, Bai G. Fine Mapping of a New Major QTL- qGLS8 for Gray Leaf Spot Resistance in Maize. FRONTIERS IN PLANT SCIENCE 2021; 12:743869. [PMID: 34603363 PMCID: PMC8484643 DOI: 10.3389/fpls.2021.743869] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
Gray leaf spot (GLS), caused by different species of Cercospora, is a fungal, non-soil-borne disease that causes serious reductions in maize yield worldwide. The identification of major quantitative trait loci (QTLs) for GLS resistance in maize is essential for developing marker-assisted selection strategies in maize breeding. Previous research found a significant difference (P < 0.01) in GLS resistance between T32 (highly resistant) and J51 (highly susceptible) genotypes of maize. Initial QTL analysis was conducted in an F2 : 3 population of 189 individuals utilizing genetic maps that were constructed using 181 simple sequence repeat (SSR) markers. One QTL (qGLS8) was detected, defined by the markers umc1130 and umc2354 in three environments. The qGLS8 QTL detected in the initial analysis was located in a 51.96-Mb genomic region of chromosome 8 and explained 7.89-14.71% of the phenotypic variation in GLS resistance in different environments. We also developed a near isogenic line (NIL) BC3F2 population with 1,468 individuals and a BC3F2-Micro population with 180 individuals for fine mapping. High-resolution genetic and physical maps were constructed using six newly developed SSRs. The QTL-qGLS8 was narrowed down to a 124-kb region flanked by the markers ym20 and ym51 and explained up to 17.46% of the phenotypic variation in GLS resistance. The QTL-qGLS8 contained seven candidate genes, such as an MYB-related transcription factor 24 and a C 3 H transcription factor 347), and long intergenic non-coding RNAs (lincRNAs). The present study aimed to provide a foundation for the identification of candidate genes for GLS resistance in maize.
Collapse
Affiliation(s)
- Hongbo Qiu
- *Correspondence: Hongbo Qiu ; orcid.org/0000-0001-8162-1738
| | | | | | | | | | | | | |
Collapse
|
11
|
Panahabadi R, Ahmadikhah A, McKee LS, Ingvarsson PK, Farrokhi N. Genome-Wide Association Mapping of Mixed Linkage (1,3;1,4)-β-Glucan and Starch Contents in Rice Whole Grain. FRONTIERS IN PLANT SCIENCE 2021; 12:665745. [PMID: 34512678 PMCID: PMC8424012 DOI: 10.3389/fpls.2021.665745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/28/2021] [Indexed: 05/27/2023]
Abstract
The glucan content of rice is a key factor defining its nutritional and economic value. Starch and its derivatives have many industrial applications such as in fuel and material production. Non-starch glucans such as (1,3;1,4)-β-D-glucan (mixed-linkage β-glucan, MLG) have many benefits in human health, including lowering cholesterol, boosting the immune system, and modulating the gut microbiome. In this study, the genetic variability of MLG and starch contents were analyzed in rice (Oryza sativa L.) whole grain, by performing a new quantitative analysis of the polysaccharide content of rice grains. The 197 rice accessions investigated had an average MLG content of 252 μg/mg, which was negatively correlated with the grain starch content. A new genome-wide association study revealed seven significant quantitative trait loci (QTLs) associated with the MLG content and two QTLs associated with the starch content in rice whole grain. Novel genes associated with the MLG content were a hexose transporter and anthocyanidin 5,3-O-glucosyltransferase. Also, the novel gene associated with the starch content was a nodulin-like domain. The data pave the way for a better understanding of the genes involved in determining both MLG and starch contents in rice grains and should facilitate future plant breeding programs.
Collapse
Affiliation(s)
- Rahele Panahabadi
- Department of Plant Science and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
| | - Asadollah Ahmadikhah
- Department of Plant Science and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Lauren S. McKee
- Division of Glycoscience, Department of Chemistry, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, Sweden
- Wallenberg Wood Science Centre, Stockholm, Sweden
| | - Pär K. Ingvarsson
- Linnean Centre for Plant Biology, Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Naser Farrokhi
- Department of Plant Science and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
12
|
Woodhouse MR, Cannon EK, Portwood JL, Harper LC, Gardiner JM, Schaeffer ML, Andorf CM. A pan-genomic approach to genome databases using maize as a model system. BMC PLANT BIOLOGY 2021; 21:385. [PMID: 34416864 PMCID: PMC8377966 DOI: 10.1186/s12870-021-03173-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/11/2021] [Indexed: 05/21/2023]
Abstract
Research in the past decade has demonstrated that a single reference genome is not representative of a species' diversity. MaizeGDB introduces a pan-genomic approach to hosting genomic data, leveraging the large number of diverse maize genomes and their associated datasets to quickly and efficiently connect genomes, gene models, expression, epigenome, sequence variation, structural variation, transposable elements, and diversity data across genomes so that researchers can easily track the structural and functional differences of a locus and its orthologs across maize. We believe our framework is unique and provides a template for any genomic database poised to host large-scale pan-genomic data.
Collapse
Affiliation(s)
| | - Ethalinda K Cannon
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - John L Portwood
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Lisa C Harper
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, 65211, Columbia, MO, USA
| | - Mary L Schaeffer
- Division of Plant Sciences, University of Missouri, 65211, Columbia, MO, USA
| | - Carson M Andorf
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
13
|
Double agent indole-3-acetic acid (IAA): Mechanistic analysis of indole-3-acetaldehyde dehydrogenase AldA that synthesizes IAA, an auxin that aids bacterial virulence. Biosci Rep 2021; 41:229488. [PMID: 34369556 PMCID: PMC8385190 DOI: 10.1042/bsr20210598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/10/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
The large diversity of organisms inhabiting various environmental niches on our planet are engaged in a lively exchange of biomolecules, including nutrients, hormones, and vitamins. In a quest to survive, organisms that we define as pathogens employ innovative methods to extract valuable resources from their host leading to an infection. One such instance is where plant-associated bacterial pathogens synthesize and deploy hormones or their molecular mimics to manipulate the physiology of the host plant. This commentary describes one such specific example—the mechanism of the enzyme AldA, an aldehyde dehydrogenase (ALDH) from the bacterial plant pathogen Pseudomonas syringae which produces the plant auxin hormone indole-3-acetic acid (IAA) by oxidizing the substrate indole-3-acetaldehyde (IAAld) using the cofactor nicotinamide adenine dinucleotide (NAD+) (Bioscience Reports (2020) 40(12), https://doi.org/10.1042/BSR20202959). Using mutagenesis, enzyme kinetics, and structural analysis, Zhang et al. established that the progress of the reaction hinges on the formation of two distinct conformations of NAD(H) during the reaction course. Additionally, a key mutation in the AldA active site ‘aromatic box’ changes the enzyme’s preference for an aromatic substrate to an aliphatic one. Our commentary concludes that such molecular level investigations help to establish the nature of the dynamics of NAD(H) in ALDH-catalyzed reactions, and further show that the key active site residues control substrate specificity. We also contemplate that insights from the present study can be used to engineer novel ALDH enzymes for environmental, health, and industrial applications.
Collapse
|
14
|
Hodgson-Kratky K, Perlo V, Furtado A, Choudhary H, Gladden JM, Simmons BA, Botha F, Henry RJ. Association of gene expression with syringyl to guaiacyl ratio in sugarcane lignin. PLANT MOLECULAR BIOLOGY 2021; 106:173-192. [PMID: 33738678 DOI: 10.1007/s11103-021-01136-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 03/02/2021] [Indexed: 05/11/2023]
Abstract
A transcriptome analysis reveals the transcripts and alleles differentially expressed in sugarcane genotypes with contrasting lignin composition. Sugarcane bagasse is a highly abundant resource that may be used as a feedstock for the production of biofuels and bioproducts in order to meet increasing demands for renewable replacements for fossil carbon. However, lignin imparts rigidity to the cell wall that impedes the efficient breakdown of the biomass into fermentable sugars. Altering the ratio of the lignin units, syringyl (S) and guaiacyl (G), which comprise the native lignin polymer in sugarcane, may facilitate the processing of bagasse. This study aimed to identify genes and markers associated with S/G ratio in order to accelerate the development of sugarcane bioenergy varieties with modified lignin composition. The transcriptome sequences of 12 sugarcane genotypes that contrasted for S/G ratio were compared and there were 2019 transcripts identified as differentially expressed (DE) between the high and low S/G ratio groups. These included transcripts encoding possible monolignol biosynthetic pathway enzymes, transporters, dirigent proteins and transcriptional and post-translational regulators. Furthermore, the frequencies of single nucleotide polymorphisms (SNPs) were compared between the low and high S/G ratio groups to identify specific alleles expressed with the phenotype. There were 2063 SNP loci across 787 unique transcripts that showed group-specific expression. Overall, the DE transcripts and SNP alleles identified in this study may be valuable for breeding sugarcane varieties with altered S/G ratio that may provide desirable bioenergy traits.
Collapse
Affiliation(s)
- K Hodgson-Kratky
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - V Perlo
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - A Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - H Choudhary
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - J M Gladden
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Sandia National Laboratories, Livermore, CA, 94550, USA
| | - B A Simmons
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - F Botha
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia
| | - R J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
15
|
Investigating the reaction and substrate preference of indole-3-acetaldehyde dehydrogenase from the plant pathogen Pseudomonas syringae PtoDC3000. Biosci Rep 2021; 40:227102. [PMID: 33325526 PMCID: PMC7745063 DOI: 10.1042/bsr20202959] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/24/2020] [Accepted: 12/01/2020] [Indexed: 12/14/2022] Open
Abstract
Aldehyde dehydrogenases (ALDHs) catalyze the conversion of various aliphatic and aromatic aldehydes into corresponding carboxylic acids. Traditionally considered as housekeeping enzymes, new biochemical roles are being identified for members of ALDH family. Recent work showed that AldA from the plant pathogen Pseudomonas syringae strain PtoDC3000 (PtoDC3000) functions as an indole-3-acetaldehyde dehydrogenase for the synthesis of indole-3-acetic acid (IAA). IAA produced by AldA allows the pathogen to suppress salicylic acid-mediated defenses in the model plant Arabidopsis thaliana. Here we present a biochemical and structural analysis of the AldA indole-3-acetaldehyde dehydrogenase from PtoDC3000. Site-directed mutants targeting the catalytic residues Cys302 and Glu267 resulted in a loss of enzymatic activity. The X-ray crystal structure of the catalytically inactive AldA C302A mutant in complex with IAA and NAD+ showed the cofactor adopting a conformation that differs from the previously reported structure of AldA. These structures suggest that NAD+ undergoes a conformational change during the AldA reaction mechanism similar to that reported for human ALDH. Site-directed mutagenesis of the IAA binding site indicates that changes in the active site surface reduces AldA activity; however, substitution of Phe169 with a tryptophan altered the substrate selectivity of the mutant to prefer octanal. The present study highlights the inherent biochemical versatility of members of the ALDH enzyme superfamily in P. syringae.
Collapse
|
16
|
Wang Y, Sang Z, Xu S, Xu Q, Zeng X, Jabu D, Yuan H. Comparative proteomics analysis of Tibetan hull-less barley under osmotic stress via data-independent acquisition mass spectrometry. Gigascience 2021; 9:5775614. [PMID: 32126136 PMCID: PMC7053489 DOI: 10.1093/gigascience/giaa019] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/18/2020] [Accepted: 02/12/2020] [Indexed: 12/25/2022] Open
Abstract
Background Tibetan hull-less barley (Hordeum vulgare L. var. nudum) is one of the primary crops cultivated in the mountains of Tibet and encounters low temperature, high salinity, and drought. Specifically, drought is one of the major abiotic stresses that affect and limit Tibetan barley growth. Osmotic stress is often simultaneously accompanied by drought conditions. Thus, to improve crop yield, it is critical to explore the molecular mechanism governing the responses of hull-less barley to osmotic/drought stress conditions. Findings In this study, we used quantitative proteomics by data-independent acquisition mass spectrometry to investigate protein abundance changes in tolerant (XL) and sensitive (DQ) cultivars. A total of 6,921 proteins were identified and quantified in all samples. Two distinct strategies based on pairwise and time-course comparisons were utilized in the comprehensive analysis of differentially abundant proteins. Further functional analysis of differentially abundant proteins revealed that some hormone metabolism–associated and phytohormone abscisic acid–induced genes are primarily affected by osmotic stress. Enhanced regulation of reactive oxygen species (may promote the tolerance of hull-less barley under osmotic stress. Moreover, we found that some regulators, such as GRF, PR10, MAPK, and AMPK, were centrally positioned in the gene regulatory network, suggesting that they may have a dominant role in the osmotic stress response of Tibetan barley. Conclusions Our findings highlight a subset of proteins and processes that are involved in the alleviation of osmotic stress. In addition, this study provides a large-scale and multidimensional proteomic data resource for the further investigation and improvement of osmotic/drought stress tolerance in hull-less barley or other plant species.
Collapse
Affiliation(s)
- Yulin Wang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Zha Sang
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Shaohang Xu
- Deepxomics Co., Ltd, No.2082 Shenyan Road, Yantian District., Shenzhen 518000, Guangdong, China
| | - Qijun Xu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Xingquan Zeng
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Dunzhu Jabu
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| | - Hongjun Yuan
- State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China.,Institute of Agricultural Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, No.130 Jinzhu West Road, Chengguan District, Lhasa 850002, Tibet, China
| |
Collapse
|
17
|
Li H, Jia S, Tang Y, Jiang Y, Yang S, Zhang J, Yan B, Wang Y, Guo J, Zhao S, Yang Q, Shao R. A transcriptomic analysis reveals the adaptability of the growth and physiology of immature tassel to long-term soil water deficit in Zea mays L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 155:756-768. [PMID: 32882617 DOI: 10.1016/j.plaphy.2020.08.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
Drought is a key threat to maize growth and yield. Understanding the mechanism of immature tassel (IT) response to long term drought is of paramount importance. Here, the maize inbred line PH6WC was tested under well-watered (CK) and two water deficit treatments (WD1 and WD2). The final IT length in the WD1 and WD2 treatments decreased by nearly 6.2% and 21.2% compared to the CK, respectively, and the average accumulation rate IT dry matter was 1.5-fold and 1.8-fold slower, respectively. Furthermore, RNA sequencing analysis was conducted on the IT sampled at 30 days after the WD treatments. In total, the cellular component in gene ontology (GO) analysis suggested that the differentially expressed genes were significantly enriched in three common terms (apoplast, plant-type cell wall, and anchored component of membrane) among the CK vs WD1, CK vs WD2, and WD1 vs WD2 comparisons. Next, a co-expression network analysis identified 44 modules that contained global expression genes. Finally, by combining the GO analysis with modules, nine genes involved in carbohydrate metabolism and the antioxidant system were screened out, and the six corresponding physiological parameters were all significantly increased under the WD treatments. These results showed that, although the IT length and dry matter decreased, the IT enhanced the adaptation to drought by regulating their own genetic and physiological changes.
Collapse
Affiliation(s)
- Hongwei Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shuangjie Jia
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yulou Tang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yanping Jiang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shenjiao Yang
- Farmland Irrigation Research Institute, CAAS/National Agro-ecological System Observation and Research Station of Shangqiu, Xinxiang, 453002, China
| | - Junjie Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bowen Yan
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongchao Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jiameng Guo
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shijie Zhao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, China
| | - Qinghua Yang
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Ruixin Shao
- National Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
18
|
Lee SG, Harline K, Abar O, Akadri SO, Bastian AG, Chen HYS, Duan M, Focht CM, Groziak AR, Kao J, Kottapalli JS, Leong MC, Lin JJ, Liu R, Luo JE, Meyer CM, Mo AF, Pahng SH, Penna V, Raciti CD, Srinath A, Sudhakar S, Tang JD, Cox BR, Holland CK, Cascella B, Cruz W, McClerkin SA, Kunkel BN, Jez JM. The plant pathogen enzyme AldC is a long-chain aliphatic aldehyde dehydrogenase. J Biol Chem 2020; 295:13914-13926. [PMID: 32796031 DOI: 10.1074/jbc.ra120.014747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/11/2020] [Indexed: 12/13/2022] Open
Abstract
Aldehyde dehydrogenases are versatile enzymes that serve a range of biochemical functions. Although traditionally considered metabolic housekeeping enzymes because of their ability to detoxify reactive aldehydes, like those generated from lipid peroxidation damage, the contributions of these enzymes to other biological processes are widespread. For example, the plant pathogen Pseudomonas syringae strain PtoDC3000 uses an indole-3-acetaldehyde dehydrogenase to synthesize the phytohormone indole-3-acetic acid to elude host responses. Here we investigate the biochemical function of AldC from PtoDC3000. Analysis of the substrate profile of AldC suggests that this enzyme functions as a long-chain aliphatic aldehyde dehydrogenase. The 2.5 Å resolution X-ray crystal of the AldC C291A mutant in a dead-end complex with octanal and NAD+ reveals an apolar binding site primed for aliphatic aldehyde substrate recognition. Functional characterization of site-directed mutants targeting the substrate- and NAD(H)-binding sites identifies key residues in the active site for ligand interactions, including those in the "aromatic box" that define the aldehyde-binding site. Overall, this study provides molecular insight for understanding the evolution of the prokaryotic aldehyde dehydrogenase superfamily and their diversity of function.
Collapse
Affiliation(s)
- Soon Goo Lee
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Chemistry and Biochemistry, University of North Carolina-Wilmington, Wilmington, North Carolina, USA
| | - Kate Harline
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Orchid Abar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sakirat O Akadri
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Alexander G Bastian
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hui-Yuan S Chen
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Michael Duan
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Caroline M Focht
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Amanda R Groziak
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Jesse Kao
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | | | - Matthew C Leong
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joy J Lin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Regina Liu
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joanna E Luo
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Christine M Meyer
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Albert F Mo
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Seong Ho Pahng
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Vinay Penna
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Chris D Raciti
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Abhinav Srinath
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shwetha Sudhakar
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph D Tang
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Brian R Cox
- Department of Chemistry and Biochemistry, University of North Carolina-Wilmington, Wilmington, North Carolina, USA
| | - Cynthia K Holland
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Biology, Williams College, Williamstown, Massachusetts, USA
| | - Barrie Cascella
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wilhelm Cruz
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Sheri A McClerkin
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois, USA
| | - Barbara N Kunkel
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Joseph M Jez
- Department of Biology, Washington University in St. Louis, St. Louis, Missouri, USA.
| |
Collapse
|
19
|
Elongating maize root: zone-specific combinations of polysaccharides from type I and type II primary cell walls. Sci Rep 2020; 10:10956. [PMID: 32616810 PMCID: PMC7331734 DOI: 10.1038/s41598-020-67782-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/12/2020] [Indexed: 11/09/2022] Open
Abstract
The dynamics of cell wall polysaccharides may modulate the cell wall mechanics and thus control the expansion growth of plant cells. The unique composition of type II primary cell wall characteristic of grasses suggests that they employ specific mechanisms for cell enlargement. We characterized the transcriptomes in five zones along maize root, clustered the expression of genes for numerous glycosyltransferases and performed extensive immunohistochemical analysis to relate the changes in cell wall polysaccharides to critical stages of cell development in Poaceae. Specific patterns of cell wall formation differentiate the initiation, realization and cessation of elongation growth. Cell walls of meristem and early elongation zone represent a mixture of type I and type II specific polysaccharides. Xyloglucans and homogalacturonans are synthesized there actively together with mixed-linkage glucans and glucuronoarabinoxylans. Rhamnogalacturonans-I with the side-chains of branched 1,4-galactan and arabinan persisted in cell walls throughout the development. Thus, the machinery to generate the type I primary cell wall constituents is completely established and operates. The expression of glycosyltransferases responsible for mixed-linkage glucan and glucuronoarabinoxylan synthesis peaks at active or late elongation. These findings widen the number of jigsaw pieces which should be put together to solve the puzzle of grass cell growth.
Collapse
|
20
|
Portwood JL, Woodhouse MR, Cannon EK, Gardiner JM, Harper LC, Schaeffer ML, Walsh JR, Sen TZ, Cho KT, Schott DA, Braun BL, Dietze M, Dunfee B, Elsik CG, Manchanda N, Coe E, Sachs M, Stinard P, Tolbert J, Zimmerman S, Andorf CM. MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Res 2020; 47:D1146-D1154. [PMID: 30407532 PMCID: PMC6323944 DOI: 10.1093/nar/gky1046] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/16/2018] [Indexed: 01/12/2023] Open
Abstract
Since its 2015 update, MaizeGDB, the Maize Genetics and Genomics database, has expanded to support the sequenced genomes of many maize inbred lines in addition to the B73 reference genome assembly. Curation and development efforts have targeted high quality datasets and tools to support maize trait analysis, germplasm analysis, genetic studies, and breeding. MaizeGDB hosts a wide range of data including recent support of new data types including genome metadata, RNA-seq, proteomics, synteny, and large-scale diversity. To improve access and visualization of data types several new tools have been implemented to: access large-scale maize diversity data (SNPversity), download and compare gene expression data (qTeller), visualize pedigree data (Pedigree Viewer), link genes with phenotype images (MaizeDIG), and enable flexible user-specified queries to the MaizeGDB database (MaizeMine). MaizeGDB also continues to be the community hub for maize research, coordinating activities and providing technical support to the maize research community. Here we report the changes MaizeGDB has made within the last three years to keep pace with recent software and research advances, as well as the pan-genomic landscape that cheaper and better sequencing technologies have made possible. MaizeGDB is accessible online at https://www.maizegdb.org.
Collapse
Affiliation(s)
- John L Portwood
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Margaret R Woodhouse
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Ethalinda K Cannon
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Jack M Gardiner
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Lisa C Harper
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Mary L Schaeffer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Jesse R Walsh
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Taner Z Sen
- USDA-ARS Crop Improvement and Genetics Research Unit, Albany, CA 94710, USA.,Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Kyoung Tak Cho
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - David A Schott
- Department of Computer Science, Iowa State University, Ames, IA 50011, USA
| | - Bremen L Braun
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| | - Miranda Dietze
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Brittney Dunfee
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA 50011, USA
| | - Christine G Elsik
- Division of Animal Sciences, University of Missouri, Columbia, MO 65211, USA.,Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Nancy Manchanda
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Ed Coe
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Marty Sachs
- USDA/ARS/MWA Soybean/Maize Germplasm, Pathology & Genetics Research Unit, Urbana, IL, 61801, USA
| | - Philip Stinard
- USDA/ARS/MWA Soybean/Maize Germplasm, Pathology & Genetics Research Unit, Urbana, IL, 61801, USA
| | - Josh Tolbert
- USDA/ARS/MWA Soybean/Maize Germplasm, Pathology & Genetics Research Unit, Urbana, IL, 61801, USA
| | - Shane Zimmerman
- USDA/ARS/MWA Soybean/Maize Germplasm, Pathology & Genetics Research Unit, Urbana, IL, 61801, USA
| | - Carson M Andorf
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
| |
Collapse
|
21
|
Xie T, Liu Z, Wang G. Structural basis for monolignol oxidation by a maize laccase. NATURE PLANTS 2020; 6:231-237. [PMID: 32123349 DOI: 10.1038/s41477-020-0595-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/07/2020] [Indexed: 06/10/2023]
Abstract
Plant laccases catalyse the oxidation of monolignols in lignification, a process reinforcing the cell wall of many different cell types that provide mechanical support, nutrient transportation and defence against pathogens in plants1. The isozymes display a broad range of substrate preferences. Here, the substrate preference of a laccase (ZmLac3) from Zea mays (maize) was characterized. The crystal structure of ZmLac3 revealed a compact and deep substrate-binding pocket, and the binding modes of sinapyl alcohol (SinA) and coniferyl alcohol (ConA) were solved. On the basis of structural data and kinetics analysis, we propose that the regionalization of polar and hydrophobic surfaces in the binding pocket of ZmLac3 is vital for defining the orientation of SinA/ConA binding. The extra methoxyl group in SinA makes substantial contributions to interactions between SinA and ZmLac3, which are absent in the ZmLac3-ConA complex. In summary, the polar and hydrophobic interactions between SinA/ConA and ZmLac3 determine the binding positions of the monolignols in ZmLac3. These results provide valuable insight about ZmLac3 catalysis and should aid industrial processes that use plant laccases.
Collapse
Affiliation(s)
- Tian Xie
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China
| | - Zhongchuan Liu
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China
| | - Ganggang Wang
- Key Laboratory of Environmental and Applied Microbiology, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.
- Key Laboratory of Environmental Microbiology of Sichuan Province, Chengdu, China.
- The Innovative Academy of Seed Design (INASEED), Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
22
|
Zhang Y, Wang Y, Ye D, Xing J, Duan L, Li Z, Zhang M. Ethephon-regulated maize internode elongation associated with modulating auxin and gibberellin signal to alter cell wall biosynthesis and modification. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110196. [PMID: 31779899 DOI: 10.1016/j.plantsci.2019.110196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 07/18/2019] [Accepted: 07/20/2019] [Indexed: 05/12/2023]
Abstract
Ethephon efficiently regulates plant growth to modulate the maize (Zea mays L.) stalk strength and yield potential, yet there is little information on how ethylene governs a specific cellular response for altering internode elongation. Here, the internode elongation kinetics, cell morphological and physiological properties and transcript expression patterns were investigated in the ethephon-treated elongating internode. Ethephon decreased the internode elongation rate, shortened the effective elongation duration, and advanced the growth process. Ethephon regulated the expression patterns of expansin and secondary cell wall-associated cellulose synthase genes to alter cell size. Moreover, ethephon increased the activities and transcripts level of phenylalanine ammonia-lyase and peroxidase, which contributed to lignin accumulation. Otherwise, ethephon-boosted ethylene evolution activated ethylene signal and increased ZmGA2ox3 and ZmGA2ox10 transcript levels while down-regulating ZmPIN1a, ZmPIN4 and ZmGA3ox1 transcript levels, which led to lower accumulation of gibberellins and auxin. In addition, transcriptome profiles confirmed previous results and identified several transcription factors that are involved in the ethephon-modulated transcriptional regulation of cell wall biosynthesis and modification and responses to ethylene, gibberellins and auxin. These results indicated that ethylene-modulated auxin and gibberellins signaling mediated the transcriptional operation of cell wall modification to regulate cell elongation in the ethephon-treated maize internode.
Collapse
Affiliation(s)
- Yushi Zhang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yubin Wang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Delian Ye
- College of Crop Science, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Jiapeng Xing
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liusheng Duan
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Mingcai Zhang
- Engineering Research Center of Plant Growth Regulator, Ministry of Education, Key Laboratory of Farming System, Ministry of Agriculture of China, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
23
|
Qiu L, Chen R, Fan Y, Huang X, Luo H, Xiong F, Liu J, Zhang R, Lei J, Zhou H, Wu J, Li Y. Integrated mRNA and small RNA sequencing reveals microRNA regulatory network associated with internode elongation in sugarcane (Saccharum officinarum L.). BMC Genomics 2019; 20:817. [PMID: 31699032 PMCID: PMC6836457 DOI: 10.1186/s12864-019-6201-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/18/2019] [Indexed: 12/31/2022] Open
Abstract
Background Internode elongation is one of the most important traits in sugarcane because of its relation to crop productivity. Understanding the microRNA (miRNA) and mRNA expression profiles related to sugarcane internode elongation would help develop molecular improvement strategies but they are not yet well-investigated. To identify genes and miRNAs involved in internode elongation, the cDNA and small RNA libraries from the pre-elongation stage (EI), early elongation stage (EII) and rapid elongation stage (EIII) were sequenced and their expression were studied. Results Based on the sequencing results, 499,495,518 reads and 80,745 unigenes were identified from stem internodes of sugarcane. The comparisons of EI vs. EII, EI vs. EIII, and EII vs. EIII identified 493, 5035 and 3041 differentially expressed genes, respectively. Further analysis revealed that the differentially expressed genes were enriched in the GO terms oxidoreductase activity and tetrapyrrole binding. KEGG pathway annotation showed significant enrichment in “zeatin biosynthesis”, “nitrogen metabolism” and “plant hormone signal transduction”, which might be participating in internode elongation. miRNA identification showed 241 known miRNAs and 245 novel candidate miRNAs. By pairwise comparison, 11, 42 and 26 differentially expressed miRNAs were identified from EI and EII, EI and EIII, and EII and EIII comparisons, respectively. The target prediction revealed that the genes involved in “zeatin biosynthesis”, “nitrogen metabolism” and “plant hormone signal transduction” pathways are targets of the miRNAs. We found that the known miRNAs miR2592-y, miR1520-x, miR390-x, miR5658-x, miR6169-x and miR8154-x were likely regulators of genes with internode elongation in sugarcane. Conclusions The results of this study provided a global view of mRNA and miRNA regulation during sugarcane internode elongation. A genetic network of miRNA-mRNA was identified with miRNA-mediated gene expression as a mechanism in sugarcane internode elongation. Such evidence will be valuable for further investigations of the molecular regulatory mechanisms underpinning sugarcane growth and development.
Collapse
Affiliation(s)
- Lihang Qiu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Rongfa Chen
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Yegeng Fan
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Xing Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Hanmin Luo
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Faqian Xiong
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Junxian Liu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Ronghua Zhang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Jingchao Lei
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Huiwen Zhou
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China.,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Jianming Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China. .,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China.
| | - Yangrui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Sugarcane Research Center, Chinese Academy of Agricultural Sciences, East Daxue Road 172, Nanning, 530004, Guangxi, China. .,Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, and Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China.
| |
Collapse
|
24
|
da Costa RMF, Simister R, Roberts LA, Timms-Taravella E, Cambler AB, Corke FMK, Han J, Ward RJ, Buckeridge MS, Gomez LD, Bosch M. Nutrient and drought stress: implications for phenology and biomass quality in miscanthus. ANNALS OF BOTANY 2019; 124:553-566. [PMID: 30137291 PMCID: PMC6821376 DOI: 10.1093/aob/mcy155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/25/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND AND AIMS The cultivation of dedicated biomass crops, including miscanthus, on marginal land provides a promising approach to the reduction of dependency on fossil fuels. However, little is known about the impact of environmental stresses often experienced on lower-grade agricultural land on cell-wall quality traits in miscanthus biomass crops. In this study, three different miscanthus genotypes were exposed to drought stress and nutrient stress, both separately and in combination, with the aim of evaluating their impact on plant growth and cell-wall properties. METHODS Automated imaging facilities at the National Plant Phenomics Centre (NPPC-Aberystwyth) were used for dynamic phenotyping to identify plant responses to separate and combinatorial stresses. Harvested leaf and stem samples of the three miscanthus genotypes (Miscanthus sinensis, Miscanthus sacchariflorus and Miscanthus × giganteus) were separately subjected to saccharification assays, to measure sugar release, and cell-wall composition analyses. KEY RESULTS Phenotyping showed that the M. sacchariflorus genotype Sac-5 and particularly the M. sinensis genotype Sin-11 coped better than the M. × giganteus genotype Gig-311 with drought stress when grown in nutrient-poor compost. Sugar release by enzymatic hydrolysis, used as a biomass quality measure, was significantly affected by the different environmental conditions in a stress-, genotype- and organ-dependent manner. A combination of abundant water and low nutrients resulted in the highest sugar release from leaves, while for stems this was generally associated with the combination of drought and nutrient-rich conditions. Cell-wall composition analyses suggest that changes in fine structure of cell-wall polysaccharides, including heteroxylans and pectins, possibly in association with lignin, contribute to the observed differences in cell-wall biomass sugar release. CONCLUSIONS The results highlight the importance of the assessment of miscanthus biomass quality measures in addition to biomass yield determinations and the requirement for selecting suitable miscanthus genotypes for different environmental conditions.
Collapse
Affiliation(s)
- Ricardo M F da Costa
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Rachael Simister
- CNAP, Department of Biology, University of York, Heslington, York, UK
| | - Luned A Roberts
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Emma Timms-Taravella
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| | - Arthur B Cambler
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Fiona M K Corke
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Jiwan Han
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Richard J Ward
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, University of São Paulo, Ribeirão Preto-SP, Brazil
| | - Marcos S Buckeridge
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo D Gomez
- CNAP, Department of Biology, University of York, Heslington, York, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, UK
| |
Collapse
|
25
|
System Analysis of MIRNAs in Maize Internode Elongation. Biomolecules 2019; 9:biom9090417. [PMID: 31461907 PMCID: PMC6769733 DOI: 10.3390/biom9090417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/23/2019] [Accepted: 08/24/2019] [Indexed: 12/15/2022] Open
Abstract
MicroRNAs (miRNAs), the post-transcriptional gene regulators, are known to play an important role in plant development. The identification of differentially expressed miRNAs could better help us understand the post-transcriptional regulation that occurs during maize internode elongation. Accordingly, we compared the expression of MIRNAs between fixed internode and elongation internode samples and classified six differentially expressed MIRNAs as internode elongation-responsive miRNAs including zma-MIR160c, zma-MIR164b, zma-MIR164c, zma-MIR168a, zma-MIR396f, and zma-MIR398b, which target mRNAs supported by transcriptome sequencing. Functional enrichment analysis for predictive target genes showed that these miRNAs were involved in the development of internode elongation by regulating the genes respond to hormone signaling. To further reveal how miRNA affects internode elongation by affecting target genes, the miRNA–mRNA–PPI (protein and protein interaction) network was constructed to summarize the interaction of miRNAs and these target genes. Our results indicate that miRNAs regulate internode elongation in maize by targeting genes related to cell expansion, cell wall synthesis, transcription, and regulatory factors.
Collapse
|
26
|
Mohapatra S, Mishra SS, Bhalla P, Thatoi H. Engineering grass biomass for sustainable and enhanced bioethanol production. PLANTA 2019; 250:395-412. [PMID: 31236698 DOI: 10.1007/s00425-019-03218-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Bioethanol from lignocellulosic biomass is a promising step for the future energy requirements. Grass is a potential lignocellulosic biomass which can be utilised for biorefinery-based bioethanol production. Grass biomass is a suitable feedstock for bioethanol production due to its all the year around production, requirement of less fertile land and noninterference with food system. However, the processes involved, i.e. pretreatment, enzymatic hydrolysis and fermentation for bioethanol production from grass biomass, are both time consuming and costly. Developing the grass biomass in planta for enhanced bioethanol production is a promising step for maximum utilisation of this valuable feedstock and, thus, is the focus of the present review. Modern breeding techniques and transgenic processes are attractive methods which can be utilised for development of the feedstock. However, the outcomes are not always predictable and the time period required for obtaining a robust variety is generation dependent. Sophisticated genome editing technologies such as synthetic genetic circuits (SGC) or clustered regularly interspaced short palindromic repeats (CRISPR) systems are advantageous for induction of desired traits/heritable mutations in a foreseeable genome location in the 1st mutant generation. Although, its application in grass biomass for bioethanol is limited, these sophisticated techniques are anticipated to exhibit more flexibility in engineering the expression pattern for qualitative and qualitative traits. Nevertheless, the fundamentals rendered by the genetics of the transgenic crops will remain the basis of such developments for obtaining biorefinery-based bioethanol concepts from grass biomass. Grasses which are abundant and widespread in nature epitomise attractive lignocellulosic feedstocks for bioethanol production. The complexity offered by the grass cell wall in terms of lignin recalcitrance and its binding to polysaccharides forms a barricade for its commercialization as a biofuel feedstock. Inspired by the possibilities for rewiring the genetic makeup of grass biomass for reduced lignin and lignin-polysaccharide linkages along with increase in carbohydrates, innovative approaches for in planta modifications are forging ahead. In this review, we highlight the progress made in the field of transgenic grasses for bioethanol production and focus our understanding on improvements of simple breeding techniques and post-harvest techniques for development in shortening of lignin-carbohydrate and carbohydrate-carbohydrate linkages. Further, we discuss about the designer lignins which are aimed for qualitable lignins and also emphasise on remodelling of polysaccharides and mixed-linkage glucans for enhancing carbohydrate content and in planta saccharification efficiency. As a final point, we discuss the role of synthetic genetic circuits and CRISPR systems in targeted improvement of cell wall components without compromising the plant growth and health. It is anticipated that this review can provide a rational approach towards a better understanding of application of in planta genetic engineering aspects for designing synthetic genetic circuits which can promote grass feedstocks for biorefinery-based bioethanol concepts.
Collapse
Affiliation(s)
- Sonali Mohapatra
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar, 751003, India.
| | - Suruchee Samparana Mishra
- Department of Biotechnology, College of Engineering and Technology, Biju Patnaik University of Technology, Bhubaneswar, 751003, India
| | - Prerna Bhalla
- Bhupat and Jyoti Mehta School of Biosciences Building, Indian Institute of Technology Madras, Chennai, India
| | - Hrudayanath Thatoi
- Department of Biotechnology, North Orissa University, Sriram Chandra Vihar, Takatpur, Baripada, 757003, Odisha, India
| |
Collapse
|
27
|
Lehman TA, Sanguinet KA. Auxin and Cell Wall Crosstalk as Revealed by the Arabidopsis thaliana Cellulose Synthase Mutant Radially Swollen 1. PLANT & CELL PHYSIOLOGY 2019; 60:1487-1503. [PMID: 31004494 DOI: 10.1093/pcp/pcz055] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 03/29/2019] [Indexed: 06/09/2023]
Abstract
Plant cells sheath themselves in a complex lattice of polysaccharides, proteins and enzymes forming an integral matrix known as the cell wall. Cellulose microfibrils, the primary component of cell walls, are synthesized at the plasma membrane by CELLULOSE SYNTHASE A (CESA) proteins throughout cellular growth and are responsible for turgor-driven anisotropic expansion. Associations between hormone signaling and cell wall biosynthesis have long been suggested, but recently direct links have been found revealing hormones play key regulatory roles in cellulose biosynthesis. The radially swollen 1 (rsw1) allele of Arabidopsis thaliana CESA1 harbors a single amino acid change that renders the protein unstable at high temperatures. We used the conditional nature of rsw1 to investigate how auxin contributes to isotropic growth. We found that exogenous auxin treatment reduces isotropic swelling in rsw1 roots at the restrictive temperature of 30�C. We also discovered decreases in auxin influx between rsw1 and wild-type roots via confocal imaging of AUX1-YFP, even at the permissive temperature of 19�C. Moreover, rsw1 displayed mis-expression of auxin-responsive and CESA genes. Additionally, we found altered auxin maxima in rsw1 mutant roots at the onset of swelling using DII-VENUS and DR5:vYFP auxin reporters. Overall, we conclude disrupted cell wall biosynthesis perturbs auxin transport leading to altered auxin homeostasis impacting both anisotropic and isotropic growth that affects overall root morphology.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, USA
- Molecular Plant Sciences Graduate Group, Washington State University, Pullman, WA, USA
| |
Collapse
|
28
|
Bhatia R, Dalton S, Roberts LA, Moron-Garcia OM, Iacono R, Kosik O, Gallagher JA, Bosch M. Modified expression of ZmMYB167 in Brachypodium distachyon and Zea mays leads to increased cell wall lignin and phenolic content. Sci Rep 2019; 9:8800. [PMID: 31217516 PMCID: PMC6584667 DOI: 10.1038/s41598-019-45225-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/31/2019] [Indexed: 01/01/2023] Open
Abstract
One of the challenges to enable targeted modification of lignocellulosic biomass from grasses for improved biofuel and biochemical production lies within our limited understanding of the transcriptional control of secondary cell wall biosynthesis. Here, we investigated the role of the maize MYB transcription factor ZmMYB167 in secondary cell wall biosynthesis and how modified ZmMYB167 expression in two distinct grass model species affects plant biomass and growth phenotypes. Heterologous expression of ZmMYB167 in the C3 model system Brachypodium led to mild dwarf phenotypes, increased lignin (~7% to 13%) and S-lignin monomer (~11% to 16%) content, elevated concentrations of cell wall-bound p-coumaric acid (~15% to 24%) and reduced biomass sugar release (~20%) compared to controls. Overexpression of ZmMYB167 in the C4 model system Zea mays increased lignin (~4% to 13%), p-coumaric acid (~8% to 52%) and ferulic acid (~13% to 38%) content but did not affect plant growth and development nor biomass recalcitrance. Taken together, modifying ZmMYB167 expression represents a target to alter lignin and phenolic content in grasses. The ZmMYB167 expression-induced discrepancies in plant phenotypic and biomass properties between the two grass model systems highlight the challenges and opportunities for MYB transcription factor-based genetic engineering approaches of grass biomass.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK.
| | - Sue Dalton
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Luned A Roberts
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Odin M Moron-Garcia
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Rosario Iacono
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Ondrej Kosik
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Joe A Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK.
| |
Collapse
|
29
|
Patil V, McDermott HI, McAllister T, Cummins M, Silva JC, Mollison E, Meikle R, Morris J, Hedley PE, Waugh R, Dockter C, Hansson M, McKim SM. APETALA2 control of barley internode elongation. Development 2019; 146:dev.170373. [PMID: 31076487 PMCID: PMC6589076 DOI: 10.1242/dev.170373] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 05/02/2019] [Indexed: 01/08/2023]
Abstract
Many plants dramatically elongate their stems during flowering, yet how this response is coordinated with the reproductive phase is unclear. We demonstrate that microRNA (miRNA) control of APETALA2 (AP2) is required for rapid, complete elongation of stem internodes in barley, especially of the final ‘peduncle’ internode directly underneath the inflorescence. Disrupted miR172 targeting of AP2 in the Zeo1.b barley mutant caused lower mitotic activity, delayed growth dynamics and premature lignification in the peduncle leading to fewer and shorter cells. Stage- and tissue-specific comparative transcriptomics between Zeo1.b and its parent cultivar showed reduced expression of proliferation-associated genes, ectopic expression of maturation-related genes and persistent, elevated expression of genes associated with jasmonate and stress responses. We further show that applying methyl jasmonate (MeJA) phenocopied the stem elongation of Zeo1.b, and that Zeo1.b itself was hypersensitive to inhibition by MeJA but less responsive to promotion by gibberellin. Taken together, we propose that miR172-mediated restriction of AP2 may modulate the jasmonate pathway to facilitate gibberellin-promoted stem growth during flowering. Summary: Regulation of reproductive stem elongation in barley by APETALA2 suggests a pivotal role for phase change repression of JA-associated responses to promote internode growth.
Collapse
Affiliation(s)
- Vrushali Patil
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Hannah I McDermott
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Trisha McAllister
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Michael Cummins
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Joana C Silva
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Ewan Mollison
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Rowan Meikle
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Jenny Morris
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Pete E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Robbie Waugh
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland.,Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| | - Christoph Dockter
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, DK-1799 Copenhagen V, Denmark
| | - Mats Hansson
- Department of Biology, Lund University, Sölvegatan 35B, 22362 Lund, Sweden
| | - Sarah M McKim
- Division of Plant Sciences, School of Life Sciences, The University of Dundee at The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland
| |
Collapse
|
30
|
Calderan-Rodrigues MJ, Guimarães Fonseca J, de Moraes FE, Vaz Setem L, Carmanhanis Begossi A, Labate CA. Plant Cell Wall Proteomics: A Focus on Monocot Species, Brachypodium distachyon, Saccharum spp. and Oryza sativa. Int J Mol Sci 2019; 20:E1975. [PMID: 31018495 PMCID: PMC6514655 DOI: 10.3390/ijms20081975] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls mostly comprise polysaccharides and proteins. The composition of monocots' primary cell walls differs from that of dicots walls with respect to the type of hemicelluloses, the reduction of pectin abundance and the presence of aromatic molecules. Cell wall proteins (CWPs) differ among plant species, and their distribution within functional classes varies according to cell types, organs, developmental stages and/or environmental conditions. In this review, we go deeper into the findings of cell wall proteomics in monocot species and make a comparative analysis of the CWPs identified, considering their predicted functions, the organs analyzed, the plant developmental stage and their possible use as targets for biofuel production. Arabidopsis thaliana CWPs were considered as a reference to allow comparisons among different monocots, i.e., Brachypodium distachyon, Saccharum spp. and Oryza sativa. Altogether, 1159 CWPs have been acknowledged, and specificities and similarities are discussed. In particular, a search for A. thaliana homologs of CWPs identified so far in monocots allows the definition of monocot CWPs characteristics. Finally, the analysis of monocot CWPs appears to be a powerful tool for identifying candidate proteins of interest for tailoring cell walls to increase biomass yield of transformation for second-generation biofuels production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Juliana Guimarães Fonseca
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Fabrício Edgar de Moraes
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Laís Vaz Setem
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Amanda Carmanhanis Begossi
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Carlos Alberto Labate
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| |
Collapse
|
31
|
Lenk I, Fisher LHC, Vickers M, Akinyemi A, Didion T, Swain M, Jensen CS, Mur LAJ, Bosch M. Transcriptional and Metabolomic Analyses Indicate that Cell Wall Properties are Associated with Drought Tolerance in Brachypodium distachyon. Int J Mol Sci 2019; 20:E1758. [PMID: 30974727 PMCID: PMC6479473 DOI: 10.3390/ijms20071758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 01/07/2023] Open
Abstract
Brachypodium distachyon is an established model for drought tolerance. We previously identified accessions exhibiting high tolerance, susceptibility and intermediate tolerance to drought; respectively, ABR8, KOZ1 and ABR4. Transcriptomics and metabolomic approaches were used to define tolerance mechanisms. Transcriptional analyses suggested relatively few drought responsive genes in ABR8 compared to KOZ1. Linking these to gene ontology (GO) terms indicated enrichment for "regulated stress response", "plant cell wall" and "oxidative stress" associated genes. Further, tolerance correlated with pre-existing differences in cell wall-associated gene expression including glycoside hydrolases, pectin methylesterases, expansins and a pectin acetylesterase. Metabolomic assessments of the same samples also indicated few significant changes in ABR8 with drought. Instead, pre-existing differences in the cell wall-associated metabolites correlated with drought tolerance. Although other features, e.g., jasmonate signaling were suggested in our study, cell wall-focused events appeared to be predominant. Our data suggests two different modes through which the cell wall could confer drought tolerance: (i) An active response mode linked to stress induced changes in cell wall features, and (ii) an intrinsic mode where innate differences in cell wall composition and architecture are important. Both modes seem to contribute to ABR8 drought tolerance. Identification of the exact mechanisms through which the cell wall confers drought tolerance will be important in order to inform development of drought tolerant crops.
Collapse
Affiliation(s)
- Ingo Lenk
- DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge, Denmark.
| | - Lorraine H C Fisher
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Martin Vickers
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Aderemi Akinyemi
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Thomas Didion
- DLF Seeds A/S, Højerupvej 31, 4660 Store Heddinge, Denmark.
| | - Martin Swain
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | | | - Luis A J Mur
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| | - Maurice Bosch
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth SY23 3EE, UK.
| |
Collapse
|
32
|
Figueiredo R, Araújo P, Llerena JPP, Mazzafera P. Suberin and hemicellulose in sugarcane cell wall architecture and crop digestibility: A biotechnological perspective. Food Energy Secur 2019. [DOI: 10.1002/fes3.163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Raquel Figueiredo
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Pedro Araújo
- Department of Genetics, Evolution and Bioagents Institute of Biology State University of Campinas Campinas Brazil
| | - Juan Pablo P. Llerena
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
| | - Paulo Mazzafera
- Department of Plant Biology Institute of Biology State University of Campinas Campinas Brazil
- Department of Crop Science College of Agriculture Luiz de Queiroz University of São Paulo Piracicaba Brazil
| |
Collapse
|
33
|
Begović L, Abičić I, Lalić A, Lepeduš H, Cesar V, Leljak-Levanić D. Lignin synthesis and accumulation in barley cultivars differing in their resistance to lodging. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 133:142-148. [PMID: 30419464 DOI: 10.1016/j.plaphy.2018.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/24/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Since lignin greatly affects stem strength, which is an important agronomical trait, understanding the relationship between lodging resistance and lignin synthesis is important in barley breeding and selection processes. The aim of the study was to reveal the connection between physiological aspects of lignin synthesis and genetic background of barley cultivars with different lodging phenotype. Three barley cultivars Astor, Scarlett and Jaran were compared by measuring lignin, cellulose and total soluble phenolics content, phenylalanine ammonia-lyase activity (PAL) and expression of cinnamoyl-CoA reductase (CCR) and cinnamyl-alcohol dehydrogenase (CAD) in three lower internodes at flowering and grain filling stage. To assess their genetic background simple sequence repeats (SSR) markers, connected to lodging resistance and plant height, were analyzed. Compared to lodging susceptible cultivars Scarlett and Jaran, a lodging resistant cultivar Astor revealed different dynamics of lignin synthesis and deposition, showing higher PAL activity and total soluble phenolics content as well as higher expression of CCR and CAD genes in the second internode at grain filling stage. Analysis of SSR markers associated with quantitative trait loci (QTL) for lodging resistance revealed that Astor discriminates from Scarlett and Jaran by marker Bmag337 connected with elongation of the second internode. Lignification process is under a strong influence of genotype and environmental factors which determine lignin synthesis dynamics and deposition of lignin in the cell walls of barley.
Collapse
Affiliation(s)
- Lidija Begović
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia.
| | - Ivan Abičić
- Agricultural Institute Osijek, Južno Predgrađe 3, HR-31000, Osijek, Croatia.
| | - Alojzije Lalić
- Agricultural Institute Osijek, Južno Predgrađe 3, HR-31000, Osijek, Croatia.
| | - Hrvoje Lepeduš
- Faculty of Humanities and Social Sciences, Josip Juraj Strossmayer University of Osijek, Lorenza Jägera 9, HR-31000, Osijek, Croatia.
| | - Vera Cesar
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Ulica Cara Hadrijana 8/A, HR-31000, Osijek, Croatia.
| | - Dunja Leljak-Levanić
- Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102A, HR-10000, Zagreb, Croatia.
| |
Collapse
|
34
|
Zhang T, Lv W, Zhang H, Ma L, Li P, Ge L, Li G. Genome-wide analysis of the basic Helix-Loop-Helix (bHLH) transcription factor family in maize. BMC PLANT BIOLOGY 2018; 18:235. [PMID: 30326829 PMCID: PMC6192367 DOI: 10.1186/s12870-018-1441-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 09/24/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND In plants, the basic helix-loop-helix (bHLH) transcription factors play key roles in diverse biological processes. Genome-wide comprehensive and systematic analyses of bHLH proteins have been well conducted in Arabidopsis, rice, tomato and other plant species. However, only few of bHLH family genes have been functional characterized in maize. RESULTS In this study, our genome-wide analysis identified 208 putative bHLH family proteins (ZmbHLH proteins) in maize (Zea mays). We classified these proteins into 18 subfamilies by comparing the ZmbHLHs with Arabidopsis thaliana bHLH proteins. Phylogenetic analysis, conserved protein motifs, and exon-intron patterns further supported the evolutionary relationships among these bHLH proteins. Genome distribution analysis found that the 208 ZmbHLH loci were located non-randomly on the ten maize chromosomes. Further, analysis of conserved cis-elements in the promoter regions, protein interaction networks, and expression patterns in roots, leaves, and seeds across developmental stages, suggested that bHLH family proteins in maize are probably involved in multiple physiological processes in plant growth and development. CONCLUSION We performed a genome-wide, systematic analysis of bHLH proteins in maize. This comprehensive analysis provides a useful resource that enables further investigation of the physiological roles and molecular functions of the ZmbHLH transcription factors.
Collapse
Affiliation(s)
- Tingting Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Wei Lv
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Haisen Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Lin Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
- School of Biological Science and Technology, University of Jinan, Jinan, 250022 China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, 271018 China
| | - Lei Ge
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
35
|
Wang H, Gu L, Zhang X, Liu M, Jiang H, Cai R, Zhao Y, Cheng B. Global transcriptome and weighted gene co-expression network analyses reveal hybrid-specific modules and candidate genes related to plant height development in maize. PLANT MOLECULAR BIOLOGY 2018; 98:187-203. [PMID: 30327994 DOI: 10.1007/s11103-018-0763-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 08/03/2018] [Indexed: 05/22/2023]
Abstract
Weighted gene co-expression network analysis was explored to find key hub genes involved in plant height regulation. Plant height, an important trait for maize breeding because of its close relatedness to lodging resistance and yield, has been reported to be determined by multiple qualitative and quantitative genes. However, few genes related to plant height have been characterized in maize. Herein, three different maize hybrids, with extremely distinct plant height, which were further classified into low (L), middle (M) and high (H) group, were selected for RNA sequencing at three key developmental stages, namely, jointing stage (I), big flare period (II) and tasseling stage (III). Intriguingly, transcriptome profiles for hybrids ranging from low to high group exhibited significantly similarity in both jointing stage and big flare period. However, remarkably larger differentially expressed genes could be detected between hybrid from low to either middle or high group in tasseling stage. These results were repeatedly observed in both phenotyping and gene ontology enrichment analysis, indicating that transition from big flare period to tasseling stage plays a critical role in determination of plant height. Furthermore, weighted gene co-expression network analysis was explored to find key hub genes involved in plant height regulation. Hundreds of candidate genes, encoding various transcription factors, and regulators involved in internode cell regulation and cell wall synthesis were identified in our network. More importantly, great majority of candidates were correlated to either metabolism or signaling pathway of several plant phytohormones. Particularly, numerous functionally characterized genes in gibberellic acid as well as brassinosteroids signaling transduction pathways were also discovered, suggesting their critical roles in plant height regulation. The present study could provide a modestly comprehensive insight into networks for regulation of plant height in maize.
Collapse
Affiliation(s)
- Hengsheng Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Longjiang Gu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Xingen Zhang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Mingli Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China
| | - Yang Zhao
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
36
|
Edqvist J, Blomqvist K, Nieuwland J, Salminen TA. Plant lipid transfer proteins: are we finally closing in on the roles of these enigmatic proteins? J Lipid Res 2018; 59:1374-1382. [PMID: 29555656 PMCID: PMC6071764 DOI: 10.1194/jlr.r083139] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/23/2018] [Indexed: 12/22/2022] Open
Abstract
The nonspecific lipid transfer proteins (LTPs) are small compact proteins folded around a tunnel-like hydrophobic cavity, making them suitable for lipid binding and transport. LTPs are encoded by large gene families in all land plants, but they have not been identified in algae or any other organisms. Thus, LTPs are considered key proteins for plant survival on and colonization of land. LTPs are abundantly expressed in most plant tissues, both above and below ground. They are usually localized to extracellular spaces outside the plasma membrane. Although the in vivo functions of LTPs remain unclear, accumulating evidence suggests a role for LTPs in the transfer and deposition of monomers required for assembly of the waterproof lipid barriers, such as cutin and cuticular wax, suberin, and sporopollenin, formed on many plant surfaces. Some LTPs may be involved in other processes, such as signaling during pathogen attacks. Here, we present the current status of LTP research with a focus on the role of these proteins in lipid barrier deposition and cell expansion. We suggest that LTPs facilitate extracellular transfer of barrier materials and adhesion between barriers and extracellular materials. A growing body of research may uncover the true role of LTPs in plants.
Collapse
Affiliation(s)
| | | | - Jeroen Nieuwland
- Faculty of Computing, Engineering, and Science, University of South Wales, CF37 1DL Pontypridd, United Kingdom
| | - Tiina A Salminen
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, FI-20520 Turku, Finland
| |
Collapse
|
37
|
Liu Z, Fan M, Li C, Xu JH. Dynamic gene amplification and function diversification of grass-specific O-methyltransferase gene family. Genomics 2018; 111:687-695. [PMID: 29689291 DOI: 10.1016/j.ygeno.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/02/2018] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
The plant O-methyltransferases are dependent on S-Adenosyl-l-methionine, which can catalyze a variety of secondary metabolites. Here we identified different number of OMT genes from the respective grass genomes. Phylogenetic analysis showed that this OMT gene family is a grass-specific gene family that is different from COMT. Most of genes were expanded by tandem and segment duplication after the species split from their progenitor. Furthermore, genes from Group I and two clusters from group II are only present in Panicoideae, which included Bx10 and Bx7 involved in the benzoxazinoids pathway, suggesting these genes could participate in insect resistance in Panicoideae. Gene expression profiles showed that OMT genes were preferentially expressed in vegetative stages, especially in roots. These results revealed that this grass-specific OMT gene family could affect the development of vegetative stages, and be involved in the benzoxazinoids pathway or suberin biosynthesis that was different from COMT.
Collapse
Affiliation(s)
- Zhen Liu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Miao Fan
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Chao Li
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| | - Jian-Hong Xu
- Institute of Crop Science, Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
38
|
Huang J, Vendramin S, Shi L, McGinnis KM. Construction and Optimization of a Large Gene Coexpression Network in Maize Using RNA-Seq Data. PLANT PHYSIOLOGY 2017; 175:568-583. [PMID: 28768814 PMCID: PMC5580776 DOI: 10.1104/pp.17.00825] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 07/31/2017] [Indexed: 05/22/2023]
Abstract
With the emergence of massively parallel sequencing, genomewide expression data production has reached an unprecedented level. This abundance of data has greatly facilitated maize research, but may not be amenable to traditional analysis techniques that were optimized for other data types. Using publicly available data, a gene coexpression network (GCN) can be constructed and used for gene function prediction, candidate gene selection, and improving understanding of regulatory pathways. Several GCN studies have been done in maize (Zea mays), mostly using microarray datasets. To build an optimal GCN from plant materials RNA-Seq data, parameters for expression data normalization and network inference were evaluated. A comprehensive evaluation of these two parameters and a ranked aggregation strategy on network performance, using libraries from 1266 maize samples, were conducted. Three normalization methods and 10 inference methods, including six correlation and four mutual information methods, were tested. The three normalization methods had very similar performance. For network inference, correlation methods performed better than mutual information methods at some genes. Increasing sample size also had a positive effect on GCN. Aggregating single networks together resulted in improved performance compared to single networks.
Collapse
Affiliation(s)
- Ji Huang
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Stefania Vendramin
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| | - Lizhen Shi
- Department of Computer Science, Florida State University, Tallahassee, Florida 32306
| | - Karen M McGinnis
- Department of Biological Science, Florida State University, Tallahassee, Florida 32306
| |
Collapse
|
39
|
Bhatia R, Gallagher JA, Gomez LD, Bosch M. Genetic engineering of grass cell wall polysaccharides for biorefining. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1071-1092. [PMID: 28557198 PMCID: PMC5552484 DOI: 10.1111/pbi.12764] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 05/17/2017] [Accepted: 05/24/2017] [Indexed: 05/10/2023]
Abstract
Grasses represent an abundant and widespread source of lignocellulosic biomass, which has yet to fulfil its potential as a feedstock for biorefining into renewable and sustainable biofuels and commodity chemicals. The inherent recalcitrance of lignocellulosic materials to deconstruction is the most crucial limitation for the commercial viability and economic feasibility of biomass biorefining. Over the last decade, the targeted genetic engineering of grasses has become more proficient, enabling rational approaches to modify lignocellulose with the aim of making it more amenable to bioconversion. In this review, we provide an overview of transgenic strategies and targets to tailor grass cell wall polysaccharides for biorefining applications. The bioengineering efforts and opportunities summarized here rely primarily on (A) reprogramming gene regulatory networks responsible for the biosynthesis of lignocellulose, (B) remodelling the chemical structure and substitution patterns of cell wall polysaccharides and (C) expressing lignocellulose degrading and/or modifying enzymes in planta. It is anticipated that outputs from the rational engineering of grass cell wall polysaccharides by such strategies could help in realizing an economically sustainable, grass-derived lignocellulose processing industry.
Collapse
Affiliation(s)
- Rakesh Bhatia
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | - Joe A. Gallagher
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| | | | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS)Aberystwyth UniversityAberystwythUK
| |
Collapse
|
40
|
Zhang L, Dong Y, Wang Q, Du C, Xiong W, Li X, Zhu S, Li Y. iTRAQ-Based Proteomics Analysis and Network Integration for Kernel Tissue Development in Maize. Int J Mol Sci 2017; 18:E1840. [PMID: 28837076 PMCID: PMC5618489 DOI: 10.3390/ijms18091840] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/09/2017] [Accepted: 08/18/2017] [Indexed: 02/07/2023] Open
Abstract
Grain weight is one of the most important yield components and a developmentally complex structure comprised of two major compartments (endosperm and pericarp) in maize (Zea mays L.), however, very little is known concerning the coordinated accumulation of the numerous proteins involved. Herein, we used isobaric tags for relative and absolute quantitation (iTRAQ)-based comparative proteomic method to analyze the characteristics of dynamic proteomics for endosperm and pericarp during grain development. Totally, 9539 proteins were identified for both components at four development stages, among which 1401 proteins were non-redundant, 232 proteins were specific in pericarp and 153 proteins were specific in endosperm. A functional annotation of the identified proteins revealed the importance of metabolic and cellular processes, and binding and catalytic activities for the tissue development. Three and 76 proteins involved in 49 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were integrated for the specific endosperm and pericarp proteins, respectively, reflecting their complex metabolic interactions. In addition, four proteins with important functions and different expression levels were chosen for gene cloning and expression analysis. Different concordance between mRNA level and the protein abundance was observed across different proteins, stages, and tissues as in previous research. These results could provide useful message for understanding the developmental mechanisms in grain development in maize.
Collapse
Affiliation(s)
- Long Zhang
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Yongbin Dong
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Qilei Wang
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Chunguang Du
- Deptment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Wenwei Xiong
- Deptment of Biology and Molecular Biology, Montclair State University, Montclair, NJ 07043, USA.
| | - Xinyu Li
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Sailan Zhu
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| | - Yuling Li
- College of Agronomy, Henan Agricultural University, Collaborative Innovation Center of Henan Grain Crops, National Key Laboratory of Wheat and Maize Crop Science, 63 Nongye Rd., Zhengzhou 450002, China.
| |
Collapse
|
41
|
Hu R, Xu Y, Yu C, He K, Tang Q, Jia C, He G, Wang X, Kong Y, Zhou G. Transcriptome analysis of genes involved in secondary cell wall biosynthesis in developing internodes of Miscanthus lutarioriparius. Sci Rep 2017; 7:9034. [PMID: 28831170 PMCID: PMC5567372 DOI: 10.1038/s41598-017-08690-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022] Open
Abstract
Miscanthus is a promising lignocellulosic bioenergy crop for bioethanol production. To identify candidate genes and regulation networks involved in secondary cell wall (SCW) development in Miscanthus, we performed de novo transcriptome analysis of a developing internode. According to the histological and in-situ histochemical analysis, an elongating internode of M. lutarioriparius can be divided into three distinct segments, the upper internode (UI), middle internode (MI) and basal internode (BI), each representing a different stage of SCW development. The transcriptome analysis generated approximately 300 million clean reads, which were de novo assembled into 79,705 unigenes. Nearly 65% of unigenes was annotated in seven public databases. Comparative profiling among the UI, MI and BI revealed four distinct clusters. Moreover, detailed expression profiling was analyzed for gene families and transcription factors (TFs) involved in SCW biosynthesis, assembly and modification. Based on the co-expression patterns, putative regulatory networks between TFs and SCW-associated genes were constructed. The work provided the first transcriptome analysis of SCW development in M. lutarioriparius. The results obtained provide novel insights into the biosynthesis and regulation of SCW in Miscanthus. In addition, the genes identified represent good candidates for further functional studies to unravel their roles in SCW biosynthesis and modification.
Collapse
Affiliation(s)
- Ruibo Hu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Yan Xu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Changjiang Yu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Kang He
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Qi Tang
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Chunlin Jia
- Shandong Institute of Agricultural Sustainable Development, Jinan, 250100, P. R. China
| | - Guo He
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Yingzhen Kong
- Key laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| |
Collapse
|
42
|
Lin F, Williams BJ, Thangella PAV, Ladak A, Schepmoes AA, Olivos HJ, Zhao K, Callister SJ, Bartley LE. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode. FRONTIERS IN PLANT SCIENCE 2017; 8:1134. [PMID: 28751896 PMCID: PMC5507963 DOI: 10.3389/fpls.2017.01134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 05/27/2023]
Abstract
Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II) at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature) indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.
Collapse
Affiliation(s)
- Fan Lin
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | | | | | - Adam Ladak
- Waters CorporationBeverly, MA, United States
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | | | - Kangmei Zhao
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| |
Collapse
|
43
|
Guerriero G, Behr M, Legay S, Mangeot-Peter L, Zorzan S, Ghoniem M, Hausman JF. Transcriptomic profiling of hemp bast fibres at different developmental stages. Sci Rep 2017; 7:4961. [PMID: 28694530 PMCID: PMC5504027 DOI: 10.1038/s41598-017-05200-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/24/2017] [Indexed: 02/08/2023] Open
Abstract
Bast fibres are long extraxylary cells which mechanically support the phloem and they are divided into xylan- and gelatinous-type, depending on the composition of their secondary cell walls. The former, typical of jute/kenaf bast fibres, are characterized by the presence of xylan and a high degree of lignification, while the latter, found in tension wood, as well as flax, ramie and hemp bast fibres, have a high abundance of crystalline cellulose. During their differentiation, bast fibres undergo specific developmental stages: the cells initially elongate rapidly by intrusive growth, subsequently they cease elongation and start to thicken. The goal of the present study is to provide a transcriptomic close-up of the key events accompanying bast fibre development in textile hemp (Cannabis sativa L.), a fibre crop of great importance. Bast fibres have been sampled from different stem regions. The developmental stages corresponding to active elongation and cell wall thickening have been studied using RNA-Seq. The results show that the fibres sampled at each stem region are characterized by a specific transcriptomic signature and that the major changes in cell wall-related processes take place at the internode containing the snap point. The data generated also identify several interesting candidates for future functional analysis.
Collapse
Affiliation(s)
- Gea Guerriero
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg.
| | - Marc Behr
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
- Université catholique de Louvain, Groupe de Recherche en Physiologie Végétale, Earth and Life Institute-Agronomy, Louvain-la-Neuve, B-1348, Belgium
| | - Sylvain Legay
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Lauralie Mangeot-Peter
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
- Institut National de la Recherche Agronomique, Université de Lorraine, UMR 1136, Interactions Arbres-Microorganismes, Champenoux, F-54280, France
| | - Simone Zorzan
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Mohammad Ghoniem
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| | - Jean-Francois Hausman
- Luxembourg Institute of Science and Technology (LIST), Environmental Research and Innovation (ERIN) Department, Esch/Alzette, L-4362, Luxembourg
| |
Collapse
|
44
|
de Castro M, Martínez-Rubio R, Acebes JL, Encina A, Fry SC, García-Angulo P. Phenolic metabolism and molecular mass distribution of polysaccharides in cellulose-deficient maize cells. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:475-495. [PMID: 28474461 DOI: 10.1111/jipb.12549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
As a consequence of the habituation to low levels of dichlobenil (DCB), cultured maize cells presented an altered hemicellulose cell fate with a lower proportion of strongly wall-bound hemicelluloses and an increase in soluble extracellular polymers released into the culture medium. The aim of this study was to investigate the relative molecular mass distributions of polysaccharides as well as phenolic metabolism in cells habituated to low levels of DCB (1.5 μM). Generally, cell wall bound hemicelluloses and sloughed polymers from habituated cells were more homogeneously sized and had a lower weight-average relative molecular mass. In addition, polysaccharides underwent massive cross-linking after being secreted into the cell wall, but this cross-linking was less pronounced in habituated cells than in non-habituated ones. However, when relativized, ferulic acid and p-coumaric acid contents were higher in this habituated cell line. Feasibly, cells habituated to low levels of DCB synthesized molecules with a lower weight-average relative molecular mass, although cross-linked, as a part of their strategy to compensate for the lack of cellulose.
Collapse
Affiliation(s)
- María de Castro
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Romina Martínez-Rubio
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - José L Acebes
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - Antonio Encina
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| | - Stephen C Fry
- The Edinburgh Cell Wall Group, Institute of Molecular Plant Sciences, School of Biological Sciences, Daniel Rutherford Building, The King's Buildings, Edinburgh EH9 3BF, UK
| | - Penélope García-Angulo
- Área de Fisiología Vegetal. Dpto. Ingeniería y Ciencias Agrarias. Facultad de Biología y Ciencias Ambientales, Universidad de León, Leon E-24071, Spain
| |
Collapse
|
45
|
Lehman TA, Smertenko A, Sanguinet KA. Auxin, microtubules, and vesicle trafficking: conspirators behind the cell wall. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3321-3329. [PMID: 28666373 DOI: 10.1093/jxb/erx205] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Plant morphogenesis depends on the synchronized anisotropic expansion of individual cells in response to developmental and environmental cues. The magnitude of cell expansion depends on the biomechanical properties of the cell wall, which in turn depends on both its biosynthesis and extensibility. Although the control of cell expansion by the phytohormone auxin is well established, its regulation of cell wall composition, trafficking of H+-ATPases, and K+ influx that drives growth is still being elucidated. Furthermore, the maintenance of auxin fluxes via the interaction between the cytoskeleton and PIN protein recycling on the plasma membrane remains under investigation. This review proposes a model that describes how the cell wall, auxin, microtubule binding-protein CLASP and Kin7/separase complexes, and vesicle trafficking are co-ordinated on a cellular level to mediate cell wall loosening during cell expansion.
Collapse
Affiliation(s)
- Thiel A Lehman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Andrei Smertenko
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| | - Karen A Sanguinet
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164, USA
- Molecular Plant Sciences Graduate Program, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
46
|
Ihsan MZ, Ahmad SJN, Shah ZH, Rehman HM, Aslam Z, Ahuja I, Bones AM, Ahmad JN. Gene Mining for Proline Based Signaling Proteins in Cell Wall of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2017; 8:233. [PMID: 28289422 PMCID: PMC5326801 DOI: 10.3389/fpls.2017.00233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 02/07/2017] [Indexed: 05/29/2023]
Abstract
The cell wall (CW) as a first line of defense against biotic and abiotic stresses is of primary importance in plant biology. The proteins associated with cell walls play a significant role in determining a plant's sustainability to adverse environmental conditions. In this work, the genes encoding cell wall proteins (CWPs) in Arabidopsis were identified and functionally classified using geneMANIA and GENEVESTIGATOR with published microarrays data. This yielded 1605 genes, out of which 58 genes encoded proline-rich proteins (PRPs) and glycine-rich proteins (GRPs). Here, we have focused on the cellular compartmentalization, biological processes, and molecular functioning of proline-rich CWPs along with their expression at different plant developmental stages. The mined genes were categorized into five classes on the basis of the type of PRPs encoded in the cell wall of Arabidopsis thaliana. We review the domain structure and function of each class of protein, many with respect to the developmental stages of the plant. We have then used networks, hierarchical clustering and correlations to analyze co-expression, co-localization, genetic, and physical interactions and shared protein domains of these PRPs. This has given us further insight into these functionally important CWPs and identified a number of potentially new cell-wall related proteins in A. thaliana.
Collapse
Affiliation(s)
- Muhammad Z. Ihsan
- Cholistan Institute of Desert Studies, The Islamia University BahawalpurBahawalpur, Pakistan
| | - Samina J. N. Ahmad
- Plant Stress Physiology and Molecular Biology Lab, Department of Botany, University of Agriculture FaisalabadFaisalabad, Pakistan
- Integrated Genomics Cellular Developmental and Biotechnology Lab, Department of Entomology, University of Agriculture FaisalabadFaisalabad, Pakistan
| | - Zahid Hussain Shah
- Department of Arid Land Agriculture, Faculty of Meteorology, King Abdulaziz UniversityJeddah, Saudi Arabia
| | - Hafiz M. Rehman
- Department of Electronic and Biomedical Engineering, Chonnam National UniversityGwangju, South Korea
| | - Zubair Aslam
- Department of Agronomy, University of Agriculture FaisalabadFaisalabad, Pakistan
| | - Ishita Ahuja
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Atle M. Bones
- Department of Biology, Norwegian University of Science and TechnologyTrondheim, Norway
| | - Jam N. Ahmad
- Plant Stress Physiology and Molecular Biology Lab, Department of Botany, University of Agriculture FaisalabadFaisalabad, Pakistan
- Integrated Genomics Cellular Developmental and Biotechnology Lab, Department of Entomology, University of Agriculture FaisalabadFaisalabad, Pakistan
| |
Collapse
|
47
|
Wang J, Feng J, Jia W, Fan P, Bao H, Li S, Li Y. Genome-Wide Identification of Sorghum bicolor Laccases Reveals Potential Targets for Lignin Modification. FRONTIERS IN PLANT SCIENCE 2017; 8:714. [PMID: 28529519 PMCID: PMC5418363 DOI: 10.3389/fpls.2017.00714] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/18/2017] [Indexed: 05/07/2023]
Abstract
Laccase is a key enzyme in plant lignin biosynthesis as it catalyzes the final step of monolignols polymerization. Sweet sorghum [Sorghum bicolor (L.) Moench] is considered as an ideal feedstock for ethanol production, but lignin greatly limits the production efficiency. No comprehensive analysis on laccase has ever been conducted in S. bicolor, although it appears as the most promising target for engineering lignocellulosic feedstock. The aim of our work is to systematically characterize S. bicolor laccase gene family and to identify the lignin-specific candidates. A total of twenty-seven laccase candidates (SbLAC1-SbLAC27) were identified in S. bicolor. All SbLACs comprised the equivalent L1-L4 signature sequences and three typical Cu-oxidase domains, but exhibited diverse intron-exon patterns and relatively low sequence identity. They were divided into six groups by phylogenetic clustering, revealing potential distinct functions, while SbLAC5 was considered as the closest lignin-specific candidate. qRT-PCR analysis deciphered that SbLAC genes were expressed preferentially in roots and young internodes of sweet sorghum, and SbLAC5 showed high expression, adding the evidence that SbLAC5 was bona fide involved in lignin biosynthesis. Besides, high abundance of SbLAC6 transcripts was detected, correlating it a potential role in lignin biosynthesis. Diverse cis regulatory elements were recognized in SbLACs promoters, indicating putative interaction with transcription factors. Seven SbLACs were found to be potential targets of sbi-miRNAs. Moreover, putative phosphorylation sites in SbLAC sequences were identified. Our research adds to the knowledge for lignin profile modification in sweet sorghum.
Collapse
Affiliation(s)
- Jinhui Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Institute of Botany, University of Chinese Academy of SciencesBeijing, China
| | - Juanjuan Feng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- *Correspondence: Juanjuan Feng
| | - Weitao Jia
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Institute of Botany, University of Chinese Academy of SciencesBeijing, China
| | - Pengxiang Fan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Department of Biochemistry and Molecular Biology, Michigan State UniversityEast Lansing, MI, USA
| | - Hexigeduleng Bao
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Key Laboratory of Marine Food Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang UniversityHangzhou, China
| | - Shizhong Li
- Beijing Engineering Research Center for Biofuels, Tsinghua UniversityBeijing, China
- Shizhong Li
| | - Yinxin Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of SciencesBeijing, China
- Yinxin Li
| |
Collapse
|
48
|
Kebrom TH, McKinley B, Mullet JE. Dynamics of gene expression during development and expansion of vegetative stem internodes of bioenergy sorghum. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:159. [PMID: 28649278 PMCID: PMC5480195 DOI: 10.1186/s13068-017-0848-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 06/14/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Bioenergy sorghum accumulates 75% of shoot biomass in stem internodes. Grass stem internodes are formed during vegetative growth and elongate in response to developmental and environmental signals. To identify genes and molecular mechanisms that modulate the extent of internode growth, we conducted microscopic and transcriptomic analyses of four successive sub-apical vegetative internodes representing different stages of internode development of the bioenergy sorghum genotype R.07020. RESULTS Stem internodes of sorghum genotype R.07020 are formed during the vegetative phase and their length is enhanced by environmental signals such as shade and floral induction in short days. During vegetative growth, the first visible and youngest sub-apical internode was ~0.7 cm in length, whereas the fourth fully expanded internode was ~5 cm in length. Microscopic analyses revealed that all internode tissue types including pith parenchyma and vascular bundles are present in the four successive internodes. Growth in the first two sub-apical internodes occurred primarily through an increase in cell number consistent with expression of genes involved in the cell cycle and DNA replication. Growth of the 3rd internode was associated with an increase in cell length and growth cessation in the 4th internode was associated with up-regulation of genes involved in secondary cell wall deposition. The expression of genes involved in hormone metabolism and signaling indicates that GA, BR, and CK activity decreased while ethylene, ABA, and JA increased in the 3rd/4th internodes. While the level of auxin appears to be increasing as indicated by the up-regulation of ARFs, down-regulation of TIR during development indicates that auxin signaling is also modified. The expression patterns of transcription factors are closely associated with their role during the development of the vegetative internodes. CONCLUSIONS Microscopic and transcriptome analyses of four successive sub-apical internodes characterized the developmental progression of vegetative stem internodes from initiation through full elongation in the sorghum genotype R.07020. Transcriptome profiling indicates that dynamic variation in the levels and action of GA, CK, IAA, BR, ethylene, ABA, and JA modulate gene expression and growth during internode growth and development. This study provides detailed microscopic and transcriptomic data useful for identifying genes and molecular pathways regulating internode elongation in response to various developmental and environmental signals.
Collapse
Affiliation(s)
- Tesfamichael H. Kebrom
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| | - Brian McKinley
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| | - John E. Mullet
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
49
|
Zhang M, Zhou L, Bawa R, Suren H, Holliday J. Recombination Rate Variation, Hitchhiking, and Demographic History Shape Deleterious Load in Poplar. Mol Biol Evol 2016; 33:2899-2910. [DOI: 10.1093/molbev/msw169] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
50
|
Mal C, Deb A, Aftabuddin M, Kundu S. A network analysis of miRNA mediated gene regulation of rice: crosstalk among biological processes. MOLECULAR BIOSYSTEMS 2016; 11:2273-80. [PMID: 26066638 DOI: 10.1039/c5mb00222b] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To understand the network architecture of miRNA mediated regulations at the genomic and functional levels of rice, we have made an unambiguous annotation of the experimentally verified miRNAs, predicted their targets and the possible biological functions they can affect. Some functions, namely translational and protein modifications and photosynthesis are targeted by higher percentage of miRNA. Using transformation procedures, we constructed a genome scale miRNA-miRNA functional synergistic network (MFSN). The analysis of MFSN modules help to identify miRNAs co-regulating target genes having several interrelated biological processes. Some of these target genes are also co-expressed under particular conditions. For example, the genes co-expressed under drought conditions as well as those targeted by miRNAs present in a MFSN module have interdependent biological processes namely, photosynthesis, cell-wall biogenesis, root development and xylan synthesis. The stress-induced miRNAs and their distributions, and the presence of transcription factors in the target set of MFSN modules were also analyzed.
Collapse
Affiliation(s)
- Chittabrata Mal
- Department of Biophysics, Molecular Biology & Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India.
| | | | | | | |
Collapse
|